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Abstract 

Background. Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia 

dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation 

approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to 

observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by 

customizing motor-patterns to be observed and imitated. 

Objective. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using 

virtual reality. 

Methods. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in 

experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant 

hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced 

movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, 

immediately after, and two weeks after the training period. 

Results. Movement amplitude increased significantly after the therapy in the experimental group for the trained and 

un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were 

differently modified by training in the two groups; although the changes in the input–output recruitment were similar. 

Conclusions. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in 

patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These 

results must be clarified in future larger trials. 
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(AMT) active motor threshold, (BG) basal ganglia;  

(CV) Coefficient of variation, (EHI) Edinburgh Handedness Inventory;  

(EG) experimental group, (FDI) first dorsal interosseus;  

(HMD) head mounted display, (Hless/more-affected) less/more affected hemisphere;  

(I/O curve) input–output curve, (LH) left hemisphere;  

(MVC) maximal voluntary contraction, (M1) motor cortex;  

(ML) motor learning, (MP) motor practice;  

(MEP) motor evoked potential, (PD) Parkinson's disease;  

(PDp) patients with Parkinson's disease, (CG) active control group;  

(RH) right hemisphere, (RMT) rest motor threshold;  

(SP) silent period, (TMS) transcranial magnetic stimulation;  

(UPDRS) Unified Parkinson Disease Rating Scale, (VR) virtual reality 
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1. Introduction 

Bradykinesia, one cardinal sign in patients with Parkinson's Disease (PDp), is formally depicted 

according to three dimensions: slowness, absence and reduced amplitude of movement, though currently 

each of these features is considered independent [1]. Dopaminergic medication is effective for 

bradykinesia, but hypometria is less responsive to drug treatment; for this reason hypometria should be 

particularly taken into account when designing a neurorehabilitation program [1]. 

Some of the motor impairments in PD results from dysfunction at the motor cortex (M1) intracortical 

networks emerging secondary to basal ganglia (BG) dysfunction [2]. The functional integrity of these 

networks can be evaluated by transcranial magnetic stimulation (TMS). A TMS-pulse delivered on M1 

during muscle contraction generates a silent-period (SP) on the ongoing-EMG activity; this reflects the 

integrity of inhibitory GABAb circuits in the motor cortex [3]. Also, the motor evoked potential (MEP)-

amplitude induced by the stimulation increases in size with pulse-intensity, thus it is possible to build-up 

an I/O curve indicating the excitability of the system [4]. These explorations in PD indicate deficits in the 

cortical inhibitory control, reflected as a shortened SP duration and a steeper input–output (I/O) curve 

[2] and [4]. These deficits might be modified by motor-practice (MP) [5] and action-observation protocols 

[6]. 

Recently, a single session of action-observation tasks induced behavioral adaptations in PD [7]. 

Previously, movement observation had been shown to influence the subthalamic nucleus activity in 

conscious subjects [8]. However, this last point questions the functionality of an observation-imitation 

system in subjects with BG dysfunction, like PD. In this line, our group showed that PD are able to 

imitate (at real-time) finger-movements patterns different from their self-generated ones, resulting that 

imitation reduced movement variability and improved muscle recruitment [9]. These effects support the 

idea that several sessions of real-time movement imitation-training might induce lasting after-effects to 

improve motor function in PD. 

This pilot-study evaluated the after-effects of an imitation therapy focused on patients' hypometria, for 

which we used a virtual reality (VR) system. VR facilitates the implementation of imitation protocols, 

allowing sensorial stimuli to be controlled and subjects' behavior to be monitored [10]. 

Our hypothesis is that a period of training, imitating full-amplitude finger patterns, will induce after-

effects on the patient's spontaneous movement amplitude. 

2. Material and methods 

This study was in accordance with the Declaration of Helsinki and approved by University of A 

Coruña Ethics Committee (CE-21/2013). Subjects signed consent forms. 

2.1. Subjects 

From a pool of 51 PDp approached in the Movement Disorders Unit of A Coruña University Hospital 

Complex 16 met the inclusion criteria and agreed to participate. The inclusion criteria were: idiopathic 

PD [11], right-hand dominance [12], and absence of: Tremulous-phenotype; dementia (MMSE score >24 

for inclusion); epilepsy antecedents; metallic implants in the head; PD-surgery; neurological diseases 

(other than PD); and visual-auditory-musculoskeletal dysfunctions disturbing task execution. Patients 

were screened with the Unified Parkinson's Disease Rating Scale [UPDRS [13]] and also with the Test of 

Upper Limb Apraxia [TULIA [14]]; none of the subjects displayed overt mirror-movements during this 

evaluation (Table 1). 
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Table 1. Clinical characteristics of PD patients at baseline. 

