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Resumo

A aprendizaxe automática é a área da intelixencia artificial e da ciencia da computación que

estuda algoritmos que aprenden a partir de datos, fan prediccións e producen comportamentos

baseados en exemplos. Esta tesis desenvolve novos métodosde aprendizaxe automática basea-

dos en teorı́a da información (TI) e eninformation theoretic learning(ITL): (1) En primeiro

lugar, utiĺızase TI para selección de caracterı́sticas.Especı́ficamente, se desenvolven dous

novos algoritmos. O primeiro ten en conta o coste (computacional, económico, etc.) de cada

caracterı́stica —ademais da relevancia—. O segundo fai usodo concepto deensemble, moi

común en escenarios de clasificación, pero moi pouco explorado na literatura de selección de

caracterı́sticas. (2) En segundo lugar, se poden empregar conceptos de TI e ITL como unha

función de erro alternativa, o cal permite a exploración doutro campo da literatura non moi

estudado: a aproximación de modelado local. Especı́ficamente, desenvólvese un novo algo-

ritmo para clasificación. Este algoritmo está baseado na combinación de redes de neuronas por

medio de modelado local e técnicas baseadas en ITL.
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Resumen

El aprendizaje automático es el área de la inteligencia artificial y la ciencia de la computación

que estudia los algoritmos que aprenden a partir de datos, realizan predicciones y producen

comportamientos basados en ejemplos. Esta tesis desarrolla nuevos métodos de aprendizaje

automático basados en teorı́a de la información (TI) y eninformation theoretic learning(ITL):

(1) En primer lugar, se utiliza TI para selección de caracterı́sticas. Especı́ficamente, se desa-

rrollan dos nuevos algoritmos. El primero tiene en cuenta elcoste (computacional, económico,

etc.) de cada caracterı́stica —además de la relevancia—. El segundo hace uso del concepto de

ensemble, muy común en escenarios de clasificación, pero muy poco explorado en la literatura

de selección de caracterı́sticas. (2) En segundo lugar, sepueden emplear conceptos de TI e

ITL como una función de error alternativa, lo cual permite la exploración de otro campo de la

literatura no muy estudiado: la aproximación de modelado local. Especı́ficamente, se desarrolla

un nuevo algoritmo para clasificación. Este algoritmo est´a basado en la combinación de redes

de neuronas por medio de modelado local y técnicas basadas en ITL.
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Abstract

Machine learning is the area of artificial intelligence and computer science that studies algo-

rithms that can learn from data, make predictions, and produce behaviors based on examples.

This thesis develops new methods of machine learning based on information theory (IT) and

information theoretic learning (ITL): (1) On the one hand, IT is used for feature selection.

Specifically, two new algorithms are developed. The first onetakes into account the cost (com-

putational, economic, etc.) of each feature —besides its relevance—. The second one makes

use of the concept of ensemble, quite common for classification scenarios, but very little ex-

plored in the literature of feature selection. (2) On the other hand, IT and ITL concepts can

be employed as an alternative error function, thus allowingthe exploration of another not very

well studied field in the literature: the local modeling approach. Specifically, a new algorithm

for classification is developed. This algorithm is based on the combination of neural networks

by means of local modeling and techniques based on ITL.
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CHAPTER1
Introduction

Machine learning is the area of artificial intelligence and computer science that studies algo-

rithms that can learn from data, make predictions, and develop behaviors based on examples.

The main types of problems machine learning can solve are [15]: (a) classification, where

the algorithm must assign unseen inputs to a series of classes; (b) regression, where the focus

is predicting a continuous output; (c) clustering, where inputs must be labeled into unknown

groups, unlike classification; (d) density estimation, where the goal is finding the distribution

of a set of inputs; and (e) dimensionality reduction, where inputs are simplified by mapping

them to lower dimensional spaces. These tasks can also be classified, according to the nature

of available learning data, in (a) supervised learning, where a set of known patterns are used for

training; (b) unsupervised learning, where the objective is to unravel the underlying similari-

ties between data; and (c) reinforcement learning, where the environment provides information

about the goodness of the learning.

Supervised classification, the problem in which this thesisis focused, is an area of artificial

intelligence concerned with the classification of observations. The objective is to classify data

based on a priori knowledge. This knowledge is utilized to learn predictive models from a data

set of examples in order to classify unseen instances. Specifically, supervised classification

assumes previous knowledge of the class —the value to be predicted— of the instances of the

data set. One important aspect of supervised classificationis the evaluation of the algorithms by

means of an evaluation function. It usually quantifies the generalization ability of the classifier.

One of the most important evaluation functions is the classification error, which provides the

probability of misclassifying an instance. In real world problems, the true classification error

is unknown, and so is its underlying probability distribution. Therefore, it must be estimated

from data. In particular, he mean squared error (MSE) is the measure that is typically utilized

for evaluating the estimations made by the algorithms. The MSE is the second-order moment

of the error, and therefore, it incorporates both the variance and the bias of the estimator. How-

ever, the use of evaluation functions based on second-ordermoments suffers from the limitation

of the inherent Gaussian hypothesis. In this dissertation,this impediment is avoided by using

a computationally-efficient model, based on information-theoretic descriptors of entropy, di-
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Chapter 1. Introduction

vergence and mutual information, combined with non-parametric PDF estimators. This brings

robustness and generality to the evaluation function. Thismodel is called Information Theo-

retic Learning (ITL) [115]. As entropy is defined as the uncertainty of a random variable, it is

natural to use it as a tool for applications where the data areincomplete or noisy.

A key aspect for a correct model construction is data preprocessing, which aim is to pre-

pare the data properly to serve as input for learning algorithms. Learning algorithms usually

suffer from overfitting (loss of generality) and efficiency problems. Dimensionality reduction

techniques are a family of data preprocessing methods that can be applied to reduce the dimen-

sionality of data and improve the performance of learning algorithms. There are two types of

dimensionality reduction techniques: feature extractionand feature selection [158].

Feature extraction techniques take the set of features of the original learning data set and

build derived features, with the aim of improving the subsequent learning process. In this way,

the generated set of features is usually more compact and hasmore discriminating power. It is

widely used in applications such as image analysis, signal processing, and information retrieval.

As there is a loss of interpretability (because of the derivation of features), it is more interesting

for applications where model accuracy is more important than model understandability.

On the other hand, feature selection removes irrelevant andredundant features, which in-

creases the predictive accuracy of the model learned, reducing the cost of data, improving

learning efficiency by reducing storage requirements and computational costs, reducing the

complexity and improving the understanding of the resulting model. It is widely used in data

mining applications, such as text mining, genetics analysis, and sensor data processing. Un-

alike feature extraction, feature selection maintains theoriginal features. Therefore, it is useful

for applications where the interpretability of the model isimportant, such as in knowledge ex-

traction. There exists a large amount of feature selection algorithms, some of which are based

on information theoretic (IT) principles.

The use of IT and ITL in this thesis is twofold:

• On the one hand, IT is used for the feature selection step. Specifically, two new algo-

rithms are developed. The first one takes into account the cost (computational, economic,

etc.) of each feature —besides its relevance—. This fact is important due to the possibil-

ity of obtaining similar or better performances while reducing the associated cost. The

second algorithm makes use of the concept of ensemble, quitecommon for classification

scenarios, but very little explored in the literature of feature selection. In this case, the

2



1.1 Objectives

aim is obtaining more stable results than using a single feature selection method and also

improving the computational efficiency of the training process by means of distributed

computing.

• On the other hand, IT and ITL concepts can be employed as an alternative error func-

tion, thus allowing the exploration of another not very wellstudied field in the literature:

the local modeling approach. Specifically, a new algorithm for classification is devel-

oped. This algorithm is based on the combination of neural networks by means of local

modeling and techniques based on ITL.

1.1 Objectives

In this doctoral thesis, the learning algorithms used are ofthe supervised type. In this con-

text, selecting an appropriate cost function is a non-trivial problem, where the conflict between

parametric and non-parametric modeling appears. The classic mean squared error (MSE) cap-

tures all the information of the probability density function (PDF) of the error under normality

hypothesis. It provides analytical solutions for lineal model optimization, providing with opti-

mality and ease of implementation.

However, MSE is often utilized in situations where the classifiers are non-linear and the

errors are not normally distributed. With this end, the exploration of several possibilities based

in the scope of information theory and statistics is posed. Combining non-parametric estimators

of PDF with descriptors of information theory’s entropy andmutual information, the goal of

moving away from the traditional approach of using second-order moments of error is achieved.

In this manner, the limitations of the MSE’s inherent normality are avoided. Those estimators

provide with robust and general cost functions which improve the performance in realistic

scenarios. The challenge, therefore, consists on demonstrating that these new learning models

can improve the results obtained by current systems in certain circumstances or scenarios.

The thesis is divided in three main parts. The objectives foreach of the parts are described

as follows:

1. Cost-based feature selection.

• Solve problems where not only it is interesting to minimize the classification error,

but also to reduce costs that may be associated to input features.

3



Chapter 1. Introduction

• Obtain a trade-off between a feature selection metric and the cost associated to

the features, in order to select relevant features with a lowassociated cost, while

keeping the classification accuracy.

2. Ensemble learning for feature selection.

• Combine ordered rankings of features which are obtained from base selectors.

• Achieve an improvement in the overall computational performance of the feature

selection process, while maintaining the classification accuracy.

• Release the user from the task of deciding which feature selection method is the

most appropriate, while maintaining the classification accuracy.

3. Local classification based on ITL.

• Build complex classification models for two-class and multiclass problems. Those

models are composed of several simpler neural network sub-models.

• Achieve an improvement of classification performance on real problems.

The rest of this dissertation is organized as follows. Chapter 2 introduces the domain and

precedents of this research. Chapter 3 describes a new cost-based feature selection method.

Chapter 4 introduces a new ensemble method for feature selection, based in ranking learning.

Chapter 5 presents a new classification method based on the combination of neural networks

by means of Information Theoretic Learning tools. Finally,Chapter 6 summarizes the obtained

contributions and conclusions and the produced publications.

4



CHAPTER2
Machine Learning Methods Based on Information

Theory

This chapter presents the basis of this thesis. It commenceswith a description of the most basic

foundations, which are Information Theory (IT) —Section 2.1— and Information Theoretic

Learning (ITL) —Section 2.2—, and follows with a description of some relevant developments

of these two areas on machine learning, specifically in feature selection and classification —

Section 2.3—.

2.1 Information Theory

Information theory (IT) is an area of computer science and electrical engineering that deals

with quantification of information. It was formulated by Claude E. Shannon in 1948 [129].

Initially, the objectives of this theory were to represent,transmit and store data compactly and

reliably. Since then, applications have been found in otherfields like neurobiology [122], nat-

ural language processing, statistical inference, and machine learning, the latter being the field

of interest for this doctoral thesis. The connection between information theory and machine

learning comes from the fact that representing data in a compact fashion requires assigning

short words to highly usual bit strings, and longer words to less likely bit strings. Moreover,

transmitting information over noisy channels requires a good model for the messages. Ulti-

mately, a model to predict which data are likely and which areunlikely is needed, which is a

central issue in machine learning.

Next, a series of central concepts of IT —which are used in thealgorithms proposed in this

dissertation— are defined.

Entropy An important measure of information is entropy, which is theaverage number of bits

5



Chapter 2. Machine Learning Methods Based on Information Theory

needed to store or communicate one symbol in a message. The entropy of a random

variableX with distribution p, denoted byH(X) or H(p) is a measure of its uncertainty.

For a discrete variable withK possible values, it is defined by:

H(X) =−
K

∑
k=1

p(X = k) log2 p(X = k) (2.1)

log2 is used when using binary digits. An important property of entropy is that it is

maximum when all the messages are equiprobable:p(X = k) = 1/K andH(X)= log2K.

Kullback-Leibler divergence Another important measure of information theory is the Kullback-

Leibler divergence (KL divergence) [81], information gain, or relative entropy. It is used

to measure the dissimilitude between two probability distributions. It is defined by:

KL(p||q) =
K

∑
k=1

pk log
pk

qk
(2.2)

This can be rewritten as:

KL(p||q) =
K

∑
k=1

pk logpk−
K

∑
k=1

pk logqk =−H(p)+H(p,q) (2.3)

whereH(p,q) is called the cross entropy:

H(p,q) =−
K

∑
k=1

pk logqk (2.4)

Cross entropy The cross entropy is the average number of bits needed to identify an event

drawn from an underlying set of events with ”true” distribution p, when using model

q. Moreover, the entropyH(p) is the expected number of bits if the true model is used.

So, as displayed in (2.3), the KL divergence is the difference between these two. Al-

ternatively, the KL divergence is the average number of additional bits needed, due to

using distributionq instead of the true distributionp. This interpretation denotes that

KL(p||q)≥ 0 andKL(p||q) = 0 if q= p.

Mutual information In order to define mutual information, which is the next quantity of in-

formation to be described, let us consider two random discrete variables,X andY. In

order to know how much information can be obtained from one ofthe variables by ob-

serving the other, it can be determined how similar the jointdistribution p(X,Y) is to

the factored distributionp(X)p(Y). This is called the mutual information (MI) and is

defined as follows:

I(X;Y) = KL(p(X,Y) ||p(X) p(Y)) = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
(2.5)
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2.2 Information Theoretic Learning

whereI(X;Y) ≥ 0 and I(X;Y) = 0 if p(X,Y) = p(X)p(Y), that is, the MI is 0 if the

variables are independent.

A basic property of the MI is:

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) (2.6)

whereH(Y|X) is the conditional entropy, defined as:

H(Y|X) = ∑
x

p(x)H(Y|X = x). (2.7)

Therefore, the MI between X and Y can be interpreted as the reduction in uncertainty

about X after observing Y (the opposite is true by symmetry).

2.2 Information Theoretic Learning

How to best extract the information contained in data is a common problem nowadays. We

are surrounded by huge amounts of data, which hide the information needed to answer a myr-

iad of questions that the data processing professionals have. The use of computers and the

World Wide Web has increased dramatically the accessibility and the amount of data gener-

ated. Information Theoretic Learning (ITL) [115] is a framework that utilizes the information

theory descriptors of entropy and divergence as non-parametric cost functions for the design

of adaptive systems in unsupervised or supervised trainingmodels. Data modeling is a process

to extract information from data. A model of the data summarizes the process of its genera-

tion and allows a better design of subsequent data processing systems. Probabilistic reasoning

plays a central role in data modeling. Probability theory isa respected framework to work with

uncertain or noisy data. Discovering the structure of the data, and finding dependencies in the

data are two sides of the same coin.

When the data sample contains all the information in their distribution, directly using the

probability density function (PDF) of the data is a powerfultool. When this is not the case, a

possibility is to construct scalar descriptors of the PDF that, under certain assumptions, briefly

characterize the data structure. This approach is illustrated by statistical moments, which are

the most commonly used descriptors of the PDF. There exist consistent non-parametric esti-

mators for the moments. In particular, if the Gaussian assumption is held, the mean and the

variance completely describe the PDF.

There are differences between the application of entropy tocommunication systems and to

machine learning. First, machine learning systems handle not only discrete-valued data, but
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Chapter 2. Machine Learning Methods Based on Information Theory

may also face continuous processes. Second, machine learning algorithms require smooth cost

functions, in order to apply local search algorithms. Third, and last, the PDFs of modern appli-

cations usually have long tails and real problems usually have many outliers. This makes the

Gaussian assumption a poor descriptor in most situations. Therefore, the information theoretic

descriptors must be estimated with continuous and differentiable non-parametric estimators.

The non-parametric kernel density estimators by Parzen [106] meet these requirements, be-

sides connecting IT with kernel methods. Next, the kernel-based learning theory is introduced

with the definition of Reproducing Kernel Hilbert Spaces.

2.2.1 Reproducing Kernel Hilbert Spaces

A Hilbert space is a generalization of a Euclidean space to any finite or infinite number of

dimensions. It is an abstract linear vector space that has the structure of an inner product,

and it is normed and complete. A Reproducing Kernel Hilbert Space (RKHS) [7] is a Hilbert

space associated with a kernel that reproduces every function in the space. The application

of RKHS in signal processing was proposed by Parzen [105]. Hedeveloped an analysis of

random Gaussian processes. They are approached by geometric methods when studied in terms

of their second-order moments (covariance kernel). Parzendemonstrated that the RKHS offers

an elegant general framework for minimum variance unbiasedestimation. The problems are

solved algebraically in the RKHS associated with the covariance functions, with the geometric

advantages of its inner product.

LetHk be a Hilbert space of real-valued functions defined on a setE, equipped with an inner

product< ., . > and a real-valued bivariate functionK(x,y) on E×E. The functionK(x,y) is

said to be non-negative definite if for any finite point set{x1,x2, . . . ,xn} ⊂ E and for any not all

zero corresponding real numbers{α1,α2, . . . ,αn} ⊂ R,
n

∑
i=1

n

∑
j=1

αiα jK(xi ,x j)≥ 0 (2.8)

Kernel density estimation is central in ITL. There is a largeoverlap between the mathemat-

ical conditions required for a kernel for density estimation and positive definite functions. In

fact, any non-negative definite bivariate functionK(x,y) is a reproducing kernel, as proved by

the theorem of Moore-Aronszajn [7]. Kernel-based learningalgorithms use the following idea

[127]:

Φ :E → Hk

x→ Φ(x)
(2.9)
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2.2 Information Theoretic Learning

Via the non-linear mapping (2.9), the data{x1,x2, . . . ,xn}⊂E are mapped into a potentially

much higher dimensional feature spaceHk with a linear structure. A given learning problem

in E is solved inHk instead, by working with{Φ(x1), . . . ,Φ(xn)} ⊂ H. BecauseHk is high

dimensional, a linear learning algorithm can solve arbitrarily non-linear problems in the input

space (ifHk is rich enough to represent the mapping). The inner product formulation implicitly

executes the linear algorithm in the kernel feature space, while the data and the operations are

all done in the input space. The Mercer theorem [94] guarantees the existence of the non-linear

mappingΦ. This property of the kernels is called the ”kernel trick”. The kernel trick can be

used to develop non-linear generalizations of any algorithm that can be expressed in terms of

inner products. A kernel that satisfies the Mercer theorem isknown as a Mercer kernel. The

most widely used Mercer kernel is the Gaussian function.

2.2.2 RKHS and ITL

From a practical perspective, one must estimate entropy from data. In this subsection, the

interest lies in computationally simple, non-parametric estimators that are continuous and dif-

ferentiable. Alfred Renyi [121] derived a set of estimatorsto apply entropy and divergence as

cost functions in learning. They are described next.

There are many factors that affect the determination of the optimum in the process of learn-

ing: gradient noise, learning rates, misadjustment, etc. The bias and variance of the entropy

estimator are not as critical as in other fields. In consequence, what matters the most in learning

is to develop cost functions that can be derived directly from data without further assumptions,

and they must capture as much structure as possible of the PDF.

Renyi information measure of orderα or Renyiα entropy has the following expression:

Hα(P) =
1

1−α
log

(

N

∑
k=1

pα
k

)

(2.10)

with α 6= 1 andα ≥ 0. It is called entropy because Renyi showed that it is a generalization of

Shannon’s theory, as it is shown next.

Probability mass functions (PMF) can be visualized geometrically as points in a vector

space called the simplex. The simplex∆N consists of all possible probability distributions for

an N-dimensional random variable.

∆N =

{

p= (p1, . . . , pN)
T ∈ RN, pi ≥ 0,∑

i

pi = 1,∀i

}

(2.11)
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Any point in the simplex is a different PMF and has a differentdistance to the origin. Let

us define the PMFα-norm as

||p(x)||α = α

√

N

∑
k=1

pα
k = α

√

Vα(X) (2.12)

whereVα(X) = ∑k pα
k = E

[

pα−1
k

]

is called theα information potential (IPα ), and can be inter-

preted as theα power of the PMFα-norm.

In order to see the relation of Renyi entropy on (2.10) with (2.12), the former can be rewrit-

ten as:

Hα(X) =
1

1−α
log

(

N

∑
k=1

pα
k

)

=− log

(

N

∑
k=1

pα
k

)
1

α−1

=− log

(

N

∑
k=1

pkpα−1
k

)
1

α−1

(2.13)

The argument of the log can be denoted as theα information potentialVα(X) and allows

rewriting (2.13) as:

Hα(X) =
1

1−α
log(Vα(X)) =− log

(

α−1
√

Vα(X)
)

(2.14)

Therefore, Renyiα entropy takes theα − 1 root ofVα(x) and rescales it by the negative

of the logarithm. In the simplex,α specifies the norm to measure the distance ofp(x) to the

origin. The free parameterα changes the importance of small values versus large values in the

set. There are three special cases of interest. Whenα = 0, H0 is the logarithm of the number

of non-zero components of the distribution, and it is known as Hartley entropy.H∞ can be

thought of as limα→∞ Hα and is called the Chebyshev entropy. The most interesting special

case is obtained for limα→1Hα , which is Shannon entropy, which means that Shannon entropy

is the limiting case of the 1-norm of the PMFp(x).

Moreover, it can be generalized that, whenα > 1, Renyi entropyHα are monotonic de-

creasing functions ofIPα . Therefore, entropy maximization is equivalent to IP minimization

and viceversa. Whenα ≤ 1, Renyi entropyHα are monotonic increasing functions ofIPα . In

this case, entropy maximization is equivalent to IP maximization, and viceversa.

Renyi Quadratic EntropyH2 is of particular interest, as it is a monotonic decreasing func-

tion of theα = 2 information potentialV2 of the PMFp(x). H2 implicitly uses a Euclidean
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distance from the pointp(x) in the simplex to the origin of the space.

H2(X) =− log

(

∑
k

p2
k

)

(2.15)

As H2 is a lower bound of Shannon entropy, it may be more efficient than Shannon entropy

for entropy maximization.

As stated, ITL needs to estimate entropy and divergence in a non-parametric way. As these

descriptors are based on the PDF, kernel density estimationmay be a useful technique. Most of

the kernels used in density estimation are non-negative bivariate functions and, therefore, they

define a RKHS. Let us define the continuous cross entropy between two PDFsp(x) andq(x) as

H(p,q) =−
∫

p(x) logq(x)dx=−Ep[logq(x)] (2.16)

which, as explained in Sect. 2.1, measures the average number of bits needed to encode data

coming from a source with densityp, while using modelq to encode data. For Renyi entropy,

the equivalent quadratic cross entropy is defined as

H2(p,q) =− log
∫

p(x)q(x)dx=− logEp[q(x)] (2.17)

The argument of the logarithm, called the cross informationpotential (CIP), is a positive

definite function, so it defines a RKHS that provides a functional analysis view of the infor-

mation theoretic descriptors of entropy and divergence. Inthis thesis, the CIP is utilized as the

basis for similarity in the supervised classification method proposed in Chapter 5.

The Renyi’sα-divergence is an extension to the KL divergence (2.2) and isdefined as:

Dα( f ||g) = 1
α −1

log
∫ ∞

−∞
f (x)

(

f (x)
g(x)

)α−1

dx (2.18)

2.3 Applications in Machine Learning

The concepts of IT and ITL can be applied to machine learning,in particular to two core

areas such as feature selection and classification, which are the main topics of this dissertation.

