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Abstract

We consider the robust precoder designNaulti-User Multiple Input Single OutputMU-MISO) systems, where
the Channel State InformatioCSl) is fed back from the single antenna receivers to the centralizedntitier
equipped with multiple antennas. We propose to compress the feedbgclylarojecting the channel estimates
onto a vector basis, known at the receivers and the transmitter, antizijpg the resulting coefficients. The channel
estimator and the basis for the rank reduction are jointly optimized by minimihied/ean Square Erro{MSE).
Expressions for the conditional mean and the conditional covariantteeathannel are derived which are necessary
for the robust precoder design. These expressions take into a¢beuollowing sources of error: channel estimation,
truncation for rank reduction, quantization, and feedback channay.d€hree well-known precoder types, namely
Linear Precoding(LP), Vector PrecodingVP), andTomlinson-Harashima Precodin@HP), are designed based on
the expectation of the MSE conditioned on the fed—back CSI. Our resuits fat robust precoding based on fed—
back CSI clearly outperforms conventional precoding designs whichad take into account the errors in the CSI.
Additionally, we observe that a robust design is especially crucial fetesys employing non-linear precoding with
scarce feedback rate.

Index Terms

Feedback channel, Bayesian approach, imperfect CSlI, robesbging.

I. INTRODUCTION

We consider a MU-MISO system, i.e. a multiple antennas trathsr and several single-antenna receivers, since
the centralized access point in a cellular system admitemomplexity and cost than the mobiles. A MU-MISO

system is a prominent example of a vector broadcast chabhdRgcently, it has been shown that thety Paper
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Coding(DPC) [2] signaling techniques designed accordin§ignal-to-Interference-plus-Noise RafBINR) criteria

are able to approach the sum capacity of a broadcast cha&8ingd] These contributions, however, only consider
the ideal case where the CSI at the transmitter is perfecttyvk, similar to [5]—[7]. In the more practical case,
where only an estimate of the CSl is available at the tratemthe capacity region of the vector broadcast channel
has not been found yet. First, the application of DPC is goesble, since it is unclear up to now how DPC can be
used with erroneous CSI. Second, it is unclear how to systeatis include the uncertainties in the SINR criterion
(see the discussion in [8] and the attempt in [9] for the cdsstatistical CSI).

As shown in [10], the SINR and the MSE achievable regions fdd-MISO systems are tightly related.
Additionally, minimum MSEMMSE) allows for a robust precoder design by consideringaddional expectation
of the cost function [11]-[15]. Hence, we concentrate onNHSE precoder design. Based on the MMSE design
for linear precoding as in [16], [17], for THP in [7], [18], drfor VP in [19], we develop robust linear precoding,
robust THP, and robust VP, where we take the expectationeoMBE conditioned on the available CSI.

Most of the work on precoding with erroneous CSI was motivdte aTime Division DupleXTDD) setup, where
the transmitter can estimate the CSI during the transnmsisiathe opposite direction [13], [14]. This approach
however is difficult due to the necessity of very good calilora[20]. Contrarily, we focus on the more difficult
case, where the CSI is obtained by the receivers and fed loatthettransmitter. In this case, calibration errors
are estimated as being part of the CSI and, therefore, naasgeoblems arise from calibration. Additionally, the
feedback of CSI enables precodinghrequency Division DuplexFDD) systems, where the transmitter is unable
to obtain the CSI during reception, because the channelaairesciprocal.

Since the data rate of the feedback channels is limited [p&]CSI must be compressed to ensure that the tight
scheduling constraints are satisfied. Moreover, when thieisC&ot perfectly known by the receiver, it is a matter
of discussion what kind of information has to be sent fromrémeiver to the transmitter and the way of recovering
it at the transmitter side.

In the system proposed in this paper, we start by estimakiagchannel at the receivers using the observations
of pilot symbols sent from all the transmit antennas. Thialdes the receivers to estimate their respective vector
channels. Then, we reduce the estimates to a low-dimensigm@sentation by projecting them onto a basis which
only depends on the channel statistics. We assume that #ranehstatistics are also known to the transmitter.
The coefficients are quantized prior to transmission overféedback channel which also introduces a delay. For
simplicity, we use a uniform quantizer.

The estimator and the basis for the rank reduction are joioptimized by minimizing the MSE, where the
optimization is formulated such that the estimator addailty performs the rank reduction (see [22]). The resulting
estimator can be decomposed into an ordinary MMSE estinfialfowved by a projection on the basis. Interestingly,
the resulting basis is different from that of the Karhunag\le expansion [23], i.e. the eigenbasis of the channel
covariance matrix.

In order to properly design robust precoders, it is necgsgamobtain an adequate statistical characterization

of the errors in the fed—back CSI. The following sources obreare considered: channel estimation, truncation
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Fig. 1. Multi-User System with Precoding over Flat MISO Channels.