Group subj Age Gender EHI Duration of PD More affected sidea UPDRSmotor/TOTAL Total LEDs 

        

E1 71 M R-10 2 L 27/31 300 

E2 69 M R-12 4 L 23/35 790 

E3 62 F R-10 16 L 28/31 714 

E4 66 M R-14 6 L 29/52 1876 

E5 87 M R-10 3 L 21/32 1110 

E6 60 F R-12 13 R 8/13 910 

E7 78 F R-11 2 R 35/42 300 

E8 57 M R-15 2 R 19/30 250 

C1 65 M R-11 4 R 19/33 2100 

C2 62 M R-12 4 L 23/43 1878 

C3 76 M R-16 3 R 15/23 798.5 

C4 50 M R-22 8 R 40/71 2676 

C5 64 M R-13 15 L 19/36 1064.5 

C6 58 M R-16 2 L 21/31 698.5 

C7 75 M R-12 3 R 21/26 300 

        

 
a 

5 PDp in the EG were chiefly left-affected, 3 right-affected; in the CG 3PDp were chiefly left-affected, while 4 right-affected 

(Fisher's Exact Probability Test for difference in proportions p > 0.05). 

PDp were randomly assigned in two groups: 8 subjects formed the experimental group (EG); and 8 

the active-controlled group (CG). One CG subject withdrew from the study for reasons unrelated to the 

study; the final analyses included 15 PDp. 

2.2. Training 

The protocol evaluated the impact of 4-weeks imitation-therapy on movement hypometria in PD [15]. 

For this purpose, the EG and CG used a same VR system. However, while the EG imitated full-amplitude 

repetitive finger-tapping (FT) movements presented by the VR-avatar at three different tapping rates, the 

CG performed a protocol matching the same features presented to the EG (both in the spatial and 

temporal domain), but imitation. Thus for the CG, the VR-avatar reproduced on-line the self-paced 

movements executed by the subjects who were instructed to keep a full-amplitude (spatial domain) and 

follow three different rates (temporal domain). This way, we evaluated the effects of imitation-MP vs. 

MP alone. 

The EG imitated the avatar's movement (which was customized by the experimenter); for the CG the 

VR captured patients' self-movements and the avatar displayed them in real-time. In all cases the VR 

avatar was presented in 1st person's perspective and observed through a head mounted display (HMD). 

The amount of weeks/protocol, sessions/week, and practice and rest-periods/session, were the same 

for both groups: they trained 3 sessions per week, for 4 weeks. Each session lasted ≈25 min during the 

first two weeks and ≈35 min the last two weeks (Fig. 1A). The experimenter corrected on-line subject's 

performance (phase locking and movement amplitude), up to 4 times/session in both groups. The effect of 

the training was evaluated before (PRE), after (POST) and 2-weeks after the training period (POST-2). 
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Fig. 1. Details of methods and results on hypometria. (A) Intervention protocol and evaluations times for the 

EG and the CG. (B) VR setting and interface. (C) Signal processing of kinematic variables. (D) The amplitude 

of the finger movements was significantly increased after the imitation training (EG) in both hands (see text 
for details). 

Sessions were executed at the same time of the day; PDp were trained on-therapy (at patients' self-

report schedule for optimal drug-effect) since it is now believed that the effectiveness of neuro-

rehabilitation protocols depends on the dopamine available at the time of training [16]. Both groups 

executed only with their dominant hand (right); though the effect of training was evaluated bilaterally. 

2.3. Experimental group 

The subjects were asked to “imitate avatar's FT as close as possible”. The avatar's movement to be 

imitated displayed a functional full-amplitude index extension (and retraction) at 3 different tapping rates, 

presented in a randomized order (Fig. 1A–B): i) one rate matched each subject's comfort rate acquired at 

PRE. ii) a rate slower (4 times slower than comfort), and iii) in the last 2-weeks the slowest rate (6 times 

slower than comfort). The duty-cycle of the full-amplitude pattern to be imitated (relation movement-

contact phase durations) were 100%, 75% and 50% (i.e., 75% = ¾ of cycle moving phase; ¼ contact 

phase). For each session of the 1st and 2nd weeks the subjects imitated 6 patterns (2 rates × 3 duty-cycles) 

4 times (blocks); therefore executing 24 trials, each including 25 movement cycles. In 3rd and 4th weeks 

we included the slowest rate, but the number of blocks was reduced to 3, thus including 9 patterns (3 

rates × 3 duty-cycles), for a total of 27 trials/session ( Fig. 1A). 

