
 1

Framework of Fully Integrated Hybrid Systems

A. Santos, J.J. Romero and A. Pazos

Department of Communications and Information Technologies, School of Computer

Science, A Coruña University, 15071 A Coruña, Spain

A framework of fully integrated Hybrid Systems (HS) is proposed for the

development and management of HS which involve Databases (DB),

Advanced User Interfaces (AUI), Symbolic Systems (SS) and Artificial

Neural Networks (ANN). This framework provides a common input-output

interface among those HS modules developed on the framework, with a

completely two-directional flow control and a highly parallel processing.

This integration framework facilitates the incorporation of heterogeneous

modules, together with their subsequent management and updating.

Keywords. Advanced user interfaces; Artificial neural networks;

Databases; Data mapping; Symbolic systems

Correspondence to: A. Santos, Department of Communications and Information

Technologies, School of Computer Science, A Coruña University, 15071 A Coruña,

Spain. E-mail: nino@udc.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/61917418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1 Introduction

HSs can be divided into three categories [1-4]: loosely coupled, tightly

coupled, and fully integrated.

Loosely coupled Hybrid Systems (HSs) include Artificial Neural

Networks (ANNs) and Symbolic Systems (SSs) separated and interlinked

by means of an one-directional information flow and serial processing.

Usually, the relation between both approaches is limited to the fact that one

of them carries out the other’s pre or post information processing, or to a

master slave relation. This kind of systems does not allow a parallel

processing of the different types of modules involved, either symbolic or

connectionist ones, it only provides a sequential type of processing. In

addition, the one-directional communication flow among the modules does

not allow a high degree of cooperation or integration, which would be

desirable to improve the potential of the developed systems. On the other

hand, a master-slave kind of configuration between the connectionist and

the symbolic modules does not facilitate a thorough integration.

Tightly coupled systems include common representation structures

which allow two-directional information exchanges between connectionist

and symbolic modules enabling parallel processing. This level of

integration does allow a parallel processing of the modules and a two-

directional flow. Both loosely and tightly coupled systems usually include

 3

a control system or module which rules the system’s global functioning,

and to a certain extent, its sequentialisation. Tightly coupled systems allow

a certain parallelisation of the modules. One of their disadvantages is that

these systems’ functioning scheme is very difficult to control, which makes

their development and maintenance terribly complicated. In addition, these

control structures and modules are usually specific to each system and non-

reusable.

Fully integrated systems incorporate both modules in the same

system, which usually includes a common input-output interface. These

systems’ flow control is two-directional and it allows a highly parallel

processing among the modules involved. This kind of system comprises the

possibilities of loosely and tightly coupled ones. Therefore, it provides

more advantages towards a general application of HSs. A greater effort

must be made at this integration level to carry out a thorough integration

which facilitates the development of HSs [5, 6].

One of the researched possibilities has been the use of a

homogeneous interface for the various modules based on a set of function

calls. Although this approach allows the development of fully integrated

systems, it poses great difficulties for the subsequent maintenance. In

addition, we should not only think about a symbolic-connectionist

approach, other modules must also be taken into account, since they are

 4

absolutely necessary for a correct software and knowledge engineering. In

this regard, Databases (DBs) and Advanced User Interfaces (AUIs) are also

included as modules of the integration framework.

In the field of HSs-DBs integration, we can generalize the Al-

Zobaidie and Grimson classification according to their degrees of coupling

and the control allocation [7]:

 Enhanced HSs. Extended data management facilities are incorporated

into the HSs.

 Intelligent/deductive DBs. In this type of systems, deductive and

connectionist components are embedded into DB management.

 HSs-DBs with communication. DBs management and HSs are

independent with some form of communication between them. Also, the

communication can be classified into three classes: data definition, DB

maintenance and administration, and data manipulation.

According to the definition, only the third kind of approach will allow the

development of fully integrated HSs. Its main advantage is that an existing

DB can be used. The DB management system is an independent one, so it

can also operate as a totally independent system.

For developing the framework a series of integration levels has been

proposed, ranging from the most simple and easy to formalize ones to the

most complex and subjective. Our framework constitutes the last

 5

integration level. The specific characteristics of the different integration

levels and the functioning pattern of the framework are reviewed next.

