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Abstract: Global solar broadband irradiance on a planar surface is measured at weather 

stations by pyranometers. In the case of the present research, solar radiation values from 

nine meteorological stations of the MeteoGalicia real-time observational network, captured 

and stored every ten minutes, are considered. In this kind of record, the lack of data and/or 

the presence of wrong values adversely affects any time series study. Consequently, when this 

occurs, a data imputation process must be performed in order to replace missing data with 

estimated values. This paper aims to evaluate the multivariate imputation of ten-minute 

scale data by means of the chained equations method (MICE). This method allows the 

network itself to impute the missing or wrong data of a solar radiation sensor, by using 

either all or just a group of the measurements of the remaining sensors. Very good results 

have been obtained with the MICE method in comparison with other methods employed in 

this field such as Inverse Distance Weighting (IDW) and Multiple Linear Regression 

OPEN ACCESS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/61916349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sensors 2014, 14 20383 

 

 

(MLR). The average RMSE value of the predictions for the MICE algorithm was 13.37% 

while that for the MLR it was 28.19%, and 31.68% for the IDW. 

Keywords: missing data imputation; multivariate imputation by chained equations (MICE); 

multiple linear regression; solar radiation; pyranometer 

 

1. Introduction 

A meteorological or climate observation network is composed of a set of weather stations. They are 

usually placed at isolated points of a geographical zone, in order to determine the values of the 

meteorology and climatology variables of that area. Multiple variables such as air temperature, 

atmospheric pressure, wind speed and direction, relative humidity, rainfall, solar radiation, etc., are 

measured and registered by each station and finally the data is sent to a central database of the network 

to be processed and stored [1]. 

Failures in the measurement process may occur for any variable, and consequently lack of and/or 

incorrect data can appear. These errors can often be detected, although only sometimes corrected, since 

the more variable the measurements are, the more erroneous or less precise the data imputation results. 

Solar irradiation records in particular depend on the combined effects of both astronomical and 

meteorological events. Atmospheric conditions modify the extraterrestrial solar irradiation in such an 

ostensibly random manner that the global solar irradiation on the horizontal surface presents evolution 

randomness, with temporal and spatial variations due to weather conditions [2]. 

The amount of solar energy incident on the ground depends heavily on the state of the sky. Previous 

research has reported that among all the variables causing heterogeneity of solar radiation in the 

ground, atmospheric conditions such as cloud cover [3], aerosols and water vapor are the most important. 

In the case of cloud cover, factors such as cloud base height, cloud evaporation and formation and 

velocity have been reported as important [4]. In the case of aerosols a considerable reduction in the UV 

intensity has been observed during periods of high aerosol loading [5]. Previous research also 

demonstrated that the more water vapor solar radiation finds, the smaller the amount of solar energy 

present on the ground [6]. 

Global radiation includes radiation received directly from the solid angle of the sun’s disc, as well 

as diffuse sky radiation that has been scattered in traversing the atmosphere. Global solar radiation (G) 

measurements at ground level are made primarily with pyranometers that use thermo-electric, 

photoelectric, pyro-electric or bimetallic elements as sensors [7]. 

The World Meteorological Organization (WMO) classifies pyranometers as secondary standard,  

first class and second class meters according to their measurement performance characteristics, such as 

spectral range, sensitivity, directional response, non-stability, temperature response, response time and 

non-linearity among others. Meteorological networks do not have the same type of equipment in all of 

their weather stations and, consequently, the radiation measurement quality varies from one to another. 

The diversity of the instruments installed with different accuracy levels, together with the need for the 

frequent instrument calibration, makes it very difficult to achieve a homogeneous data base [8]. 
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The following problems have been reported [9] for solar global radiation: No signal from the 

sensor, an unstable signal, a lower or higher signal than physical limits, data not collected or stored and 

diurnal profiles systematically asymmetric with respect to the solar noon, among others. The following 

can be noted as likely reasons for such failures [10,11]: A damaged cable or with corrosion; the loss of 

proper electrical grounding; alterations in programs of data logger systems; moisture inside an element 

of the pyranometer; reflected radiation from properly-positioned towering cumulus clouds exceeding 

the solar constant for periods of less than ten minutes; half-melted frost or snow on the dome; 

communications failure, etc. 

