
Self-Tuning of Disk Input-Output in Operating Systems

A. Santosa, J.J. Romeroa, J. Taibob, C. Rodriguezc

University of A Coruña, A Coruña. SPAIN

aArtificial Neural Networks and Adaptive Systems LAB
bVideaLAB

cComputing and Communications Service

Abstract

One of the most difficult and hard to learn tasks in computer system man-
agement is tuning the kernel parameters in order to get the maximum perfor-
mance. Traditionally, this tuning has been set using either fixed configura-
tions or the subjective administrator’s criteria. The main bottleneck among
the subsystems managed by the operating systems is disk Input/Output
(I/O). An evolutionary module has been developed to perform the tuning
of this subsystem automatically, using an adaptive and dynamic approach.
Any computer change, both at the hardware level, and due to the nature
of the workload itself, will make our module adapt automatically and in a
transparent way. Thus, system administrators are released from this kind of
task and able to achieve some optimal performances adapted to the frame-
work of each of their systems. The experiment made shows a productivity
increase in 88.2% of cases and an average improvement of 29.63% with regard
to the default configuration of the Linux operating system. A decrease of the
average latency was achieved in 77.5% of cases and the mean decrease in the
request processing time of I/O was 12.79%.

Keywords: operating system, genetic algorithms, evolutionary
computation, IO optimization, kernel optimization

1. Introduction

Computer system performance depends on three main factors: hardware,
operating system and applications. The system administrator cannot usually
modify applications, so if he needs to increase the global system performance
he will have to improve some of the other two factors. Purchasing new

Preprint submitted to Journal of Systems and Software September 16, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/61917423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

hardware is generally expensive and sometimes unnecessary, because a smart
operating system tuning may often achieve a satisfactory increase in the
system performance. Therefore, this option should be the first one to be
considered by a responsible administrator, since it is feasible and does not
require any additional investment.

Tuning a system means making the most efficient use of the available
resources according to the workload supported. On the one hand, unneces-
sary tasks must be avoided and on the other hand, all the available options
must be set for an optimal performance [16]. The general way in which an
operating system configuration is tuned consists of making a performance
measurement in the different system modules in order to spot the system’s
bottleneck, that is, the point in which performance is limited. This limi-
tation is usually caused by a resource demand greater than its availability.
Once the bottleneck is located, it must be eliminated, either by increasing
the availability of that resource or by reducing the demand. This process
continues until it reaches a satisfactory performance or else, a deadlock.

There are several subsystems that can be tuned within an operating sys-
tem: process management and Central Processing Unit (CPU) scheduling,
system caches and memory, buses and Input/Output (I/O) devices, file sys-
tem and network. There are specific performance measurement tools for
every subsystem (i.e. vmstat for virtual memory statistics), in addition to
some of general use, such as the SAR utility (System Activity Reporter)
from UNIX systems. Besides, most operating system manufacturers pro-
vide software packages to ease the collection and analysis of performance
data, showing them in graphical format and including Graphical User In-
terfaces (GUIs); for example SE Toolkit, by Solaris, that has been released
under General Public License (GPL), or Windows Performance Analyzer by
Microsoft [15]. Solaris has also developed a language named SymbEL [24]
devised to simplify the access to the data Kernel, both performance statistics
and configuration parameters.

Although all these tools make tuning easier, success in this task still de-
pends on the personal administrator’s skills. There are several studies about
automatic methods for specific parameter tuning, such as the Transmission
Control Protocol (TCP) buffer size [23, 3, 20], or Data Base Management
System (DBMS) optimization [21]. The development of new tools that auto-
mate the whole tuning process in a dynamic and adaptive way that depends
on time and architecture will provide our operating systems with a certain
degree of intelligence.

2

Standard tuning techniques are not able to obtain the maximum per-
formance from the system, since they are based almost exclusively on the
administrator’s experience and they are hard to adapt to the different soft-
ware and hardware configurations of each system. They do not take into
account that there are some factors that vary through time, such as the
workload.

We propose an automatic intelligent tuning module for system optimiza-
tion. Due to the great amount of subsystems involved in tuning, it would
be desirable to initially treat them separately. We have chosen the disk I/O
subsystem because it is usually the main bottleneck in our systems.

The paper has been structured as follows: section 2 describes the disk I/O
subsystem; section 3 includes a sensibility study of the Linux I/O disk man-
agement subsystem. The parameters which can be modified together with
their impact on the system performance are analyzed. The Linux mecha-
nisms for subsystem monitoring are included, as well as some of the tools
available. Section 4 introduces the approach put forward for subsystem opti-
mization, while section 5 tackles the implementation of our IOPerf self-tuning
module for the disk I/O subsystem and analyzes the elements managing the
functioning of the Genetic Algorithm (GA). Finally, sections 6 and 7 present
those aspects related to the experiment and the results achieved, as well as
the work conclusions.

2. Disk I/O System Description

The hard disk is the main non-volatile information storage element in an
information system. It plays a key role in our computer architectures [7] and
this may directly impact the system’s global performance. The development
of storage devices has constantly aimed at improving performance. One of
the latest innovations enhancing accountability and performance in recent
years were the disk arrays.

The relevance of the performance of the disk I/O subsystem is determined
to a great extent by the way in which the system is used, the applications
running, as well as their hard-disk usage. Hard disks and their controllers
can be compared by checking the numerous technical specifications provided
by their manufacturers. Knowing and analyzing hard-disk specifications is
vital in order to understand its performance and to be able to evaluate and
optimize it. Among them, we should highlight those related to positioning
and transfer, as well as factors depending on memory management, the file

3

systems or the disk interface [27]. Therefore, the performance of the disk I/O
subsystem is ruled by a variety of factors. Some of them are technological;
others depend on the operating system and its management strategies.