2.4. Control group 

The CG practiced in the same VR as the EG. Subjects were instructed to “perform full-amplitude 

finger-tapping while watching to the VR hand that will move as yours, the experimenter will guide you to 

get the different rates”. In order to do this, the experimenter, who wore earphones, listened to a 

metronome to check the frequencies (comfort, also acquired at PRE; slower; and slowest) and modulated 

the subjects' tapping-rate by verbal commands to get the corresponding rate before starting each trial. 

Once the rate was established, the trial started with no further consigns, except in the case tapping rate 

drift within the trial. In such case, the experimenter corrected subject's performance (rate and movement 

amplitude) up to 4 times/session in both the EG and CG. 
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2.5. Evaluations 

PDp were evaluated the day immediately before and after the training-period (PRE and POST), and 

after 2 weeks without MP (POST-2). Evaluations were off-therapy, after overnight withdrawal of anti-

parkinsonian medication (>12 h). PDp were evaluated off-therapy to test the effect on the “true” 

parkinsonian functionality and to avoid different levels of motor fluctuations within/between the three 

testing sessions. 

Evaluations began with the study of cortico–spinal excitability, followed of motor execution (both 

hemispheres and hands). We used MatLab customized programs to extract the data (MatLab, The 

Mathworks Ltd). 

2.6. Clinical motor performance 

2.6.1. Finger-tapping test 

During evaluations patients tapped at comfort-rate and at maximum movement amplitude (no 

imitation) in real environment (REAL) and VR (3 trials of 50 cycles each hand; in a randomized order). 

VR system validation and description is shown elsewhere [17]. 

We recorded the cycle duration (ms) and movement amplitude (grades) and calculated their 

coefficients of variation (CVcycle-duration and CVamplitude (%). We used a Biometrics DataLink system 

(Biometrics Ltd. UK) with a metal plate and a single axis goniometer F35 (sampled at 1 KHz and placed 

on the dorsal side of the index metacarpo–phalangeal joint; Fig. 1C). While evaluating one hand, 

recordings from the other hand were obtained to detect overt mirror movements [18]. 

2.7. Cortico-spinal excitability 

TMS-MEP's were recorded from the first dorsal interosseus (FDI) muscle. TMS was applied on M1 

using a 70 mm figure-of-eight coil, positioned tangentially to the skull and inducing currents in a postero-

anterior direction. Single monophasic TMS-pulses (Magstim 200
2
) were delivered to the cortical area 

corresponding to FDI; the two hemispheres were explored. 

MEPs were amplified ×1000 and filtered at 3–3000Hz. Data were sampled at 10 kHz and analyzed 

using a CED 1401 A/D and Signal 4 software (Cambridge, UK). 

Firstly, we determined the motor thresholds at rest (RMT) and during activation (AMT; at ≈10% of 

the maximal voluntary contraction MVC). The RMT was defined as the minimum intensity evoking a 

liminal response (of about 50 μV) in 50% of 10 consecutive trials with the muscle at rest [19]. Likewise, 

for the AMT the responses required were ≈200 μV. RMT and AMT were expressed as normalized change 

from Pre-values. 

Subsequently, we registered the I/OREST, at intensities of 110-120-130-140% RMT. Then, the 

I/OACTIVATION at intensities of 120 and 150% AMT (just two intensities to avoid fatigue), and their silent 

periods (SP). TMS-pulse frequency was 0.16Hz, delivered repeatedly up to acquire 5 MEPs for each of 

the stimulation intensities with no observable background activity (for I/OREST); and with a contraction 

≈1/3MVC for the I/OACTIVATION (feed-back provided). At each evaluation time-point, MEP-amplitudes 

(peak-to-peak) were normalized by the average of the MEPs registered at the lowest intensity, considering 

all subjects in both groups. SP durations were determined by a blinded and experienced researcher from 

the TMS artifact to the reappearance of EMG-background activity, and a SP-ratio was calculated (SP-

ratio = SPduration150%AMT/SPduration120%AMT). Subsequently, this ratio was normalized as in the previous 

variable. 

In all cases the EMG-background in the 70ms prior to stimulation was recorded to statistically 

compare levels of muscle pre-activity. 

