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Abstract

We develop a residual-based a posteriori error analysis for the augmented mixed
methods introduced in [17] and [18] for the problem of linear elasticity in the plane.
We prove that the proposed a posteriori error estimators are both reliable and
efficient. Numerical experiments confirm these theoretical properties and illustrate
the ability of the corresponding adaptive algorithms to localize the singularities and
large stress regions of the solutions.
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1 Introduction

Recently, a new stabilized mixed finite element method was presented and analyzed in
[17] for the problem of linear elasticity in the plane assuming pure homogeneous Dirichlet
boundary conditions and mixed boundary conditions with non-homogeneous Neumann
data. This approach was extended to the case of pure non-homogeneous Dirichlet bound-
ary conditions in the subsequent work [18].
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The augmented formulations proposed in [17, 18] rely on the mixed method of Hellinger
and Reissner that provides simultaneous approximations of the displacement u and the
stress tensor σ. The symmetry of σ is imposed weakly through the use of a Lagrange
multiplier, which enters the system as a new variable that can be interpreted as the rota-
tion γ := 1

2
(∇u− (∇u)t) (see [1, 23]). When mixed boundary conditions are considered,

the essential one (Neumann) is also imposed weakly, which yields the introduction of the
trace of the displacement on the Neumann boundary as a Lagrange multiplier (see [6]).

Although the usual dual-mixed variational formulations satisfy the hypotheses of the
Babuška-Brezzi theory, it is difficult to derive explicit finite element subspaces yield-
ing stable discrete schemes. In particular, when mixed boundary conditions with non-
homogeneous Neumann data are imposed, the PEERS elements can be applied but they
yield a non-conforming Galerkin scheme. This was one of the main motivations to intro-
duce the augmented formulation from [17].

The approach there is based on the introduction of suitable Galerkin least-squares
terms that arise from the constitutive and equilibrium equations, and from the relation
defining the rotation in terms of the displacement. In [18], besides these Galerkin least-
squares terms, a consistency term related with the non-homogeneous Dirichlet boundary
condition is added. In the case of pure Dirichlet boundary conditions, the bilinear form
of the augmented formulation is bounded and coercive on the whole space and hence,
the associated Galerkin scheme is well-posed for any finite element subspace. Thus, it
is possible to use as finite element subspaces some non-feasible choices for the usual
(non-augmented) dual-mixed formulation. In particular, it is possible to employ Raviart-
Thomas elements of lowest order to approximate the stress tensor, continuous piecewise
linear elements for the displacement, and piecewise constants for the rotation. In the case
of mixed boundary conditions, the trace of the displacement on the Neumann boundary
can be approximated by continuous piecewise linear elements on an independent partition
of that boundary whose mesh size needs to satisfy a compatibility condition with the mesh
size of the triangulation of the domain.

As pointed out in [17, 18], when uniform triangulations are used the mixed finite
element schemes proposed there are cheaper than the classical PEERS and BDM elements.
More precisely, in the lowest order case the total number of unknowns (dof) for the
augmented scheme behaves asymptotically as 5m̄, where m̄ is the number of triangles in
the triangulation; for PEERS and BDM (with a static condensation process), the total
number of dof behaves asymptotically as 7.5m̄ and 9m̄, respectively (see section 5 in [8]
for more details). On the other hand, the lowest order symmetric mixed finite element
proposed recently in [5] consists of piecewise linear displacements and piecewise quadratic
stresses augmented with some cubic functions and involves 30 dof per triangle; the total
number of unknowns in this case behaves asymptotically as 11.5m̄. More recently, a mixed
finite element method with weakly imposed symmetry has been proposed in [2]. In the
lowest order case, the stresses are approximated by the Cartesian product of two copies
of the BDM finite element space and the displacements and rotations are approximated
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by piecewise constants; the total number of dof in this case behaves asymptotically as
9m̄. A reduced element involving asymptotically 7.5m̄ dof was also presented in [2]. We
must also mention that the approach in [17, 18] was recently extended in [20] to the 3D
linear elasticity problem with pure Dirichlet boundary conditions. This approach seems
to be advantageous as compared with the mixed finite element method from [4] (see [20]
for more details).

Motivated by the competitive character of the augmented scheme introduced in [17],
an a posteriori error analysis of residual type was developed in [8] in the case of pure
homogeneous Dirichlet boundary conditions. In this paper, we extend the analysis in [8]
to the augmented schemes introduced in [17] for the case of mixed boundary conditions
and in [18] for non-homogeneous Dirichlet boundary conditions.

The rest of the paper is organized as follows. In section 2, we recall the continuous
and discrete augmented formulations proposed in [17] for problem (2.1). We develop a
residual based a posteriori error analysis and show that the a posteriori error estimator
is both reliable and efficient. Then, in section 3, we recall from [18] the augmented varia-
tional and discrete schemes proposed in the case of non-homogeneous Dirichlet boundary
conditions, and deduce an a posteriori error estimator of residual type which is shown to
be both reliable and efficient. Finally, in section 4 we provide several numerical results
that illustrate the performance of the augmented Galerkin schemes and confirm the theo-
retical properties of the a posteriori error estimators introduced in this paper. Moreover,
numerical experiments show that the adaptive algorithms based on these a posteriori error
estimators are able to localize the singularities and large stress regions of the solutions.

Notation and preliminary results. Given any Hilbert space H, we denote by H2

and H2×2, respectively, the spaces of vectors and square tensors of order 2 with entries
in H. In particular, given τ := (τij) and ζ := (ζij) ∈ R2×2, we denote τ t := (τji),
tr(τ ) := τ11 + τ22 and τ : ζ :=

∑2
i,j=1 τij ζij. In addition, given differentiable scalar,

vector and tensor fields, φ, v = (vi) ∈ R2 and τ := (τij) ∈ R2×2,

curl(φ) :=

(
− ∂φ
∂x2

∂φ
∂x1

)
curl(v) :=

(
curl(v1)t

curl(v2)t

)
curl(τ ) :=

(
∂τ12

∂x1
− ∂τ11

∂x2

∂τ22

∂x1
− ∂τ21

∂x2

)
.

Let Ω ⊂ R2 be a bounded and simply connected domain with polygonal boundary
Γ, and let ΓD and ΓN be two disjoint subsets of Γ such that ΓD has positive mea-
sure and Γ = Γ̄D ∪ Γ̄N . We use the standard terminology for Sobolev spaces and
norms. We denote H1

ΓD
(Ω) := { v ∈ H1(Ω) : v = 0 on ΓD }, H(div; Ω) := {τ ∈

[L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 } and [L2(Ω)]2×2
skew := {η ∈ [L2(Ω)]2×2 : η + ηt = 0 }.

We recall that [H−1/2(ΓN)]2 is the dual of the space [H
1/2
00 (ΓN)]2 := {v|ΓN

: v ∈
[H1(Ω)]2 , v = 0 on ΓD} and denote by 〈·, ·〉ΓN

the associated duality pairing with re-
spect to the [L2(ΓN)]2-inner product; cf. [22].
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Let {Th}h>0 be a regular family of triangulations of Ω̄. We assume that for all h > 0,
Ω̄ = ∪{T : T ∈ Th } and each point in Γ̄D ∩ Γ̄N is a vertex of Th. Given a triangle
T ∈ Th, we denote by hT its diameter and define the mesh size h := max{hT : T ∈ Th };
we denote by E(T ) the set of the edges of T , and by Eh the set of all the edges of
triangles in the triangulation Th. Then, we can write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN),
where Eh(S) := {e ∈ Eh : e ⊆ S} for S ⊂ R2. Given an edge e ∈ Eh, we denote
by he the length of e. In addition, given an integer ` ≥ 0 and a subset S of R2, we
denote by P`(S) the space of polynomials in two variables defined in S of total degree
at most `, and for each T ∈ Th, we define the local Raviart-Thomas space of order zero
RT 0(T ) := span { e1, e2, x} ⊆ [P1(T )]2, where {e1, e2} is the canonical basis of R2 and
x is a generic vector of R2. Finally, we use C or c, with or without subscripts, to denote
generic constants, independent of the discretization parameters, which may take different
values at different occurrences.