(rank reduction), quantization, and feedback channelyd€hannel estimation and truncation errors are Gaussian
and their analysis follows a conventional MSE approach.[Zdfce the delayed channel versions fed back to the
transmitter after estimation and truncation are also Ganssve can easily obtain their statistical properties. On
the other hand, quantization errors are often assumed taifermly distributed [25] which makes the analysis
of their impact on the imperfect CSI difficult. Neverthelegge obtain an expression for the probability density
function of the channel vector according to a Bayesian fraonk, i.e. conditioned on the delayed, truncated, and
guantized channel estimate. The resulting expressiomif®iconditional channel PDF enables us to find closed-form
expressions for the robust precoders. Compared to ourqugwiork in [26], where we assumed uncorrelated and
Gaussian distributed quantization errors, the exact arsapyresented herein enables the design of robust precoding
schemes with considerably better performance.

This paper is organized as follows. Section Il describesstpeal model of a MU-MISO system with correlated
channels. In Section Ill, the Bayesian model for the CSlresaurces is developed and Section IV contains the
robust precoder design. The MSE receivers are derived amdighd training data are discussed in Section V.
Computer simulations are presented in Section VI. Finalbycluding remarks are given in Section VII.

Vectors and matrices are denoted by lower case bold andatépid letters, respectively. ThE x K identity
matrix is denoted byl and Ox is a K-dimensional zero vector. We udgfe], R(e), S(e), tr(e), (o)*, ()7,
(o)H, det(e), ®, ¥, and| e ||> for expectation, real and imaginary part of the argumeatetrof a matrix, complex
conjugation, transposition, conjugate transpositiorigmiginant of a matrix, Kronecker product, convolution, and
Euclidean norm, respectively. Theth element of a vectox is x;. With fg (x, u., C..), we refer to a circularly
symmetric complex Gaussian distribution ®f¢ C™ with the meanu, € C™ and the covariance matri€’,, €

(Canm, |e
exp (~ (@~ )" €t (@ — )
7 det(Cy) '

fe (:I:,/J,w, Caz) =
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II. MU-MISO SIGNAL MODEL

Let us consider a MU-MISO system witl' transmit antennas anf single antenna receivers as depicted in
Fig. 1. The precoder generates the transmit signftbm all data symbolqu,, ..., ux } belonging to the different
usersl, ..., K. The signalz, from transmit antennd propagates over the channel with the coefficient to the

k-th receiver, superimposes with the signals of the otherstrat antennas, and is perturbed by the additive white

Gaussian nois@;, with variancea,%, i.e.
N
Uk =Y oo+ = hilx + (1)
(=1
wherehy, = [hy 1, .. .,hkyN]T € CV represents the flat fading vector channel correspondinbdd:-th user and
x = [r1,...,zy5]T € CV is the transmit signal. The transmit signaimust satisfy an average total transmit power

constraint, i.eE[||z||3] = Ex. Combining (1) fork =1,..., K, we get
y=Hx+n (2)

with the K x N channel matrixd = [hy, ..., hx]T, the received vectoy = [y1,...,yx]* € C¥, and the noise
VeCtorT’ = [7717 o anK]T € CK with f'f](n) = fG(T’7OK7 C’r])
We model thek-th user's channel vectok, as a zero-mean circularly symmetric complex Gaussian rando

vector with covariance matricy, , i.e.
fh.(hi) = fe (hi,0n,Ch,). (3

Additionally, the channel has temporal correlations adeay to the Jakes model [27], [28] described in [29]. Thus,

the channel vector for usérin the time slotn can be written as
hi[n) = Cp/* by i [] (4)

with the stationary white Gaussian vector prochsgs,[n] (with elements of unit variance) an@)'/? represents
matrix root operation computed via the Cholesky decomjusitor example. The covariance matr,, results
from the model in [30].

Notice that, according to our model, the chanhgln| is stationary becaushk, ;[n] is stationary. Realistic
channels are often non-stationary, e.g., either the locadf the receiver or the scenario geometry can change.
Thus, the channel covariance matrix has to be tracked in gitahtions. However, since the channel statistics
change very slowly compared to the channel itself, it isisdalto assume that they remain constant and are
perfectly known at both the receiver and the transmittexextbeless, the feedback rate is limited and the feedback

of the channel realizations for the precoder design must Beuoptimized.

Ill. BAYESIAN MODEL FORIMPERFECTCSI

In systems with CSI feedback, the CSI errors result not ordynfthe estimation but also from the compression

(projection onto a basis of lower dimensionality), the dimation, and the delay due to the feedback. In the
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Fig. 2. Feedback Design including Channel Estimation anchdation Errors.

following subsections, we will describe and model the sesraf error. Our goal is to find the PDF of the channel

vector conditioned on the fed—back coefficients that is thgiof our robust precoder design.