2 Level I: Information Systems. DBs-AUIs integration

This level refers to the integration of DBs with AUIs, providing the most

adequate interface in each case. The following requisites constitute the

basis for the development of this first integration level:

 Reusable interfaces

 Adaptable interfaces

 Development facilities

 Optimizing the development times

 Decrease of rejection possibilities

 Access control and security possibilities

 Possibility of integration at other levels

The interface modules must be reusable and adaptable to each user’s

specific characteristics reducing the interfaces’ development costs and

times. The framework’s first level must facilitate the manipulation of the

user’s interfaces, improving considerably the design and AUIs integration

possibilities. The proposed scheme must incorporate the DBs advantages

(integrity, consistency, security and the possibility of query) to the user’s

interfaces [8, 9]. Figure 1 shows the elements of the first level.

 6

Three elements are differentiated in this first level’s framework:

 An AUI Management Server (AUIMS) in charge of managing the user’s

interfaces indexed in a Forms DB (FDB).

 The second element is constituted by the set of servers of those

application domain DBs which are part of the client forms in the FDB.

 The third element is integrated by all those client applications which

may apply interface services to the AUIMS.

The AUIMS is an independent system which stores the client applications

interfaces in the FDB. The AUIMS is structured into two modules (Fig.1):

 The Forms Management Module (FMM)

 The Forms Runtime Module (FRM)

The FMM has been structured into three submodules:

 Development environment

 Lexicographic analyser

 FDB manager

The development environment allows the creation of data input and output

forms, linked or not to one or more DBs. This module provides a graphic

environment which allows the creation of new forms, the selection of the

already existing ones, the runtime and deletion of forms, the selection of

the different controls, the definition of the controls’ properties and features

and those of the associated code.

 7

FORMS RUNTIME
MODULE (FRM)

AUIMS DB SERVER
APPLICATION
DOMAIN

DBMS

CLIENT
APPLICATION

APP DOMAIN

DB

DATA NETWORK

FORMS MANAGEMENT
MODULE (FMM)

FDB

FRM CLIENT

Fig.1 Integration level I

The lexicographic analyser allows the addition of code to the forms

controls events. A language associated to the various control events has

been designed. This module analyses and translates those expressions

linked to the forms controls events. These expressions are translated into a

format which can be interpreted by the runtime system. The compiled

expressions are translated into a format which can be understood by the

user. This module’s analyser is a recursive descendant, carrying out a

syntactic check by means of a downwards construction of the syntactic

tree. A thorough description of the FDB model and of the syntax of the

various sentences of the form definition language can be found in [10].

The FDB manager translates and interprets the forms’ definition.

This module translates the objects, properties, and relations of the

developed forms into the FDB table registers. The FDB models all the

information of the forms generated from the development environment;

their properties, controls, restrictions, and relations. Therefore, the FDB

 8

will have all the different forms generated by the AUIMS administrator, by

the various client applications programmers or by the final users.

The FRM, the second AUIMS module, is in charge of the screens

runtime, composing the different forms dynamically from their FDB

definition. The client application programmes are structured as a series of

calls to the FRM executed by the corresponding forms. This functioning

pattern is oriented towards the events of the running forms. The FRM is

composed of three submodules:

 The generator

 The runtime

 The DB access

The generator module interprets the definition of the FDB forms and it

composes the screen in a dynamic way.

The runtime module runs the code linked to the forms definition.

This module has the same lexicographic analyser as the FMM to do that.

This module keeps a table of crossed references among the possible control

events and the code which must be executed in each case.

The DB access module queries the data when the forms fields are

linked to a DB. Most of the form elements in the FDB refer to the DBs,

tables and fields involved in the client applications. This module

 9

guarantees the access to the various DB servers which provide inputs and

outputs to the system’s forms.

The AUIMS integrates the corresponding forms into any final

application. To achieve that, the FDB includes a relation to the entity which

models the client applications and the one which models the forms. Thus,

the AUIMS allows local and remote applications to use the generated

forms on a client-server architecture. In case of remote client applications,

the FRM must be included in the client hosts and then load and run the

forms requested by the final applications. It makes this level independent

from the client applications, facilitating the integration into fully integrated

HSs, incorporating a high degree of parallelism and co-operation among

heterogeneous systems by means of two-directional information flows.

3 Level II: Integration of SSs into Level I

Level II defines the integration of SSs into the Level I. The following

requirements are contemplated for this second level:

 Facilities for developing and maintaining SSs, decreasing costs and

development times.

 Capacities of integration into the Level I.

 Capacities of integration with other developments based on specific SSs

or on knowledge engineering tools.