Some of these causes are temporary and may disappear spontaneously, but others require the 

intervention of a maintenance task force, and therefore errors persist for different periods of time. Lack 

of data or the presence of erroneous data adversely affects the study of any time series. For instance, 

solar energy applications need continuous radiation data time series to correctly assess the usefulness 

of the particular application and in its implementation, so additional procedures have been established 

to fill in missing values (where data is initially lacking or has been removed via quality checks) in the 

time series of solar radiation data [12]. Consequently, a process of data imputation may be followed 

for filling data series with estimated values. 

Different criteria can be applied in order to obtain a missing value or a set of missing values in a 

series of solar irradiation data (G). Deterministic, random or mixed methods are available for this 

purpose. Some specific examples are discussed below. 

Physical models such as MRM [13], ESRA [14], REST2 [15] or SIRAMix [16], which account for 

the estimated solar irradiation in terms of physical variables (aerosols, precipitable water, turbidity 

coefficients, total ozone in the vertical column, dry-bulb temperature, site pressure, etc.) are a good 

solution when the values of these auxiliary variables are known. The main advantage offered by these 

models is their spatial independence. In addition they do not require solar radiation data measured at 

the Earth’s surface. However, the physical methods need complementary meteorological data to 

characterize the interactions of solar radiation with the atmosphere. SAs an example we can cite the 

ESRA method, which needs five inputs or the REST2 method, which needs a total of 10 inputs. Other 

methods that estimate solar radiation form satellite images have been used and tested by several 

authors [17,18]. 

Correlation relationships can be established as a second approximation. If weather stations are 

sufficiently close together, the difference in G records should be small, and then the space distance 

criteria can be applied. This argument is valid for clear or cloudy skies but performs worse for partly 

cloudy skies over short time scales. Also, when the missing data is only one, among known data, a 

simple interpolation can be the best solution [19]. 

Autoregressive properties of the signal allow us to take into account more separated values to  

auto-complete the series. ARIMA techniques were used to forecast solar radiation time series [20],  

so ARIMA models can be used to impute data in time series. 

A similar study in terms of number of stations and time scales has been carried out [21], although in 

a different geographic area. This study proved that it was better to interpolate sequences of up to four 

missing values, and the first and the last missing values in longer sequences, using data from the same 

site. Otherwise it is better to use simultaneous data from the other sites of the network. 
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All the methods’ performance is influenced by the time granularity. Weather stations provide data 

in several time scales: measuring equipment supplying data in the lowest scale and upper scales are 

built based on it. Normally, missing values in longer scales are estimated with less error than in  

shorter ones. 

Several studies used Inverse Distance Weighting (IDW) to estimate solar irradiation [22–24], and 

also to interpolate other variables like temperature or precipitation [25–27]. 

Techniques for estimating data are essentially applications of statistics, but they should also rely on 

the physical properties of the system under consideration. IDW is a function based on one parameter, 

i.e., distance, and it assumes that the region has a uniform characteristic [26]. A “cut-off” criterion is 

often used to limit either the distance to the locations considered or the number of observations 

considered [28]. 

In [22], working with hourly observations, it was concluded that the interpolations for distances 

beyond 34 km show an RMSE over 25% and it is suggested that in this case satellite measurements are 

more accurate. Consequently, the selected geographical area for this study is a small zone with a high 

density of measurement locations. The maximum distance between stations is less than 20 km. 

In [23], working with monthly mean values, the distances between stations are over 95 km, and the 

relative error is under 29%. Finally in [24], the authors worked with 15-min observations but the RMSE 

was obtained by calculating daily aggregations and eliminating days identified as atypical. The values 

for RMSE are between 26% and 40%. Random errors tend to decrease when the data are averaged 

over a particular time period. 

Kriging is a spatial interpolation approach that has been applied to estimate monthly irradiation [29]. 

However, the low number of stations and the high variability among the ten-minute scale data advise 

against the use of this method. 

Regression models have been widely used for the estimation of global solar radiation. The most 

frequently selected variable is sunshine duration, where the Angstrom-Prescott-Page model is the main 

exponent for the monthly average daily global radiation [30]. Air temperature also appears in many 

models, being the Bristow-Campbell being one of the most widely-used models due to its simplicity 

and the availability of input data [31,32]. However, in most cases, the estimated radiation is a daily  

or monthly average daily value, and to our knowledge there are no sub-hourly regression models  

using temperature. 

