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Abstract

We present a modified version of the usual BEM–FEM coupling for the exterior
elasticity problem in the plane, cf. [7]. This new formulation allows us to take
advantage of techniques from [13] to compute the boundary integral terms using
simple quadrature formulas. We provide error estimates for the Galerkin method
and prove that the corresponding fully discrete scheme preserves the optimal rates
of convergence.
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1 Introduction

The idea of coupling the finite element method (FEM) and the boundary element method
(BEM) consists in compensating the deficiencies of each method with the advantages of
the other one. Indeed, the FEM can only be used on bounded domains while the BEM
requires linear equations with constant coefficients. Often, it is necessary to combine both
of them to solve problems in exterior domains.

Much progress has been made in the numerical analysis of these methods since the first
BEM–FEM coupling was introduced at the beginning of the eighties, cf. [14]. However, a
lot remains to be done before these coupling procedures become popular tools for engi-
neering calculations. For example, little is known about efficient algorithms to solve the
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complicated linear systems that arise from these formulations, cf. [16,10]. It is also diffi-
cult to control the effect of numerical integration on the convergence of these methods.
The main result of this paper concerns contributions to the analysis of a fully discrete
BEM–FEM coupling for an exterior elasticity problem in the plane.

The most popular BEM–FEM formulations are the Johnson–Nedelec method (cf. [14])
and the symmetric method (cf. [5,12]) which is used for the elasticity problem. It consists
in dividing the exterior domain into a bounded inner region and an unbounded outer
one by introducing an auxiliary common boundary. Next, the integral representation of
the solution in the unbounded domain provides two non–local conditions on the auxiliary
boundary for the problem in the inner region.

All authors (cf. [2],[9],[7]) choose a polygonal curve as an auxiliary boundary. At first
glance, this election seems to be more suitable to deal with the discrete problem. How-
ever, in this case, it is not known how to control the effect of numerical integration on
convergence. In this paper, we use a regular curve as an artificial boundary (as in [16,17])
and substitute all terms on this boundary by the corresponding periodic functions. This
modified BEM–FEM formulation of the elasticity problem is equivalent to the usual one at
the continuous level but it leads to a different Galerkin method that admits a completely
discrete version by using elementary quadrature formulas.

The rest of the paper is organized as follows. In section 2, we present a new version
of the symmetric BEM–FEM formulation for the elasticity problem and show that the
corresponding variational problem is well posed. In section 3, we describe the discretization
of the problem and provide an error analysis for the Galerkin scheme. In section 4, we
introduce a family of full discretizations of the complete system of equations. Finally, in
section 5 we prove that these numerical integration schemes preserve the optimal rates of
convergence.

Next we describe some notations used throughout this paper. Let O be an open set in R2.
We use the Hilbertian Sobolev spaces Hm(O) endowed with their usual norms ‖·‖m,O. The
inner product of L2(O) = H0(O) is denoted by (·, ·)0,O. Finally, the spaces Wm,∞(O) are
those Sobolev spaces derived from L∞(O) (cf. [1]); we denote their norms and seminorms
by ‖ · ‖m,∞,O and | · |m,∞,O, respectively.

We also consider periodic Sobolev spaces. Given a 1–periodic C∞ function g, we define its
Fourier coefficients

ĝ(k) :=
∫ 1

0
g(s)e−2kπıs ds, ∀ k ∈ Z.

Then, for each real number r, the 1-periodic Sobolev space Hr is the completion of the
space of 1–periodic C∞ functions with respect to the norm

‖g‖r :=

|ĝ(0)|2 +
∑
k 6=0

|k|2r|ĝ(k)|2
1/2

.
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It is well known (cf. [19] or [15]) that Hr is a Hilbert space for each r. Moreover, the
H0–inner product

(ξ, η) :=
∫ 1

0
ξ(s)η(s) ds,

can be extended to represent the duality between H−r and Hr for each r. We will keep
the same notation for this duality bracket.

On the other hand, since we will deal with vector unknowns, we need product forms of
some spaces. Let H be a normed space. Then, we denote by H := H × H the product
space endowed with the usual product norm and the corresponding inner product if it
exists. We will use the same notation for the inner product and norm of the product space.