Quantifying the performance of the disk I/O subsystem is a complex task.
There are several parameters in order to evaluate whether the storage system
function at the level required by the remaining system. One of our goals could
be the optimization of the whole set of parameters, bearing in mind the
I/O subsystem specifications (positioning, transfer, memory management,
files system, disk interface, etc.). Nevertheless, some of these attributes are
contradictory depending on the requirement type of the applications running
in the system. Determining and focusing on those attributes which make a
greater impact on performance is of essence. The following parameters must
be highlighted among those allowing the measurement of the disk I/O:

• Throughput: the amount of work completed within a period of time. It
can be measured according to the number of data which can be moved
through the system in a given time, or according to the I/O operations
completed per time unit. The context will determine which one is
the fittest. For instance, in a system oriented towards the transfer of
big files, the most appropriate thing will be measuring the number of
transferred bytes. In case the system performs a great number of small
independent access operations, then the number of operations per time
unit will be more relevant.

• Response or latency time: total amount of time needed in order to
complete a particular task. In the I/O subsystem, it reflects the time
of a specific request. In environments with extremely big I/O requests,
the response time will basically depend on the transfer speeds. In other
contexts, with many small access operations, it will be marked by the
requests management and their access times.

• Fairness: ability to process the tasks-requests uniformly.

The throughput and the response time are two hugely important metrics
in a disk I/O system. Usually, some compromises are reached between them.
For instance, the response time is minimized, processing the request as soon
as possible, while productivity may be increased if those requests accessing
near positions are grouped together. In the latter case, the response time
would increase, since they must wait for a longer time.

4

I/O schedulers will usually try to maximize productivity. With that goal,
they will re-organize requests by keeping in wait those which have not been
served for the longest time, and they process new requests soliciting disk
blocks that minimize the access time. This system enhances the system
performance by sacrificing the fairness of the disk requests set. Current I/O
schedulers do take this circumstance into account and they usually assign life
times to requests so as to avoid their eventual inanition. In order to maintain
a good system performance, it is basic to keep a certain fairness.

The huge variety of existing hardware components has helped operating
systems to evolve from monolithic environments to module-based models.
The purpose is to obtain a kernel that is as light as possible. New functions
can be added thanks to the loading of new modules. Linux operating systems
are a clear example of that evolution.

The Asynchronous I/O (AIO) request support is one of the most inter-
esting aspects integrated in the 2.6 kernel. Thus, the issuing of multiple I/O
requests is enabled with a single system call, as well as the ability to issue
one request by a given process without waiting for its completion. As a re-
sult, the I/O operations of the application’s main loop become independent,
which optimizes CPU time and increases productivity, since extra processes
are eliminated and the number of context switches is reduced [1].

The Linux operating system facilitates information export from the kernel
space to the user one, as well as the other way round. The file system
/proc (ProcFS) constitutes a system information point for the user’s space.
It makes it possible to modify dynamically the determining parameters in
the management of the various modules in the operating system, simply by
the administrator’s writing in the files [1]. Thus, the disk I/O system can
be tuned by a set of parameters, which can be modified by the system’s
administrator or by a dynamic and adaptive automatic tuning module.

3. Linux I/O Disk Management Subsystem

Before developing the automatic tuning system, we performed a sensibil-
ity study of the Linux I/O disk management subsystem and the parameters
that can be modified. The study was divided into three of its elements: the
disk I/O schedulers, the virtual memory management and the file systems.
The study of the adjustable parameters, as well as the associated configura-
tion files, will provide other researchers with the basic technical information

5

in order to develop new works in the field. This section is completed with a
description of some of the subsystem monitoring tools.

The first element analyzed is the disk I/O scheduler. In Linux, the I/O
scheduler generates the interface between the generic block layer (BIO layer)
and the device driver [12, 11]. The BIO layer integrates a series of functions
used by the file system and the virtual memory manager in order to issue
the I/O requests of the block devices. The I/O scheduler transforms these
requests so that they can be processed by the driver. It collects the requests
and sends them to the device hardware controller for their processing.

Several lacks were detected in the single disk scheduler of the 2.5 kernels
(Elevator or SCAN [26]). This algorithm could sometimes cause the inanition
of disk requests for a long period of time. The 2.6 kernels integrate some
new I/O schedulers so as to avoid that problem. Users have the chance
to select among a variety of them: Anticipatory (AS), Deadline, Noop and
Completely Fair Queuing (CFQ) [11]. Choosing the ideal one will depend on
each system’s scenario.

The Deadline scheduler operates with 5 I/O queues and it links a maxi-
mum life time to each request. It re-organizes requests with the goal of im-
proving the I/O performance, always making sure that none of the requests
undergoes inanition. The nature of the Deadline [12, 11] queue and request
management focuses on minimizing the average response time of reading op-
erations, thus damaging disk productivity and mean response time to the
total number of requests. Its goal is the attention of reading requests within
a given time, while writing requests have no associated life time. This sched-
uler is oriented to servers trying to minimize the waiting time of a request.

The AS scheduler aims at decreasing the reading response time for each
thread. A controlled delay is included in the equation determining the next
I/O request to be assisted [9, 17]. Once each I/O reading request is com-
pleted, the scheduler starts a short waiting time allowing the thread which
made the last access to the disk to issue a new reading request that can be
immediately assisted. Thus, positioning times between requests are short-
ened, while the spatial location between disk access operations is the aim.
This scheduler is oriented to applications that quickly generate another I/O
request which could be served before the scheduler selects another task, thus
avoiding the deceptive idleness [9]. The fact that the disk wastes that pe-
riod of time does not necessarily entail a decrease in I/O performance. The
balance between the decrease in positioning time and disk productivity is
managed according to a cost-benefit analysis. The heuristics used in this

6

analysis uses mainly estimates of the positioning and access times.
The CFQ scheduler may be considered as an improved extension of Stochas-

tic Fair Queuing (SFQ) [14, 25]. Both schedulers are based on the concept of
a fair distribution of the I/O bandwidth for every process making access to
the disk. While the SFQ uses a fixed number of queues for the I/O requests,
normally 64, the CFQ uses as many queues as existing I/O processes. The
current CFQ Linux implementations use a fixed number of queues, similarly
to the SFQ, though modifying the queue hashing function in order to avoid
the serious issue of SFQ collisions. This scheduler focuses on maintaining
the process fairness and it provides a good performance in those systems
requiring a low latency and demanding a high productivity.

