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Abstract

We present and analyse a new mixed finite element method for the generalized Stokes prob-
lem. The approach, which is a natural extension of a previous procedure applied to quasi-
Newtonian Stokes flows, is based on the introduction of the flux and the tensor gradient
of the velocity as further unknowns. This yields a two-fold saddle point operator equation
as the resulting variational formulation. Then, applying a slight generalization of the well
known Babuška-Brezzi theory, we prove that the continuous and discrete formulations are
well posed, and derive the associated a priori error analysis. In particular, the finite element
subspaces providing stability coincide with those employed for the usual Stokes flows except
for one of them that needs to be suitably enriched. We also develop an a-posteriori error
estimate (based on local problems) and propose the associated adaptive algorithm to com-
pute the finite element solutions. Several numerical results illustrate the performance of the
method and its capability to localize boundary layers, inner layers, and singularities.

1 Introduction

The generalized Stokes problem, which is a Stokes-like linear system with a dominating zeroth
order term, arises naturally in the time discretisation of the corresponding non-steady equations,
and hence it plays a fundamental role in the numerical simulation of viscous incompressible flows
(laminar and turbulent). Indeed, the most expensive part of the solution procedure for the time-
dependent Navier-Stokes equations reduces to solving the generalized Stokes problem at each
nonlinear iteration. In order to define it explicitly, we first let Ω be a bounded open subset of R2

with Lipschitz continuous boundary Γ. Then, given f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look
for the velocity u := (u1, u2)t and the pressure p of a fluid occupying the region Ω, such that

αu − ν ∆u + ∇p = f in Ω ,
div (u) = 0 in Ω ,

u = g on Γ ,
(1.1)

where ν is a positive constant called kinematic viscosity of the fluid and α is a positive parameter
proportional to the inverse of the time-step. Throughout the rest of the paper we assume that
α ≥ ν. Also, we remark that, as a consequence of the incompressibility of the fluid, the Dirichlet
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datum g must satisfy the compatibility condition
∫
Γ g · n ds = 0, where n is the unit outward

normal to Γ.
In recent years considerable effort has gone into the design and study of efficient numerical

methods to solve (1.1). The new proposed algorithms apply and combine different techniques,
which include Uzawa’s schemes, splittings of boundary conditions, fictitious domains, domain
decomposition, stabilization, and preconditioning (see, e.g. [2], [4], [7], [8], [16], [19], [21], and
the references therein). A common feature to these papers is that they all deal with the usual
pressure-velocity variational formulation of the problem, in which the unknowns live in L2(Ω)
and H1(Ω), respectively. In particular, this means that the finite element subspace for the
velocity needs to be a subset of the continuous functions. In addition, the Dirichlet boundary
condition, being essential and non-homogeneous, cannot be incorporated either in the conti-
nuous and discrete formulations or in the definitions of the spaces involved, and therefore one
is necessarily led to a non-conforming Galerkin scheme. Certainly, the latter concern refers to
the theoretical analysis of the method since the interpolation of essential boundary conditions
causes no problems in the practical implementation of the corresponding Galerkin scheme.

On the other hand, within a dual-mixed setting the velocity becomes an unknown in L2(Ω),
which gives more flexibility to choose the associated finite element subspace (for instance, piece-
wise constant functions become a feasible choice). Furthermore, the Dirichlet boundary condi-
tion, being now natural, is incorporated directly into the right hand sides (linear functionals)
of the continuous and discrete formulations, and hence the error analysis arising from a non-
conforming scheme is avoided. Another important advantage of using dual-mixed methods lies
on the possibility of introducing further unknowns with a physical interest (for instance, the
flux). These unknowns are then approximated directly, which avoids any numerical postpro-
cessing yielding additional sources of error.

As a recent example of the above, we recall here that in [12] and [13] we introduce and
analyse a dual-mixed formulation for a class of quasi-Newtonian Stokes flows whose kinematic
viscosities are nonlinear monotone functions of the gradient of the velocity. The mixed finite
element method proposed there simply relies on the introduction of the flux and the tensor
gradient of the velocity as auxiliary unknowns, which yields a two-fold saddle point operator
equation as the resulting variational formulation. Therefore, the abstract theory developed in
[11], which is a slight generalization of the well known Babuška-Brezzi theory, is applied to
prove that the continuous and discrete schemes are well posed. In particular, it is shown that
the stability of the Galerkin scheme only requires low-order finite element subspaces: it suffices
to use Raviart–Thomas spaces of order zero to approximate the flux and piecewise constant
functions to approximate the other unknowns. In addition, since the monotonicity certainly
includes the linear case, we also obtain as a by-product a new mixed finite element method for
the linear Stokes equation (problem (1.1) with α = 0).

Up to the authors’ knowledge, there are no dual-mixed methods available in the current
literature for the generalized Stokes problem. This gap is somehow filled by the present work,
and hence we believe this is one of the main motivations for it. More precisely, the purpose of
this paper is to extend the analysis from [12] and [13] to our problem (1.1) with moderately
large values of the parameter α, which includes, similarly as we did in [13], the derivation of a-
posteriori error estimates based on local problems. The rest of the paper is organized as follows.
In Section 2 we derive the continuous dual-mixed variational formulation of problem (1.1) and
prove that it is well posed. Then, in Section 3 we present and analyse the corresponding mixed
finite element scheme. Again, we use Raviart-Thomas spaces of order zero to approximate the
flux and piecewise constant functions to approximate the velocity and the pressure. However, in
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order to guarantee the stability of the Galerkin scheme, we need to include in the approximation
space of the tensor gradient of the velocity the deviator of the vector Raviart-Thomas space of
order zero. In this way, we prove that the discrete scheme has a unique solution and derive
quasi-optimal error estimates and the corresponding rates of convergence. Next, in Section 4 we
develop an implicit reliable and quasi-efficient a posteriori error estimate, and a fully explicit
reliable one, and propose the adaptive algorithm associated to the latter to compute the finite
element solutions. Finally, several numerical results are reported in Section 5.

In what follows, given any Hilbert space H, we denote by H2 and H2×2 the spaces of
vectors and tensors of order two, respectively, with entries in H, provided with the product
norms induced by the norm of H. In addition, for any τ := (τij), ζ := (ζij) ∈ R2×2, we
denote tr (τ ) := τ11 + τ22 and τ : ζ :=

∑2
i,j=1 τijζij . The deviator of tensor τ is denoted by

dev (τ ) := τ − 1
2tr (τ )I. We remark that tr (dev (τ )) = 0.

2 The continuous variational formulation

We first proceed as in [12] and introduce two additional unknowns in Ω, namely, the tensor
gradient of the velocity t := ∇u and the flux σ := ν∇u − p I, where I is the identity matrix in
R2×2. It follows that the equilibrium equation becomes

αu − div (σ) = f in Ω , (2.1)

where σ := ν t− p I and div denotes the vector divergence operator. In addition, since div (u) =
tr (t) in Ω, we can rewrite the incompressibility condition as

tr (t) = 0 in Ω . (2.2)

Now, multiplying the relation t = ∇u by a tensor τ , integrating by parts and using that
u = g on Γ, we get:∫

Ω
τ : t +

∫
Ω

div (τ ) · u = 〈τn,g〉 ∀ τ ∈ H(div ; Ω) . (2.3)

Hereafter, 〈·, ·〉 denotes the duality pairing of [H−1/2(Γ)]2 and [H1/2(Γ)]2 with [L2(Γ)]2 as pivot
space, and H(div ; Ω) is the space of tensors τ ∈ [L2(Ω)]2×2 satisfying div (τ ) ∈ [L2(Ω)]2. We
also recall that H(div ; Ω), endowed with the inner product 〈ζ, τ 〉H(div ;Ω) := 〈ζ, τ 〉[L2(Ω)]2×2 +
〈div ζ,div τ 〉[L2(Ω)]2 , is a Hilbert space, where 〈·, ·〉[L2(Ω)]2×2 and 〈·, ·〉[L2(Ω)]2 stand for the usual
inner products of [L2(Ω)]2×2 and [L2(Ω)]2, respectively.