We denote vectors and vector–valued functions by small boldface letters. Matrices and
matrix–valued functions are denoted by capital boldface letters. The superscript > will
denote transposition of a matrix. Finally, we denote by a dot the Euclidean inner product
in R2 and by a colon the Euclidean inner product in R2×2, the space of real 2×2 matrices,
i.e.,

u · v :=
2∑
i=1

uivi, A : B :=
2∑

i,j=1

Ai,jBi,j.

In all what follows, C denotes a generic constant independent of the discretization pa-
rameter h.

2 The model problem

Let Ω be a bounded domain in R2 with Lipschitz boundary Γ and let us denote by Ω′ the
complement of its closure Ω in R2. Let f be a function with a compact support contained
in Ω′. We consider the exterior Dirichlet problem for the Lamé system. This consists in
finding a displacement vector u satisfying

−
2∑
j=1

∂Sij[u]

∂xj
= fi, in Ω′, i = 1, 2,

u = 0, on Γ,

u(x) = O(1), as |x| → +∞.

(1)

We denoted by S[u] the stress tensor

S[u] = λ(∇ · u) I + 2µ E[u],
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Fig. 1. Geometry of the problem

where λ ≥ 0 and µ > 0 are the Lamé constants, I is the identity matrix and E[u] denotes
the strain tensor

Eij[u] :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 2.

Let Ω0 be a simply connected bounded domain in R2 with a smooth boundary Γ0, contain-
ing both the support of f and Ω in its interior. The auxiliar boundary Γ0 divides Ω′ into
two subdomains, Ω− := Ω0 ∩Ω′ and Ω+ := Ω′0. We denote the limit onto Γ0 of a function
defined on Ω+ or Ω− by the superscript + or −, respectively. Let n be the unit normal to
Γ0 oriented from Ω− to Ω+. We denote by t±[u] := S[u]±n the traction operator on Γ0.
Afterwards, problem (1) can be rewritten as an interior problem

−
2∑
j=1

∂Sij[u]

∂xj
= fi, in Ω−, i = 1, 2,

u = 0, on Γ,

(2)

coupled with the exterior problem

−
2∑
j=1

∂Sij[u]

∂xj
= 0, in Ω+, i = 1, 2,

u(x) = O(1), as |x| → +∞,
(3)

by means of the transmission conditions

u− = u+,

t−[u] = t+[u].
(4)

The variational formulation of the interior problem follows from completely standard
arguments. We multiply the two equations of (2) by a test function vi such that vi|Γ = 0,
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integrate over Ω− and apply a Green’s formula to obtain

a(u,v)−
∫

Γ0

t−[u] · v dσ = (f ,v)0,Ω− , ∀ v ∈ H1
Γ(Ω−), (5)

where H1
Γ(Ω−) is the subspace of H1(Ω−) formed by those functions v satisfying v|Γ = 0

and

a(u,v) :=
∫

Ω−
{λ (∇ · u)(∇ · v) + 2µ E[u] : E[v]} dx, ∀ u,v ∈ H1(Ω−).

The bounded bilinear form a(·, ·) is elliptic on H1
Γ(Ω−) by virtue of Korn’s inequality, i.e.,

there exists a constant α > 0 such that

a(v,v) ≥ α‖v‖2
1,Ω− , ∀ v ∈ H1

Γ(Ω−). (6)

Let U be the fundamental tensor of the Lamé equation,

U(x,y) = − λ+ 3µ

4πµ(λ+ 2µ)
log |x− y| I +

λ+ µ

4πµ(λ+ 2µ)

(x− y)(x− y)>

|x− y|2
.

We denote by Ui the column vectors of U and define

T±[U] := (t±[U1], t±[U2])>.

Then, we can represent the solution of problem (3) through the Betti–Somigliana formula:

u(x) =
∫

Γ0

T+
y [U(x,y)]u+(y) dσy −

∫
Γ0

U(x,y)t+[u](y) dσy + c, ∀ x ∈ Ω+, (7)

where c = (c1, c2)> is a constant. In relation (7) the subscript y in operator T+ de-
notes differentiation with respect to the y variables and integration must be understood
componentwise.

The symmetric method consists in coupling the variational formulation of the interior
problem (5) with two boundary integral equations on Γ0. These boundary integral equa-
tions are derived from (7) and they relate the Cauchy data u and t[u] to each other on
the artificial boundary Γ0.