Feature selection (FS) is the process of detecting relevantfeatures and discarding irrelevant and

redundant ones. Its goal is obtaining a subset of features that describes the problem properly
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and causes a minimum degradation or even an improvement in performance in the learning

algorithms [58]. Classification is another of the classic activities in machine learning, along

with regression, clustering and density estimation. Its main goal is assigning observations to a

set of categories or classes [97].

2.3.1 Feature Selection

From a functional point of view, FS methods can work in two different ways [156]. Some

methods assign weights to each feature, in such a way that theorder corresponding to their

theoretical relevance is preserved. Methods that follow this approach are known as continuous,

individual evaluation or ranking methods. The second set ofmethods are known as binary or

subset evaluation methods. First, they produce candidate feature subsets using search strate-

gies. Then, the subsets are assessed by an evaluation function which determines the final se-

lected subset of features. Moreover, methods can be uni or multivariate, depending on whether

they consider each feature independently of the rest or not.

From a structural point of view, FS methods can be classified in three major groups [58].

Filter methods perform the feature selection step as pre-processing, before the learning step.

The filter is independent of the learning algorithm and relies on underlying attributes of data.

Wrapper methods use the learning algorithm as a subroutine,measuring the usefulness of the

features with the prediction performance of the learning algorithm over a validation set. In

embedded methods, the FS process is specifically built into the machine learning method, in

such a way that the search is guided by the learning process itself.

Each of these approaches has its advantages and disadvantages. The main factors are the

speed of computation and the probability of overfitting. Filters are faster than embedded meth-

ods, and the latter are faster than wrappers. Regarding overfitting, wrappers are more likely to

overfit than embedded methods, which are more likely to overfit than filter methods. In general,

filters are relatively inexpensive in terms of computational efficiency.

Filter methods are defined by a criterionJ [36]. This criterion measures how relevant a

feature or feature subset is. A measure of correlation between the feature and the class label

can be a good criterion. There are several types of criteria.In this thesis, those based on IT are

considered. For a class labelY, the mutual information score for a featureXk is:

JMI (Xk) = I(Xk;Y) (2.19)
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In order to use this criterion, a filter must rank the featuresin order of theirJMI and select

the topK features. An important limitation is that this approach assumes that each feature is

independent of all other features. In general, a set of features should not only be individually

relevant, but also should not be redundant with respect to each other [25]. A possible improve-

ment is the Mutual Information Feature Selection (MIFS) criterion [10], which introduces a

penalty to correlations between features:

JMIFS(Xk) = I(Xk;Y)−β ∑
Xj∈S/Xk

I(Xk;Xj) (2.20)

whereS is the candidate set of features. Another criterion is the Joint Mutual Information

(JMI), which focuses on the complementary information of features [95] [152]:

JJMI(Xk) = ∑
Xj∈S

I(XkXj ;Y) (2.21)

This is the mutual information between a joint random variable XkXj and the class label.

The idea is to include features that complement with existing features from the subsetS of

selected features.

There exist more criteria like, for instance: Koller-Sahami metric (KS) [79], Informative

Fragments (IF) [139], Fast Correlation Based Filter (FCBF)[156], Conditional Mutual Info

Maximization (CMIM) [46], Minimum Redundancy (MINRED) [36], Interaction Gain Fea-

ture Selection (IGFS) [38], Conditional MIFS (CMIFS), and Min-Redundancy Max-Relevance

(mRMR) [107]. However, only the relevance and redundance ofthe features regarding the out-

put is taken into account. But there is another important aspect that is forbidden in these

approaches: the (economical, computational...) cost of features. This means that there may

exist certain subsets of features that, having the same or similar relevance regarding the output,

one of them might allow for computational/economical savings. One of the contributions of

this thesis is the extension of one of the most used algorithms, mRMR, in order to consider this

factor. This contribution is described in Chapter 3.

2.3.2 Classification

Supervised classification in highly non-linear and multimodal problems has been a challenge

for machine learning algorithms through the years. Severalprevious researchers [75] have an-

alyzed the difficulties found when facing these kind of problems by both classical statistical

classifiers (such as Fisher Linear Discriminant [44] and itsvariations) and machine learning
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methods (such as artificial neural networks [16] and decision trees like ID3 [117] or C4.5

[118]). Over the last years, more sophisticated models havecome out. These models try to

mitigate the weaknesses of classical algorithms in order tobeing able to deal with more com-

plex classification problems. One of the latest and more well-known approaches are Support

Vector Machines (SVM) [30]. These models convert a complex non-linear non-separable prob-

lem into a linear problem, by means of a transformation to a higher dimensional space.

Most classifiers are global methods. Aglobal methodattempts to solve a problem by

means of adjusting a single model for the whole feature space. However, there exists another

approach to the classification problem, thecombination of classifiers[83]. This is a relatively

recent technique that can be considered a meta-algorithm inthe sense that it combines a set

of component classifiers in order to obtain a more precise andstable model. The two most

important strategies to combine classifiers are fusion and selection. Onfusion of classifiers,

each of the classifiers has knowledge of the totality of the feature space. On the other hand, on

selection of classifiers, each classifier knows only a part of the feature space.

The methods based onfusion of classifiersare also known asensemble methods. The most

popular strategies areBoosting, BaggingandStacking:

• Boostingis based on the question enunciated by Kearns [73]: ”can a setof weak learners

create a single strong learner?” They consist of training several weak classifiers itera-

tively and adding them to a final strong classifier. After a weak learner is added, data are

weighted: misclassified samples gain weight and correctly classified ones lose weight.

In this manner, newly added weak learners focus more on previously misclassified sam-

ples. Algorithms of this family are, e.g., AdaBoost [49] andits variants AdaBoost.M1

and M2 [48], and AdaBoostR [101].

• Bagging[24] randomly generates several data sets from the originalone with replace-

ment. The models are trained and combined using voting.

• Stacking[148] utilizes an extra classifier that learns to combine theoutputs of the base

classifiers in order to generate a common final output.

The methods based onselection of classifiersare also known aslocal methods. The idea of

using different classifiers for different inputs was suggested by Dasarathy, B.V. and Sheela,

B.V. [31], who combined a linear classifier and ak-Nearest Neighbor. Rastrigin [119], in 1981,

already proposed a methodology for selection of classifiersthat is virtually similar to the one

used these days. The philosophy of local methods consists ofsplitting up the feature space
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in several subspaces and adjusting a model for each of these subspaces. Each subproblem is

supposed to be simpler than the original model and may be solved with simpler classification

models, i.e., linear ones. In this manner, large and complexproblems, like the ones dealt with

in this chapter, are more approachable. Therefore, a correct division of the original problem

is very important for the correct operation of the system. The most straightforward way of

splitting up the data is a division in regular regions, whichis posible, but it may happen that

some of them contain few or no data at all. In order to ensure that the regions always contain

some patterns, it is usual to employ a clustering algorithm to split up the data [82, 91].

On unsupervised learning, there exist two schools of thought:

• Methods that build generative models to describe the observed data.

– Methods that adjust the parameters in order to optimize the likelihood of data with

constraints on model architecture, i.e., Bayesian Inference Models [43], and Maxi-

mum Likelihood Competitive Learning [120].

– Methods that require some form of regularization to select aproper model, i.e.,

Minimum Description Length [123], Bayesian Information Criterion [14], and Akai-

ke Information Criterion [2].

• Methods that use self-organization principles. In this approach, minimization of entropy

leads to a featureless solution given by the collapse of all the samples to a single point

in space. The idea is to construct energy functions that combine two competing aspects

—information preservation and redundancy reduction—. This school of thought has

the advantage of not imposing statistical models on data, instead allowing samples the

freedom to interact with one another, which in the end reveals the hidden structure of

data through self-organization.

The latter approach was used in [125, 116] to develop a simpleframework for unsupervised

learning based on Information Theory, the Principle of Relevant Information (PRI).

2.3.2.1 Principle of Relevant Information

The classical unsupervised learning algorithms are solutions to the following optimization

problem:

L[p(x|xo)] = min
X

(H(X)+λDKL(X||Xo)) (2.22)
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wherexo ∈ Xo is the original data set,x ∈ X is the compressed version of the original data

(the clusters),λ is a parameter of variation,H(X) is the entropy between the original and the

compressed data, andDKL(X||Xo) is the Kullback-Leibler divergence.

The formulation of the Principle of Relevant Information (PRI) addresses the entropy of

a single data set. The solution is specified as an optimization over the compressed data given

the original data. The PRI generalizes the classical algorithms (clustering, principal curves,

vector quantization), as each of them is represented by a different value ofλ . This generalizing

principle for unsupervised learning is formulated in termsof information-theoretic quantities.

The family of datax obtained by means of (2.22) is controlled by the variationalparameter

λ . This parameter controls the level of distortion in compressed data. The estimators of ITL

from Sect. 2.2 can be used in this formulation to derive algorithms to obtain the different

solutions. Rewriting (2.22) with Renyi’s formulation of entropy:

L[p(x|xo)] = min
X

(Hα(X)+λDα(X||Xo)) (2.23)

where Renyi’s entropyHα and Renyi’s divergenceDα are respectively defined in (2.10) and

(2.18). Cauchy-Schwarz divergence is defined as:

DCS( f ,g) = log
∫

f (x)2dx+ log
∫

g(x)2dx−2log
∫

f (x)g(x)dx (2.24)

Cauchy-Schwarz divergence can be rewritten in terms of Renyi’s quadratic entropy as

DCS(X,Y) =−2log
∫

f (x)g(x)dx+ log
∫

f (x)2dx+ log
∫

g(x)2dx

= 2H2(X;Y)−H2(X)−H2(Y)
(2.25)

Continuing with the formulation of the PRI, redundancy willbe measured by Renyi’s quadratic

entropyH2(x) and divergence will be measured by the Cauchy-Schwarz divergenceDCS(X,Xo):

J(X) = min
X

(H2(X)+λDCS(X,Xo))

= min
X

[(1−λ )H2(X)+2λDCEF(X,Xo)−λH2(Xo)]
(2.26)

whereDCS(X,Xo) = 2DCEF(X,Xo)−H2(X)−H2(Xo), DCEF =− logV(X,Xo) is the logarithm

of the cross-information potential (CIP) andλ is the variational parameter.J is the cost func-

tion, with X as its argument. Therefore,λH2(Xo), the last term in (2.26), is constant with

respect toX and can be removed from the optimization problem:

J(X) = min
X

[(1−λ )Hα(X)−2λ logV(X,Xo)] (2.27)

Hereafter, all these quantities can be estimated directly from samples.
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CHAPTER3
A New Method for Cost Feature Selection Based

on Information Theory

The proliferation of high-dimensional data has become a trend in the last few years. Data sets

with dimensionality over the tens of thousands are constantly appearing in applications such as

medical image, text retrieval or genetic data. In fact, analyzing the dimensionality of the data

sets posted in the UCI Machine Learning Repository [8] in thelast decades, one can observe

that in the 1980s, the maximum dimensionality of data is around 100 features; increasing to

more than 1500 features in the 1990s; and finally, in the 2000s, it further increases to about 3

million features [158].

The high dimension of data has an important impact in learning algorithms, since their per-

formance is degraded when a number of irrelevant and redundant features are present. In fact,

this phenomenon is known as the curse of dimensionality [69], because unnecessary features

increase the size of the search space and make generalization more difficult. For overcoming

this obstacle, researchers usually employ dimensionalityreduction techniques. In this man-

ner, the set of features required for describing the problemis reduced, most of the times along

with an improvement in the performance of the models. Feature selection is arguably the most

utilized dimension reduction technique. It consists of detecting the relevant features and dis-

carding the irrelevant ones. Its goal is to obtain a subset offeatures that describes properly the

given problem with a minimum degradation in performance [58], with the implicit benefits of

improving data and model understanding and the reduction inthe need for data storage. With

this technique, the original features are maintained, contrary to what usually happens in other

techniques such as feature extraction, where the generateddata set is represented by a newly

generated set of features, different than the original.

There are some situations where a user is not only interestedin maximizing the merit

of a subset of features, but also in reducing costs that may beassociated to features. For

example, for medical diagnosis, symptoms observed with thenaked eye are costless, but each

diagnostic value extracted by a clinical test is associatedwith its own cost and risk. In other
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fields, such as image analysis, the computational expense offeatures refers to the time and

space complexities of the feature acquisition process [42]. This is a critical issue, specifically

in real-time applications, where the computational time required to deal with one or another

feature is crucial, and also in the medical domain, where it is important to save economic costs

and to also improve the comfort of a patient by preventing risky or unpleasant clinical tests

(variables that can be also treated as costs).

Feature selection methods, filters in particular, are mainly based in measures of relevance

and redundance of features. There exists a large variety of methods that explore several mea-

sures. However, the existence of a feature selection methodthat takes cost into account is

unbeknownst to the author.

Among all the feature selection methods, Minimal Redundancy Maximal Relevance (mRMR)

is one of the most relevant. mRMR is a ranked filter based on information theory. In this chap-

ter, the metric function of this algorithm is modified in order to having into account the cost

associated to the input features. The goal is to obtain a trade-off between a filter metric and the

cost associated to the selected features, in order to selectrelevant features with a low associated

cost while keeping the accuracy. The contents of this chapter have been published in [17].

The remainder of this chapter is organized as follows: Section 3.1 summarizes previous

research on the subject. Section 3.2 describes the proposedmethod in detail. Sections 3.3 and

3.4 describe the experimental study performed and the obtained results, respectively. Finally,

Section 3.5 sums up the contents of the chapter.

3.1 Background

Feature selection has been an active and effective tool in numerous fields such as DNA microar-

ray analysis [20, 34], intrusion detection [19, 99], medical diagnosis [3] or text categorization

[47]. New feature selection methods are constantly appearing, however, the great majority

of them only focuses on removing irrelevant and redundant features but not on the costs for

obtaining the input features.

The cost associated to a feature can be related to different concepts. For example, in med-

ical diagnosis, a pattern consists of observable symptoms (such as age, sex, etc.) along with

the results of some diagnostic tests. Contrary to observable symptoms, which have no cost,

diagnostic tests have associated economical costs and risks. On the other hand, cost can also
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3.1 Background

be related to computational issues. In the medical imaging field, extracting a feature from a

medical image can have a high computational cost.

As one may notice, features with an associated cost can be found in many real-life applica-

tions. However, this has not been the focus of much attentionfor machine learning researchers.

As mentioned above, the purpose of this research is to contribute to the problem of cost-based

feature selection, trying to balance the correlation of thefeatures with the class and their cost.

There have been similar attempts to balance the contribution of different terms in other ar-

eas. For instance, in classification, Friedman et al. [50] included a regularization term to the

traditional Linear Discriminant Analysis (LDA). The left side term of their cost function eval-

uates the error and the right side term would be the regularization one, which is weighted with

λ . This provides a framework in which, according to theλ value, different regularized solu-

tions can be obtained. Related to feature extraction, in [155] a criterion is proposed to select

kernel parameters based on maximizing between-class scattering and minimizing within-class

scattering. Applied to face recognition, Wright et al. [149] proposed a general classification

framework to study feature extraction and robustness to occlusion via obtaining a sparse rep-

resentation. Instead of measuring the correlation betweena feature and the class, this method

evaluates the representation error.

However, the objective of this chapter is completely different, as it is to provide a frame-

work for feature selection where features with an inherent cost could be dealt with. Despite the

previous attempts in classification and feature extraction, to the best knowledge of the author,

there are only a few attempts to deal with this issue in feature selection. In the early 90s, Fed-

dema et al. [42] were developing methodologies for the automatic selection of image features

to be used by a robot. For this selection process, they employed a weighted criterion that took

into account the computational expense of features, i.e., the time and space complexities of the

feature extraction process. Several years later, Yang et al. [153] proposed a genetic algorithm

to perform feature subset selection where the fitness function combined two criteria: the ac-

curacy of the classification function realized by the neuralnetwork and the cost of performing

the classification (defined by the cost of measuring the valueof a particular feature needed for

classification, the risk involved, etc.). A similar approach was presented in [66], where a ge-

netic algorithm is used for feature selection and parameters optimization for a support vector

machine. In this case, classification accuracy, the number of selected features and the feature

cost were the three criteria used to design the fitness function. Another proposal can be found

in [131] by presenting a hybrid method for feature subset selection based on ant colony opti-

mization and artificial neural networks. The heuristic thatenables ants to select features is the

inverse of the cost parameter.
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The methods found in the literature that deal with cost associated to the features, which

were described above, have the disadvantage of being computationally expensive by having

interaction with a classifier, which prevents their use in large databases, a trending topic in

the past few years [70]. However, the idea proposed in this paper is applied together with

the filter model, which is known to have a low computational cost and be independent of any

classifier. By being fast and with a good generalization ability, filters using this cost-based

feature selection framework will be suitable for application to databases with a great number

of input features like, e.g., microarray DNA data sets.

In light of the above, the novelty of this approach lies in that the research in cost-based

selection is extremely scarce in the literature. As a matterof fact, no cost methods can be

found in the most popular machine learning and data mining tools. For instance, in Weka [60]

we can only find some methods that address the problem of cost associated to the instances

(not to the features), and they were incorporated in the latest release. RapidMiner [96] does

in fact include some methods that take cost into account, butthey are quite simple. One of

them selects the attributes that have a cost value which satisfies a given condition and another

one just selects thek attributes with the lower cost. Therefore, the cost-based feature selection

method proposed in this chapter intends to cover this necessity.

3.2 Description of the method

mRMR (Minimal Redundancy Maximal Relevance) [107] is one ofthe most employed mul-

tivariate ranker filters, due to obtaining good results in several fields [100, 26, 71, 140]. The

evaluation function combines two constraints (as the name of the method indicates), maximal

relevance and minimal redundancy. The former is denoted by the letterD, it corresponds with

the mean value of all mutual information values between eachfeaturexi and classc, and has

the following expression:

D(S,c) =
1
|S| ∑

xi∈S

I(xi ;c) (3.1)

whereS is a set of features andI(xi ;c) is the mutual information between the featurexi and the

classc. The expression ofI(x;y) is:

I(x;y) =
∫ ∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy (3.2)
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3.2 Description of the method

The constraint of minimal redundancy is denoted byR, and has the following expression:

R(S) =
1
|S|2 ∑

xi ,xj∈S

I(xi ,x j) (3.3)

The evaluation function to be maximized combines the two constraints (3.1) and (3.3). It

is called Minimal Redundancy Maximal Relevance (mRMR):

Φ(D,R) =
1
|S| ∑

xi∈S

I(xi ;c)−
1
|S|2 ∑

xi ,xj∈S

I(xi ,x j) = D(S,c)−R(S) (3.4)

In practice, this is an incremental search method that selects, on each iteration, the feature

that maximizes the evaluation function. Suppose we alreadyhaveSm−1, the feature set withm

- 1 features, themth selected feature will optimize the following condition:

max
xj∈X−Sm−1

[

I(x j ;c)−
1

m−1 ∑
xi∈Sm−1

I(x j ;xi)

]

(3.5)

The modification of mRMR which is proposed in this chapter consists of adding a term to

the condition to be maximized so as to take into account the cost of the feature to be selected:

max
xj∈X−Sm−1

[(

I(x j ;c)−
1

m−1 ∑
xi∈Sm−1

I(x j ;xi)

)

−λCj

]

(3.6)

whereCj is the cost of the featurej, andλ is a parameter introduced to weight the influence

of the cost in the evaluation function.λ is a positive real number. Ifλ is 0, the cost is ignored

and the method works as the regular mRMR. Ifλ is between 0 and 1, the influence of the cost

is smaller than the one from the other term. Ifλ is 1, both terms have the same influence and,

finally, if λ is greater than 1, the influence of the cost is greater than theinfluence of the other

term.

3.2.1 Generalization

Ultimately, the general idea consists on adding a term to theevaluation function of the filter to

take into account the cost of the features. Since, to the bestknowledge of the author, all filters

use an evaluation function, this evaluation function couldbe modified to contemplate costs in
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the following manner. LetMS be the merit of the set ofk featuresS, that is, the value originally

returned by the function.

MS= EF(S) (3.7)

whereEF is the evaluation function. LetCS be the average cost ofS.

CS=
∑k

i=1Ci

k
(3.8)

whereCi is the cost of featurei. The evaluation function can be modified to become:

MCS= MS−λCS (3.9)

whereλ is a parameter introduced in order to weight the influence of the cost in the evaluation.

Notice that when a ranker method that selects features one ata time, such as mRMR, is

used, the cardinality ofS is 1 andCS in (3.8) results in the cost of that single feature.

3.3 Experimental study

The experiment is performed over three blocks of data sets (Table 3.1). The data sets in the first

and second blocks are available at the UCI Machine Learning Repository [8]. The data sets

in the third block are DNA microarray data sets and are available at the web site of the Broad

Institute [68]. The main feature of the first block of data sets is that they have intrinsic cost

associated to the input features. For the second and third blocks, as these data sets do not have

intrinsic cost associated, random cost for their input features has been generated. This decision

has been taken because no data sets with cost, other than the four ones of the first block, exist

publicly available, to the best knowledge of the author. Foreach feature, the cost was generated

as a random number between 0 and 1. As an example, on Table 3.2,the costs for each feature

of Yeast data set are displayed.

Overall, the chosen classification data sets are very heterogeneous. They present a vari-

able number of classes, ranging from two to twenty six. The number of samples and features

range from single digits to the tens of thousands. Notice that data sets in the first and second

blocks have a larger number of samples than features, whilstdata sets in the third block have a

much larger number of features than samples, which poses a big challenge for feature selection

researchers. This variety of data sets allows for a better understanding of the behavior of the

proposed method.
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3.3 Experimental study

Data set No. features No. samples No. classes

Hepatitis 19 155 2

Liver 6 345 2

Pima 8 768 2

Thyroid 20 3772 3

Letter 16 20000 26

Magic04 10 19020 2

Optdigits 64 5620 10

Pendigits 16 7494 10

Sat 36 4435 6

Segmentation 19 2310 7

Waveform 21 5000 3

Yeast 8 1033 10

Brain 12625 21 2

CNS 7129 60 2

Colon 2000 62 2

DLBCL 4026 47 2

Leukemia 7129 72 2

Table 3.1: Description of the data sets

Feature Cost

1 0.5093

2 0.1090

3 0.5890

4 0.2183

5 0.8112

6 0.6391

7 0.2741

8 0.1762

Table 3.2: Random costs of the features of Yeast data set
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The experiment consists of performing feature selection with Cost mRMR over the data

sets. The goal of the experiment is to study the behavior of the method under the influence of

the λ parameter. The performance is evaluated in terms of both thetotal cost of the selected

features and the classification error committed by a SVM classifier trained only with the se-

lected features (estimated with a 10-fold cross-validation). It is expected that, the larger theλ ,

the lower the cost and the higher the error, because increasing λ gives more weight to cost at

the expense of correlation between features. Moreover, a Kruskal-Wallis statistical test and a

multiple comparison test (based on Tukey’s honestly significant difference criterion [136]) [65]

have been run on the obtained results. The results of the tests can help the user to choose the

value of theλ parameter. As mRMR is a ranker, it does not return a subset of selected features.

It returns all the features sorted by the evaluation function for each feature. In consequence,

a threshold must be chosen in order to train the SVM classifier. This threshold is obtained by

executing a subset feature selection method —CFS [61] in particular— over the data sets. The

number of features CFS selects for each data set is utilized as a threshold for mRMR.

