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This paper proposes a new whole and distributed
integration approach between Artificial Neural Net-
works (ANNs) and Databases (DBs) taking into
account the different stages of the former’s lifecycle
(training, test and running). The integration archi-
tecture which has been developed consists of an
ANN Manipulation Server (AMS) based on a client-
server approach, which improves the ANNs’ manipu-
lation and experimentation capabilities considerably,
and also those of their training and test sets,
together with their modular reuse among possibly
remote applications. Moreover, the chances of inte-
grating ANNs and DBs are analysed, proposing a
new level of integration which improves the inte-
gration features considerably. This level has not
been contemplated yet at full reach in any of the
commercial or experimental tools analysed up to
the present date. Finally, the application of the
integration architecture which has been developed
to the specific domain of Environmental Impact
Assessments (EIAs) is studied. Thus, the versatility
and efficacy of that architecture for developing
ANNs is tested. The enormous complexity of the
functioning of the patterns which rule the environ-
ment’s behaviour, and the great number of variables
involved, make it the ideal domain for experimenting
on the application of ANNs together with DBs.
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1. Introduction

If, as a starting point, we take the statement ‘Algor-
ithms are not important, the important thing are the
data given to the ANN. The problem must be
tackled from the point of view of data and their
representation’, finding a connection between ANNs
and DBs seems to be easy [1].

Although many of the developments carried out
with ANNs use DBs, in most cases this fact is not
stressed. Moreover, we are not aware of the exist-
ence of references which have studied this subject
deeply and extensively, either directly or as a result
of the research done.

After a thorough research of a set of ANNs
representing many application domains and many
connectionist tools of development and experimen-
tation (both commercial and freely distributed), it
has been noted that most of them present a mono-
lithic and weakly structured character. Besides, they
use imbibed codes or simple text files for rep-
resenting the entities involved in the different stages
of the ANNs’ lifecycle.

The purpose of this paper is not to evaluate or
count up the tools available for developing ANNs,
but to study the features and flaws in the integration
of present systems, proposing ideal integration con-
figurations and conditions which reflect the real
needs of this kind of application. References for the
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systems analysed are not included, since in some
instances they are commercially-distributed tools.

The research carried out has analysed the inte-
gration levels with general-purpose commercial con-
nectionist 4-tool DBs (listed with letters A, B, C
and D), six non-commercial ones (E to J) and 13
ANNs applied to different specific domains (K to
W). Table 1 shows the degree of integration with
DBs of these three groups of tools in the follow-
ing regard:

� The representation of the ANNs’ architectures and
the processes involved (architecture column).

� The representation of the training sets (training
column).

� The representation of the test sets (testing
column).

� The representation of the flows towards and from
the ANNs in running time (running column).

Another column is included, labelled no integration,
which stands for those tools which do not include
any kind of integration with DBs in each and every
one of the stages of the ANNs’ lifecycle. Thus, it
may be noted how connectionist tools C and D
offer a certain degree of integration with DBs in
the training and test stages, although they do not
include that support with regard to their architectures
and running process. Of all the 23 systems studied,
none presents an all-level integration degree with
DBs. A great number of tools (A, B, E, H, K, N)
offer no integration with DBs at all.

The research carried out analyses, according to
the ‘divide and conquer’ principle, the capabilities
and advantages of integration with DBs of each
stage of the ANNs’ lifecycle (architectures, training,
test and running) in order to unify all the results
into one integrated approach.

Finally, the resulting integrating approach is
applied and analysed in the EIAs domain. The incor-

Table 1. Study on the integration levels between ANNs and DBs.

Level Architecture Training Testing Running No integration
Tools

Tools C, D C, D A, B
General Purpose
Commercial
[A..D] (4)
Tools I, J I, J E, F, G, H
General Purpose
Non commercial
[E..J] (6)
ANNs in specific application O, P V, W V, W O, P, Q, R, S, K, L, M, N
domains T, U
[K..W] (13)

poration of connectionist systems to conventional
EIA applications will facilitate the treatment of new
cases, incomplete or imprecise data, etc. The varia-
bility of the information used (different environ-
ments, projects, actions, affected Environmental Fac-
tors (EFs), etc.) advises the use of connectionist
approaches. The subjective character of the variables
used, together with the lack of general experimental
and theoretical knowledge on environmental interac-
tions, supports this idea. Although three ANNs
which separately tackle different problems within
the domain have been developed, the simplest of
them is reviewed in this paper with the purpose of
explaining the functioning of the proposed approach
clearly. This ANN tackles the problem of the defi-
nition of impact identifiers, which allow the determi-
nation of the impacts produced by the actions of a
project on the EFs which are a feature of our
environment.