Cloud cover, relative humidity or wind velocity are other variables used to estimate solar  

radiation [33,34]. In [33], a method is developed to estimate hourly solar radiation by using relative 

humidity and ambient temperature in order to obtain a matrix of atmospheric transmittance coefficients 

that need to be adjusted to the particular area. The RMSE of this estimation method is 8.3%. The 

reason for this low value is that the method estimated hourly solar radiation. Time granularity is a key 

factor to compare the performance of the different methods. The longer the time scale, the fewer the 

errors. This reference is an example of a correlational method, but the error cannot be compared with 

the present research, as the authors used hourly data. 

The aim of this paper is to evaluate a method which allows the network itself to fill the missing data 

of a sensor, using either all or just a group of the measurements of the remainder sensors. It is therefore 

necessary to work with ten-minute scale data, which makes it a challenge. 
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The rest of the paper is organized as follows: Section 2 includes a geographical description of the 

chosen study area and the dataset, and also gives the main characteristics of the sensors. Section 3, 

describes the three interpolation/imputation methods used and the validation criteria applied. Section 4 

presents a comparison of the results achieved with each method. Finally the conclusions are drawn. 

2. Experimental Section 

2.1. Description of Study Area and Data 

The current study uses ten-minute data collected from the MeteoGalicia network [29], a regional 

meteorological service with more than 100 locations located in Galicia (Spain) providing global 

radiation data. The network integrates stations with both meteorological and agro-climatic purposes 

and the regional government openly offers observations from its stations on the Internet [35]. 

The study area extends over a small area located in northwest Spain (Figure 1), between 42°24'–42°34' 

northern parallels and 8°42'–8°52' western meridians, covering an area of approximately 254 km2. 

Bordered by the Atlantic Ocean to the West, and situated between two coastal bays, called “rias”  

(Ría de Villagarcía and Ría de Pontevedra), it has a temperate maritime climate and is one of the 

Galician areas that receives more solar radiation [36].  

Figure 1. Map of the area studied. 

 

Grapevine cultivation has a widespread presence in the region. This is the main reason for the high 

density of meteorological stations in the area. The dataset collected for this study comes from nine 

closely spaced meteorological stations. The greatest distance between them is less than 20 km. Table 1 

shows the distance and the correlation coefficients matrix of the variable solar radiation for all the 

meteorological stations involved in the present study. 
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Geographical distribution and some climatological parameters (yearly mean values for 2013) of the 

studied radiometric stations are presented in Table 2. The data collected represents the global horizontal 

solar radiation (W·m−2) and is available on a 10-min scale basis, therefore, each station supplies  

144 values per day. 

The nine series ran from 21 December 2012 to 20 January 2014. The period of measurements was 

chosen to take into account seasonal variability [37]. Each station registered a maximum of 56,880 

observations during this period, and the dataset includes a total of 511,345 observations. During the 

period of study, data missing for each station were: A Armenteira (1.00%), A Lanzada (0.004%), 

Sanxenxo (0.004%) and Corón (0.002%). No data was missing in the other stations. 

Table 1. Distances among the studied stations (km) and correlation coefficients (CC). 

Distances (Km) 

Torrequintáns 8.84 12.18 7.95 3.43 15.84 8.70 16.36 8.70 

0.91 Castrelo 6.56 5.71 6.60 7.01 8.93 9.80 9.87 

0.90 0.89 Simes 4.44 8.81 8.66 6.32 4.19 16.16 

0.89 0.87 0.95 A Armenteira 4.52 11.08 3.25 8.60 13.46 

0.93 0.90 0.89 0.89 Pé Redondo 13.46 5.64 13.0 10.32 

0.89 0.92 0.89 0.86 0.88 A Lanzada 14.12 8.76 14.83 

0.90 0.88 0.90 0.90 0.89 0.88 Castrove 9.97 15.75 

0.90 0.91 0.92 0.87 0.89 0.93 0.90 Sanxenxo 19.66 

0.90 0.91 0.87 0.85 0.88 0.90 0.87 0.89 Corón 

Correlation Coefficients 

Table 2. Geographical and climatological parameters for the stations studied. 