3.4 Experimental results

Figures 3.1, 3.3 and 3.4 show the cost and error for several values ofλ . The solid line with ’x’

represents the error (referenced on the left Y axis) and the dashed line with ’o’ represents the

cost (referenced on the right Y axis). Notice that whenλ = 0 the cost has no influence on the

behavior of the method and it behaves as if it were the non-cost version.

Figure 3.1 plots the classification error/cost of the four data sets with cost associated found

at the UCI repository (see Table 3.1). The behavior expectedwhen applying cost feature selec-

tion is that the higher theλ , the lower the cost and the higher the error. The results obtained

for the first block of data sets, in fact, show that cost value behaves as expected (although the

magnitude of the cost does not change too much because these data sets have few features and

the set of selected ones is often very similar). The error, however, remains constant in most

of the cases. This may happen because these data sets are quite simple and the same set of

features is often chosen. The Kruskal-Wallis statistical test run on the results displays that the

errors are not significantly different, except for Pima dataset. This fact can be caused because

this data set has very few expensive features (which are often associated with a higher predic-

tive power), as can be seen on Table 3.3. Therefore, removingthem has a greater effect on the

classification accuracy.

Fig. 3.2 displays the results of the Kruskal-Wallis statistical test for Pima data set. The
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(a) Hepatitis mRMR
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(b) Liver mRMR
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(c) Pima mRMR
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(d) Thyroid mRMR

Figure 3.1: Error / cost plots of first block of data sets for cost feature selection mRMR

Feature Cost

1 0.0100

2 0.7574

3 0.0100

4 0.0100

5 0.9900

6 0.0100

7 0.0100

8 0.0100

Table 3.3: Costs of the features of Pima data set (normalizedto 1)
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(a) ANOVA Table (Cost mRMR).
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(b) Graph of multiple comparison (Cost mRMR).

Figure 3.2: Kruskal-Wallis statistical test results of Pima data set

entries in the ANOVA (ANalysis Of VAriance) Table (Fig. 3.2(a)) are the usual sums of squares

(SS), degrees of freedom (df), mean square estimator (MS), chi-square statistic (Chi-sq) and

the p-value that determines the significance of the chi-square statistic (Prob>Chi-sq).

As can be seen, thep-value is 2×10−4 for Cost mRMR, as displayed in Fig. 3.2(a). This

indicates that there exist values significantly different than others. In Fig. 3.2(b), it is shown

which groups of errors are significantly different, information that can be helpful for the user

to decide which value ofλ utilize. When using Cost mRMR, a reduction in cost can not be

achieved without worsening the error measure. For Cost mRMR, whenλ is 0 (and hence, the

cost is not taken into account), the second feature is selected, which has a high cost (see Table

3.3). However, when the method is forced to decrease the cost(by increasing the value of

λ ), this feature is not selected anymore and prevents the classifier to obtain a high prediction

accuracy.

The error/cost graphs of the second block of data sets are displayed in Fig. 3.3. It can be

seen how cost decreases, according to expected, and how, contrary to first block, error usually

raises whenλ increases. In the cases when error raises (see Fig. 3.3(a), for example), there

exist significant error changes (p-values are close to zero), therefore the user has to make a

choice to find an appropriate trade-off between cost and error.
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(a) Letter mRMR
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(b) Magic04 mRMR
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(c) Optdigits mRMR
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(d) Pendigits mRMR
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(e) Sat mRMR
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(f) Segment mRMR
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(g) Waveform mRMR
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(h) Yeast mRMR

Figure 3.3: Error / cost plots of second block of data sets forcost feature selection with mRMR
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(a) Brain mRMR
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(b) CNS mRMR
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(c) Colon mRMR
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(d) DLBCL mRMR

0 0.5 0.75 1 2 5 10
0

0.2

0.4

0.6

0.8

1

λ

E
rr

or

 

 

0

10

20

30

40

50

C
os

t

Error
Cost

(e) Leukemia mRMR

Figure 3.4: Error / cost plots on third block of data sets for cost feature selection with mRMR
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(a) ANOVA Table.
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(b) Graph of multiple comparison.

Figure 3.5: Kruskal-Wallis error statistical test of DLBCLdata set with Cost mRMR

Finally, Fig. 3.4 presents the results for the third block ofdata sets, corresponding with the

well-known DNA microarray domain, with much more features than samples. As expected,

cost decreases asλ increases, and since these data sets have larger number of input attributes

than the ones in previous blocks, cost experiments larger variability (see, for instance, Figs.

3.4(d), 3.4(e)). For instance, for the DLBCL data set, it canbe chosenλ = 10, as the errors are

not significantly different (see Fig. 3.5) and the cost forλ = 10 is significantly lower than the

one for the four firstλ (0, 0.5, 0.75 and 1).

Notwithstanding, the behavior of the error, in some cases, and contrary to expected, remains

almost constant (see, for instance, Fig. 3.4(b)). The reason why the error is not raising can be

two-fold:

• On the one hand, it is necessary to remind that in this research the proposed method is a

filter feature selection method. This approach has the benefit of being fast and compu-

tationally inexpensive. This characteristic of filters cancause that the selected features,

according to particular criteria, would not be the more suitable for a given classifier to

obtain the highest accuracy. Therefore, forcing a filter to select features according to

another criterion rather than correlation (or the one used for each particular filter) may
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(a) ANOVA Table.

−10 0 10 20 30 40 50 60 70 80

10

5

2

1

0.75

0.5

0

Mean Ranks

λ
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Figure 3.6: Kruskal-Wallis cost statistical test of DLBCL data set with Cost mRMR

cause the selection of features to be more suitable for minimizing classification error.

For example, in [21, 78], a synthetic data set called Monk3 isdealt with. Among others,

this data set contains three relevant features. However, some classifiers obtain a better

classification accuracy when filters only had selected two relevant features than when

selecting the three relevant ones. This fact demonstrates that the behavior of some filters

is somewhat unpredictable and not always the one expected.

• On the other hand, it has to be noted that DNA microarray data sets are a difficult chal-

lenge for feature selection methods, due to the enormous amount of features they present.

In fact, the filters evaluated in this research are usually retaining a maximum of 2% of

features. Therefore, irregular results are expected with such an important reduction in

number of features.

3.5 Summary

In this chapter, a new cost-based feature selection method is proposed. The objective is solving

problems where not only it is interesting to minimize the classification error, but also reducing
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3.5 Summary

costs that may be associated to input features. The approachconsists of adding a new term to

the evaluation function of mRMR so that it is possible to reach a trade-off between the error and

the cost associated to the selected features. A new parameter, calledλ , is introduced in order

to adjust the influence of the cost into the evaluation function, allowing the user fine control of

the process according to his needs.

In order to test the adequacy of the proposed idea, experimentation is performed over a

broad suite of different data sets. Results after performing classification with a SVM display

that the approach is sound and allows the user to reduce the cost without compromising the

classification error significantly, which can be very usefulin fields such as medical diagnosis

or real-time applications.
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CHAPTER4
A New Ensemble Approach for Feature Selection

Based on Ranking Learning

In the previous chapter, the problem of the absence of cost criteria in filter FS methods was

confronted. In this one, two problems are addressed: (1) thenon-existence of a “best” method,

which causes that the user has to search and choose a specific method for each specific prob-

lems; (2) the heterogeneity of data sets, which makes it difficult to obtain good results with one

single method.

In the past, machine learning methods used to employ a singlelearning model. However, it

has been observed that the technique of using multiple prediction models for solving the same

problem, known as ensemble learning, is effective [83, 84].The idea builds on the assump-

tion that combining the output of multiple experts is betterthan the output of a single expert.

Typically, ensemble learning has been applied to classification. However, ensemble learning

can also be thought as a means of improving other machine learning disciplines such as feature

selection.

In this chapter, the feature rankings obtained by each member of the ensemble are combined

prior to the classification stage, by using ranking functionlearning [54], a technique that allows

to learn the ranking of features from the individual rankings provided by the components of the

ensemble. The use of an ensemble instead of a single method induces diversity. The objective is

to reduce the variance associated to using regular feature selection methods, since the proposed

ensemble takes advantage of the strengths of the single selectors and overcomes their weak

points. Two approaches are presented, depending on how datais distributed and the variety of

feature selectors to be used. Experimental validation of the methodology on a range of UCI

data sets [9] shows the adequacy of the proposed ensembles, paving the way to their application

to other real-world data sets, and releasing the user from the decision of which feature selection

algorithm is the most appropriate for a given problem.
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Besides, machine learning methods have come to be a necessity for many companies, in

order to obtain useful information and knowledge from theirincreasingly massive databases.

Real life data sets come in diverse flavors and sizes, and so their nature imposes several sub-

stantial restrictions for both learning models and featureselection algorithms [137]. Data sets

may be very large in samples and number of features and, also,there might be problems with

redundant, noisy, multivariate and non-linear scenarios.Thus, most methods alone are not ca-

pable of confronting these problems, and something like “the best feature selection method”

simply does not exist, making it difficult for users to selectone method over another. In order

to make a correct choice, a user not only needs to know the domain well and the characteristics

of each data set, but is also expected to understand technical details of available algorithms

[90]. As experts of this type are not universally available,more user-friendly methods are nec-

essary. In this sense, a possible way to confront this situation is to use an ensemble of feature

selection algorithms, which is the idea proposed in this chapter. Using an ensemble avoids the

need to choose a specific method for solving a problem. Specifically, methods that follow the

ranking approach are used, i.e., they return an ordered ranking of all the features. Notice that

methods that return a ranking of features are less computationally expensive than those which

return a subset of selected features, and this is of vital importance when the current tendency is

toward Big Data problems. Then, the outputs of all the components of the ensemble have to be

combined in order to produce a common final output. The ensemble proposed in this chapter

combines these rankings using Ranking SVM [72], which is a SVM-based method for learning

of ranking functions.

In the case of ensemble feature selection, each individual component is known as a base

selector. If the base selectors are all of the same kind, the ensemble is known as homogeneous.

Otherwise, it is known as heterogeneous. There are several ways in which an ensemble can be

formed. In this chapter, two of them are explored: (a) N selections using a variety of different

feature selection algorithms, all using the same training data and (b) N selections using the

same feature selection algorithm, using different training data. Feature selection can also take

advantage of data distribution. Most feature selection methods do not scale well when the

number of features grows. Processing multiple subsets concurrently means that the training

of feature selection methods is faster. This advantage is achieved with option (b). Part of the

contents of this chapter have been published in [128].

The remainder of this chapter is organized as follows: Section 4.1 summarizes previous

research on the subject. Section 4.2 introduces the proposed ensemble and its algorithm, as

well as the individual ranker methods and the Ranking SVM method used to join the indi-

vidual rankers. Next, Section 4.3 describes the data sets, the experimental design, and the

experimental results. Finally, in Section 4.4, the contents of the chapter are summarized.
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4.1 Background

4.1 Background

Feature selection has been applied in many machine learningand data mining problems. The

aim of feature selection is to select a subset of features that minimizes the prediction error

obtained by a given classifier. Previous works, as those presented by Guyon and Elisseeff

[57] or Hall and Holmes [62] collect different approaches used for feature selection, including

feature construction, feature ranking, multivariate feature selection, efficient search methods

and feature validity assessment methods.

Along the last few years, it has been observed that, by using and combining different learn-

ing models on the same problem, better results could be obtained. This combination of machine

learning methods for solving problems is calledensemble learning. Moreover, combining clas-

sifiers appears as a natural step forward when a critical massof knowledge of single classifier

models has been accumulated, and have been rapidly growing and enjoying a lot of attention

from pattern recognition and machine learning communities[83].

As mentioned before, ensemble learning has been typically applied to classification, where

the most popular methods arebagging [24] andboosting[126]. Bagging creates an ensem-

ble by training individual classifiers on bootstrap samplesof the training set. Each bootstrap

sample is generated by randomly selecting, with replacement, n instances from the training set

wheren is the size of the training set. As a result of the sampling with replacement procedure,

each classifier is trained on the average of 63.2% of the training instances. The prediction of

each classifier is combined using simple voting. On the otherhand, in the boosting approach

the sampling is proportional to an instance’s weight. Bagging and boosting are two of the most

well-known ensemble learning methods due to their theoretical performance guarantees and

strong experimental results. Although these models are themost used to improve the classifi-

cation results, new ensemble learning techniques on the feature subspace have been proposed.

The Random Subspace[64] method is a simple random selection of feature subsets derived

from the theory of stochastic discrimination. Optiz [104] describes an ensemble feature se-

lection technique for neural networks calledGenetic Ensemble Feature Selection. Another

ensemble method for decision trees is calledStochastic Attribute Selection Committees[159],

while Multiple Feature Subsets[12] is a combining algorithm for nearest neighbor classifiers.

Finally, for steganalysis of digital media, an ensemble of classifiers implemented as random

forests [77] has been proposed, since this ensemble is ideally suited for this kind of problems.

In recent works it is proposed to improve the robustness of a feature selection algorithm

by using multiple feature selection evaluation criteria. Several studies have been performed in
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this general area, in order to achieve better classificationaccuracy. One of these studies [135]

has been conducted on 21 UCI data sets [9], comparing five measures of diversity with regard

to their possible use in ensemble feature selection. This study considers four search strategies

for ensemble feature selection together with the simple random subspacing: genetic search,

hill-climbing, and ensemble forward and backward sequential selection. Based on the idea

of multiple feature selection evaluation criteria, many ensembles of feature selection methods

have appeared. AMulticriterion Fusion-based Recursive Feature Elimination [151] (MCF-

RFE)algorithm is developed with the goal of improving both the classification performance

and the stability of the feature selection results. A feature ranking scheme forMulti-layer

Perceptron[145] MLP ensembles is proposed, along with a stopping criterion based upon the

out-ofbootstrap (OOB)estimate. Experimental results on benchmark data demonstrate the

versatility of the MLP base classifier in removing irrelevant features.

Finally, there are some other works in which all the feature selection methods of the final

ensemble are ranker methods. Diversity can be achieved by using various rankers, combined

afterwards to yield more stable and robust results. Three commonly used filter-based feature

ranking techniques for text classification problems were used by Olsson and Oard [103], where

the combining methods employed are lowest, highest and average rank.

Wang et al. perform a few outstanding papers in this area, providing two interesting studies.

The first one examines the ensembles of six commonly used filter-based rankers [141] and the

second one studies seventeen different ensembles of feature ranking techniques [142], with six

commonly-used rankers, the signal-to-noise filter technique(S2N)[150], and eleven threshold-

based rankers. In their second paper, the ensembles are composed of different numbers of

rankers, ranging from two to eighteen single feature selection methods. Also, other studies

collect different methods to combine the single generated rankings, with the aim of obtaining

a final ensemble. This combination of single rankings coversfrom simple —as mean, median,

minimal, etc.— to more complex methods —asWeighted mean aggregation[1] (WMA), Com-

plete linear aggregation[1] (CLA)andRobust ensemble feature selection[13] Rob-EFS—.

4.2 Proposed method

The method proposed in this chapter is an ensemble of featureselection methods that obtain a

ranking of the features (individual evaluation methods). The outputs of the components of the

ensemble have to be combined in order to produce a common finaloutput. This is performed

using Ranking SVM [72], which is a SVM-based method of learning of ranking functions.
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The problem of ranking is formalized as follows: for a queryq and a data collectionD =

{d1, . . . ,dn}, the system should return a rankingr∗ that orders the data inD according to their

relevance to the query. An optimal orderingr∗ can not be achieved. Instead, an operational

function f is evaluated by how closely its orderingr f (q) approximates the optimum. If a datum

di is ranked higher thand j for an orderingr, i.e. di <r d j , then(di ,d j) ∈ r, otherwise(di ,d j) /∈
r. The similarity between the rankingr f (q) and the target rankingr∗ is measured by using

Kendall’s τ [74]. For two finite strict orderingsra ⊂ D×D and rb ⊂ D×D, Kendall’s τ is

defined based on the numberP of concordant pairs and the numberQ of discordant pairs. A

pairdi 6= d j is concordant if bothra andrb agree in how they orderdi andd j . It is discordant if

they disagree. Therefore,τ can be defined as:

τ(ra, rb) =
P−Q
P+Q

= 1− 2Q
(m

2

) (4.1)

wherem is the cardinality ofD, and
(m

2

)

is the sum ofP andQ for strict orderings.

The algorithm selects a ranking functionf that maximizes:

τS( f ) =
1
n

n

∑
i=1

τ(r f (qi ), r
∗
i ) (4.2)

The function f must maximize (4.2) and must generalize well beyond the training data. Con-

sider the class of linear ranking functions (4.3), wherew is a weight vector that is adjusted by

learning, andΦ(q,d) is a mapping onto features that describes the match between queryq and

datumd.

(di ,d j) ∈ fw(q)⇐⇒ wΦ(q,di)> wΦ(q,d j) (4.3)

The task of the learner is to minimize the number of discordant ranking pairs. For the class

of linear ranking functions (4.3), this is equivalent to finding the weight vectorw so that the

maximum number of the following inequalities (4.4) is satisfied.

∀(di ,d j) ∈ r∗1 :wΦ(q1,di)> wΦ(q1,d j)

. . .

∀(di ,d j) ∈ r∗n :wΦ(qn,di)> wΦ(qn,d j)

(4.4)

Unfortunately, this problem is known to be NP-hard, howeverit is possible to approximate

the solution by introducing non-negative slack variablesξi, j,k and minimizing the upper bound

∑ξi, j,k. Therefore, the above problem is optimized, obtaining the approximation shown in
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(4.5).

minimize: V(w,ξ ) =
1
2

w ·w+C ∑
i, j,k

ξi, j,k

subject to:

∀(di ,d j) ∈ r∗1 : wΦ(q1,di)≥ wΦ(q1,d j)+1−ξi, j,1

. . .

∀(di ,d j) ∈ r∗n : wΦ(qn,di)≥ wΦ(qn,d j)+1−ξi, j,n

∀i∀ j∀k : ξi, j,k ≥ 0

(4.5)

C is a parameter that controls the trade-off between the margin size and the training error. By

rearranging the constraints in (4.5) as

w(Φ(qk,di)−Φ(qk,d j))≥ 1−ξi, j,k (4.6)

it becomes equivalent to that of SVM classification on pairwise difference vectorsΦ(qk,di)−
Φ(qk,d j). For each query-model pair, features are calculated to measure the similarity between

them. The ranking order of the model objects is also known. Thus, the input to the SVM

learning algorithm, to learn the optimal ranking function,are the training data presented above.

Given a new queryq, the model objects can be sorted based on their value of

rsv(q,di) = wΦ(q,di) = ∑
k,l

α∗
k,l Φ(qk,dl )Φ(q,d j ). (4.7)

Theα∗
k,l can be derived from the values of the dual variables at the solution.

There are several ways to design an ensemble [23]. In this thesis, two of them are used:

1. N models generated using the same method, all with different training data (See Fig.

4.1). An important problem of ensemble methods is the computation time they take in

comparison to individual methods. One way to deal with this is to distribute the data

set in order to parallelize the task of training. Therefore,this variation of the method

consists in distributing the training data among a number ofnodes. The training samples

are randomly distributed in disjoint sets without replacement. The same method is then

executed on each of the nodes and the ranking obtained is thereafter combined using the

Ranking SVM union method.

2. N models generated using different methods, all with the sametraining data (See Fig.

4.2). The second variation of the method trains several different methods over the same

training data. The output obtained from the methods is then combined using the Ranking

SVM union method.
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4.2 Proposed method

Figure 4.1: First design: same filter, different training data.

Figure 4.2: Second design: different filters, same trainingdata.
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Among the broad suite of feature selection methods available in the literature, three filters

and two embedded methods were chosen as candidate components of the ensemble:

• Information Gain[117] (filter): this is one of the most common univariate methods of

evaluation based on IT. It evaluates the features accordingto their information gain, only

taking into account one feature at each time. The measure utilized to rank variables is

the entropy. If the observed values of a variableY in the training data set are partitioned

according to the values of a second featureX, and the entropy ofY with respect to the

partitions induced byX is less than the entropy ofY prior to partitioning, then there is a

relationship between featuresY andX. Then, the entropy ofY after observingX is:

H(Y|X) = ∑ p(x)∑ p(y|x)log2(p(y|x)) (4.8)

wherep(y|x) is the conditional probability ofy givenx. Given the entropy as a criterion

of “impurity” in a training setS, a measure reflecting additional information aboutY

provided byX can be defined. This measure represents the amount by which the entropy

of Y decreases. It is known as IG and it is an indicator of the dependency betweenX and

Y:

IG = H(Y)−H(Y|X) = H(X)−H(X|Y) (4.9)

IG is a symmetrical measure. The method provides an orderly classification of all the

features, and then a threshold is required to select a certain number of them according to

the order obtained. A weakness of the IG criterion is that it is biased in favor of features

with more values even when they are not more informative.

• ReliefF [80] (filter): this method is an extension of the original Relief algorithm [76]

that can handle multiclass problems. It is more robust and capable of dealing with in-

complete and noisy data. As the original Relief, ReliefF works by randomly selecting an

instanceRi from the data and then locating thek nearest neighbors from the same class

(named “nearest hits”,H j ) and thek nearest neighbors from each of the other different

classes (named “nearest misses”,M j(C)). It updates the quality estimationW[A] for all

attributesA depending on their values forRi, hits H j and missesM j(C). If the instances

Ri andH j have different values for the attributeA, then this attribute separates instances

of the same class, which is not desirable, and thus the quality estimationW[A] has to

be decreased. On the other hand, if instancesRi andM j have different values for the

attributeA for a class then the attributeA separates two instances with different class

values, which is desirable, and therefore the quality estimationW[A] is increased. Since

ReliefF considers multiclass problems, the contribution of all the hits and all the misses

is averaged. Besides, the contribution for each class of themisses is weighted with the
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prior probability of that classP(C) (estimated from the training set). The whole process

is repeatedm times wherem is a user-defined parameter.

This method may be applied in all situations, has low bias, includes interaction among

features and may capture local dependencies which other methods may miss.

• mRMR[107] (filter): Minimum Redundancy Maximum Relevance uses mutual informa-

tion to select the features that have the highest relevance with the class and are minimally

redundant between them. As stated before, it constitutes one of the most used multivari-

ate filter methods based on IT. A most thorough description ofthe method can be seen

in Sect. 3.2.

• SVM-RFE[59] (embedded): Recursive Feature Elimination for Support Vector Machines

(SVM-RFE) performs feature selection by iteratively training a SVM classifier with the

current set of features. It removes the least important feature, as indicated by the weights

in the SVM solution.

• FS-P[93] (embedded): Feature Selection - Perceptron (FS-P) trains a Perceptron in a su-

pervised manner and uses its interconnection weights to rank the features. A Perceptron

is a simple type of linear feed-forward artificial neural network.

This set of ranker methods was selected because (i) they are based on different metrics

so they ensure diversity in the final ensemble; and (ii) they are widely used by researchers in

feature selection.

4.3 Experimental study

The performance of the proposed ensemble is tested over five well-known data sets, which are

listed in Table 4.1. The number of samples ranges from 1 484 to67 557 and the number of

features oscillates from 8 to 617. These data sets conform aninteresting suite to check the

adequacy of the ensemble.