2. Integration of Connectionist
Architectures

DBs offer great versatility when experimenting with
various architectures, learning algorithms, process
element models, etc. They also support weights,
thresholds, outputs, error rates, etc., of trained or
training ANNs.

The integration between ANNs and DBs at this
level will give rise to the following advantages:

� It facilities the analysis or parametric estimation
of most aspects which may influence the ANNs’
learning, performance, generalisation capacity, etc.

� It offers the system great versatility for the study
and optimisation of ANNs.

� DBs offer ANNs a high degree of integrity and
consistency. These aspects are, according to Codd
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and Ceri [2–4], intrinsic to DBs, improving the
research and experimentation potential of the
ANN domain considerably.

� It enables the integration of security levels and
the whole potential of query languages, aspects
of which are analysed by Codd and Cardenas
[5,6] as elements of DBs and DB Management
Systems within the connectionist domain.

� It facilitates the manipulation of extended ANNs
or connectionist hierarchies with many architec-
tures and models.

� It will enable the improvement of experimen-
tation, design and integration possibilities of gen-
eral-purpose connectionist tools and ANN-based
applications.

The proposed integration approach is based on the
ANNs Manipulation Server (AMS), which is inde-
pendent from those client-systems which demand
connectionist resources. The AMS stores the ANNs
into a DB to be used during the training, testing
and running stages. This DB will support the various
ANNs generated by the system, thus including a
whole hierarchy of connectionist systems. Besides,
the AMS allows different applications, both local
and remote, to use the ANNs generated. Therefore,
these ANNs are developed from a client-server
architecture.

The AMS architecture has been designed accord-
ing to its application possibilities in a wide range
of domains. The needs of connectionist schemes in
bigger domains have also been considered. This
kind of development is common in knowledge
engineering. These domains can usually be divided
into subproblems, which may be tackled by applying
several connectionist approaches separately. The

Fig. 1. AMS higher-order architecture and elements involved.

AMS must facilitate the integration of all of them
into a single co-operative environment, which
enables an approach to the domain as a whole. It
must also facilitate the integration with other
approaches or techniques. This is the case of the
EIA’s application domain, where the variability of
the information and the great number of variables
involved makes the application of multiple ANNs
the easiest way to recognise certain situations. On
the other hand, the AMS must be just as efficient
in small, well defined domains. Figure 1 shows the
system’s higher-order architecture.

This architecture differentiates three elements
which are distributed in a data network, and which
are part of one or more DBs, either local or remote
from each element:

� The first element or AMS is in charge of storing
and managing all the indexed ANNs in the con-
nectionist DB designed and developed for that
purpose. This DB is considered to be local to the
AMS, for reasons of the system’s performance
and complexity.

� The second element, accessible by the AMS,
consists of the DB servers of the various appli-
cation domains involved.

� The third element consists of the client-appli-
cations, which are able to call the first element’s
AMS or connectionist level at any time. From a
functional point of view, it is formed by the
connectionist systems at the running time.

The systems running control is focused on the client-
applications (element #3), which may, at certain
steps of its running, call the AMS or transfer control
to it (element #1). This assigns and executes the
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relevant ANNs according to the point from which
the call comes. Thus, the connectionist level of
client-applications becomes independent, facilitating
the integration of ANNs with other approaches
which may be part of client-applications. That is, a
connectionist learning level is made available to any
kind of system which may require it due to its
features, and which has a sufficient amount of data
or patterns. In this respect, the AMS offers a connec-
tionist level which may be easily incorporated into
the user’s final applications. Moreover, application
programmers need not worry about all the innate
tasks of connectionist systems, since the AMS makes
them available in a visual and simple way.

3. The Connectionist DB Model

Figure 1 shows how the AMS incorporates a DB
which supports the entities corresponding to the
three elements of the architecture. Therefore, the
DB research or modelling must cover every aspect
related to the DB servers of the specific application
domains, architectures and ANN models, activation
functions, learning rules and methods, training and
test sets, client-applications, etc.

The following entities may be identified in the
analysis of the ANN domain:

� Associated architecture and parameters (ARCHIT
ECTURE entity).

Fig. 2. Model of the AMS connectionist DB.