Station Lat. Long. Elev Temperature (°C) Humidity Precipitation Irradiation G Sunshine Hours

 (°) (°) (m) Min. Max Mean (%) (L/m2) (10 kJ/m2day) (h) 

Castrelo  42.49 −8.80 32 5.0 24.8 14.6 84.1 128.8 1346.1 184.5 

Simes  42.44 −8.77 97 4.8 26.0 14.7 80.4 147.7 1510.2 221.2 

A Armenteira 42.47 −8.74 256 3.4 24.5 13.1 82.3 211.9 1135.7 152.8 

Pé Redondo 42.51 −8.73 150 6.0 25.5 14.6 80.4 175.4 1246.1 166.1 

A Lanzada 42.46 −8.88 9 5.7 25.0 14.7 80.1 128.1 1425.4 201.1 

Castrove 42.46 −8.70 424 5.5 23.5 12.9 80.6 206.3 1338.2 180.8 

Sanxenxo 42.41 −8.80 34 6.6 25.5 15 77.3 147.5 1464.8 188.3 

Corón 42.58 −8.80 3 7.4 23.8 14.9 78.5 149.7 1453.5 199.3 

Torrequintáns 42.54 −8.72 52 4.5 25.7 14.5 73.9 121.0 1318.8 175.5 

2.2. Sensors for the Measurement of the Solar Radiation Flux Density; Pyranometers 

The nine stations employed in the present research have three different pyranometers. Table 3 shows 

the main properties which are of concern when evaluating the quality of these instruments. Figure 2 

shows one pyranometer model and how it is placed in the meteorological station. 

The thermopile detectors are sensitive to the whole shortwave spectrum in contrast to the solid-state 

silicon photodiodes. The basic uncertainties in the best practical solar radiation data available are 

roughly 5% in total global horizontal [38]. 
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Table 3. Characteristics of the network pyranometers. 

 SKS 1110 Skye SP-LITE 2 Kipp & Zonnen CMP-3 Kipp & Zonnen 

Sensor Silicon Photocell Photodiode Thermopile 

Maximum operational irradiance 5000 W/m2 2000 W/m2 2000 W/m2 

Spectral range 0.4–1.1 µm 0.4 to 1.1 µm 0.3–2.8 µm 

Sensitivity 1 mV/100 W/m2 60–100 µV/W/m2 5 to 20 µV/W/m2 

Directional response 5% max <10 W/m2 <20 W/m² 

Non-stability (Change/year) ±2% <2% <1% 

Temperature response ±0.2%/°C <0.15%/°C <5% (−10 °C to +40 °C) 

Response time 10 ns <500 ns <18 s 

Non-linearity <0.2% <2.5% (0 to 1000 W/m²) <1.5% (100 to 1000 W/m2) 

Number of stations 5 3 1 

Figure 2. (a) Corón meteorological station with its thermopile pyranometer inside a circle. 

The model is the CMP-3 (source:www.meteogalicia.es); (b) Picture of the CMP-3 sensor 

taken from Kipp-Zonnen pyranometers brochure. 

 

(a) (b) 

3. Methodology 

In order to facilitate modelling, only daytime (sunrise to sunset) solar irradiance readings were 

considered. No other filter was applied to remove outliers. The MeteoGalicia network provides a flag to 

identify the quality of each value measured (see Table 4). In the dataset there is no data with codes: 0, 4, 

or 5, and some with codes 2, 3 and 9, but only original validated data (code 1) has been considered. 

Therefore the dataset was divided into a training set, with two thirds of the samples (14,553 samples); 

and a test set, with the remaining one third of the samples (7276 samples) as usual. The training set is 

used to generate the models by different methods (MLR, MICE); the test set is used to validate the 

models with independent data, since the test set did not provide information to be able to build  

the models. 
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Table 4. Quality flags of the measurements provided by the network. 

