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Abstract

The paper studies the applicability of area-level Poisson mixed models
to estimate small area counting indicators. Among the available proce-
dures for fitting generalized linear models, the method of moments (MM)
and the penalized quasi-likelihood (PQL) method are employed. The em-
pirical best predictor (EBP) of the area mean is derived using MM and
compared with plug-in alternatives using MM and PQL. The plug-in es-
timator using PQL is computationally faster and provides competitive
performance with respect to EBP that involves high complex integrals.
An approximation to the mean squared error (MSE) of the EBP is given
and three MSE estimators are proposed. The first two MSE estimators are
plug-in estimators without and with bias correction to the second order
and the third one is based on parametric bootstrap. Several simulation
experiments are carried out for analyzing the behavior of the EBP and
for comparing the estimators of the MSE of the EBP. A good choice in
practice is the bootstrap alternative since it performs similarly to the ana-
lytical versions and is computationally faster. The developed methodology
and software are applied to data from the 2008 Spanish living condition
survey. The target of the application is the estimation of poverty rates at
province level.

keywords: Bootstrap, Empirical best predictor, Mean squared error,
Method of moments, Poisson mixed models, Poverty.

1 Introduction

One in five people is at risk of poverty or social exclusion in the European
Union (EU). For reducing this amount, the EU set national targets between
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all its members. Most European countries use the Living Conditions Survey
(LCS) to estimate poverty indicators. The Spanish Living Conditions Survey
(SLCS) provides information regarding the household income received during
the year prior to that of the interview. For every individual, the equivalent
personal income is obtained by dividing the annual household net income by
the equivalent total of household members, which is obtained as a weighted
sum assigning weights 1 to the first adult, 0.5 to remaining adults and 0.3 to
children under 14 years of age.

The poverty line is defined as a percentage (currently Eurostat fixed it in
60%) of the median of the equivalent personal incomes in the whole country.
A person is defined as poor if his/her equivalent personal income is lower than
the poverty line. Poverty rate is the proportion of people under the poverty
line. This is a relative measure depending on the incomes of all the household
members. Therefore, employment policies, education and welfare can have a
significant impact on levels of poverty rate. Policy makers are interested in
finding out which factors are more influential for poverty in order to act on
them.

The SLCS planned domains are the Spanish autonomous communities. There-
fore, SLCS direct estimators are not precise enough for estimating poverty rates
at a lower aggregation level than autonomous communities (e.g. provinces or
counties). Small area estimation (SAE) deals with this problem by introducing
model-based or model assisted estimators. See the monograph Rao (2003) and
the reviews of Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002), Jiang
and Lahiri (2006), Rao (2008) and Pfeffermann (2013) for an introduction to
the SAE.

Poisson regression and binomial-logit models are generalized linear models
(GLM) that are used for counts, i.e. for target variables counting some event
of interest (like being under poverty line). In these models the hypothesis of
linearity is relaxed in the sense that a function, called link, of the mean of the
observations is linear in some set of covariates. The hypothesis of normality is
also relaxed to the assumption that the distribution belongs to the exponential
family.

Sometimes the GLM cannot explain the variability of the target variable
through the selected auxiliary variables. It may happens that observations from
different domains are independent, but observations within the same domain are
dependent because they share common properties. The generalized linear mixed
models (GLMM) are extensions of GLM that capture the variability between
domains by introducing random effects. The random effects are usually assumed
to be normally distributed.

Despite the usefulness of GLMM, inferences based on these models have
some computational difficulties because the likelihood may involve high-dimen-
sional integrals which cannot be evaluated analytically. Several methods have
been proposed to overcome this problem, most of them relying on the Tay-
lor linearization and/or on the Laplace’s method for integral approximations
(see the review of Jiang and Lahiri 2006). EM-type algorithms assisted by
Monte Carlo methods are also applied. The penalized quasi-likelihood (PQL)
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algorithm (Breslow and Clayton 1993; Lin 2007; MacNab and Lin 2009) is
used in combination with a Gaussian approximation of the marginal density
that provides approximate maximum likelihood estimators of variance compo-
nents. Unfortunately, in some cases the PQL method may lead to inconsistent
and biased estimators (Jiang 1998). This paper uses the method of moments
(MM) for fitting the proposed area-level Poisson mixed model, which is based on
the method of simulated moments introduced by Jiang (1998). This method is
computationally attractive and gives consistent estimators of model parameters.

The paper derives empirical best predictors (EBP) based on area-level Pois-
son mixed models for estimating count indicators. The statistical methodology
is taken and adapted from Jiang and Lahiri (2001) and Jiang (2003), where
EBPs of functions of fixed effects and small area specific random effects were
developed in the context of logistic mixed models and GLMM respectively. In
addition to the EBPs, plug-in estimators are considered and empirically studied
in simulation experiments.

We consider the mean squared error (MSE) as an accuracy measure of the
EBP. The estimation of the MSE is not an easy task. Prasad and Rao (1990)
studied the accuracy of a second-order approximation to the MSE of empirical
best linear unbiased predictor (EBLUP) for three special cases of linear mixed
models: Fay-Herriot model, nested error regression model and random regres-
sion coefficient model. Jiang and Lahiri (2001) and Jiang (2003) studied the
approximation of the MSE of the EBP in the context of binary and GLMM
data. Their approach is based on Taylor series expansions. They further gave
a second-order bias corrected estimator of the MSE. We adapt the MSE cal-
culations given by Jiang and Lahiri (2001) and Jiang (2003) to the case of
area-level Poisson mixed models. The obtained MSE approximation gives an
accuracy measure for the EBP. We also give two analytical estimators of the
MSE approximation, without and with bias-correction term. As the analytical
estimators of MSE are computationally expensive in practice, we consider the
parametric bootstrap estimator introduced by González-Manteiga et al. (2007)
and González-Manteiga et al. (2008a) in the context of logistic and normal
mixed models and later extended by González-Manteiga et al. (2008b) to a
multivariate area-level model. We carry out a simulation experiment for empir-
ically investigating the behavior of the MSE estimators.

For estimating small area counting indicators, area level versions of general-
ized linear mixed model (GLMM) with logit link function, and with combination
of Penalized Quasi-Likelihood (PQL) and REML for estimation of unknown pa-
rameters have been considered by Saei and Chambers (2003), Johnson et al.
(2010), López-Vizcáıno et al. (2013) and López-Vizcáıno et al. (2015). They
use plug-in model predictors having analytical MSE for approximation of true
MSE.