� Layers (LEVELLAYER).
� Weights (WEIGHTS).
� Activation functions (ACTIVATIONFUNCTION).
� Learning rules (LEARNINGRULE).
� Client applications (CLIENTAPP).
� Client-applications forms (FORMSAPP).
� Client-applications and DB servers addresses

(NETWORKADDRESS).
� Network-directing schemes or protocols

(NETWORKPROTOCOL).
� Training and test sets queries

(QUERYTRAININGTEST).
� DBs used for ANN test and training

(DATABASES).
� Application domains DB tables (TABLES).

Figure 2 shows the connectionist DB model which
supports the information handled by the AMS. The
entities attributes have been left out due to lack
of space.

The entities ARCHITECTURE, LEVELLAYER,
WEIGHTS, ACTIVATIONFUNCTION and
LEARNING RULE model the structures and para-
meters of the ANNs which correspond to element
#1 of the architecture (Fig. 1). The AMS modular
scheme allows the integration of different models
of feed-forward and feedback ANNs using these
entities, together with their architectures, learning
rules, activation functions, etc. The corresponding
table of the ARCHITECTURE entity will reflect the
models and features of all the system’s specific
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ANNs. This table will incorporate the various ANNs
developed in several application domains. In
addition, the AMS includes a set of adjustment
approaches for the selection of parameters such as
the learning rate or the momentum which facilitate
ANN training.

This approach initially considers an update of the
synaptic weights by epochs, and not in each pattern,
and then undertakes a search for the right learning
rate and momentum. For adjustment of the learning
rate, we have chosen a scheme which consists of a
progressive decrease of the learning rate throughout
the learning process [7]. On the other hand, the
AMS also incorporates a scheme, proposed by Silva
and Almeida, based on the independent assignment
and adjustment of different learning rates. Thus, a
different rate will be learning rate will be assigned
to each of the ANN’s synaptic weights [8]. The use
of multiple learning rates allows the achievement of
an optimal rate for each synaptic weight. This
scheme also introduces various turn-back strategies
for those cases in which an error increase takes
place, with the purpose of avoiding local minima,
or for instances in which we are not following the
right strategy.

This kind of approach, together with others which
may be incorporated into future AMS versions, such
as the use of evolutionary strategies [9–11] or gen-
etic algorithms [12–17] for architecture design and
optimisation, will further increase the chances of
automating ANN integration at all levels and for
every type of user.

In turn, the tables corresponding to LEVEL-
LAYER, WEIGHTS, ACTIVATIONFUNCTION
and LEARNINGRULE entities reflect the layers,
synaptic weights, activation functions and learning
algorithms of the different ANNs of the system. The
FORMSAPP, CLIENTAPP, NETWORKADDRESS
and NETWORKPROTOCOL entities support the
relationships between the ANNs of the AMS and
the specific forms of client-applications at a concep-
tual level. Therefore, they model the structures and
parameters corresponding to element #3 of the gen-
eral architecture in Fig. 1. The corresponding tables
will characterise the features of the client-appli-
cations forms, including their network addresses and
protocols supported in the case of remote appli-
cations which may require the AMS’s ANNs to run.
When it is running, a client-application will call the
AMS, passing on the client-application’s identifier
and the identifier of the form which has generated
that call as parameters. Thus, any call to the AMS
is perfectly defined by two identifiers: the client-
application which calls; and the form of that appli-
cation which generates the call. As a result, the

AMS sends back the identifiers of the ANNs which
may be relevant to the client-application at that
time, considering the point or call form. The follow-
ing stage would be that of running those ANNs
identified as relevant, sending the results back to
the client-application.

The QUERYTRAININGTEST, TABLES and
DATABASES entities are used for the process of
generating training and test sets. That is, they model
element#2 of the Fig. 1 architecture. The correspond-
ing tables will refer to the tables or queries to be
used for the ANNs’ training and test processes.
These tables or queries may belong both to local and
remote AMS’s DBs. This process, which constitutes
another level of integration between ANNs and DBs,
will be studied separately in Section 4.

Finally, it would be interesting to stress the advan-
tages of using DBs in any system which requires
information treatment, and which can, therefore, be
applied to a greater or lesser extent to the different
stages of the ANN lifecycle (the possibility of
including rules and restrictions into the data model,
the diminution of redundancy, a greater availability
of the information, information protection,
efficiency, definition of security levels, etc.).

4. Training and Test

This section will explore the AMS possibilities of
automating the generation of multiple training and
test sets through the use of logical operators, and
relationships which will also facilitate any prepro-
cessing of patterns that may be required. This section
will focus mainly on element#2 of the AMS archi-
tecture (Fig. 1).