The experimental study is split in two parts, according to each of the designs proposed in

Sect. 4.2 (see Figs. 4.1 and 4.2).
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Data set Samples Features Classes

Connect4 67,557 42 3

Madelon 2,400 500 2

Spambase 4,601 57 2

Yeast 1,484 8 10

Isolet 7,797 617 26

* All data sets can be downloaded at [8] .

Table 4.1: Data sets employed in the experimental study

4.3.1 Experimental study for the distributed approach

The experiment performed consists of a comparison between the use of single feature selection

methods and the use of an ensemble over a 10-fold cross validation. In the case of the ensem-

ble, the training samples are randomly split in four packages and the feature selection method

execution is parallelized. The pseudo-code of this approach can be seen in Algorithm 1.

Algorithm 1 Pseudo-code of the proposed method
Inputs: number of nodesN, threshold of the number of features to be selectedT.

Output: classification predictionP.

1. Split training data betweenN training nodes. The training samples are randomly dis-

tributed in disjoint sets without replacement.

2. For eachn from 1 toN, obtain rankingAn in noden.

3. Combine rankingsAn, n= 1..N with Ranking SVM, obtainingA.

4. SelectT first attributes fromA, obtainingAt .

5. Build a SVM classifier with the selectedAt attributes.

6. Obtain predictionP.

The results of the experiment (both average training time and average test error) are dis-

played in Tables 4.2, 4.3, 4.4, and 4.5. Test error is measured using a Support Vector Machine

(SVM) classifier, with a RBF kernel, gamma 0.01, and C 1. The first table (Table 4.2) displays

the average training times in seconds for the five feature selection methods in the five data sets.
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It can be seen how the distributed strategy improves the training times considerably. The next

three tables (Tables 4.3, 4.4, and 4.5) display the average test errors. Remember that the feature

selection methods used in this chapter are rankers, i.e., they do not select a subset of features:

they sort all the features. Therefore, it is necessary to establish a threshold in order to obtain a

practical subset of features. Three thresholds are utilized: 10%, 25%, and 50%, and test errors

corresponding with each of them are shown respectively in the mentioned three tables.

Data set IG ReliefF mRMR SVM-RFE FS-P

Connect4
Single 0.05±0.01 37.57±3.86 1.38±0.07 691.62±90.16 13.60±2.43

Ens. 0.02±0.01 0.48±0.03 0.23±0.01 7.01±0.66 0.84±0.17

Madelon
Single 0.02±0.01 0.69±0.04 510.90±25.37 1744.28±218.17 4.91±0.18

Ens. 0.10±0.25 0.12±0.23 218.35±3.91 6.51±13.51 0.54±0.04

Spambase
Single 0.02±0.02 0.20±0.04 13.54±3.89 0.12±0.06 0.73±0.12

Ens. 0.01±0.01 0.01±0.00 8.67±2.58 0.01±0.01 0.06±0.06

Yeast
Single 0.01±0.01 0.02±0.01 0.01±0.01 0.05±0.03 0.30±0.09

Ens. 0.01±0.01 0.01±0.01 0.01±0.00 0.03±0.03 0.03±0.02

Isolet
Single 0.18±0.01 8.35±0.44 59.64±0.38 2662.18±249.78 179.35±16.19

Ens. 0.06±0.01 0.20±0.01 25.49±0.14 37.82±9.57 18.63±0.35

Table 4.2: Average training times in seconds. Single method(Single) and ensemble (Ens.)

strategies

Data set IG ReliefF mRMR SVM-RFE FS-P

Connect4
Single 30.76±0.54 30.70±0.50 32.29±0.49 33.92±0.59 34.18±0.60

Ens. 30.76±0.37 30.09±0.53 33.08±0.54 33.93±0.68 34.16±0.52

Madelon
Single 33.62±3.50 33.17±3.13 46.42±3.46 31.71±2.56 33.96±2.94

Ens. 34.42±3.93 34.13±3.36 53.46±2.71 34.92±3.37 34.29±3.48

Spambase
Single 13.39±1.24 20.08±3.14 22.78±2.24 12.50±1.41 12.17±1.52

Ens. 13.28±1.76 16.97±3.07 22.76±3.89 11.78±1.77 12.23±1.93

Yeast
Single 55.13±4.99 55.13±4.99 55.13±4.99 54.31±6.50 54.66±4.33

Ens. 60.30±6.05 54.92±4.72 54.92±4.72 50.81±4.92 54.31±4.87

Isolet
Single 48.62±2.30 58.38±2.23 47.15±1.71 51.58±3.33 64.95±4.53

Ens. 49.04±2.03 57.52±1.36 49.96±1.38 65.77±2.32 72.66±2.73

Table 4.3: 10% threshold: average estimated percentage test errors. Single method (Single)

and ensemble (Ens.) strategies

It can be seen how the errors remain stable after the distribution process. The reduction in

time is especially important for multivariate filters, which are the ones that usually provide the

best results, e.g. mRMR.

Table 4.6 shows the variations in training time and error between the single method and the

ensemble approach for the 50% threshold data. It can be seen how the average training time is
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Data set IG ReliefF mRMR SVM-RFE FS-P

Connect4
Single 26.34±0.53 25.55±0.46 32.05±0.47 32.79±1.32 34.00±0.64

Ens. 26.46±0.47 25.62±0.54 31.96±0.55 33.18±1.03 34.17±0.47

Madelon
Single 36.08±2.37 35.58±2.74 49.83±3.11 31.12±2.89 33.08±1.76

Ens. 39.04±7.81 38.58±8.35 52.08±4.50 37.92±8.20 37.17±8.75

Spambase
Single 17.67±1.90 19.34±3.69 15.65±1.95 18.04±3.99 14.45±5.53

Ens. 18.28±1.61 16.63±2.05 17.10±1.29 13.11±5.07 11.28±4.16

Yeast
Single 53.17±6.89 53.17±6.89 53.17±6.89 53.56±6.45 53.03±4.51

Ens. 59.97±3.89 53.91±2.91 53.91±2.91 51.42±4.57 52.97±2.96

Isolet
Single 43.68±1.94 54.08±3.64 46.72±2.71 42.20±1.77 61.45±4.34

Ens. 42.88±1.67 57.73±2.07 49.10±2.34 59.51±4.20 73.80±4.95

Table 4.4: 25% threshold: average estimated percentage test errors. Single method (Single)

and ensemble (Ens.) strategies

Data set IG ReliefF mRMR SVM-RFE FS-P

Connect4
Single 24.82±0.50 23.51±0.50 30.94±0.55 31.96±2.06 32.61±1.13

Ens. 24.74±0.60 23.32±0.52 29.52±1.04 31.37±1.84 34.09±0.67

Madelon
Single 39.00±2.78 38.21±2.44 39.17±2.84 32.71±2.94 34.92±2.73

Ens. 37.92±2.94 38.46±4.33 39.58±3.80 38.92±2.62 38.08±3.14

Spambase
Single 16.95±1.28 16.17±1.15 13.17±1.43 18.11±1.66 16.06±4.18

Ens. 16.93±1.67 17.78±1.85 14.63±1.63 17.93±1.76 17.84±1.92

Yeast
Single 54.05±4.31 54.05±4.31 54.05±4.31 52.57±6.65 54.80±5.87

Ens. 59.44±7.30 53.10±6.26 53.10±6.26 51.42±4.99 52.83±6.10

Isolet
Single 37.98±2.36 50.33±3.45 46.75±3.36 37.70±3.12 48.39±4.95

Ens. 38.54±2.51 48.07±4.25 43.45±3.06 47.98±4.87 64.44±9.74

Table 4.5: 50% threshold: average estimated percentage test errors. Single method (Single)

and ensemble (Ens.) strategies
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Data set IG ReliefF mRMR SVM-RFE FS-P

Connect4
Time -60% -99% -83% -99% -94%

Error 0% -1% -5% -2% 4%

Madelon
Time 80% -83% -57% -99% -89%

Error -3% 1% 1% 16% 8%

Spambase
Time -50% -95% -36% -92% -92%

Error 0% 9% 10% -1% 10%

Yeast
Time 0% -50% 0% -40% -90%

Error 9% -2% -2% -2% -4%

Isolet
Time -67% -98% -57% -99% -90%

Error 1% -2% -7% 21% 25%

* Negative percentages are favorable to the ensemble.

Table 4.6: Variation in training time and error between single method and ensemble strategies

(50% threshold)

greatly improved in most of the cases, while the error is close, except in some cases where the

ensemble performs worse, and others where the ensemble evenslightly improves the results of

the single method.

4.3.2 Experimental study for the pure ensemble approach

For this part of the study, the same set of ranker methods described above —Information Gain,

mRMR, ReliefF, SVM-RFE, and FS-P— is utilized.R rankings are generated using the afore-

mentioned feature selection methods, all of them with the same training data. The pseudo-code

of this approach can be seen in Algorithm 2.

TheAr outputs obtained from the different methods are combined using the Ranking SVM

union method to obtain a single ranking list. Since the individual methods used for feature

selection are rankers, it is necessary to establish a threshold T in order to obtain a practical

subset of features. After obtaining this practical subset of featuresAt , a SVM is used for

checking the adequacy of the proposed ensemble in terms of classification error. The SVM

utilizes a RBF kernel, with gamma 0.01, and C 1.

The performance of the proposed ensemble method is tested over the five well-known data
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Algorithm 2 Pseudo-code of the proposed method
Inputs: number of ranker methodsR, threshold of the number of features to be selectedT,

training set.

Output: classification predictionP.

1. For eachr from 1 toR, obtain rankingAr using methodr.

2. Combine rankingsAr , r = 1..R with Ranking SVM, obtainingA.

3. SelectT first attributes fromA, obtainingAt .

4. Build a SVM classifier with the selectedAt attributes.

5. Obtain predictionP.

sets listed in Table 4.1. The experiment performed consisted of a comparison between the use

of different feature selection methods individually and the use of an ensemble. Remember that

all the feature selection methods used in this chapter are rankers, i.e. they do not select a subset

of features, but they sort all the features. Therefore it is necessary to establish a threshold in

order to obtain a practical subset of features. In this study, the same thresholds are used —10%,

25% and 50%—. Moreover, the ensemble is composed by six methods.

A Support Vector Machine (SVM) is chosen for checking the adequacy of the proposed

ensemble in terms of classification error. A 10-fold cross validation is performed for estimating

the error.

The next three tables (Tables 4.7, 4.8 and 4.9) display the average test errors. Having ten

different errors as a result of the 10-fold cross validation, a Kruskal-Wallis test was applied to

check if there were significant differences for a level of significanceα = 0.05 [65]. Then, a

multiple comparison test (based on Tukey’s honestly significant difference criterion [136]) is

applied and those algorithms whose error average test results are not significantly worse than

the best are labeled with a cross.

The experimental results demonstrate the adequacy of the proposed ensemble, since they

match or improve upon the results achieved by the feature selection methods alone. It can

be seen that, as the threshold is increased, the results obtained are not as positive. Despite

this, the proposed ensemble obtains favorable results in four out of five data sets when the

threshold is fixed to 25 % (indicated in Table 4.8). Finally, when the threshold is increased to

50 % (Table 4.9), only two out of five data sets have results notsignificantly different from the
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Ranker method Yeast Spambase Madelon Connect4 Isolet

Ensemble 53.24†±4.62 11.39†±2.34 35.46†±4.05 31.14†±0.51 50.13†±2.03

InfoGain 55.13†±4.99 13.39†±1.24 33.62†±3.50 30.76†±0.54 48.62†±2.30

mRMR 55.13†±4.99 22.78±2.24 46.42±3.46 32.29±0.49 47.15†±1.71

ReliefF 55.13†±4.99 20.08±3.14 33.17†±3.13 30.70†±0.50 58.38±2.23

SVM-RFE 54.31†±6.50 12.50†±1.41 31.71†±2.56 33.92±0.59 51.58†±3.33

FS-P 54.66†±4.33 12.17†±1.52 33.96†±2.94 34.18±0.60 64.95±4.53

* The cross shows results that are not significantly different than the best.

Table 4.7: 10% threshold: average estimated percentage test errors

Ranker method Yeast Spambase Madelon Connect4 Isolet

Ensemble 53.24†±4.62 19.19†±2.00 36.21†±4.42 26.96†±0.67 48.77±2.11

InfoGain 53.17†±6.89 17.67†±1.90 36.08†±2.37 26.34†±0.53 43.68†±1.94

mRMR 53.17†±6.89 15.65†±1.95 49.83±3.11 32.05±0.47 46.72†±2.71

ReliefF 53.17†±6.89 19.34†±3.69 35.58†±2.74 25.55†±0.46 54.08±3.64

SVM-RFE 53.56†±6.45 18.04†±3.99 31.12†±2.89 32.79±1.32 42.20†±1.77

FS-P 53.03†±4.51 14.45†±5.53 33.08†±1.76 34.00±0.64 61.45±4.34

* The cross shows results that are not significantly different than the best.

Table 4.8: 25% threshold: average estimated percentage test errors

Ranker method Yeast Spambase Madelon Connect4 Isolet

Ensemble 53.24†±4.62 16.93±1.91 39.29±2.65 25.27±0.59 43.21†±3.01

InfoGain 54.05†±4.31 16.95±1.28 39.00±2.78 24.82†±0.50 37.98†±2.36

mRMR 54.05†±4.31 13.17†±1.43 39.17±2.84 30.94±0.55 46.75±3.36

ReliefF 54.05†±4.31 16.17†±1.15 38.21†±2.44 23.51†±0.50 50.33±3.45

SVM-RFE 52.57†±6.65 18.11±1.66 32.71†±2.94 31.96±2.06 37.70†±3.12

FS-P 54.80†±5.87 16.06†±4.18 34.92†±2.73 32.61±1.13 48.39±4.95

* The cross shows results that are not significantly different than the best.

Table 4.9: 50% threshold: average estimated percentage test errors
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Threshold Yeast Spambase Madelon Connect4 Isolet

10 % 53.24†±4.62 11.39†±2.34 35.46†±4.05 31.14±0.51 50.13±2.03

25 % 53.24†±4.62 19.19±2.00 36.21†±4.42 26.96†±0.67 48.77±2.11

50 % 53.24†±4.62 16.93±1.91 39.29±2.65 25.27†±0.59 43.21†±3.01

* The cross shows results that are not significantly different than the best.

Table 4.10: Ensemble methods: average estimated percentage test errors

lowest average error. Even so, in the three data sets in whichsignificative differences between

the ensemble method and the best single method, it can be seenthat the estimated percentage

error of the ensemble is lower than the one presented by several single rankers.

However, if focusing on the behavior of the feature selection rankers individually (six last

rows of each table), none of the six methods tested was able tosignificantly outperform the

results obtained by the ensemble for all combinations. Thisfact proves that, although in some

specific cases there is a single method that performs better than the ensemble, there is not a

better feature selection ranker in general, and the ensemble seems to be the most reliable alter-

native when a feature selection process has to be carried out. Moreover, notice the adequacy of

using Ranking SVM as a method to combine different rankings.

A last experiment is performed, consisting of the analysis of the behavior of the ensemble

with the different thresholds, with independence of the actual feature selection methods. Table

4.10 displays the average test errors obtained with the different thresholds. A Kruskal-Wallis

test plus Tukey’s multiple comparison procedure was also applied and those algorithms whose

error average test results are not significantly worse than the best are labeled with a cross.

This analysis demonstrates that an optimal threshold valuedoes not exist such that its re-

sults stand out over the others. The three thresholds analyzed in this research show very similar

results, since each one of the thresholds was significantly better than the others in three out

of five data sets. Thus, it can be concluded that the most appropriate threshold depends on

the nature of the data sets and their features. In this regard, the users cannot be released from

this decision, and must select an appropriate threshold according to the particularities of each

specific data set.
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4.4 Summary

In the last few years, ensemble learning has been the focus ofmuch attention mainly in classi-

fication tasks, based on the assumption that combining the output of multiple experts is better

than the output of any single expert. This idea of ensemble learning can be adapted for fea-

ture selection, in which different feature selection algorithms act as different experts. In this

chapter, two ways of building ensembles are explored: (a) N selections using the same feature

selection algorithm, using different training data and (b)N selections using a variety of differ-

ent feature selection algorithms, all using the same training data. Feature selection can also

take advantage of data distribution. Most feature selection methods do not scale well when the

number of features grows. Processing multiple subsets concurrently means that the training of

feature selection methods is faster. This advantage is achieved with option (a). In both options,

the results of the individual rankings are combined with SVMRank, and the adequacy of the

ensemble is subsequently tested using SVM as classifier. Results obtained in an experimental

study performed over five UCI data sets show that both optionsare able to obtain good re-

sults. Option (a) improves training times over the individual feature selection methods, while

maintaining errors. Option (b) obtains the best average results regardless of the data set and

thresholds chosen. Notice the implications of this result,since it can release the user from the

task of deciding which feature selection method is more appropriate for a given problem.
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CHAPTER5
A New Local Method for Classification Based on

Information Theoretic Learning

The two previous chapters focused in new proposals for feature selection methods. This chapter

is dedicated to the development of a new local classificationmethod. The general aim, however,

is the same: trying to confront diversity in data sets through the application of new ideas based

on IT. The proposed algorithm performs classification basedon the combination of neural

networks by means of local modeling and techniques based on ITL [116] (See Sect. 2.2). First,

a modified ITL clustering algorithm is applied in order to identify the local models. Second,

since the problem is simplified by splitting it into smaller parts, a simple but effective model,

the one-layer neural network, is applied. This approach is related to the one followed in the

previous chapter, which dealt with ensemble learning applied to feature selection.

VQIT (Vector Quantization using Information Theoretic concepts) [86] is an information

theoretic clustering algorithm that is able to distribute aset of nodes in such a way that the

mutual information between the nodes and the data set is maximized. The result of this self-

organizing task can be subsequently used for clustering or quantization purposes. In this chap-

ter, VQIT is modified in order to perform classification tasks. This new algorithm is called

FVQIT (Frontier Vector Quantization based on Information Theoretic concepts). It builds lo-

cal models in a similar fashion to VQIT and then classifies using one-layer neural networks on

each local model. In the first part of the chapter, the model for two-class (binary) classification

is described. Later on, the concept utilized in the stage of local model building is expanded in

order to being able to deal with muticlass problems. The contents of this chapter have been

published in [92, 110, 111, 112, 113, 114].

The remainder of this chapter is organized as follows: Section 5.1 describes the VQIT

method. Section 5.2 contains the binary version of FVQIT classification method. This version

has been applied to several high dimensional problems, bothin samples and features, such

as intrusion detection and microarray gene expression. Section 5.3 contains the extension of

FVQIT for multiclass problems, which has been studied over several microarray gene expres-
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sion problems. Finally, Section 5.4 sums up the contents of the chapter.

5.1 Background: VQIT Clustering Algorithm

The VQIT (Vector Quantization Using Information Theory) clustering algorithm [86] is de-

signed to take the statistical distribution of data into account. The objective is to place a series

of nodes in the input space in such a way that the distributionof the nodes matches the distribu-

tion of the data. The algorithm considers that both data points and nodes are particles that have

an information potential field associated. The informationpotential field created by a particle

can be described by a kernel of the formK(·). The information potential field of data and nodes

is of different sign, respectively. Placing a kernel on eachparticle (data point), the information

potential energy at a pointx in space is:

p(x) =
1
N

N

∑
i=1

K(x−xi) (5.1)

whereN is the number of particles of a particular sign. If the kerneldecays with distance
(

K(x) ∝ 1
(x−xi)

)

the potential is equivalent to physical potentials like gravitation and electric

ones.

As there are two different types of particles (data and nodes), the energy of the system is

defined by three terms:

1. Interactions between the data points: since the data points are fixed, these interactions

have no influence over the energy.

2. Interactions between the data and the nodes: due to the opposite signs of the information

potentials, these particles attract each other and maximize the correlation between the

distribution of data and the distribution of nodes.

3. Interactions between nodes: the nodes’ information potentials are of the same sign,

which causes the nodes to repel each other. This helps to distribute the nodes across

the input space, avoiding unnecessary concentrations on the same region of the input

space.

Eq. (5.1) is Parzen density estimator [106]. In order to match the nodes with the data, (5.1)

is used to estimate their PDF and then the divergence betweenthem is minimized. Using

Gaussian kernels, the distribution of the data points (xi) is
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f (x) = ∑
i

G(x−xi ,σ f ) (5.2)

The distribution of nodes (wi) is

g(x) = ∑
i

G(x−wi,σg) (5.3)

VQIT algorithm uses the Kullback-Leibler divergence, defined in (2.2). This divergence

can be linearly approximated by the Cauchy-Schwarz inequality (C-S):

| f (x)g(x)| ≤ || f (x)|| ||g(x)|| (5.4)

Therefore, maximizing | f (x)g(x)|
|| f (x)|| ||g(x)|| is equivalent to minimizing the divergence betweenf (x)

andg(x). Using logarithms in order to remove the division, the expression to minimize the

divergence between the distributionsf (x) andg(x) is the following:

DC−S( f ,g) =− log
(
∫

f (x)g(x)dx)2
∫

f 2(x)dx
∫

g2(x)dx

= log
∫

f 2(x)dx−2log
∫

f (x)g(x)dx+ log
∫

g2(x)dx

(5.5)

V =
∫

g2(x)dx is the information potential of the nodes,C=
∫

f (x)g(x)dx is the cross infor-

mation potential between the distributions of the data and the nodes, andH = − log
∫

g2(x) =

− logV is the Renyi quadratic entropy of the nodes. In consequence,minimizing the diver-

gence betweenf andg is equivalent to maximizing the sum of the entropy of the nodes and the

cross information potential between the densities of the nodes and the data.

The algorithm uses the gradient descent method to minimize (5.5). This clustering algo-

rithm is the basis for the classification algorithm proposedin the following section.

5.2 Learning Model for Binary Classification Problems

Using the ideas of VQIT, a supervised local classification algorithm for binary data sets is

developed [92]. The method is composed of two stages. First,a set of nodes, which are

points placed in the same space as data, are moved from their initial random positions to the
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frontier between classes. This part of the algorithm is a modification of VQIT algorithm [86].

Second, a set of local models, associated to the nodes, basedon one-layer neural networks are

trained using the efficient algorithm described in [27], in such a way that a piecewise borderline

between the classes is built. Therefore, the final system consists of a set of local experts, each

of which will be trained to solve a subproblem of the original. In this manner, the method

benefits from a finer adaptation to the characteristics of thetraining set. This architecture can

be seen on Fig. 5.1. The following subsections describe bothstages in detail.

Figure 5.1: Architecture of the proposed learning model.

5.2.1 Creation of Local Models

The VQIT algorithm, which FVQIT is based on, was developed for vector quantization, that

is, for representing a large data set with a smaller number ofvectors in an appropriate way

[86]. However, in our approach, the original algorithm has been modified in order to be able to

build a piecewise representation of the borderline betweenclasses in a classification problem.

Therefore, the objective is placing a set of nodes on the frontier between the two classes, in

such a way that each node will represent a local model.

The algorithm minimizes the energy function that calculates the divergence between the

Parzen estimator of the distribution of data points and the estimator of the distribution of the

nodes. Under this premise, a physical interpretation can bemade. Both data points and nodes

are considered two kinds of particles with a potential field associated. These fields induce

repulsive and attractive interactions between particles,depending on its sign. In the original
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VQIT algorithm, data and nodes had different signs. In FVQIT, data particles belonging to

different classes have different signs. In this manner, a series of forces converge upon each

node. Training patterns of a class exert an attractive forceon a node and training patterns of

the other class induce a repulsive force on it. Which class attracts and which class repels is

decided using the Euclidean distance and k-NN (k-Nearest Neighbor) [28] as a rule of thumb.