Letting x approach Γ0 in equation (7) and taking into account the jump relations of the
layer potentials (cf. [3]), we deduce the first boundary integral equation on Γ0:

1

2
u+(x)−

∫
Γ0

T+
y [U(x,y)] u+(y) dσy +

∫
Γ0

U(x,y)t+[u](y) dσy − c = 0. (8)

We point out that the first integral in (8) exists as a principle value.
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The second equation is obtained by applying the traction operator to (7) and using the
jump relations of the layer potentials (cf. [3]),

1

2
t+[u](x) =

∫
Γ0

(T+
x

[
T+

y [U(x,y)]
]
)>u+(y)dσy −

∫
Γ0

(T+
x [U(x,y)])>t+[u](y)dσy. (9)

Here, the kernel of the first operator on the right hand side is hypersingular. The corre-
sponding operator is obtained by a regularisation of the divergent integral by the usual
procedure, cf. [3].

Let x : R −→ R2 be a smooth regular 1-periodic parametric representation of Γ0. We can
define the parameterized trace onto Γ0 as the unique extension of the mapping

γ : C∞(Ω
−

) −→ H0

u 7−→ γu(·) := u ◦ x(·)

to H1(Ω−). By the trace theorem, γ : H1(Ω−) −→ H1/2 is bounded and onto, cf. theorem
8.15 in [15].

The parameterized versions of the simple and double layer potentials are given by:

(Vη)(s) :=
∫ 1

0
V(s, t) η(t) dt, (Kη)(s) :=

∫ 1

0
K(s, t) η(t) dt,

where V(s, t) := U(x(s),x(t)) and

K(s, t) = |x′(t)|T+
x(t)[U(x(s),x(t))]

=
µ |x′(t)|

2π(λ+ 2µ)

(
(x(s)− x(t)) · n(x(t))

|x(s)− x(t)|2
I− (x(s)− x(t)) · τ (x(t))

|x(s)− x(t)|2
Ĩ

)

+
λ+ µ

π(λ+ 2µ)
|x′(t)|(x(s)− x(t))(x(s)− x(t))>

|x(s)− x(t)|4
(x(s)− x(t)) · n(x(t)).

Here, τ is the tangent vector to Γ0 and Ĩ =

0 −1

1 0

 .
In the sequel, we denote

ξ(t) := |x′(t)| t+[u](x(t)).

Using the representation formula (7), one can easily show that the behaviour of u at
infinity is equivalent to a zero mean–value condition on t+[u](x) on Γ0. It follows that

∫ 1

0
ξ(s) ds =

∫
Γ0

t+[u](x) dσx = 0.
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Then, parameterising equation (8), we obtain the following periodic integral equation:

(
1

2
I − K) γu+ + V ξ − c = 0, (10)

where I denotes the identity operator and γ is applied componentwise.

On the other hand, we recall the following relation from Gwinner and Stephan (cf. [11])

∫
Γ0

(T+
x

[
T+

y [U(x,y)]
]
)>u+(y) dσy =

∂

∂τ (x)
(
∫

Γ0

U∗(x,y)
∂u+(y)

∂τ (y)
dσy),

where

U∗(x,y) =
µ(λ+ µ)

π(λ+ 2µ)
{− log |x− y| I +

(x− y)(x− y)>

|x− y|2
}.

Making use of the parameterization x(·), we obtain

−
∫

Γ0

(
∫

Γ0

(T+
x

[
T+

y [U(x,y)]
]
)>u+(y) dσy) v(x) dσx = (

d

ds
γv,V∗ d

ds
γu+), (11)

for all v ∈ C∞(Ω
−

)2, where operator V∗ is formally given by

(V∗ξ)(s) :=
∫ 1

0
V∗(s, t) ξ(t) dt, with V∗(s, t) := U∗(x(s),x(t)).

Then, combining equations (9) and (5) and using relation (11), we obtain

a(u,v) + (
d

ds
γv,V∗ d

ds
γu+)− ((

1

2
I − K′) ξ, γv) = (f ,v)0,Ω− , ∀ v ∈ H1

Γ(Ω−), (12)

where K′ is the adjoint of K.

Let H
−1/2
0 be the subspace of H−1/2 formed by those functions η satisfying (η, 1) = 0.

