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Abstract

We consider the robust precoder design forMulti-User Multiple Input Single Output(MU-MISO) systems, where

the Channel State Information(CSI) is fed back from the single antenna receivers to the centralized transmitter

equipped with multiple antennas. We propose to compress the feedback data by projecting the channel estimates

onto a vector basis, known at the receivers and the transmitter, and quantizing the resulting coefficients. The channel

estimator and the basis for the rank reduction are jointly optimized by minimizingthe Mean Square Error(MSE).

Expressions for the conditional mean and the conditional covariance ofthe channel are derived which are necessary

for the robust precoder design. These expressions take into account the following sources of error: channel estimation,

truncation for rank reduction, quantization, and feedback channel delay. Three well-known precoder types, namely

Linear Precoding(LP), Vector Precoding(VP), andTomlinson-Harashima Precoding(THP), are designed based on

the expectation of the MSE conditioned on the fed–back CSI. Our results show that robust precoding based on fed–

back CSI clearly outperforms conventional precoding designs which do not take into account the errors in the CSI.

Additionally, we observe that a robust design is especially crucial for systems employing non-linear precoding with

scarce feedback rate.

Index Terms

Feedback channel, Bayesian approach, imperfect CSI, robust precoding.

I. I NTRODUCTION

We consider a MU-MISO system, i.e. a multiple antennas transmitter and several single-antenna receivers, since

the centralized access point in a cellular system admits more complexity and cost than the mobiles. A MU-MISO

system is a prominent example of a vector broadcast channel [1]. Recently, it has been shown that theDirty Paper
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Coding(DPC) [2] signaling techniques designed according toSignal-to-Interference-plus-Noise Ratio(SINR) criteria

are able to approach the sum capacity of a broadcast channel [3], [4]. These contributions, however, only consider

the ideal case where the CSI at the transmitter is perfectly known, similar to [5]–[7]. In the more practical case,

where only an estimate of the CSI is available at the transmitter, the capacity region of the vector broadcast channel

has not been found yet. First, the application of DPC is questionable, since it is unclear up to now how DPC can be

used with erroneous CSI. Second, it is unclear how to systematically include the uncertainties in the SINR criterion

(see the discussion in [8] and the attempt in [9] for the case of statistical CSI).

As shown in [10], the SINR and the MSE achievable regions for MU-MISO systems are tightly related.

Additionally, minimum MSE(MMSE) allows for a robust precoder design by considering a conditional expectation

of the cost function [11]–[15]. Hence, we concentrate on theMMSE precoder design. Based on the MMSE design

for linear precoding as in [16], [17], for THP in [7], [18], and for VP in [19], we develop robust linear precoding,

robust THP, and robust VP, where we take the expectation of the MSE conditioned on the available CSI.

Most of the work on precoding with erroneous CSI was motivated by aTime Division Duplex(TDD) setup, where

the transmitter can estimate the CSI during the transmission in the opposite direction [13], [14]. This approach

however is difficult due to the necessity of very good calibration [20]. Contrarily, we focus on the more difficult

case, where the CSI is obtained by the receivers and fed back to the transmitter. In this case, calibration errors

are estimated as being part of the CSI and, therefore, no special problems arise from calibration. Additionally, the

feedback of CSI enables precoding inFrequency Division Duplex(FDD) systems, where the transmitter is unable

to obtain the CSI during reception, because the channels arenot reciprocal.

Since the data rate of the feedback channels is limited [21],the CSI must be compressed to ensure that the tight

scheduling constraints are satisfied. Moreover, when the CSI is not perfectly known by the receiver, it is a matter

of discussion what kind of information has to be sent from thereceiver to the transmitter and the way of recovering

it at the transmitter side.

In the system proposed in this paper, we start by estimating the channel at the receivers using the observations

of pilot symbols sent from all the transmit antennas. This enables the receivers to estimate their respective vector

channels. Then, we reduce the estimates to a low-dimensional representation by projecting them onto a basis which

only depends on the channel statistics. We assume that the channel statistics are also known to the transmitter.

The coefficients are quantized prior to transmission over the feedback channel which also introduces a delay. For

simplicity, we use a uniform quantizer.

The estimator and the basis for the rank reduction are jointly optimized by minimizing the MSE, where the

optimization is formulated such that the estimator additionally performs the rank reduction (see [22]). The resulting

estimator can be decomposed into an ordinary MMSE estimatorfollowed by a projection on the basis. Interestingly,

the resulting basis is different from that of the Karhunen-Loève expansion [23], i.e. the eigenbasis of the channel

covariance matrix.

In order to properly design robust precoders, it is necessary to obtain an adequate statistical characterization

of the errors in the fed–back CSI. The following sources of error are considered: channel estimation, truncation
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Fig. 1. Multi-User System with Precoding over Flat MISO Channels.

(rank reduction), quantization, and feedback channel delay. Channel estimation and truncation errors are Gaussian

and their analysis follows a conventional MSE approach [24]. Since the delayed channel versions fed back to the

transmitter after estimation and truncation are also Gaussian, we can easily obtain their statistical properties. On

the other hand, quantization errors are often assumed to be uniformly distributed [25] which makes the analysis

of their impact on the imperfect CSI difficult. Nevertheless, we obtain an expression for the probability density

function of the channel vector according to a Bayesian framework, i.e. conditioned on the delayed, truncated, and

quantized channel estimate. The resulting expression for this conditional channel PDF enables us to find closed-form

expressions for the robust precoders. Compared to our previous work in [26], where we assumed uncorrelated and

Gaussian distributed quantization errors, the exact analysis presented herein enables the design of robust precoding

schemes with considerably better performance.

This paper is organized as follows. Section II describes thesignal model of a MU-MISO system with correlated

channels. In Section III, the Bayesian model for the CSI error sources is developed and Section IV contains the

robust precoder design. The MSE receivers are derived and the used training data are discussed in Section V.

Computer simulations are presented in Section VI. Finally,concluding remarks are given in Section VII.