Poisson-log mixed models and binomial-logit mixed models are competitor
models for count data at the area-level. For a given real data set, it is interesting
to compare domain predictors (EBP or plug-in) based on these models. Note
also that the Fay-Herriot model might also be a competitor. This is because of
the asymptotic relationships between the Poisson, the binomial and the normal
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distribution. In our application to real data we are mainly interested in studying
the behavior of the estimators introduced in the paper (EBP or plug-in based
on the Poisson model). Nevertheless, we also include the well known EBLUP
based on the Fay-Herriot model. As this is not a case-of-study paper, we do not
include the other cited estimators.

The paper is organized as follows. Section 2 introduces the area-level Poisson
mixed model and the employed fitting algorithm. Section 3 presents the EBP
and the plug-in estimators of functions of fixed and small area specific random
effects. Section 4 gives an approximation to the MSE of the EBP and three
estimators. The first two MSE estimators are plug-in derivations of the MSE
approximation without and with bias correction term. The third MSE estimator
is based on parametric bootstrap. Section 5 presents a complete simulation
study, evaluating the performance of the model-based estimators under model-
based and design-based simulations. In both cases, the simulations mimic the
real data study case. Section 6 applies the developed methodology to data from
the SLCS2008. The target is the estimation of mean and women poverty rates
at province level. Section 7 gives some conclusions. The appendix contains
detailed proofs of main results.

2 The model

This section introduces an area-level Poisson mixed model and its fitting algo-
rithm. Let D be the number of small areas or domains, with d = 1, . . . , D. Let
{vd : d = 1, . . . , D} be a set of i.i.d. N(0, 1) random effects. In matrix notation,
we have v = (v1, . . . , vD)′ ∼ ND(0, ID), where ID is the D × D unit matrix.
We assume that the distribution of the target variable yd, conditioned to the
random effect vd, is

yd|vd ∼ Poiss(µd), d = 1, . . . , D,

where µd > 0. The Poisson distribution is closely related to the binomial dis-
tribution since it can be derived as a limiting case when the number of trials
goes to infinity and the probability of the event of interest is sufficiently small.
Therefore, we have that µd = νdpd, where νd is the size variable and pd is the
binomial probability. For the natural parameter, we assume

ηd = logµd = log νd + xdβ + φvd, d = 1, . . . , D,

where β = col
1≤k≤p

(βk) is a column vector of fixed regression coefficients and

xd = col′
1≤k≤p

(xdk) is the row vector containing the auxiliary variables. Further,

we assume that the yd’s are independent conditioned to v. It holds that

P (yd|v) = P (yd|vd) =
1

yd!
exp{−νdpd}νydd p

yd
d , pd = exp {xdβ + φvd} ,

P (y|v) =

D∏
d=1

P (yd|vd), P (y) =

∫
RD

P (y|v)fv(v) dv =

∫
RD

ψ(y,v) dv,
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where

ψ(y,v) = (2π)−
D
2 exp

{
−v′v

2

} D∏
d=1

exp{−νdpd}νydd exp {yd(xdβ + φvd)}
yd!

= (2π)−
D
2 exp

{
−v′v

2

}( D∏
d=1

yd!
)−1

exp

{
p∑
k=1

( D∑
d=1

ydxdk
)
βk + φ

D∑
d=1

ydvd

}

· exp

{
D∑
d=1

{
− νd exp{xdβ + φvd}+ yd log νd

}}
.

To fit the area-level Poisson mixed model, we derive the algorithm suggested
by Jiang (1998), using the method of moments (MM). A natural set of equations
for applying this method is

0 = fk(θ) = Mk(θ)− M̂k =

D∑
d=1

Eθ[yd]xdk −
D∑
d=1

ydxdk, k = 1, . . . , p, (1)

0 = fp+1(θ) = Mp+1(θ)− M̂p+1 =

D∑
d=1

Eθ[y
2
d]−

D∑
d=1

y2d, (2)

where θ = (β′, φ)′ is the vector of model parameters. The MM estimator θ̂ of
θ is the solution of the system of nonlinear equations (1)-(2). The updating
formula of the Newton-Raphson algorithm for solving this system is

θ(r+1) = θ(r) −H−1(θ(r))f(θ(r)), (3)

where θ1 = β1, . . . , θp = βp, θp+1 = φ and

θ = col
1≤k≤p+1

(θk), f(θ) = col
1≤k≤p+1

(fk(θ)), H(θ) =

(
∂fk(θ)

∂θr

)
k,r=1,...,p+1

.

Appendix A.1 gives the components of vector f and matrix H appearing in
(3). A good seed for the MM Newton-Raphson algorithm is β(0) = β̃, where β̃
is the maximum likelihood estimator under the model without random effects.
Concerning the variance parameters, we use

φ(0) =

(
1

D

D∑
d=1

(η̃d − η̂(0)d )2

)1/2

,

where η̃d = xdβ̃, η̂
(0)
d = log p̂

(0)
d and p̂

(0)
d = yd+1

νd+1 .
The asymptotic variance of the MM estimators can be approximated by a

Taylor expansion of M(θ̂) = col
1≤k≤p+1

(Mk(θ̂)) around θ (Jiang 1998). This is

to say,

M̂ = M(θ̂) ≈M(θ) +H(θ)(θ̂ − θ), θ̂ − θ ≈H−1(θ)(M̂ −M(θ)),
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where M̂ = col
1≤k≤p+1

(M̂k). Under regularity conditions (Jiang 1998), it holds

var(θ̂) = E[(θ̂ − θ)(θ̂ − θ)′] ≈H−1(θ)var(M̂)H−1(θ).

An estimator of var(θ̂) is

v̂ar(θ̂) = H−1(θ̂)v̂ar(M̂)H−1(θ̂),

where v̂ar(M̂) is an estimator of the covariance matrix of M̂ .

The following parametric bootstrap procedure gives estimators of var(M̂)

and var(θ̂).

1. Fit the model to the sample and calculate θ̂.

2. Generate bootstrap samples {y∗(b)d : d = 1, . . . , D}, b = 1, . . . , B, from the
fitted model.

3. From bootstrap sample, calculate M̂
∗(b)

, b = 1, . . . , B, and

M =
1

B

B∑
b=1

M̂
∗(b)

, v̂ar
∗
(M̂) =

1

B

B∑
b=1

(M̂
∗(b)
−M)(M̂

∗(b)
−M)′.