Then, testing the relation σ = ν t − p I, the equations (2.1) and (2.2), and reordering appro-
priately the resulting equations and (2.3), we obtain the following mixed variational formulation:
Find (t,u,σ, p) ∈ [L2(Ω)]2×2 × [L2(Ω)]2 ×H(div ; Ω)× L2(Ω) such that

ν

∫
Ω

t : s −
∫

Ω
σ : s −

∫
Ω

p tr (s) = 0 ,

α

∫
Ω

u · v −
∫

Ω
div (σ) · v =

∫
Ω

f · v ,

−
∫

Ω
τ : t −

∫
Ω

div (τ ) · u = −〈τn,g〉 ,

−
∫

Ω
q tr (t) = 0 ,

(2.4)
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for all (s,v, τ , q) ∈ [L2(Ω)]2×2 × [L2(Ω)]2 ×H(div ; Ω)× L2(Ω).
Next, we observe that the variational formulation (2.4) is not uniquely solvable since given

any solution (t,u,σ, p) of this problem and any c ∈ R, (t,u,σ + cI, p − c) also becomes a
solution. Therefore, in order to guarantee uniqueness we proceed as in [5] and require that∫
Ω tr (σ) = 0, which leads to the introduction of a new unknown, a Lagrange multiplier ξ ∈ R.

Thus, from now on we consider the following mixed variational formulation of (1.1): Find
(t,u,σ, p, ξ) ∈ [L2(Ω)]2×2 × [L2(Ω)]2 ×H(div ; Ω)× L2(Ω)× R such that

ν

∫
Ω

t : s −
∫

Ω
σ : s −

∫
Ω

p tr (s) = 0 ,

α

∫
Ω

u · v −
∫

Ω
div (σ) · v =

∫
Ω

f · v ,

−
∫

Ω
τ : t −

∫
Ω

div (τ ) · u + ξ

∫
Ω

tr (τ ) = −〈τn,g〉 ,

−
∫

Ω
q tr (t) = 0 ,

η

∫
Ω

tr (σ) = 0 .

(2.5)

for all (s,v, τ , q, η) ∈ [L2(Ω)]2×2 × [L2(Ω)]2 × H(div ; Ω) × L2(Ω) × R. We remark here that
taking τ = I in the third equation and applying (2.2) and the compatibility condition for the
Dirichlet data, we find a priori that ξ = 0. However, we keep this artificial unknown to ensure
the symmetry and the well-posedness of the whole formulation.

In order to prove the unique solvability of the variational formulation (2.5), we write it now
as a system of operator equations with a two-fold saddle point structure. To this end, we first
define the spaces X1 := [L2(Ω)]2×2 × [L2(Ω)]2, M1 := H(div ; Ω), and M := L2(Ω)× R. Then,
we introduce the operators and functionals A1 : X1 → X ′

1, B1 : X1 → M ′
1, Bp : X1 → L2(Ω),

Bξ : M1 → R, F1 ∈ X ′
1, and F2 ∈ M ′

1, as suggested by the structure of (2.5), so that this
problem can be stated as: Find ((t,u),σ, (p, ξ)) ∈ X1 ×M1 ×M such that

[A1(t,u), (s,v)] + [B1(s,v),σ] + [Bp(s,v), p] = [F1, (s,v)] ,

[B1(t,u), τ ] + [Bξ(τ ), ξ] = [F2, τ ] ,

[Bp(t,u), q] + [Bξ(σ), η] = 0 ,

(2.6)

for all ((s,v), τ , (q, η)) ∈ X1 ×M1 ×M , where [·, ·] denotes the duality pairing induced by the
operators and functionals used in each case.

We now let X := X1×M1, identify X ′ with X ′
1×M ′

1, and define A : X → X ′ as the matrix
operator

A :=
[

A1 B′
1

B1 O

]
, (2.7)

where B′
1 : M1 → X ′

1 is the adjoint of B1, and O denotes, from now on, a generic null oper-
ator/functional. Hence, (2.6) can be set equivalently as: Find ((t,u,σ), (p, ξ)) ∈ X ×M such
that [

A B′

B O

] [
(t,u,σ)
(p, ξ)

]
=

[
F
O

]
, (2.8)

where B : X → M is defined by [B(r,w, ζ), (q, η)] := [Bp(r,w), q] + [Bξ(ζ), η], B′ : M → X ′

is the adjoint of B, and F ∈ X ′ is defined by [F, (s,v, τ )] := [F1, (s,v)] + [F2, τ ] for all
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(s,v, τ ), (r,w, ζ) ∈ X and for all (q, η) ∈ M . In this way, the two-fold saddle point structure
of (2.6) becomes clear from (2.7) and (2.8) since A itself has the saddle point structure.

We now apply the abstract theory from [11] (see also the related results given in [10] and
[14]) to establish the solvability and continuous dependence of (2.6).

Theorem 2.1 Problem (2.6) has a unique solution ((t,u),σ, (p, ξ)) ∈ X1×M1×M . Moreover,
there exists a positive constant C(α, ν) = O( α3

ν ), independent of the solution, such that

‖((t,u),σ, (p, ξ))‖X1×M1×M ≤ C(α, ν) { ‖F1‖ + ‖F2‖ } . (2.9)

Proof. We observe first that the operators A1, B1 and B are all linear and bounded. In
particular, it is easy to see that ‖A1‖ = O(α) and that both ‖B1‖ and ‖B‖ are of O(1).
In addition, since α ≥ ν, we deduce that A1 is X1-elliptic with ellipticity constant ν. Thus,
according to the linear version of Theorem 2.4 in [11] (see also Theorem 2 in [10]), it only remains
to show that B and B1 satisfy the corresponding inf-sup conditions on X×M and on the kernel
of B, respectively.

Indeed, given (q, η) ∈ M we get lower bounds for sup
(s,v,τ )∈X\{0}

[B(s,v, τ ), (q, η)]
‖(s,v, τ )‖X

by taking

(s,v, τ ) = (0, 0, ηI) and (s,v, τ ) = (−q I, 0, 0), which yields the inf-sup condition for B.
Next, we realize that the null space of the operator B is X̃ = X̃1 × M̃1, where X̃1 :=

{(s,v) ∈ X1 : tr (s) = 0 in Ω} and M̃1 := {τ ∈ M1 :
∫
Ω tr (τ ) = 0}. Thus, given τ ∈ M̃1

we get now lower bounds for sup
(s,v)∈X̃1\{0}

[B1(s,v), τ ]
‖(s,v)‖X1

by taking (s,v) = (0,−div (τ )) and

(s,v) = (−dev (τ ),0), which, using Lemma 3.1 in [1], yields the inf-sup condition for B1. This
lower bound is also obtained when div (τ ) = 0 or dev (τ ) = 0. We omit details.