Putting together equations (12) and (10) and using the transmission conditions (4) we
obtain a weak formulation of problem (1):

find (u, ξ) ∈ H1
Γ(Ω−)×H

−1/2
0 such that

a(u,v) + b∗(
d

ds
γu,

d

ds
γv)− c(v, ξ) = (f ,v)0,Ω− , ∀ v ∈ H1

Γ(Ω−),

c(u,η) + b(ξ,η) = 0, ∀ η ∈ H
−1/2
0 ,

(13)

where we denoted

b(ξ,η) = (η,Vξ), b∗(ξ,η) = (η,V∗ξ) and c(v,η) = (η, (
1

2
I − K) γv).
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To prove that problem (13) is well posed we need the following properties of the integral
operators V , K and V∗ defined before.

Lemma 1 Operators V : H−1/2 → H1/2, K : H1/2 → H1/2 and V∗ : H−1/2 → H1/2 are
linear and bounded. Furthermore, there exists a constant β > 0 such that

(η,Vη) ≥ β‖η‖2
−1/2, ∀ η ∈ H

−1/2
0 (14)

and the operator − d
ds
V∗ d

ds
: H1/2 −→ H−1/2 is nonnegative, i.e.,

(
dg

ds
,V∗ dg

ds
) ≥ 0, ∀ g ∈ H1/2. (15)

PROOF. One can easily show that both V and K inherit the properties of the clas-
sical simple and double layer potentials proved in [7] or [3]. On the other hand, as
γ : H1(Ω−) −→ H1/2 is onto, for any g ∈ H1/2, there exists a function u ∈ H1(Ω−)
such that γu = g and by virtue of relation (11),

(
dg

ds
,V∗ dg

ds
) = −

∫
Γ0

(
∫

Γ0

(T+
x [T+

y [U(x,y)]])>u(y) dσy) u(x) dσx

where the right hand side is nonnegative (cf. [7]).

We denote by M the product space H1
Γ(Ω−) × H

−1/2
0 endowed with its natural inner

product and the induced norm ‖·‖M. Consider the bounded bilinear form A : M×M −→ R
obtained by adding the left hand sides of (13), i.e.,

A(û, v̂) = a(u,v) + b∗(
d

ds
γu,

d

ds
γv)− c(v, ξ) + b(ξ,η) + c(u,η),

where we denoted the elements of M by û := (u, ξ) and v̂ := (v,η). It turns out that
A(·, ·) is M–elliptic since (6), (14) and (15) give

A(v̂, v̂) ≥ α‖v‖2
1,Ω− + β‖η‖2

−1/2 ≥ α̃‖v̂‖2
M, ∀ v̂ = (v,η) ∈M, (16)

with α̃ := min{α, β}. Let L : M −→ R be the bounded linear functional defined by

L(v̂) = (f ,v)0,Ω− , ∀ v̂ = (v,η) ∈M.

With these notations, problem (13) may be written

find û ∈M such that

A(û, v̂) = L(v̂), ∀ v̂ ∈M.

(17)

Existence and uniqueness of a solution to problem (17) follow immediately from Lax–
Milgram lemma.
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3 The discrete problem

3.1 Curved triangulation of the bounded domain

For simplicity of exposition we assume that Γ is a polygonal curve. Given a positive integer
N and h := 1/N , let {si := i h; i = 0, · · · , N} be the induced uniform partition of [0, 1].
We denote by Ωh the polygonal domain whose vertices lying on Γ0 are ∆h := {x(si)}Ni=1.
Let τh be a triangulation of Ωh by triangles T of diameter hT not greater than Ch. We
assume that any vertex of a triangle lying on the exterior boundary of Ωh belongs to ∆h.
We also suppose that the family of triangulations {τh}h is regular in the sense of [4].

We obtain from τh a triangulation τ−h of Ω
−

by replacing each triangle of τh with one side
along the exterior part of ∂Ωh by the corresponding curved triangle.

Let T be a curved triangle of τ−h . We denote its vertices by P1,T , P2,T and P3,T , numbered
in such a way that there exists an index i such that x(si−1) = P2,T and x(si) = P3,T .
Then, the mapping ϕ : [0, 1]→ R2 defined by

ϕ(s) := x (si−1 + s h) , s ∈ [0, 1],

is a parameterization of the curved side of T .

Let T̂ be the reference triangle with vertices P̂1 := (0, 0)>, P̂2 := (1, 0)> and P̂3 := (0, 1)>.
Consider the affine mapping GT defined by GT (P̂i) = Pi,T for i ∈ {1, 2, 3} and the
function ΘT : T̂ → R2 given by

ΘT (x̂) :=
x̂1

1− x̂2

(ϕ(x̂2)− (1− x̂2)P2,T − x̂2P3,T ) , ∀ x̂ = (x̂1, x̂2) ∈ T̂ ,

where the limiting value has to be taken when x̂2 tends to 1. We then introduce the C∞
mapping FT : T̂ → R2 given by

FT := GT + ΘT .