 10

The aim must be the integration of both programmed SSs and those

developed on knowledge engineering tools. Two different and non-

exclusive functioning approaches can be defined, the first directed by the

client application and the second directed by the AUIMS. The goal is to

find a scheme which provides a two-directional flow between DBs and

SSs, a single homogeneous interface and a high degree of parallel

processing on a fully integrated HSs.

The approach directed by the client application comprises both

programmed SSs and those developed on knowledge engineering tools.

The SSs do not make use of the development and maintenance facilities of

symbolic modules provided by the AUIMS. They only make use of the I

Level by means of calls to the FRM for the execution of data input and

output forms. The integration of I Level forms provides an information

flow between SSs and DBs. The addition of calls to the AUIMS into this

kind of system will allow the execution of forms as input source order of

the knowledge bases during inference processes. This approach facilitates a

quick integration of already existing SSs not developed on the AUIMS

facilities. These developments cannot be considered to be fully integrated

HSs with totally two-directional information flows and a totally parallel

processing. This integration pattern can be considered loosely or tightly

coupled nature.

 11

The approach directed by the AUIMS is a clear extension of the

previous one, incorporating a whole set of SSs management and

maintenance tools which provide the HSs with the capacities of fully

integrated ones. The AUIMS is in charge of suggesting to the client

applications a set of possible symbolic modules which are relevant to the

corresponding interfaces or call parameters. As support to the AUIMS

decisions, the I Level FDB incorporates a whole set of entities which allow

the modelling of those structures and relations involved in the SSs

(knowledge bases, classes, objects, properties, slots, hypotheses, and rules).

This second approach allows a high degree of parallel processing on a

completely two-directional flow among the integrations’ modules. Figure 2

shows the elements of the second integration level.

The second level is structured into the following elements:

 The Advanced User Interfaces and Symbolic Management Server (AUI-

S-MS) which substitutes the I Level AUIMS.

 The set of DB servers which are part of the forms and symbolic

modules managed by the AUI-S-MS.

 All those applications or client modules held by the AUI-S-MS, both

conventional and symbolic ones.

The AUI-S-MS stores both the interface structures and those of the

symbolic modules into the Forms and Symbolic Data Base (F-S-DB),

 12

which substitutes the I Level FDB. The AUI-S-MS is structured, as may be

seen in Fig. 2, into three modules:

 The Symbolic Definition Module (SDM), which is incorporated into the

AUI-S-MS at this integration level.

 The Forms and Symbolic Management Module (F-S-MM), which

substitutes the FMM in I Level.

 The Forms and Symbolic Runtime Module (F-S-RM), which substitutes

the FRM, both in its server and client versions.

The SDM module is in charge of the whole management (additions,

deletions, modifications and queries) of the F-S-DB tables which model the

different entities of the SSs domain (knowledge bases, classes, objects,

proprieties, slots, hypotheses, and rules).

The second level’s F-S-MM incorporates the three submodules of the

previous level’s FMM (development environment, lexicographic analyser,

and F-S-DB manager). Each and every one of the submodules is adjusted

to serve the integration needs of the SSs [10].

The development environment includes the possibility of defining a new

set of proprieties linked to the forms elements, considering the knowledge

engineers as the system’s users at this level. These proprieties are aimed at

relating forms elements or fields with the properties or slots held by the F-

S-DB after being defined by the SDM. It allows the establishment of

 13

relationships among the forms objects and those elements which

characterise symbolic modules. In this regard, the relations between forms

and knowledge bases can be defined, forms and hypotheses, controls and

knowledge bases, controls and hypotheses, fields and proprieties, etc [10].

The F-S-MM lexicographic analyzer incorporates new sentences with

respect to that of the I Level. These sentences allow the definition of

triggers on the relations defined among the specific elements of the forms

and those which characterise symbolic modules. The expressions linked to

the relations among the forms elements and those of the symbolic modules

are analysed and translated in this module into a format which can be

interpreted and executed by the F-S-RM.

The F-S-DB manager, apart from the tasks carried out in the level I, also

have to translate each of the relations at a symbolic level, together with

their proprieties, restrictions and triggers into new registers. It allows a

total integration of the symbolic level with the level I.

The F-S-RM serves the interface service requirements generated by the

client modules for their runtime, whether of a symbolic nature or based on

classical approaches. The F-S-RM uses the defined relations available in

the F-S-DB to determine the communication interface among those

modules involved. The information flow among all the modules is two-

directional and with parallel processing.