In order to prove the reliability of the a posteriori error estimators, we will make use
of the well-known Clément interpolation operator, Ih : H1(Ω)→ Xh (see [15]), where Xh

is the space of continuous, piecewise linear functions on Th. We recall that Ih is defined
so that Ih(v) ∈ Xh ∩ H1

ΓD
(Ω) for all v ∈ H1

ΓD
(Ω). The standard local approximation

properties stated in the following lemma are proved in [15].

Lemma 1.1 There exist positive constants c1, c2, independent of h, such that for all ϕ ∈
H1(Ω) there hold

‖ϕ− Ih(ϕ)‖L2(T ) ≤ c1 hT ‖ϕ‖H1(∆(T )) ∀T ∈ Th
‖ϕ− Ih(ϕ)‖L2(e) ≤ c2 h

1/2
e ‖ϕ‖H1(∆(e)) ∀ e ∈ Eh

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= ∅}.

To prove the efficiency of the a posteriori error estimators, we proceed as in [11] and
[12], and use inverse inequalities and the localization technique introduced in [25], which
is based on triangle-bubble and edge-bubble functions. Given T ∈ Th and e ∈ E(T ), we
let ψT and ψe be the usual triangle-bubble and edge-bubble functions (see (1.5) and (1.6)
in [25], respectively). In particular, ψT ∈ P3(T ), supp(ψT ) ⊂ T , ψT = 0 on ∂T , and
0 ≤ ψT ≤ 1 in T . Similarly, ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)},
ψe = 0 on ∂T\e, and 0 ≤ ψe ≤ 1 in ωe. We also recall from [24] that, given k ∈ N, there
exists an extension operator L : C(e) → C(T ) such that for all p ∈ Pk(e), L(p) ∈ Pk(T )
and L(p)|e = p. In the following lemma we collect some additional properties of ψT , ψe
and L.

Lemma 1.2 Let k ∈ N. For any triangle T , there exist positive constants c1, c2, c3 and
c4, depending only on k and the shape of T , such that for all q ∈ Pk(T ) and p ∈ Pk(e),
there hold

‖ψT q‖L2(T ) ≤ ‖q‖L2(T ) ≤ c1 ‖ψ1/2
T q‖L2(T ) , (1.1)
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‖ψe p‖L2(e) ≤ ‖p‖L2(e) ≤ c2 ‖ψ1/2
e p‖L2(e) , (1.2)

c4 h
1/2
e ‖p‖L2(e) ≤ ‖ψ1/2

e L(p)‖L2(T ) ≤ c3 h
1/2
e ‖p‖L2(e) . (1.3)

Proof. See Lemma 4.1 in [24]. 2

The following inverse estimate will also be used.

Lemma 1.3 Let k ∈ N. Let l,m ∈ N such that l ≤ m. Then, for any triangle T , there
exists c > 0, depending only on k, l,m and the shape of T , such that

|q|Hm(T ) ≤ c hl−mT |q|Hl(T ) ∀ q ∈ Pk(T ) .

Proof. See Theorem 3.2.6 in [14]. 2

2 The case of mixed boundary conditions

In this section, we obtain an a posteriori error estimator of residual type for the augmented
mixed finite element scheme introduced in [17] for the problem of linear elasticity with
mixed boundary conditions. More precisely, given a volume force f ∈ [L2(Ω)]2 and a
traction g ∈ [H−1/2(ΓN)]2, we consider the problem of determining the displacement
vector field u and the symmetric stress tensor field σ of a linear elastic material occupying
the region Ω : 

σ = C ε(u) in Ω
−div(σ) = f in Ω

u = 0 on ΓD
σn = g on ΓN

(2.1)

where C is the elasticity tensor determined by Hooke’s law, that is,

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ [L2(Ω)]2×2 , (2.2)

with I being the identity matrix of R2×2 and λ, µ > 0 the Lamé constants; ε(u) :=
1
2

(∇u + (∇u)t) is the strain tensor of small deformations and n is the unit outward
normal to Γ. In the next two subsections, we recall the augmented variational and discrete
formulations proposed in [17] to solve problem (2.1).

2.1 The augmented variational formulation

Let κ1, κ2 and κ3 be positive parameters. The augmented variational formulation pro-
posed in [17] for problem (2.1) reads: find ((σ,u,γ), ξ) ∈ H × Q such that for any
((τ ,v,η),χ) ∈ H×Q there hold A((σ,u,γ), (τ ,v,η)) + B((τ ,v,η), ξ) = F (τ ,v,η),

B((σ,u,γ),χ) = G(χ),
(2.3)
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where H := H(div; Ω) × [H1
ΓD

(Ω)]2 × [L2(Ω)]2×2
skew, Q := [H

1/2
00 (ΓN)]2, the bilinear form

A : H×H→ R is given by

A((σ,u,γ), (τ ,v,η)) :=

∫
Ω

C−1σ : τ +

∫
Ω

u · div(τ ) +

∫
Ω

τ : γ −
∫

Ω

v · div(σ)

−
∫

Ω

σ : η + κ1

∫
Ω

(
ε(u)− C−1 σ

)
:
(
ε(v) + C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ )

+κ3

∫
Ω

(
γ − 1

2
(∇u− (∇u)t)

)
:

(
η +

1

2
(∇v − (∇v)t)

)
,

(2.4)
with C−1ζ := 1

2µ
ζ − λ

4µ (λ+µ)
tr(ζ) I, B((τ ,v,η),χ) := 〈τn,χ〉ΓN

, for all (τ ,v,η) ∈ H
and χ ∈ Q, and the linear functionals F : H→ R and G : Q→ R are given by

F (τ ,v,η) :=

∫
Ω

f · ( v − κ2 div(τ ) ) G(χ) := 〈g,χ〉ΓN
. (2.5)

The consistency of the augmented formulation (2.3) with the dual-mixed formulation
considered in [17] was studied there. The idea is to choose the parameters κ1, κ2 and
κ3 independent of λ and such that (2.3) satisfies the hypotheses of the Babuška-Brezzi
theory. In what follows, we consider the following inner product in H:

〈(σ,u,γ), (τ ,v,η)〉H := (σ, τ )H(div; Ω) + (u,v)[H1(Ω)]2 + (γ,η)[L2(Ω)]2×2

and denote the induced norm by ||·||H. We remark that the null space of B is given by

V := { (τ ,v,η) ∈ H : τn = 0 on ΓN } .

The following properties and results were proved in [17].

Theorem 2.1 Assume that (κ1, κ2, κ3) is independent of λ and such that 0 < κ1 < 2µ,

0 < κ2 and 0 < κ3 < κ1
kD

1− kD
, where kD ∈ (0, 1) is the constant of Korn’s first

inequality. Then, there exist positive constants M , α and β, independent of λ, such that

|A((σ,u,γ), (τ ,v,η))| ≤ M ‖(σ,u,γ)‖H ‖(τ ,v,η)‖H ∀ (σ,u,γ), (τ ,v,η) ∈ H ,

A((τ ,v,η), (τ ,v,η)) ≥ α ‖(τ ,v,η)‖2
H ∀ (τ ,v,η) ∈ V,

sup
0 6=τ∈H0

〈τn,χ〉ΓN

‖τ‖H(div; Ω)

≥ β ‖χ‖Q ∀χ ∈ Q , (2.6)

where H0 = {τ ∈ H(div; Ω) : τ = τ t, div(τ ) = 0 in Ω}. Moreover, the augmented
variational formulation (2.3) has a unique solution ((σ,u,γ), ξ) ∈ H × Q, with ξ =
−u|ΓN

, and there exists a positive constant C, independent of λ, such that

‖((σ,u,γ), ξ)‖H×Q ≤ C
(
‖f‖[L2(Ω)]2 + ‖g‖[H−1/2(ΓN )]2

)
.