Vectors and matrices are denoted by lower case bold and capital bold letters, respectively. TheK × K identity

matrix is denoted byIK and 0K is a K-dimensional zero vector. We useE[•], ℜ(•), ℑ(•), tr(•), (•)∗, (•)T,

(•)H, det(•), ⊗, ∗, and‖ • ‖2 for expectation, real and imaginary part of the argument, trace of a matrix, complex

conjugation, transposition, conjugate transposition, determinant of a matrix, Kronecker product, convolution, and

Euclidean norm, respectively. Thei-th element of a vectorx is xi. With fG (x,µx,Cx), we refer to a circularly

symmetric complex Gaussian distribution ofx ∈ C
m with the meanµx ∈ C

m and the covariance matrixCx ∈
C

m×m, i.e.

fG (x,µx,Cx) =
exp

(

− (x − µx)
H

C−1
x (x − µx)

)

πm det(Cx)
.
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II. MU-MISO SIGNAL MODEL

Let us consider a MU-MISO system withN transmit antennas andK single antenna receivers as depicted in

Fig. 1. The precoder generates the transmit signalx from all data symbols{u1, . . . , uK} belonging to the different

users1, . . . ,K. The signalxℓ from transmit antennaℓ propagates over the channel with the coefficienthk,ℓ to the

k-th receiver, superimposes with the signals of the other transmit antennas, and is perturbed by the additive white

Gaussian noiseηk with varianceσ2
η, i.e.

yk =

N
∑

ℓ=1

hk,ℓxℓ + ηk = hT
k x + ηk (1)

wherehk = [hk,1, . . . , hk,N ]T ∈ C
N represents the flat fading vector channel corresponding to the k-th user and

x = [x1, . . . , xN ]T ∈ C
N is the transmit signal. The transmit signalx must satisfy an average total transmit power

constraint, i.e.E[‖x‖2
2] = Etx. Combining (1) fork = 1, . . . ,K, we get

y = Hx + η (2)

with the K × N channel matrixH = [h1, . . . ,hK ]T, the received vectory = [y1, . . . , yK ]T ∈ C
K , and the noise

vectorη = [η1, . . . , ηK ]T ∈ C
K with fη(η) = fG(η,0K ,Cη).

We model thek-th user’s channel vectorhk as a zero-mean circularly symmetric complex Gaussian random

vector with covariance matrixChk
, i.e.

fhk
(hk) = fG (hk,0N ,Chk

) . (3)

Additionally, the channel has temporal correlations according to the Jakes model [27], [28] described in [29]. Thus,

the channel vector for userk in the time slotn can be written as

hk[n] = C
1/2
hk

hw,k[n] (4)

with the stationary white Gaussian vector processhw,k[n] (with elements of unit variance) and(•)1/2 represents

matrix root operation computed via the Cholesky decomposition for example. The covariance matrixChk
results

from the model in [30].

Notice that, according to our model, the channelhk[n] is stationary becausehw,k[n] is stationary. Realistic

channels are often non-stationary, e.g., either the location of the receiver or the scenario geometry can change.

Thus, the channel covariance matrix has to be tracked in realsituations. However, since the channel statistics

change very slowly compared to the channel itself, it is realistic to assume that they remain constant and are

perfectly known at both the receiver and the transmitter. Nevertheless, the feedback rate is limited and the feedback

of the channel realizations for the precoder design must thus be optimized.

III. B AYESIAN MODEL FOR IMPERFECTCSI

In systems with CSI feedback, the CSI errors result not only from the estimation but also from the compression

(projection onto a basis of lower dimensionality), the quantization, and the delay due to the feedback. In the
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Fig. 2. Feedback Design including Channel Estimation and Truncation Errors.

following subsections, we will describe and model the sources of error. Our goal is to find the PDF of the channel

vector conditioned on the fed–back coefficients that is the basis of our robust precoder design.

A. Channel Estimation and Rank Reduction Error

Fig. 2 depicts the feedback model based on CSI MSE which takesinto account channel estimation and rank

reduction errors as described in this subsection. We use linear estimators at the receivers based onNtr pilot symbols

per time slotn to enable the channel vector estimation for thek-th user. The vector comprising theNtr received

symbols for thek–th user reads as

yk[n] = Shk[n] + ηk[n] (5)

with S ∈ C
Ntr×N containing the training symbols [31], [32] andηk[n] ∈ C

Ntr is the zero-mean additive Gaussian

noise with the covariance matrixCηk
= E[ηk[n]ηH

k [n]]. The above received signalyk[n] is passed through a

channel estimatorGk ∈ C
d×Ntr which also performs a rank reduction at the same time, i.e.

h̃T,k[n] = Gkyk[n] ∈ C
d. (6)

Here,d ≤ N denotes the dimensionality of the rank reduction. The rank reduced channel can be written as

ĥT,k[n] = Vkh̃T,k[n] ∈ C
N (7)

with the orthonormal reduction basisVk ∈ C
N×d and the reduced rank coefficients̃hT,k[n] ∈ C

d for user k.

Combining (7), (6), and (5), the truncated estimate forhk[n] can be expressed as

ĥT,k[n] = VkGkShk[n] + VkGkηk[n]. (8)

The channel estimation and rank reduction withGk and the basisVk are jointly optimized to end up with a channel

estimate at the transmitter with minimum MSE

{GMMSE,k,VMMSE,k} = argmin
{Gk,Vk}

MSEk (Gk,Vk)

s.t.: V H
k Vk = Id (9)

with the MSE of userk

MSEk(Gk,Vk) = E

[

∥

∥

∥
hk[n] − ĥT,k[n]

∥

∥

∥

2

2

]

.
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In the above optimization (9), we included the constraint that the columns ofVk are orthonormal. The filterGk is

readily found by setting to zero the derivative of the cost function with respect toGk, i.e.

GMMSE,k = V H
k Chk

SH
(

SChk
SH + Cηk

)−1

= V H
k GMMSE-estim,k

(10)

where it can be seen thatGMMSE,k is decomposed into the ordinary MMSE channel estimatorGMMSE-estim,k, and

the term due to the projection onto the basis,V H
k . Substituting the optimumGMMSE,k into the cost function of (9)

yields

MSEk(GMMSE,k,Vk) = tr (Chk
) − tr

(

V H
k WkVk

)

(11)

with the N × N non-negative definite matrix

Wk = Chk
SH
(

SChk
SH + Cηk

)−1
SChk

. (12)

Now, the optimization (9) only depends onVk and can be solved using Lagrangian multipliers. One of the KKT

conditions is

WkVk = Vk∆k (13)

where∆k ∈ C
d×d is the Lagrangian multiplier for the constraint of (9). After multiplying by V H

k from the left,

we see that∆k is non-negative definite. Thus, the EVD of∆k is ∆k = QkΦkQH
k with the unitary matrixQk

and the non-negative diagonal matrixΦk. Then, (13) can be rewritten as

WkV ′
k = V ′

kΦk (14)

whereV ′
k = VkQk is a matrix with orthonormal columns asVk, sinceQk is unitary. Thus, we see that∆k in (13)

can be replaced by a diagonal matrixΦk without loss of generality. After multiplying (13) byV H
k from the left,

we have that

V H
k WkVk = Φk (15)

i.e. Vk diagonalizesWk. Thus, the columns ofVk are eigenvectors ofWk and not ofChk
as we intuitively used

in [26]. With this intermediate result for the rank reduction basisVk, the cost function of (9) is given by

MSEk (GMMSE,k,Vk) = tr (Chk
) −

∑

i∈I

ϕk,i

whereI denotes the set of indices of eigenvectors collected inVk andϕk,i is thei-th eigenvalue ofWk. Consequently,

the indicesI must be chosen such that the sum is maximized, that is,VMMSE,k ∈ C
N×d contains thed dominant

eigenvectors ofWk. Note that no errors due to rank reduction are added to the channel estimation if all the

eigenvectors are employed.
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Fig. 3. Feedback Design including Channel Estimation, Truncation, Feedback Delay, and Quantization Errors.