4. Calculate v̂arA(θ̂) = H−1(θ̂)v̂ar
∗
(M̂)H−1(θ̂).

We obtain an alternative estimator of var(θ̂) if we replace steps 3 and 4 by

3′. Fit the model to the bootstrap samples and calculate θ̂
∗(b)

, b = 1, . . . , B,

θ = 1
B

∑B
b=1 θ̂

∗(b)
.

4′. Calculate v̂arB(θ̂) = 1
B

∑B
b=1(θ̂

∗(b)
− θ)(θ̂

∗(b)
− θ)′.

3 The empirical best predictor

This section derives the best predictor (BP) and the empirical best predictor
(EBP) of pd under the area-level Poisson mixed model. The conditional distri-
bution of y = (y1, . . . , yD)′, given v, is

P (y|v) =

D∏
d=1

P (yd|vd),

where

P (yd|vd) =
νydd
yd!

e−νdpdpydd =
νydd
yd!

exp {yd(xdβ + φvd)− νd exp{xdβ + φvd}} .
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The best predictor (BP) of pd is the unbiased predictor minimizing the MSE.
It is given by the conditional expectation p̂d = p̂d(θ) = Eθ[pd|y]. In this case,
we have that Eθ[pd|y] = Eθ[pd|yd] and using Bayes’s theorem, we get

Eθ[pd|yd] =

∫
R

exp{xdβ + φvd}P (yd|vd)f(vd) dvd∫
R
P (yd|vd)f(vd) dvd

=
Nd(yd,θ)

Dd(yd,θ)

M
= ψd(yd,θ),

where

Nd(yd,θ) =

∫
R

exp {(yd + 1)(xdβ + φvd)− νd exp {xdβ + φvd}} f(vd) dvd,

Dd(yd,θ) =

∫
R

exp {yd(xdβ + φvd)− νd exp{xdβ + φvd}} f(vd) dvd.

The EBP of pd is obtained by replacing the vector of unknown parameters θ
by a consistent estimator, θ̂. Therefore, we can write the EBP as p̂d = p̂d(θ̂) =

ψd(yd, θ̂). We can approximate it by estimating the integrals with an accelerated
Monte Carlo method based on the properties of the antithetic variables to reduce
the variability. This algorithm can be expressed as follows.

1. Estimate θ̂ = (β̂, φ̂) as in Section 2.

2. For ` = 1, . . . , L, generate v
(`)
d i.i.d. N(0, 1) and calculate their antithetic

variates v
(L+`)
d = −v(`)d .

3. Calculate the approximation of EBP as p̂d(θ̂) = N̂d/D̂d, where the theo-
retical integrals are approximated by Monte Carlo, i.e.

N̂d =
1

2L

2L∑
`=1

exp
{

(yd + 1)(xdβ̂ + φ̂v
(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
,

D̂d =
1

2L

2L∑
`=1

exp
{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
. (4)

Remark 1. Since the size variable νd is known in practice, then the EBP of
µd = νdpd is µ̂d(θ̂) = νdp̂d(θ̂). Further, we can consider the plug-in estimator

p̂Pd (θ̂) = exp{xdβ̂ + φ̂v̂d}. Section 5 studies p̂d(θ̂) and p̂Pd (θ̂) by calculating
empirical biases and MSEs.

Remark 2. As the MM Newton-Raphson algorithm does not give a prediction
of vd, we use its EBP. The BP of vd is

v̂d(θ) = Eθ[vd|yd] =

∫
R
vdP (yd|vd)f(vd) dvd∫
R
P (yd|vd)f(vd) dvd

=
Nv,d(yd,θ)

Dd(yd,θ)
,

where

Nv,d(yd,θ) =

∫
R

vd exp {yd(xdβ + φvd)− νd exp {xdβ + φvd}} f(vd) dvd.
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The EBP of vd is v̂d = v̂d(θ̂) and it can be approximated using an accelerated
Monte Carlo algorithm analogous to the previous case. The steps are:

1. Estimate θ̂ = (β̂, φ̂).

2. For ` = 1, . . . , L, generate v
(`)
d i.i.d. N(0, 1) and calculate their antithetic

variates v
(L+`)
d = −v(`)d .

3. Calculate v̂d(θ̂) = N̂v,d/D̂d, where D̂d is defined in (4) and

N̂v,d =
1

2L

2L∑
`=1

v
(`)
d exp

{
yd(xdβ̂ + φ̂v

(`)
d )− νd exp{xdβ̂ + φ̂v

(`)
d }
}
.

4 The MSE of the EBP

Appendix A.2 gives the mathematical derivations for decomposing the MSE of
the EBP of pd = pd(θ, vd) = exp {xdβ + φvd}. The MSE of the EBP is

MSE(p̂d) = gd(θ) +
1

D
cd(θ) + o(1/D), (5)

where

cd(θ) =

∞∑
j=0

(
∂

∂θ
ψd(j,θ)

)′
V (θ)

(
∂

∂θ
ψd(j,θ)

)
pd(j,θ),

V (θ) = DE
[
(θ̂ − θ)(θ̂ − θ)′

]
.

A plug-in estimator of (5) is obtained replacing θ by a consistent estimator θ̂,
namely

M̂SE
P

(p̂d) = gd(θ̂) +
1

D
cd(θ̂). (6)

By a Taylor expansion of cd(θ̂) around θ and the consistency of θ̂, we have that

E[cd(θ̂)− cd(θ)] = o(1). However E[gd(θ̂)− gd(θ)] is not of order o(D−1). Let

θ̂ be a truncated MM estimator. This is to say

β̂k =


−LD if β̃k < −LD,
β̃k if − LD < β̃k < LD,

LD if β̃k > LD,

σ̂2 =

{
σ̃2 if σ̃2 ≤ LD,
LD if σ̃2 > LD,

where θ̃ is an MM estimator. Under the assumed regularity conditions (23)-(25)

of Jiang (2003), E[θ̂−θ] = O(D−1) holds for the truncated MM estimator and

E[θ̂ − θ] = O(D−1) holds for the MM estimator. By the Taylor expansion, we
have

gd(θ̂) = gd(θ)+

(
∂

∂θ
gd(θ)

)′
(θ̂−θ)+

1

2
(θ̂−θ)′

(
∂2

∂θ2
gd(θ)

)
(θ̂−θ)+o(‖θ̂−θ‖2),

8



and hence

E[gd(θ̂)] = gd(θ) +
1

D
bd(θ) + o(D−1),

where

bd(θ) =
( ∂

∂θ
gd(θ)

)′
DE[θ̂ − θ] +

1

2
E

[
D(θ̂ − θ)′

( ∂2

∂θ2
gd(θ)

)
(θ̂ − θ)

]
. (7)

Proposition 4.1 gives an approximation to the bias term bd when θ̂ is the trun-
cated MM estimator.