A. Channel Estimation and Rank Reduction Error

Fig. 2 depicts the feedback model based on CSI MSE which taidtesaccount channel estimation and rank
reduction errors as described in this subsection. We usarliestimators at the receivers based\arpilot symbols
per time slotn to enable the channel vector estimation for #hth user. The vector comprising th€; received

symbols for thek—th user reads as

yk[n] = Shiln] + nkn] (5)

with § € CNe>N containing the training symbols [31], [32] ang.[n] € C™r is the zero-mean additive Gaussian
noise with the covariance matri€,, = E[n.[n]ni[n]]. The above received signal;[n] is passed through a

channel estimato&;, € C**Nv which also performs a rank reduction at the same time, i.e.
ht x[n] = Gryx[n] € C2 (6)
Here,d < N denotes the dimensionality of the rank reduction. The ra&duced channel can be written as
ht x[n] = Vihri[n] € CV (7)

with the orthonormal reduction bask, € CV*? and the reduced rank coefficienks .[n] € C¢ for user k.

Combining (7), (6), and (5), the truncated estimate/gfn| can be expressed as

The channel estimation and rank reduction with and the basi¥/;, are jointly optimized to end up with a channel

estimate at the transmitter with minimum MSE

{GmmsE ks Vumsg,k } = argmin MSE;, (G, Vi)
{Gr, Vi }

st VIV, =1, 9)

with the MSE of userk
R 2
MSE;, (G}, Vi) = E [Hhk[n] - hT’k[n]HJ .
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In the above optimization (9), we included the constraiat the columns oV, are orthonormal. The filteG, is

readily found by setting to zero the derivative of the costclion with respect taxy, i.e.

Gwwse s = ViICh, S" (SCh, 8" + C,, )" .

= V' Gumise-estimk
where it can be seen th&uuse,, is decomposed into the ordinary MMSE channel estimé@iise-estimr, and
the term due to the projection onto the badig!. Substituting the optimunGuwse « into the cost function of (9)
yields
MSE;, (Gwwmsk i, Vi) = tr (Ch,,) — tr (VWi V) (11)

with the N x N non-negative definite matrix
W; = Cp, 8" (SCh, S" + Cp,) ' SCh,. (12)

Now, the optimization (9) only depends dn. and can be solved using Lagrangian multipliers. One of thd KK
conditions is
Wi Vi, = Vi, Ay (13)

where A;, € C4*? is the Lagrangian multiplier for the constraint of (9). Afteultiplying by V;!! from the left,
we see thatd, is non-negative definite. Thus, the EVD &£, is A, = kaﬁkQE with the unitary matrixQy

and the non-negative diagonal mati#t. Then, (13) can be rewritten as
WV, = V)&, (14)

whereV, = V;.Qy, is a matrix with orthonormal columns &4, sinceQy, is unitary. Thus, we see thal, in (13)
can be replaced by a diagonal matd, without loss of generality. After multiplying (13) by from the left,
we have that

VAW,V = &, (15)

i.e. V, diagonalizesW,,. Thus, the columns oV}, are eigenvectors dV;, and not ofC}, as we intuitively used
in [26]. With this intermediate result for the rank reductibasisV;, the cost function of (9) is given by
MSE;, (Gmmse ks Vi) = tr (Ch, ) — Z%,i
icl
wherel denotes the set of indices of eigenvectors collectdd,iandy;, ; is thei-th eigenvalue oi¥;,. Consequently,
the indicesl must be chosen such that the sum is maximized, thasse r € CN*d contains thel dominant
eigenvectors ofWW,. Note that no errors due to rank reduction are added to thenehaestimation if all the

eigenvectors are employed.
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Fig. 3. Feedback Design including Channel Estimation, Tatioo, Feedback Delay, and Quantization Errors.

B. Feedback Delay Error

The transmission over the feedback channel introducesay adlr — n slots, where the precoder is designed
during the time slotv and the most recent channel estimate was obtained duringntieeslotn. Fig. 3 depicts
the feedback model which takes into account all the errorsidered along this work, i.e. channel estimation,
truncation, feedback delay, and quantization errors.

From (6) and (5), our model for the estimation and truncaisowritten as

hri[n] = Guwse xr Shi[n] + Gmvse kMK (1) (16)

whose covariance matridgomi = E {ﬁpk[n]ﬁ-ﬁk[n]} = Vise.« Wi Viamse,» is diagonal with W, from (12).
When the transmitter processes multiple feedback vectoesavailable channel information is given by

hk[v] = [iLT’k[V — DI]T’ ce 7]~1,-|-,]€[V — DL]T:|T c (CdL (17)

where L is the number of delayed vectors processed at the transnaitteé D;,i = 1, ..., L, is the delay expressed
as the number of slots for theth vector.

With the properties oh;, and h,, ;, described in Section Il, we have that

E [hi[n]hi![v]] = Jo (ak (v — 1)) Ch, (18)

where J, denotes the zero—th order Bessel function of the first kirdlgn= 2w%, where fy , is the maximum

Doppler frequency of uset and fy is the slot rate [28]. Consequently, considering (16), (&8 (10), we find

- - Jo(ap (v —n)) P, n#v,
B [ flilt ] = 0T R (19)

Slsdom,lc n=v

with &, = sﬁdomkV,\,}lIMSEvkc,::VMMSE},@%OM. Therefore, we have for the processed feedback information

filk[l/] (il,k[l/]) = fG (ﬁk[y},OdL, Cilk) (20)
where we introduced

Cﬁk = Ctemp® U+ 1, ® ¢domk
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and the matrixCremp comprises the temporal correlations andiith element in thej-th column is

Jo(ar (Di = Dj)) j #1,
[Ctempkhj - ! (21)

0 j=i.
With (17) and (16), we obtain for the crosscorrelation betéhe channel and the feedback information
Gwvse, xS E [hi[v — D1]hjl[V]]
B [Relvnflv]] = '

Gumse, kS E [hi[v — DR} V]
= Bk @ Pdomk Viimse.r (22)

with ,Bk = [JO (ak (Dl)) s ,JO (Oék; (DL))]T S RE.