B. Feedback Delay Error

The transmission over the feedback channel introduces a delay of ν − n slots, where the precoder is designed

during the time slotν and the most recent channel estimate was obtained during thetime slot n. Fig. 3 depicts

the feedback model which takes into account all the errors considered along this work, i.e. channel estimation,

truncation, feedback delay, and quantization errors.

From (6) and (5), our model for the estimation and truncationis written as

h̃T,k[n] = GMMSE,kShk[n] + GMMSE,kηk[n] (16)

whose covariance matrixΦdom,k = E
[

h̃T,k[n]h̃H
T,k[n]

]

= V H
MMSE,kWkVMMSE,k is diagonal withWk from (12).

When the transmitter processes multiple feedback vectors, the available channel information is given by

h̃k[ν] =
[

h̃T,k[ν − D1]
T, · · · , h̃T,k[ν − DL]T

]T

∈ C
dL (17)

whereL is the number of delayed vectors processed at the transmitter, andDi, i = 1, . . . , L, is the delay expressed

as the number of slots for thei-th vector.

With the properties ofhk andhw,k described in Section II, we have that

E
[

hk[n]hH
k [ν]

]

= J0 (αk (ν − n))Chk
(18)

whereJ0 denotes the zero–th order Bessel function of the first kind and αk = 2π
fd,k

fslot
, wherefd,k is themaximum

Doppler frequency of userk andfslot is the slot rate [28]. Consequently, considering (16), (18), and (10), we find

E
[

h̃T,k[n]h̃H
T,k[ν]

]

=











J0 (αk (ν − n))Ψk n 6= ν,

Φdom,k n = ν

(19)

with Ψk = Φdom,kV H
MMSE,kC−1

hk
VMMSE,kΦdom,k. Therefore, we have for the processed feedback information

fh̃k[ν]

(

h̃k[ν]
)

= fG

(

h̃k[ν],0dL,Ch̃k

)

(20)

where we introduced

Ch̃k
= Ctemp⊗ Ψk + IL ⊗ Φdom,k

November 17, 2009 DRAFT
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and the matrixCtemp comprises the temporal correlations and itsi-th element in thej-th column is

[Ctemp,k]
i,j

=











J0 (αk (Di − Dj)) j 6= i,

0 j = i.

(21)

With (17) and (16), we obtain for the crosscorrelation between the channel and the feedback information

E
[

h̃k[ν]hH
k [ν]

]

=











GMMSE,kS E
[

hk[ν − D1]h
H
k [ν]

]

...

GMMSE,kS E
[

hk[ν − DL]hH
k [ν]

]











= βk ⊗ Φdom,kV H
MMSE,k (22)

with βk = [J0 (αk (D1)) , . . . , J0 (αk (DL))]T ∈ R
L.

According to the Theorem10.2 of [24], given the zero-mean joint Gaussian vectorsx and y with covariance

matricesCx and Cy, respectively, and the crosscovariance matrixCyx = E[yxH], the mean and the covariance

matrix describingfy|x(y|x) = fG(y,µy|x,Cy|x) are

µy|x = E[y|x] = CyxCx
−1x (23)

Cy|x = E[yyH|x] − µy|xµH
y|x = Cy − CyxCx

−1Cxy

respectively. In our case,x = hk[ν] andy = h̃k[ν]. Hence, applying (23) yields for the conditional mean

µh̃k[ν]|hk[ν] = E
[

h̃k[ν]|hk[ν]
]

= Akhk[ν] (24)

where we defined

Ak = βk ⊗ Φdom,kV H
MMSE,kC−1

hk
(25)

and for the conditional covariance matrix

Ch̃k[ν]|hk[ν] =
(

Ctemp,k − βkβT
k

)

⊗ Ψk + IL ⊗ Φdom,k. (26)

In the following, we will denoteCh̃k[ν]|hk[ν] asBk for brevity. From (24) and (26), we obtain that the conditional

PDF

fh̃k[ν]|hk[ν]

(

h̃k[ν]|hk[ν]
)

= fG

(

h̃k[ν],Akhk[n],Bk

)

. (27)

C. Quantization Error

Under the assumption that the channel statistics do not depend on time, the modal matrix obtained from the

eigenvalue decomposition of the matrixWk (see (12)) is also constant over time. With this assumption,only the

coefficients of the reduced rank approximation have to be sent from the receiver to the transmitter due to the fast

variations of the channel (so referred to asshort–termvariations).

We employ the uniform quantizer which is the most common of the scalar quantizers and whose principle is

rather simple (see [25]). Furthermore, we make the simplifying assumption that the input is bounded, i.e. we assume

November 17, 2009 DRAFT
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that the real and imaginary parts of every entry ofh̃T,k[n] lie in the the interval[−
√

2ϕk,i,+
√

2ϕk,i], whereϕk,i

denotes thei-th principal eigenvalue ofWk (see (12)). The overload region has a very low probability (less than

5%) of containing an input sample. Thus, we choose representants between−
√

2ϕk,i and+
√

2ϕk,i to construct

a codebook that is stored at both transmitter and receiver. After transmission, every receiver performs a search to

find for each coefficients component (real and imaginary part) the element in the corresponding codebook that is

closest. Then, the respective codebook index is fed back to the transmitter. Finally, the transmitter simply looks

into its codebook and builds the precoder parameters from the selected codeword [33].