It is proved in theorem 22.4 of [20] that FT is a C∞–diffeomorphism from T̂ onto T .
Moreover, ΘT (0, s) = ΘT (s, 0) = (0, 0)> and FT (s, 1 − s) = ϕ(s) for all s ∈ [0, 1]. Then
each side of T̂ is mapped onto the corresponding side of T .

On each curved triangle T , a finite element may be defined by the triplet (T, P1(T ),ΣT ),
where P1(T ) is the space of functions defined on T with pullback in the space P1 of
polynomials of degree not greater than one:

P1(T ) := {p : T → R : p ◦ FT ∈ P1}

and ΣT := {Ni,T : i = 1, 2, 3} is the set of Lagrange functionals: Ni,T (φ) := φ(Pi,T ). It is
easy to show that ΣT is P1(T )−unisolvent (cf.[4]). It is also important to note that on each
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side of T , a function φ ∈ P1(T ) is uniquely determined by its nodal values corresponding
to that side. On straight triangles we use the classical P1-finite element.

Under the assumption of regularity of {τh}, theorem 22.4 in [20] proves that, for curved
triangles T , the Jacobian JT of FT does not vanish on a neighborhood of T̂ and the
following estimates hold:

C1h
2
T ≤ |JT (·)| ≤ C2h

2
T , (18)

|FT |k,∞,T̂ ≤ ChkT , k = 1, 2, (19)

|F−1
T |1,∞,T ≤ Ch−1

T . (20)

These properties of FT and the usual technique used in the affine case permit to obtain
interpolation error bounds on curved triangles (cf. section 4.3 of [4]). Namely, there exists
a constant C independent of T such that

|v − πTv|1,T ≤ ChT‖v‖2,T ∀v ∈ H2(T ), (21)

where πTv ∈ P1(T ) and is uniquely determined by πTv(Pi,T ) = v(Pi,T ) for i = 1, 2, 3. No-
tice that in the case of straight triangles, we obtain the same estimate with the seminorm
of H2(T ) instead of the norm on the right hand side.

3.2 Discrete spaces and Galerkin scheme

We will seek the approximate displacement field in

Vh := {vh ∈ C0(Ω
−
,R2) : vh|T ∈ P1(T ), ∀ T ∈ τ−h } ∩H1

Γ(Ω−),

where, as usual, P1(T ) = P1(T )× P1(T ). On the other hand, we define

Hh := {ηh ∈ L2(0, 1) : ηh|(si−1,si) ∈ P0, i = 1, . . . , N} ∩H
−1/2
0 ,

where P0 is the space of constant functions.

The discrete problem associated to the variational formulation (13) consists in finding
(uh, ξh) ∈ Vh ×Hh such that

a(uh,vh) + b∗(
d

ds
γ(uh),

d

ds
γ(vh))− c(vh, ξh) = (f ,vh)0,Ω− , ∀ vh ∈ Vh,

c(uh,ηh) + b(ξh,ηh) = 0, ∀ ηh ∈ Hh.

(22)
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Let us introduce the space Mh := Vh ×Hh. Problem (22) can be equivalently written

find ûh ∈Mh such that

A(ûh, v̂h) = L(v̂h), ∀ v̂h ∈Mh.

(23)

The ellipticity of A(·, ·) implies that this problem is well posed and we have the following
Céa’s inequality:

‖u− uh‖1,Ω− + ‖ξ − ξh‖−1/2 ≤ C ( inf
vh∈Vh

‖u− vh‖1,Ω− + inf
ηh∈Hh

‖ξ − ηh‖−1/2). (24)

Theorem 2 If u belongs to H2(Ω−) then

‖u− uh‖1,Ω− + ‖ξ − ξh‖−1/2 ≤ Ch ‖u‖2,Ω− .