The closest class to the node (called ’own class’) repels it and the furthest one attracts it. These

roles alternate during the iterations as nodes move. An example of the movement of a node

until it reaches its stability point can be seen in Fig. 5.2. Moreover, there exists a third force of

repulsion between the nodes, which favors a better distribution, avoiding the accumulation of

several nodes on a point.

Figure 5.2: Evolution of a node from a random position to a position on the frontier between

classes

In this context, the Parzen density estimators of the distribution of data pointsf (x) and

nodesg(x) are:

f (x) = 1
N

N

∑
i=1

K
(

x−xi,σ2
f

)

g(x) = 1
N

N

∑
i=1

K
(

x−wi,σ2
g

)

(5.6)

whereN is the number of data points,K is any kernel function,σ2
f andσ2

g are the variances

of the kernel functions,xi ∈ ℜn are data points, andwi ∈ ℜn are the weights associated to the

nodes.
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The function of energyJ(w) that calculates the divergence between the estimators is:

J(w) = log
∫

f 2 (x)dx+ 2 log
∫

f+ (x)g(x)dx

−2 log
∫

f− (x)g(x)dx+ log
∫

g2 (x)dx
(5.7)

where f+ (x) and f− (x) are the estimators of the distributions of data for each of the classes.

The first term of (5.7) is the information potential among data. Since data are stationary

during the learning process, this term will not be considered from now on. The second and

third terms are the crossed correlations between the distributions of data and nodes. The fourth

term is the information potential of the nodes. Note thatH(x) = − log
∫

g2(x)dx is the Renyi

quadratic entropy of the nodes. Consequently, minimizing the divergence betweenf (x) and

g(x) is equivalent to maximizing the sum of the entropy of the nodes and the cross-information

potentials between the distribution of data and nodes.

Assuming this formulation, when the nodes are placed on the minimum of the energy

function J(w), they are situated on a frontier area. Therefore, we utilizethe gradient descent

method to obtain the minimum of the function and, in consequence, to move the nodes toward

such situation. To develop this, the derivative of (5.7) is calculated. For simplicity, the deriva-

tion of J(w) is divided in three parts: (a) calculation of the contribution of the data from the

own class (the closest one), (b) calculation of the contribution of the data from the other class

(the furthest one) and (c) calculation of the contribution of the interactions between nodes.

Developing the last three terms in (5.7):

• Data from the own class:

C+ =

∫

f+(x)g(x)dx

=
1

MN+

∫ N+

∑
i

G(x−x+i ,σ
2
f )

M

∑
j

G(x−w j ,σ2
g)dx

=
1

MN+

N+

∑
i

M

∑
j

∫

G(x−x+i ,σ
2
f )G(x−w j ,σ2

g)dx

=
1

MN+

M

∑
j

N+

∑
i

G(w j −x+i ,σ
2
a)

(5.8)

whereM is the number of nodes,N+ is the number of objects from the class of the node,

x+i are the data from the own class,w j are the weights of the nodes and the covariance

of the Gaussian after integration isσ2
a = σ2

f +σ2
g .
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• Data from the other class:

C− =

∫

f−(x)g(x)dx

=
1

MN−

∫ N−

∑
i

G(x−x−i ,σ
2
f )

M

∑
j

G(x−w j ,σ2
g )dx

=
1

MN−

N−

∑
i

M

∑
j

∫

G(x−x−i ,σ
2
f )G(x−w j ,σ2

g)dx

=
1

MN−

M

∑
j

N−

∑
i

G(w j −x−i ,σ
2
a)

(5.9)

whereN− is the number of objects from the class of the node,x−i are the data from the

other class,w j are the weights of the nodes and the covariance of the Gaussian after

integration isσ2
a = σ2

f− +σ2
g .

• Interactions between nodes (entropy):

V =
∫

g(x)2dx

=
1

M2

M

∑
i

M

∑
j

G(wi −w j ,
√

2σg)
(5.10)

wherewi andw j are the weights of the nodes.

The contributions to the gradient update for each of the previous terms in an iteration are:

• Data from the own class:
∂

∂wk
2logC+ =−2

∇C+

C+
(5.11)

where the term∇C+ denotes the derivative ofC+ with respect towk.

∇C+ =− 1
MN+

N+

∑
i

G(wk−x+i ,σa)σ−1
a (wk−x+i ) (5.12)

• Data from the other class:
∂

∂wk
2logC− =−2

∇C−
C−

(5.13)

where the term∇C− denotes the derivative ofC− with respect towk.

∇C− =− 1
MN−

N−

∑
i

G(wk−x−i ,σa)σ−1
a (wk−x−j ) (5.14)
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• Interactions between nodes (entropy):

∂
∂wk

2logV =
∇V
V

(5.15)

where the term∇V denotes the derivative ofV with respect towk.

∇V =− 1
M2

M

∑
j

G(w j −wk,
√

2σg)σ−1
g (wk−w j) (5.16)

Therefore, using equations (5.11), (5.13) and (5.15), and through gradient descent, the weight

update rule for the nodewk becomes:

wk(n+1) = wk(n)−η
(

∇V
V

+
∇C+

C+
− ∇C−

C−

)

(5.17)

wheren is the iteration andη is the step size.

As with self-organizing maps, a good starting point is to choose high-variance kernels

and a largeη parameter such that all particles interact with one another. This allows a fast

distribution of nodes along the feature space. Gradually, in order to obtain stability and a

smooth convergence, the variances of the kernels and the parameterη are decreased or annealed

at each step.

Once FVQIT is trained, the nodes, ideally, will find themselves well distributed on the fron-

tiers between classes. Each node defines a region, a local model in the feature space which is in

charge of classifying the data inside. Those models are defined by proximity: the local model

associated to each node is composed of the nearest points (according to Euclidean distance) in

the feature space, independently of their class. Therefore, data from both classes could coexist

in the same local model. Algorithm 3 summarizes the pseudocode of the training process of

FVQIT.
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Algorithm 3 Training algorithm for the binary version of FVQIT
Inputs: Training set, number of nodes M, learning rateη , covariance matricesσ f and σg,

annealing ratesηdec andσdec, maximum number of iterationsp, number of neighborsk.

1. Initialize the weights of the M nodes randomly in the data range.

2. Calculate which class repels the node and which class attracts it by calculating the Eu-

clidean distances from each node to every data point and using the k-NN (k-Nearest

Neighbor) rule.

3. Evaluate the cross information potentialC+ between each node and the data from the

repelling class, as in (5.8).

4. Calculate the cross information potentialC− between each node and the data from the

attracting class, using (5.9).

5. Evaluate the entropyV between nodes as described in (5.10).

6. Calculate the derivatives∇C+, ∇C− y ∇V, utilizing (5.12), (5.14) and (5.16), respec-

tively.

7. Evaluate the weight update for each node using (5.17).

8. Reduce learning rateη in the proportion shown byηdec.

9. Reduceσ f andσg in the proportion shown byσdec.

10. Repeat from 2 until the predefined maximum number of iterations p is reached.

The method employs several input parameters. Some of them can be assigned to a standard

value or do not significantly affect the final performance of the method. The covariance matri-

cesσ f andσg are assigned to the covariance matrices of the patterns in the training set. This

assignment is derived from the work in [86] and has obtained good results in the experiments

in [92]. The parameterk of the k-NN (k-Nearest Neighbor) rule does not present a great impact

on performance as its effect when the nodes are near the frontier between classes is compen-

sated due to the subsequent moves of the nodes. It may take anytypical value between 1 and

10. The parameterη controls the magnitude of node movements in each learning step. With

high values, a significant oscillation of the nodes in the first learning steps will be observed

and it will take longer to converge to a stable situation in the frontier. This parameter usually

takes values in the interval[range(X)/2, range(X)] beingrange(X) = abs(max(X)−min(X))
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and beingX the training set.ηdec andσdec control the smoothness of the convergence to the

frontier. They may take a value in the interval(0,1), although they typically take values close

to 1 to ensure a smooth evolution. The maximum number of iterations p is a stopping condition

added to the method. If a poor performance is observed, it canbe increased to let the method

converge to the frontier. The number of nodesM is usually selected using cross validation.

5.2.2 Adjustment of Local Models

In the first stage a set of local models was constructed by moving the nodes to their optimal

position. Since each local model covers the closest points to the position of its associated node,

the input space is completely filled, as input data are alwaysassigned to a local model. In this

second stage, the goal is to construct a classifier for each local model. This classifier will be in

charge of classifying points in the region assigned to its local model and will be trained only

with the points of the training set in this region.

As local modeling algorithms may suffer from temporal efficiency problems, caused by the

process of training several local classifiers, we have decided to use a lightweight classifier. We

have chosen one-layer neural networks, trained with the efficient algorithm presented in [27].

This algorithm allows rapid supervised training for one-layer feed-forward neural networks.

The key idea is to measure the error prior to the nonlinear activation functions. In this manner,

it is proven in [27] that the minimization based on the MSE canbe rewritten in equivalent

fashion in terms of the error committed prior to the application of the activation function, which

produces a system of equations withI +1 equations and unknowns. This kind of systems can be

solved computationally with a complexity ofO(M2), whereM = I +1 is the number of weights

of the network. Thus, it requires much less computational resources than classic methods.

5.2.3 Operation of the Model

After the training process, when a new pattern arrives to be classified, the method first calcu-

lates the closest nodewk to a new patternxn using the Euclidean distance and then classifies it

using the neural network associated to the local modelwk.

In Fig. 5.3, a simple two-class bi-dimensional example is displayed. Data from one class

is displayed with ’x’-mark and data from the other class withcircles. FVQIT nodes are repre-

sented with squares. The division in local models is shown with dotted lines and the solid lines
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depict the decision regions defined by each neural network.

Figure 5.3: Example of operation of FVQIT. Local models and frontier between classes

5.2.4 Applications of the Binary Version

The binary version of FVQIT has been studied over several problems. First, an illustrative

example over a two-dimensional problem; second, the study over several data sets from the

UCI Machine Learning Repository [8]; third, the study on a very large real problem, intrusion

detection, particularly the KDD Cup 99 data set, which has a very large amount of data; and

last, the method is applied on a high dimensional real problem, microarray gene expression

data sets, which have a very large amount of features (in the order of the thousands) and very

few samples (in the order of the tens).

5.2.4.1 An Illustrative Example: 2D Spiral Classification Problem

To illustrate the power of the method in a visually perceptible problem, results for the classical

2D Spiral Classification problem are presented. This problem is highly non linear. It was

reported in previous papers that, though being apparently simple, classical pattern recognition

methods as multilayer perceptrons have problems when dealing with it [11, 45, 40].

The generated data set has 1200 two-dimensional patterns with a 50% for each class. A

5-fold cross validation is run to measure the accuracy of ourmethod compared to a SVM

with RBF kernel [30] and a Multilayer Perceptron (MLP) trained with the Scaled Conjugate
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Gradient method [98]. To generate the data set, the code presented in the broadly known SVM

Spider Toolbox 1.71 was taken [144]. It was added to the classical two spiral problem an

uniform distributed random noise perturbation in the interval [0,0.35].

Figure 5.4 shows the final distribution of FVQIT nodes. It canbe noted that the nodes are

finally distributed along the border line between the two classes. The results obtained were

satisfactory for both SVM and the proposed architecture. Both methods obtained an accuracy

of 99.50% in test. In terms of efficiency, in this case, FVQIT solvedthe problem in 11.34 sec.

while SVM solved the problem in 14.19 sec.

However, MLP was tested with a hidden layer from 5 up to 25 hidden neurons and in no

case was capable of solving the problem. It obtained an accuracy of 50%, the same as random

assignation of a class label in this case. Our results for theMLP are similar to those obtained in

[11, 45, 40]. In these papers, it was stated that MLPs were notcapable of solving this problem.

The only way is to use a number of neurons in the hidden layer almost equal to the number of

patterns to classify, highly increasing the complexity of the system.

Finally, the noise energy was increased to the interval[0,1.0] and our method and SVM

were tested again with a 5-fold cross validation. As expected, the accuracy of both methods

decreased, but while our method obtained an accuracy of 91.83% in 10.18 sec. the SVM

obtained 89.83% in 22.55 sec.

Figure 5.4: Final distribution of nodes for the 2D Spiral Problem
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5.2.4.2 Real Data Sets from the UCI Repository

In this section, we discuss some experiments that demonstrate the performance of our method

in databases. We coded the algorithm in MatlabR© and ran these experiments on a 2.13 GHz

Intel Pentium having 2GB of memory.

We tested our algorithms on three real life data sets available on UCI repository [8] and on

the Wisconsin Data Mining Institute [146]. Their sizes and numbers of attributes and classes

are detailed in Table 5.1. For the mushroom data set we used the transformation reported in

[146], and for the adult data set the patterns with unknowns were deleted. Data sets including

only pure categorical, and only pure numerical attributes were used, so as to test their influence

in the results obtained. The proposed method was compared with the available results obtained

by other methods, both regarding performance and training times. Accuracy is obtained using

five 5-fold cross validation to evaluate the real error.

Data Set # of # of numerical # of categorical # of

instances attributes attributes classes

Galaxy Dim 4192 14 0 2

Spambase 4601 57 0 2

Mushroom 8134 0 22 2

Table 5.1: Data sets used in the experiments

The SpamBase data set contains only numerical attributes, and it is a classification problem

that aims at detecting whether a mail is spam or not. The data set has a reported a misclassifi-

cation error of approximately 7%, which is in fact the error rate obtained by the other methods

that are shown in Table 5.2, and that can be found in [33]. The methods tested are: FVQIT,

AdaBoost + MLP, RL-Mix + MLP, Mixture of Experts + MLP, and MLPalone. As it can be

seen, our method is the one that obtains the best performanceresults (less than 5% error). As

training time was not available for the other methods, theseresults are not displayed in the

table. For the case of the proposed method we employed an average time of 63 s.

The Mushroom data set contains only categorical attributes, and it is a binary classifica-

tion problem. The data set includes descriptions of hypothetical samples corresponding to 23

species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is identified

as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This

latter class was combined with the poisonous one. The results corresponding to the RSVM
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Method % accuracy

FVQIT 95.58%

AdaBoost + MLP 93.52%

RL-Mix. + MLP 92.59%

Mix of Exp. + MLP 92.35%

MLP 91.67%

Table 5.2: Results for SpamBase data set

(Reduced Support Vector Machines) are reported in [85], while all the others were obtained

implementing the methods in MatLab. The methods tested were: FVQIT, Reduced Support

Vector Machines (RSVM) [85], Scaled Conjugate Gradient (SCG) [98] , Least-Squares Sup-

port Vector Machines (LS-SVM) [133], Proximal Support Vector Machines (PSVM) [53], one-

layer neural networks [27], and Linear Discriminant Analysis (LDA) [44]. As can be seen in

table 5.3, the proposed method is again the one that obtains the best performance results, while

maintaining the efficiency.

Method % accuracy Training Time (sec.)

FVQIT 89.24% 13.68

RSVM 89.04% 466.20

SCG 81.63% 15.25

LS-SVM 80.90% 263.61

PSVM 80.79% 0.20

One-layer NN 80.77% 0.03

LDA 62.02% 0.08

Table 5.3: Results for Mushroom data set

The Galaxy Dimension Data set contains only numerical attributes. The aim for this data

set is to classify stellar and non-stellar objects based on 14 image parameters computed for

each object detected by the University of Minnesota Automated Plate Scanner (APS) operat-

ing in a threshold densitometry mode. The proposed method isagain compared with several

other methods, of which one-layer NN, PSVM, LDA, LS-SVM and SCG were implemented

in Matlab, while the results of Minimal Support Vector Machine (MSVM), 1-Norm SVM and

1-Norm Support Vector Machine with Feature Selection (FSV)were extracted from [52]. Al-

though the best training times are those of LDA, PSVM and the one layer neural network, these

are linear methods which accuracy is significantly worse than the one of the proposed method.
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Compared to the remaining non linear approaches, our methodis the most efficient.

As can be seen on table 5.4, the proposed method obtains, oncemore, the best results

regarding performance/efficiency.

Method % accuracy Training Time (sec.)

FVQIT 94.94% 6.63

SCG 94.82% 16.77

MSVM 94.70% 193.0

FSV 94.70% 541.0

1-Norm SVM 94.40% 774.0

One-layer NN 93.38% 0.02

LDA 93.37% 0.02

LS-SVM 92.21% 28.63

PSVM 92.53% 0.18

Table 5.4: Results for Galaxy Dimension data set

5.2.4.3 Experimental Study over Intrusion Detection

The KDD Cup 99 data set is a processed version of the DARPA 1998data set, which was

constructed from a simulation performed by the Defense Advanced Research Projects Agency

(DARPA) through the Intrusion Detection Evaluation Program (IDEP) in 1998. The KDD Cup

99 data set was released for a classifier learning contest, which task was to distinguish between

legitimate and illegitimate connections in a computer network [39], at the KDD (Knowledge

Discovery and Data Mining) Conference in 1999. The trainingdata set consists of about five

million connection records (although a reduced training data set containing around five hundred

thousand records exists) [87]. Each record contains valuesof forty one variables which describe

different aspects of the connection, and the value of the class label (either normal, either the

specific attack type). The test data set comprises three hundred thousand records and its data

are not from the same probability distribution as training data.

Following the KDD Cup contest, the data set has been extensively used as a benchmark

for developing machine learning algorithms for intrusion detection systems. The data set is

very demanding not only because of its size but also due to thegreat inner variability among

features. For those reasons, the KDD Cup 99 data set is a challenging classification problem.
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Despite that KDD Cup 99 is a multiclass data set, it can be treated as a binary data set, simply

by considering attack or no attack, instead of the differentattack types. This approach is

interesting in the sense that, most of the time, it is enough to distinguish between normal

connections and attacks. This transformation has been carried out by other authors [6, 51], and

there exist several results in the literature which are utilized as part of the comparative study.

The experimental study performed involves applying the proposed FVQIT algorithm to the

binary version of the KDD Cup 99 data set [113]. As a preliminary stage, discretization and

feature selection were both performed on the data set. The motivation for using discretization

is that some features of the KDD Cup 99 data set present high imbalance and variability. This

situation may cause a malfunction in most feature selectionmethods and classifiers. The prob-

lem is softened up by using discretization methods. In substance, the process of discretization

involves putting continuous values into groups, by means ofa number of discrete intervals.

Two discretization methods will be employed in this study: PKID (Proportional k-Interval

Discretization) [154] and EMD (Entropy Minimization Discretization) [41].

In order to reduce input dimensionality and improve the computational efficiency of the

classifier, feature selection was performed. Filter methods were chosen because they are com-

putationally cheaper than wrapper methods, and computational efficiency is a desirable feature

given the large size of the data set [22]. The filters that willbe used in this study are IN-

TERACT [157] and Consistency based Filter [32]. These filters are widely used, with good

results.

The discretization methods (PKID and EMD) are considered incombination with the

above-named filters (INTERACT and Consistency-based). Thus, four combinations of dis-

cretizator plus filter are analyzed in order to check which subset of features works best with

FVQIT method.

The model is trained with the KDD Cup 99 reduced training dataset —494,021 sam-

ples— and is tested using the standard KDD Cup 99 test data setof 311,029 samples. Three

performance measures are employed:

• Test Error (TE): indicates the overall percentage error rate for both classes (Normal and

Attack).

• True Positive Rate (TP): shows the overall percentage of detected attacks.

• False Positive Rate (FP): indicates the percentage of normal patterns classified as attacks.
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The results of the proposed method are compared with those obtained by other authors

[6, 22, 39, 51], as can be seen in Table 5.5. Specifically, the classification methods to be com-

pared are decision trees (C4.5), functional networks (FN),Support Vector Machines (SVM),

ANalysis Of VAriance (ANOVA) (ANOVA ens.) and linear perceptrons (LP). Font in boldface

indicates best results considering all three measures altogether. Table columns show the test

error (TE), the true positive rate (TP), the false positive rate (FP) and the number of features

employed (NF). Both error and rates are shown in percentage (%). These measures (TE, TP

and FP) are typical in the field of intrusion detection.

As can be seen in Table 5.5, the combination PKID+Cons +FVQITobtains the best result

as it improves the performance obtained by the KDD Cup Winnerin all three measures used,

using a considerably reduced number of features (six instead of the forty one original features).

In addition, this combination outperforms all other results included in this study. Despite

the fact that individual values of error and TP for the combination EMD+Cons +FVQIT are

better than those for the above mentioned combination —4.73versus 5.95 and 94.50 ver-

sus 92.73—, it must be noted that the variations in percentage between these quantities are

quite small —20% and 2% respectively— in contrast to the variation between the values of

FP —1.54 versus 0.48 (300%)—. On the other hand, error and TP for EMD+ INT+FVQIT,

EMD+Cons+FVQIT, and PKID+INT+FVQIT are good, but unfortunately at the expense of

FP, which happens to be high for all of them.

5.2.4.4 Experimental Study over Microarray Gene Expression

In this experimental study, FVQIT classifier is employed to classify twelve DNA gene-expres-

sion microarray data sets of different kinds of cancer. These data sets present features of the

order of thousands and very few samples (tens or hundreds). Acomparative study with other

well-known classifiers is carried out [111, 112]. The numberof features and samples for each

data set are shown in Table 5.6.

Since the number of input features of these kind of data sets is huge, as can be seen on

Table 5.6, feature selection is applied again, as in the previous problem [124]. Two different

kinds of filter methods are employed: subset filters and rankers. Subset filters provide a subset

of selected features, while rankers make use of a scoring function in order to build a feature

ranking, where all features of the data set are sorted in decreasing relevance order. In the first

experiment (subset filters), the performance of the method is tested. The aim of the second
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Method TE(%) TP(%) FP(%) NF

PKID+Cons+FVQIT 5.95 92.73 0.48 6

EMD+INT+FVQIT 5.40 93.50 0.85 7

EMD+Cons+FVQIT 4.73 94.50 1.54 7

PKID+INT+FVQIT 5.68 93.61 2.75 7

KDD Winner 6.70 91.80 0.55 41

PKID+Cons+C4.5 5.14 94.08 1.92 6

EMD+INT+C4.5 6.69 91.81 0.49 7

FNs poly 6.48 92.45 0.86 41

FNs fourier 6.69 92.72 0.75 41

FNs exp 6.70 92.75 0.75 41

SVM Linear 6.89 91.83 1.62 41

SVM RBF 6.86 91.83 1.43 41

ANOVA ens. 6.88 91.67 0.90 41

LP 2cl. 6.90 91.80 1.52 41

Table 5.5: KDD Cup data set: results obtained by the four versions of the proposed method

and by other authors

experiment (ranker methods), is to check the stability of the performance reached by FVQIT,

independently of the number of features selected.

Experiment 1: Study of Performance Using Subset Filters In the first experimental set-

ting, FVQIT method is compared with other classifiers with the objective of finding out which

classifier obtains the best performance. Thus, five well-known machine learning classifiers —

naive Bayes (NB), k-Nearest Neighbor (k-NN), C4.5, SupportVector Machines (SVM), and

Multi-Layer Perceptron (MLP)— are also applied over the filtered data sets. The implementa-

tion of these methods can be found in [88], except for MLP, where the Matlab Neural Networks

Toolbox was used. Three filters have been chosen in order to consider different behaviors.