As shown in Fig. 3, we have the following error model,

h̃Q,k[ν] = h̃k[ν] + η̃Q,k[ν] (28)

whereh̃Q,k[ν] ∈ C
dL comprises the representants (codebook entries) andh̃k[ν] is given by (17). Note that̃hQ,k[ν]

is the quantized version of̃hk[ν] and it thus containsL fed–back vectors. The quantization noise of userk can be

written as

η̃Q,k[ν] =
[

ñT
Q,k[ν − D1], · · · , ñT

Q,k[ν − DL]
]T ∈ C

dL. (29)

The i-th coefficient of the rank reduced channel estimateh̃T,k[n] ∈ C
d is quantized with a uniform quantizer with

step sizeγi (the choice ofγi depends on the number of bits for the feedback of thei-th coefficient or, equivalently,

the number of entries in thei-th codebook). Under the assumption that a high resolution quantizer is used, we have

a uniform distribution over the cell corresponding to a codebook entry [25]. Additionally, the errors̃ηQ,k[ν] are

assumed to be mutually independent and independent with thetruncated channel estimatesh̃k[ν].

For the robust precoder design, we must find the conditional probability density functionfhk[ν]|h̃Q,k[ν](hk[ν]|h̃Q,k[ν]),

since the transmitter only knows̃hQ,k[ν], but the cost function depends onhk[ν]. From now on, we will drop the

index ν for notational brevity. According to Bayesian theory, we have that

fhk|h̃Q,k

(

hk|h̃Q,k

)

= ε
(

h̃Q,k

)

fh̃Q,k|hk

(

h̃Q,k|hk

)

fhk
(hk) (30)

with ε(h̃Q,k) = 1/fh̃Q,k
(h̃Q,k). From (28), we see that̃hQ,k is the sum ofh̃k and η̃Q,k. The PDFfh̃Q,k

(h̃Q,k) is

thus the convolution of the PDFs of̃hk and η̃Q,k. The PDF ofh̃k can be found in (20) and, as mentioned above,

η̃Q,k is uniformly distributed over the hyperrectangleS around the origin with sidelengthsγi, i.e.

S =
{

x =
[

xT
1 , . . . ,xT

L

]T
, ∀i : xi ∈ C

d,

∀j : |ℜ(xi,j)| ≤ γj/2, |ℑ(xi,j)| ≤ γj/2
}

.

So, we obtain for the PDF of̃hQ,k

fh̃Q,k

(

h̃Q,k

)

=
1

∏d
i=1 γ2L

i

∫

S

fh̃k

(

h̃Q,k − η̃k

)

dη̃k.

For the special case thatL = 1 (i.e. Ch̃k
= Φdom,k), we get (see Appendix A)

fh̃Q,k

(

h̃Q,k = ωk + jχk

)

= fωk
(ωk)fωk

(χk) (31)

November 17, 2009 DRAFT
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with ωk = ℜ(h̃Q,k), χk = ℑ(h̃Q,k),

fωk
(a) =

d
∏

i=1

1

γi

(

Q

(

−γi − 2ai
√

2ϕk,i

)

− Q

(

γi − 2ai
√

2ϕk,i

))

(32)

andQ(x) =
∫ x

−∞
1√
2π

exp(−t2/2) dt.

The PDF ofhk is fhk
(hk) = fG(hk,0N ,Chk

) (see (3)). The last missing term of (30) is the convolution ofthe

PDFs of two random variables [cf. (28)]:

fh̃Q,k|hk

(

h̃Q,k|hk

)

=
(

fh̃k|hk
∗ fη̃Q,k|hk

)(

h̃Q,k|hk

)

.

The Gaussian conditional PDFfh̃k|hk
(h̃k|hk) can be found in (27) and

fη̃Q,k|hk
(ω + jχ|hk) = fη̃Q,k

(ω + jχ) =

dL
∏

i=1

fU(ωi)fU(χi)

with ω,χ ∈ R
dL, fU(a) = 1/γ for |a| ≤ γ/2 and fU(a) = 0 else. Note that we used the assumption that

the quantization noise is independent of the quantity whichis quantized and, hence,̃ηQ,k is independent ofhk.

Consequently, we have that

fh̃Q,k|hk

(

h̃Q,k|hk

)

=

∫

S

fG

(

h̃Q,k − w,Akhk,Bk

)

∏d
i=1 γ2L

i

dw.

Substituting this result and (27) into (30) leads to

fhk|h̃Q,k

(

hk|h̃Q,k

)

=
ε(h̃Q,k)
∏d

i=1 γ2L
i

∫

S

fh̃Q,k

(

h̃Q,k − w
)

× fG

(

hk,Chk
AH

k C−1

h̃k

(

h̃Q,k − w
)

,Chk|h̃k

)

dw

with Chk|h̃k
= (AH

k B−1
k Ak + C−1

hk
)−1. With this result, the conditional meanµhk|h̃Q,k

= E[hk|h̃Q,k] and the

conditional correlation matrixRhk|h̃k
= E[hkhH

k |h̃k] can be respectively written as

µhk|h̃Q,k
= Chk

AH
k C−1

h̃k

mk

(

h̃Q,k

)

(33)

Rhk|h̃Q,k
= Chk|h̃k

+ Chk
AH

k C−1

h̃k

Mk

(

h̃Q,k

)

C−1

h̃k

AkChk
.

Here, we introduced

mk(a) =
ε(a)

∏d
i=1 γ2L

i

∫

S

(a − w) fh̃k
(a − w) dw

Mk(a) =
ε(a)

∏d
i=1 γ2L

i

∫

S

(a − w) (a − w)
H

fh̃k
(a − w) dw

which, for L = 1 (Ch̃k
= Φdom,k), can be expressed as

mk

(

h̃Q,k

)

= µk(ωk) + jµk(χk) (34)

Mk

(

h̃Q,k

)

= mk

(

h̃Q,k

)

mH
k

(

h̃Q,k

)

+ Σk

(

h̃Q,k

)

(35)
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with µk(ωk) = [µk,1(ωk,1), . . . , µk,d(ωk,d)]
T. In Appendix B, it is shown that

µk,i(a) =

√
ϕk,i

2
√

π

exp
(

− (2a−γi)
2

4ϕk,i

)

− exp
(

− (2a+γi)
2

4ϕk,i

)

Q

(

−γi−2a√
2ϕk,i

)

− Q

(

γi−2a√
2ϕk,i

) . (36)

The second term ofMk

(

h̃Q,k

)

is diagonal, i.e.

Σk

(

h̃Q,k

)

= diag
(

σk,1

(

h̃Q,k

)

, . . . , σk,d

(

h̃Q,k

))

whosei-th diagonal element can be expressed as (see Appendix C)

σk,i

(

h̃Q,k

)

= τk,i(ωk,i) + τk,i(χk,i) (37)

with

τk,i(a) =
ϕk,i

2
− µ2

k,i(a) +

√
ϕk,i

4
√

π

×
(2a − γi) exp

(

− (2a−γi)
2

4ϕk,i

)

− (2a + γi) exp
(

− (2a+γi)
2

4ϕk,i

)

Q

(

−γi−2a√
2ϕk,i

)

− Q

(

γi−2a√
2ϕk,i

) .