Proof. See Theorem 3.3, Lemma 2.3 and Theorem 3.4 in [17]. 2
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2.2 The augmented discrete scheme

From now on, we assume that κ1, κ2 and κ3 satisfy the assumptions of Theorem 2.1.
Let h and h̃ be two positive parameters, and let Hh and Qh̃ be any finite element sub-
spaces of H and Q, respectively. Then, a Galerkin scheme associated to the augmented
variational formulation (2.3) reads: find ((σh,uh,γh), ξh̃) ∈ Hh ×Qh̃ such that for any
((τ h,vh,ηh),χh̃) ∈ Hh ×Qh̃ there hold{

A((σh,uh,γh), (τ h,vh,ηh)) +B((τ h,vh,ηh), ξh̃) = F (τ h,vh,ηh),

B((σh,uh,γh),χh̃) = G(χh̃).
(2.7)

As is well-known, the properties of the bilinear form B are not directly transferred
to the discrete level and need to be proved for each particular choice of the correspond-
ing finite element subspaces. We recall next the simplest choice of stable finite element
subspaces Hh and Qh̃. We consider the Raviart-Thomas space of lowest order

Hσh :=
{
τ h ∈ H(div; Ω) : τ h|T ∈ [RT 0(T )t]2, ∀T ∈ Th

}
, (2.8)

and the finite element spaces

Hu
D,h :=

{
vh ∈ [C(Ω̄) ∩H1

ΓD
(Ω)]2 : vh|T ∈ [P1(T )]2, ∀T ∈ Th

}
, (2.9)

H
γ
h :=

{
ηh ∈ [L2(Ω)]2×2

skew : ηh|T ∈ [P0(T )]2×2, ∀T ∈ Th
}
. (2.10)

Then, we define Hh := Hσh ×Hu
D,h×H

γ
h . On the other hand, let γh̃ = {ẽ1, ẽ2, ..., ẽm} be an

independent partition of the Neumann boundary ΓN with h̃ := max {|ẽj | : j = 1, ...,m }.
We define the finite element subspace

Qh̃ :=
{
χh̃ ∈ [C(ΓN) ∩H1/2

00 (ΓN)]2 : χh̃|ẽj
∈ [P1(ẽj)]

2, ∀ j ∈ {1, ...,m}
}
. (2.11)

Then, the discrete null space of the bilinear form B reduces to Vh,h̃ = Vh,h̃×Hu
D,h×H

γ
h ,

where
Vh,h̃ :=

{
τ h ∈ Hσh : 〈τ hn,χh̃〉ΓN

= 0 ∀χh̃ ∈ Qh̃

}
.

We remark that, in general, Vh,h̃ is not included in V.
Let {e1, e2, ..., en} be the partition of ΓN inherited from the triangulation Th. We

assume that the family of triangulations {Th}h>0 is uniformly regular near ΓN , which
means that there exists C > 0, independent of h, such that |ej| ≥ C h, ∀ j ∈ {1, ..., n}
and ∀h > 0. We also assume that the independent partitions {γh̃}h̃>0 of ΓN are uniformly

regular, that is, there exists C > 0, independent of h̃, such that |ẽj| ≥ C h̃, ∀ j ∈
{1, ...,m}, ∀ h̃ > 0. These assumptions on {Th}h>0 and {γh̃}h̃>0 are used in [17] to prove
that the bilinear form B(·, ·) satisfies the discrete inf-sup condition (see Lemmas 4.6 and
4.7 in [17]). Then, the augmented Galerkin scheme (2.7) is shown to be well-posed and
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a Cea estimate is obtained ∀ h̃ ≤ h0 and ∀h ≤ C0 h̃ ; cf. Theorem 4.9 in [17]. Let us
remark here that the asymptotic assumption h̃ ≤ h0 can be removed; cf. [19]. Indeed,
instead of the approximation property (APξ

h̃
) assumed in [17, section 4.2], one should

assume that there exists a fixed χ ∈ [H
1/2
00 (ΓN)]2 such that

χ ∈ Qh̃ ∀ h̃ > 0 and 〈n,χ〉ΓN
6= 0. (2.12)

Such a function χ can be constructed following the ideas of [21]. Then, instead of applying
[17, Lemma 4.4] to prove the coerciveness of the bilinear form A(·, ·) on the discrete kernel,
one should apply the following result.

Lemma 2.1 There exists C > 0, independent of h and h̃, such that

||τ h||2H(div; Ω) ≤ C ||τ 0h||2H(div; Ω) ∀ τ h ∈ Vh,h̃ .

Proof. Let τ h ∈ Vh,h̃. Then, we can write τ h = τ 0h+dh I, with τ 0h ∈ Hσh ,
∫

Ω
tr(τ 0h) = 0,

and dh ∈ R. It follows that

0 = 〈τ hn,χ〉ΓN
= 〈τ 0hn,χ〉ΓN

+ dh〈n,χ〉ΓN
∀χ ∈ [H

1/2
00 (ΓN)]2,

and for χ satisfying (2.12), we obtain

dh = −〈τ 0hn,χ〉ΓN

〈n,χ〉ΓN

Applying a trace theorem,

|dh| ≤ C
||χ||

[H
1/2
00 (ΓN )]2

|〈n,χ〉ΓN
|
||τ 0h||H(div; Ω).

Then, the result follows noting that ||τ h||2H(div; Ω) = ||τ 0h||2H(div; Ω) + 2 d2
h |Ω|. 2

The rate of convergence of the Galerkin scheme (2.7) when the finite element subspaces

Hσh , Hu
D,h, H

γ
h and Qh̃ defined in (2.8)-(2.11) are used is stated in Theorem 4.10 in [17].

Due the previous remarks, the asymptotic assumption h̃ ≤ h0 can also be removed from
that theorem.

2.3 Residual-based a posteriori error analysis

In this section we derive an a posteriori error estimator of residual type for the discrete
scheme (2.7). In what follows, we assume that h ≤ C0 h̃. Then, we can assume, without
loss of generality, that each side ei ∈ Eh(ΓN), i ∈ {1, . . . , n}, is contained in a side ẽj, for
some j ∈ {1, . . . ,m}; in this case, we denote by h̃ei

= |ẽj|. Further, given τ ∈ [L2(Ω)]2×2

such that τ |T ∈ [C(T )]2×2 on each T ∈ Th, an edge e ∈ E(T ) ∩ Eh(Ω), for some T ∈ Th,
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and the unit tangential vector tT along e, we denote by J [τ tT ] the jump of τ across e, that
is, J [τ tT ] := (τ |T − τ |T ′)|etT , where T ′ ∈ Th is such that T ∩ T ′ = e. Abusing notation,
when e ∈ Eh(Γ), we write J [τ tT ] := τ |etT . We recall here that, if nT := (n1, n2)t is the
unit outward normal to ∂T , then tT := (−n2, n1)t. The normal jumps J [τnT ] can be
defined analogously. Finally, from now on we assume that piecewise constant tensors are
contained in Hσh .

Now, for any T ∈ Th, we consider the local error indicator θT , defined as follows:

θ2
T := ‖f + div(σh)‖2

[L2(T )]2 + 1
4
‖σh − σt

h‖2
[L2(T )]2×2 + ‖γh − 1

2
(∇uh − (∇uh)

t)‖2
[L2(T )]2×2

+h2
T

(
‖ curl(C−1σh −∇uh + γh)‖2

[L2(T )]2 + ‖ curl(C−1(ε(uh)− C−1σh))‖2
[L2(T )]2

)
+
∑

e∈E(T )

he

(
‖J [(C−1σh −∇uh + γh)tT ]‖2

[L2(e)]2 + ‖J [(C−1(ε(uh)− C−1σh))tT ]‖2
[L2(e)]2

)
+h2

T

(
‖div(ε(uh)−

1

2
C−1(σh + σt

h))‖2
[L2(T )]2 + ‖div(γh −

1

2
(∇uh − (∇uh)

t))‖2
[L2(T )]2

)
+

∑
e∈E(T )∩Eh(Ω∪ΓN )

he ‖J [(ε(uh)−
1

2
C−1(σh + σt

h))nT ]‖2
[L2(e)]2

+
∑

e∈E(T )∩Eh(Ω∪ΓN )

he ‖J [(γh −
1

2
(∇uh − (∇uh)

t))nT ]‖2
[L2(e)]2

+
∑

e∈E(T )∩Eh(ΓN )

he

(
log(1 + κ) ||g − σhnT ||2[L2(e)]2 +

∣∣∣∣∣∣∣∣ ∂∂ tT
(uh + ξh̃)

∣∣∣∣∣∣∣∣2
[L2(e)]2

)
(2.13)

where κ = max{ h̃j

h̃k
: ẽj and ẽk neighbours}. We remark that if we set ΓN = ∅ we recover

the a posteriori error estimator obtained in [8]. The residual character of each term on
the right hand side of (2.13) is clear. We state below the main result of this section,

that is, that the global residual error estimator θ :=
(∑

T∈Th
θ2
T

)1/2

is both reliable and

efficient.