In previous works, values obtained by filters were shown to beinfluenced by discretization

[18], thus in consequence we are using two discretizers —Entropy Minimization Discretiza-

tion (EMD) [41] and Proportional k-Interval Discretization (PKID) [154]— in combination

with the subset filters CFS (Correlation-based Feature Selection) [61], Consistency-based Fil-

ter [32] and INTERACT [157], which can be found in the Weka tool [147].
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Data set No. features Total samples

Brain [102] 12,625 21

Breast [138] 24,481 97

CNS [109] 7,129 60

Colon [5] 2,000 62

DLBCL [4] 4,026 47

GLI [63] 22,283 85

Leukemia [55] 7,129 72

Lung [56] 12,533 181

Myeloma [134] 12,625 173

Ovarian [108] 15,154 253

Prostate [130] 12,600 136

SMK [132] 19,993 187

Table 5.6: Description of the binary microarray data sets

The data sets have been divided using 2/3 for training and 1/3 for test. A 10-fold cross-

validation has been performed on the training sets, in orderto estimate the validation error to

choose a good configuration of parameters. The results of FVQIT have been compared with

those obtained by other classifiers. Table 5.7 shows the estimated test errors (TE in the table)

as well as the sensitivity (Se) and specificity (Sp) rates —inpercentage— and the number of

features (NF) selected by each method tested. Moreover, theranking is displayed between

parentheses. The ranking assigns a position between 1 and 6 to each method in each data set,

taking into account the ties among them. Also, the best errorobtained for each data set is

emphasized in bold font. Despite having executed all six combinations of discretizer + filter,

only the best result for each classifier in each data set is shown.

As can be seen in Table 5.7, FVQIT obtains good performance onall data sets, with an

adequate number of selected features. Specially remarkable are the results obtained on the

data sets DLBCL and Leukemia, where FVQIT classifier is the only method able to achieve

0% of test error. The result obtained on the Prostate data setis also important. Its test set is

unbalanced (26% of one class and 74% of the other). C4.5, naive Bayes and k-NN are assigning

all the samples to the majority class and SVM is assigning allthe samples to the minority class,

whereas FVQIT is able to do something different and better, which results in a lower test error.

In Table 5.8 the average rankings (obtained from the rankings displayed in Table 5.7 be-

tween parentheses) are shown. In average, the proposed method is clearly preferable above the
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Data set FVQIT SVM NB MLP k-NN C4.5

Brain

TE 0.00(1) 14.29 (4) 14.29 (4) 28.57 (6) 0.00(1) 0.00(1)

Se 100.00 (1) 100.00 (1) 100.00 (1) 0.00 (6) 100.00 (1) 100.00(1)

Sp 100.00 (1) 83.33 (4) 83.33 (4) 71.43 (6) 100.00 (1) 100.00 (1)

NF 1 45 45 1 1 45

Breast

TE 21.05(1) 21.05(1) 26.32 (5) 21.05(1) 26.32 (5) 21.05(1)
Se 75.00 (5) 83.33 (1) 83.33 (1) 83.33 (1) 83.33 (1) 66.70 (6)

Sp 85.71 (2) 71.43 (3) 57.10 (5) 71.43 (3) 57.10 (5) 100 (1)

NF 17 119 5 17 5 3

CNS

TE 25.00(1) 35.00 (3) 25.00(1) 35.00 (3) 35.00 (3) 35.00(3)

Se 69.20 (3) 71.43 (2) 69.20 (3) 68.75 (6) 69.20 (3) 76.90 (1)
Sp 85.70 (1) 50.00 (4) 85.70 (1) 50.00 (4) 57.10 (3) 42.90 (6)

NF 4 60 4 60 4 47

Colon

TE 10.00(1) 10.00(1) 15.00 (3) 40.00 (6) 15.00 (3) 15.00 (3)

Se 80.00 (4) 80.00 (4) 87.50 (1) 50.00 (6) 87.50 (1) 87.50 (1)
Sp 100.00 (1) 100.00 (1) 83.30 (3) 61.11 (6) 83.30 (3) 83.30 (3)

NF 12 12 3 12 3 3

DLBCL

TE 0.00(1) 6.67 (2) 6.67 (2) 6.67 (2) 6.67 (2) 13.33 (6)

Se 100.00 (1) 100.00 (1) 85.70 (4) 100.00 (1) 85.70 (4) 85.70 (4)

Sp 100.00 (1) 88.89 (4) 100.00 (1) 88.89 (4) 100.00 (1) 87.50 (6)
NF 36 36 36 47 36 2

GLI

TE 10.71(1) 14.29 (3) 10.71(1) 17.86 (5) 14.29 (3) 21.43 (6)

Se 85.71 (1) 85.00 (3) 85.71 (1) 78.26 (5) 81.82 (4) 75.00 (6)

Sp 100.00 (1) 87.50 (6) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1)

NF 113 23 23 23 122 3

Leukemia

TE 0.00(1) 2.94 (2) 5.88 (3) 5.88 (3) 8.82 (6) 5.88 (3)
Se 100.00 (1) 100.00 (1) 100.00 (1) 92.86 (5) 100.00 (1) 92.86(5)

Sp 100.00 (1) 95.24 (2) 90.00 (5) 95.00 (3) 90.00 (5) 95.00 (3)

NF 2 18 18 2 1 2

Lung

TE 0.67 (2) 1.34 (4) 4.70 (5) 0.67 (2) 0.00(1) 18.12 (6)
Se 100.00 (1) 99.26 (3) 94.80 (5) 99.26 (3) 100.00 (1) 82.80 (6)

Sp 93.75 (4) 93.33 (5) 100.00 (1) 100.00 (1) 100.00 (1) 73.30 (6)

NF 40 40 1 40 40 1

Myeloma

TE 21.05 (2) 21.05 (2) 21.05 (2) 21.05 (2) 29.82 (6) 19.30(1)

Se 84.00 (1) 81.48 (3) 81.48 (3) 80.36 (6) 82.20 (2) 80.70 (5)
Sp 42.86 (1) 33.33 (2) 33.33 (2) 0.00 (5) 25.00 (4) 0.00 (5)

NF 2 40 2 2 2 2

Ovarian

TE 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 1.19 (6)

Se 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 98.10 (6)

Sp 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1)
NF 3 3 3 17 3

Prostate

TE 20.59(1) 73.53 (6) 26.47 (3) 23.53 (2) 26.47 (3) 26.47 (3)

Se 56.25 (2) 26.47 (3) 0.00 (4) 100.00 (1) 0.00 (4) 0.00 (4)

Sp 100.00 (1) 0.00 (6) 100.00 (1) 75.76 (5) 100.00 (1) 100.00 (1)
NF 64 3 2 3 2 2

SMK

TE 25.81(1) 33.87 (3) 40.32 (6) 32.26 (2) 33.87 (3) 33.87 (3)

Se 78.79 (2) 71.88 (4) 67.85 (6) 89.47 (1) 75.00 (3) 68.42 (5)

Sp 68.97 (1) 60.00 (3) 52.94 (6) 58.14 (5) 58.82 (4) 62.50 (2)

NF 21 3 3 21 21 3

Table 5.7: Best estimated test errors (TE), sensitivity (Se), specificity (Sp) and number of

features selected (NF). The rankings are displayed betweenparentheses
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other methods studied. It is shown that the proposed method is the most specific (it correctly

identifies most of the negatives) and the most sensitive (it correctly identifies most of the pos-

itives). Therefore, in light of the above, we can conclude that FVQIT classifier is suitable to

be combined with discretizers and filters to deal with problems with a much higher number of

features than instances, such as DNA microarray gene-expression problems.

Measure FVQIT SVM NB MLP k-NN C4.5

TE 1.17 2.67 3.00 2.92 3.08 3.50

Sensitivity 1.92 2.25 2.58 3.50 2.17 4.17

Specificity 1.33 3.42 2.58 3.67 2.92 3.00

Table 5.8: Average rankings of error, sensitivity and specificity for all data sets

Experiment 2: Study of Performance Stability Using Rankers When using feature selec-

tion, sometimes it is difficult to compare performance between classifiers because there are

two variables involved: test error and number of features selected. Depending on the applica-

tion, sometimes it may be desirable to choose the minimum test error regardless the number of

features, but sometimes a somewhat larger error may be accepted in the interest of a smaller

number of features. In this context, the aim of the second experiment is to check the stability

of the performance reached by FVQIT classification method independently of the number of

features selected. Therefore, in this case, it is advisableto utilize rankers, so as to compare

the performance of the classifiers in a wide range of selectedfeatures. Four rankers have been

chosen in order to consider different behaviors. The rankermethods we have chosen are the

following, the implementation of which can be found in [88]:Fisher Score [37], Chi-square

[89], Information Gain [29], and mRMR (Minimal Redundancy Maximal Relevance) [35].

Since ranker methods provide a sorted list of features according to a score, there is a deci-

sion to make regarding the number of features to be selected.As of this, in this experiment we

are going to test the classifiers with different numbers of features. Thus, we are going to select

the first 1, 3, 5, 10, 15, 20, 30, 40, 50 and 100 features from thesorted list of features that the

rankers provide.

First, the overall results of the comparative study for eachdata set are presented and then

we focus on the overall results for each feature number. As the number of experimental results

is very large (all the combinations of four rankers, seven classifiers and ten different feature

numbers over twelve data sets account for 3360 experiments), some summary of results needs
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to be used. In a similar way as in the first part of the experimental section, the methods are

sorted in a table using a ranking in which ties have been takeninto consideration. The average

rankings of test error, sensitivity and specificity for all twelve data sets are represented on Table

5.9. As can be seen, FVQIT method is the classifier that obtains the best average performance

for all data sets, as well as the best sensitivity and specificity. However, FVQIT does not obtain

the best performance in every data set. Since these data setsare a hard challenge, obtaining

the best result in average is an important achievement for FVQIT, especially when comparing

it with popular and well-tested methods such as the ones employed in this work.

Data set FVQIT SVM NB MLP k-NN C4.5

TE Se Sp TE Se Sp TE Se Sp TE Se Sp TE Se Sp TE Se Sp

Brain 2.1 1.4 2.6 2.3 2.4 2.5 2.9 3.3 2.5 3.7 3.4 3.2 3.9 4.6 3.9 1.3 3.5 1.0

Breast 2.3 2.6 2.4 2.4 2.6 2.8 3.3 3.7 3.7 4.0 4.4 3.9 3.5 3.8 3.6 2.9 2.8 2.9

CNS 1.6 2.2 3.0 2.9 5.4 1.0 4.6 3.8 4.9 3.3 3.5 3.9 2.4 2.8 3.5 2.3 2.6 3.5

Colon 2.0 3.3 2.1 6.0 1.0 6.0 1.4 2.6 1.4 2.0 3.0 2.3 3.5 4.4 3.6 2.0 3.1 2.0

DLBCL 1.4 1.0 1.9 2.1 1.1 2.3 1.7 1.7 1.7 1.4 1.7 1.4 2.7 2.0 3.3 3.6 4.2 3.6

GLI 1.1 1.4 2.2 6.0 6.0 1.0 1.5 1.8 2.9 2.2 2.7 2.5 2.0 2.4 2.8 4.5 4.5 5.9

Leukemia 1.3 2.3 1.3 6.0 1.0 6.0 1.8 3.3 1.4 3.3 2.5 3.8 1.2 2.1 1.6 4.2 5.6 3.9

Lung 1.9 2.3 2.6 4.5 6.0 1.0 2.0 1.2 2.9 2.4 2.1 3.1 2.3 1.8 3.2 5.2 5.0 5.9

Myeloma 3.9 2.5 3.4 1.5 3.3 2.1 5.3 5.5 5.3 1.6 3.5 2.6 4.5 3.1 4.3 2.5 2.6 2.5

Ovarian 2.2 1.3 2.1 1.1 1.2 1.0 3.8 2.0 3.6 1.5 1.5 1.2 4.7 2.3 4.7 2.2 2.0 1.5

Prostate 1.6 2.5 1.9 3.1 1.3 3.9 4.9 4.8 3.4 1.9 3.5 2.4 1.8 3.5 2.6 4.0 4.9 2.9

SMK 3.7 3.8 3.9 1.7 2.7 2.1 2.5 3.0 3.0 4.0 2.4 4.3 3.4 4.1 3.8 3.9 4.8 3.7

Average 2.09 2.22 2.45 3.30 2.83 2.64 2.98 3.06 3.06 2.61 2.85 2.88 2.99 3.07 3.41 3.22 3.80 3.28

Table 5.9: Average ranking of test error (TE), sensitivity (Se) and specificity (Sp) for all data

sets

In a second step, the results in function of the number of features are analyzed. Again, the

same processing is made, in such a way that the average ranking of test error, sensitivity and

specificity for all features are represented in Table 5.10.

On Table 5.10 can be seen how FVQIT classifier outperforms theother methods for all fea-

ture numbers except for 100 features, where it obtains the second best result, behind of MLP. In

light of the above it can be concluded that FVQIT is the most stable classifier because it obtains

good results both with few and many features, in contrast with other classifiers. For instance,

k-NN performs correctly between 15 and 50 features but it does not obtain good results with

smaller numbers (less than 15) and higher ones (100). On the other hand, C4.5 performs ade-

quately with few features but its performance decreases when the number of features increases.

Last, MLP shows stable behavior for all the feature numbers (although it is better for few fea-

tures), but, in average, FVQIT performs better. Besides, FVQIT method is the most sensitive

and specific in average. For further details, please refer to[112].
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No. features FVQIT SVM NB MLP k-NN C4.5

TE Se Sp TE Se Sp TE Se Sp TE Se Sp TE Se Sp TE Se Sp

1 1.7 2.0 1.8 2.9 2.7 2.4 2.4 2.1 2.6 1.9 2.7 2.7 3.6 4.0 3.7 2.3 3.4 2.1

3 2.0 3.1 2.5 2.9 2.9 2.2 2.8 2.8 2.8 2.3 2.7 2.4 3.6 2.9 3.3 2.6 3.6 2.9

5 2.3 1.9 2.6 3.3 3.3 3.1 2.7 3.3 2.8 2.4 3.4 2.4 3.6 3.8 3.8 2.4 3.3 2.8

10 2.3 2.1 2.7 3.3 3.0 2.4 3.0 2.9 3.3 2.8 3.1 3.3 3.2 3.4 3.9 3.2 3.3 3.4

15 2.3 2.8 2.5 3.3 2.9 2.5 3.2 3.3 3.4 2.8 2.7 3.2 3.1 2.7 3.8 3.4 3.2 3.6

20 2.2 2.2 2.6 3.8 2.8 3.2 3.0 3.3 2.8 3.0 3.2 3.2 2.8 2.8 3.3 3.1 3.8 3.1

30 1.8 1.8 2.2 3.3 2.6 2.7 3.3 3.8 3.5 3.2 2.4 3.3 2.6 3.0 3.2 3.7 4.0 3.7

40 2.2 2.4 2.3 3.4 2.8 2.8 2.9 2.8 3.0 2.7 2.7 3.2 2.3 2.7 2.8 3.5 4.2 3.3

50 1.8 1.4 2.6 3.2 2.7 2.5 3.2 3.1 3.2 2.8 3.3 3.2 2.1 2.8 2.6 4.2 5.0 4.1

100 2.3 2.5 2.8 3.5 2.8 2.8 3.3 3.4 3.4 2.1 2.5 2.2 3.1 2.8 3.6 3.8 4.3 3.9

Average 2.09 2.22 2.45 3.30 2.83 2.64 2.98 3.06 3.06 2.61 2.85 2.88 2.99 3.08 3.41 3.22 3.80 3.28

Table 5.10: Average ranking of test error (TE), sensitivity(Se) and specificity (Sp) for all

features

5.3 Extension for the Multiclass Problem

In this section, the previous binary FVQIT algorithm is extended to deal with multiclass sce-

narios. The training process of multiclass FVQIT is very similar to the binary one. In the first

stage of the training process of the binary version, the closest class to each node in each itera-

tion repelled the node and the other class attracted it. In the multiclass version, for each node,

the two nearest classes are chosen using the same k-NN (k-Nearest Neighbor) rule of thumb.

From among them, the closest one repels the node; the second closest one attracts it (Alg. 4);

the other classes have no effect. The rest of the training of the first stage is the same as in

binary FVQIT, employing the two closest classes in order to generate the crossed information

potentials (see Sect. 5.2).

Algorithm 4 Mechanism of selection of the classes that attract and repel
Inputs: Training set, number of classes, distance from eachnode to each data point, number of

neighborsk.

1. For each nodewi,

(a) Sort the data points by increasing Euclidean distance tothe node.

(b) Take the classes of thek closest points and calculate its mode. The mode will be

the repelling class for that node.

(c) Take the classes of thek closest points to each node that do not belong to the

repelling class and calculate its mode. The mode will be the attracting class for that

node.
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In the second stage of the training of binary FVQIT, a one-layer neural network was trained

in each local model. In the multiclass version, instead of just one neural network, we will have

several one-layer neural networks in each local model, eachof them associated with one of

the classes of the problem. In each local model there can exist a variable number of one-layer

neural networks according to the number of classes of the data in that model. Por instance,

if a local model contains one hundred data which belong to four classes, it will have four

associated networks. If another model has two hundred data classified in five classes, it will

have five networks. Thereafter, the training is performed following a one-versus-rest strategy,

that is to say, each neural network is trained to recognize the patterns of “its” class against the

points of the rest of classes.

Once the model is trained, when a new pattern needs to be classified, in binary FVQIT the

pattern was assigned to the nearest local model (using Euclidean distance) and the associated

network classified it into one of the two classes. In multiclass FVQIT, the pattern is assigned

to a local model in the same manner. However, after that, the outputs of the one-layer neural

networks associated to this local model are evaluated.

The pattern is classified in the class associated to the network that produces the highest

output (ci = argmax
j

netj ).

5.3.1 Results of the Multiclass Version

The multiclass version of FVQIT has been applied over several real world data sets. In the

following sections, two experimental studies are described. First, the study over several data

sets from the UCI Machine Learning Repository [8]. Second, and analogously to the previous

binary version, the study over several microarray gene expression data sets.

5.3.1.1 Real Multiclass Data Sets from the UCI Repository

In this subsection, a comparative study in terms of the test error between the proposed classifier

and other representative techniques of the field is performed. These techniques are: k-NN,

Naive Bayes, C4.5, MLP, SVM and Bagging C4.5. The study uses several benchmark data

sets, obtained from the UCI Machine Learning Repository [8], which are shown, along with a

brief description of their main characteristics, on Table 5.11. These data sets have been selected

with the aim of achieving variety of the number of samples, features and classes.
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Data set
Number Number Number

of samples of features of classes

Iris 150 4 3

Wine 178 13 3

Glass Identification 214 9 6

Vowel Recognition 990 10 11

Image Segmentation 2310 18 7

Landstat Satellite 6435 36 6

Letter Recognition 20000 16 26

Table 5.11: Data sets employed in the first experiment of the multiclass version

The methodology utilized for the comparative study is thek-fold cross-validation. In this

work, k= 10 is taken, as recommended by [143]. However, some of these data sets are already

split up in training and test set. In these cases (Vowel Recognition and Landstat Satellite data

sets) this approach is respected and thek-fold cross-validation technique is not used so as to be

able to compare our results with those of other authors. The parameters for SVM and FVQIT

have been tuned up.

Table 5.12 shows the errors committed, in percentage, by each method on each data set.

Best results are enhanced in bold font. The last column showsthe average error committed by

each method in the experimental study. In Table 5.13, it can be observed the ranking for each

method on each comparative of the data sets. The last column of the table shows the average

position of each method in the ranking. In these tables can beseen how FVQIT achieves the

best test error in average and obtains the best average ranking as well.

Classifier Iris Wine Glass Vowel Image Landstat Letter Average

FVQIT 1.33 0.55 26.65 46.10 4.07 11.45 10.16 14.33

Bagging 4.67 3.33 28.82 46.54 2.38 12.90 5.85 14.93

SVM 2.67 0.56 28.40 43.94 3.25 8.55 17.68 15.01

k-NN 4.01 3.33 32.23 49.35 3.38 11.50 3.90 15.39

MLP 3.33 2.25 30.84 51.08 3.94 12.90 17.41 17.39

C4.5 5.33 8.99 34.59 54.76 2.94 15.30 11.94 19.12

Naive Bayes 5.33 2.81 50.04 48.27 19.70 20.50 35.91 26.08

Table 5.12: Error committed (%) by each method on each benchmark data set
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Classifier Iris Wine Glass Vowel Image Landstat Letter Average

FVQIT 1st 1st 1st 2nd 6th 2nd 3rd 2.29

SVM 2nd 2nd 2nd 1st 3rd 1st 6th 2.43

Bagging 5th 6th 3rd 3rd 1st 4th 2nd 3.43

k-nn 4th 5th 5th 5th 4th 3rd 1st 3.86

MLP 3rd 3rd 4th 6th 5th 4th 5th 4.29

C4.5 6th 7th 6th 7th 2nd 6th 4th 5.43

Naive Bayes 6th 4th 7th 4th 7th 7th 7th 6.00

Table 5.13: Ranking for each method on the comparative studyof benchmark data sets

5.3.1.2 Experimental Study over Multiclass Microarray Gene Expression

In this study, five multiclass DNA microarray data sets have been chosen. The main character-

istics of these data sets are shown on Table 5.14. Three of them (CLL-SUB, GLA-BRA and

TOX) have been obtained from the web site of feature selection of the Arizona State University

[88]. The remaining data sets (GCM and Lymphoma) are available at the Broad Institute Can-

cer Program Data Sets Repository [67]. The methods comparedwith FVQIT are the following:

MLP, SVM —note that a one-versus-all strategy is used—, k-NN, NB, and C4.5.

Data set
Number Number Number

of samples of features of classes

CLL-SUB 74 11,340 3

GCM 144 16,063 14

GLA-BRA 120 49,151 4

Lymphoma 64 4,026 9

TOX 114 5,748 4

Table 5.14: Multiclass DNA microarray data sets employed inthe experiment

As can be seen, the multiclass DNA microarray data sets also present many more features

than instances. Therefore, again, feature selection methods are utilized. For this experiment,

the INTERACT filter [157] is applied to those data sets as a preprocessing step in order to make

them manageable. This filter has been previously used with success on binary microarray data

sets [111]. The number of features selected for each data setcan be seen on Table 5.15.
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Data set No. features

CLL-SUB 61

GCM 78

GLA-BRA 150

Lymphoma 160

TOX 80

Table 5.15: Number of features selected by the INTERACT filter

The data sets have been divided using 2/3 for training and 1/3 for testing. Table 5.16

shows the estimated test errors (in percentage) for each classifier and data set.