The above results enable us to compute the conditional covariance matrix (forL = 1)

Chk|h̃Q,k
= Chk|h̃k

+ J2
0(αkD1)VMMSE,kΣk

(

h̃Q,k

)

V H
MMSE,k. (38)

The first term comes from the erroneous knowledge abouthk, if we hadh̃k. But since we only havẽhQ,k available,

the variance of the error is increased by the second term.

IV. ROBUST PRECODERDESIGN

The uncertain knowledge about the channel at the transmitter is modeled by the conditioned probability density

function obtained in the previous section. Therefore, we consider the channel as being random but we can exploit the

statistical dependence between the channel and the fed–back information. This goal can be achieved by extending the

classical precoder optimizations with a mean with respect to the channel conditioned on the fed–back information.

A similar problem was considered for THP design in [12], [14]and for linear precoder design in [15], where the

reciprocity of the channel in a TDD system was exploited. We will see in the sequel how the conditional mean

introduces a regularization of the solution which makes it more robust to CSI errors.

When taking the conditional mean of the MSE, we always encounter the conditional mean of the channel and

the conditional mean of the channel Gram which can be respectively written as (see (33) and (38))

E
[

H
∣

∣

∣
H̃Q

]

=
[

µh1|h̃Q,1
, . . . ,µhK |h̃Q,K

]T

= ĤQ (39)

E
[

HHH
∣

∣

∣
H̃Q

]

= ĤH
Q ĤQ + Cerror (40)

whereH̃ = [h̃Q,1, h̃Q,2, . . . , h̃Q,k] andCerror =
∑K

k=1 CT
hk|h̃Q,k

. Notice that for MMSE designs, no other channel

conditional moments are necessary.
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Fig. 4. MU–MISO System with Linear Precoding.

To simplify the presentation and to ensure closed form solutions for the precoder design, we only consider the

case where the receivers use a common real weight [14]. Nevertheless, as explained in Section V, the receivers

apply an MMSE weight afterwards to correct the phase and the amplitude of the received signals prior to detection.

Therefore, there is a slight mismatch between the receiversmodel for the precoder design and the final system

receivers.

A. Linear Precoding (LP)

In the case of linear precoding [17], the transmit signalx ∈ C
N results from a linear transformation of the

uncorrelated unit variance symbolsu ∈ C
K , i.e. x = Fu as in Fig. 4. For robust linear MMSE precoding,

F ∈ C
N×K together with the common weightg ∈ R minimizes the conditional mean of the MSE under a transmit

power constraint

{FRlin, gRlin} = argmin
{F ,g}

E
[

εlin(F , g)
∣

∣

∣
H̃Q

]

s.t.: E
[

‖x‖2
2

]

= Etx

(41)

where the MSE is defined as

εlin(F , g) = E
[

‖u − gHFu − gη‖2
2

∣

∣

∣
H
]

.

With Lagrangian multipliers, the above optimization (41) can be solved with similar steps as for the standard MMSE

precoder in [17]. Substituting (39) and (40) into the solution, we get

FRlin =
1

gRlin

(

ĤH
Q ĤQ + Cerror + ξIN

)−1

ĤH
Q (42)

=
1

gRlin
T−1ĤH

Q Φ−1 (43)

where we obtained the second line with the matrix inversion lemma [23]. Additionally, we definedξ = tr(Cη)/Etx,

T = ξ−1Cerror + IN , and the positive definite matrix

Φ = ĤQT−1ĤH
Q + ξIK ∈ C

K×K . (44)

Note from (42) that the solution is regularized withCerror. With the transmit power constraint, i.e.tr(FRlinF
H
Rlin) =

Etx, the real scalargRlin is readily found.

We see from (43) and (44) that the structure and the amount of error have a strong influence on the final precoder.

For very small error, i.e.Cerror → 0, we obtain the classical linear MMSE precoder as in [17] and for very large

error, we getΦ → ξIK andFRlin acts like a matched filter which is inherently the most robustprecoder.
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Fig. 5. MU–MISO System with Vector Precoding.

B. Vector Precoding (VP)

When the receivers are equipped with modulo operators as in Fig. 5, the transmitter has the freedom to add

a perturbation signala ∈ τZ
K + j τZ

K to the data signalu prior to the linear transformation with the filterF

(see Fig. 5). Here,τ denotes the constant associated with the modulo operatorM(•). The freedom of addinga is

optimally exploited by VP [19], [34], whose robust MMSE optimization reads as [cf. [19]]

{xRVP(m), gRVP,aRVP(m)} = argmin
{x(m),g,a(m)}

E
[

εVP(x(m), g,a(m))
∣

∣

∣
H̃Q

]

s.t.:
1

NB

NB
∑

m=1

‖x(m)‖2
2 = Etx.

(45)

Here,m is the symbol index in a block ofNB symbols. The MSE for VP is the variance of the difference between

the signald(m) and the modulo operator input̂d(m)

εVP = E
[

‖d(m) − gHx(m) − gη(m)‖2
2

∣

∣

∣
H,u(m)

]

.

Note that the expectation is neither taken with respect to the symbolsu(m) nor the transmit signalx(m), since

the transmitter has full knowledge of the data signalu(m). With similar steps as in [19], it can be shown that the

transmit signal for robust MMSE VP is

xRVP(m) =
1

gRVP
T−1ĤH

Q Φ−1 (u(m) + aRVP(m)) . (46)

The real scalargRVP follows from the transmit power constraint and the perturbation signal can be found via

following closest point search in a lattice

aRVP(m) = argmin
a(m)∈τZK+j τZK

d(m)HΦ−1d(m) (47)

with d(m) = u(m) + a(m). For small errors, the above search becomes the standard MMSE VP rule to compute

the perturbation vector as in [19]. For large errors,Φ−1 is a weighted identity matrix leading toaRVP(m) = 0, i.e.

robust VP converges to linear precoding.

C. Tomlinson–Harashima Precoding (THP)

To avoid the high complexity of the robust VP rule in (47), we can employ THP as depicted in Fig. 6. For the

THP design, the standard assumption is that the output covariance matrix of the modulo operator at the transmitter,
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Fig. 6. MU–MISO System with Tomlinson–Harashima Precoding.