Finally, we remark that the order of the continuous dependence constant C(α, ν) follows
from the analysis provided in Section 2 of [11] and from a particular case of Proposition 2.3 in
[22]. 2

3 The mixed finite element scheme

In what follows we assume, for simplicity, that Γ is a polygonal curve. Then, we let {Th}h>0 be a
regular family of triangulations of Ω̄ by triangles T of diameter hT such that h := max{hT : T ∈
Th} and Ω̄ = ∪{T : T ∈ Th}. Also, we let Xt

1,h, Xu
1,h, M1,h, and Mp

h be finite element subspaces
for the unknowns t, u, σ, and p, respectively, and define X1,h := Xt

1,h×Xu
1,h and Mh := Mp

h×R.
Then, the Galerkin scheme associated with problem (2.6) reads: Find ((th,uh),σh, (ph, ξh)) ∈
X1,h ×M1,h ×Mh such that

[A1(th,uh), (sh,vh)] + [B1(sh,vh),σh] + [Bp(sh,vh), ph] = [F1, (sh,vh)] ,

[B1(th,uh), τ h] + [Bξ(τ h), ξh] = [F2, τ h] ,

[Bp(th,uh), qh] + [Bξ(σh), ηh] = 0 ,

(3.1)

for all ((sh,vh), τh, (qh, ηh)) ∈ X1,h ×M1,h ×Mh.
Our purpose is to define these finite element subspaces so that (3.1) becomes well posed. As

suggested by the linear version of Theorem 3.2 in [11], it suffices to prove the ellipticity of A1

on X1,h and the discrete inf-sup conditions for B and B1. In order to establish these properties
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we show below that the same arguments of the continuous case can be applied again, which
will yield to determine the appropriate finite element spaces for each unknown. To begin with,
we realize that there is nothing else to prove for A1 since the ellipticity of this bilinear form
is certainly valid on any subspace of X1. Next, in order to extend the proof of the continuous
inf-sup condition for B to the discrete case, we require that (0, 0, η I) and (qh I, 0, 0) belong to
Xt

1,h ×Xu
1,h ×M1,h for any (qh, η) ∈ Mp

h × R, that is

ηI ∈ M1,h ∀ η ∈ R and qhI ∈ Xt
1,h ∀ qh ∈ Mp

h . (3.2)

On the other hand, it is easy to see that the discrete kernel of the bilinear form B is given
by X̃t

1,h × Xu
1,h × M̃1,h, where X̃t

1,h := { sh ∈ Xt
1,h :

∫
Ω qh tr (sh) = 0 ∀ qh ∈ Mp

h } and
M̃1,h := { τ h ∈ M1,h :

∫
Ω tr (τ h) = 0 } .

We note here that M̃1,h is clearly a subspace of M̃1 and hence the equivalence of ‖τ h‖[L2(Ω)]2×2

and ‖dev (τ h)‖[L2(Ω)]2×2 also holds for each τ h ∈ M̃1,h. Thus, in order to extend now the proof
of the continuous inf-sup condition for B1 to the discrete case, we need that

div (τ h) ∈ Xu
1,h and dev (τ h) ∈ X̃t

1,h ∀ τ h ∈ M̃1,h . (3.3)

Since (3.2) and (3.3) do not impose any explicit condition on the elements of Mp
h , we choose

this subspace of L2(Ω) as the simplest possible one, that is, as the piecewise constant functions
on the triangulation Th. Similarly, since the first restriction of (3.2) is satisfied if the piecewise
constant tensors are included in M1,h, we just choose this subspace of H(div ; Ω) as the Raviart-
Thomas space of order zero (see [5], [20]). Because of this choice of M1,h, and in order to satisfy
the first requirement of (3.3), we realize that it suffices to take Xu

1,h as the space of piecewise
constant vectors on Th.

Finally, taking into account the choices already made for Mp
h and M1,h, and observing that

the trace of any deviator is zero, we find that the remaining conditions in (3.2) and (3.3) are
accomplished if Xt

1,h is chosen so that its restriction on each triangle T ∈ Th becomes the local
space A0(T ) := 〈 { I } 〉 ⊕ dev ( [RT 0(T ) RT 0(T ) ]t), where 〈 〉 is used hereafter to denote
spanning, and

RT 0(T ) :=
〈 {(

1
0

)
,

(
0
1

)
,

(
x1

x2

) }〉
is the local Raviart-Thomas space of order zero. Moreover, it is not difficult to see that

A0(T ) := [P0(T )]2×2 ⊕
〈 { (

x1 2x2

0 −x1

)
,

(
−x2 0
2x1 x2

) } 〉
, (3.4)

where P0(T ) denotes the space of constant functions defined on T .
According to the above analysis, our finite element subspaces are given by

Xt
1,h := {s ∈ [L2(Ω)]2×2 : s|T ∈ A0(T ) ∀T ∈ Th } ,

Xu
1,h := {v ∈ [L2(Ω)]2 : v|T ∈ [P0(T )]2 ∀T ∈ Th } ,

M1,h := {τ ∈ H(div ; Ω) : (τi1 τi2)t|T ∈ RT 0(T ) ∀ i ∈ {1, 2} , ∀T ∈ Th }

and
Mp

h := { q ∈ L2(Ω) : q|T ∈ P0(T ) ∀T ∈ Th } .

The well posedness of the discrete problem (3.1) and the corresponding quasi-optimal error
estimate can then be established.
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Theorem 3.1 Problem (3.1) has a unique solution ((th,uh),σh, (ph, ξh)) ∈ X1,h×M1,h×Mh.
Moreover, there exist a positive constant Ĉ(α, ν) = O( α3

ν ), independent of h, such that

‖((t,u),σ, (p, ξ)) − ((th,uh),σh, (ph, ξh))‖

≤ Ĉ(α, ν) inf
((sh,vh),τ h,qh)∈X1,h×M1,h×Mp

h

‖((t,u),σ, p)− ((sh,vh), τ h, qh)‖
(3.5)

where ((t,u),σ, (p, ξ)) is the unique solution of the continuous problem (2.6).

Proof. We first remark, since we are dealing with a linear problem, that the Céa estimate (3.5)
is equivalent to stability of the Galerkin scheme (3.1). Now, as shown by our previous analysis,
the present finite element subspaces guarantee the ellipticity of A1 on X1,h, with the same
constant ν, as well as the discrete inf-sup conditions for B and B1, with constants depending
only on Ω. Hence, using again that ‖A1‖ = O(α) and that both ‖B1‖ and ‖B‖ are of O(1),
we can apply the linear version of Theorem 3.2 in [11] to deduce the unique solvability of (3.1)
and the corresponding stability with a constant behaving like O( α3

ν ). 2

Next, we have the following result on the rate of convergence of the solution of (3.1).

Theorem 3.2 Let ((t,u),σ, (p, ξ)) and ((th,uh),σh, (ph, ξh)) be the unique solutions of the
continuous and discrete formulations, respectively. Assume that t ∈ [H1(Ω)]2×2, u ∈ [H1(Ω)]2,
σ ∈ [H1(Ω)]2×2, div (σ) ∈ [H1(Ω)]2, and p ∈ H1(Ω). Then there exists a positive constant
C̄(α, ν) = O( α3

ν ), independent of h, such that

‖((t,u),σ, (p, ξ))− ((th,uh),σh, (ph, ξh))‖X1×M1×M

≤ C̄(α, ν) h
(
‖t‖[H1(Ω)]2×2 + ‖σ‖[H1(Ω)]2×2 + ‖u‖[H1(Ω)]2 + ‖div (σ)‖[H1(Ω)]2 + ‖p‖H1(Ω)

)
.

Proof. It is a consequence of the Céa estimate (3.5) and the well known approximation
properties of the subspaces Xt

1,h, Xu
1,h, M1,h and Mp

h , which follow from classical error estimates
for projection and equilibrium interpolation operators (see, e.g. [20]). 2

4 A-posteriori error analysis

We now develop an a-posteriori error analysis (based on suitable local problems) and derive reli-
able estimates for the mixed finite element solution introduced in the previous section. Similarly
as in [13], our approach follows the technique from [6], which is a modification of the original
Bank-Weiser method proposed in [3].

Let us first introduce some notations. We denote by Eh the set of all the edges of the
triangulation Th, define Eh(Γ) := { e ∈ Eh : e ⊆ Γ }, and given T ∈ Th, we let E(T ) := { e ∈
Eh : e ⊆ ∂T }. In addition, the inner product of H(div ;T ) is denoted by 〈·, ·〉H(div ;T ), and
nT stands for the unit outward normal to ∂T .