2.8. Statistical analysis 

Intra-rater reliability during the determination of the SP duration was evaluated by the intra-class 

correlation coefficient (ICC) and its 95% confidence interval. This was done on 100 randomly chosen 

SPs, which durations were determined twice. 
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2.9. Baseline evaluations 

Initially, we analyzed the EG and CG performance at PRE. For each variable we applied an ANOVA 

with repeated measures (ANOVARM). A between-subjects factor “Group” included levels (EG and CG) to 

evaluate if motor execution was different at PRE in the two groups, we considered the within-subjects 

factors “Hand” (trained and untrained hand) and “Environment” (REAL and VR). 

A student-t test compared the differences of the SP-ratio between groups at PRE for each hemisphere. 

Another ANOVARM evaluated the MT's. A within-subjects factor “Type of Threshold” explained the 

difference between AMT and RMT (2 levels); the between-subjects factor (Group) revealed if both 

groups differed in their thresholds. 

The differences in the I/O (and EMG background) at PRE between groups were evaluated by another 

ANOVARM. For each hemisphere the within-subjects factor “Intensity” considered the amplitude of the 

MEPs110–140% I/OREST; the between-subjects factor was Group (EG and CG). The model was the same for 

I/OACTIVATION, but the factor “Intensity” had just two levels, MEP120% and MEP150%. Excitability variables 

were evaluated in a left/right hemisphere basis (LH, RH), and also for more/less affected hemispheres 

(Hmore-affected, Hless-affected) [20]. 

2.10. Effects of training 

Next, we evaluated POST training effects, and recovering after a follow-up (POST-2). The 

ANOVARM models were similar as before but adding an extra within-subjects factor “Time-point 

Evaluation” (levels: PRE, POST, POST-2). 

Normality was tested by Kolgomorov–Smirnov for one-sample. Univariate ANOVARM was used and 

Greenhouse-Geisser correction applied in case of sphericity violation. Graphs show the mean and 1 SEM. 

Significance was set at p < 0.05. 

3. Results 

Intra-rater consistency in determination of SP duration was ICC = 0.97 [95%CI: 0.96–0.98]. Groups 

were not significantly different at PRE. For all the kinematic and cortical excitability variables Group 

main effects and interactions were p > 0.05. For the CVcycle-duration factor Hand (F1,13 = 5.0 p < 0.05) 

indicated a greater variability in the frequency of tapping for the non-dominant hand. 

3.1. Effects of training 

3.1.1. Hypometria 

The analysis of the movement amplitude when considering the three evaluation time points revealed 

that the execution was significantly different in both groups (F1,13 = 7.7 p < 0.05). 

We split analyses by group and observed a main effect of “Time-point Evaluation” only in the EG, 

indicating that the movement amplitude was significantly increased after the imitation-training (F2,14 = 5.4 

p < 0.05; Fig 1D, solid-lines). The increase from PRE to POST (post-hoc p < 0.05) remained at POST-2 

(post-hoc p < 0.05 vs. PRE). The EG's increase in amplitude was not different in both environments 

(REAL and VR); and very remarkably it was not different for the trained and un-trained hand (p > 0.05 

for interactions; Fig 1D black and grey-lines). 

The movement amplitude after the training in the CG did not change significantly (p > 0.05 for main 

effects and interactions; Fig 1D, dotted-lines). 

The cycle duration, CVcycle-duration and CVamplitude did not change with interventions (p > 0.05 for main 

effects or interactions). 

3.2. Cortico-spinal excitability after intervention 

3.2.1. Motor thresholds 

The training protocols had a different effect for the normalized thresholds of the LH in both groups; 

this effect was significant F2,26 = 7.3 p < 0.05. We split analyses for each group to understand the specific 

effect of the two training protocols. For the EG, the effect of training was not significant, with no 
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interaction with the type of threshold (Fig. 2A.1, results pooling MT's). In the CG, MP (without imitation) 

decreased significantly the MT's of the LH (F2,12 = 6.8 p < 0.05); post-hoc PRE vs. POST-2 were p < 0.01 

for the AMT and RMT ( Fig. 2A.1, AMT and RMT represented pooled). 

 
 

 
Fig. 2. Training Effects on Motor Thresholds (A) and I/OACTIVATION (B). Training effects on MT's where significantly different in 

both groups as shown in the different direction of changes after MP or MP-imitation; this was seen in analyses by hemisphere side 

(A.1 and A.2), or hemisphere affectation (A.3 and A.4). AMT and RMT are represented pooled, due to absence of significant 
interaction between Kind of Threshold and Evaluation Time Points. Values in the Y axis represent the normalized unit value (n.v.). 