Quality Code Description 

0 No validated data  
1 Original validated data 
2 Suspect data 
3 Erroneous data 
4 Accumulated data 
5 Interpolated data 
9 No registered data 

3.1. Inverse Distance Weighting (IDW) 

IDW is a deterministic method of spatial interpolation. It is based on the distance between the 

location for which a value has to be interpolated and the locations of observations [28]. The point is 

that the solar radiation in a particular location presents a high correlation with the values registered in 

closed sites. Thus, it is possible to estimate solar radiation at any point through a linear combination of 

the values measured from neighboring sites. If GE is the solar irradiance estimation at a site with no 

measurement, it can be calculated following the Equations (1) and (2) [23]: = ∑ ,∑ ,  (1)

, = 1,  (2)

where Gi is the record of solar measured irradiation at site “i”, with i = 1, 2, …, n, W(ri,E) is the weighting 

function between the i-th site, ri,E is the distance between the i-th solar irradiation measurement station 

and the estimation site, and “p” is the power parameter used in the interpolation. p = 2 is often chosen to 

provide even more weight to the closest locations [28]. We considered three cases: p = 1, 1.5, 2. Altitude 

was not taken into account for the distance calculations because the stations are all at practically the same 

height above sea level. 

3.2. Multiple Linear Regressions Models (MLR Models) 

The MLR models use a set of independent variables that helps to explain the independent variable; 

in this case, the measures of the neighboring stations were chosen as explanatory variables because of the 

high correlations between them (see Table 1). The correlation coefficient (CC) is expressed according to 

the following equation: 	 = ∑ ( − )( − )∑ ( − ) ∑ ( − )  
(3)

where Gxi and Gyi are the ten-minute measurements of global irradiation at the stations x and y 

respectively, and  or  are the mean of all the measures. 
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Multiple linear regression is a statistical method that accordingly models the relationship between a 

dependent variable (y) and a set of independent variables (x1, x2, …, xp). The model can be represented 

as follows [39]: =α + β + β +⋯+ β + ε (4)

where α is called the intercept, βi are called the slopes or coefficients, ε is an error with zero mean and 

constant variance, and it is accepted that each independent variable has a linear relationship with the 

dependent variable. 

Equation (4) can be rewritten in matrix form, i.e.: 

⋮ = 1 ⋯⋮ ⋱ ⋮1 ⋯
αβ⋮β + ϵϵ⋮ϵ  (5)

In this study yi are the ten-minute observations of one station, and xij are the ten-minute observations 

of the remaining eight. Therefore in this case n = p = 9 and βp are the coefficient associated to location 

“p”. In order to obtain the intercept and the coefficients we took the least square approach with a 

confidence interval of 95%. After attending to the values of F and t statistics, coefficients not 

significantly different from zero are set to zero for the model. 

3.3. The MICE Algorithm 

The Multiple Imputation by Chained Equations (MICE) algorithm developed by van Buuren and 

Groothuis-Oudshoorn [40] is a Markov Chain Monte Carlo Method where the state space is the 

collection of all imputed values. Like any other Markov Chain, in order to converge, the MICE 

algorithm needs to satisfy the three following properties [41–44]: 

• Irreducible: The chain must be able to reach all parts of the state space; 

• Aperiodic: The chain should not oscillate between different states; 

• Recurrence: Any Markov chain can be considered as recurrent if the probability that the 

Markov chain starting from i will return to i is equal to one. 

In practice, the convergence of the MICE algorithm is achieved after a relatively low number of 

iterations, usually somewhere between five and 20 [44]. According to the experience of the algorithm 

creator, in general five iterations are enough, but some special circumstances would require a greater 

number of iterations. In the case of the present research, and due to the performance of the results 

obtained when compared with the other methods applied, five iterations were considered to be enough. 

This number of iterations is much lower than in other applications of the Markov Chain Monte Carlo 

methods, which often require thousands of operations. In spite of these, and from a researcher’s point of 

view and experience, it must be also remarked that in the most common of the applications each iteration 

of the MICE algorithm would take several minutes or even a few hours. Furthermore, the duration of 

each iteration is mainly linked with the number of variables involved in the calculus and not with the 

number of cases. It must be taken into consideration that imputed data can have a considerable amount 

of random noise, depending on the strength of the relations between the variables. So in those cases in 

which there are low correlations among variables or they are completely independent, the algorithm 
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convergence will be faster. Finally, high rates of missing data (20% or more) would slow down the 

convergence process work. The MICE algorithm [44] for the imputation of multivariate missing data 

consist on the following steps: 

1. Specify an imputation model ( | , , ) for variable  with = 1,… , . 

The MICE algoritm obtains the posterior distribution of R by sampling interative from the above 

represented conditional formula. The parameters R are specific to the respective conditional 

densities and are not necessarily the product of a factorization of the true joint distribution. 