Proposition 4.1. Let θ̂ be the truncated MM estimator. Under regularity
conditions (23)-(25) of Jiang and Lahiri (2001), it holds that bd(θ) = Bd(θ) +
o(1), where

Bd(θ) =
1

2

{
E[rD,d]−

( ∂

∂θ
gd(θ)

)′( ∂

∂θ
M(θ)

)−1
E[qD]

}
,

rD,d = ∆′DRd(θ)∆D,Rd(θ) =

(( ∂

∂θ
M(θ)

)−1)′ ( ∂2

∂θ2
gd(θ)

)( ∂

∂θ
M(θ)

)−1
,

qD = col
1≤k≤p+1

(qDk), M(θ) = col
1≤k≤p+1

(Mk(θ)), M̂ = col
1≤k≤p+1

(M̂k),

qDk = ∆′DQ(θ)∆D, Q(θ) =

(( ∂

∂θ
M(θ)

)−1)′ ( ∂2

∂θ2
Mk(θ)

)( ∂

∂θ
M(θ)

)−1
,

∆D =
√
D(M̂ −M(θ)),

∂

∂θ
M(θ) =

( ∂

∂θk2
Mk1(θ)

)
k1,k2=1,...,p+1

.

Appendix A.3 gives the proof of Proposition 4.1 and Appendix A.4 gives the

computationally efficient formulas (A.3)-(A.5) for calculating the partial deriva-
tives of gd(θ). These formulas are taken from Lahiri et al. (2007).

The following parametric bootstrap algorithm estimates the bias correction
term Bd(θ).

1. Fit the model to the sample and calculate θ̂, Rd(θ̂) and Q(θ̂).

2. Generate bootstrap samples {y∗(b)d : d = 1, . . . , D}, b = 1, . . . , B, from the
fitted model.

3. For each bootstrap sample b, calculate ∆
∗(b)
D =

√
D(M̂

∗(b)
−M(θ̂)), where

M̂
∗(b)

= col
1≤k≤p+1

(M̂
∗(b)
k ), M̂

∗(b)
k =

∑D
d=1 y

∗(b)
d xdk, k = 1, . . . , p, M̂

∗(b)
p+1 =∑D

d=1 y
∗(b)2
d , and calculate

r
∗(b)
D,d = ∆

∗(b)′
D Rd(θ̂)∆

∗(b)
D , q

∗(b)
Dk = ∆

∗(b)′
D Q(θ̂)∆

∗(b)
D , qD = col

1≤k≤p+1
(q
∗(b)
Dk ).

4. Calculate ÊB [rD,d] = 1
B

∑B
b=1 r

∗(b)
D,d , ÊB [qD] = 1

B

∑B
b=1 q

∗(b)
Dk .
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5. Calculate B̂d(θ̂) = 1
2

{
ÊB [rD,d]−

(
∂

∂θ
ĝd(θ̂)

)′ (
∂

∂θ
M(θ̂)

)−1
ÊB [qD]

}
.

An order o(D−1) theoretical estimator of MSE(p̂d), with bias correction, is

M̂SE(p̂d) = M̂SE
P

(p̂d)−
1

D
Bd(θ),

and the practical estimators, with and without bias correction, are

mse(p̂d) = mseP (p̂d)−
1

D
B̂d(θ̂) and mseP (p̂d) = ĝd(θ̂) +

1

D
ĉd(θ̂). (8)

where ĝd(θ̂) and ĉd(θ̂) are the Monte Carlo approximations of gd(θ̂) and cd(θ̂)
respectively.

The calculation of mse(p̂d) is computationally expensive. An alternative
MSE estimator can be introduced by applying the following parametric boot-
strap approach.

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂).

2. Repeat B times (b = 1, . . . , B)

(a) Generate v
∗(b)
d ∼ N(0, 1), d = 1, . . . , D. Calculate p

∗(b)
d = exp{xdβ̂+

φ̂v
∗(b)
d } and y

∗(b)
d ∼ Poiss(νdp

∗(b)
d ).

(b) For each bootstrap sample, calculate the estimator θ̂
∗(b)

and the EBP

p̂
∗(b)
d = p̂∗d(θ̂

∗(b)
).

3. Calculate

mse∗(p̂d) =
1

B

B∑
b=1

(
p̂
∗(b)
d − p∗(b)d

)2
. (9)

5 Simulation experiments

5.1 Model-based simulation

This subsection presents three simulation experiments based on the application
to the real data from SLCS2008 (see more details in Section 6). First, we analyze
the behavior of the MM and PQL fitting algorithms. Second, we compare the
performances of the EBP and the plug-in estimators. Third, we empirically
study the proposed MSE estimators. In the three simulation experiments, we
use the same explanatory variables as those used in the case study: unemployed
(lab2 ), foreign people (cit2 ), people with age in 50 − 64 (age4 ) and secondary
or university education completed (edu23 ) proportions.

Random effects vd are generated from normal and Gumbel distributions
with mean zero and variance one. We use the Gumbel distribution to study
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how the lack of normality in the random effects affects the model parameter
and EBP estimates. The response variable is yd ∼ Poiss(νdpd), where pd =
exp{β0+lab2dβ1+cit2dβ2+age4dβ3+edu23dβ4+φvd}, d = 1, . . . , D. The model
parameters, β0, . . . , β4, φ, and the sizes νd = nd are taken from the application to
real data presented in Section 6. The numbers of domains are D = 52, 104, 150.
The x-variables are taken from provinces crossed by female if D = 52 and from
the provinces crossed by sex if D = 104. In the case D = 150, as the data
file of x-values have 104 records, we input 46 new records by doing a simple
random sampling without replacement in the data file. We run the simulation
experiments with K = 1000 Monte Carlo iterations.