 14

FORMS AND SYMBOLIC
RUNTIME MODULE
(F-S-RM SERVER)

AUI-S-MS DB SERVER
APPLICATION
DOMAIN

DBMS

CLIENT
APPLICATION

APP DOMAIN

DB

DATA NETWORK

FORMS AND SYMBOLIC
MANAGEMENT MODULE
(F-S-MM)

F-S-DB

F-S-RM CLIENT

SYMBOLIC DEFINITION
MODULE (SDM) CLIENT

APPLICATION
(SYMBOLIC SYSTEM)

F-S-RM CLIENT

Fig.2 Integration level II

The F-S-RM incorporates the three modules from the previous level

(generator, runtime and DB access) to support this new level. The runtime

module integrates the new F-S-MM lexicographic analyser, including in

the table of cross-references the list of calls among applications with their

respective interface parameters. This module is in charge of running the

corresponding calls with the right parameters among the modules or client

applications, and of redirecting the various resulting information channels.

When the client applications, both of a symbolic nature and based on

classic approaches, are remote from the AUI-S-MS, the F-S-RM client

module must be included in the remote host to access the services provided

by the F-S-RM server.

As a result of this second integration level, the AUI-S-M incorporates

into the framework a set of tools and languages which allow the definition

 15

of the SSs structural and organic characteristics, facilitating their

development and a complete integration with DBs and AUIs.

4 Level III: Integration of ANNs into Level II

Level III includes the advantages of integrating all the stages of the ANNs

life cycle (design, training, test, and runtime) into I and II levels. It will

have to support all those problems which require learning capabilities,

fault-tolerant processing, and a certain generalizing capacity. These third

level requirements can be summarized as folllows:

 Development facilities of all the ANNs life cycle stages.

 Integration facilities of ANNs into I and II levels.

 Management facilities of main ANNs architectures and models, both in

local and remote environments.

 Reusable ANNs modules.

 Access control, integrity and security levels.

The possibilities of integrating the different stages of the ANNs life cycle

with DBs, which represent the Level I, are apparent. DBs offer a great

potential for supporting the structures of ANNs (weights, thresholds,

outputs, error and learning rates, activation functions, learning rules,

training, and test sets) [11]. The storing structures shall refer to the DBs of

the work domains of each supported ANN, given that those structures

 16

support the training and test stages. The framework must facilitate the

management of great quantities of ANNs with many different models and

architectures, generalizing their integration with every type of development

to use in runtime. Level III provides access to the applications of the I and

II levels to the framework connectionist modules, and vice versa. The

integration framework ensures the information exchange among

heterogeneous systems throughout a data network, homogenizing their

interfaces, DB accesses, and information and co-operation exchanges.

Figure 3 shows the elements of the III integration level.

FORMS, SYMBOLIC AND
CONNECTIONIST
RUNTIME MODULE
(F-S-C-RM SERVER)

AUI-S-C-MS DB SERVER
APPLICATION
DOMAIN

DBMS

CLIENT
APPLICATION

APP DOMAIN

DB

DATA NETWORK

FORMS, SYMBOLIC AND
CONNECTIONIST
MANAGEMENT MODULE
(F-S-C-MM)

F-S-C-DB

F-S-C-RM CLIENT

SYMBOLIC DEFINITION
MODULE (SDM)

CLIENT
APPLICATION
(SYMBOLIC SYSTEM)

F-S-C-RM CLIENT

CLIENT APPLICATION
CONNECTIONIST
SYSTEM)

F-S-C-RM CLIENTCONNECTIONIST
MANAGEMENT MODULE
(CMM)

DEFINITION MODULE
(CDEM)

TRAINING MODULE
(CTRM)

TEST MODULE
(CTEM)

Fig.3 Integration level III

 17

At this level the Advanced User Interfaces-Symbolic and Connectionist

Management Server (AUI-S-C-MS) substitutes the AUI-S-MS and the

Forms-Symbolic and Connectionist Database (F-S-C-DB) substitutes the F-

S-DB.

The AUI-S-C-MS has been restructured into the following elements:

 A new module, the Connectionist Management Module (CMM).

 The Forms, Symbolic and Connectionist Management Module (F-S-C-

MM), which substitutes the F-S-MM.

 The Forms, Symbolic and Connectionist Runtime Module (F-S-C-RM),

which substitutes the F-S-RM.

The CMM has been structured into three submodules:

 The Connectionist Definition Module (CDEM).

 The Connectionist Training Module (CTRM).