The Noop scheduler, integrated in Linux 2.6, uses a very simple algorithm.
It serves the next request without ordering the requests at all. Its main
application field is found in those devices not based on blocks, as well as the
specialized software-hardware integrating its own I/O policy, and it requires
minimum kernel participation [25]. This scheduler may yield good results in
big I/O subsystems with RAID controllers.

One of the parameters to be highlighted among those related to I/O re-
quests processing is the one regarding the selection of the scheduler. The file
/sys/block/<device>/queue/scheduler provides information about the sched-
uler used in a given device. One scheduler may be selected for each disk from
kernel 2.6.10 on, and it can be replaced at any time. One of the key tasks
consists of choosing the fittest scheduler for each work environment. Linux
allows tuning the functioning of its schedulers by adjusting some of the pa-
rameters involved. This is a practical function in those environments where
the disk access profile does not vary greatly through time. Tuning some of the
parameters involved may enhance performance without requiring a scheduler
replacement, with the associated costs.

The configuration files including the parameters analyzed are grouped in
the /sys/block/<device>/queue directory. Here are the modifiable param-
eters involved in the schedulers:

• Inside the deadline scheduler:

– read expire: maximum life time of every reading request. The
lower its value, the sooner the requests will be assisted, at the
expense of decreasing productivity, given that the trend towards
processing ”consecutive” reading requests diminishes. When its

7

value increases, then the scheduler may organize reading requests
better.

– write expire: maximum life time of every writing request.

– fifo batch: the number of requests in each batch sent for imme-
diate servicing once they have expired. Increasing their value en-
hances productivity, at the expense of decreasing the response
time of other requests.

– front merges: requests next to the existing request in the scheduler
are merged to the front of the queue, instead of the back. This is
an interesting option in case of sequential access.

• Inside the AS scheduler:

– read expire: same as in deadline.

– write expire: same as in deadline.

– read batch expire: the time spent servicing reading requests be-
fore servicing pending writing requests. If its value increases (the
default value being 500 msg), then the priority assigned to reading
requests will increase.

– write batch expire: it is equivalent to read batch expire but with
regard to writing requests.

– antic expire: the time in milliseconds that the scheduler pauses
while waiting for a follow-on request from an application before
servicing the next request in the queue. If 0 value is assigned
to it, then the anticipation mechanism will remain off and the
functioning of the AS scheduler will be equivalent to the deadline.

• Inside the CFQ scheduler:

– fifo batch expire, fifo batch async, fifo batch sync: set of param-
eters defining the treatment of the FIFO queue. fifo batch expire
specifies the time elapsed until request selection is allowed to be
processed from a request queue. fifo batch async is the life time
of asynchronous requests. fifo batch sync determines the life time
of synchronous requests.

8

– key type: the key to be used in order to link the inputs of hash
tables. There are 4 possibilities (pgid, process group identifier;
tgid, thread group identifier; uid, user identifier; gid, group iden-
tifier). Selecting the key type will impact the number of inputs in
the hash table used by the scheduler.

– quantum: the number of internal queues from which the requests
are taken in one cycle and moved to the dispatch queue for pro-
cessing.

– queued: the maximum number of requests allowed in a given
queue.

• no parameters can be tuned inside the noop scheduler due to its sim-
pleness.

• nr request: size of each disk requests queue.

• read ahead kb: amount of data requested to the driver for each block
required in a reading request. The data found in the disk are loaded in
the memory subsequently to those actually requested. The performance
of sequential reading of big files is enhanced. In those systems with a
majority of random access, a small read ahead kb value will usually
yield better results.

• max sectors kb: maximum size of every I/O request. An increase in
this parameter entails an improvement in disk productivity, at the ex-
pense of an increase in average latency, particularly in environments
with a majority of sequential access.

Another relevant issue which is directly linked to our system’s perfor-
mance is the virtual memory management. Linux uses the demand paging
technique which only loads the pages needed for processes in the system’s
physical memory. In order to replace pages, Linux uses a LRU algorithm
(Least Recently Used). For performance reasons, the kernel memory cannot
be paged. Given that the kernel may use a variable amount of memory, it
will be necessary to balance the memory in order to determine the amount
to be used by the kernel as well as the amount reserved for the remaining
processes. For that purpose, Linux incorporates a set of heuristics in the
memory balancing process. The kswapd daemon is in charge of this task [6].

9

The directory /proc/sys/vm holds the files storing the values of the
adjustable parameters regarding the management of the virtual memory.
The following ones can be highlighted among them: dirty background ratio,
dirty ratio, dirty writeback centisecs, dirty expire centisecs, min free kbytes,
nr hugepages, overcommit memory, overcommit ratio, page cluster, swap-
pines and vfs cache pressure.

The swappines parameter controls the system’s trend towards using the
swap memory. Its value may range between 0 (no swap is used) and 100
(swapping whenever possible). In case of intermediate values, the option
executed will depend on certain factors, such as the memory occupied at
each time. Athorough review of each of these parameters can be found in
the Linux kernel version 2.6.29 documentation [22].

The third element, the file systems, defines the structures used at top
level in order to organize data in disks. Their selection may cause a tangible
impact on performance. Linux supports a great amount of file systems. In
order to guarantee the system modularity, it implements an upper abstraction
layer called Virtual File System (VFS). This layer defines a general file model
capable of representing every file system supported.

The directory /proc/sys/fs contains all sort of information regarding
the file systems mounted in the system. The following parameters may be
highlighted among all of them:

• aio max nr: maximum number of asynchronous I/O requests that can
be supported by the kernel at any given time. The current number of
asynchronous requests issued and pending execution is updated in the
file /proc/sys/fs/aio-nr.