On the other hand, given a polygonal domain S ⊆ R2 and m ∈ (1,∞), the Sobolev
space W 1,m(S) is the Banach space of functions v ∈ Lm(S) such that the first order distri-
butional derivatives of v are functions of Lm(S). A Sobolev imbedding theorem establishes that
W 1,m(S) ⊆ C(S̄) if m > 2 (see [18] for details). Also, it is well known that the trace theorem
ensures the existence of a linear continuous map γ : W 1,m(S) → Lm(∂S) such that γv = v|∂S
for each v ∈ W 1,m(S) ∩C(S̄). The range of γ, which is a strict subspace of Lm(∂S), is denoted
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by W 1−1/m,m(∂S). In particular, when S := T ∈ Th and m = 2, we use the standard notation
and write H1/2(∂T ) instead of W 1/2,2(∂T ).

Now, given an edge e ∈ E(T ), H1
0 (e) stands for the closure in H1(e) of the space of infinitely

differentiable functions with compact support in e. We recall here that the interpolation space
with index 1/2 between H1

0 (e) and L2(e) is H
1/2
00 (e) (cf. [18]). The space H

1/2
00 (e) may be

alternatively defined as the subspace of functions in H1/2(e) whose extensions by zero to the
rest of ∂T belong to H1/2(∂T ). We will also need the dual space of H1/2(∂T ), which is denoted
by H−1/2(∂T ). To this respect, we remark that the restriction of an element in H−1/2(∂T ) over
e does not belong in general to H−1/2(e), but to H

−1/2
00 (e), dual space of H

1/2
00 (e) pivotal to

L2(e), and which is, therefore, larger than H−1/2(e). According to this, in what follows we set
〈·, ·〉e for the duality pairing between [H−1/2

00 (e)]2 and [H1/2
00 (e)]2 with [L2(e)]2 as pivot space,

and we let 〈·, ·〉∂T be the duality pairing between [H−1/2(∂T )]2 and [H1/2(∂T )]2 with [L2(∂T )]2

as pivot space.
We now define the Riesz projection of the error with respect to the inner product of X :=

X1 ×M1 as the unique element (t̄, ū, σ̄) ∈ X such that

〈(t̄, ū, σ̄), (s,v, τ )〉X = [A(t− th,u− uh,σ − σh), (s,v, τ )] + [B(s,v, τ ), (p− ph, ξ − ξh)]

for all (s,v, τ ) ∈ X, where A and B are the bilinear forms defined in Section 2, and

〈(t̄, ū, σ̄), (s,v, τ )〉X := 〈t̄, s〉[L2(Ω)]2×2 + 〈ū,v〉[L2(Ω)]2 + 〈σ̄, τ 〉H(div ;Ω) .

In what follows, we assume that there exists m > 2 such that the Dirichlet data g ∈
[H1/2(Γ)∩W 1−1/m,m(Γ)]2 and let ϕh be a given auxiliary function in [H1(Ω)∩W 1,m(Ω)]2 such
that ϕh(x̄) = g(x̄) for each vertex x̄ of Th lying on Γ. In addition, for each T ∈ Th we let
σ̂T ∈ H(div ;T ) be the unique solution of the local problem

〈σ̂T , τ 〉H(div ;T ) = Fh,T (τ ) ∀ τ ∈ H(div ;T ) , (4.1)

where Fh,T ∈ H(div ;T )′ is defined by

Fh,T (τ ) :=
∫

T
τ : th +

∫
T

uh · div (τ ) − ξh

∫
T

tr (τ )

− 〈τnT , ϕh〉∂T +
∑

e∈E(T )∩Eh(Γ)

〈τnT , ϕh − g〉e .

The following lemma provides an upper bound for ‖(t̄, ū, σ̄)‖X .

Lemma 4.1 There holds
‖(t̄, ū, σ̄)‖2

X ≤
∑

T∈Th

θ̂2
T , (4.2)

where

θ̂2
T := ‖σ̂T ‖2

H(div ;T ) + ‖σh − ν th + phI‖2
[L2(T )]2×2 + ‖f + div (σh)− αuh‖2

[L2(T )]2 .

Proof. The proof utilizes the same arguments of Lemma 3.1 in [13]. We only remark here that
the regularity hypotheses on g and ϕh guarantee, by virtue of a Sobolev imbedding theorem,
that g and ϕh are both continuous, and hence the associated interpolation condition for the
vertices of Th lying on Γ makes sense. We omit further details. 2

A priori estimates for the solutions of the local problems (4.1) are given in the following
lemma.
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Lemma 4.2 There exists C > 0, independent of h, α, ν, and T , such that

‖σ̂T ‖2
H(div ;T ) ≤ C

(
‖th − ∇ϕh‖2

[L2(T )]2×2 + ‖uh − ϕh‖2
[L2(T )]2

+ h2
T |ξh|2 +

∑
e∈E(T )∩Eh(Γ)

‖ϕh − g‖2

[H
1/2
00 (e)]2

)
.

Furthermore, for any z ∈ [H1(Ω) ∩W 1,m(Ω)]2, with m > 2, such that z = g on Γ, we get

‖σ̂T ‖2
H(div ;T ) ≤ C

(
‖th −∇z‖2

[L2(T )]2×2 + ‖uh − z‖2
[L2(T )]2 + h2

T |ξh|2 + ‖Jh,T (z)‖2
[H1/2(∂T )]2

)
,

where Jh,T (z) :=
{

0 on ∂T ∩ Γ
z− ϕh otherwise

.

Proof. It is clear from (4.1) that ‖σ̂T ‖H(div ;T ) = ‖Fh,T ‖H(div ;T )′ . Therefore, the first estimate
for ‖σ̂T ‖H(div ;T ) follows after applying Gauss’ formula to the expression 〈τnT , ϕh〉∂T appearing
in the definition of the functional Fh,T , and reordering the resulting terms so that the Cauchy-
Schwarz inequality can be applied conveniently. The proof of the second estimate is similar.
One just needs to observe, after simple computations, that

−〈τnT , ϕh〉∂T +
∑

e∈E(T )∩Eh(Γ)

〈τnT , ϕh − g〉e = −〈τnT , z〉∂T + 〈τnT ,Jh,T (z)〉 .

The rest proceeds as in the first case, applying now Gauss’ formula to 〈τnT , z〉∂T . 2

The above lemmata allow us to establish next the main a-posteriori error estimates.

Theorem 4.1 There exists a positive constant C0(α, ν) = O( α3

ν ), independent of h, such that

‖(t,u,σ, p, ξ)− (th,uh,σh, ph, ξh)‖X1×M1×M ≤ C0(α, ν)

 ∑
T∈Th

θ̃2
T


1/2

(4.3)

and

‖(t,u,σ, p, ξ)− (th,uh,σh, ph, ξh)‖X1×M1×M ≤ C0(α, ν)

 ∑
T∈Th

θ2
T


1/2

, (4.4)

where for each triangle T ∈ Th, we define

θ̃2
T := ‖σ̂T ‖2

H(div ;T ) + ‖σh − ν th + phI‖2
[L2(T )]2×2

+ ‖f + div (σh)− αuh‖2
[L2(T )]2 + ‖tr (th)‖2

L2(T ) ,
(4.5)

and
θ2
T := ‖th − ∇ϕh‖2

[L2(T )]2×2 + ‖uh − ϕh‖2
[L2(T )]2 + h2

T |ξh|2

+
∑

e∈E(T )∩Eh(Γ)

‖ϕh − g‖2

[H
1/2
00 (e)]2

+ ‖σh − ν th + phI‖2
[L2(T )]2×2

+ ‖f + div (σh)− αuh‖2
[L2(T )]2 + ‖tr (th)‖2

L2(T ) .