2. For each , fill in starting imputations  by random draws from . 

3. Repeat for = 1,… ,  (iterations). 

4. Repeat for = 1,… ,  (variables). 
5. Define = ( ,… , , , … , ) as the currently complete data except . 

6. Draw ∅ ~ ∅ , , . 
7. Draw imputations ~ , , , ∅ . 

8. End repeat . 

9. End repeat . 

In the algoritm referred to, Y represents a n × p matrix of partially-observed sample data, R is a  

n × p matrix, 0–1 response indicators of Y, and ∅ represents the parameters space. Please note that in 

MICE imputation [45], initial guesses for all missing elements are provided for the n × p matrix of 

partially observed sample. For each variable with missing elements, the data are divided into two 

subsets, one of them containing all the missing data. The subset with all available data is regressed on all 

other variables. Then, the missing subset is predicted from the regression and the missing values are 

replaced with those obtained from the regression. This procedure is repeated for all variables with 

missing elements. After this, all the missing elements are imputed according to the algorithm explained 

above, the regression and predictions are repeated until the stop criterion is reached. In this case, until a 

certain number of consecutive iterates fall within the specified tolerance for each of the imputed values. 

3.4. Validation of the Models 

Leave-one-out cross-validation has been used to analyze the spatial error of interpolated data [24,25]. 

This procedure involves using eight of the nine stations in the model to obtain the estimated value in 

the ninth station (this one is left out) in order to calculate RMSE and MAE for this station. The process 

is repeated nine times, once for each station. 

The performance of the three methods has been evaluated using common statistics: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) both expressed in W·m−2, and in percentage of the 

measured mean values, i.e.: 

	( ) = 1 ( − )  (6)

( ) = 1 −  (7)
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(%) = 1∑ 100 (8)

(%) = 1∑ 100 (9)

where Gi and  are the measurements and the model-estimated values of global radiation respectively, 

and “n” is the number of ten-minute data points of the validation set. The RMSE weights large 

estimation errors more strongly than small errors and it is considered a very important model validation 

metric. Also, MAE is a useful complement of the measured-modeled scatter plot near the 1-to-1 line [45]. 

4. Results and Discussion 

In this section the results of the different models tested are presented in order to compare  

their performance. 

4.1. Results of IDW Method 

Table 5 shows the RMSE and MAE for the IDW model. In spite of the short distance between the 

radiometric stations, the IDW model offers the poorest results. The influence of the power parameter “p” 

is barely noticeable, even though it is true that the small value of RMSE is obtained in most cases for  

p = 2. Exceptions are Castrelo, Castrove and Sanxenxo, where the lowest RMSE is obtained for p = 1; 

and Corón and Torrequintáns, where this value is obtained for p = 1.5. The average difference between 

the maximum and minimum values obtained for each station with different “p” was less than 1%. 

Table 5. RMSE and MAE obtained with the IDW method. 

 RMSE (%) MAE (%) 

 p = 2 p = 1.5 p = 1 p = 2 p = 1.5 p = 1 

Castrelo 29.90 29.49 29.13 23.03 22.93 22.89 
Simes 31.55 32.09 32.87 35.81 37.54 39.66 

A Armenteira 37.33 37.79 38.77 46.51 49.18 52.53 
Pé Redondo 29.67 29.98 30.56 37.53 38.44 39.77 
A Lanzada 30.41 30.61 30.84 24.31 24.58 24.88 
Castrove 35.84 34.87 34.34 44.05 46.90 50.29 
Sanxenxo 34.88 33.93 33.25 31.51 31.89 32.54 

Corón 32.70 32.69 32.73 29.13 29.12 29.17 
Torrequintáns 27.21 26.73 26.87 28.50 28.69 29.32 

4.2. Results of MLR Models 

In Table 6 the multiple linear regression models for each location are presented. As expected, for each 

model the highest coefficient is related with the station that had shown the highest correlation (see CC in 

Table 1), and in some cases the stations with lower correlations have disappeared from the model. 