• file max: maximum number of file handles that the linux kernel will
allocate. It specifies an upper limit for the number of files open at
the same time. Its parameter file is /proc/sys/fs/file max. The
three values in /proc/sys/fs/file-nr denotes the number of allocated
file handles, the number of allocated but unused file handles, and the
maximun number of file handles at any given time.

Operating systems usually perform an acceptable resource management,
though it is advisable to provide them with adaptation facilities. Tuning
tools are needed because of the lack of information about the disk traffic
required in the future or the performance expected by users. The Linux

10

kernel 2.6 allows the tuning of a great amount of parameters related to its
various modules, including hard disks management. The fact of being able to
make changes in the operating system status clearly favors computer tuning.

Modifying any of the subsystem parameters will cause a certain varia-
tion in the I/O performance. Evaluating performance requires a monitoring
process. As of kernel version 2.4.20, Linux has introduced a disk statistics
system in order to help measure its activity. Tools such as iostat or sar in-
terpret that information which is also directly accessible by means of any
proprietary development. In kernel 2.6, that information is located in the file
/proc/diskstats and in the sysfs file system which is generally mounted in
the /sys. These files include one input per each file system with 11 values,
some of which are the number of reading and writing requests completed,
the amount of data read and written in the disk, the latencies of each access
type, as well as the number of requests currently in progress. All these fields
are cumulative from the machine init, except for the last one [10].

The kernel stores the statistics related to memory management and its
pages in the file /proc/meminfo, as well as the swap space management.
This information allows the determination of the RAM and swap memory
in use, the amount of dirty memory and the data related to the overcommit
strategy. The information available in the /proc/meminfo [18] is detailed in
the kernel documentation.

There are various freeware tools in order to measure the I/O disk per-
formance. These benchmarks are based on the creation of files in the hard
disks and the subsequent generation of requests to them, trying to overload
disk access. They will later analyze the performance achieved and they will
yield results such as the productivity or mean latency. Tools such as Iozone
[19] allow different measurements, such as productivity or latency, of disk
I/O workloads. The benchmark generates and measures a variety of file op-
erations. Tiobench is another available benchmark measuring productivity
(reading and writing) and mean latency (reading and writing) of a set of
sequential reading/writing operations, random reading/writing and re-read
[13]. We should also highlight other benchmarks such as postmark, lmbench
or bonnie++.

4. Approach to the performance tuning of the disk I/O system

The performance tuning of the disk I/O system must be tackled from the
point of view of the resources control. Using a proactive method through

11

a control module carrying out preventive actions will avoid eventual nega-
tive states in disk I/O. Identifying some significant and sufficient indicators
leading to believe that those states will arise makes our solution execute a
series of actions producing a more positive state. The goal is minimizing the
chance of a non-desirable situation in the I/O subsystem, instead of waiting
for the worst-case scenario in order to act up.

In the face of such an issue, we should be able to predict from time to
time the approximate workload of our disks in the near future. Thus, we may
determine the conditions under which the I/O system will operate. Tuning
the I/O system working conditions entails a clear optimization problem.

Heuristic techniques are capable of finding solutions closet to the optimal
one. They also provide an appropriate performance and reduce the high
costs associated to finding the best solution. Optimization techniques cannot
simply be evaluated by their capacity to locate the optimal solution, but also
according to their cost. GAs are a very competitive alternative in terms of
solution quality compared to cost. We used GAs due to their adequacy for
solving the problem to tackle [2, 5, 8].

The approach that we have developed obtains a population of individuals
(chromosomes) characterized by the parameters defining the various patterns
of the disk I/O subsystem. The initial population is integrated by a set of
randomly generated disk access prototypes. Benchmarking the individuals in
the population will yield a whole set that is characteristic of the performance
results of the I/O subsystem. Evaluating the results achieved and applying
the crossover and mutation operators will generate new chromosomes for the
population that will be treated in the search for new solutions.

One of the most important decisions is the chromosome coding criterion.
Building chromosomes is made by uniting the genes representing the char-
acteristic parameters of disk I/O access, both those of the scheduler and
those of the virtual memory management and file systems. The algorithm’s
optimization capabilities are closely linked to data representation. Besides,
convergence time is strongly influenced by the representation.

Based on these reflections, two types of parameters are chosen to be
integrated in the chromosomes: those characterizing the nature and status
of disk access, together with those integrating the solution itself. The first
type of parameters can be deemed as key in order to determine the nature of
disk access. Assigning clearance factors to these parameters will determine
whether a new disk access pattern is significantly similar to that solution.
The second group of parameters will determine the new solution values-in

12

case the solution is applicable which will define the behavior-tuning of the
disk I/O subsystem.

Determining the number of parameters of the disk I/O pattern raises
several questions. Considering a great number of parameters may seem at-
tractive, since one can control all of the I/O system variations. This scenario
would create greater population variability and an increase in convergence
times. Moreover, it would force one to increase the sampling frequency in or-
der to achieve a bigger chromosomes population that would guarantee reach-
ing some valid solutions. Characterizing disk access by a huge set of parame-
ters generates a very wide space of solutions, which in turn renders finding a
solution more complex. We have decided to select a smaller set of significant
parameters, although we have risked not capturing all the dynamism and
complexity of disk I/O system.

The parameters characterizing the disk access patterns must reflect the
nature of the existing requests. Among all the possible parameters, we have
chosen the ones that represent those elements which may generate a greater
variation in disk access performance:

• Process number: number of processes that issue requests simultane-
ously to the disk being monitored. The clearance factor for a huge
number of processes should not be small, given that the workload varies
less according to the increase or decrease in the number of processes.
As the number of processes decreases, the influence will be greater in
case the amount changes in one of them.

• Percentage of reading vs. writing access operations: it regards the
chance for a reading request issued by a process. As readings are pro-
cessed faster, the clearance factor of this parameter must be small.

• Percentage of random vs. sequential access operations: it regards the
chance for the occurrence of a disk request of a process not being sub-
sequent to the last one issued by it. Its clearance factor must be small,
given that a minimum change in this parameter will entail a significant
change in the number of movements of the disk reading and writing
heads.