PROOF. The local interpolation error estimates (21) lead to the following inequality:

inf
vh∈Vh

‖v − vh‖1,Ω− ≤ Ch‖v‖2,Ω− , ∀ v ∈ H1
Γ(Ω−) ∩H2(Ω−) (25)

and classical approximation properties in periodic Sobolev spaces (cf. [18]) give

inf
ηh∈Hh

‖η − ηh‖−1/2 ≤ Ch‖η‖1/2, ∀ η ∈ H
−1/2
0 ∩H1/2. (26)

We deduce the result from inequalities (25) and (26) together with (24) and the trace
theorem.

4 Full discretization of the equations

In this section, we describe the different quadratures used to approximate the integrals
in (22). We begin by the interior terms. Let Q̂ be a quadrature formula on the reference
triangle T̂ :

Q̂(ϕ) :=
d0∑
k=1

ω̂kϕ(b̂k) '
∫
T̂
ϕ(x̂) dx̂.

We assume that Q̂ is exact for constant functions; i.e.,
∑d0
k=1 ω̂k = 1/2. The corresponding

formula QT on a given triangle T ∈ τ−h is obtained by a simple change of variable

QT (φ) := Q̂(|JT | φ̂) =
d0∑
k=1

ω̂k|JT |(b̂k)φ̂(b̂k) '
∫
T
φ(x) dx,
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where we denoted φ̂ := φ ◦ FT . We approximate the linear form L(·) by

Lh(v̂h) :=
∑
T∈τ−

h

QT (f · vh)

on Mh and the bilinear form a(·, ·) by

ah(uh,vh) :=
∑
T∈τ−

h

QT (λ (∇ · uh)(∇ · vh) + 2 µ E[uh] : E[vh])

on Vh ×Vh.

For the boundary terms, we need a basic quadrature formula on the unit square:

ˆ̀
2(g) :=

d1∑
k=1

ηkg(xk) '
∫ 1

0

∫ 1

0
g(s, t) dsdt.

We assume that ˆ̀
2 is exact for polynomial functions of degree not greater than one. In

the following, we introduce three different types of approximations:

1. Numerical quadratures must be handled with care when defining an approximation
of b(·, ·) on Hh×Hh because of the logarithmic singularity of V. Here, we follow [13] and
consider the following decomposition of the kernel:

V(s, t) = −Cλ,µ log |s− t|2 I + B(s, t),

where Cλ,µ = λ+3µ
8πµ(λ+2µ)

. Notice that the matrix valued function B(·, ·) is of class C∞ in

the domain D1 = {(s, t) ∈ [0, 1]× [0, 1] : |s− t| < 1}. Now, the strategy consists in using
ˆ̀
2 to approximate the second integral and compute the first one exactly (cf. [13] or [8]);

i.e.,∫ si

si−1

∫ sj

sj−1

V(s, t) ds dt ' Vi,j := h2
(

ˆ̀
2(B(si−1 + h ·, sj−1 + h ·))− Cλ,µ(log h2 +Bi−j)I

)
,

with

Bk :=
∫ 1

0

∫ 1

0
log |k + t− s|2 dt ds, ∀ k ∈ Z

and

(i, j) :=


(i, j), if |i− j| ≤ N/2,

(i, j +N), if i− j > N/2,

(i, j −N), if j − i > N/2.

Notice that the periodicity of V(·, ·) allows one to use the indices (i, j) instead of (i, j)
and avoid the neighbourhood of the region {(s, t); |s− t| = 1}.
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Let us denote ηi the constant value of a given function ηh ∈ Hh on (si−1, si), (1 ≤ i ≤ N).
Then, for any ξh, ηh ∈ Hh, we define

bh(ξh,ηh) :=
N∑

i,j=1

(ηi)>Vi,j ξ
j.

2. Notice that if uh is a function in Vh, then γuh belongs to the space Th, where

Th = {ηh ∈ C0(R) : ηh|(si−1,si) ∈ P1, 1 ≤ i ≤ N ; ηh(s) = ηh(s+ 1), ∀ s ∈ R}.

Hence, for any vh ∈ Vh,
d
ds
γvh ∈ Hh and it suffices to approximate b∗(·, ·) on Hh ×Hh

by the same technique given in the previous case. Indeed, the singularity of V∗(·, ·) is
removed as above to obtain∫ si

si−1

∫ sj

sj−1

V∗(s, t) ' V∗i,j := h2
(

ˆ̀
2(B∗(si−1 + h ·, sj−1 + h ·))− C∗λ,µ(log h2 +Bi−j)I

)
,

where C∗λ,µ = µ(λ+µ)
2π(λ+2µ)

and B∗(·, ·) is a matrix–valued function of class C∞ in the domain
D1. Afterwards, we define the perturbed bilinear form

b∗h(ξh,ηh) :=
N∑

i,j=1

(ηi)>V∗i,j ξ
j.