(4.6)

9



Proof. It is similar to the proof of Theorem 2.1 in [13]. Indeed, the continuous dependence
result given in Theorem 2.1 (cf. (2.9)) is equivalent to the global inf-sup condition for the
linear operator obtained by adding the three equations of the left hand side of (2.6). Hence, by
applying this condition to the error (t,u,σ, p, ξ) − (th,uh,σh, ph, ξh), and using the definition
of the Riesz projection (t̄, ū, σ̄) ∈ X, the definition of the operator B, the third equation of
the continuous problem (2.6), and Lemmas 4.1 and 4.2, we obtain the estimates (4.3) and (4.4).
The details are omitted. 2

According to the previous theorem, we now introduce the reliable a-posteriori error estimates

θ̃ :=

 ∑
T∈Th

θ̃2
T


1/2

and θ :=

 ∑
T∈Th

θ2
T


1/2

. (4.7)

In addition, we establish next that θ̃ is quasi-efficient, which means that it is efficient up
to a term depending on the traces (u − ϕh) on the edges of Th. We also remark that, besides
the regularity and interpolation conditions, Lemma 4.1, Lemma 4.2, and Theorem 4.1 do not
require any further assumptions on ϕh. However, as we show below, the above mentioned
quasi-efficiency will restrict the possible choices of this auxiliary function.

Lemma 4.3 Assume that u ∈ [W 1,m(Ω)]2, with m > 2. Then there exists a positive constant
C1(α) = O(α2), independent of h, such that for all T ∈ Th

θ̃2
T ≤ C1(α)

{
‖t− th‖2

[L2(T )]2×2 + ‖u− uh‖2
[L2(T )]2 + ‖σ − σh‖2

H(div ;T )

+ ‖p− ph‖2
L2(T ) + h2

T |ξ − ξh|2 + ‖Jh,T (u)‖2
[H1/2(∂T )]2

}
,

(4.8)

and hence
θ̃

2 ≤ C1(α)
{
‖(t,u,σ, p, ξ)− (th,uh,σh, ph, ξh)‖2

X1×M1×M

+
∑

T∈Th

‖Jh,T (u)‖2
[H1/2(∂T )]2

}
,

where Jh,T (u) :=
{

0 on ∂T ∩ Γ
u− ϕh otherwise

.

Proof. It is similar to the proof of Lemma 4.1 in [13]. We omit the details here. 2

At this point we remark that, although the reliable a-posteriori error estimate θ̃ is also
quasi-efficient, its eventual applicability is limited by the fact that it requires the knowledge
of the exact solutions σ̂T of the local problems (4.1), which live all in the infinite dimensional
space H(div ;T ). This difficulty can be partially overcomed by using h, p or h − p versions of
the finite element method to solve (4.1) approximately, which naturally yields approximations
of the local indicators θ̃T , and hence of θ̃. We will go back to this point in Section 5.

On the other hand, the advantage of θ, which is not necessarily quasi-efficient, is that it does
not need the exact or any approximate solution of (4.1), but a suitable ϕh. In order to choose
this auxiliary function, we adopt the criterion of enforcing the quasi-efficiency of θ̃ so that it
becomes closer to full efficiency. As established in Lemma 4.3, this criterion requires that the
traces ϕh|∂T be as close as possible to the exact traces u|∂T , for each T ∈ Th. According to this,
and taking into account the finite element subspaces defining the discrete scheme, we propose
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next a heuristic procedure to choose ϕh. Hereafter, given a nonnegative integer l, Pl(T ) denotes
the space of polynomials of degree ≤ l defined on T .

We first compute local functions ϕh,T , for each T ∈ Th, satisfying:

1. ϕh,T ∈ [P2(T )]2.

2. ∇ϕh,T is the [L2(T )]2×2- projection of th|T onto the space ∇ [P2(T )]2.

3. ϕh,T (x̄T ) = uh|T , where x̄T is the barycenter of T .

It is easy to see that each ϕh,T is uniquely determined by the above conditions. Then,
similarly as in [15], we now define ϕh as the continuous average of the functions ϕh,T . In other
words, ϕh is the unique function in [C(Ω̄)]2 satisfying:

1. ϕh|T ∈ [P2(T )]2 for each T ∈ Th.

2. For each vertex x̄ of Th lying on Γ and for each middle point x̄ of the edges e ∈ Eh(Γ),
ϕh(x̄) = g(x̄).

3. For each vertex x̄ of Th lying in Ω and for each middle point x̄ of the edges e ∈ Eh−Eh(Γ),
ϕh(x̄) is the average of the values ϕh,T (x̄) on all the triangles T ∈ Th to which x̄ belongs.

We observe here that the computations of the local functions ϕh,T (through a projection ar-
gument) and the global P2-interpolant ϕh are standard procedures in the finite element method.
Moreover, they are comparable (in complexity) to the computations of approximate solutions of
the local problems (4.1) via higher order H(div;T ) subspaces.

5 Numerical results

In this section we provide several numerical examples illustrating the performance of the mixed
finite element scheme (3.1) and the fully explicit a-posteriori error estimate θ (cf. (4.6), (4.7))
with the above described choice of the auxiliary function ϕh.

Hereafter, N is the number of degrees of freedom defining the subspaces X1,h, M1,h, and
Mh, that is, N := 9 (number of triangles of Th) + 2 (number of edges of Th) + 1, which leads
asymptotically to 12 unknowns per triangle. In order to compare this amount with the number
of unknowns employed by more traditional approaches, we consider the P1-isoP1 finite element
pair for the usual primal-mixed variational formulation of the generalized Stokes problem. In
this case, the pressure is approximated by continuous piecewise linear elements on a triangular
mesh, and the velocity is approximated by continuous piecewise linear elements on the finer mesh
obtained by refining each element in the pressure mesh into four elements using the midpoints
of each side. It is not difficult to see that these finite element subspaces lead asymptotically
to 7.5 degrees of freedom per triangle. We emphasize then that the additional cost of 4.5
unknowns per triangle in our present mixed approach is certainly justified by the fact that two
other quantities of physical interest (t and σ) are approximated directly, without any need of
numerical postprocessing. In addition, on the contrary to the P1-isoP1 approximation where
one has to impose continuity requirements at each node for the pressure ph and at each node and
midpoint for the components of the velocity uh, we only need here to consider the continuity of
the normal components of the flux σh at the edges of the triangulation. This yields therefore
a much simpler computation of the global stiffness matrix of the present mixed finite element
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method since all the sub-matrices connecting only the other three main unknowns (th, uh, and
ph) become block-diagonal (in a general sense including rectangular matrices). Consequently,
computing in particular the inverse of the sub-matrix generated by th and uh is straightforward,
which allows to eliminate these unknowns, thus simplifying significantly the solution procedure
of the whole discrete system (3.1).

We now provide further notations. The individual and global errors are defined as follows

e(t) := ‖t− th‖[L2(Ω)]2×2 , e(u) := ‖u− uh‖[L2(Ω)]2 ,

e(σ) := ‖σ − σh‖H(div ;Ω) , e(p) := ‖p− ph‖L2(Ω) , e(ξ) := |ξ − ξh| ,

and
e :=

{
[e(t)]2 + [e(σ)]2 + [e(p)]2 + [e(u)]2 + [e(ξ)]2

}1/2
,

where (t,u,σ, p, ξ) and (th,uh,σh, ph, ξh) are the unique solutions of the continuous and discrete
mixed formulations, respectively. In addition, the effectivity index associated to the a-posteriori
error estimate θ is given by e/θ. Also, given two consecutive triangulations with degrees of
freedom N and N ′, and corresponding total errors given by e and e′, the experimental rate of

convergence is defined by γ := −2
log(e/e′)
log(N/N ′)

.

On the other hand, the adaptive algorithm used in the mesh refinement process is the
following (see [23]):

1. Start with a coarse mesh Th.

2. Solve the discrete problem (3.1) for the current mesh Th.

3. Compute the auxiliary function ϕh.

4. Compute θT for each triangle T ∈ Th.

5. Evaluate stopping criterion and decide to finish or go to next step.

6. Use blue-green procedure to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥ 1
2

max{θT : T ∈ Th } .

7. Define resulting mesh as actual mesh Th and go to step 2.

We remark here that the H1/2-norm appearing in the computation of θT (cf. (4.6)) is
approximated by means of an interpolation estimate, that is, given e ∈ E(T ) ∩ Eh(Γ), we
consider the bound

‖ϕh − g‖2

[H
1/2
00 (e)]2

≤ ‖ϕh − g‖[L2(e)]2 ‖ϕh − g‖[H1
0 (e)]2 .