• Size of the disk requests: amount of data requested by each reading
and writing request. In the case of big requests, access times increase
and productivity is enhanced, given that the data requested is located

13

in adjacent positions. Wide clearance factors should be allowed, given
that similar sized requests will not entail major variations in disk per-
formance.

As regards clearance factors, small values will be assigned to those pa-
rameters in which a smaller variation entails a significant change in disk
performance. Thus, their values should bear a closer resemblance to the
solution.

The second group of parameters determines the new solution values that
will define the tuning of the disk I/O subsystem.

One chromosome in our population is integrated by the four disk access
parameters already selected, together with a set of parameters characterizing
the management-behavior of the disk I/O subsystem. This second group of
parameters must have a determining impact on performance, as well as a
certain relation to the already selected parameters characterizing disk access.
These parameters will determine the solution space and, as a consequence,
the parameter selection or tuning of the disk I/O system allowing a certain
enhancement of performance. We have chosen the following ones:

• Scheduler: the scheduler is in charge of managing every I/O disk re-
quest. Choosing the scheduler among the possible ones will be deter-
mined by the system’s needs. A dynamic and correct scheduler selection
will provide a considerable increase in performance.

• Read ahead kb: amount of spare data brought to memory at each read-
ing request made to the disk. Those sectors which are consecutive to
the requested ones are loaded. It establishes the assurance level that
subsequent accesses will refer to neighboring disk positions. In those
cases, information would be readily available in memory.

• Swappiness: it controls the tendency of the kernel to move processes out
of physical memory onto the swap disk. Setting the right swappines
value may avoid a high and unnecessary exchange of pages between
memory and disk. It was decided that this parameter should be added
due to the strong impact of virtual memory management in hard disk
use, as well as its significant impact on the performance expected by
our systems applications.

Another relevant point when selecting the parameter set is the way in
which the performance achieved by each of our population’s individuals is

14

evaluated. The tools Iozone [19] and tiobench [13] are used in order to
generate an on-going disk workload and in order to analyze the performance
achieved.

The process is as follows: for each of the chromosomes in an initial pop-
ulation, a workload is generated which is determined by those parameters
characteristic of disk I/O requests (number of processes, percentage of read-
ing vs. writing access operations, percentage of sequential vs. random access
operations and disk request sizes). Previously, the kernel will have been
modified with those parameters characterizing I/O disk management (sched-
uler, read ahead kb and swappiness). The performance achieved sets the
evaluation function of each of the chromosomes in the population.

A performance measurement method is used oriented towards determin-
ing the amount of information transmitted per time unit, also with the pur-
pose of minimizing the average access time of requests. For that purpose,
the indicators used are provided by the benchmarks (Iozone and tiobench)
selected for workload generation. These tools may determine the produc-
tivity obtained and the mean latency of the simulation, knowing first-hand
the size of the data dealt with and the number of requests. An increase in
the transfer rate associated to a reduction of the average access time clearly
indicates an enhanced performance.

5. IOPerf.: Self-Tuning Module of Disk I/O

IOPerf is a module for tuning automatically and dynamically the pa-
rameters characterizing disk access and its requests. It aims at improving
significantly the global performance of the disk I/O system. Its modular
design facilitates extending its functions to later uses and enhancements. It
was developed on a software architecture based on the following elements:

• A converter (EntityAccess) defining the codification of the chromosome
structure into the integrating parameters and vice versa. It also allows
the modification of kernel parameters. It will constitute the interface
between the IOPerf and the kernel. If our module was integrated in
another operating system, then the only change to be made would be
related to these functions.

• A simulator (Simulator) that translates the chromosomes in a state-
ment for the execution of selected benchmark. It is the only interface
with the benchmarking tool used. It is also in charge of hiding to the

15

remaining application the mechanism for generating the disk workload.
Its main goal is getting to know the information related to the bench-
marks used and generating the appropriate statements from the key
disk access parameters.

• A disk I/O workload generator (Monitor) which generates random I/O
workloads in order to evaluate the chromosome populations. It gener-
ates random I/O workloads, it selects the solution chromosome and it
evaluates the results.

• A disk I/O optimizer (Optimizer) using the GAUL library (Genetic Al-
gorithm Utility Library) [4] in order to manage the chromosome pop-
ulations and to obtain new generations. It also collects the simulation
data in the disk access, using them as source for the GA, and thus
obtaining some new solutions that can be applied to future disk access
operations.

• A library (Tools) with implementation of several methods which are
common to several application modules. It has access to a log file
storing the sequence of all the events generated.

• IOPerf defines the algorithm flow indicating, among other things, the
number of tests to be carried out for each generation or the time at
which a new generation must be obtained. This module allows con-
figuring and tuning several elements that have an impact on the GA’s
evolutionary mechanism.

Table 1: Chromosome coding.
Parameter no of bits Minimum Maximum Clearance factor
no of processes 3 1 8 0.8
%reading acess 7 0 100 1.0
%random access 7 0 100 1.0
Request size 11 0 2047 0.7
Scheduler 2 noop, AD, deadline, CFQ -
read ahead kb 10 4 1023 -
swappiness 7 0 100 -

A binary coding has been used for the chromosomes in the population.
Table 1 shows the number of bits assigned, the range of values they may take
on and the clearance factor of the characteristic parameters.

16

The population size determines the maximum number of chromosomes
that may integrate a stable population ready to be used as a basis for so-
lutions. It must be big enough to allow a wide variety of solutions. Never-
theless, the greater the number of chromosomes is, the longer the computing
time, which may render the technique inefficient.

5 ranges were defined for each of the following parameters: percentage of
reading access and percentage of random access. We worked with 25 possible
ranges and tried to maintain a minimum number of 2 individuals per range,
therefore there will be a minimum of 50 chromosomes in the population.
Every range is assigned a fixed length, except for the margins which have
been reduced, given that a small variation in the parameter value will have
a greater impact on disk I/O performance. The ranges selected for both
parameters were: [0,4], [5,34], [35,64], [65,94], [95, 100].