For the six model parameters, θ ∈ {β0, . . . β4, φ}, Table 1 presents the relative
bias (RBIAS) and the relative root-MSE (RRMSE) in brackets for MM and PQL
estimators, i.e.

RBIAS =
1
K

∑K
k=1(θ̂(k) − θ)
|θ|

, RRMSE =

√
1
K

∑K
k=1(θ̂(k) − θ)2

|θ|
.

This table suggest that RRMSE is slightly higher for Gumbel random effects.
Both estimation methods (MM and PQL) behaves similarly with respect to
RBIAS. PQL estimates has less variability but the MM estimator has lower
bias for estimating the variance parameter. As expected, when the number of
domains increases then the bias and the MSE decreases. The empirical results
agree with the consistency property of the MM estimators.

The second simulation studies the behavior of the EBP and two plug-in
estimators of pd: the first one (PLUG1) uses PQL (see Saei and Chambers
(2003) for more details) while the second one (PLUG2) uses the method of
moments as fitting algorithm. For approximating the EBP of pd, we generate
L = 2500 independent random variables with N(0, 1) distribution and we apply
the step 2 of the EBP algorithm given in Section 3. Table 2 for normal and
Table 3 for Gumbel random effects compare these estimators through the bias
and the MSE (in brackets), i.e.

Bd =
1

K

K∑
k=1

(p̂
(k)
d − p

(k)
d ), Ed =

1

K

K∑
k=1

(p̂
(k)
d − p

(k)
d )2, d = 1, . . . , D.

In both cases, results are presented for the quintiles of the set {1, . . . , D}, where
the domains are sorted by sample sizes. The last row of each subtable, D =
52, 104, 150, contains the average absolute biases and the average MSEs (in
brackets), i.e.

B =
1

D

D∑
d=1

|Bd|, E =
1

D

D∑
d=1

Ed.

These tables suggest that plug-in estimator PLUG1 has the best performance in
the simulation experiment and that PLUG2 and EBP behave similarly. We also
observe that Ed’s of the EBP are close to PLUG2. If we move from normal to

11



Table 1: RBIAS and RRMSE (in brackets) for MM and PQL estimators, taking

normal (N) and gumbel (G) random effects.

N G

D θ̂ MM PQL MM PQL

52 β̂0 0.0181 (0.3960) 0.0203 (0.3665) -0.0298 (0.4393) -0.0083 (0.3707)

β̂1 0.0001 (0.3527) 0.0001 (0.3233) 0.0165 (0.3860) 0.0056 (0.3300)

β̂2 -0.0071 (0.2394) -0.0089 (0.2241) 0.0016 (0.2441) 0.0026 (0.2212)

β̂3 -0.0108 (0.4518) -0.0033 (0.4054) 0.0139 (0.5033) 0.0093 (0.4190)

β̂4 -0.0063 (0.2281) -0.0088 (0.2122) 0.0105 (0.2432) 0.0030 (0.2117)

φ̂ -0.1982 (0.6425) -0.4464 (0.4764) -0.1395 (0.7039) -0.3963 (0.4530)

104 β̂0 -0.0021 (0.2714) 0.0101 (0.2474) -0.0023 (0.2936) 0.0132 (0.2623)

β̂1 -0.0077 (0.2290) -0.0150 (0.2118) 0.0001 (0.2410) -0.0117 (0.2171)

β̂2 0.0062 (0.1582) 0.0063 (0.1434) -0.0026 (0.1647) -0.0031 (0.1440)

β̂3 0.0102 (0.2898) 0.0084 (0.2602) -0.0025 (0.3056) -0.0057 (0.2666)

β̂4 -0.0034 (0.1308) -0.0063 (0.1203) 0.0025 (0.1474) -0.0002 (0.1306)

φ̂ -0.1708 (0.5500) -0.4300 (0.4479) -0.1347 (0.6240) -0.3931 (0.4244)

150 β̂0 0.0060 (0.2261) 0.0150 (0.2094) 0.0019 (0.2378) 0.0118 (0.2083)

β̂1 -0.0035 (0.1833) -0.0104 (0.1712) -0.0051 (0.1929) -0.0108 (0.1712)

β̂2 -0.0012 (0.1333) -0.0029 (0.1221) -0.0015 (0.1458) -0.0015 (0.1280)

β̂3 -0.0022 (0.2418) -0.0027 (0.2186) -0.0022 (0.2629) -0.0003 (0.2274)

β̂4 -0.0023 (0.1116) -0.0032 (0.1021) -0.0001 (0.1242) -0.0029 (0.1101)

φ̂ -0.1404 (0.4901) -0.4084 (0.4207) -0.0779 (0.5507) -0.3643 (0.3883)

12



Table 2: Bd and Ed (in brackets) for the estimators of pd using normal random
effects.

D d pd PLUG1 PLUG2 EBP

52 12 0.1358 -0.0007 (0.0005) -0.0021 (0.0006) -0.0013 (0.0006)
22 0.2199 -0.0008 (0.0010) -0.0049 (0.0013) -0.0040 (0.0013)
32 0.1473 -0.0001 (0.0004) -0.0008 (0.0005) -0.0003 (0.0005)
42 0.1390 -0.0012 (0.0003) -0.0019 (0.0004) -0.0015 (0.0004)

B (E) 0.0010 (0.0011) 0.0030 (0.0014) 0.0023 (0.0014)
104 22 0.2043 -0.0005 (0.0011) -0.0022 (0.0011) -0.0010 (0.0011)

43 0.2902 -0.0026 (0.0013) -0.0041 (0.0016) -0.0030 (0.0016)
63 0.3341 -0.0012 (0.0012) -0.0003 (0.0017) 0.0006 (0.0017)
84 0.1346 -0.0002 (0.0003) -0.0010 (0.0003) -0.0006 (0.0003)

B (E) 0.0008 (0.0009) 0.0021 (0.0010) 0.0014 (0.0010)
150 31 0.2980 -0.0003 (0.0018) -0.0007 (0.0021) 0.0007 (0.0021)

61 0.2883 -0.0010 (0.0013) -0.0012 (0.0016) -0.0001 (0.0016)
91 0.1183 -0.0014 (0.0003) -0.0023 (0.0003) -0.0017 (0.0003)

121 0.1364 -0.0011 (0.0002) -0.0022 (0.0003) -0.0018 (0.0003)
B (E) 0.0009 (0.0009) 0.0021 (0.0010) 0.0014 (0.0010)

Gumbel distribution we get a moderate increase of MSE for the three consider
estimators of pd.