According to the Theorem0.2 of [24], given the zero-mean joint Gaussian vectergnd y with covariance
matricesC,, and C,, respectively, and the crosscovariance ma@iy, = E[yz'!], the mean and the covariance
matrix describingfy . (y|x) = fo(Y, ty|z, Cy|z) are

Hy|z = E[y|$] = CymCa:_lw (23)
Cy|:c = E[yyH|.’I}] - /’l'y\acu'gkz: = Cy - Cymcmilcmy
respectively. In our case; = hy[v] andy = h;[v]. Hence, applying (23) yields for the conditional mean

M) = B [l lBef]] = Axhilv] (24)
where we defined
Ay, = Br. @ Poomi Vi, Ch, (25)
and for the conditional covariance matrix
Cﬁk[,j]‘hk[y] = (Ctemplc - Bk,@g) QW +1.® Qdom,lv (26)

In the following, we will denoteCy, (. () @sBj for brevity. From (24) and (26), we obtain that the condigbn
PDF

Tty (PellRelv]) = fo (Relv], Axhuln], By) @7)

C. Quantization Error

Under the assumption that the channel statistics do notndepa time, the modal matrix obtained from the
eigenvalue decomposition of the mati#¥;, (see (12)) is also constant over time. With this assumptioity the
coefficients of the reduced rank approximation have to bé fsem the receiver to the transmitter due to the fast
variations of the channel (so referred tost®ri—termvariations).

We employ the uniform quantizer which is the most common ef shalar quantizers and whose principle is

rather simple (see [25]). Furthermore, we make the simplifiassumption that the input is bounded, i.e. we assume
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that the real and imaginary parts of every entryfwfk [n] lie in the the interval—, /2 i, ++/2¢k.i|, Whereypy ;
denotes the-th principal eigenvalue oW, (see (12)). The overload region has a very low probabiliggglthan
5%) of containing an input sample. Thus, we choose represmmween—\/m and+,/2¢;, ; to construct

a codebook that is stored at both transmitter and receiviger Aransmission, every receiver performs a search to
find for each coefficients component (real and imaginary)ghe element in the corresponding codebook that is
closest. Then, the respective codebook index is fed backddransmitter. Finally, the transmitter simply looks
into its codebook and builds the precoder parameters fraséhected codeword [33].

As shown in Fig. 3, we have the following error model,

hok[V] = hy[V] + figk[V] (28)

wherehq x[v] € C comprises the representants (codebook entries)and is given by (17). Note thakg 1 [v]
is the quantized version df,[v] and it thus containg, fed—back vectors. The quantization noise of Usean be
written as

~ - - T
foklV] = [Agilv — Dil, -+, lv — D)) € C*. (29)

The i-th coefficient of the rank reduced channel estintatg, [n] € C% is quantized with a uniform quantizer with
step sizey; (the choice ofy; depends on the number of bits for the feedback ofittiecoefficient or, equivalently,
the number of entries in theth codebook). Under the assumption that a high resoluti@ntizer is used, we have
a uniform distribution over the cell corresponding to a dumigk entry [25]. Additionally, the errorgg [v] are
assumed to be mutually independent and independent wittritheated channel estimaté%[u].

For the robust precoder design, we must find the conditiomdiability density functiory;, |, v (hi[V]lhqx[V]),
since the transmitter only knowsg ;[v], but the cost function depends @ [v]. From now on, we will drop the

index v for notational brevity. According to Bayesian theory, wesddhat

Th b (hk\i'@k) = E(ﬁw) Sro i (ﬁwlhk) fh (ha) (30)

with e(hox) = 1/fy, , (ho). From (28), we see thatg is the sum off, and7jg . The PDFf;,  (hq) is
thus the convolution of the PDFs &f, and 1o,k- The PDF ofh;. can be found in (20) and, as mentioned above,

Mo,k 1S uniformly distributed over the hyperrectangiearound the origin with sidelengthg, i.e.
S = {w: [wf,...,wE]T, Vi:x; € CY
Vi s 1R(@ig)| < 75/2 (S (@) < v/2)
So, we obtain for the PDF diq
~ 1 ~ N 5
Jro (hQ,k-) = Tz /gfi”" (hQ,k - nk) dng.
For the special case that=1 (i.e. Cj, = Pdomr), We get (see Appendix A)

Jro (ﬁQ,k =wi + ] Xk) = fur (@k) fur, (Xk) (31)
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10
with w;, = %(ﬁq,k), Xk = C\\’(BQ,k)v
1 —vi — 2a; Vi — 2a;
@ =TT (o =2 - 32
flte) Hv@(ﬁ) Q<¢% )

andQ(z) = [*__ \/% exp(—t2/2) dt.
The PDF ofhy, is fn, (hi) = fo(hi,On, Ch,) (see (3)). The last missing term of (30) is the convolutiorthef

PDFs of two random variables [cf. (28)]:

fﬁQ,k|hk (iLQ,klhk> = (f}}ﬂhk * fﬁka\hk> (ilQ7k|hk) .