Theorem 2.2 Let ((σ,u,γ), ξ) ∈ H×Q and ((σh,uh,γh), ξh̃) ∈ Hh×Qh̃ be the unique
solution to problems (2.3) and (2.7), respectively, and let us assume that g ∈ [L2(ΓN)]2.
Then, there exist positive constants, Ceff and Crel, independent of λ, h and h̃, such that

Ceff θ ≤ ‖((σ − σh,u− uh,γ − γh), ξ − ξh̃)‖H×Q ≤ Crel θ . (2.14)

The reliability (upper bound in (2.14)) is proved in subsection 2.3.1 below; the so-called
efficiency (lower bound in (2.14)) is proved in subsection 2.3.2.
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2.3.1 Reliability

The proof of reliability is similar to that of [8]. We let (z,σ∗) ∈ [H1
ΓD

(Ω)]2 ×H(div; Ω)
be the unique solution to the boundary value problem

σ∗ = ε(z) in Ω
−div(σ∗) = f + div(σh) in Ω

z = 0 on ΓD
σ∗n = g − σhn on ΓN .

Then, we use the continuous dependence of the solution on the data to obtain that

||σ∗||H(div; Ω) ≤ C
(
||f + div(σh)||[L2(Ω)]2 + ||g − σhn||[H−1/2(ΓN )]2

)
, (2.15)

where the [H−1/2(ΓN)]2-norm can be bounded in terms of a L2-norm, assuming that
g ∈ [L2(ΓN)]2 and applying Theorem 2 in [10], as follows:

||g − σhn||2[H−1/2(ΓN )]2 ≤ C log(1 + κ)
m∑
j=1

|ẽj| ||g − σhn||2[L2(ẽj)]2

= C log(1 + κ)
∑

e∈Eh(ΓN )

h̃e ||g − σhn||2[L2(e)]2 .
(2.16)

On the other hand, we remark that (σ −σh −σ∗)n = 0 on ΓN and use that A(·, ·) is
coercive in V and linear in the first argument to deduce that

α ||(σ − σh − σ∗,u− uh,γ − γh)||
2
H ≤

≤ A((σ − σh,u− uh,γ − γh), (σ − σh − σ∗,u− uh,γ − γh))

−A((σ∗,0,0), (σ − σh − σ∗,u− uh,γ − γh)) .

Now, we remark that div(σ − σh − σ∗) = 0 in Ω and use that A is bounded in H to
obtain

α ||(σ − σh − σ∗,u− uh,γ − γh)||H ≤

≤ sup
(τ ,v,η)∈V
div(τ )=0

(τ ,v,η)6=0

|A((σ − σh,u− uh,γ − γh), (τ ,v,η))|
||(τ ,v,η)||H

+ M ||σ∗||H(div; Ω). (2.17)

It only remains to bound the first term on the right hand side of (2.17). Let (τ ,v,η) ∈
V \ {0} such that div(τ ) = 0 in Ω. Since Ω is simply connected, there exists a stream

function ϕ ∈ [H1(Ω)]2 such that

∫
Ω

ϕi = 0 (i = 1, 2) and τ = curl(ϕ). We remark that

||ϕ||[H1(Ω)]2 ≤ C |ϕ|[H1(Ω)]2 ≤ C ||τ ||H(div; Ω) . (2.18)
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Then, we define

ϕh := (ϕ1,h, ϕ2,h), ϕi,h := Ih(ϕi) (i = 1, 2), τ h := curl(ϕh) (2.19)

and remark that τ h ∈ Hσh and div(τ h) = 0 in Ω. Then, we decompose

A((σ − σh,u− uh,γ − γh), (τ ,v,η)) = A((σ − σh,u− uh,γ − γh), (τ h,vh,0))

+A((σ − σh,u− uh,γ − γh), (τ − τ h,v − vh,η))

and use that (σ,u,γ) and (σh,uh,γh) are the solutions to problems (2.3) and (2.7),
respectively, the definitions of the forms F and B, that div(τ ) = div(τ h) = 0 in Ω and
τn = 0 on ΓN , to get

A((σ − σh,u− uh,γ − γh), (τ ,v,η))

=

∫
Ω

f · (v − vh)− 〈(τ − τ h)n, ξh̃〉ΓN
− A((σh,uh,γh), (τ − τ h,v − vh,η)).

Integrating by parts and making some algebraic manipulations, we obtain that

A((σ − σh,u− uh,γ − γh), (τ ,v,η)) =

=

∫
Ω

(f + div(σh)) · (v − vh)− 〈(τ − τ h)n,uh + ξh̃〉ΓN

−
∫

Ω

(τ − τ h) :

((
C−1σh −∇uh + γh

)
− κ1 C−1

(
ε(uh)− C−1σh

))
−
∫

Ω

∇(v − vh) :

(
κ1

(
ε(uh)− C−1

(σh + σt
h

2

))
+ κ3

(
γh −

∇uh − (∇uh)
t

2

))
+

∫
Ω

η :

(
σh − σt

h

2
− κ3

(
γh −

∇uh − (∇uh)
t

2

))
.

(2.20)
All the terms appearing on the right hand side of (2.20), except the second one, yet
appeared in [8] and can be bounded using the same techniques. More specifically, the
first and the last terms are bounded using the Cauchy-Schwarz inequality. Concerning
terms involving τ − τ h, we write them in terms of the stream functions, ϕ and ϕh,
integrate by parts and use the error estimates for the Clément interpolation operator (see
Lemma 1.1). In particular, the second term on the right hand side of (2.20) can be written
as follows (see also [7]):

〈(τ − τ h)n,uh + ξh̃〉ΓN
=
∑
T∈Th

∑
e∈E(T )∩Eh(ΓN )

∫
e

(ϕ−ϕh)
∂

∂ t
(uh + ξh̃),

where we used that −curl(w) · n is the tangential derivative of w, ∂w
∂ t

. Then, we use the
Cauchy-Schwarz inequality, Lemma 1.1, that the number of triangles in ∆(e) is bounded
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and (2.18) to obtain that

|〈(τ −τ h)n,uh+ξh̃〉ΓN
| ≤ C

( ∑
T∈Th

∑
e∈E(T )∩Eh(ΓN )

he

∣∣∣∣∣∣∣∣ ∂∂ t
(uh + ξh̃)

∣∣∣∣∣∣∣∣2
[L2(e)]2

)1/2

||τ ||H(div; Ω).

Finally, in order to bound the term involving ∇(v− vh), we choose vh = (Ihv1, Ihv2),
integrate by parts and use Lemma 1.1. We observe that, since now v and vh vanish only
on ΓD, integration by parts causes the appearance of normal jumps on the Neumann
boundary ΓN . Then, using the triangular inequality, (2.15), (2.16), (2.17), (2.20) and the
previous considerations, we deduce that

||(σ − σh,u− uh,γ − γh)||H ≤ C θ (2.21)

with C independent of λ, h and h̃.
It remains to bound ||ξ − ξh̃||Q. With that purpose, we extend the proof of Theorem

4.3 in [7]. Since ξ − ξh̃ ∈ Q, we can use (2.6) to obtain

||ξ − ξh̃||Q ≤
1

β
sup
τ ∈H0
τ 6=0

〈τn, ξ − ξh̃〉ΓN

||τ ||H(div; Ω)

.