The third simulation investigates the behavior of the MSE estimators of the
EBP. This simulation requires, as input, very accurate empirical approxima-
tions of the variance-covariance matrix of the MM estimator θ̂ and of the true
MSE, Ed, of p̂d. We do these calculations in advance by running a Monte Carlo
experiment with 104 iterations.

Three estimators of the MSE are compared. They are the two plug-in es-
timators given in (8), mseP and mse without and with bias correction respec-
tively, and the parametric bootstrap estimator, mse∗, introduced in (9). The
calculation of mseP and mse is computationally intensive and requires Monte
Carlo approximations. We generate L = 2500 independent random variables
with distribution N(0, 1) for approximating ĝd(θ̂) and ĉd(θ̂). Furthermore, we
approximate the infinite sums appearing in the definitions of these two terms
by the corresponding finite sums with the first 300 summands. In this way, we
guarantee an approximation of the infinite sum with an error lower than the
precision of the computer.

Figure 1 plots the MSE estimators for each domain d = 1, . . . , D and for
D = 52 (left), D = 104 (right) and D = 150 (bottom). They are sorted by
sample size. The results for small values of d are quite similar. However, the
bootstrap estimator shows a more stable behavior when d increases. We note
that the estimator with bias correction, mse, is a good alternative despite not
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Table 3: Bd and Ed (in brackets) for the estimators of pd using Gumbel random
effects.

D d pd PLUG1 PLUG2 EBP

52 12 0.1370 -0.0010 (0.0006) -0.0024 (0.0007) -0.0016 (0.0007)
22 0.2217 -0.0031 (0.0011) -0.0062 (0.0016) -0.0054 (0.0016)
32 0.1488 -0.0009 (0.0004) -0.0018 (0.0006) -0.0013 (0.0006)
42 0.1382 0.0006 (0.0003) -0.0009 (0.0005) -0.0005 (0.0005)

B (E) 0.0009 (0.0011) 0.0029 (0.0016) 0.0022 (0.0016)
104 22 0.2046 -0.0003 (0.0010) -0.0028 (0.0012) -0.0016 (0.0012)

43 0.2912 -0.0022 (0.0016) -0.0044 (0.0022) -0.0032 (0.0022)
63 0.3331 -0.0014 (0.0013) -0.0017 (0.0018) -0.0009 (0.0018)
84 0.1358 -0.0003 (0.0003) -0.0013 (0.0005) -0.0008 (0.0005)

B (E) 0.0009 (0.0010) 0.0027 (0.0013) 0.0018 (0.0012)
150 31 0.2990 -0.0007 (0.0020) -0.0014 (0.0025) 0.0001 (0.0025)

61 0.2888 -0.0021 (0.0014) -0.0029 (0.0017) -0.0017 (0.0017)
91 0.1172 -0.0009 (0.0003) -0.0019 (0.0003) -0.0013 (0.0003)

121 0.1347 -0.0001 (0.0003) -0.0014 (0.0004) -0.0010 (0.0004)
B (E) 0.0010 (0.0009) 0.0028 (0.0012) 0.0019 (0.0012)

being able to capture the bias of the plug-in estimator in the last domains. For
the bootstrap approach, we consider B = 500 resamples.

Figure 2 prints the boxplots of the biases Bd, d = 1, . . . , D, of the three MSE
estimators for D = 52 (left), D = 104 (center) and D = 150 (right). The MSE
estimators are the two plug-in estimators msed and msePd (with and without
bias correction, respectively) and the parametric bootstrap estimator mse∗d. We
observe that all MSE estimators under-estimate the true MSE, specially the
bootstrap estimator. On the other hand, bootstrap estimates are more stable
because they do not contain many outliers.

Table 4 presents the bias and mean squared error (×105) of the three consid-
ered estimators of MSE for quintiles of {1, . . . , D}. Analytic estimators (without
and with bias correction term) perform well in both bias and mean squared er-
ror. The bootstrap MSE estimator has a similar mean squared error to the
analytic ones, it has a higher bias, it is computationally faster and it is easy to
implement.

5.2 Design-based simulation

Model-based simulations depend on the model used for data generation. How-
ever, in practice, we do not know what is the model that generates the popu-
lation. The target of this simulation experiment is to analyse if the proposed
estimator under a Poisson mixed model performs well even if the population
under study is not Poisson distributed. For this sake, we generate a popula-
tion based on the real data by using the sampling weights wj . The artificial
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Figure 1: MSE estimators for D = 52 (left), D = 104 (right) and D = 150 (bottom).

population is built by repeating b10−3wjc times each sampling unit j.
We implement a simplified version of the SLCS2008 sampling design. Within

each autonomous community, the units are selected with a simple random
sampling design. As sample size for each autonomous community, we take
nc = bNc10−1c + 1, where Nc denotes the population size of each autonomous
community. For each drawn sample k (k = 1, . . . ,K = 1000), we evaluate the
direct estimator (Dir), the EBLUP based on the Fay-Herriot model (FH), the
two considered plug-in estimators (PLUG1 and PLUG2) and the EBP. For the
direct estimators of pd and its design-based variance we take

p̂dird =
1

N̂d

∑
j∈sd

wdj ydj , v̂arπ(p̂dird ) =
1

N̂2
d

∑
j∈sd

wdj(wdj − 1)
(
ydj − p̂dird

)2
, (10)

where wdj = Nc/nc and N̂d =
∑
j∈sd wdj = nd

Nc

nc
. The variance estimator is

taken from Särndal et al. (1992), pp. 43, 185 and 391, with the simplifications
wdj = 1/πdj , πdj,dj = πdj and πdi,dj = πdiπdj , i 6= j in the second order inclusion
probabilities. The EBLUP of pd is taken from Fay and Herriot (1979) or Prasad
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Figure 2: Bias of MSE estimators for D = 52 (left), D = 104 (center) and D = 150
(right).

Table 4: Bias and mean squared error in brackets (×105) of the MSE estimators.