Classifier CLL-SUB GCM GLA-BRA Lymphoma TOX Average

FVQIT 21.62 45.65 33.33 12.50 12.28 26.41

k-NN 29.73 54.35 41.67 15.63 22.81 32.84

Naive Bayes 27.03 50.00 36.67 40.63 26.32 36.13

SVM 37.84 73.91 48.33 25.00 15.79 40.17

MLP 45.95 39.13 35.00 43.75 38.60 40.49

C4.5 43.24 63.04 55.00 46.88 52.63 52.16

Table 5.16: Error committed (%) by each method on each multiclass DNA microarray data set

A 10-fold cross-validation is performed upon the training sets in order to choose a good

configuration of parameters. The k in the k-NN method ranges from 1 to 5. The SVM utilizes a

Radial Basis Function kernel and its parametersC andγ range from 1 to 10,000 and 0.1 to 40,

respectively. The MLP (Multi-Layer Perceptron) has one hidden layer which contains between

3 and 50 neurons. FVQIT utilizes between 10 and 40 nodes, 100 iterations, initialη between

1 and 5 andη decrement between 0.7 and 0.99.

On Table 5.16 can be seen that FVQIT obtains the best test errors in four out of five data

sets. On table 5.17 a ranking of the performance results for all the compared methods is shown.

The ranking assigns a position between 1 and 6 to each method for each data set. The proposed

method is clearly preferable, as it obtains an average ranking of 1.2 opposed to the ranking of

3.2 of the second classified.
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Classifier CLL-SUB GCM GLA-BRA Lymphoma TOX Average

FVQIT 1st 2nd 1st 1st 1st 1.2

Naive Bayes 2nd 3rd 3rd 4th 4th 3.2

k-NN 3rd 4th 4th 2nd 3rd 3.2

MLP 6th 1st 2nd 5th 5th 3.8

SVM 4th 6th 5th 3rd 2nd 4

C4.5 5th 5th 6th 6th 6th 5.6

Table 5.17: Ranking for each method on the comparative studyof multiclass DNA microarray

data sets

5.4 Summary

In this chapter a local classifier based on ITL is presented. The classifier is able to obtain

complex classification models via a two-step process that first defines local models by means of

a modified clustering algorithm and, subsequently, severalone-layer neural networks, assigned

to the local models, construct a piecewise borderline between classes.

Two versions of the method are detailed: binary (two-class problems) and multiclass. Using

the divide-and-conquer approach, it has been shown that theproposed method is able to suc-

cessfully classify complex and unbalanced data sets, high dimensional in data samples and/or

features, achieving good average results. Several experiments have been performed over the

complex domains of intrusion detection and microarray geneexpression.

The intrusion detection data set employed is KDD Cup 99. It isvery large (five million

samples), highly unbalanced and has forty one features. Themost important contribution of

the method is the considerable reduction in the number of false positives (an important measure

in this field of application), with a drastic reduction in thenumber of features used (6 vs 41) in

comparison with the KDD Winner and the results obtained by other authors.

On the other hand, microarray data sets have a large amount offeatures (thousands or tens

of thousands) but very few samples (tens or hundreds), whichis a difficult challenge for most

machine learning methods. In this case, the method has been compared with several state-

of-the-art classifiers, achieving the best average values of all the performance measurements

used, exhibiting an important difference with the second best method, both in the binary and

the multiclass experiments. Furthermore, as different feature selection methods can select
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different features, the stability of the proposed method has also been tested for different ranges

of features, again showing the best behavior compared with the other classifiers.
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CHAPTER6
Conclusions

In this chapter, on Sect. 6.1, the general conclusions of this dissertation are presented. On Sect.

6.2, the publications in conferences and journals are presented.

6.1 Contributions

This dissertation discusses the application of information theory (IT) and information theoretic

learning (ITL) to classification and feature selection. Thenew algorithms proposed are centered

in two aspects of machine learning: feature selection and classification, with the common aim

of confronting the diversity and heterogeneity of data sets. With that goal in mind, diversity

in the cost of the features and heterogeneity in the samples are treated by the feature selection

methods proposed. Specifically, two new algorithms for feature selection are developed. The

first one takes into account the cost of each feature —besidesits relevance—. The second

algorithm makes use of the concept of ensemble, quite commonfor classification scenarios,

but very little explored in the literature of feature selection. On the other hand, IT and ITL

concepts can be employed as an alternative error function, thus allowing the exploration of

another not very well studied field in the literature: the local modeling approach. Specifically,

a new algorithm for classification is developed. This algorithm is based on the combination

of neural networks by means of local modeling and techniquesbased on ITL, allowing for the

treatment of complex and diverse data sets.

In light of the above, the conclusions obtained are the following:

• Not only features have different relevance/redundance with others and the output class,

but they may also have a different importance regarding (economical, risk, computa-

tional, etc) cost. This last fact has not been explored in thescientific literature. In this

thesis, a new cost-based feature selection method is proposed. The objective is solving
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feature selection problems where reducing costs is important. The approach consists of

adding a new term to the evaluation function of mRMR —an information theory based

feature selection method— so that it is possible to reach a trade-off between the filter

metric and the cost associated to the selected features. Results display that the approach

is sound and allows the user to reduce the cost without compromising the classification

error significantly, which can be useful in fields such as medical diagnosis or real-time

applications.

• Diversity and heterogeneity in data sets prevents the usersof FS of having a “best”

method, and thus it can be hard to cope with all available onesto select the most ad-

equate for each scenario. Trying to solve this problem, in this thesis an ensemble for

feature selection is designed. Two ways of building ensembles are explored: (a) N se-

lections using the same feature selection algorithm, usingdifferent training data and (b)

N selections using a variety of different feature selectionalgorithms, all using the same

training data. The particularity of the proposed ensemble is that it works with ordered

rankings of features, which is a natural approach for feature selection methods. The indi-

vidual rankings obtained for each of the packages were combined using ranking function

learning, Ranking SVM in particular. Option (a) improves training times over the indi-

vidual feature selection methods, while maintaining errors. Option (b) obtains the best

average results regardless of the data set and thresholds chosen.

• Finally, the complexity and heterogeneity of data sets makes it difficult for a global ma-

chine learning approach to work properly. In this thesis, a new local classifier based on

ITL is presented. The classifier is able to obtain complex classification models via a

two-step process. This process first defines local models by means of a modified clus-

tering algorithm and, second, trains several one-layer neural networks, assigned to the

local models, in order to construct a piecewise borderline between classes. It has been

shown that the proposed method is able to successfully classify complex and unbalanced

data sets, high dimensional in data samples and/or features, achieving good average re-

sults. Several experiments have been performed over the complex domains of intrusion

detection and microarray gene expression.

The following lines of research are proposed as future work:

• Extend the feature selection cost framework developed for mRMR to other feature se-

lection methods.

• Experiment with other methods of ranking function learningfor ensembles of feature
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selection, in such a way that the ensemble gets more diversity and is able to handle better

different types of data sets.

• Automatic estimation of parameters for FVQIT.

• Employ other algorithms than the one-layer neural network for the local models of

FVQIT.

6.2 Publications

As a consequence of the research performed in this thesis, the following publications have been

produced.

6.2.1 Journals

• Porto-Dı́az, Iago and Bolón-Canedo, Verónica and Alonso-Betanzos, Amparo and Fon-

tenla-Romero, Oscar.A Study of Performance on Microarray Data Sets for a Classifier

Based on Information Theoretic Learning. Neural Networks (vol. 24, pp. 888–896,

2011)

• Porto-Dı́az, Iago and Martı́nez-Rego, David and Alonso-Betanzos, Amparo and Fontenla-

Romero, Oscar.Information Theoretic Learning and Local Modeling for Binary and

Multiclass Classification. Progress in Artificial Intelligence (vol. 1, no. 4, pp. 315–328,

2012)

• Bolón-Canedo, Verónica and Porto-Dı́az, Iago and Sánchez-Maroño, Noelia and Alonso-

Betanzos, Amparo.A Framework for Cost-Based Feature Selection. Pattern Recognition

(vol. 47, no. 7, pp. 2481–2489, 2014)

6.2.2 Conferences

• Martı́nez-Rego, David and Fontenla-Romero, Oscar and Alonso-Betanzos, Amparo and

Porto-Dı́az, Iago.A New Supervised Local Modelling Classifier Based on Information

Theory. Proceedings of International Joint Conference on Neural Networks (IJCNN)

2009 (pp. 2014–2020, 2009)
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• Porto-Dı́az, Iago and Martı́nez-Rego, David and Alonso-Betanzos, Amparo and Fontenla-

Romero, Oscar.Combining Feature Selection and Local Modelling in the KDD Cup 99

Data set. Proceedings of the International Conference on ArtificialNeural Networks

(ICANN) 2009 (pp. 824–833, 2009)

• Porto-Dı́az, Iago and Bolón-Canedo, Verónica and Fontenla-Romero, Oscar and Alonso-

Betanzos, Amparo.Local Modeling Classifier for Microarray Gene-Expression Data.

Proceedings of the International Conference on Artificial Neural Networks (ICANN)

2010 (pp. 11-20, 2010)

• Porto-Dı́az, Iago and Alonso-Betanzos, Amparo and Fontenla-Romero, Oscar.A Mul-

ticlass Classifier Based on Local Modeling and Information Theoretic Learning. Pro-

ceedings of the Conferencia de la Asociación Española para la Inteligencia Artificial

(CAEPIA) 2011.

• Seijo-Pardo, Borja and Bolón-Canedo, Verónica and Porto-Dı́az, Iago and Alonso-Be-

tanzos, Amparo.Ensemble Feature Selection for Rankings of Features. Advances in

Computational Intelligence. Lecture Notes in Computer Science Vol. 9095. Proceedings

of the 14th International Work Conference on Artificial Neural Networks (IWANN) (pp.

29–42, 2015)
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APPENDIX I
Summary in English

Machine learning is the area of artificial intelligence and computer science that studies algo-

rithms that can learn from data, make predictions, and develop behaviors based on examples.

The types of problems machine learning can solve are [15]: (a) classification, where the al-

gorithm must assign unseen inputs to a series of classes; (b)regression, where the focus is

predicting a continuous output; (c) clustering, where inputs must be classified into unknown

groups, unlike classification; (d) density estimation, where the goal is finding the distribution

of a set of inputs; and (e) dimensionality reduction, where inputs are simplified by mapping

them to lower dimensional spaces. These tasks can also be classified, according to the nature

of available learning data, in (a) supervised learning, where a set of known patterns are used for

training; (b) unsupervised learning, where the objective is to unravel the underlying similari-

ties between data; and (c) reinforcement learning, where the environment provides information

about the goodness of the learning.

In supervised classification, the problem in which this thesis is focused, the mean squared

error (MSE) is the measure that is typically utilized for evaluating the estimations made by the

algorithms. However, the use of cost functions based on second-order moments (MSE) suffers

from the limitation of the inherent Gaussian hypothesis. Inthis dissertation, this impediment is

avoided by using a computationally-efficient model, based on information-theoretic descriptors

of entropy, divergence and mutual information, combined with non-parametric PDF estimators.

This brings robustness and generality to the cost function.This model is called Information

Theoretic Learning (ITL) [116, 115]. As entropy is defined asthe uncertainty of a random

variable, it is natural to use it as a tool for applications where the data are incomplete or noisy.

The use of information theory (IT) and ITL in this thesis is twofold: (1) On the one hand, IT

is used for the preprocessing step of a data mining pipeline.Specifically, two new algorithms

for feature selection are developed. The first one takes intoaccount the cost (computational,

economic, etc.) of each feature —besides its relevance—. This fact is important due to the

possibility of obtaining similar or better performances while reducing the associated cost. The

85



Appendix I. Summary in English

second algorithm makes use of the concept of ensemble, quitecommon for classification sce-

narios, but very little explored in the literature of feature selection. In this case, the aim is

obtaining more stable results than using a single feature selection method and also improving

the computational efficiency of the training process by means of distributed computing. (2)

On the other hand, IT and ITL concepts can be employed as an alternative error function, thus

allowing the exploration of another not very well studied field in the literature: the local mod-

eling approach. Specifically, a new algorithm for classification is developed. This algorithm is

based on the combination of neural networks by means of localmodeling and techniques based

on ITL.

I.1 Cost Feature Selection Based on Information Theory

The first part of this dissertation presents a new method for cost-based feature selection. Over

the last few years, the dimensionality of data sets involvedin data mining applications has in-

creased dramatically. In this situation, feature selection becomes indispensable as it allows for

dimensionality reduction and relevance detection. The method proposed in this part broadens

the scope of feature selection by taking into considerationnot only the relevance of the fea-

tures but also their associated costs. Despite the previousattempts in classification and feature

extraction, to the best knowledge of the author, there are only a few attempts to deal with this

issue in feature selection. A new framework is proposed, which consists of adding a new term

to the evaluation function of a filter method called Minimal Redundancy Maximal Relevance

(mRMR), so that cost is taken into account. mRMR is one of the most employed multivariate

ranker filters, due to obtaining good results in several fields. The evaluation function com-

bines two constraints (as the name of the method indicates),maximal relevance and minimal

redundancy.

In light of the above, the novelty of this approach lies in that the research in cost-based

selection is extremely scarce in the literature. As a matterof fact, no cost methods can be

found in the most popular machine learning and data mining tools. For instance, in Weka we

can only find some methods that address the problem of cost associated to the instances (not to

the features), and they were incorporated in the latest release. RapidMiner does in fact include

some methods that take cost into account, but they are quite simple. One of them selects the

attributes that have a cost value which satisfies a given condition and another one just selects the

k attributes with the lower cost. Therefore, the cost-based feature selection method proposed

in this thesis intends to cover this necessity. The behaviorof the proposed method is tested

on 17 heterogeneous classification data sets, employing a Support Vector Machine (SVM) as
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a classifier. The results of the experimental study show thatthe approach is sound and that it

allows the user to reduce the cost without compromising the classification error.

I.2 Ensemble Method for Feature Selection Based on Ranking

Learning

The second part introduces a new ensemble for feature selection. In the last few years, ensem-

ble learning has been the focus of much attention mainly in classification tasks, based on the

assumption that combining the output of multiple experts isbetter than the output of any single

expert. This idea of ensemble learning can be adapted for feature selection, in which different

feature selection algorithms act as different experts. In this part, two problems are addressed:

(1) the non-existence of a “best” method, which causes that the user has to search and choose

a specific method for each problem; (2) the heterogeneity of data sets, which makes it difficult

to obtain good results with one single method.

Machine learning methods have come to be a necessity for manycompanies, in order to

obtain useful information and knowledge from their increasingly massive databases. Besides,

real life data sets come in diverse flavors and sizes, and so their nature imposes several sub-

stantial restrictions for both learning models and featureselection algorithms. Data sets may

be very large in samples and number of features and, also, there might be problems with redun-

dant, noisy, multivariate and non-linear scenarios. Thus,most methods alone are not capable

of confronting these problems, and something like “the bestfeature selection method” simply

does not exist, making it difficult for users to select one method over another. In order to make

a correct choice, a user not only needs to know the domain welland the characteristics of each

data set, but also is expected to understand technical details of available algorithms. As ex-

perts of this type are not universally available, more user-friendly methods are necessary. In

this sense, a possible way to confront this situation is to use an ensemble of feature selection

algorithms, which is the idea proposed in this chapter. Specifically, methods that follow the

ranking approach are used, i.e., they return an ordered ranking of all the features. Notice that

methods that return a ranking of features are less computationally expensive than those which

return a subset of selected features, and this is of vital importance when the current tendency is

toward Big Data problems. Then, the outputs of all the components of the ensemble have to be

combined in order to produce a common final output. The ensemble proposed in this chapter

combines these rankings using Ranking SVM, which is a SVM-based method for learning of

ranking functions.
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Two ways of building ensembles are explored: (a) N selections using the same feature

selection algorithm, using different training data and (b)N selections using a variety of different

feature selection algorithms, all using the same training data. The adequacy of the ensemble

is tested using SVM as a classifier. Both options are able to obtain good results. Option (a)

improves training times over the individual feature selection methods, while maintaining errors.

Option (b) obtains the best average results regardless of the data set and thresholds chosen.

I.3 Local Method for Classification Based on Information Theo-

retic Learning

The third part is dedicated to the development of a new local classification method, named

Frontier Vector Quantization based on IT(FVQIT). The general aim, however, is the same:

trying to confront diversity in data sets through the application of new ideas based on IT. The

proposed algorithm performs classification based on the combination of neural networks by

means of local modeling and techniques based on ITL. First, amodified ITL clustering algo-

rithm is applied in order to identify the local models. Second, since the problem is simplified

by splitting it into smaller parts, a simple but effective model, the one-layer neural network, is

applied. This approach is related to the one followed in the previous chapter, which dealt with

ensemble learning applied to feature selection.

More specifically, the training algorithm for the model works on two stages:

1. A set of nodes are placed on the frontiers between classes using a modified clustering

algorithm based on ITL. Each of these nodes defines a local model. The algorithm min-

imizes the energy function that calculates the divergence between the Parzen estimator

of the distribution of data points and the estimator of the distribution of the nodes. Un-

der this premise, a physical interpretation can be made. Both data points and nodes

are considered two kinds of particles with a potential field associated. These fields in-

duce repulsive and attractive interactions between particles, depending on its sign. In the

original VQIT algorithm, data and nodes had different signs. In FVQIT, data particles

belonging to different classes have different signs. In this manner, a series of forces con-

verge upon each node. Training patterns of a class exert an attractive force on a node and

training patterns of the other class induce a repulsive force on it. Which class attracts and

which class repels is decided using the Euclidean distance and k-NN (k-Nearest Neigh-

bor) [28] as a rule of thumb. The closest class to the node (called ’own class’) repels it
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and the furthest one attracts it. These roles alternate during the iterations as nodes move.

Moreover, there exists a third force of repulsion between the nodes, which favors a better

distribution, avoiding the accumulation of several nodes at the same region.

2. Several one-layer neural networks, associated with these local models, are trained to lo-

cally classify the points in its proximity. Since each localmodel covers the closest points

to the position of its associated node, the input space is completely filled, as input data

are always assigned to a local model. In this second stage, the goal is to construct a clas-

sifier for each local model. This classifier will be in charge of classifying points in the

region assigned to its local model and will be trained only with the points of the training

set in this region. As local modeling algorithms may suffer from temporal efficiency

problems, caused by the process of training several local classifiers, we have decided to

use a lightweight classifier, the one-layer neural network.Its training algorithm allows

rapid supervised training. The key idea is to measure the error prior to the nonlinear acti-

vation functions. In this manner, the minimization based onthe MSE can be rewritten in

equivalent fashion in terms of the error committed prior to the application of the activa-

tion function, which produces a system of equations withI +1 equations and unknowns,

beingI the dimension of the input. This kind of systems can be solvedcomputationally

with a complexity ofO(M2), whereM = I +1 is the number of weights of the network.

Thus, it requires much less computational resources than classic methods.

The FVQIT method is successfully applied to problems with a large amount of instances

and high dimension like intrusion detection and microarraygene expression. The intrusion

detection data set employed is KDD Cup 99. It is very large (five million samples), highly

unbalanced and has forty one features. The most important contribution of the method is the

considerable reduction in the number of false positives (animportant measure in this field of

application), with a drastic reduction in the number of features used (6 vs 41), in comparison

with results obtained by other authors.

Microarray gene expression is a technology that allows the examination of tens of thou-

sands of genes at a time. For this reason, manual observationis not feasible and machine learn-

ing methods are suitable to face these types of data. Specifically, since the number of genes

is very high, feature selection methods have proven valuable to deal with these unbalanced

—-high dimensionality and low cardinality–– data sets. Theproposed classifier is employed to

classify twelve DNA gene expression microarray data sets ofdifferent kinds of cancer. A com-

parative study with other well-known classifiers is performed. The proposed approach shows

competitive results outperforming all other classifiers.
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I.4 Structure

This thesis consists of the following chapters:

1. Chapter 1 presents the introduction, objectives, and structure of the thesis.

2. Chapter 2 introduces the domain of the research: information theory, information theo-

retic learning, and its applications in feature selection and classification.

3. Chapter 3 describes a new cost-based feature selection method.

4. Chapter 4 introduces a new ensemble method for feature selection, based in ranking

learning.

5. Chapter 5 presents a new classification method based on thecombination of neural net-

works by means of Information Theoretic Learning tools.

6. Chapter 6 summarizes the obtained contributions and conclusions and the produced pub-

lications.

I.5 Objectives

The objectives for each of the three main parts of this thesisare the following:

1. Cost-based feature selection.

• Solve problems where not only it is interesting to minimize the classification error,

but also to reduce costs that may be associated to input features.

• Obtain a trade-off between a feature selection metric and the cost associated to

the features, in order to select relevant features with a lowassociated cost, while

keeping the classification accuracy.

2. Ensemble learning for feature selection.

• Combine ordered rankings of features which are obtained from base selectors.

• Achieve an improvement in the overall computational performance of the feature

selection process, while maintaining the classification accuracy.
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• Release the user from the task of deciding which feature selection method is the

most appropriate, while maintaining the classification accuracy.

3. Local classification based on information theoretic learning.

• Build complex classification models for two-class and multiclass problems. Those

models are composed of several simpler neural network sub-models.

• Achieve an improvement of classification performance on real problems.

I.6 Conclusions

The conclusions obtained are the following:

• Not only features have different relevance/redundance with others and the output class,

but they may also have a different importance regarding (economical, risk, computa-

tional, etc) cost. This last fact has not been explored in thescientific literature. In this

thesis, a new cost-based feature selection method is proposed. The objective is solving

feature selection problems where reducing costs is important. The approach consists of

adding a new term to the evaluation function of mRMR —an information theory based

feature selection method— so that it is possible to reach a trade-off between the filter

metric and the cost associated to the selected features. Results display that the approach

is sound and allows the user to reduce the cost without compromising the classification

error significantly, which can be useful in fields such as medical diagnosis or real-time

applications.

• Diversity and heterogeneity in data sets prevents the usersof FS of having a “best”

method, and thus it can be hard to cope with all available onesto select the most ad-

equate for each scenario. Trying to solve this problem, in this thesis an ensemble for

feature selection is designed. Two ways of building ensembles are explored: (a) N se-

lections using the same feature selection algorithm, usingdifferent training data and (b)

N selections using a variety of different feature selectionalgorithms, all using the same

training data. The particularity of the proposed ensemble is that it works with ordered

rankings of features, which is a natural approach for feature selection methods. The indi-

vidual rankings obtained for each of the packages were combined using ranking function

learning, Ranking SVM in particular. Option (a) improves training times over the indi-

vidual feature selection methods, while maintaining errors. Option (b) obtains the best

average results regardless of the data set and thresholds chosen.
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• Finally, the complexity and heterogeneity of data sets makes it difficult for a global clas-

sification approach to work properly. In this thesis, a new local classifier based on ITL

is presented. The classifier is able to obtain complex classification models via a two-step

process. This process first defines local models by means of a modified clustering algo-

rithm and, second, trains several one-layer neural networks, assigned to the local models,

in order to construct a piecewise borderline between classes. It has been shown that the

proposed method is able to successfully classify complex and unbalanced data sets, high

dimensional in data samples and/or features, achieving good average results. Several

experiments have been performed over the complex domains ofintrusion detection and

microarray gene expression.

I.7 Future work

The following lines of research are proposed as future work:

• Extend the feature selection cost framework developed for mRMR to other feature se-

lection methods.

• Experiment with other methods of ranking function learningfor ensembles of feature

selection, in such a way that the ensemble gets more diversity and is able to handle better

different types of data sets.

• Automatic estimation of parameters for FVQIT.