The AMS, through its DB:

� facilitates the extraction of sufficiently big and
significant fact sets;

� improves the test stage considerably, facilitating
the manipulation of multiple ANNs and the auto-
matic generation of their corresponding test sets;

� the training and test sets will always reflect the
real situation of the application domain DB:

� it incorporates a high degree of integrity, consist-
ency and security to the training and test sets;

� it places the distributed training and test sets
throughout a computer network, making them
available to the AMS as if they were situated at
the local host.

For instance, in a feed-forward architecture, the
AMS uses the relational sentences in order to com-
pose the ANN’s information or input layer patterns.
The possibility of using complex relational sentences
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on both local and remote DBs enormously increases
the capacity of generating and preprocessing training
sets. The AMS will be able to assign various table
domains belonging to any DB server of the re-
searched application domain to the corresponding
process elements of the studied ANN input and
output layers. In addition, domains resulting from
views or queries related to their assignment to the
process elements can be used, thus improving the
capabilities and possibilities in the generation of
training and test sets.

It must be noted that we are always referring to
two different DBs, the one maintained by the AMS
to support the ANNs, and the other maintained by
the corresponding DB server as support to the train-
ing and test process of the application domain
involved. The process of generating the training and
test sets considers the assignment or mapping among
different DB fields of the researched application
domain and the process elements of the correspond-
ing DB. This task carries out a JOIN operation
among the DB tables involved in the learning pro-
cess. Later on, a projection is carried out on the
relevant fields which constitute the training or defi-
nition sets of the patterns to be learned.

These queries may produce three well-differen-
tiated types of fields: those used as ANN inputs,
those corresponding to the desired outputs (in the
case of a scheme based on a supervised learning
paradigm), and finally, the semantic descriptions of
the previous fields. This third type of field allows
both the AMS and the client-applications to manipu-
late concepts or descriptions instead of simple codes.
On the other hand, the second type of field would
disappear when the AMS considers a non-supervised
learning scheme at a given time. Figure 3 shows the

Fig. 3. Generation of the training and test sets.

generation scheme for the training and test sets. It
can be seen how a query on the application domain
DB generates a set of fields which shape the training
set. The domains have been labelled and related to
a generic ANN architecture. Thus, fields labelled 1
constitute the ANN input patterns, and those labelled
3 constitute the desired outputs, assuming a super-
vised training scheme. The fields labelled 2 and 4
will be the semantic descriptions of fields 1 and 3,
respectively. As one can easily imagine, both the
client-applications and the DBs use fields 2 and 4
for their interactions with the users and ANN man-
agers. That is, while fields 1 and 3, used for the
training process, are merely numeric fields without
meaning, fields 2 and 4 provide that meaning. For
instance, one of the fields labelled 1 could be an
identification code for a certain product. This code
as such would provide no information to the user.
In this sense, a field labelled 2 can contain descrip-
tions of those product codes as an element of user-
interaction. As has already been seen, the AMS’s
DB must contain every kind of information about
the server involved and the corresponding appli-
cation domain DB: its queries, tables, and the type
of resulting field (input, output or semantic).

Thus, the AMS automates the generation process
of the training and test sets, which will always be
updated. The AMS will also be able to incorporate
various preprocessing procedures through the use of
logical and relational operators of the DB’s query
language.

5. Integration in Running Time

At this point, the core for handling and manipulating
ANNs is available. Nevertheless, the problem is the
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reuse of the various trained ANNs in any appli-
cation, either developed or to be developed
(element#3 of the architecture).

A scheme based on the assignment of ANNs to
client-applications screens or forms is included, in
order to facilitate the integration of ANNs with
other approaches. This relationship is expressed by
means of the CLIENTAPP, FORMSAPP and
ARCHITECTURE entities, as may be seen in Fig. 2,
which determine those ANNs that can be applied
according to the information available in the forms
of the client-applications in running time. Similarly,
the data from those forms may be processed by
using other techniques, turning the forms into the
integrating elements of the various approaches. Gen-
erally speaking, a set of ANNs may be assigned to
the forms of the various client-applications, and vice
versa. Figure 4 shows the system’s functioning and
main information flows.