D d Ed mseP mse mse∗

52 12 0.0006 -10.5209 (0.0108) -11.1735 (0.0204) -29.0402 (0.0164)
22 0.0012 -12.9678 (0.0091) -37.8213 (0.0633) -68.9004 (0.0631)
32 0.0005 -15.5940 (0.0050) -16.2415 (0.0129) -30.5855 (0.0120)
42 0.0004 -11.2966 (0.0033) -9.9097 (0.0096) -23.9860 (0.0067)

104 22 0.0010 -16.4116 (0.0201) -13.2513 (0.0302) -39.7102 (0.0312)
43 0.0016 -42.7149 (0.0382) -38.3071 (0.0633) -75.9042 (0.0764)
63 0.0015 -48.9221 (0.0461) -43.9790 (0.0885) -82.7329 (0.0800)
84 0.0003 -8.5716 (0.0016) -7.1582 (0.0029) -15.3339 (0.0029)

150 31 0.0019 -41.9215 (0.0653) -38.7860 (0.0941) -77.3717 (0.1029)
61 0.0014 -38.3529 (0.0409) -32.0055 (0.0615) -66.4599 (0.0653)
91 0.0003 -5.2724 (0.0016) -4.5544 (0.0024) -11.0868 (0.0024)

121 0.0003 -10.2886 (0.0021) -9.3420 (0.0031) -15.0528 (0.0030)

and Rao (1990).
Table 5 gives the results of the bias Bd and the MSE Ed (in brackets) for the

the direct estimator (Dir), the EBLUP based on the Fay-Herriot model (FH),
the two considered plug-in estimators (PLUG1 and PLUG2) and the EBP. The
results are presented for the quintiles to real population, where D = 104. As
expected, the direct estimator has lower bias but its MSE is higher than the
model-based-estimators.

The FH has lower bias and greater MSE than the PLUG1 predictor in most
cases. The three Poisson mixed model predictors (EBP, PLG1 and PLUG2)
have a similar behavior, in both bias and mean squared error. If we compare
these results with those obtained in Table 2 under model-based simulation,
they increase slightly. This fact is somehow expected but gives more realistic
information about the behavior of the considered predictors in practice.
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Table 5: Bd and Ed (in brackets) for the estimators of pd.

D d pd Dir FH PLUG1 PLUG2 EBP

104 22 0.3632 -0.0036 -0.0589 -0.0622 -0.0817 -0.0817
(.0099) (.0054) (.0044) (.0072) (.0071)

43 0.1657 -0.0013 -0.0051 0.0195 0.0068 0.0068
(.0040) (.0017) (.0005) (.0002) (.0002)

63 0.1010 -0.0016 0.0005 0.0230 0.0184 0.0185
(.0015) (.0009) (.0006) (.0004) (.0004)

84 0.2182 0.0007 0.0103 0.0181 -0.0008 -0.0007
(.0018) (.0011) (.0005) (.0002) (.0002)

B 0.0019 0.0264 0.0498 0.0500 0.0500
(E) (.0066) (.0048) (.0048) (.0051) (.0051)

All these simulation experiments have been carried out using the statistical
software R 3.1.1. We use nleqslv package to solve the system of nonlinear equa-
tions (1)-(2) by Newton-Raphson and evd package to generate random effects
according to a Gumbel distribution.

6 Application to real data

Policy makers are interested in finding out which factors are more influential for
poverty in order to act on them and achieve a decrease of their consequences,
especially in poor regions where a greater commitment to the competent au-
thorities is necessary.

This section estimates the poverty rate, pd, in 2008 by domains (provinces
crossed by sex) using the data from the SLCS. The number of domains is D =
104. At the unit level, the target variable is dichotomic and takes the values
ydj = 1 if individual j of domain d is under the poverty line and ydj = 0
otherwise. The domains are the provinces crossed by sex. The domain sample
sizes and totals are nd and yd =

∑
j∈sd ydj respectively. As yd counts the number

of people under the poverty line in the domain sample sd, we assume that yd
can be described by an area-level Poisson mixed model with size parameters
nd, d = 1, . . . , D, and some explanatory variables. The available auxiliary
variables are the domain proportions of people in the categories of the following
classification variables.

• Age: ≤ 15 (age1), 16−24 (age2), 25−49 (age3), 50−64 (age4) and ≥ 65
(age5).

• Education: less than primary (edu0), primary (edu1), secondary (edu2),
university (edu3).

• Citizenship: Spanish (cit1), not Spanish (cit2).
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• Labor situation: ≤ 15 (lab0), employed (lab1), unemployed (lab2), inactive
(lab3).

As the proportions of people in the categories of a classification variables
sum up to one, we take the reference categories out of the data file of auxiliary
variables. The reference categories are age1, edu0, cit1 and lab0. Regarding the
level of education, we note that people that have passed the national programme
of professional training courses typically have good job opportunities at the
industry and services labor sector. As these people are in group edu2, we merge
secondary and university education levels into a single category edu23. This
proposal was suggested by a Spanish Office of Statistics.

An area-level Poisson mixed model is fitted to data. The MM Newton-
Raphson algorithm is employed for estimating the model parameters and their
asymptotic variances. A subset of significant auxiliary variables is selected,
i.e. with p-value lower than 0.05. Table 6 presents the estimates of the re-
gression parameters and their standard errors, z-values and p-values. Each do-
main (province-sex) d, d = 1, . . . , 104, has a random intercept with distribution

N(0, φ2). The estimate of φ is φ̂ = 0.183.

Table 6: MM estimates of regression parameters.

Coefficient Estimate Std. Error z-value P(> |z|)

Intercept 1.5669 0.5030 3.7653 0.0002
lab2 6.8923 1.8939 2.9949 0.0027
cit2 -2.9844 0.5860 -4.9693 0.0000
age4 -7.5259 2.6311 -3.8857 0.0001
edu23 -3.5998 0.5913 -5.3807 0.0000

The signs of the regression parameters in Table 6 show that unemployment
(lab2) contributes to increase the poverty since its sign is positive, while the
remaining covariates are protective in the sense that an increase in them causes
a reduction in the number of people below poverty line, assuming that the other
auxiliary variables are fixed. The sign of cit2 appears because the foreign people
tend to establish in provinces with higher economical activity, given that they
can find better living conditions and job opportunities. Esteban et al. (2012)
found the same result when fitting Fay-Herriot temporal models to data from
the Spanish Living Conditions survey of 2006.