However, it is clear that the nearest locations do not always have the highest weight within the total of 

locations; in fact, this only occurs in four of the stations: Pé Redondo, Castrove, Sanxenxo and 
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Torrequintáns. This explains the similar RMSE obtained for these MLR models (see Table 7) and the 

corresponding IDW models. An exception was Sanxenxo, whose MLR model offers a significant 

improvement, as with A Armenteira’s. A detailed review of MLR models for Sanxenxo and A 

Armenteira shows that each of them has a relatively high negative coefficient, which tends to 

compensate for the high values given to the other stations. In the preliminary performance tests carried 

out with the dataset of one of the locations of this study, the air temperature was added to the 

regression model. However, the result, in terms of RMSE, was only slightly better (2%) with the 

addition of this variable, so finally no auxiliary variables were added to the MLR models. 

Table 6. Multiple Linear Regression Models for each location. 

Model Parameters 
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Interception 8.57 0 −8.41 7.45 13.30 −3.26 −2.50 23.23 2.10 
β1 (Castrelo) - 0.06 0 0.16 0.31 0 0.16 0.27 0.11 
β2 (Simes) 0.09 - 0.69 −0.07 0 0.03 0.47 0 0.06 

β3 (A Armenteira) 0 0.60 - 0.21 0 0.37 −0.21 0 0.08 
β4 (Pé Redondo) 0.17 −0.05 0.18 - 0.04 0.14 0.03 0.09 0.41 
β5 (A Lanzada) 0.27 0 0 0.03 - 0.08 0.36 0.24 0.03 
β6 (Castrove) 0.13 0.02 0.20 0.09 0.06 - 0.16 0.07 0.09 
β7 (Sanxenxo) 0.18 0.28 −0.15 0.03 0.36 0.21 - 0.09 0.07 
β8 (Corón) 0.12 0 0 0.06 0.19 0.07 0.06 - 0.15 

β9 (Torrequintáns) 0.17 0.05 0.07 0.42 0.04 0.13 0.08 0.23 - 

Table 7. RMSE and MAE obtained with the MLR models. 

Station RMSE (%) MAE (%) 

Castrelo 26.80 28.40 
Simes 25.55 22.73 

A Armenteira 28.40 31.91 
Pé Redondo 28.38 41.73 
A Lanzada 27.47 35.70 
Castrove 33.81 48.30 
Sanxenxo 26.98 32.93 

Corón 29.78 45.63 

Torrequintáns 26.52 30.36 

4.3. Results of MICE Method 

Table 8 shows the RMSE and MAE values obtained by means of the MICE algorithm for the nine 

meteorological stations in the study. Due to the random component of this algorithm, the procedure 

was applied five times for each of the stations. In order to verify that the results obtained for the five 

different iterations are better than those achieved by the other methods, the five iterations are 

presented. These tables also contain the average values of the five replications.  
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Table 8. RMSE and MAE obtained with MICE. 
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1 12.74 11.03 11.93 10.26 13.29 12.57 13.39 16.71 12.57 11.98 15.86 21.11 12.41 14.22 13.79 13.94 12.86 13.36 
2 12.60 10.70 11.79 10.46 13.33 12.46 13.26 16.56 12.46 12.08 15.58 20.57 12.43 14.19 14.00 13.85 12.32 13.25 
3 12.60 10.72 12.27 10.59 13.46 12.67 13.41 17.03 12.67 12.12 15.72 20.62 12.43 14.16 14.08 14.71 12.44 13.03 
4 12.68 10.72 12.00 11.12 13.64 12.59 13.12 16.20 12.59 12.21 15.69 20.41 12.64 14.75 14.03 13.92 12.63 13.40 
5 12.55 10.67 11.80 10.33 13.15 12.35 13.56 16.97 12.35 11.69 15.66 20.26 12.45 14.49 13.87 13.61 12.53 13.35 

Average 12.63 10.77 11.96 10.55 13.37 12.53 13.35 16.69 12.53 12.02 15.70 20.59 12.47 14.36 13.95 14.01 12.56 13.28 
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4.4. Comparison of the Three Methods 

Finally, Tables 9 and 10 show the RMSE and MAE values of the average MICE algorithm in 

comparison with the MLR and IDW methods. As may be observed in Table 9, the RMSE results of the 

MICE algorithm are much lower than those for the other two methods: the average RMSE value of the nine 

meteorological stations for the MICE algorithm was 13.37% while that for the MLR it was 28.19% and 

31.68% for the IDW. It must be highlighted that in all the stations the RMSE values using the MICE 

algorithm were lower than in the MLR and IDW methods. Similarly, Table 10 shows how MAE values of 

the results of MICE algorithm are lower in all the stations than in MLR and IDW methods. The average 

value of the MAE with the MICE algorithm for the nine stations was 14.14%, while the average values for 

the same stations obtained with MLR and IDW methods were of 35.30% and 34.19% respectively. 