The Gaussian conditional PDﬁmhk(ﬁk\hk) can be found in (27) and

dL
fﬁQ,k|hk(w +J thk) = fﬁQ,k(w +J X) = HfU(wi)fU(Xi)

i=1
with w,x € R, fy(a) = 1/v for |a|] < v/2 and fy(a) = 0 else. Note that we used the assumption that
the quantization noise is independent of the quantity wigcquantized and, hencey ;, is independent ohy,.

Consequently, we have that

dw.

Jhonln (ﬁQ,k

Substituting this result and (27) into (30) leads to

- [z

Trlhon (hk\ﬁQ,k> = m /Sfim (le,k - w)

% fo(hi, Cn, ARG, (hok —w) .G, 5, ) duw

with C,, i, = (AB Ay + G, 1)~". With this result, the conditional meam,, = E[hy|hoy] and the

lho,k

conditional correlation matrif?,, ; = E[h,hi|h;] can be respectively written as
Phylon = ChkAI;C{C;::mk (iLQ,k) (33)
thlilQ,k = Chklilk + ChkAI;;ICi::Mk (ilQ,k) C;::Akchk'

Here, we introduced

mi(a) = ]&./S(aw)fﬁk(aw)dw
My (a) = ﬂ/(a—w) (a—w)" f; (a—w)dw
H?:l it Js "
which, for L =1 (Cj, = Pdoms), can be expressed as
my (ilQ,k> = pr(wr) +j o (Xr) (34)
M, (ilQ,k> =my (’NLQ,k) mI];I (ilek) + X% (i‘LQ’k> (35)
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11

with peg (i) = [pre1(We1)s -« - pie.a(wr.a)] . In Appendix B, it is shown that
(2a—v:)* (2a+:)*
V/Pri P (7 4ok, ) - exXp (7 [ )
pr,i(a) = : (36)
2ﬁ Q —vi—2a | _ Q vi—2a

The second term oM}, (ﬁka) is diagonal, i.e.

Zk (iLQ’}C) = diag (Uk,l (’jLQ’k> yor s Okd (FLQ’;C>)
whosei-th diagonal element can be expressed as (see Appendix C)
Ok,i (iLQ,k) = Th,i(Whyi) + Tre,i (Xkyi) (37)

with

_ DPk,i 2 (a) n \ Pk.i

9 ki N

a—"7q 2 a i 2
(2a — i) exp (—7(24¢g,) ) — (2a + ;) exp (‘7(24;:7;) )
—vi—2a | _ vi—2a
Q (\/28%,1') Q (\/2<Pk,i>

The above results enable us to compute the conditional iemea matrix (forl = 1)

T}C’i(a)

X

Cy =Chihe T J5 (o D1) Viawse & Z (FLQ,k) ViIMSE &+ (38)

k‘ilQ,k

The first term comes from the erroneous knowledge abguitf we hadh,. But since we only havéq,k available,

the variance of the error is increased by the second term.

IV. ROBUSTPRECODERDESIGN

The uncertain knowledge about the channel at the transnstimodeled by the conditioned probability density
function obtained in the previous section. Therefore, wesa@ter the channel as being random but we can exploit the
statistical dependence between the channel and the fddidfammation. This goal can be achieved by extending the
classical precoder optimizations with a mean with respe¢hé channel conditioned on the fed—back information.
A similar problem was considered for THP design in [12], [Bd for linear precoder design in [15], where the
reciprocity of the channel in a TDD system was exploited. Wk see in the sequel how the conditional mean
introduces a regularization of the solution which makes drenrobust to CSI errors.

When taking the conditional mean of the MSE, we always enavuihe conditional mean of the channel and

the conditional mean of the channel Gram which can be respgctvritten as (see (33) and (38))

T

£ [H‘HQ} - [“hllﬁom--vﬂhkm = Hq (39)
E {HHH ‘IN{Q} = I:IIQ{I:IQ + Cerror (40)
where H = [hqo,1, Bz, -, o] @nd Cenor = 304, Cff . Notice that for MMSE designs, no other channel

hy|hok
conditional moments are necessary.
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Fig. 4. MU-MISO System with Linear Precoding.

To simplify the presentation and to ensure closed form smistfor the precoder design, we only consider the
case where the receivers use a common real weight [14]. teless, as explained in Section V, the receivers
apply an MMSE weight afterwards to correct the phase andri@itude of the received signals prior to detection.
Therefore, there is a slight mismatch between the receiverdel for the precoder design and the final system

receivers.