For the sake of comparison, we also fit a Poisson regression model with the
same auxiliary variables of Table 6 but without any random effect. Figure 3 plots
the Pearson residuals of the Poisson regression models without (left) and with
(right) domain random effects. In both cases the behavior is symmetrical around
0 and a clear improvement is observed when we use the more complex model
including random effects, as they capture the variability between domains.

The objective of this work is to study the EBP. We are also interested in
comparing the EBP of pd with the direct estimator and the EBLUP based on
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Figure 3: Pearson residuals for the fixed effects model (left) and mixed effects model
(right).

a Fay-Herriot model (Fay and Herriot 1979) fitted by the REML method to
the set of auxiliary variables described in Table 6. The MSE of the EBP is
estimated by parametric bootstrap and the MSE of the EBLUP by the g1-g3
formula given by Datta and Lahiri (2000).

Direct estimators of pd and of its design-based variance are calculated follow-
ing (10), where N̂d =

∑
j∈sd wdj and the wdj ’s are the official calibrated SLCS

sampling weights which take into account for non response.
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Figure 4: Direct and EBP estimates of pd (left) and relative root-MSE (right) for
both estimators.

Figure 4 (left) plots the EBP, direct and EBLUP estimates of pd, d =
1, . . . , D. We note that all estimates follow the same patterns. Figure 4 (right)
plots the relative squared-root MSE (RRMSE) estimates of the EBPs (EBP)
and of the EBLUPs (FH). It also plots the relative squared-root design-based
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variance (RRvar) estimates of the direct estimators (dir). The domains are
sorted by sample size. Figure 4 shows that the RRMSEs of the EBPs are in
most domains smaller than the RRvars of the direct estimators and than the
RRMSEs of the EBLUPs. The performances of the RRMSE of the EBLUP and
of the RRvar of the direct estimator are similar. We observe a greater accu-
racy when the sample size increases. We are cautious in claiming that the EBP
has better performance than the Fay-Herriot EBLUP as the estimated MSEs
are derived under the assumption that the model is correct and they are not
comparable. Nevertheless, we conclude that the Poisson mixed-model EBP is a
good alternative for estimating pd.

Table 7 presents the estimates of pd using the direct, EBLUP and EBP
estimators, and their corresponding errors: the MSE of the EBLUP and EBP
(Eeblupd and Eebpd ) and the design-based variance (Edird ) of the direct estimator.
Due to limited space, we only show the results for women. Further, we order the
results by sample size and we show the results for the minimum, maximum and
sixtiles of νd. For small sample sizes the EBP estimates have a minor error and
when they increase, both estimates of pd and their corresponding errors show a
similar behaviour. The displayed results are in accordance with those shown in
Figure 4.

Table 7: Direct (pdird ), Fay-Herriot EBLUP (peblupd ) and EBP (pebpd ) estimates of pd
for women and MSE estimates.

Sex νd pdird peblupd pebpd Edird Eeblupd Eebpd

Women 18 0.5303 0.2262 0.2483 0.0341 0.0021 0.0017
124 0.1355 0.1345 0.1249 0.0011 0.0007 0.0004
162 0.3484 0.3131 0.3314 0.0021 0.0010 0.0014
247 0.3976 0.3641 0.4078 0.0014 0.0009 0.0012
424 0.2996 0.3002 0.3269 0.0007 0.0005 0.0008
501 0.1759 0.1724 0.2248 0.0003 0.0003 0.0002

1491 0.1122 0.1135 0.1317 0.0001 0.0001 0.0004

Figure 5 (left) maps the EBP estimates of pd for women. We observe that
highest levels of poverty are found in the south and center-west of the country.
On the other hand, the northeastern provinces offer better living conditions.
Figure 5 (right) maps the bootstrap relative root-MSE estimates of the EBP
of pd for women with B = 1000 resamples. In general, the estimation error
is low. The number of provinces where the estimated RRMSE is greater than
15% is seven. The maximum value of the estimated RRMSE is 20.24%, which
is achieved in a province with very low level of poverty. In general, the model-
based estimators smooth the behavior of the direct estimators, but they could
be in troubles for estimating the lowest or the highest poverty rates.
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EBP(pd) − Women

<=0.1 (0)
>0.1 <= 0.2 (18)
>0.2 <= 0.3 (16)
>0.3 (16)

RRMSE − Women

<=0.08 (8)
>0.08 <= 0.1 (13)
>0.1 <= 0.15 (22)
>0.15 (7)

Figure 5: Poverty rate EBPs for women (left) and RRMSE (right) in 2008.

The Moran test was applied to the residuals of the EBP of pd to study a
possible spatial correlation. We use Moran.I function in ape package of R. The
matrix of weights was calculated by using the Euclidean distance between the
centroid of the provinces. The null hypothesis of no phylogenetic correlation is
tested assuming normality. The obtained p-value for women is 0.098. Taking as
significance level α = 0.05, the null hypothesis of no correlation is not rejected.

7 Conclusions

Poisson regression models are quite simple but flexible enough for modelling
count variables. This work analyzes the number of people under the poverty
line in Spanish provinces by using an area-level Poisson mixed model. In this
framework, we have carried out a comparative study between the MM and PQL
fitting algorithms. PQL performs better for the fixed effect coefficients but MM
captures the variance component more precisely.

We consider that the EBP is a good alternative for describing the target
variable due to the good performance shown in the design-based simulation
experiment, where we have compared it against two plug-in estimators (using
MM and PQL). Despite the inconsistency of PQL, the plug-in estimator of
pd using this fitting algorithm is very attractive, specially when the variance
parameter is small. Further, it has a lower runtime. For example, taking D = 52
its runtime was 0.02 seconds in our computer while for the plug-in using MM
and EBP (taking L = 2500) was 0.07.

For the EBP, we calculate the MSE and we introduce three estimators. The
first two ones are plug-in estimators without and with bias correction of the
second order. The third estimator is based on a parametric bootstrap. We
analyze the behavior of the proposed estimators in a simulation study. The
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bias correction term is computationally intensive and the results of the plug-
in estimators without and with bias correction are quite similar. As a good
alternative, we suggest the bootstrap procedure, easy to implement and with
similar results.

In the application to poverty data from the SLCS2008, we use the EBPs for
estimating poverty rates since their results are more satisfactory than the ones
obtained by the direct estimators. We conclude that the south and center-west
provinces of Spain have highest levels of poverty. As performance measure we
take the RRMSE estimated by parametric bootstrap. The RRMSE estimates
are lower than 20.25% in all provinces.
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