Table 9. Results of the three models in terms of RMSE. 

Station MICE (%) MLR (%) IDW (%) 

Castrelo 12.74 26.80 29.13 
Simes 12.27 25.55 31.55 

A Armenteira 13.64 28.40 37.33 
Pé Redondo 13.56 28.38 29.67 
A Lanzada 12.67 27.47 30.41 
Castrove 15.86 33.81 34.34 
Sanxenxo 12.64 26.98 33.25 

Corón 14.08 29.78 32.69 

Torrequintáns 12.86 26.52 26.73 

Table 10. Results of the three models in terms of MAE. 

Station MICE (%) MLR (%) IDW (%) 

Castrelo 11.03 28.40 22.89 
Simes 10.59 22.73 35.81 

A Armenteira 12.53 31.91 46.51 
Pé Redondo 16.97 41.73 37.53 
A Lanzada 12.2 35.70 24.31 
Castrove 21.11 48.30 50.29 
Sanxenxo 14.75 32.93 32.54 

Corón 14.71 45.63 29.12 

Torrequintáns 13.36 30.36 28.69 

All the calculi corresponding to the different algorithms were performed with a computer equipped 

with an Intel Xeon E5-1650 processor and 16 GB RAM. The average time of all the runs of the MICE 

algorithm was 334.66 s, with a standard deviation of 9.98 s. There were a few variations in the 

computer times, depending on the meteorological station estimated. The average time of the five MICE 

replications for each meteorological station was as follows: Castrelo 335.60 s, Simes 339.00 s, 

Armenteira 330.4 s, Pe Redondo 322.8 s, A Lanzada 328.6 s, Castrove 332.6 s, Sanxenxo 334.8 s, 

Corón 343.4 s and Torrequintans 334.7 s. The computational time required for the calculus of the 

results of IDW and MLR methods was always under one second in both cases. 
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5. Conclusions/Outlook 

Solar radiation presents a very high variability at ten-minute scales and ostensibly random behavior 

in our geographical study area; hence data imputation is difficult when a datapoint or a set of data is 

lost. IDW and MLR methods show similar performance taking MAE and RMSE criteria. The use of 

auxiliary variables, such as temperature, does not represent a significant enhancement. The MICE 

algorithm performed better. In this paper the validity of the MICE method in imputing global solar 

radiation gaps has been demonstrated. In spite of its larger computational cost, better results were 

obtained by the MICE algorithm. It can therefore be stated that this algorithm is of great interest for all 

those applications not requiring an answer in real time. 

The estimation of missing data is required for some statistical techniques such as time series analysis. 

These techniques enable prediction models to be created and improved. The interest in these kinds of 

models is multiple as they can be employed for the evaluation of the solar energy available in order to 

take technical decisions about the best solution for its exploitation, for the estimation of derivate 

variables such as evotranspiration and in combination with other parameters for the evaluation of  

harvest productivity. 

Once they know the performance of the MICE for recovering lost data from nearby stations, the authors 

of the present research propose to evaluate the use of this method as an estimator of the ten-minute 

radiation values at those points placed in intermediate positions between stations where a solar radiation 

device is not permanently located. 

In this case, the application of the MICE algorithm cannot be performed directly. The terrain must 

be taken into account to determine that horizon of the sun is visible where the estimate is made. By 

taking this into account, the MICE algorithm will impute only those values corresponding to a horizon 

clear of obstacles to the sun’s trajectory. 

This would make it possible to obtain historical series of solar radiation for any point where solar 

radiation is not directly measured. These historical series would be used by means of simulations in order 

to improve the calculus of the performance of photovoltaic facilities at any point it would be required. 

Finally, they could also be used to simulate the growth of crops, or in any other application in which 

the knowledge of the series of solar radiation is crucial. 
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