3. It remains to define an approximation ch(vh,ηh) of c(vh,ηh) on Vh×Hh. Let {`i}Ni=1

be the set of nodal basis functions of Th, i.e., `i(sj) = δi,j, for all 1 ≤ i, j ≤ N . Thus, it
suffices to provide a quadrature scheme for∫ si

si−1

∫ sj+1

sj−1

`j(t) K(s, t) dt ds, (27)

where sN+1 = 1 + h.

To treat the singularity of the kernel of operator K we use the decomposition

K(s, t) = − µ

2π(λ+ 2µ)

1

s− t
Ĩ + C(s, t).

Notice that C(·, ·) is a matrix–valued function of class C∞. Then (27) writes

− µ

2π(λ+ 2µ)

∫ si

si−1

∫ sj+1

sj−1

1

s− t
`j(t) Ĩ dt ds+

∫ si

si−1

∫ sj+1

sj−1

`j(t) C(s, t) dt ds. (28)
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Computing the first term of (28) exactly we obtain∫ si

si−1

∫ sj+1

sj−1

1

s− t
`j(t) Ĩ dt ds =

h

2
Ai−j Ĩ,

where the coefficients Ak are determined by the conditions: A−k = −Ak+1 ∀k ∈ N, and

Ak = (k+1)2 log(1− 1

k2
)−4(k+

1

2
) log(1− 1

k
)−k2 log(1− 1

(k − 1)2
)+4(k−1) log(1− 1

k − 1
),

for k > 2 with A1 = 4 log 2 and A2 = 9 log 3 − 12 log 2. The second term of (28) is
approximated by h2 ˆ̀

2(Ci j), where we denoted

Ci j(s, t) := `j(sj−1 + ht) C(si−1 + hs, sj−1 + ht) + `j(sj + ht) C(si−1 + hs, sj + ht).

It follows that

ch(vh,ηh) =
1

2
(ηh, γvh)−

N∑
i,j=1

(ηi)>
(
h2 ˆ̀

2(Ci j)− µ

2π(λ+ 2µ)

h

2
Ai−j Ĩ

)
γvh(sj).

We are now in a position to write the fully discrete scheme associated to problem (13),

find u∗h ∈ Vh and ξ∗h ∈ Hh;

ah(u
∗
h,vh) + b∗h(

d

ds
γu∗h,

d

ds
γvh)− ch(vh, ξ∗h) = Lh(vh), ∀ vh ∈ Vh,

bh(ξ
∗
h,ηh) + ch(u

∗
h,ηh) = 0, ∀ ηh ∈ Hh.

(29)

5 Analysis of the fully discrete scheme

In this section, we study the stability and convergence of the fully discrete scheme (29).
We begin with some bounds related to the five kinds of approximations presented in the
last section.

The following results concern estimates on the error committed when approximating the
right hand side and the energy form a(·, ·). They follow readily from lemma 26.7 and
lemma 26.6 in [20].

Lemma 3 If f ∈W1,∞(Ω−), then there exists a constant C independent of h such that

|L(vh)− Lh(vh)| ≤ Ch ‖f‖1,∞,Ω−‖vh‖1,Ω− , ∀ vh ∈ Vh.
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Lemma 4 There exists a constant C independent of h such that

|a(uh,vh)− ah(uh,vh)| ≤ Ch ‖uh‖1,Ω−‖vh‖1,Ω− , ∀ uh,vh ∈ Vh.

For the bilinear forms associated to the boundary integral operators we have the following
results.

Lemma 5 There exists a constant C independent of h such that

|b(ξh,ηh)− bh(ξh,ηh)| ≤ Ch ‖ξh‖−1/2‖ηh‖−1/2, ∀ ξh,ηh ∈ Hh.

PROOF. See lemma 11 in [8].

Lemma 6 There exists a constant C independent of h such that

|b∗( d
ds
γuh,

d

ds
γvh)− b∗h(

d

ds
γuh,

d

ds
γvh)| ≤ Ch ‖uh‖1,Ω−‖vh‖1,Ω− , ∀ uh,vh ∈ Vh.