A. Linear Precoding (LP)

In the case of linear precoding [17], the transmit sigmakt C” results from a linear transformation of the
uncorrelated unit variance symbois € C¥, i.e. x = Fu as in Fig. 4. For robust linear MMSE precoding,
F ¢ CV*K together with the common weiglgtc R minimizes the conditional mean of the MSE under a transmit

power constraint
{FRiin, griin} = argmin [Enn(F,g) ’ﬁQ}
{F.g} (41)
st: E [||:c||§} — By
where the MSE is defined as
ein(F,g) =E [||u —gHFu — 9"”3‘ H} :

With Lagrangian multipliers, the above optimization (4aphde solved with similar steps as for the standard MMSE
precoder in [17]. Substituting (39) and (40) into the santiwe get

1 A A -1
FRiin = — (HgHQ + Cerror + fIN) Hg (42)
GRiin
1 A
= — T 'Hlo™! (43)
9RIin

where we obtained the second line with the matrix inverséonrha [23]. Additionally, we defined = tr(C,,)/E,

T = ¢ 'Carnor + In, and the positive definite matrix
® = HoT 'HY + &1 € CF*K, (44)

Note from (42) that the solution is regularized withyo,. With the transmit power constraint, i.&(FR”nFFIjm) =
E, the real scalapryin is readily found.

We see from (43) and (44) that the structure and the amountafleave a strong influence on the final precoder.
For very small error, i.eCenor — 0, we obtain the classical linear MMSE precoder as in [17] asrdvery large

error, we get® — (I and Fgji, acts like a matched filter which is inherently the most rolursicoder.
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Fig. 5. MU-MISO System with Vector Precoding.

B. Vector Precoding (VP)

When the receivers are equipped with modulo operators asgnithe transmitter has the freedom to add
a perturbation signak € 7Z% + j7Z% to the data signak prior to the linear transformation with the filtdr
(see Fig. 5). Herer denotes the constant associated with the modulo opekétey. The freedom of adding is

optimally exploited by VP [19], [34], whose robust MMSE apiration reads as [cf. [19]]

{xrvP(m), grRVP, arVP(M)} = . (ar)gmi? )}E eve(z(m), g,a(m)) ‘I:IQ}
x(m),g,a(m

1
s.t. Na > lz(m)[|3 = Eux.

m=1

Here,m is the symbol index in a block aWVg symbols. The MSE for VP is the variance of the difference leefw

(45)

the signald(m) and the modulo operator inpudt(im)
eve = B [ ld(m) — gHa(m) — gn(m) |3| H, u(m)]

Note that the expectation is neither taken with respect ¢osymbolsu(m) nor the transmit signak(m), since
the transmitter has full knowledge of the data sigag&in). With similar steps as in [19], it can be shown that the
transmit signal for robust MMSE VP is

1

xryp(m) = MT*IQ[S@* (w(m) + aryp(m)). (46)

The real scalagryp follows from the transmit power constraint and the perttidmasignal can be found via

following closest point search in a lattice

aryp(m) = argmin  d(m)A®1d(m) (47)
a(m)eTZE +j 7K

with d(m) = u(m) + a(m). For small errors, the above search becomes the standardBVikSrule to compute
the perturbation vector as in [19]. For large errabs,! is a weighted identity matrix leading t@ryp(m) = 0, i.e.

robust VP converges to linear precoding.

C. Tomlinson—Harashima Precoding (THP)

To avoid the high complexity of the robust VP rule in (47), wvancemploy THP as depicted in Fig. 6. For the

THP design, the standard assumption is that the output ieowa matrix of the modulo operator at the transmitter,
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Fig. 6. MU-MISO System with Tomlinson—Harashima Precoding.

T

C, = E[vv"], is diagonal [7]. Additionally, the feedback filteB must be strictly lower triangular to avoid a

delay-free loop. The optimization for robust THP can be ezped as

{Frthp, BrrHp, grTHP} = argmin E [ETHP(F7Bag) ‘ﬁQ}
{F.,B,g}

st: E [||:c||§} — By and (48)
B is strictly lower triangular
with the MSE for THP [cf. [7]] being
etwp(F, B,g) =E | |(I- B)v — gHFv — 977H§‘ H]

where (I — B)v is the desired value for the inputs of the modulo operatotheateceivers that is the sum of the
permuted symbolsPu and the perturbation added by the modulo operator at therridter (see [7]). With the

symmetrically permuted Cholesky factorization
pPo'PT = LDL (49)

where P is a permutation matrixLL is unit lower triangular, and) is non-negative diagonal, the solution to (48)

can be concisely written as

Friup = T 'HYP'L"D (50)

JRTHP

Brrp=1-L7! (51)

and grrup follows from tr(FrrupCo Fityp) = Fi. For the algorithm to compute the symmetrically permuted

factorization (49), we refer to [7].