 The Connectionist Test Module (CTEM).

The CDEM is oriented towards the design of ANN structures. This module

manages the addition, deletion, modification, and query processes of the

ANN structures supported by the new F-S-C-DB tables.

The second module or CTRM is oriented towards ANN training. This

module includes a whole set of calls designed for training the structures

developed by the CDEM. The CTRM manages the queries of the DBs in

 18

the application domains which will integrate the training sets. For example,

in a supervised learning scheme, the query must include all those fields

which constitute both the input patterns and the desired output ones. In the

case of a non-supervised scheme, the second type of patterns disappears.

This query carries out a joint operation among the tables which are

involved in the learning process and a projection on the relevant fields of

the training set. A third type of field is included in the query, which

provides the semantic descriptions of the input and output fields. This third

type of field allows the learning process to use concepts and descriptions

instead of the codes or values used by ANNs. This module has access to

any application DB, both local and remote, which we desire to integrate

into the process. In this sense, the I Level provides us the capacity of DB

management.

The last module or CTEM is in charge of testing the ANNs. This

module includes different forms oriented towards testing the framework’s

own ANNs. The test process requires a functioning scheme which is

similar to the one used in the learning stage, with regard to the elaboration

of the test set. This module determines the generalising capacity of the

ANNs. The CTEM provides as output, depending on the case and after the

test process, from an error rate to a sample confusion matrix [12].

 19

To achieve the integration of this level into the global AUI-S-C-MS, the

F-S-C-MM incorporates, with regard to the previous level, the possibility

of defining a new set of proprieties linked to the forms elements. These

proprieties are oriented towards relating form fields or elements with the

ANN process elements, both input and output ones. All the ANN elements

are defined in the F-S-C-DB. The F-S-C-MM is in charge of keeping all

this information. Thus, various relations may be defined among the

elements of the different forms of the client applications, both based on

classic approaches, and symbolic or connectionist ones. The annex section

of [10] includes a thorough description of the framework’s interfaces,

controls, proprieties and language.

The F-S-C-MM lexicographic analyzer incorporates to the II level’s

language a set of new sentences which allow the definition of triggers on

the II level relations established by the F-S-C-MM. As in previous levels,

the F-S-C-MM is in charge of analysing and translating the expressions

linked to the different relations defined into a format which can be

interpreted by the F-S-C-RM, so that it can be executed. Once again, the

definition of these relations allows information to flow among every kind

of module (based on classic approaches, and symbolic or connectionist

ones), in a completely two-directional and parallel way, defining a whole

set of possible communication channels among the applications.

 20

In turn, the general DB manager of the framework or F-S-C-DB is in

charge of translating each and every one of the ANN relations, their

properties, restrictions, and triggers into the F-S-C-DB.

In runtime, client applications require services from the F-S-C-RM,

either of interfaces and access to I Level DBs or of services to symbolic

modules of the II level or connectionist ones of the III. As a result of the

different forms runtime, the F-S-C-RM suggests the runtime of a whole set

of possible ANN modules, symbolic ones or those based on classic

approaches, according to the relations and triggers defined. The F-S-C-RM

also uses the defined relations to determine the communication interface

among the modules involved. The information flow among all the modules

is two-directional, and with parallel processing, providing simultaneous

support to client applications of diverse nature. The F-S-C-RM

incorporates the F-S-C-MM lexicographic analyser to support the runtime

of this third level including in its crossed reference table the various calls

among applications with their respective interface parameters. The F-S-C-

RM will still be in charge of running the code associated to the forms

definition, and of running the corresponding calls with the right parameters

among the various modules or client applications, and of redirecting the

multiple information channels. When the client applications are remote

 21

from the AUI-S-C-MS, the client F-S-C-RM version must be included into

remote hosts to access the services provided by the F-S-C-RM server.

The main features of our third level framework have been tested in the

environmental impact assesment domain [10, 11, 13]. The subsequent

knowledge extraction of this core, and its generalisation including SSs, has

resulted in our fully integrated framework of HSs.

5 Conclusions and future works

The three levels of our framework provide us the capacity of integrating

different systems (modules based on classic approaches, DBs, AUIs, SSs,

and ANNs). It facilitates the development, adaptability, and management of

a great variety of fully integrated HSs. The use of a complex DB, the F-S-

C-DB, as the framework’s general catalogue, provides integrity,

consistency, possibility of defining restrictions, reuse capacities, and

different security levels for the HSs.