PROOF. Lemma 5 shows that there exists a constant C > 0 such that

|b∗(ξh,ηh)− b∗h(ξh,ηh)| ≤ Ch ‖ξh‖−1/2‖ηh‖−1/2, ∀ ξh,ηh ∈ Hh.

Therefore,

|b∗( d
ds
γuh,

d

ds
γvh)− b∗h(

d

ds
γuh,

d

ds
γvh)| ≤ Ch ‖ d

ds
γuh‖−1/2‖

d

ds
γvh‖−1/2

and the boundness of operators
d

ds
: H1/2 −→ H−1/2 and γ imply the result.

Lemma 7 There exists a constant C independent of h such that

|c(vh,ηh)− ch(vh,ηh)| ≤ Ch3/2 ‖vh‖1,Ω−‖ηh‖−1/2, ∀ vh ∈ Vh, ∀ ηh ∈ Hh.

PROOF. For any vh ∈ Vh and ηh ∈ Hh we have

c(vh,ηh)− ch(vh,ηh) = h2
N∑

i,j=1

(ηi)> ê2(Ci j) γvh(sj),

where ê2(·) :=
∫ 1

0

∫ 1
0 · − ˆ̀

2(·) is the error functional. Since ˆ̀
2 is of degree 1 on D :=

(0, 1)× (0, 1), it follows readily from the Bramble-Hilbert lemma that

|ê2(Ci j)| ≤ C |Ci j|2,∞,D
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and the chain rule shows that

|Ci j|2,∞,D ≤ Ch2‖C‖2,∞,D,

Therefore, we have the following estimate

|c(vh,ηh)− ch(vh,ηh)| ≤ Ch4 ‖C‖2,∞,D

N∑
i=1

|ηi|
N∑
j=1

|γvh(sj)|.

On the other hand, a well known inverse inequality leads to

h
N∑
i=1

|ηi| =
∫ 1

0
|ηh(s)| ds ≤ ‖ηh‖0 ≤ Ch−1/2 ‖ηh‖−1/2 ∀ηh ∈ Hh

and the equivalence of the norms g → ‖g‖0 and g → (h
∑N
i=1 g(ti)

2)1/2 on Th together
with the trace theorem provide

N∑
j=1

|γvh(sj)| ≤ h−1

h N∑
j=1

|γvh(sj)|2
1/2

≤ Ch−1‖γvh‖0 ≤ Ch−1‖vh‖1,Ω− .

The result is now a direct consequence of the last inequalities.

We introduce the bilinear form

Ah(ûh, v̂h) = ah(uh,vh) + b∗h(
d

ds
γuh,

d

ds
γvh)− ch(vh, ξh) + bh(ξh,ηh) + ch(uh,ηh),

for all ûh = (uh, ξh) and v̂h = (vh,ηh) in Mh. Using the triangular inequality and lemmas
4–7 we deduce the following estimate.

Corollary 8 There exists a positive constant C such that

|A(ûh, v̂h)− Ah(ûh, v̂h)| ≤ Ch ‖ûh‖M‖v̂h‖M, ∀ ûh, v̂h ∈Mh.

This allows us to prove that, if h is sufficiently small, Ah(·, ·) is uniformly elliptic on Mh

since
Ah(v̂h, v̂h) ≥ (α̃− Ch) ‖v̂h‖2

M, ∀ v̂h ∈Mh.

Thus, problem (29), which may be equivalently written

find û∗h ∈Mh such that

Ah(û
∗
h, v̂h) = Lh(v̂h), ∀ v̂h ∈Mh,

is well posed and we have the following asymptotic error estimate.
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Theorem 9 If f ∈W1,∞(Ω−) and u ∈ H2(Ω−), then there exists a constant C > 0 such
that

‖u− u∗h‖1,Ω− + ‖ξ − ξ∗h‖−1/2 ≤ Ch (‖u‖2,Ω− + ‖f‖1,∞,Ω−).

PROOF. As a consequence of Strang’s lemma (cf. [4]) we have the error estimate

‖û− û∗h‖M ≤ C

(
‖û− v̂h‖M + sup

ẑh

|A(v̂h, ẑh)− Ah(v̂h, ẑh)|
‖ẑh‖M

+ sup
ẑh

|L(ẑh)− Lh(ẑh)|
‖ẑh‖M

)
,

for all v̂h ∈Mh. Hence, the result follows from lemma 3, corollary 8 and the approximation
properties (25) and (26).
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