V. MMSE RECEIVER AND TRAINING SYMBOLS

As shown in [14], phase correction at the receivers is pagity crucial for a system with erroneous CSI at the
transmitter. However, contrary to [14], in this work we dd nestrict ourselves to modulation formats with constant
modulus alphabets. Indeed, the joint robust design of testnitter and the receivers based on the receivers model

in [14] where only the phase is corrected is not possible.
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As discussed in the previous section, our MU-MISO systens aseery simple receiver model for the precoder
design in which all the receivers apply the same real scatdght. This assumption is necessary to obtain closed-
form solutions for the precoders. Nevertheless, in practibe receivers must correct the received signals wrong
amplitudes and phases caused by the errors in the CSI atathentitter. This goal can be achieved by selecting

the receiver coefficients according to the MMSE criterioar the k-th receiver, the MMSE weight is found via
IMMSE,k = C}chi (52)

wherec, ,, = E[|yx|?] is the variance of the received signal}, andc;, = E[u}yy] is the crosscorrelation between
the received signal,, and the desired signal,,. The estimation ot,, is straightforward, i.e. it can be found via
averaging over time, but the estimation@fis more delicate because it depends on the precoder typg bséd.
According to our signal model, the values @f for the robust linear, Tomlinson-Harashima and vector qudetw

are the following

crink = E [ujyr] = hj Frinex

Ng
CRVP.E = NLB Z E [(ux(m) + arver(m))” yr(m)| w(m)]

- Z hi zryp(m) (ug(m) + aryp ik (m))”

crivps = E [0 (Ix — BY) Pegyy]
= hj FrrupCo (Ix — B") Pey.

It is apparent from these expressions that the receivensragle to directly estimatg, because neither the precoder
nor the perturbation signal is known at reception. Howeean be estimated via a time average if the transmitter
sends a dedicated training sequence to each receiver. Thidde is that the training symbols are precoded such
that the overall channel, i.e. the combination of the chhane the precoder, is equal tg.. For example, the
dedicated pilot symbols for receivérshould be precoded withrrupC., (I — B)Pey in the case of robust THP.

As a consequence, the proposed system with robust precadignes the transmission of two training signals
that must be sent frequently. First, distinct common piighals must be transmitted from the transmit antennas
to enable an estimation of the channel vectors at the sengienna receivers. With these channel vector estimates,
the receivers find the channel covariance matrices via tiveeaging, with some forgetting factor to account for
possible channel non stationarities. Since the covariarateices only change slowly, the feedback of the dominant
eigenvectors ofiW,, which depends on the channel covariance matrix (see (di2ps not cost much data rate.
Whenever the CSI must be fed back to the transmitter, theuwerceomputes the coefficients via the projection
onto the dominant eigenvectors W, and transmits the index found by the quantizer to the tratbsmi

Second, dedicated pilot signals must be sent to each redeiadlow an estimation of the channel and precoder
combination. This estimate is necessary for the receivavkSH design which correct the phase and the amplitude

of the received signal. Notice that phase correction isqadarly crucial in a system with erroneous CSI (see [14]).
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Fig. 7. Effect of Estimation Error on the Proposed Robust 8ehes a Function of Different Training Lengths in an Urban Maet
Environment.

VI. SIMULATIONS

This section presents the results of several computer atrans carried out to assess the proposed MU-MISO
system with precoding and limited feedback channel. We idensd a MU-MISO system withV = 4 antennas
at the transmitter and = 4 single antenna users. Performance is evaluated in termaanided Bit Error Rate
(BER) versus Signal to Noise Ratio (SNR). The results arentban of5,000 channel realizations ang) QPSK
modulated symbols were transmitted in each channel réalizaA delay of D = 2 slots is considered for all the
users which are not fixed-located but moving at a given sp&ee.Doppler frequency is hormalized with respect
to the slot period and it is calculated by taking into accoilnait fso: is 1,500 Hz and that the center frequency
is 2GHz. We considered three different environments followthg 3GPP Spatial Channel Model (SCM) [30].
The first one corresponds to a suburban macrocell environfobannel 1); the second one is an urban macrocell
environment (channel 2); and the last one is an urban miltrecenario (channel 3). We considered channel 2
in most of the results presented in this section due to ierinédiate BER performance and diversity. The BER
curves were obtained after averagih@) channel covariance matrices. Finally, we assume, for siitypkeasons,
perfect CSI at the receiver for calculating the MMSE coedfits.

We carried out some preliminary simulations to select the sf the training sequence. Fig. 7 shows the uncoded
BER for robust THP over urban macrocell environments (ckhBhand different training sequence lengths in order

to illustrate the performance degradation caused by chastimation errors. In this computer experiment, this & th
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Fig. 12. BER vs. SNR for THP and VP with an Urban Macrocell Eoriment.

only errors source in the system. As a compromise betweemngasequence length and performance degradation,
we pick for our subsequent simulations the valig = 6 which introduces & dB loss with respect to the case of
perfect CSI.

The performance of robust THP schemes in channel 2 for difteuser speeds is plotted in Fig. 8. Rank
reduction is applied and only = 2 complex coefficients per user are transmitted through tedifack channel.
These coefficients are scalarly quantized ugirts (3 bits per complex dimension) which yieldg bits per user.
Fig. 8 considers the speed values16f 30 and 60 km/h which correspond to normalized Doppler frequencies of
0.0123, 0.0370, and0.0741, respectively. It is apparent that, as expected, the pednce degrades more the faster
the fading is.