Let τ ∈ H0 \ {0} and let ϕ ∈ [H1(Ω)]2 such that

∫
Ω

ϕi = 0 (i = 1, 2) and τ = curl(ϕ).

We consider ϕh and τ h defined as in (2.19), and take (v,η) = (0,0) in (2.3) and (vh,ηh) =
(0,0) in (2.7) to obtain

〈τn, ξ − ξh̃〉ΓN
= −A((σ − σh,u− uh,γ − γh), (τ ,0,0)) − 〈(τ − τ h)n, ξh̃〉ΓN

−A((σh,uh,γh), (τ − τ h,0,0)).

Integrating by parts and using that div(τ ) = div(τ h) = 0 in Ω, we have that

〈τn, ξ − ξh̃〉ΓN
= −A((σ − σh,u− uh,γ − γh), (τ ,0,0))− 〈(τ − τ h)n,uh + ξh̃〉ΓN

−
∫

Ω

(τ − τ h) :

((
C−1σh −∇uh + γh)− κ1 C−1

(
ε(uh)− C−1σh

))
.

Finally, using that A is bounded and proceeding with the remaining terms as before, we
deduce that

||ξ − ξh̃||Q ≤
M

β
||(σ − σh,u− uh,γ − γh)||H + C θ . (2.22)

Inequalities (2.21) and (2.22) imply the reliability of the a posteriori error estimator θ.
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2.3.2 Efficiency

The a posteriori error estimator θT defined in (2.13) and the one given in [8] differ only in
the last two terms and in the terms involving normal jumps across the edges of ΓN . The
remaining terms can be bounded from above using Lemmas 4.7-4.10 in [8].

In order to bound the term involving the tangential derivative of uh + ξh̃, we follow
the proof of Lemma 4.5 in [7]. Given e ∈ Eh(ΓN), we denote ve := ∂

∂ tT
(uh + ξh̃) on e.

Then, using that u = −ξ on ΓN , we can write ve = ∂
∂ tT

(uh − u) + ∂
∂ tT

(ξh̃ − ξ) on e, and

assuming that ve ∈ [Pk(e)]2, we have that

∑
e∈Eh(ΓN )

he ||ve||2[L2(e)]2 ≤ C
(∫

Γ

ψ̂ · ∂

∂ tT
(uh − u) +

∫
Γ

ψ̂ · ∂ ξ̂
∂ tT

)
where we denote

ψ̂ :=

{
ψ on ΓN
0 on ΓD

ξ̂ :=

{
ξh̃ − ξ on ΓN
0 on ΓD

with ψ := ψeheve on each edge e ∈ Eh(ΓN). Since ψ, ξh̃ − ξ ∈ [H
1/2
00 (ΓN)]2, then ψ̂, ξ̂ ∈

[H1/2(Γ)]2, and the norms ||·||
[H

1/2
00 (ΓN )]2

and ||·||[H1/2(Γ)]2 of the corresponding functions and

their extensions are equivalent. Then, we apply the Cauchy-Schwarz inequality, Lemma
1.3, that the tangential operator is bounded and a trace theorem, and deduce that

∑
e∈Eh(ΓN )

he||ve||2[L2(e)]2 ≤ C
∣∣∣∣∣∣ψ̂∣∣∣∣∣∣

[H1/2(Γ)]2

(∣∣∣∣∣∣∣∣∂ (uh − u)

∂ tT

∣∣∣∣∣∣∣∣
[H−1/2(Γ)]2

+

∣∣∣∣∣
∣∣∣∣∣ ∂ ξ̂∂ tT

∣∣∣∣∣
∣∣∣∣∣
[H−1/2(Γ)]2

)
≤ C h−1/2

∣∣∣∣∣∣ψ̂∣∣∣∣∣∣
[L2(Γ)]2

(
||uh − u||[H1(Ω)]2 + ||ξh̃ − ξ||[H1/2

00 (ΓN )]2

)
.

Then, since 0 ≤ ψe ≤ 1, we have that∣∣∣∣∣∣ψ̂∣∣∣∣∣∣2
[L2(Γ)]2

=

∫
ΓN

ψ2
eh

2
e|ve|2 ≤ h

∑
e∈Eh(ΓN )

he||ve||2[L2(e)]2

and, therefore∑
e∈Eh(ΓN )

he||ve||2[L2(e)]2 ≤ C
(
||uh − u||2[H1(Ω)]2 + ||ξh̃ − ξ||

2

[H
1/2
00 (ΓN )]2

)
. (2.23)

To bound the term involving the residual in the Neumann boundary condition, g−σhn,
we recall from the proof of Lemma 6.5 in [12] that

||(σ − σh)n||[L2(e)]2 ≤ C h1/2
e

(
||div(σ − σh)||[L2(T )]2 + c h−1

T ||σ − σh||[L2(T )]2

)
.

13



Then, multiplying by h̃
1/2
e and using that he ≤ h̃e ≤ h̃ ≤ C h and C h̃e ≤ C h ≤ he ≤ hT ,

we get ∑
e∈E(T )∩Eh(ΓN )

h̃e ||g − σhn||2[L2(e)]2 ≤

≤ C
∑

e∈E(T )∩Eh(ΓN )

(
h2
T ||div(σ − σh)||2[L2(T )]2 + ||σ − σh||2[L2(T )]2

)
.

(2.24)

Using inequalities (2.23) and (2.24), and the same techniques as in [8] with the remaining
terms in (2.13), we deduce the efficiency of the a posteriori error estimator θ.

3 Non-homogeneous Dirichlet boundary conditions

In this section, we obtain an a posteriori error estimator of residual type for the augmented
mixed finite element scheme introduced in [18] for the problem of linear elasticity with
non-homogeneous Dirichlet boundary conditions. Given a volume force f ∈ [L2(Ω)]2

and a Dirichlet datum g ∈ [H1/2(Γ)]2, we now consider the problem of determining the
displacement u and the symmetric stress tensor σ of a linear elastic material occupying
the region Ω : 

σ = C ε(u) in Ω
−div(σ) = f in Ω

u = g on Γ
(3.1)

In the next two subsections, we recall the augmented variational and discrete formulations
proposed in [18] to solve problem (3.1).

3.1 The augmented variational formulation

Let κ1, κ2, κ3 and κ4 be positive parameters independent of λ. The augmented variational
formulation proposed in [18] for problem problem (3.1) reads: find (σ,u,γ) ∈ H0 :=
H̃0 × [H1(Ω)]2 × [L2(Ω)]2×2

skew such that

Ã((σ,u,γ), (τ ,v,η)) = F̃ (τ ,v,η) ∀ (τ ,v,η) ∈ H0 , (3.2)

where H̃0 := {τ ∈ H(div; Ω) :
∫

Ω
tr(τ ) = 0}, and the bilinear form Ã : H0 ×H0 → R

and the functional F̃ : H0 → R are given by

Ã((σ,u,γ), (τ ,v,η)) := A((σ,u,γ), (τ ,v,η)) + κ4

∫
Γ

u · v ,

F̃ (τ ,v,η) := F (τ ,v,η) + 〈τ n,g〉Γ + κ4

∫
Γ

g · v + κ1 cg

∫
Γ

v · n ,
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where A(·, ·) and F (·) are defined in (2.4) and (2.5), respectively. In addition, we denote by
〈·, ·〉Γ the duality pairing between [H−1/2(Γ)]2 and [H1/2(Γ)]2 with respect to the [L2(Γ)]2-
inner product and, given w defined on Γ, we denote cw := 1

2 |Ω|

∫
Γ

w · n .

The following properties and results concerning Ã(·, ·) and the augmented formulation
(3.2) were stablished in [18, Theorem 3.2]. In what follows, κ0 is a constant of a Korn-type
inequality (see [18] for details).