The initial population is generated randomly, bearing in mind the speci-
fications already mentioned in the previous paragraph. The evaluation func-
tion is applied to every chromosome from this population. This function
determines the performance linked to each chromosome by means of the fol-
lowing equation:

fitness = (total bytes transferred/mean latency) ∗ factor (1)

where the factor is ruled by the following equation:

factor = (((%readings + 1)/100)2) ∗ (((100−%random + 1)/100)2) (2)

Thus, within a small range of variations in the percentages of reading and
random access operations, the influence of the adjustable parameters of the
kernel will decide which is the solution providing the best performance.

Using ranges in the characteristic parameters and integrating the factor in
the evaluation function will guarantee a certain diversity in the population.
The performance obtained by each chromosome as the productivity achieved
between the average access latency was initially used as evaluation function.
Nevertheless, if we only consider both variables, this will lead us to one of the
usual problems with GAs. For instance, an access pattern with 100% readings
compared to one where writings are predominant shows a clear example
of enhanced productivity and decrease of access time. In both scenarios,
regardless of the disk access parameters, the evaluation function will always
obtain the best results when readings are predominant. The same scenario
is true with regard to the remaining characteristic parameters, such as the

17

percentage of random access operations and the number of processes. Thus,
as new generations arise, the population will become more homogeneous
regarding these parameters. As a result, the predominant chromosomes will
have high percentages of reading and sequential access operations and a high
number of processes. This scenario would not allow the population to cover
the different possibilities for accessing the disk, and those patterns which
are not represented approximately in the population would not achieve a
good performance. This problem is solved by keeping a minimum number of
individuals within the ranges that are characteristically defined as fostering
diversity. Moreover, each chromosome’s fitness is penalized according to a
factor depending on the value of the characteristic parameters. As regards
the number of processes, it has been considered that productivity should not
be evaluated globally, but based on the average number of bytes transferred
per process. Therefore, the fitness will be multiplied for the 1/no factor
of processes. Selecting those chromosomes with the highest fitness while
keeping a minimum for each of the existing ranges will guarantee population
diversity.

A new population is generated from the initial one using crossover, muta-
tion and selection operators. Crossover is made using the best chromosomes
at a random point, while gene mutations occur to a small proportion of them.
A random selection function was used for choosing those chromosomes to be
reproduced. This pattern aims at increasing the chance for crossover between
chromosomes that are as different as possible. A selection function foster-
ing crossover between those chromosomes with highest fitness will probably
make them similar between them and their offspring. The selection between
chromosomes with the purpose of mutation is also made at random.

Another important factor consists of choosing the crossover and mutation
ratios. The former specifies the percentage of chromosomes in the total pop-
ulation that will constitute the set of parents of the next generation, while
the latter indicates the chance for a mutation taking place in a given chro-
mosome. Generally speaking, mutation causes diversity in the population;
therefore it is applied less frequently, while crossover is applied more often
in order to foster the exchange of genetic material between chromosomes.
Initially, a crossover ratio of 0.9 is used and a 0.1 ratio is applied to mu-
tation. Since the population tends to converge generation after generation,
the mutation factor has been gradually increased until reaching the value of
0.25, while the crossover ratio has been decreased until 0.7. As the popula-
tion becomes homogeneous, a crossover between two chromosomes which are

18

genetically similar does not bring anything new. That is why mutation aims
at exploring new solutions.

The best chromosomes resulting from the application of the evaluation
function, which contemplates the criteria of ranges of characteristic param-
eters, will give rise to a new population. This new set of solutions will
determine the possible tuning of the disk I/O system from then on. Compil-
ing data on the disk access of the production computer goes on indefinitely.
A new population is periodically created by uniting the chromosomes aris-
ing from the new piece of information with the already existing solutions.
There are some solutions that will survive generation after generation, while
others will die in order to open the path to new solutions adapting to the
eventual changes in the system. Once a new population has been obtained, a
benchmark checking its success or failure with different workloads randomly
generated is used.

Our servers evolve quickly, both as regards workload and its nature. We
could pinpoint some critical scenarios, such as the change of task in a system
which moves on from acting as an e-mail server to providing web services,
or as a database. There are several populations that will support our sys-
tems, evolving and adapting to them and to the disk I/O needs at any time.
The IOPerf module has been designed in order to allow being used in any
operating system. The only requirement is changing the means to access the
operating system parameters in order to obtain or to modify their values.

6. Experimentation and results

The work environment in the experimentation phase is integrated by an
Athlon XP2800 PC with 1 GB of RAM and an ST340014A hard disk of 40GB,
7200 rpm, 2MB of buffer-cache, internal transfer speed of 683 Mbps, external
transfer speed of 100 MBps and a positioning time of 8.5 ms. The operating
system used is a debian with a 2.6.29 kernel. The file system mounted is an
ext3 and the swap space assigned in the disk is 1 GB. Tiobench-0.3.3 [13]
and iozone3 [19] have been used in order to measure disk I/O performance.

There are two different stages in the experiment: optimization and mon-
itoring. The crossover, mutation and evaluation operators are used during
the optimization stage in the search for a new population. The simulation
time for each chromosome’s evaluation is 30 seconds. During that time, it is
possible to carry out a sufficient number of disk requests in order to evalu-
ate the corresponding pattern without generating a high computational cost.

19

During the monitoring stage, a simulation of randomly generated workloads
is performed. Workloads are simulated and monitored continuously for 300
seconds until a decision is made to obtain a new population of solutions.
This phase generates a new set of chromosomes which can be reproduced in
the next optimization stage in the search for a new population. The IOPerf
module analyzed in section 5 is responsible for alternating both phases.

Figure 1: Mean productivity per process.