Cv = E[vvH], is diagonal [7]. Additionally, the feedback filterB must be strictly lower triangular to avoid a

delay-free loop. The optimization for robust THP can be expressed as

{FRTHP,BRTHP, gRTHP} = argmin
{F ,B,g}

E
[

εTHP(F ,B, g)
∣

∣

∣
H̃Q

]

s.t.: E
[

‖x‖2
2

]

= Etx and (48)

B is strictly lower triangular

with the MSE for THP [cf. [7]] being

εTHP(F ,B, g) = E
[

‖(I − B)v − gHFv − gη‖2
2

∣

∣

∣
H
]

where(I − B)v is the desired value for the inputs of the modulo operators atthe receivers that is the sum of the

permuted symbolsPu and the perturbation added by the modulo operator at the transmitter (see [7]). With the

symmetrically permuted Cholesky factorization

PΦ−1P T = LHDL (49)

whereP is a permutation matrix,L is unit lower triangular, andD is non-negative diagonal, the solution to (48)

can be concisely written as

FRTHP =
1

gRTHP
T−1ĤH

Q P TLHD (50)

BRTHP = I − L−1 (51)

and gRTHP follows from tr(FRTHPCvF H
RTHP) = Etx. For the algorithm to compute the symmetrically permuted

factorization (49), we refer to [7].

V. MMSE RECEIVER AND TRAINING SYMBOLS

As shown in [14], phase correction at the receivers is particularly crucial for a system with erroneous CSI at the

transmitter. However, contrary to [14], in this work we do not restrict ourselves to modulation formats with constant

modulus alphabets. Indeed, the joint robust design of the transmitter and the receivers based on the receivers model

in [14] where only the phase is corrected is not possible.
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As discussed in the previous section, our MU-MISO system uses a very simple receiver model for the precoder

design in which all the receivers apply the same real scalar weight. This assumption is necessary to obtain closed-

form solutions for the precoders. Nevertheless, in practice, the receivers must correct the received signals wrong

amplitudes and phases caused by the errors in the CSI at the transmitter. This goal can be achieved by selecting

the receiver coefficients according to the MMSE criterion. For thek-th receiver, the MMSE weight is found via

gMMSE,k = c∗kc−1
y,k (52)

wherecy,k = E[|yk|2] is the variance of the received signal,yk, andck = E[u∗
kyk] is the crosscorrelation between

the received signal,yk, and the desired signal,uk. The estimation ofcyk
is straightforward, i.e. it can be found via

averaging over time, but the estimation ofck is more delicate because it depends on the precoder type being used.

According to our signal model, the values ofck for the robust linear, Tomlinson-Harashima and vector precoding

are the following

cRlin,k = E [u∗
kyk] = hT

k FRlinek

cRVP,k =
1

NB

NB
∑

m=1

E
[

(uk(m) + aRVP,k(m))
∗
yk(m)

∣

∣u(m)
]

=
1

NB

NB
∑

m=1

hT
k xRVP(m) (uk(m) + aRVP,k(m))

∗

cRTHP,k = E
[

vH
(

IK − BH
)

Pekyk

]

= hT
k FRTHPCv

(

IK − BH
)

Pek.

It is apparent from these expressions that the receivers areunable to directly estimateck because neither the precoder

nor the perturbation signal is known at reception. However,it can be estimated via a time average if the transmitter

sends a dedicated training sequence to each receiver. The key idea is that the training symbols are precoded such

that the overall channel, i.e. the combination of the channel and the precoder, is equal tock. For example, the

dedicated pilot symbols for receiverk should be precoded withFRTHPCv(IK −B)Pek in the case of robust THP.

As a consequence, the proposed system with robust precodingassumes the transmission of two training signals

that must be sent frequently. First, distinct common pilot signals must be transmitted from the transmit antennas

to enable an estimation of the channel vectors at the single-antenna receivers. With these channel vector estimates,

the receivers find the channel covariance matrices via time averaging, with some forgetting factor to account for

possible channel non stationarities. Since the covariancematrices only change slowly, the feedback of the dominant

eigenvectors ofWk, which depends on the channel covariance matrix (see (12)),does not cost much data rate.

Whenever the CSI must be fed back to the transmitter, the receiver computes the coefficients via the projection

onto the dominant eigenvectors ofWk and transmits the index found by the quantizer to the transmitter.

Second, dedicated pilot signals must be sent to each receiver to allow an estimation of the channel and precoder

combination. This estimate is necessary for the receivers MMSE design which correct the phase and the amplitude

of the received signal. Notice that phase correction is particularly crucial in a system with erroneous CSI (see [14]).
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Fig. 7. Effect of Estimation Error on the Proposed Robust Scheme as a Function of Different Training Lengths in an Urban Macrocell

Environment.

VI. SIMULATIONS

This section presents the results of several computer simulations carried out to assess the proposed MU-MISO

system with precoding and limited feedback channel. We considered a MU-MISO system withN = 4 antennas

at the transmitter andK = 4 single antenna users. Performance is evaluated in terms of uncoded Bit Error Rate

(BER) versus Signal to Noise Ratio (SNR). The results are themean of5,000 channel realizations and50 QPSK

modulated symbols were transmitted in each channel realization. A delay ofD = 2 slots is considered for all the

users which are not fixed-located but moving at a given speed.The Doppler frequency is normalized with respect

to the slot period and it is calculated by taking into accountthat fslot is 1,500 Hz and that the center frequency

is 2 GHz. We considered three different environments followingthe 3GPP Spatial Channel Model (SCM) [30].

The first one corresponds to a suburban macrocell environment (channel 1); the second one is an urban macrocell

environment (channel 2); and the last one is an urban microcell scenario (channel 3). We considered channel 2

in most of the results presented in this section due to its intermediate BER performance and diversity. The BER

curves were obtained after averaging100 channel covariance matrices. Finally, we assume, for simplicity reasons,

perfect CSI at the receiver for calculating the MMSE coefficients.

We carried out some preliminary simulations to select the size of the training sequence. Fig. 7 shows the uncoded

BER for robust THP over urban macrocell environments (channel 2) and different training sequence lengths in order

to illustrate the performance degradation caused by channel estimation errors. In this computer experiment, this is the
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Fig. 8. Effect of User Speed on the Proposed Robust Scheme in anUrban Macrocell Environment with All Errors and 12 Bits per User.
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Fig. 9. Effect of Different Types of Errors on the Proposed Robust Scheme in an Urban Macrocell Environment. Error A: Estimation; Error

B: Rank Reduction; Error C: Quantization; All Errors: Estimation, Rank Reduction, Quantization, and Delay.