From the connectionist DB, through the 1.1 infor-
mation flow, the AMS obtains the characterisation of
the various ANNs (architecture, weights, activation
functions, learning rules, etc.), and the definition of
their training set queries. The AMS includes a visual
environment for the creation of these ANNs and the
definition of the parameters which characterise their
architectures, and of the training and test sets. Later
on, the query is carried out against the application
domain’s DB server for the automated generation
of the training set (flow 1.2). Once the ANN archi-
tecture and training set have been obtained, the
learning stage will start. The test process follows
the same steps as the learning process, the only
difference being that, instead of using a query which

Fig. 4. System’s functioning environment.

generates a training set, that used generates a test
set. Flows 2.1 and 2.2 of Fig. 4 stand (respectively)
for the query on the connectionist DB of the ANN
which is being tested, and the corresponding test
set query. The AMS is structured in two modules,
training and test modules, for carrying out these
tasks. Although the connectionist DB is considered
to be local to the AMS on the grounds of perform-
ance, the application domains’ DBs could be either
local or remote.

In the ANNs’ running stage, a client-application
demands the identifiers of the relevant ANNs
through the 3.1 information flow. This application
can be either local or remote with regard to the
AMS and the application domain DB Server. For
this purpose, the client-application’s identifier and
that of the corresponding form which generates the
call are passed as parameters. Thus, the AMS ident-
ifies, through the connectionist DB, those ANNs
which may be of interest to the present running
stage of the client-application demanding connec-
tionist resources (information flow 3.2). Later on,
the AMS notifies those ANNs which are relevant
to its process to the client-application, while the
client-application is in charge of defining and notify-
ing the AMS of the relevant ANN(s).

Finally, the client-application will pass on to the
AMS those parameters required as inputs to the
ANN researched, to go on with the running stage.
The AMS will send back to the client-application,
through the 3.4 information flow, the results
obtained at the ANN running stage. Generally, all
these AMS management processes include the typi-
cal tasks with DBs (inserts, deletes and updates).
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As the AMS’s DB increases, a core of data and
experiences with ANN design and modelling will
be defined. This will allow us, in future, to apply
the AMS scheme on its own DB, defining the
connectionist level as the application domain to be
studied. In this sense, the application domain’s DB
and the AMS’s connectionist DB will become the
same DB.

6. Results

Nowadays, there is increasing concern about the
control of all those activities which may damage
the environment. For this reason, the implementation
of a correct Environmental Impact Assessment (EIA)
will contribute to the rational integration of infras-
tructural and entrepreneurial projects, trying to make
development and technological progress compatible
with the necessary quality of environmental life.
The progress made in recent years in the fields of
computation and artificial intelligence makes highly
sophisticated and powerful systems available which
have become an essential tool when carrying out
EIAs, due to the great complexity of this appli-
cation domain.

A system has been implemented in the EIA field
which integrates an ANN set into its reasoning
scheme, in the framework of the research on DB
and ANN integration. This system or client-appli-
cation uses the connectionist level offered by the
AMS. At an early stage, a DB is designed and
developed into that application domain.

This DB includes a wide information set about:

� actions which produce impact;
� Environmental Factors (EFs);
� environmental crossovers between actions and

EFs;
� indicators and functions to evaluate those impacts;
� involved environmental parameters;
� corrective actions;
� environmental legislation;
� The relationships among them and the possible

restrictions [18,19].

The results and conclusions obtained by carrying
out new EIAs are stored into this DB with the
purpose of using that information as experience for
future EIAs. The DB presented in Fig. 5 is the result
of studying all the information involved in this
application domain. The entities attributes have been
left out due to lack of space.

It seems obvious that the integration of a connec-
tionist level into any final application through the

use of the AMS will totally or partially involve the
corresponding application domain DB.

From a functional point of view, this client-appli-
cation is in charge of characterising and evaluating
the hypotheses linked to the impacts suggested from
the environmental parameters suggested by all those
ANNs considered relevant by the AMS. The AMS
suggests the relevant ANN set according to the
client-application’s call point, and the information
which may be available to those applications at that
time. Finally, the results obtained by the ANNs will
become part of the client-application.

From a structural point of view, the EIA system
has been organised into five levels of abstraction:

� project level;
� action level – those which may cause some

environmental impact;
� Impact level – which establishes cause–effect

links between the project actions and the possible
EFs which may be affected;

� EF level–which characterises the environment;
� The level of corrective measures which may

decrease all those impacts that, for reasons of
legal constraints or environmental advice, may
inflict considerable damage on the environment.

Figure 6 shows the interaction among the various
levels of abstraction of the system.