Each new population is tested with 1000 workloads of disk access in order
to analyze the results. Each of them runs for 300 seconds and it is defined
by the characteristic parameters (number of processes, percentage of reading
access, percentage of random access and request sizes). Workloads are ran-
domly generated. The same simulations are also made, although using the
default values of the kernel parameters, as they are executed in most real
work environments. An IOBad module was developed in order to read the

20

benchmark sentences executed at this stage which have been stored in a log
file. This application issues the corresponding sentences without modifying
the kernel parameters. Taking into account these test conditions, various
analysis are made about our module’s behavior. The graphs used only show
the first 160 tests out of the 1000 that were made, with the purpose of en-
hancing comprehension and visual analysis.

The first result obtained is average performance for the 1000 cases, mea-
suring the mean productivity per process and the mean access latency. The
results achieved by the IOPerf module with an adaptive tuning in kernel are
compared with IOBad module, without kernel tuning.

Figure 1 shows the productivity in MBps of the initial 160 cases. The
IOperf graph represents productivity under the adjustments made by our
module to the kernel. The IObad graph shows the results with the default
kernel, without parameter tuning.

The other goal of our work consists of decreasing the response time of
the I/O requests. Therefore, the purpose in this case is decreasing the mean
latency. Figure 2 shows the average access time of the first 160 cases. Both
the IOperf and the IObad graphs can be observed.

A significant performance difference is obtained in favor of the IOPerf
module. Productivity increases at 88.2% of cases, with an average improve-
ment of 29.63%. The goal of decreasing the mean latency was also achieved
in 77.5% of the cases, with an average reduction in the I/O request processing
time of 12.79%.

The goal of trying to jointly increase productivity per process and de-
creasing the request response time was achieved at 77.5%, with an average
improvement of 26.1% in productivity and 12.79% in latency.

There are a minority of situations which do not yield the expected result.
Productivity decreases while latency increases in 11.8% of the cases, which
is exactly the opposite of the desired effect and entails an obvious loss of
performance. In most cases, the assigned scheduler was not AS, the kernel’s
default one, and there is considerable variation among the various patterns.
We should bear in mind that each scheduler’s specific parameters are not
being adjusted.

An intermediate situation is one in which productivity per process is
enhanced at the expense of increasing the mean latency. This happens in
10.7% of cases and, although it is not the ideal scenario, it is possible that in
those work environments where maximizing productivity is the main goal, it
could be considered as a good solution. There is a common pattern regarding

21

Figure 2: Mean latency per request.

these access operations, with a high number of processes linked to a higher
chance for random access requests which causes a higher movement in the disk
reading and writing head, thus increasing latency. Nevertheless, productivity
may be enhanced, given that a greater number of processes will stop the disk
from idling.

Another factor which has been analyzed is GA convergence towards op-
timizing disk access. Figure 3 shows the percentage of variation in average
productivity per process achieved by the IOPerf module vs. IOBad. Figure
4 shows the percentage of variation in average response time per request. In
both cases, a new generation is used each 20 workloads. Let us note that
each randomly generated workload runs for 300 second. Thus, the evolution
of the algorithm in searching for better solutions is checked. In the case of
the average productivity, the goal is increasing it and it appears above 0% in
the graph. In the case of the average latency, the goal is to decrease it, with

22

Figure 3: GA Evolution. Percentage of improvement of the mean productivity per process.

a percentage below 0%.
Regarding the results of the different disk access types, sequential read-

ings, random readings, sequential writings and random writings, we should
note that IOPerf generally manages to reduce the latency of writing op-
erations, while the opposite is true as regards reading operations. This
result should not be striking, given that the default value of the Linux
read ahead kb parameter is relatively low, compared to the possibilities al-
lowed by our module IOPerf. In order to foster an increase in productivity,
IOPerf tends to assign a value to read ahead kb which is superior to the de-
fault one. Therefore, an increased latency is normal, given that the amount
of information read by each reading request is higher.

23

Figure 4: GA Evolution. Percentage of improvement of the mean latency per request.

7. Conclusions

One of the most complex tasks in the context of operating systems is
getting an optimal performance of the kernel parameter tuning, because tra-
ditional techniques depend on the administrator’s experience and skills. Our
IOPerf module performs the automatic and dynamic tuning of these param-
eters, focusing on the disk I/O management subsystem. Adaptive system
techniques have been applied to the development of the module, in particu-
lar GA.

The parameter sensibility study has contributed to determine which pa-
rameters are the most relevant in the global system performance, so that the
most important ones are prioritized.

The final module (IOPerf) automates the tuning process, eliminating the
subjectivity introduced by manual configurations. The experiments carried
out show a considerable increase in the productivity of the disk I/O subsys-

24

tem. In 88.2% of cases, productivity increases, with an average enhancement
of 29.63%. The average decrease in response time is 12.79% in 77.5% of cases.
A prolongued runtime of the module could improve these results, obtaining
some new generations.

In the final system there will be two working modes: a normal mode,
which will use the machine as usual; and a learning mode, in which all work-
load is eliminated from the system and it is used just for the tuning process.
In the normal mode, first of all, the workload is periodically evaluated, then
the most similar chromosome in the optimal solution population is located
and, finally, the kernel parameters are tuned according to the values of this
chromosome. Besides, the system performance is evaluated from time to
time, and so new chromosomes are generated (inerts) which will be added to
the population when the working mode changes.

When the system is not being used (nights, weekends), it will change to
learning mode, which consists of creating new generations and evaluating
each new chromosome by simulating its workload. Thus, when the system
changes back to normal mode, it will have not only a new and improved
solution set, but also a set dinamically adapted to the eventual changes of
the environment.

The final model will be able to perform an automatic, dynamic and real-
time tuning of the I/O management subsystem in order to get the maximum
system performance. The use of adaptive systems provides a dynamism that
is not possible to achieve with other techniques.Thus, the model is capable
of adapting dynamically and in real-time to the different configurations and
workloads that could appear.

Tuning many of the kernel parameters of the operating systems requires
a certain degree of experience. Integrating automatic tuning modules in
operating systems will allow a substantial improvement in the performance of
the various subsystems. Moreover, the adaptive nature of these modules will
provide good solutions, regardless of the working environment architecture
and its evolution, both at hardware and software levels.