The numerical results presented below were obtained in a Compaq Alpha ES40 Parallel
Computer using a MATLAB code. We consider four examples of the generalized Stokes problem
(1.1), with different choices of the parameters α and ν for three of them. The data f and g
are chosen so that the velocity u := (u1, u2)t and the pressure p are the ones shown below in
Table 5.0. Example 1 considers smooth solutions for both unknowns. Then, Examples 2 and
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4 illustrate the case of velocities with boundary and inner layers, respectively. More precisely,
u has a boundary layer around the origin in Example 2, while u has an inner layer around the
line x2 = 0.5 − x1 in Example 4. Finally, Example 3 considers the case of u with a singularity
around the exterior neighborhood of the boundary point (1, 1). Certainly, the velocities of the
four examples are divergence free.

Table 5.0: Domain and exact solution for each example.

Example Ω u1(x1, x2) u2(x1, x2) p(x1, x2)

1 (−1, 1)2 −ex1 (x2 cos(x2) + sin(x2)) ex1 x2 sin(x2) 2 ex1 sin(x2)

2 (0, 1)2 −
√

α e−
√

α (x1+x2) −u1(x1, x2) 2 e2x1−1 sin(2x2 − 1)

3 (−1, 1)2 − (2.1− x1 − x2)−1/3 −u1(x1, x2) 2 ex1 sin(x2)

4 (0, 1)2 −
√

α e−
√

α (0.5−x1−x2)2 −u1(x1, x2) 2 e2x1−1 sin(2x2 − 1)

Before commenting on the numerical results obtained, we observe in advance that the in-
formation on the individual error e(ξ) is not displayed below since it converges very rapidly to
zero in all the examples considered.

In Tables 5.1 and 5.2 we give the individual and global errors, the effectivity index e/θ, and
the experimental rate of convergence γ for the uniform refinement as applied to Example 1 with
pairs of parameters (α, ν) = (10, 1) and (α, ν) = (100, 1). In addition, Figures 5.1.1 and 5.2.1
show the corresponding individual errors versus the degrees of freedom N . We observe here that
the rates of convergence behave as predicted by the theory, that is, of O(h), and that, due to
the order of the constant C̄(α, ν) in Theorem 3.2, some of these rates begin to deteriorate as α
increases. We also notice that the dominant components of the global error are given by e(t)
and e(σ). Further, the effectivity indexes remain bounded above and below as N increases (with
smaller lower bounds for bigger α), which confirms the reliability of θ and provides numerical
evidences for it being efficient. However, as shown by Figures 5.1.2 and 5.2.2, and due to the fact
that the solution of Example 1 is smooth, there is no relevant difference between the uniform
and adaptive procedures for the global error e versus N .

The numerical results concerning Example 2 are presented in Tables 5.3 and 5.4 where we
display the individual and global errors, the effectivity index e/θ, and the experimental rate
of convergence γ for both refinements with (α, ν) = (100, 0.5) and (α, ν) = (1000, 0.5). We
note from these tables that only e(σ) constitutes now the dominant part of e. In addition,
we observe a very clear difference between the uniform and adaptive refinements. The global
error e of the latter decreases much faster than that of the former, thus recovering the rate
of convergence O(h). As shown in Figures 5.3 and 5.4, this fact is even more pronounced for
α = 1000 where the convergence of the uniform refinement is very slow. However, although
the effectivity indexes remain bounded above and below as N increases, for the two pairs of
parameters and for both refinements, they also increase as α gets larger. Next, Meshes 5.3 and
5.4 display some intermediate meshes obtained with the adaptive refinement algorithm. It is
interesting to confirm, as expected, that the procedure is able to recognize the boundary layer
around (0, 0). Also, we remark that this refinement is even more localized near the origin for
α = 1000, which is due to the fact that this layer becomes thinner as α gets larger.
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Next, Tables 5.5 and 5.6 provide the numerical results obtained for Example 3 with (α, ν) =
(10, 1) and (α, ν) = (100, 1). As for the previous examples, e(σ) is again the dominant part
of the global error e. Also, we observe that the effectivity indexes remain bounded above and
below as the number of degrees of freedom N increases, with bounds close to 1.0, which confirms
the reliability of θ and constitutes numerical evidences of its eventual efficiency. In addition,
according to the experimental rates of convergence, which are also illustrated by Figures 5.5
and 5.6, the adaptive procedure yields again the quasi-optimal rate of convergence O(h) for the
global error e. Moreover, as expected, the adaptive refinement algorithm is able to identify the
singularities of the problem. In fact, as shown by Meshes 5.5 and 5.6, the adapted meshes are
highly refined around the boundary point (1, 1), in whose outer neighborhood the singularity
lives. Further, similarly as for Example 2, the refinement is even more localized as α gets larger.

Finally, the numerical results concerning Example 4 with (α, ν) = (1000, 0.5) are collected
in Table 5.7. The remarks and conclusions here are similar to those for Examples 2 and 3.
Again, the effectivity indexes remain bounded, with bounds around 0.11, and, although the
experimental rates of convergence of both refinements aproach 1 as N incresases, the global
error of the adaptive one begins to decrease before than the uniform one. This fact is clearly
observed in Figure 5.7 where the curve e versus N is shown. In addition, as expected, the
corresponding adaptive refinement algorithm is able to recognize the inner layer of the problem.
Indeed, as can be seen in Meshes 5.7, the adapted meshes are highly refined around the line
x2 = 0.5−x1. We also notice here that the refinements identify a thin band exactly on this line,
which corresponds to the flat behaviour of the solution caused by the power 2 in the exponent
of the exponential function.

On the other hand, although we mentioned before that the solutions of the local problems
(4.1) could be approximated via higher order H(div;T ) subspaces, we show next that this
additional computational effort would not necessarily improve the efficiency of the a-posteriori
error estimate. To this end, we now identify the main components of θ, which are given by those
terms providing, respectively, the a-priori bounds for the local solutions σ̂T , and the residuals of
the constitutive, equilibrium, and compressibility equations. More precisely, according to (4.6)
and (4.7), we can write θ =

{
θ2

ϕ + θ2
res

}1/2, where

θ2
ϕ :=

∑
T∈Th

{
‖th − ∇ϕh‖2

[L2(T )]2×2 + ‖uh − ϕh‖2
[L2(T )]2 + h2

T |ξh|2
}

+
∑

e∈Eh(Γ)

‖ϕh − g‖2

[H
1/2
00 (e)]2

,

and

θ2
res :=

∑
T∈Th

{
‖σh − ν th + phI‖2

[L2(T )]2×2 + ‖f + div (σh)− αuh‖2
[L2(T )]2 + ‖tr (th)‖2

L2(T )

}
.

Then, in Table 5.8 we display the components θϕ and θres for the examples considered in
this section. We observe there that in most cases the component θres is the very dominant
one. The only exception is the situation concerning Example 2 in which θϕ and θres are of the
same order. Consequently, any improvement in the a-priori bound for σ̂T (even if it could be
computed exactly) will not modify the efficiency of the a-posteriori error estimator. In other
words, these examples support the belief that θ̃ will not necessarily yield better results than
those given by θ.
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As general remarks, we would like to observe first that the numerical examples presented
here behave much better than what the previous theoretical results insinuated. In particular, the
order of the constants obtained in Theorems 3.1 and 3.2 indicate that the rates of convergence are
affected by large values of α, which, nevertheless, was not too severe in the examples. Further,
since α is proportional to the inverse of the time-step ∆t, the estimates provided in these
theorems also indicate that the convergence of time-dependent solutions should deteriorate as
∆t decreases. Whether this holds exactly as predicted by the theory or behaves better than that
is something to be seen from corresponding numerical results. Now, according to the constants
in Theorem 4.1 and Lemma 4.3, one would have expected effectivity indexes between O(α−1)
and O( α3

ν ). However, as we could see, they all lie on ranges much tighter than that, they
do not deteriorate as N increases, and they additionally improve when passing from uniform
to adaptive refinements. The above observations yield the conjecture that these constants are
overestimated and that they could be improved. In addition, our conclusion is that the proposed
mixed method is perhaps not so competitive for extremely large values of α, but it does constitute
a good alternative for moderately large values of this parameter. Finally, we emphasize that the
examples provide enough support for the adaptive algorithm being much more efficient than a
uniform refinement when solving the discrete scheme.
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Table 5.1: individual errors, total error e, effectivity index, and global rate
of convergence for the uniform refinement (Example 1, α = 10, ν = 1).