The effect of training in I/OACT was never different in both groups (groups shown pooled) and the slope of recruitment was reduced 

in the LH but not in the RH (B.1 and B.2). When we considered more and less affected hemispheres (B.3 and B.4) the slope was 
reduced only in the less affected hemisphere at the end of the follow-up period (see text for details of the analysis in pairs). 

Likewise, in the RH, the training changed MT's in a significantly different manner for both groups 

(F2,26 = 5.1 p < 0.05; Fig. 2A.2). However, analyses by group never revealed a significant change 

comparing the values of three testing times. 

If considering the Hmore-affected, training had a different effect on the two groups F2,26 = 7.3 p < 0.01 

(Fig. 2A.3). In the EG, the thresholds increased significantly with training F2,14 = 4.7 p < 0.05; post-hoc 

indicated the effect for AMT and RMT focused at POST-2 (p = 0.05 vs. PRE; p = 0.06 vs. POST). CG's 

thresholds were reduced significantly F2,12 = 3.9 p = 0.05, and the effect in pairs was significant for PRE 

vs. POST-2 (post-hoc p < 0.05). 

For the Hless-affected (Fig. 2A.4) the effect of training also differed in both groups F2,26 = 4.2 p < 0.05. 

EG's were unaltered; CG's reduced thresholds over time F2,12 = 3.9 p = 0.05, but none of the post-hoc 

comparisons in pairs were significant. 

RMT was always higher than AMT (p < 0.001), but both were affected by training not in a 

significantly different way (i.e., graphs are shown pooling thresholds). 

3.3. I/O recruitment in activation 

For the I/OACTIVATION of the LH we observed the typical increase in the MEP-amplitude with 

increasing intensity (F1,13 = 49.6 p < 0.001; this was similar in the rest of hemispheres analyses, ie., RH, 

Hmore-affected, Hless-affected). LH-I/OACTIVATION was significantly modified by MP (F2,26 = 8.7 p < 0.01); the 

effect is manifested in a less steep slope, borderline significant at POST (post-hoc; p = 0.06) and 

significant POST-2 (post-hoc; p < 0.05), compared to PRE. The effect was not differently expressed in 
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the EG and CG (F2,26 = 0.8 p > 0.05, the graphs show both groups pooled) (Fig. 2B.1). Fig. 2B.2 shows 

the training effect in the RH (not significant). 

In the Hless-affected (but not in the Hmore-affected) training reduced the I/OACTIVATION slope F2,26 = 4.4 

p < 0.05; the effect was detected between POST and POST-2 (post-hoc p < 0.05) and was not different 

for the two groups (p > 0.05). Fig. 2B.3 shows Hmore-affected; 2B.4 Hless-affected. 

3.4. Silent period ratio 

In the LH (Fig. 3A.1), the SP-ratio change with training was borderline different for the two groups 

(F2,26 = 3.0 p = 0.06); effects on RH SP-ratio is shown in Fig. 3A.2 for comparison. Effects in LH are 

explained by a significant change in the EG (F2,14 = 3.9 p < 0.05), which is absent in CG (F2,12 = 0.5; 

p > 0.05); follow-up analysis indicated that the SP-ratio increased significantly at POST in the EG 

(p < 0.05; post-hoc), but it returned to baseline-levels after two-weeks with no training. Fig. 3A.3 and A.4 

illustrate results by Haffectation (not significant). 

 
 

 
Fig. 3. Training Effects on SP-ratios. A.1. LH SP-ratio of the EG 

was significantly increased at POST, and returned to baseline 

levels at POST-2; SP-ratio of the CG was not modified, (see text 
for details). SP-ratios of the RH (A.2), Hmore-affected (A.3), Hless-

affected (A.4) did not change (the unit is equivalent to the 

corresponding SP-ratio at PRE). 

For the rest of analyses main-effects and interactions were not significant. See also supplementary 

figures. 
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4. Discussion 

The results of this pilot-study indicate that the imitation of full-extension movements prompts visuo-

motor adaptations which reduce PDp's hypometria. Visual information was provided in the EG and CG 

(self-generated movements for the latter), but it seems that imitation of full-amplitude movements made a 

difference from MP alone. Previous results endorsed the idea that imitation can prompt online movement 

adaptations in PDp [9], now we show that imitation therapy has an offline effect in movement amplitude. 