References

[1] Bovet, D., Cesati, M., 2005. Understanding The Linux Kernel. O’reilly
& Associates Inc.

[2] Davis, L.D., Mitchell, M., 1991. Handbook of Genetic Algorithms. Van
Nostrand Reinhold .

25

[3] Fisk, M., chun Feng, W., 2000. Dynamic Adjustment of TCP Window
Sizes. Technical Report. Los Alamos Unclassified Report (LAUR) 00-
3221, Los Alamos National Laboratory.

[4] Gaul, 2009. Personal Home Page. http://gaul.sourceforge.net.

[5] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[6] Hagen, W.V., 2002. Linux Filesystems. Sams, Indianapolis, IN, USA.

[7] Hennessy, J.L., Patterson, D.A., 2007. Computer Architecture, A Quan-
titative Approach. Elsevier.

[8] Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA, USA.

[9] Iyer, S., Druschel, P., 2001. Anticipatory Scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous i/o, in: SOSP
’01: Proceedings of the eighteenth ACM symposium on Operating sys-
tems principles, ACM, New York, NY, USA. pp. 117–130.

[10] Lind, R., 2003. Linux Kernel Documentation/iostats.txt. Accessible via
http://www.mjmwired.net/kernel/Documentation/iostats.txt.

[11] Love, R., 2004. Kernel Korner: I/O Schedulers. Linux J. 2004, 10.
Accessible via http://www.linuxjournal.com/article/6931.

[12] Love, R., 2005. Linux Kernel Development (2nd Edition) (Novell Press).
Novell Press.

[13] Manning, Kuoppala, 2003. Tiobench Benchmark. Accessible via http:

//sourceforge.net/projects/tiobench/.

[14] McKenney, P., 1990. Stochastic Fairness Queueing.

[15] Microsoft, 2009. Windows Performance Analyzer. Accessible via http:

//msdn.microsoft.com/en-us/performance/cc825801.aspx.

[16] Musumeci, G.P.D., Loukides, M., 2002. System Performance Tuning,
2nd Edition (O’Reilly System Administration). O’Reilly Media, Inc.

26

[17] Nagar, S., Franke, H., Choi, J., Seetharaman, R., Kaplan, S., Singhvi,
N., Kashyap, V., Kravetz, M., 2003. Class-Based Prioritized Resource
Control in Linux, in: In Proc. 2003 Ottawa Linux Symposium, p. 03.

[18] Nerin, Feng, 2009. Linux Kernel Documentation/filesystems/meminfo.
Accessible via http://www.mjmwired.net/kernel/Documentation/

filesystems/proc.txt.

[19] Norcott, W.D., 2006. IOzone Filesystem Benchmark. Accessible via
http://www.iozone.org.

[20] Oak, T.D., Dunigan, T., Mathis, M., Tierney, B., 2002. A TCP Tun-
ing Daemon, in: in Proceedings of SuperComputing: High-Performance
Networking and Computing.

[21] Oracle, 2008. Using Automatic Memory Management, Oracle Database
Administrator’s Guide. Accessible via http://download.oracle.com/

docs/cd/B28359_01/server.111/b28310/memory003.htm.

[22] Riel, R., Morreale, P., 2008. Virtual Memory, Linux kernel version 2.6.29
documentation. Accessible via http://www.mjmwired.net/kernel/

Documentation/sysctl/vm.txt.

[23] Semke, J., Mahdavi, J., Mathis, M., 1998. Automatic TCP Buffer Tun-
ing, in: SIGCOMM, pp. 315–323.

[24] Setoolkit, 2009. The SymbEL Language Reference Manual. Accessible
via http://www.setoolkit.org/cms/node/3.

[25] Shakshober, D., 2005. Choosing an I/O Scheduler for Red Hat Enter-
prise Linux 4 and the 2.6 Kernel.

[26] Silberschatz, A., Galvin, P.B., Gagne, G., 2004. Operating System Con-
cepts. John Wiley & Sons.

[27] Tanenbaum, A.S., 2007. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA.

27

Antonino Santos del Riego received the B.S. degree in Computer
Science from A Coruña University (Spain) in 1992 and the Ph.D. degree
in Computer Science from A Coruña University in 1998. At present I am
professor at University of A Coruña (Spain). Since 1991 I have worked with
several research groups in Artificial Neural Networks, Genetic Algorithms
and Internet servers and services. Dr. Santos has authored and edited more
than 25 articles, 7 books, and participated as researcher in 12 funded research
proposals concerning to Artificial Intelligence, Adaptive Systems and Internet
Security.

Juan Romero received the B.S. degree in Computer Science from A
Coruña University (Spain) in 1996 and the Ph.D. degree in Computer Science
from A Coruña University in 2002. He is associate professor at University
of A Coruña. He edited a ”Natural Computing” Springer book, published 6
papers in international ISI journals and chaired 5 events published as Springer
LNCS. He directed and participated in 10 European and Spanish research
projects and research contracts with firms such Microsoft Spain.

Francisco Javier Taibo Pena received the B.S. degree in Computer
Science from University of A Coruña (Spain) in 1998, and the Ph.D. degree
in Computer Science in 2010. He is currently an assistant professor in this
University. He has collaborated in several courses about Computer Science,
System Administration, Multimedia, Computer Generated Imagery and In-
teraction. Since 1995 he has collaborated in several research projects. His
research interests are oriented towards Computer Graphics, working in the
Architecture, Engineering and Urbanism Visualization Group (VideaLAB)
since 1998.

Carlos Rodŕıguez Dı́az received the B.S. Degree in Computer Science
from A Coruña University (Spain) in 2005. I am currently a software devel-
oper at Information Systems at University of A Coruña. I’ve been develop-
ing several applications using the lastest .NET technologies for 5 years and
building a Java-based Content Management System for a significant printed
Spanish media.

28