November 17, 2009 DRAFT



18

−10 −5 0 5 10 15 20 25 30
10

−2

10
−1

SNR in dB

u
n

co
d

e
d

 B
E

R

 

 

LP, channel 3
LP, channel 2
LP, channel 1
THP, channel 3
THP, channel 2
THP, channel 1
VP, channel 3
VP, channel 2
VP, channel 1

Fig. 10. BER Performance for Different Types of 3GPP Channel Models with the Proposed Robust Precoding and 12 Bits per User.
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Fig. 11. BER vs. SNR for Linear Precoding and Urban MacrocellEnvironment.

November 17, 2009 DRAFT



19

−10 −5 0 5 10 15 20 25 30
10

−2

10
−1

SNR in dB

u
n

c
o

d
e

d
 B

E
R

 

 

prop. non robust, THP
prop. robust, THP, 12 bits
prop. robust, THP, 16 bits
perf. CSI, THP

−10 −5 0 5 10 15 20 25 30
10

−2

10
−1

SNR in dB
u

n
c
o

d
e

d
 B

E
R

 

 

prop. non robust, VP
prop. robust, VP, 12 bits
prop. robust, VP, 16 bits
perf. CSI, VP

Fig. 12. BER vs. SNR for THP and VP with an Urban Macrocell Environment.

only errors source in the system. As a compromise between training sequence length and performance degradation,

we pick for our subsequent simulations the valueNtr = 6 which introduces a2 dB loss with respect to the case of

perfect CSI.

The performance of robust THP schemes in channel 2 for different user speeds is plotted in Fig. 8. Rank

reduction is applied and onlyd = 2 complex coefficients per user are transmitted through the feedback channel.

These coefficients are scalarly quantized using6 bits (3 bits per complex dimension) which yields12 bits per user.

Fig. 8 considers the speed values of10, 30 and60 km/h which correspond to normalized Doppler frequencies of

0.0123, 0.0370, and0.0741, respectively. It is apparent that, as expected, the performance degrades more the faster

the fading is.

Fig. 8 also plots the uncoded BER when the users speed is 10 km/h and Random Vector Quantization (RVQ)

is applied instead of scalar quantization with the same number of 12 bits per user. Note that in RVQ the stored

user’s codebook contains channel vectors. Obviously, the errors model that we have developed in section III for

scalar quantization is not adequate for RVQ. Indeed, in RVQ,the regularization error matrix used for the robust

design is the error matrixCerror,k = α(C
ĥk

+ Chk
), whereC

ĥk
is the covariance matrix of the MMSE estimate.

The factorα results from selecting the codebook entry and is the ratio ofthe MSE with selection over the MSE

without selection, where the mean squared error is given byE

[

∥

∥

∥
ĥk − yi

∥

∥

∥

2

2

]

, with ĥk being the output of the

MMSE estimator andyi one of theM codebook entries. In scalar quantization, the error matrixwill be given by

Cerror =
∑K

k=1 CT
error,k. As expected, the system performance is better when RVQ is used. This is because RVQ

carries out a joint quantization that uses a much larger codebook (212 = 4,096 entries per user) and compares a

N -dimensional vector with4,096 complex vectors to choose the closest one for each channel realization and each

channel covariance matrix. Therefore, its computational complexity is much higher than scalar quantization, where
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the search is reduced to a comparison with23 = 8 scalar values for the real and imaginary parts of each fed–back

coefficient. For the considered number of12 fed–back bits per user, it is clear that the performance of RVQ for

medium and high SNR must be better than that obtained with scalar quantization.

Fig. 9 shows the influence on the uncoded BER of the different errors sources considered along this work.

Again, robust THP over channel 2 with a user speed of 10 km/h isconsidered. Obviously, each new error source

adds a greater degradation in performance to the previous one. Indeed, note the performance degradation when

moving from d = 3 to d = 2 truncated coefficients. Also, note the performance loss as the number of bits per

user decreases. Nevertheless, truncation tod = 2 coefficients andL = 12 fed–back bits per user ensures a suitable

system performance (BER below4 × 10−2) with the enormous advantage of noticeably reducing the feedback

channel overhead. This overhead reduction is more appreciated the larger the number of transmitting antennas is.

In the subsequent computer experiments in this section, we will use d = 2 andL = 12 as system parameters.

Fig. 10 plots the performance of Linear Precoding (LP), Tomlinson-Harashima Precoding (THP) and Vector Pre-

coding (VP) robust schemes for the three different scenarios described in [30]. All errors sources are considered, i.e.

estimation, quantization, truncation, and delay errors inherent to the fed–back sending. Obviously, the performance

for channel 1 (suburban macrocell) is much better than that for channel 2 (urban macrocell). And the performance

for channel 2 is again better than that for channel 3 (urban microcell). This is because the spatial correlation in

channel 1 is considerably larger than in channel 3 (with channel 2 in between) which causes that the third and

fourth channel eigenvalues are negligible in channel 1 whereas they have significative values in channel 3 or even

in channel 2. Thus, the performance degradation due to truncation to d = 2 is more severe in channel 3 than in

channel 1. When comparing the three considered precoding schemes, LP exhibits the worst performance for the

robust design, as it also occurs in the case of perfect CSI. The achieved performance of VP is always better than

that of THP but it is quite similar. Note that the complexity of VP is considerably larger (due to the search in the

lattice) which motivates the utilization of suboptimum robust THP schemes instead.

Figs. 11 and 12 show the improvement of our robust schemes with respect to the non–robust ones. It is apparent

from these figures that the non–robust curves go up for high SNR due to the sensitivity of these schemes to imperfect

CSI. It is also shown the advantage of using the robust schemes, which provide a performance improvement and

compensate the CSI imperfect knowledge caused by the different error sources. In these simulation results, a scalar

codebook of sizem = 8 andm = 16 has been used, i.e. we are employingL = 3 andL = 4 bits, respectively, for

coding the real and imaginary part of each coefficient. Clearly, if the number of bits is increased, the BER reduces

because the errors due to the quantization process are smaller. However, with a codebook of reasonable size, we

are obtaining good BER performance. Obviously, larger codebook sizes improve the performance but at the cost

of decreasing the compression rate for the CSI sent through the feedback channel and considerably increasing the

storage capability at the receivers [33].