N e(t) e(u) e(σ) e(p) e e/θ γ

29 3.5762 2.4040 7.7467 3.6114 9.5720 0.3968 —–
105 2.2827 1.2595 4.3739 2.0922 5.5051 0.4343 0.8598
401 1.3824 0.6473 2.5351 1.2701 3.2203 0.4912 0.8002
1569 0.7853 0.3244 1.2887 0.6462 1.6735 0.5029 0.9596
6209 0.4206 0.1616 0.5951 0.2791 0.7969 0.4755 1.0787
24705 0.2163 0.0806 0.2776 0.1196 0.3803 0.4525 1.0710
98561 0.1092 0.0402 0.1343 0.0548 0.1860 0.4423 1.0338
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Figure 5.1.1: errors vs. N for the uniform refinement (Example 1, α = 10, ν = 1).
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Figure 5.1.2: e vs. N for both refinements (Example 1, α = 10, ν = 1).
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Table 5.2: individual errors, total error e, effectivity index, and global rate
of convergence for the uniform refinement (Example 1, α = 100, ν = 1).

N e(t) e(u) e(σ) e(p) e e/θ γ

29 3.3494 2.3697 10.3296 4.1105 11.8504 0.0500 —–
105 2.0578 1.2424 7.7385 3.1434 8.6916 0.0700 0.4818
401 1.1765 0.6395 5.8418 2.3861 6.4509 0.1011 0.4449
1569 0.6821 0.3224 3.3689 1.4000 3.7254 0.1158 0.8048
6209 0.3909 0.1613 1.4540 0.6076 1.6317 0.1013 1.2003
24705 0.2109 0.0806 0.5048 0.2096 0.5914 0.0734 1.4697
98561 0.1084 0.0402 0.1765 0.0720 0.2230 0.0553 1.4095
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Figure 5.2.1: errors vs. N for the uniform refinement (Example 1, α = 100, ν = 1).
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Figure 5.2.2: e vs. N for both refinements (Example 1, α = 100, ν = 1).
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Table 5.3: individual errors, total error e, effectivity index, and global rate
of convergence for both refinements (Example 2, α = 100, ν = 0.5).

N e(t) e(u) e(σ) e(p) e e/θ γ

105 5.4391 0.5032 50.7765 3.2059 51.1700 4.5545 —–
401 4.7510 0.5047 50.7097 2.4017 50.9908 8.0530 0.0052
1569 2.7950 0.3270 32.8015 1.1490 32.9420 10.4012 0.6405
6209 1.5002 0.1760 17.6482 0.4435 17.7182 11.1071 0.9016
24705 0.7768 0.0896 8.9857 0.1716 9.0213 11.1273 0.9775
98561 0.3937 0.0450 4.5126 0.0740 4.5305 11.0640 0.9955
105 5.4391 0.5032 50.7765 3.2059 51.1700 4.5545 —–
251 4.7575 0.5050 50.7475 2.3963 51.0289 7.9226 0.0063
397 2.8246 0.3287 33.0313 1.5115 33.1880 9.5209 1.8766
543 1.7132 0.1857 18.7508 1.2146 18.8690 8.0700 3.6061
1105 1.2094 0.1080 10.9389 0.9160 11.0442 7.3584 1.5077
2642 0.7755 0.0624 6.3504 0.6207 6.4279 6.5904 1.2418
4890 0.6248 0.0518 5.2416 0.3865 5.2931 7.2317 0.6310
11810 0.4113 0.0303 3.0674 0.2027 3.1016 6.3483 1.2122
26486 0.2902 0.0217 2.2001 0.1144 2.2222 6.4654 0.8256
47876 0.2133 0.0150 1.5206 0.0723 1.5373 6.0896 1.2448
99636 0.1528 0.0112 1.1353 0.0447 1.1464 6.3580 0.8004
190594 0.1084 0.0075 0.7664 0.0289 0.7746 6.0338 1.2089
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Figure 5.3: e vs. N for both refinements (Example 2, α = 100, ν = 0.5).
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Table 5.4: individual errors, total error e, effectivity index, and global rate
of convergence for both refinements (Example 2, α = 1000, ν = 0.5).

N e(t) e(u) e(σ) e(p) e e/θ γ

105 7.0383 0.0643 65.0020 5.0629 65.5777 1.0652 —–
401 12.9106 0.3337 334.0185 7.4337 334.3507 7.3412 —–
1569 17.7197 0.5382 538.4277 8.1264 538.7808 18.2978 —–
6209 12.7694 0.4502 450.3525 5.3283 450.5652 28.8851 0.2599
24705 7.1160 0.2680 268.0732 2.3559 268.1781 34.7400 0.7514
98561 3.7577 0.1404 140.4863 0.9185 140.5396 36.0464 0.9339
105 7.0383 0.0643 65.0020 5.0629 65.5777 1.0652 —–
251 12.9142 0.3338 334.0546 6.6592 334.3706 7.3370 —–
397 17.7427 0.5382 538.4458 7.0993 538.7851 18.2613 —–
543 12.8121 0.4501 450.2576 4.9853 450.4676 28.6842 1.1433
689 7.2888 0.2693 269.4196 2.6824 269.5316 33.3358 4.3135
835 4.7125 0.1543 154.4175 1.8963 154.5011 29.2990 5.7909
1722 2.7302 0.0798 79.8489 1.4523 79.9088 25.8793 1.8217
3839 1.6684 0.0463 46.3600 1.3075 46.4084 24.4862 1.3555
7031 1.2912 0.0363 36.4156 1.1266 36.4560 25.8745 0.7977
14781 0.8664 0.0239 24.0379 1.0019 24.0744 24.4694 1.1169
27310 0.6568 0.0182 18.2701 0.7172 18.2960 25.0696 0.8941
56312 0.4520 0.0123 12.3484 0.5608 12.3694 24.2670 1.0818
110822 0.3375 0.0090 9.0979 0.2983 9.1090 24.2919 0.9038
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Figure 5.4: e vs. N for both refinements (Example 2, α = 1000, ν = 0.5).
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Meshes 5.3: adapted intermediate meshes with 26486 and 99636
degrees of freedom, respectively, for Example 2, α = 100, ν = 0.5.

Meshes 5.4: adapted intermediate meshes with 14781 and 56312
degrees of freedom, respectively, for Example 2, α = 1000, ν = 0.5.
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Table 5.5: individual errors, total error e, effectivity index, and global rate
of convergence for both refinements (Example 3, α = 10, ν = 1).