EG's hypometria was reduced at virtual and real environments testing. This is of importance since 

ecologic validity of VR lays in the transfer of trained skills to the real world [17] and [21]. 

In addition, we show that 4-weeks imitation–training is enough to acquire a new pattern of movement 

which remains after 2-weeks follow-up period. This outlasting change in motor performance might reflect 

motor learning (ML) [22]. Indeed, other markers of ML have also been detected. Firstly, movement 

variability (either for amplitude and cycle duration) did not rise with increasing movement amplitude 

[23]. Secondly, the increase of movement amplitude was not driven by frequency waning (i.e., amplitude-

frequency trade-off). Remarkably, significant improvements in movement amplitude were bilateral in the 

EG. “Bilateral learning” after “unilateral (right-dominant) practise” has been shown in healthy subjects 

[24]. 

The second key finding was the significant increase of the SP-ratio in the EG's LH. In previous studies 

the lessening of symptoms was associated with SP increasing [25] and [26]. However in our study, the 

SP-ratio dynamics along the three evaluation-points was different from that of hypometria. LH SP-ratio 

increased right after training-sessions [5] and [6], but returned to PRE levels at POST2, whereas the effect 

on hypometria remained after the period without practice. This effect might be following the dynamics of 

cortical excitability along the different phases of ML [27], [28] and [29]. 

For the EG and CG the I/OACTIVIATION slope changed after training. This might be compatible with ML 

induced by MP, as they were experienced by the two groups in the LH. However, I/O recruitment became 

flatter after training, which is different from an increase of the steepness of the recruitment curves as a 

marker of ML in healthy subjects [30]. We suggest that ML might be differently expressed for PDp 

because they present reduced inhibition of the cortico-spinal drive during tonic contractile activity. 

The differential role of imitation-MP from MP alone was not only observed in SP, but also in MT's. 

The CG (MP no-imitation) reduced their LH MT's (i.e., increased excitability) after the protocol, in 

agreement with ML in healthy subjects [30]. This is different in the EG, for whom MT's were unchanged; 

we suggest this effect might engage physiological mechanisms responsible also for the increased 

inhibition observed in SP-ratio in this group [31]. It is however also possible that EG and CG were 

experiencing a similar process of cortical reorganization, but with a faster profile in the case of EG. 

After-training changes in excitability of the Hmore-affected and Hless-affected support the idea that MP-

imitation produces different adaptation than MP alone. In fact, MT's changed in different directions for 

both groups, similarly to the LH/RH results; this is perhaps explained by the balanced proportions of 

LH/RH affectation in the two groups of PDp. For the I/OACTIVATION we only observed changes in the Hless-

affected, again in CG and EG, suggesting the possibility that Hless-affected remains more adaptable than Hmore-

affected. This reinforces our suggestion that training after-effects on I/OACTIVATION is due to MP (shared in 

both groups), and not to imitation. Importantly, training reduced slopes at POST-2 vs. POST, resembling 

the LH profile in both groups. The SP-ratio was unchanged if considering hemisphere affectation. 

However the ratio increased significantly in the EG's LH at POST, perhaps driven by right dominant-hand 

training. These possibilities (relevant for neuro-rehabilitation) must be confirmed in the future. 

4.1. Limitations of the study 

Since this is a pilot-study the small sample size imposes caution in results interpretation. Also, the 

PDp mostly presented bradykinetic-rigid phenotype in intermediate disease stages. Therefore, our results 

might be not replicable with some other phenotypes or disease stages. 

5. Conclusion 

The increase in movement amplitude and LH-SP-ratio observed exclusively in PDp trained with MP 

and imitation reflects that imitation training extended the effects of MP alone. This suggests that motor 

imitation might be useful as complementary treatment for reducing movement hypometria in PD. These 

results must be confirmed in future larger trials. 
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Appendix A. Supplementary data 

The following are the supplementary data related to this article: 



 
 

 
Supplementary Fig 1Training Effects on MT's for Left and Right hemispheres taking into account the degree 

of affectation (more/less) for LH and RH affected PDp. Only for descriptive information; statistical analysis 

was not performed due to the fragmentation of the sample size. 

 
 

 
Supplementary Fig 2Training Effects on I/OACTIVATION for LH and RH in more/less LH and RH 

affected PDp. Only for descriptive information; statistical analysis was not performed due to the 

fragmentation of the sample size. 
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