Theorem 3.1 Assume that (κ1, κ2, κ3, κ4) is independent of λ and such that 0 < κ1 < 2µ,

0 < κ2, 0 < κ3 <

(
κ0

1− κ0

)
κ1 if κ0 < 1 or κ3 > 0 if κ0 ≥ 1, and κ4 ≥ κ1 + κ3. Then,

there exist positive constants, M̃ and α̃, independent of λ, such that

| Ã((σ,u,γ), (τ ,v,η)) | ≤ M̃ ‖(σ,u,γ)‖H0 ‖(τ ,v,η)‖H0

Ã((τ ,v,η), (τ ,v,η)) ≥ α̃ ‖(τ ,v,η)‖2
H0

(3.3)

for all (σ,u,γ), (τ ,v,η) ∈ H0. In particular, taking κ1 = C̃1 µ, with any C̃1 ∈]0, 2[,

κ2 = 1
µ

(
1− κ1

2µ

)
, κ3 = C̃3 κ1, with any C̃3 ∈]0, κ0

1−κ0
[ if κ0 < 1, or κ3 = κ1 if κ0 ≥ 1, and

κ4 = κ1 + κ3, yields M̃ and α̃ depending only on µ,
1

µ
and Ω. Moreover, the augmented

variational formulation (3.2) has a unique solution (σ,u,γ) ∈ H0, and there exists a
positive constant C, independent of λ, such that

‖(σ,u,γ)‖H0 ≤ C
(
‖f‖[L2(Ω)]2 + ‖g‖[H1/2(Γ)]2

)
.

Finally, we recall from [18] that, since we are looking for σ ∈ H̃0, the solution to
problem (3.2) satisfies the modified constitutive law σ = C(ε(u)− cg I) in Ω.

3.2 The augmented mixed finite element method

Given a finite element subspace H0,h ⊆ H0, the Galerkin scheme associated to (3.2)
reads: find (σh,uh,γh) ∈ H0,h such that

Ã((σh,uh,γh), (τ h,vh,ηh)) = F̃ (τ h,vh,ηh) ∀ (τ h,vh,ηh) ∈ H0,h . (3.4)

The following result is also established in [18].

Theorem 3.2 Assume that the parameters κ1, κ2, κ3 and κ4 satisfy the assumptions
of Theorem 3.1 and let H0,h be any finite element subspace of H0. Then, the Galerkin
scheme (3.4) has a unique solution (σh,uh,γh) ∈ H0,h, and there exist positive constants,
C and C̃, independent of h and λ, such that

‖(σh,uh,γh)‖H0 ≤ C
(
‖f‖[L2(Ω)]2 + ‖g‖[H1/2(Γ)]2

)
,

‖(σ,u,γ)− (σh,uh,γh)‖H0 ≤ C̃ inf
(τ h,vh,ηh)∈H0,h

‖(σ,u,γ)− (τ h,vh,ηh)‖H0 .
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Proof. See Theorem 4.1 in [18]. 2

Let Hσh and H
γ
h be the finite element subspaces defined in (2.8) and (2.10), respec-

tively, and define

Hσ0,h :=

{
τ h ∈ Hσh :

∫
Ω

tr(τ h) = 0

}
,

Hu
h :=

{
vh ∈ [C(Ω̄)]2 : vh|T ∈ [P1(T )]2 ∀T ∈ Th

}
.

Then, the simplest finite element subspace H0,h of H0 is given by

H0,h := Hσ0,h ×Hu
h ×H

γ
h . (3.5)

The rate of convergence of the Galerkin scheme (3.4) when the specific finite element
subspace (3.5) is used is stablished in Theorem 4.2 in [18].

3.3 Residual-based a posteriori error analysis

In this section we derive an a posteriori error estimator of residual type for the Galerkin
scheme (3.4). We assume that the hypotheses of Theorem 3.2 are satisfied and let
(σh,uh,γh) ∈ H0,h be the unique solution to the discrete scheme (3.4). Then, for any
triangle T ∈ Th, we define the error indicator θ̃T as follows:

θ̃2
T := ‖f + div(σh)‖2

[L2(T )]2 +
1

4
‖σh − σt

h‖2
[L2(T )]2×2 + ‖γh −

∇uh − (∇uh)
t

2
‖2

[L2(T )]2×2

+h2
T

(
‖ curl(C−1σh −∇uh + γh)‖2

[L2(T )]2 + ‖ curl(C−1(ε(uh)− C−1σh))‖2
[L2(T )]2

)
+
∑

e∈E(T )

he ‖J [(C−1σh −∇uh + γh + cg I)tT ]‖2
[L2(e)]2

+
∑

e∈E(T )

he ‖J [(C−1(ε(uh)− C−1σh − cuh
I))tT ]‖2

[L2(e)]2

+h2
T

(
‖div(ε(uh)− C−1

(σh + σt
h

2

)
)‖2

[L2(T )]2 + ‖div(γh −
∇uh − (∇uh)

t

2
)‖2

[L2(T )]2

)
+
∑

e∈E(T )

he ‖J [(ε(uh)− C−1
(σh + σt

h

2

)
− cg I)nT ]‖2

[L2(e)]2

+
∑

e∈E(T )

he ‖J [(γh −
1

2
(∇uh − (∇uh)

t))nT ]‖2
[L2(e)]2

+
∑

e∈E(T )∩Eh(Γ)

he

(
||g − uh||2[L2(e)]2 +

∣∣∣∣∣∣∣∣ ∂∂ tT
(g − uh)

∣∣∣∣∣∣∣∣2
[L2(e)]2

)
.

(3.6)
We remark that if g = 0 on Γ, the a posteriori error estimator θ̃T does not coincide
necessarily with the a posteriori error estimator obtained in [8] because in this case uh
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may not live in [H1
0 (Ω)]2. On the other hand, the residual character of each term on the

right hand side of (3.6) is clear. As usual, the expression θ̃ :=
( ∑
T∈Th

θ̃2
T

)1/2
is employed as

the global residual error estimator. In the following theorem we establish the reliability
and efficiency of θ̃.

Theorem 3.3 Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h be the unique solutions to
problems (3.2) and (3.4), respectively, and assume that g ∈ [H1(Γ)]2. Then, there exist
positive constants, Ceff and Crel, independent of h and λ, such that

Ceff θ̃ ≤ ‖(σ − σh,u− uh,γ − γh)‖H0 ≤ Crel θ̃ . (3.7)

The proof of Theorem 3.3 is similar to that of Theorem 2.2. We give a sketch of the
proof in the next two subsections.

3.3.1 Reliability

In this case, we consider the unique solution (z,σ∗) ∈ [H1
0 (Ω)]2 × H̃0 to the boundary

value problem 
σ∗ = ε(z) in Ω

−div(σ∗) = f + div(σh) in Ω
z = 0 on Γ .

The corresponding continuous dependence result implies that

||σ∗||H(div; Ω) ≤ C ||f + div(σh)||[L2(Ω)]2 (3.8)

with C > 0, independent of λ. Then, we proceed similarly as in subsection 2.3.1 and use
that Ã(·, ·) is coercive and bounded in H0 to obtain that

α̃ ||(σ − σh − σ∗,u− uh,γ − γh)||H0
≤

≤ sup
(τ ,v,η)∈H0

(τ ,v,η)6=0

div(τ )=0

|Ã((σ − σh,u− uh,γ − γh), (τ ,v,η))|
||(τ ,v,η)||H0

+ M̃ ||σ∗||H(div; Ω). (3.9)

To bound the first term on the right hand side of (3.9), we let (τ ,v,η) ∈ H0 \ {0} with

div(τ ) = 0 in Ω, consider the stream function ϕ ∈ [H1(Ω)]2 such that

∫
Ω

ϕi = 0 (i = 1, 2)

and τ = curl(ϕ), and define ϕh and τ h as in (2.19). Then, since H(div; Ω) = H̃0 ⊕ R I,

we have that τ h = τ h,0 + dh I, with τ h,0 ∈ Hσ0,h and dh =
R
Ω tr(τ h)

2|Ω| ∈ R. Using that
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(σ,u,γ) and (σh,uh,γh) are the solutions to problems (3.2) and (3.4), respectively, it
follows that

Ã((σ − σh,u− uh,γ − γh), (τ ,v,η))

= Ã((σ − σh,u− uh,γ − γh), (τ − τ h,v − vh,η)) + κ1
dh

2(λ+ µ)

∫
Γ

(g − uh) · n

where we choose vh := (Ih(v1), Ih(v2)) ∈ Hu
h and use the orthogonality between symmetric

and skew-symmetric tensors to obtain

Ã((σ − σh,u− uh,γ − γh), (dh I,0,0)) = κ1
dh

2(λ+ µ)

∫
Γ

(g − uh) · n .