N e(t) e(u) e(σ) e(p) e e/θ γ

29 0.7664 0.4607 6.0365 2.8186 6.7219 1.5756 —–
105 0.8281 0.2984 5.1990 2.0257 5.6487 1.8869 0.2703
401 0.6839 0.1733 5.3278 1.1694 5.5001 1.3734 0.0398
1569 0.4615 0.0898 5.3663 0.5403 5.4139 1.1420 0.0231
6209 0.2660 0.0447 4.3239 0.2269 4.3382 1.0762 0.3220
24705 0.1407 0.0223 2.7594 0.0984 2.7649 1.0551 0.6523
98561 0.0718 0.0111 1.5160 0.0454 1.5185 1.0483 0.8662

29 0.7664 0.4607 6.0365 2.8186 6.7219 1.5756 —–
105 0.8281 0.2984 5.1990 2.0257 5.6487 1.8869 —–
325 0.6916 0.1767 5.3524 1.1959 5.5307 1.3761 —–
471 0.5949 0.1254 5.5517 0.9228 5.6606 1.1705 —–
617 0.5444 0.1105 4.6251 0.8722 4.7393 1.1340 1.3158
763 0.5281 0.1074 3.2728 0.8655 3.4280 1.1900 3.0502
909 0.5244 0.1069 2.4193 0.8646 2.6243 1.3368 3.0515
1055 0.5238 0.1069 2.1416 0.8644 2.3706 1.4524 1.3654
3126 0.3502 0.0570 1.1486 0.4108 1.2704 1.3863 1.1485
8157 0.2154 0.0305 0.6736 0.2004 0.7357 1.3126 1.1390
12794 0.1926 0.0258 0.5409 0.1717 0.5998 1.3094 0.9071
32524 0.1147 0.0148 0.3269 0.0905 0.3583 1.2666 1.1042
54229 0.0949 0.0117 0.2551 0.0726 0.2819 1.2478 0.9378
130544 0.0578 0.0071 0.1621 0.0423 0.1774 1.2398 1.0541
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Figure 5.5: e vs. N for both refinements (Example 3, α = 10, ν = 1).
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Table 5.6: individual errors, total error e, effectivity index, and global rate
of convergence for both refinements (Example 3, α = 100, ν = 1).

N e(t) e(u) e(σ) e(p) e e/θ γ

29 0.3670 0.3899 7.2973 2.9958 7.9065 0.2145 —–
105 0.4457 0.2537 7.0634 2.8054 7.6175 0.3444 0.0578
401 0.4376 0.1525 6.7047 2.1753 7.0639 0.6181 0.1125
1569 0.3580 0.0849 5.9249 1.2798 6.0727 1.0757 0.2216
6209 0.2400 0.0441 4.4515 0.5381 4.4906 1.3042 0.4388
24705 0.1363 0.0222 2.7790 0.1799 2.7883 1.2948 0.6901
98561 0.0712 0.0111 1.5186 0.0607 1.5215 1.2738 0.8754

29 0.3670 0.3899 7.2973 2.9958 7.9065 0.2145 —–
105 0.4457 0.2537 7.0634 2.8054 7.6175 0.3444 0.0578
251 0.4305 0.1595 7.1218 2.4020 7.5300 0.6149 0.0264
789 0.3678 0.0912 6.4211 1.7284 6.6605 1.0505 0.2142
2483 0.2812 0.0501 4.7966 0.9914 4.9063 1.2275 0.5332
2629 0.2520 0.0431 3.4981 0.9790 3.6415 0.9561 10.4354
2947 0.2383 0.0403 2.6186 0.9350 2.7910 0.8150 4.6587
4633 0.2129 0.0327 1.9695 0.7235 2.1093 0.7499 1.2380
11357 0.1568 0.0214 1.3188 0.3226 1.3669 0.7916 0.9675
22547 0.1249 0.0147 0.7832 0.2293 0.8257 0.6380 1.4699
46839 0.0819 0.0101 0.5382 0.1011 0.5538 0.6511 1.0928
89728 0.0673 0.0074 0.3716 0.0744 0.3850 0.5881 1.1184
187253 0.0423 0.0051 0.2704 0.0362 0.2761 0.6391 0.9030
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Figure 5.6: e vs. N for both refinements (Example 3, α = 100, ν = 1).
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Meshes 5.5: adapted intermediate meshes with 3126 and 54229
degrees of freedom, respectively, for Example 3, α = 10, ν = 1.

Meshes 5.6: adapted intermediate meshes with 4633 and 46839
degrees of freedom, respectively, for Example 3, α = 100, ν = 1.
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Table 5.7: individual errors, total error e, effectivity index, and global rate
of convergence for both refinements (Example 4, α = 1000, ν = 0.5).

N e(t) e(u) e(σ) e(p) e e/θ γ

105 74.3233 10.9499 975.4179 26.3889 978.6626 0.0838 —–
401 43.9757 7.2191 790.4335 25.1620 792.0885 0.1017 0.3156
1569 32.5849 4.0695 513.2866 11.7287 514.4697 0.1160 0.6326
6209 17.3618 2.1141 264.9580 5.2669 265.5869 0.1147 0.9613
24705 8.9221 1.0675 132.0790 2.1941 132.4025 0.1130 1.0080
98561 4.5016 0.5350 65.7869 0.8889 65.9489 0.1123 1.0074
105 74.3233 10.9499 975.4179 26.3889 978.6626 0.0838 —–
251 47.5896 7.5069 785.4328 25.8358 787.3331 0.0978 0.4992
907 34.5913 4.2248 536.2225 13.2819 537.5178 0.1164 0.5942
2111 20.9361 2.1538 292.7591 8.1437 293.6276 0.1247 1.4315
7141 11.2381 1.1037 148.3617 4.1104 148.8476 0.1240 1.1149
17599 9.4008 0.6518 91.1181 3.1416 91.6579 0.1334 1.0750
30105 5.9042 0.5120 68.4031 2.1752 68.6938 0.1244 1.0744
87607 4.1128 0.2886 41.6759 1.6638 41.9124 0.1367 0.9250
120853 3.5184 0.2520 33.8690 1.3457 34.0788 0.1243 1.2862
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Figure 5.7: e vs. N for both refinements (Example 4, α = 1000, ν = 0.5).
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Meshes 5.7: adapted intermediate meshes with 7141, 17599, 30105 and
87607 degrees of freedom, respectively, for Example 4, α = 1000, ν = 0.5.
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Table 5.8: Main components of the a-posteriori error estimate θ.

Example 1 (α = 10, ν = 1) Example 1 (α = 100, ν = 1)

N θϕ θres

29 4.5135 23.6942
105 2.5688 12.4118
401 1.5104 6.3792
1569 0.8615 3.2136
6209 0.4659 1.6099
24705 0.2404 0.8053
98561 0.1213 0.4027

N θϕ θres

29 4.3964 236.8632
105 2.4076 124.1070
401 1.3361 63.7909
1569 0.7612 32.1361
6209 0.4345 16.0988
24705 0.2346 8.0533
98561 0.1205 4.0271

Example 2 (α = 1000, ν = 0.5) Example 3 (α = 10, ν = 1)

N θϕ θres

105 61.5259 2.1109
251 45.5072 2.4457
397 29.3608 2.9050
543 15.4992 2.5303
689 7.8532 1.9235
835 4.9966 1.6857
1722 2.8452 1.1997
3839 1.7123 0.8124
7031 1.3031 0.5357
14781 0.8945 0.4096
27310 0.6765 0.2737
56312 0.4681 0.2018
110822 0.3512 0.1313

N θϕ θres

29 1.9781 3.7799
105 1.3309 2.6815
325 0.8823 3.9209
471 0.6377 4.7937
617 0.5360 4.1447
763 0.5107 2.8349
909 0.5060 1.8968
1055 0.5053 1.5520
3126 0.3455 0.8487
8157 0.2140 0.5180
12794 0.1890 0.4173
32524 0.1141 0.2589
54229 0.0942 0.2054
130544 0.0576 0.1310

Example 3 (α = 100, ν = 1) Example 4 (α = 1000, ν = 0.5)

N θϕ θres

29 1.7393 36.8189
105 1.1333 22.0862
251 0.7085 12.2245
789 0.4471 6.3244
2483 0.2940 3.9861
2629 0.2491 3.8005
2947 0.2356 3.4162
4633 0.2104 2.8048
11357 0.1580 1.7195
22547 0.1249 1.2881
46839 0.0824 0.8465
89728 0.0680 0.6510
187253 0.0427 0.4300

N θϕ θres

105 75.8505 11672.9488
251 55.7055 8048.8130
907 34.1669 4614.5160
2111 20.4605 2353.0475
7141 11.3901 1199.6719
17599 9.3005 687.0050
30105 5.9360 552.0031
87607 4.1046 306.5056
120853 3.5123 274.0432
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