Finally, Fig. 13 shows the performance improvement for THP when considering the error modeling Bayesian

approach described in section III with respect to the non-Bayesian approach developed in [26]. The Bayesian

scheme implements a joint optimization of the estimator, the rank reduction basis, and the inherent predicition of
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Fig. 13. Performance Comparison with Previous Schemes withoutBayesian Formulation.

the estimator by minimizing the overall channel MSE. One of the major contributions of this article is to have

found the channel vector PDF conditoned on the fed–back coefficients which is the basis of our robust precoding,

i.e. to achieve a Bayesian approach for the errors modeling.Moreover, the advantage of the proposed robust design

could be even higher if we could exploit in an adequate procedure the Gaussian input assumption to design the

initial codebook according to the Lloyd algorithm.

VII. C ONCLUSION

In this paper, we have investigated the compression of Channel State Information (CSI) data in a MU-MISO

system with precoding and limited feedback channel. Three different type of precoders have been considered:

Linear Precoding (LP), Tomlinson-Harashima Precoding (THP) and Vector Precoding (VP). We have followed a

Bayesian approach to obtain an adequate statistical characterization of the errors in the compressed CSI. Four

sources of errors have been considered: channel estimation, truncation for rank reduction, coefficient quantization,

and feedback delay. The error modeling has allowed us to formulate robust designs for each precoding scheme with

a performance considerably better than that of conventional non–robust schemes. Simulation results show that it is

possible to implement these techniques in MU-MISO time-varying channels while transmitting a minimum amount

of information through the feedback channel
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APPENDIX A

RECTANGULAR MULTIVARIATE GAUSSIAN PROBABILITY

With ωk = ℜ(h̃Q,k) andχk = ℑ(h̃Q,k), the PDF ofh̃Q,k can be decomposed as follows (see (31))

fh̃Q,k

(

h̃Q,k = ωk + jχk

)

= fωk
(ωk)fωk

(χk)

where we have forL = 1 that

fωk
(ωk) =

d
∏

i=1

1

γi

∫ γi/2

−γi/2

1
√

πϕk,i
exp

(

− (ζi − ωk,i)
2

ϕk,i

)

dζi.

After substitutingui = (ζi − ωk,i)
√

2/ϕk,i, we obtain

fωk
(ωk) =

d
∏

i=1

1

γi

∫

γi−2ωk,i√
2ϕk,i

−γi−2ωk,i√
2ϕk,i

1√
2π

exp

(

−u2
i

2

)

dui.

With
∫ b

a
1√
2π

exp(−t2/2) dt = Q(a) − Q(b), we finally reach the result of (32).

APPENDIX B

RECTANGULAR MULTIVARIATE GAUSSIAN CENTROID

Due to the symmetry of the real and imaginary part ofmk(h̃Q,k), it suffices to find the real part ofmk(h̃Q,k)

to proof (34). Let us split up̃hQ,k into its real and imaginary part, i.e.ωk = ℜ(h̃Q,k) andχk = ℑ(h̃Q,k). Then,

the real part ofmk(h̃Q,k) that we denote asµk reads as

µk =
ε(h̃Q,k)
∏d

i=1 γ2
i

∫

S

(ωk − ζ)
1

πd det(Φdom,k)

× exp

(

−
d
∑

i=1

(ωk,i − ζi)
2 + (χk,i − ξi)

2

ϕk,i

)

dζ dξ.

Here,ζ and ξ denote the real and imaginary part ofw, respectively. We see that we deal with nearly the same

integral as the one considered in Appendix A—except the integration with respect toζi, when we compute thei-th

entry of µk. So, all terms ofε(h̃Q,k) drop out except the one corresponding to the integration with respect toζi

µk,i =

∫ γi/2

−γi/2
(ωk,i − ζi)

1√
πϕk,i

exp
(

− (ωk,i−ζi)
2

ϕk,i

)

dζi

Q

(

−γi−2ωk,i√
2ϕk,i

)

− Q

(

γi−2ωk,i√
2ϕk,i

) .

Note thatµk,i only depends onωk,i. Therefore, the real part ofmk(h̃Q,k) only depends on the real part ofh̃Q,k.

With similar steps, it can be shown that the imaginary part ofmk(h̃Q,k) has the same dependency on the imaginary

part of h̃Q,k. Thus, (34) holds. With
∫

a − b√
πϕ

exp

(

− (a − b)2

ϕ

)

db =

√
ϕ

2
√

π
exp

(

− (a − b)2

ϕ

)

which can be obtained with the substitutionu = (a − b)2/ϕ, we also get (36).
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APPENDIX C

RECTANGULAR MULTIVARIATE GAUSSIAN COVARIANCE

That (35) holds for the off-diagonal elements can be easily shown with similar steps as in Appendix B. So, we

only have to obtain the expression forσk,i(h̃Q,k) that can be found in (37). Due to (35), we have that

σk,i

(

h̃Q,k

)

= [Mk]i,i −
∣

∣

∣
mk,i

(

h̃Q,k

)
∣

∣

∣

2

where[Mk]i,i denotes thei-th diagonal element ofMk(h̃Q,k) and reads as

[Mk]i,i =
ε(h̃Q,k)
∏d

i=1 γ2
i

∫

S

∣

∣

∣
h̃Q,k,i − wi

∣

∣

∣

2

fh̃k

(

h̃Q,k − w
)

dw.

Similar to Appendix B,ε(h̃Q,k)/
∏d

i=1 γ2
i drops out and we get

[Mk]i,i = λk,i(ωk,i) + λk,i(χk,i)

with ωk = ℜ(h̃Q,k), χk = ℑ(h̃Q,k), and

λk,i(a) =

∫ γi/2

−γi/2
(a − ζ)2 1√

πϕk,i
exp

(

− (a−ζ)2

ϕk,i

)

dζ

Q

(

−γi−2a√
2ϕk,i

)

− Q

(

γi−2a√
2ϕk,i

) .

The enumerator is an integral of the form
∫

(a − b)2
1√
πϕ

exp

(

− (a − b)2

ϕ

)

db =

=

√
ϕ

2
√

π
(a − b) exp

(

− (a − b)2

ϕ

)

− ϕ

2
Q

(√
2(b − a)√

ϕ

)

.

To obtain this expression, we used the last integral of Appendix B and employed the substitutionu = (b−a)
√

2/ϕ.

From (34), we can follow that
∣

∣

∣
mk,i

(

h̃Q,k

)
∣

∣

∣

2

= µ2
k,i(ωk,i) + µ2

k,i(χk,i)

and thus,

σk,i

(

h̃Q,k

)

= λk,i(ωk,i) − µ2
k,i(ωk,i) + λk,i(χk,i) − µ2

k,i(χk,i).

Defining τk,i(a) = λk,i(a) − µ2
k,i(a) gives (37).
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