Then, we use that (σ,u,γ) is the solution to (3.2) and the definition of the form F̃ to get

Ã((σ − σh,u− uh,γ − γh), (τ ,v,η))

=

∫
Ω

f · (v − vh) + 〈(τ − τ h)n,g〉Γ + κ4

∫
Γ

g · (v − vh) + κ1cg

∫
Γ

(v − vh) · n

−A((σh,uh,γh), (τ − τ h,v − vh,η)) + κ1
dh

2(λ+ µ)

∫
Γ

(g − uh) · n .

Integrating by parts and making some algebraic manipulations, we obtain that

Ã((σ − σh,u− uh,γ − γh), (τ ,v,η)) =

=

∫
Ω

(f + div(σh)) · (v − vh) + 〈(τ − τ h)n,g − uh〉Γ + κ4

∫
Γ

(g − uh) · (v − vh)

−
∫

Ω

(τ − τ h) :

((
C−1σh −∇uh + γh + cg I

)
− κ1 C−1

(
ε(uh)− C−1σh − cuh

I
))

−
∫

Ω

∇(v − vh) :

(
κ1

(
ε(uh)− C−1

(σh + σt
h

2

)
− cg I

)
+ κ3

(
γh −

∇uh − (∇uh)
t

2

))
+

∫
Ω

η :

(
σh − σt

h

2
− κ3

(
γh −

∇uh − (∇uh)
t

2

))
.

(3.10)
The rest of the proof consists in deriving suitable upper bounds for each one of the terms
appearing on the right hand side of (3.10). We observe that the first and the last terms
are identical to the corresponding ones in (2.20). The fourth and fifth terms on the right
hand side of (3.10) are very similar to second and third terms on the right hand side
of (2.20), and can be bounded with the techniques described in subsection 2.3.1. The
second term on the right hand side of (3.10) is analogous to the corresponding one in
(2.20). More precisely, assuming that g ∈ [H1(Γ)]2 and proceeding as in subsection 2.3.1,
we obtain that

|〈(τ − τ h)n,g − uh〉Γ| ≤ C
( ∑
T∈Th

∑
e∈E(T )∩Eh(Γ)

he

∥∥∥∥ ∂∂ t
(g − uh)

∥∥∥∥2

[L2(e)]2

)1/2

‖τ‖H(div; Ω) .
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Finally, the third term on the right hand side of (3.10) can be bounded applying the
Cauchy-Schwarz inequality and Lemma 1.1, and using that the number of triangles in
∆(e) is bounded independently of h:∣∣∣∣∫

Γ

(g − uh) · (v − vh)

∣∣∣∣ ≤ C
( ∑
e∈E(T )∩E(Γ)

he ‖g − uh‖2
[L2(e)]2

)1/2

‖v‖[H1(Ω)]2 .

3.3.2 Efficiency

In order to prove the efficiency of the a posteriori error estimator θ̃ (lower bound in (3.7)),
we first observe that most of the terms involved in the definition of θ̃ are identical or very
similar to those appearing in the definition of θ (see (2.13)), so that they can be bounded
from above using the same techniques. We only have to bound the last term on the right
hand side of (3.6). Using the Dirichlet boundary condition and a trace theorem, we obtain∑

e∈E(T )∩Eh(Γ)

he ‖g − uh‖2
[L2(e)]2 ≤ c ‖u− uh‖2

[H1(Ω)]2 .

On the other hand, the continuity of the tangential derivative and a trace theorem gives
the existence of C > 0, independent of h and λ, such that

∑
e∈E(T )∩Eh(Γ)

he

∥∥∥∥ ∂∂ t
(g − uh)

∥∥∥∥2

[L2(e)]2
≤ C ‖u− uh‖2

[H1(Ω)]2

Proceeding with the remaining terms as indicated in subsection 2.3.2 (see also [8, 11, 12]),
we deduce the lower bound in (3.7).

4 Numerical results

In this section we present several numerical results that illustrate the performance of the
augmented mixed finite element schemes (2.7) and (3.4), and of the adaptive algorithms
based on the a posteriori error estimators θ and θ̃ analyzed in this paper. We use the
simplest finite element subspaces described in subsections 2.3 and 3.3, respectively. The
numerical experiments given below were obtained using a Pentium Xeon computer with
dual processors and a Matlab code. The augmented mixed schemes (2.7) and (3.4) were
implemented following the ideas explained in [17, section 4.3].

We recall that, given the Young modulus E and the Poisson ratio ν of a linear
elastic material, the corresponding Lamé constants are defined by µ := E

2(1+ν)
and

λ := E ν
(1+ν) (1−2 ν)

. In the examples below, we fix E = 1 and consider the values
ν = 0.4900 and ν = 0.4999, which yield the following values of µ and λ:
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ν µ λ
0.4900 0.3356 16.4430
0.4999 0.3334 1666.4444

Given an error indicator ηT , for each T ∈ Th we consider the following adaptive
algorithm (see [25]):

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme for the current mesh Th.

3. Compute ηT for each triangle T ∈ Th.

4. Consider stopping criterion and decide to finish or go to the next step.

5. Refine each element T ′ ∈ Th such that

ηT ′ ≥
1

2
max{ηT : T ∈ Th} .

6. Define the resulting mesh as the new Th and go to step 2.

In what follows, N stands for the total number of degrees of freedom (dof) of the cor-
responding augmented discrete scheme. We define the experimental rate of convergence
as

r(e) := − 2
log(e/e′)

log(N /N ′)
,

where N and N ′ denote the dof of two consecutive triangulations, and e and e′ are the
corresponding total errors.

4.1 Mixed boundary conditions

In this case, according to the compatibility condition required in Theorem 4.10 in [17],
we choose as independent partition of the Neumann boundary the one obtained inserting
a node between every two ones of the partition on ΓN inherited from Th. In addition,
we consider κ1 = µ, κ2 = 1

2µ
and κ3 = µ

8
, which corresponds to a feasible choice, as

described in Theorem 2.1.
Let (σ,u,γ, ξ) and (σh,uh,γh, ξh̃) be the unique solutions to the augmented and

discrete variational formulations (2.3) and (2.7), respectively. We define the individual
errors e(σ) := ‖σ − σh‖H(div; Ω), e(u) := |u − uh|[H1(Ω)]2 , e(γ) := ‖γ − γh‖[L2(Ω)]2×2 and
e(ξ) := ‖ξ − ξh‖[H

1/2
00 (ΓN )]2

and the total error as

etotal :=
(
e(σ)2 + e(u)2 + e(γ)2 + e(ξ)2

)1/2
.
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Then, the effectivity index with respect to θ is given by etotal/θ. The individual errors
are computed on each triangle using a Gaussian quadrature rule.

In order to illustrate the performance of the adaptive algorithm based on θ, we consider
examples 1 and 2 specified in the table below. In example 1, ΓD :=

(
{0} × [0, 1]

)
∪(

[0, 1]× {0}
)

and the solution has a singularity at the boundary point (0, 0). In fact, the

behaviour of u in a neighborhood of the origin implies that div(σ) ∈ [H2/3(Ω)]2 only,
which according to Theorem 4.10 in [17] yields 2/3 as the expected rate of convergence
for the uniform refinement. In example 2, ΓD := {x := (x1, x2)t ∈ R2 : x2

1 + x2
2 = 1} and

the solution shows large stress regions in a neighborhood of the Dirichlet boundary ΓD.
In both cases, we take ν = 0.4900 and choose the data f and g so that the exact solution
is u(x1, x2) := (u1(x1, x2), u2(x1, x2))t. Here, uniform refinement means that, given a
uniform initial triangulation, each subsequent mesh is obtained from the previous one by
bisecting each triangle by connecting the midpoint of its longest side with the opposed
vertex. We use the bisection procedure as refinement algorithm.