The system input is composed of the set of
projects targeted by the EIA. These projects suggest
a series of possible actions which cause impacts
that, in turn, may suggest other actions. From the
final set of actions, cause–effect links are established
between these actions and the EFs affected. These
links evaluate the impacts on the EFs from the
characteristics of the impact and an impact indicator.
The impact characteristics include its sign
(beneficial, harmful or unknown), intensity, exten-
sion, momentum, duration, possibility of recon-
structing the initial conditions or reversibility, and
possibility of including corrective actions. Finally,
various corrective actions are suggested and studied
in order to reduce the environmental effects which,
according to their features, may produce a strong
impact, and/or whose parameters are above the
threshold established by law. These measures are
oriented both towards the improvement of the posi-
tive effects and the minimisation of the negative
ones. This system will enable a classification of
impacts, identifying those which cause a deeper
impact on the environment, those which are inevi-
table and those which require constant monitoring
[20–22].

The AMS functioning pattern with regard to this
EIA system will be identical to that of any other



9

Fig. 5. Model for the EIA domain DB.

Fig. 6. Abstraction levels of the EIA domain.

client-application or application domain. As one can
easily imagine, the ‘quality’ of the results and the
ANNs’ generalisation capacity will depend, among
other parameters, upon the number, type and rep-
resentative quality of the training patterns available
in the application domain DB. The convergence
criterion obtained will also characterise the quality
of the resulting ANNs.

We shall now analyse the integration between the
AMS and the client-application of the EIA domain,
considering each of the three basic stages of the
ANNs’ lifecycle.

The integration of ANNs and DBs is of great
significance during the ANNs’ training process, both
in supervised and non-supervised learning. At that
stage of the ANNs’ lifecycle, the importance of this
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integration becomes apparent. We must note that
reference will be made to two DBs which may be
located in different hosts. The first DB models those
architectures and parameters characteristic of ANNs
(shown in Fig. 2) supported by the AMS. The
second DB models those belonging to the EIA
domain (shown in Fig. 5), and supported by the
client-application. The AMS uses relational sen-
tences to compose the patterns which will constitute
the training sets. Generally, it will be able to assign
various fields of the EIA’s DB tables to the process
elements of an ANN input layer. In addition those
fields resulting from queries or views [23] will have
the chance of being used in this assignment.

For instance, to generate a training set, according
to the DB model in Fig. 5, the following parameters
are considered as inputs: impact-causing action;
affected EF; sign or feature of the effect produced;
degree of incidence on the EF; influence area of
the impact on the environment; time elapsed
between action and effect; time that the effect will
last; possibility of reconstructing the initial con-
ditions once the effect has been produced; and possi-
bility of adopting measures in order to compensate
for the effects.

The desired output, assuming a supervised learn-
ing approach, will be the indicator which allows
quantification of the effect. Considering all the pre-
vious parameters, a relational sentence must be
defined to perform a JOIN operation among the
following tables: ACTFACCHAIND, ACTIONS,
ENVIRONMFACTORS, CHARACTERISTICS,
SIGN, INTENSITY, EXTENSION, MOMENT,
CORRECTIVEACTIONS, DURATION, REVERSI-
BILITY and INDICATORS of the DB correspond-
ing to the model in Fig. 5. Later, a projection is
made on the relevant fields of the training set. The
results of the query include the parameters used
as ANN inputs, those desired as output, and the
descriptions of the parameters involved in the train-
ing set. Thus, the AMS and the client-applications
will handle concepts or descriptions instead of sim-
ple codes. The information which integrates these
patterns may be of different sorts: quantitative,
qualitative, graphic, etc. Generally, this information
must be transformed into a numeric representation
capable of being preprocessed and used by the AMS.

Thus, the AMS automates the training sets gener-
ation process, and similarly, the test processes,
which will be constantly updated. That is, they will
always reflect the present situation of the EIA DB.
The AMS will also be able to incorporate different
preprocessing procedures through the logical and
relational operators of the DB query language.

The entities NETWORK-ADDRESS, DATA-

BASES, TABLES and QUERY-TRAINING-TEST
of the AMS DB, according to Fig. 2, and their
relationship with the ARCHITECTURE entity are
the structures in charge of supporting the definitions
of the training and test sets.

Within a supervised training context, the AMS
will compose the information of the input and output
layers, for this purpose using both the direct assign-
ment of DB fields and the definition of relational
or view sentences. Using non-supervised training,
the process of training set generation is similar; that
is, it disappears from the relational sentence to the
desired output.

Figure 7 shows one of the multiple AMS forms,
in particular, that of creating new ANNs or selecting
an already existing one from the AMS connec-
tionist DB.