• Employ other algorithms than the one-layer neural network for the local models of

FVQIT.

I.8 Publications

As a consequence of the research performed in this thesis, the following publications have been

produced.
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APPENDIX II
Resumen en castellano

El aprendizaje automático es el área de la inteligencia artificial y de la computación que estudia

algoritmos que pueden aprender a partir de datos, hacer predicciones y desarrollar comporta-

mientos basados en ejemplos. Los tipos de problemas que el aprendizaje automático puede

resolver son [15]: (a) clasificación, donde el algoritmo debe asignar nuevas entradas a una serie

de clases; (b) regresión, donde el objetivo es predecir unasalida continua; (c) agrupamiento

(clustering), donde las entradas deben ser clasificadas en grupos desconocidos, al contrario

que clasificación; (d) estimación de densidad, donde el objetivo es encontrar la distribución

de un conjunto de entradas y (e) reducción de la dimensión,donde las entradas se simplifican

mediante el mapeo a espacios de menor dimensión. Estas tareas pueden también ser clasifi-

cadas, de acuerdo a la naturaleza de los datos de aprendizajedisponibles, en (a) aprendizaje

supervisado, donde un conjunto de patrones conocidos se utiliza para el entrenamiento; (b)

aprendizaje no supervisado, donde el objetivo es desentra˜nar las similitudes subyacentes entre

datos y (c) aprendizaje por refuerzo, donde es el entorno el que proporciona información sobre

la efectividad del aprendizaje.

En la clasificación supervisada, el problema en el que se centra esta tesis, el error cuadrático

medio (ECM) es la medida que se utiliza tı́picamente para evaluar los estimadores construidos

por los algoritmos. Sin embargo, el uso de funciones de costebasadas en momentos de segundo

orden (ECM) sufre de la limitación de la hipótesis gaussiana inherente. En este trabajo, este

impedimento se evita usando un modelo computacionalmente eficiente, basado en descriptores

de la entropı́a, divergencia e información mutua de teorı́a de la información, combinados con

estimadores no paramétricos de la función de densidad de probabilidad. Esto aporta robustez

y generalidad a la función de coste. Este modelo se denominaInformation Theoretic Learning

(ITL) [116, 115]. Como la entropı́a se define como la incertidumbre de una variable aleatoria,

es natural utilizarla como una herramienta para aplicaciones donde los datos son incompletos

o presentan ruido.

El uso de teorı́a de la información (IT) e ITL en esta tesis sedesglosa en dos partes: (1)

en primer lugar, IT se utiliza para la fase de preprocesado. Especı́ficamente, se desarrollan
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dos nuevos algoritmos para selección de caracterı́sticas. El primero tiene en cuenta el coste

(computacional, económico, etc.) de cada caracterı́stica (además de su relevancia). Este detalle

es importante debido a la posibilidad de obtener rendimientos similares o mejores mientras se

reduce el coste asociado. El segundo algoritmo hace uso del concepto deensemble, bastante

común en escenarios de clasificación, pero muy poco explorado en la literatura de selección

de caracterı́sticas. En este caso, el objetivo es obtener resultados más estables que los que

se obtienen utilizando un método único de selección de caracterı́sticas y también mejorar la

eficiencia computacional del proceso de entrenamiento por medio de computación distribuida.

(2) Por otra parte, los conceptos de IT e ITL se pueden utilizar como una función de error

alternativa, permitiendo la exploración de otro campo no muy estudiado en la literatura: la

aproximación basada en modelos locales. Especı́ficamente, se desarrolla un nuevo algoritmo

para clasificación, el cual está basado en la combinaciónde redes de neuronas por medio de

modelado local y técnicas basadas en ITL.

II.1 Seleccíon de caracteŕısticas con coste basada en teorı́a de la

informaci ón

La primera parte de esta tesis presenta un nuevo método paraselección de caracterı́sticas con

coste. A lo largo de los últimos años, la dimensión de los conjuntos de datos que se utilizan en

minerı́a de datos ha aumentado dramáticamente. En esta situación, la selección de caracterı́sti-

cas se convierte en indispensable, ya que permite reducir ladimensión detectando relevancia.

El método propuesto en esta parte ampĺıa el ámbito de la selección de caracterı́sticas teniendo

en consideración no solo la relevancia de las caracterı́sticas, sino también sus costes asociados.

A pesar de que existen intentos previos en clasificación y extracción de caracterı́sticas, exis-

ten pocos intentos para tratar con este problema en selecci´on de caracterı́sticas. Se propone un

nuevoframework, que consiste en añadir un nuevo término a la función de evaluación de un

método filtro de selección de caracterı́sticas llamadoMinimal Redundancy Maximal Relevance

(mRMR), de tal manera que el coste se tenga en cuenta. mRMR es uno de los filtros multivaria-

dos más utilizados, debido a la obtención de buenos resultados en varios campos. La función de

evaluación combina dos restricciones (como el propio nombre del método indica), relevancia

máxima y mı́nima redundancia.

A la luz de lo anterior, la novedad de esta aproximación radica en que la investigación en

selección de caracterı́sticas con coste es extremadamente escasa en la literatura. De hecho, las

herramientas de aprendizaje automático y minerı́a de datos más habituales no incluyen ningún
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método para tratar con coste. Por ejemplo, enWekasolo se pueden encontrar algunos métodos

que abordan el problema del coste asociado a las muestras (noa las caracterı́sticas), y fueron

añadidos en la última versión.RapidMinerde hecho incluye algunos métodos que tienen el

coste en cuenta, pero son bastante simples. Uno de ellos tan solo selecciona losk atributos con

el coste más bajo. Por lo tanto, el método de selección de caracterı́sticas con coste propuesto en

esta tesis pretende cubrir esta necesidad. El comportamiento del método propuesto se prueba

en 17 conjuntos heterogéneos de clasificación, empleandouna máquina de vectores soporte

(SVM) como clasificador. Los resultados del estudio experimental realizado muestran que la

aproximación es sólida y que permite al usuario reducir elcoste sin comprometer el error de

clasificación.

II.2 M étodoensemble para seleccíon de caracteŕısticas basado en

aprendizaje de rankings

La segunda parte presenta un nuevoensemblepara selección de caracterı́sticas. En los últimos

años, el aprendizaje basado enensemblesha sido el foco de mucha atención, principalmente en

tareas de clasificación, centrándose en el supuesto de quecombinar la salida de varios expertos

es mejor que la salida de un único experto. Esta idea del aprendizajeensemblese puede adaptar

para selección de caracterı́sticas, en la que diferentes algoritmos de selección actúan como

diferentes expertos. En esta parte, se abordan dos problemas: (1) la no existencia de un método

“mejor”, lo que provoca que el usuario tenga que buscar y elegir un método especı́fico para

cada problema; (2) la heterogeneidad de los conjuntos de datos, que hace que sea difı́cil obtener

buenos resultados con un único método.

Los métodos de aprendizaje automático se han convertido en una necesidad para muchas

empresas para obtener información y conocimiento útil a partir de sus masivas bases de datos.

Además, los conjuntos de datos de la vida real se presentan en muchas formas y tamaños, por

lo que su naturaleza impone varias restricciones substanciales tanto para modelos de aprendi-

zaje como para algoritmos de selección de caracterı́sticas. Los conjuntos de datos pueden ser

muy grandes y de alta dimensión y también puede haber problemas con escenarios redundan-

tes, ruidosos, multivariados y no lineales. Ası́, la mayor´ıa de los métodos por sı́ solos no son

capaces de enfrentarse a estos problemas, y algo como el “mejor método de selección de carac-

terı́sticas” simplemente no existe, haciendo difı́cil para los usuarios la elección de un método

sobre otros. Con idea de hacer una elección correcta, un usuario no solo necesita conocer bien

el dominio y caracterı́sticas de cada conjunto de datos, sino que también debe entender detalles
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técnicos de los algoritmos disponibles. Ya que los expertos de este tipo no están universalmente

disponibles, son necesarios más métodos amigables con elusuario. En este sentido, un posi-

ble modo de enfrentarse a esta situación es utilizar unensemblede algoritmos de selección de

caracterı́sticas, y esa es la idea propuesta en este capı́tulo. Especı́ficamente, se utilizan méto-

dos que siguen la aproximación ranking, es decir, que devuelven una lista ordenada de todas

las caracterı́sticas. Nótese que los métodos que se comportan de esta manera son más baratos

computacionalmente que aquellos que devuelven un subconjunto de caracterı́sticas selecciona-

das, y esto es de vital importancia cuando la tendencia actual va hacia grandes conjuntos de

Big Data. Entonces, las salidas de todos los componentes delensembletienen que combinarse

para producir una salida final común. Elensemblepropuesto en esta parte de la tesis combina

estos rankings utilizandoRanking SVM, que es un método basado en SVM para el aprendizaje

de funciones ranking.

Se exploran dos formas de construirensembles: (a) N selecciones utilizando el mismo al-

goritmo de selección de caracterı́sticas, con diferentesdatos y (b)N selecciones utilizando una

variedad de métodos de selección de caracterı́sticas, con los mismos datos de entrenamiento.

La idoneidad de esta aproximación se prueba utilizando unaSVM como clasificador. Ambas

opciones obtienen buenos resultados. La opción (a) mejoralos tiempos de entrenamiento sobre

los obtenidos por los métodos de selección individuales,manteniendo los errores. La opción (b)

obtiene los mejores resultados medios independientementedel conjunto de datos y umbrales

elegidos.

II.3 M étodo local de clasificacíon basado en ITL

La tercera parte se dedica al desarrollo de un nuevo método de clasificación local, denominado

Frontier Vector Quantization based on IT(FVQIT). El objetivo general, sin embargo, es el

mismo: intentar enfrentarse a la diversidad en los conjuntos de datos a través de la aplicación

de nuevas ideas basadas en TI. El algoritmo propuesto lleva acabo tareas de clasificación me-

diante de la combinación de redes de neuronas utilizando t´ecnicas de modelado local y basadas

en ITL. En primer lugar, se aplica un algoritmo de agrupamiento (clustering) modificado para

identificar los modelos locales. En segundo lugar, dado que el problema se simplifica al divi-

dirlo en partes más pequeñas, se aplica un modelo simple pero efectivo, la red de neuronas de

una sola capa. Esta aproximación se relaciona con la seguida en la parte anterior, que trataba

con aprendizajeensembleaplicado a selección de caracterı́sticas.

98



II.3 Método local de clasificación basado en ITL

Más en detalle, el algoritmo de entrenamiento para el modelo trabaja en dos fases:

1. Se sitúa un conjunto de nodos en las fronteras entre clases utilizando un algoritmo de

agrupamiento basado en ITL modificado. Cada uno de estos nodos define un modelo

local. El algoritmo minimiza la función de energı́a que calcula la divergencia entre el

estimador de Parzen de la distribución de los datos y el estimador de la distribución de

los nodos. Bajo esta premisa, se puede hacer una interpretación fı́sica. Tanto los datos

como los nodos se consideran dos tipos de partı́culas con un campo potencial asociado.

Estos campos inducen interacciones repulsivas y atractivas entre partı́culas, en función

de su signo. En FVQIT, los datos que pertenecen a distintas clases tienen diferente signo.

De este modo, una serie de fuerzas convergen sobre cada nodo.Los patrones de entrena-

miento de una clase ejercen una fuerza atractiva sobre un nodo, mientras que los patrones

de entrenamiento de la otra clase inducen una fuerza repulsiva sobre él. Qué clase atrae

y qué clase repele se decide utilizando la distancia eucĺıdea y el algoritmok-Nearest

Neighbor(k-NN) [28]. La clase más cercana al nodo (llamada la “clasepropia”) lo repe-

le y la clase más lejana lo atrae. Estos roles se alternan durante las iteraciones, mientras

los nodos se mueven. Además, existe una tercera fuerza de repulsión entre los nodos, la

cual favorece una mejor distribución, evitando la acumulación de varios nodos en una

misma región.

2. Se entrenan varias redes de neuronas de una sola capa, asociadas con estos modelos lo-

cales, para clasificar localmente los datos en su proximidad. Dado que cada modelo local

cubre los puntos más cercanos a la posición de su nodo asociado, el espacio de entrada

está completamente cubierto, ya que los datos de entrada siempre se asignan a un mode-

lo local. En esta segunda fase, el objetivo es construir un clasificador para cada modelo

local. Este clasificador se encarga de clasificar datos en la región asignada a su mode-

lo local y se entrena con solo los datos del conjunto de entrenamiento en esta región.

Como los algoritmos de modelado local pueden tener problemas de eficiencia temporal,

causados por el proceso de entrenar varios clasificadores locales, se ha decidido utilizar

un clasificador ligero, las redes de una sola capa. Su algoritmo de entrenamiento per-

mite un rápido entrenamiento supervisado. La idea clave esmedir el error a priori de

las funciones de activación no lineales. De esta manera, laminimización basada en el

ECM puede ser reescrita de forma equivalente en términos del error cometido a priori,

lo que produce un sistema de ecuaciones conI +1 ecuaciones e incógnitas, siendoI la

dimensión de la entrada. Este tipo de sistemas se pueden resolver computacionalmente

con una complejidad deO(M2), dondeM = I +1 es el número de pesos de la red. Ası́, se

requieren muchos menos recursos computacionales que los que requieren otros métodos

clásicos.
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El método FVQIT se aplica con éxito a problemas con una grancantidad de muestras y

alta dimension como detección de intrusos y expresión génica microarray (microarray gene

expression). El conjunto de datos de detección de intrusos es el KDD Cup99. Es muy grande

(cinco millones de muestras), muy desbalanceado y tiene 41 caracterı́sticas. La contribución

más importante del método propuesto es la reducción considerable del número de falsos po-

sitivos (una medida importante en este campo de aplicación), con una reducción drástica del

número de caracterı́sticas utilizadas (seis contra 41), en comparación con resultados obtenidos

por otros autores.

La expresión génicamicroarray(microarray gene expression) es una tecnologı́a que permi-

te examinar decenas de miles de genes al mismo tiempo. Por esta razón, la observación manual

no es factible y los métodos de aprendizaje automático sonadecuados para enfrentarse a este

tipo de datos. Especı́ficamente, ya que el número de genes esmuy alto, los métodos de selec-

ción de caracterı́sticas han demostrado ser valiosos paratratar con estos conjuntos de datos tan

desbalanceados (alta dimensión y poca cardinalidad). El clasificador propuesto se utiliza para

clasificar doce conjuntos de datosmicroarray de diferentes tipos de cáncer. Se lleva a cabo

un estudio comparativo con otros clasificadores comunes. Laaproximación propuesta muestra

resultados competitivos, consiguiendo mejores resultados que todos los demás clasificadores.

II.4 Estructura

Esta tesis consta de los siguientes capı́tulos:

1. El capı́tulo 1 presenta la introducción, objetivos y estructura de la tesis.

2. El capı́tulo 2 presenta el dominio de la investigación: teorı́a de la información,informa-

tion theoretic learningy sus aplicaciones en selección de caracterı́sticas y clasificación.

3. El capı́tulo 3 describe un nuevo método de selección de caracterı́sticas con coste.

4. El capı́tulo 4 presenta un nuevo métodoensemblepara selección de caracterı́sticas, ba-

sado en aprendizajeranking.

5. El capı́tulo 5 presenta un nuevo método de clasificaciónbasado en la combinación de

redes de neuronas por medio de herramientas deinformation theoretic learning.

6. El capı́tulo 6 resume las contribuciones y conclusiones obtenidas y las publicaciones

producidas.
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II.6 Conclusiones

II.5 Objetivos

Los objetivos para cada una de las tres partes principales deesta tesis son los siguientes:

1. Selección de caracterı́sticas basada en coste.

• Resolver problemas donde no solo es interesante minimizar el error de clasifica-

ción, sino también reducir costes que pueden estar asociados a las caracterı́sticas

de entrada.

• Obtener una compensación entre una métrica de selecciónde caracterı́sticas y el

coste asociado a las caracterı́sticas, para seleccionar caracterı́sticas relevantes con

un coste bajo asociado, mientras se mantiene la precisión de la clasificación.

2. Aprendizajeensemblepara selección de caracterı́sticas.

• Combinar rankings ordenados de caracterı́sticas que se obtienen a partir de selec-

tores base.

• Obtener una mejora en el rendimiento computacional del proceso de selección de

caracterı́sticas, manteniendo la precisión en la clasificación.

• Liberar al usuario de la tarea de decidir qué método de selección de caracterı́sticas

es el más apropiado, mientras se mantiene la precisión en la clasificación.

3. Clasificación local basada eninformation theoretic learning.

• Construir modelos de clasificación complejos para problemas de dos clases y mul-

ticlase. Estos modelos se componen de varios submodelos de redes neuronales más

simples.

• Lograr una mejora en el rendimiento en clasificación en problemas reales.

II.6 Conclusiones

Las conclusiones obtenidas son las siguientes:

• No solo las caracterı́sticas tienen diferente relevancia/redundancia con otras y con la

clase de salida, sino también pueden tener una diferente importancia en función de su
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coste (económico, computacional, riesgo, etc.). Este último hecho no ha sido explora-

do en la literatura cientı́fica. En esta tesis, se propone un nuevo método de selección de

caracterı́sticas basado en coste. El objetivo es resolver problemas de selección de ca-

racterı́sticas donde reducir costes es importante. La aproximación consiste en añadir un

nuevo término a la función de evaluación de mRMR (un método de selección de carac-

terı́sticas basado en teorı́a de la información), de tal modo que es posible alcanzar una

compensación entre la métrica del método y el coste asociado con las caracterı́sticas se-

leccionadas. Los resultados obtenidos muestran que la aproximación es sólida y permite

al usuario reducir el coste sin comprometer significativamente el error de clasificación, lo

cual puede ser útil en campos como el diagnóstico médico olas aplicaciones en tiempo

real.

• La diversidad y la heterogeneidad de los conjuntos datos impide que los usuarios de

selección de caracterı́sticas dispongan de un “mejor” método. En consecuencia, puede

ser difı́cil enfrentarse con todos los disponibles para seleccionar el más adecuado para

cada escenario. Con la intención de resolver este problema, en esta tesis se diseña un

ensemblepara selección de caracterı́sticas. Se exploran dos maneras de construirensem-

bles: (a)N selecciones utilizando el mismo algoritmo de selección decaracterı́sticas con

diferentes datos de entrenamiento y (b)N selecciones utilizando una variedad de algorit-

mos de selección de caracterı́sticas, todos ellos con los mismos datos de entrenamiento.

La particularidad delensemblepropuesto es que trabaja con rankings ordenados de ca-

racterı́sticas, lo cual es una aproximación natural para los métodos de selección. Los

rankings individuales obtenidos para cada uno de los paquetes se combinaron utilizando

aprendizaje de funciones ranking, en particularRanking SVM. La opción (a) mejora los

tiempos de entrenamiento sobre los métodos de selección individuales, manteniendo los

errores. La opción (b) obtiene los mejores resultados independientemente del conjunto

de datos y los umbrales elegidos.

• Finalmente, la complejidad y heterogeneidad de los conjuntos de datos dificulta que un

clasificador automático global funcione correctamente. En esta tesis se presenta un nue-

vo clasificador local basado eninformation theoretic learning. El clasificador es capaz

de obtener modelos de clasificación complejos mediante un proceso de dos etapas. Este

proceso define, en primer lugar, modelos locales por medio deun algoritmo de agru-

pamiento modificado y, en segundo lugar, entrena varias redes de neuronas de una sola

capa, asignadas a los modelos locales, para construir una frontera a trozos entre clases.

Se ha demostrado que el método propuesto es capaz de clasificar con éxito conjuntos de

datos complejos y desbalanceados, con alta dimensión y gran cardinalidad, obteniendo

buenos resultados medios. Se han llevado a cabo varios experimentos sobre los comple-

jos dominios de detección de intrusos y expresión génicamicroarray.
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II.8 Publicaciones

II.7 Trabajo futuro

Se proponen las siguientes ĺıneas de investigación como trabajo futuro:

• Extender elframeworkde selección de caracterı́sticas con coste desarrollado para mRMR

a otros métodos de selección de caracterı́sticas.

• Experimentar con otros métodos de aprendizaje de funciones rankingparaensemblesde

selección de caracterı́sticas, de tal modo que elensembleobtenga más diversidad y sea

capaz de manejar mejor diferentes tipos de conjuntos de datos.

• Estimación automática de parámetros para el FVQIT.

• Emplear otros algoritmos distintos de la red de neuronas de una sola capa para los mo-

delos locales del FVQIT.

II.8 Publicaciones

Como consecuencia de la investigación llevada a cabo en esta tesis, se han producido las si-

guientes publicaciones.

II.8.1 Revistas

• Porto-Dı́az, Iago and Bolón-Canedo, Verónica and Alonso-Betanzos, Amparo and Fon-

tenla-Romero, Oscar.A Study of Performance on Microarray Data Sets for a Classifier

Based on Information Theoretic Learning. Neural Networks (vol. 24, pp. 888–896, 2011)

• Porto-Dı́az, Iago and Martı́nez-Rego, David and Alonso-Betanzos, Amparo and Fontenla-

Romero, Oscar.Information Theoretic Learning and Local Modeling for Binary and

Multiclass Classification. Progress in Artificial Intelligence (vol. 1, no. 4, pp. 315–328,

2012)

• Bolón-Canedo, Verónica and Porto-Dı́az, Iago and Sánchez-Maroño, Noelia and Alonso-

Betanzos, Amparo.A Framework for Cost-Based Feature Selection. Pattern Recognition

(vol. 47, no. 7, pp. 2481–2489, 2014)
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II.8.2 Congresos

• Martı́nez-Rego, David and Fontenla-Romero, Oscar and Alonso-Betanzos, Amparo and

Porto-Dı́az, Iago.A New Supervised Local Modelling Classifier Based on Information

Theory. Proceedings of International Joint Conference on Neural Networks (IJCNN)

2009 (pp. 2014–2020, 2009)

• Porto-Dı́az, Iago and Martı́nez-Rego, David and Alonso-Betanzos, Amparo and Fontenla-

Romero, Oscar.Combining Feature Selection and Local Modelling in the KDD Cup 99

Data set. Proceedings of the International Conference on ArtificialNeural Networks

(ICANN) 2009 (pp. 824–833, 2009)

• Porto-Dı́az, Iago and Bolón-Canedo, Verónica and Fontenla-Romero, Oscar and Alonso-

Betanzos, Amparo.Local Modeling Classifier for Microarray Gene-Expression Data.

Proceedings of the International Conference on Artificial Neural Networks (ICANN)

2010 (pp. 11-20, 2010)

• Porto-Dı́az, Iago and Alonso-Betanzos, Amparo and Fontenla-Romero, Oscar.A Mul-

ticlass Classifier Based on Local Modeling and Information Theoretic Learning. Pro-

ceedings of the Conferencia de la Asociación Española para la Inteligencia Artificial

(CAEPIA) 2011.

• Seijo-Pardo, Borja and Bolón-Canedo, Verónica and Porto-Dı́az, Iago and Alonso-Be-

tanzos, Amparo.Ensemble Feature Selection for Rankings of Features. Advances in

Computational Intelligence. Lecture Notes in Computer Science Vol. 9095. Proceedings

of the 14th International Work Conference on Artificial Neural Networks (IWANN) (pp.

29–42, 2015)
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