Example Ω u(x1, x2)

1 ]− 1, 1[2 \ [0, 1]2 u1(x1, x2) = u2(x1, x2) = r5/3 sin((2θ − π)/3)

2 ]0, 2[2 \ B[0, 1] u(x1, x2) = 5(1− x2
1 − x2

2)e−5(1−x2
1−x2

2)2
(x1,−x2)t

In Figures 4.1 and 4.3 we display the total error etotal versus the degrees of freedom N
for the uniform and adaptive refinements for examples 1 and 2, respectively. We observe
that the errors of the adaptive procedure decrease much faster than those obtained with
the uniform one. In particular, in example 1 (where the experimental rate of conver-
gence r(etotal) approaches 2/3 for the uniform refinement), the adaptive method is able
to recover, at least approximately, the rate of convergence O(h) for the total error. Fur-
thermore, the effectivity indexes are in a neighborhood of 0.5 for the uniform refinement
and 0.25 for the adaptive refinement in example 1 (the corresponding values for example
2 are 0.57 and 0.61). In conclusion, they remain bounded from above and below, which
confirms the reliability and efficiency of θ for the adaptive algorithm.
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Figure 4.1: Ex. 1: Total error vs. dof, uniform and adaptive refinements.

Finally, some intermediate meshes obtained with the adaptive refinement procedure
are displayed in Figures 4.2 and 4.4. We remark that the method is able to recognize
the singularities and the large stress regions of the solutions. In particular, in example 1
(Figure 4.2) the adapted meshes are highly refined around the singular point (0, 0). Simi-
larly, the adapted meshes obtained in example 2 (Figure 4.4) concentrate the refinements
around the Dirichlet boundary, where the largest stresses occur.
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Figure 4.2: Ex. 1: adapted intermediate meshes with 15015 dof (left) and 64244 dof
(right).
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Figure 4.3: Ex. 2: Total error vs. dof, uniform and adaptive refinements.
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Figure 4.4: Ex. 2: adapted intermediate meshes with 4768 dof (left) and 33982 dof
(right).

We end this section with some numerical results concerning the performance of the
augmented mixed finite element scheme (2.7) and the adaptive algorithm based on θ
as applied to approximate the solution of the classical Cook membrane problem. We let
Ω := [0, 48]× [0, 60]\{(x1, x2) ∈ R2/x2 <

11x1

12
or x2 >

x1

3
}, ΓD := {(x1, x2) ∈ Ω̄/ x1 = 0}

and ΓN = ∂Ω\Γ̄D. We assume f = 0, g(x1, x2) = (0, 1)t if (x1, x2) ∈ ΓN with x1 = 48 and
g = 0 on the remaining part of ΓN . The material parameters are E = 2900 and ν = 0.3.
Due to the equivalence between the a posteriori error estimator θ and the total error, we
can use θ to show the convergence behavior for the uniform and adaptive refinements.
In Figure 4.5 we observe that the errors of the adaptive procedure decrease much faster
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than those obtained with the uniform one. In this case, uniform refinement means that,
given a uniform initial triangulation, each subsequent mesh is obtained from the previous
one by dividing each triangle into the four ones arising when connecting the midpoints of
its sides. We used an adaptive algorithm based on the blue-green procedure to refine the
meshes (see [25] for more details).
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Figure 4.5: Cook membrane problem: θ vs. dof, uniform and adaptive refinements.

Some intermediates meshes obtained with the adaptive refinement are shown in Figure
4.6. The deformation is displayed with a magnification factor of 50. We remark that the
algorithm is able to recognize the large stress regions of the solution.
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Figure 4.6: Cook membrane problem: adapted intermediate meshes with 7605 dof
(left) and 19713 dof (right).
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4.2 Pure displacement problem

In this section we present several numerical results that illustrate the performance of the
augmented mixed finite element scheme (3.4) and the a posteriori error estimator θ̃. We
implemented the simplest finite element subspace H0,h defined in (3.5). The zero mean
condition on the traces of functions in Hσ0,h is taken into account as described in section
4.3 of [17] (see also section 5 in [8]). According to Theorem 3.1, we consider the following
values for the parameters κ1, κ2, κ3 and κ4:

κ1 = µ, κ2 =
1

2µ
, κ3 =

1

8
κ1, κ4 = κ1 + κ3.

Let (σ,u,γ) and (σh,uh,γh) be the unique solutions to the augmented variational
and discrete problems (3.2) and (3.4), respectively. We use the same notations as in
the previous subsection for the individual errors e(σ) and e(γ), and denote by e(u) :=
‖u− uh‖[H1(Ω)]2 . The total error is given now by

etotal :=
(
e(σ)2 + e(u)2 + e(γ)2

)1/2
,

and the effectivity index with respect to θ̃ is defined by etotal/θ̃. Again, the individual
errors are computed on each triangle using a Gaussian quadrature rule.

In order to illustrate the performance of the adaptive algorithm based on θ̃, we consider
three examples, specified in the table below. In example 3, the solution shows large stress
regions in a neighborhood of the interior point (0.7, 0.7). In example 4, the solution has
a singularity at the boundary point (0, 0). In fact, the behaviour of u in a neighborhood
of the origin implies that div(σ) ∈ [H1/3(Ω)]2, which according to Theorem 4.2 in [18],
yields 1/3 as the expected rate of convergence for the uniform refinement. Finally, the
solution of example 5 shows large stress regions around the curved line x2

1 + x2
2 = 0.12.

In all cases, we take ν = 0.4900 and choose the data f and g so that the exact solution
is u(x1, x2) := (u1(x1, x2), u2(x1, x2))t. In this case, we use the blue-green procedure to
refine the meshes.

Example Ω u1(x1, x2) = u2(x1, x2)

3 ]0, 1[2
1

100[(x1 − 0.7)2 + (x2 − 0.7)2] + 1

4 ]− 0.25, 0.25[2\[0, 0.25]2
x1 x2

(x2
1 + x2

2)1/3
+ 3x1

5 ]0, 1[2\{x ∈ R2 : ‖x‖ ≤ 0.1} 10−4

x2
1 + x2

2 − 0.092

In Figures 4.7, 4.9 and 4.11 we display the total error etotal versus the degrees of
freedom N for the uniform and adaptive refinements for examples 3, 4 and 5, respectively.
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In this case, uniform refinement means that, given a uniform initial triangulation, each
subsequent mesh is obtained from the previous one by dividing each triangle into the four
ones arising when connecting the midpoints of its sides. We observe from these figures
that the errors of the adaptive procedure decrease much faster than those obtained by
the uniform one. Furthermore, we observed that the effectivity indexes remain bounded
from above and below. More precisely, the values of the effectivity index in example 3 are
in a neighborhood of 0.7 for the uniform refinement and 0.8 for the adaptive refinement;
the corresponding values for example 4 are 0.9 for the uniform refinement and 0.84 for
the adaptive one; for example 5, the effectivity index is about 0.99 for both the uniform
and the adaptive refinements. These results confirm the reliability and efficiency of the a
posteriori error estimator θ̃.
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Figure 4.7: Ex. 3: Total error vs. dof, uniform and adaptive refinements.

Finally, some intermediates meshes obtained with the adaptive refinement are dis-
played in Figures 4.8, 4.10 and 4.12. We remark that the algorithm is able to recognize
the singularities and large stress regions of the solutions.
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Figure 4.8: Ex. 3: adapted intermediate meshes with 3095 dof (left) and 77312 (right).
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Figure 4.9: Ex. 4: Total error vs. dof, uniform and adaptive refinements.

27



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 4.10: Ex. 4: adapted intermediate meshes with 15567 dof (left) and 81989 dof
(right).
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Figure 4.11: Ex. 5: Total error vs. dof, uniform and adaptive refinements.
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Figure 4.12: Ex. 5: adapted intermediate meshes with 17329 dof (left) and 89938 dof
(right).

In summary, the numerical results presented in this section underline the reliability
and efficiency of the error estimators θ and θ̃, and strongly demonstrate that the associated
adaptive algorithms are much more suitable than a uniform discretization procedure when
solving problems with non-smooth solutions.
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