This example shows the selection of one of the
AMS’s ANNs belonging to the EIA-specific domain.
This ANN identifies a possible environmental impact
indicator for the case studied. These indicators are
the elements or parameters which provide the meas-
ure of each impact’s magnitude, both qualitatively
and quantitatively. Their selection is fundamental in
order to carry out successful EIAs [24,25]. This
ANN provides a single impact indicator for each
case, which identifies a function integrating differ-
ent subindicators.

The list displayed on the form (Fig. 7) labelled
as Network shows the ANNs available in the AMS’s
DB related to the EIA application. The selection of
one ANN will load all of its features into the AMS
working memory for its later manipulation. Although
the system has several ANNs, both in the EIA
domain and in other application domains, that which
identifies impact indicators will be the only one

Fig. 7. ANN definition and manipulation form.
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exposed due to its simplicity (a single output
parameter). In this respect, the system integrates
various ANNs to tackle the total or partial resol-
ution, in series or in parallel [26], of some of the
subproblems tackled by the EIA client-application.
A second ANN for identifying impact crossovers,
and a third for identifying corrective actions, have
been developed among them. The enormous com-
plexity of the composition queries of their training
sets and a high number of output parameters warn
us not to research these ANNs if we want to present
the AMS functioning in a clear way.

At this stage, the AMS manages and handles all
the aspects related to the architecture, learning
method, training errors, sample number, creation and
modification dates, etc.

The bottom section of the form in Fig. 7, labelled
as Fields, is in charge of identifying the table or
query used for definition of the ANN training set.
The displayed Table or Query allows the selection
of a table or query from the DB of the EIA domain
as the basis for the training set definition. The AMS
administrator assigns a label to each of the fields
resulting from that query, identifying them as input
or output. These labels define the fields that will
form the input patterns and the desired outputs, the
latter within a supervised learning framework. As
one can imagine, the DB administrator of the EIA
domain must include in its catalogue all those quer-
ies which may constitute training sets of any of the
ANNs of interest to that field, so as to make them
available to the AMS.

Another interesting aspect, which increases the
usefulness of the AMS, and makes the system very
friendly, is that of using descriptive fields of the
variables used by the ANNs. The descriptive fields
must also be part of the client-DB’s tables or of
the corresponding query which generates the training
set. The form section labelled Description is in
charge of selecting the semantic or descriptive field
corresponding to each input and output field of the
training set. The semantic or descriptive field assigns
a meaning to the codes used by the ANN. The final
user will work with these descriptive fields, while
the ANN will work with the corresponding coded
ones. In addition, the queries must include the whole
preprocessing needed to carry out the conversion
between information types, normally from qualitative
to quantitative information. In this respect, a good
design of the application domain’s DBs will greatly
facilitate this task, particularly taking into account
beforehand all those tables which may be involved,
totally or partially, in the solution of any subproblem
which requires a connectionist approach [27,28].

Another possibility of the AMS manages the reuse

of the different trained ANNs in any already existing
or future client-application. To achieve this, the
AMS relates the various client-applications forms to
its ANNs by means of its own DB. The Links
section in Fig. 8 manages the assignment of ANNs
to the forms of client-applications. For this purpose,
the active ANN is related to one or more forms
belonging to the possible client-applications, which
will have to be identified in the AMS’s DB.

In this example, the ANN which identifies impact
indicators is assigned as relevant to the form of the
EIA application whose indicator bears the descrip-
tion Environmental Impact Assessment (Action X
Factor). Thus, if the EIA client-application called
the AMS within this form, this ANN would be
assigned as relevant to its application among other
possible ones. Another possible situation is that
which assigns one ANN to several forms. For
instance, the second impact crossover identification
ANN is the one out of the three developed in the
EIA domain which has been assigned three different
forms from those of the client-application. Thus, a
call to the AMS made by the application from any
of these forms will identify that ANN as relevant.
On the other hand, the assignment of an ANN to
several forms, which could belong to different client-
applications, is also contemplated. This is the case,
for instance, of the AMS reusing those ANNs
trained for image or signal processing.

Once the ANN’s features, those of its learning
process and those of the training set have been
defined, learning is the next stage. The AMS visual-
ises the procedural error using both a graphic and
a text-based representation. Usually, the learning
architecture handles great quantities of ANNs, carry-

Fig. 8. System of ANN assignment to client-applications forms.
Assignment to EIA application.
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ing out, among other tasks, the ANN parameter
adjustment and their relearning, considering the new
registers which may have become part of the tables
involved in that process, and above all, the conver-
gence criteria desired for each case.