The client-server scheme of the AUI-S-C-MS, supported by the F-S-C-

RM, approaches the integration possibilities to every kind of environment

and user. From the point of view of the integrating nature, a high degree of

co-operation and full integration is provided by means of the management

of multiple two-directional intercommunication channels among the

modules to be integrated. It provides a parallel support to all the integration

 22

levels. The system’s parallel capacities are double, on the multiple channels

of each HS, and on the multiple channels of the various HSs.

The AUI-S-C-MS functioning scheme allows the addition of other

approaches into the integration framework. The future incorporation for the

full integration of genetic algorithms in our framework will incorporate the

solution-search possibilities of these algorithms [14-16] into the developed

HSs. This future incorporation will make a new framework of Advanced

User Interfaces, Symbolic, Connectionist and Genetic Algorithm

Manipulator Server (AUI-S-C-GA-MS) to substitute the present AUI-S-C-

MS. The huge modularity and integrating capacity of our framework will

allow the incorporation of other types of approaches in future versions, for

example evolutionary strategies [17, 18], immune systems [19], etc.

Finally, it must be said that with each new HS, the F-S-C-DB will grow

in very valuable information. For instance, it can be used for the research

of the symbolic-connectionist integration from two different approaches;

that is, the unified neural architectures in symbolic interpretations [20] and

the transformation architectures between both representations [21]. Other

possibilities of research could be oriented to the AUIs field, analysing

aspects such as design and usability [22]. Once again, the available data in

the F-S-C-DB and those to be incorporated with each development will

allow to increase our knowledge in this and other research fields.

 23

References

1. McGarry K, Wermter S, MacIntyre J (1999) Hybrid neural systems: from simple coupling to fully

integrated neural networks. Neural Comput. Surv. 2:62-94

2. Wermter S, Sun R (2000) Hybrid neural systems. Springer, New York

3. Sun R (2002) Hybrid systems and connectionist implementationalism. In: Encyclopedia of Cognitive

Science, Nature Publishing Group (MacMillan), London, pp 697-703

4. Sun R (1994) Integrating rules and connectionism for robust commonsense reasoning. Wiley, New

York

5. Corchado E, Corchado JM, Abraham A (2007) Innovations in hybrid intelligent systems. Springer,

Heidelberg

6. Christos C, Giua A, Seatzu C, Zaytoon J (2006) Analysis and design of hybrid systems. Elsevier,

Alghero

7. Al-Zobaidie A, Grimson JB (1987) Expert systems and database systems: how can they serve each

other?. Expert Syst. 4:30-37

8. Codd EF (1972) Derivability, redundancy and consistency of relations in large data banks. IBM

research report RJ 599

9. Codd EF (1982) Relational database: A practical foundation for productivity. Commun. of ACM

25:109-117

10. Santos A (1998) Methodology for hybrid systems including expert systems, artificial neural networks

and databases. PhD thesis. University of A Coruña, A Coruña

11. Santos A, Arcay B, Dorado J, Pazos A (2002) Artificial neural networks manipulation server.

Research on the integration of data bases and artificial neural networks. Neural Comput & Appl 11:3-16

12. Weiss SM, Kulikowski CA (1991) How to estimate the true performance of a learning system. In:

Weiss SM, Kulikowski CA (eds) Computer systems that learn. Morgan Kaufmann, San Francisco, pp 17-

49

13. Walker LJ, Johnston J (1999) Guidelines for the assessment of indirect and cumulative impacts as

well as impact interactions. Office for official publications of the European Communities, Luxembourg

14. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Wesley,

Massachusets

15. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press,

Michigan

16. Holland JH (1996) Complex Adaptive Systems. In: Pazos A (ed) Artificial neural networks and

adaptive systems. University of A Coruña Press, A Coruña, pp 259-295

17. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley,

New York

18. Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE

Press, New Jersey

19. Dasgupta D (1999) Artificial immune systems and their applications. Springer, Berlin

http://www.sts.rpi.edu/~rsun/sun.mcmillan.pdf

 24

20. Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cogn Sci 6(1):205-254

21. Tickle A, Maire F, Bologna G, Andrews R, Diederich J (2000) Lessons from past, current issues and

future research directions in extracting the knowledge embedded in artificial neural networks. In:

Wermter S, Sun R (eds) Hybrid neural systems. Springer, Heidelberg, pp 230-245

22. Teodorescu H (2000) Intelligent systems and interfaces. Kluwer Academic, Boston