Once the learning stage is over, according to the
convergence criterion required, the AMS tests the
ANN. The test procedure requires a working pattern
similar to that used at the learning stage. The AMS
defines a new query which generates the test set
and which, in particular, allows us to determine the
generalisation capacity. A simple error rate, such as
the number of errors per number of cases examined,
or a sample confusion array (including sensitivity,
specificity, predictive value and accuracy
measurements), are obtained as outputs, depending
on the case [27].

With regard to the third stage of the ANN lifecy-
cle, the running stage, the AMS must implement a
pattern which allows client-applications, and parti-
cularly its various forms, to reach those ANNs
which are relevant in each case. In this respect,
buttons or function keys which call the AMS in
order to select those ANNs relevant to the form
which has generated the call may be included into
client-applications, separating the connectionist mod-
ule and its resulting ANNs from potential client-
applications.

For instance, if, during an EIA process, we
include among one of its various impact crossovers
or cause–effect links that formed by the action
Pruning and clearance and the affected EF Natural
Vegetation of conservation value environment,
characterised by a harmful sign, high intensity,
medium spread, above 3 years momentum, tempor-
ary duration, impossible reversibility, and finally,
the possibility of corrective actions during the build-
ing stage, then the ANN which has already been
trained for identifying possible indicators will con-
clude an impact indicator, assuming as input pattern
the previously identified crossover. In this sense, the
system becomes a perfect EIA advisor. Figure 9

Fig. 9. Partial characterisation of an environmental impact cross-
over.

shows the final unevaluated result of the previously
seen crossover.

As may be seen, the form in Fig. 9, belonging to
the EIA client-application, includes a Suggest ANN
button for calling the AMS. The AMS consideration
of that crossover, after running the corresponding
ANN of the example, concludes (as shown in
Fig. 10) that the system must take into account the
possibility of using the indicator Surface equivalent
to vegetation of conservation value environment.
This indicator is defined as ‘surface of vegetation
units weighed up as their conservation value
environment in relative magnitudes’. In this case,
the ANN has selected what seems to be the most
adequate indicator for the impact crossover studied.

Although in this case the ANN only identifies
possible indicators, other developments, such as the
second ANN of the three available in this domain,
may get to identify whole new impact crossovers,
characterising each and every one of the parameters
involved. Usually, the access to the AMS running
module from any form of a client-application brings
about execution of a whole set of possible ANNs.

7. Conclusions

This research explains the foundations of how to
model and implement the integration between Arti-
ficial Neural Networks (ANNs) and Databases (DBs)
from a computer science approach.

The studies carried out on a set of tools for the
design and development of commercial and freely
distributed ANNs have exposed certain flaws with
regard to their integration with DBs. None of them
has rendered a complete integration with all of the
ANN lifecycle levels. Therefore, this paper presents
an analysis of the possibilities and advantages of
the integration between ANNs and DBs, in connec-
tionist, training, test and running architectures.

Fig. 10. AMS handling during the ANN running stage.
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As a result of the research done, an AMS (ANNs
Manipulation Server) which improves the handling
and manipulation of multiple ANNs and their corre-
sponding training and test sets is proposed and
developed, thus facilitating its application on
extended domains which may require great quantities
of data and knowledge.

In addition, the AMS is constituted as an infor-
mation system or core for future work on the study
of the connectionist domain as application domain.
In this case, both the connectionist DB of the AMS
itself and the application domain DB would become
a single DB, therefore the AMS would be suitable
for being used for the study of different domains,
such as that of the EIA (Environmental Impact
Assessments) or the connectionist domain itself.

The advantages of the proposed approach are
the following: improvement of the ANN’s design,
integration and experimentation possibilities; incor-
poration of integrity, consistency and security at the
connectionist level; possibility of sharing the sys-
tem’s ANNs as reusable modules in client-server
environments on data networks; support to their
integration with heterogeneous systems; automation
of the generation process of training and test sets,
and improvement of the pattern-preprocessing tasks.

To check the AMS features and efficiency, its
application with real cases of the EIA domain has
been analysed. The integration architecture
developed helps to solve some of the main problems
posed by traditional EIA methods, such as the lack
of robustness, depth and thoroughness in analyses.
Thus, experts have an advanced tool which may
help them when making decisions about different
aspects, such as the optimal location of entrepreneur-
ial projects, the study of alternatives for building
infrastructures, the need to adopt corrective actions
which decrease the impacts of any entrepreneurial
activity, etc.
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