Fig. 8 also plots the uncoded BER when the users speed is 10 &ndd Random Vector Quantization (RVQ)
is applied instead of scalar quantization with the same raunolb 12 bits per user. Note that in RVQ the stored
user’s codebook contains channel vectors. Obviously, trersemodel that we have developed in section Il for
scalar quantization is not adequate for RVQ. Indeed, in RW®@,regularization error matrix used for the robust
design is the error matrieror, = O‘(Cﬁk +Ch,.), WhereCﬁk is the covariance matrix of the MMSE estimate.
The factora results from selecting the codebook entry and is the ratihhefMSE with selection over the MSE

without selection, where the mean squared error is giverEthL,c — ;|| |, with Ay being the output of the

2
2
MMSE estimator andy; one of theM codebook entries. In scalar quantization, the error matilikbe given by

Cerror = Zszl Coior- As expected, the system performance is better when RVQeid. UEhis is because RVQ
carries out a joint quantization that uses a much larger lmoale 2'2 = 4,096 entries per user) and compares a
N-dimensional vector withl,096 complex vectors to choose the closest one for each charsléation and each

channel covariance matrix. Therefore, its computatiowahmlexity is much higher than scalar quantization, where
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the search is reduced to a comparison v#ith= 8 scalar values for the real and imaginary parts of each fezk-ba
coefficient. For the considered number I&f fed—back bits per user, it is clear that the performance ofRur
medium and high SNR must be better than that obtained witlarsqaantization.

Fig. 9 shows the influence on the uncoded BER of the differerdrg sources considered along this work.
Again, robust THP over channel 2 with a user speed of 10 kmftoisidered. Obviously, each new error source
adds a greater degradation in performance to the previoas lodeed, note the performance degradation when
moving fromd = 3 to d = 2 truncated coefficients. Also, note the performance losshasnumber of bits per
user decreases. Nevertheless, truncatios 02 coefficients and. = 12 fed—back bits per user ensures a suitable
system performance (BER belowx 10~2) with the enormous advantage of noticeably reducing theldaek
channel overhead. This overhead reduction is more appeecibe larger the number of transmitting antennas is.
In the subsequent computer experiments in this section, Weise d = 2 and L = 12 as system parameters.

Fig. 10 plots the performance of Linear Precoding (LP), Tosdn-Harashima Precoding (THP) and Vector Pre-
coding (VP) robust schemes for the three different scesatéscribed in [30]. All errors sources are considered, i.e.
estimation, quantization, truncation, and delay errongiant to the fed—back sending. Obviously, the performance
for channel 1 (suburban macrocell) is much better than tvattiannel 2 (urban macrocell). And the performance
for channel 2 is again better than that for channel 3 (urbacraoell). This is because the spatial correlation in
channel 1 is considerably larger than in channel 3 (with oka2 in between) which causes that the third and
fourth channel eigenvalues are negligible in channel 1 edethey have significative values in channel 3 or even
in channel 2. Thus, the performance degradation due todtiomctod = 2 is more severe in channel 3 than in
channel 1. When comparing the three considered precodirgnsed) LP exhibits the worst performance for the
robust design, as it also occurs in the case of perfect C3.athieved performance of VP is always better than
that of THP but it is quite similar. Note that the complexiti/\éP is considerably larger (due to the search in the
lattice) which motivates the utilization of suboptimum wvsb THP schemes instead.

Figs. 11 and 12 show the improvement of our robust schemésrespect to the non—robust ones. It is apparent
from these figures that the non—robust curves go up for higR 8d& to the sensitivity of these schemes to imperfect
CSl. It is also shown the advantage of using the robust schewlgich provide a performance improvement and
compensate the CSI imperfect knowledge caused by the elifferror sources. In these simulation results, a scalar
codebook of sizen = 8 andm = 16 has been used, i.e. we are employing= 3 and L = 4 bits, respectively, for
coding the real and imaginary part of each coefficient. Gledrthe number of bits is increased, the BER reduces
because the errors due to the quantization process areesntédwever, with a codebook of reasonable size, we
are obtaining good BER performance. Obviously, larger bod& sizes improve the performance but at the cost
of decreasing the compression rate for the CSI sent thrauglieedback channel and considerably increasing the
storage capability at the receivers [33].

Finally, Fig. 13 shows the performance improvement for THem considering the error modeling Bayesian
approach described in section Il with respect to the nopeB@mn approach developed in [26]. The Bayesian

scheme implements a joint optimization of the estimatag, rdink reduction basis, and the inherent predicition of
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Fig. 13. Performance Comparison with Previous Schemes witBayésian Formulation.

the estimator by minimizing the overall channel MSE. One e tmajor contributions of this article is to have
found the channel vector PDF conditoned on the fed—bacKicigefts which is the basis of our robust precoding,
i.e. to achieve a Bayesian approach for the errors moddiiilogeover, the advantage of the proposed robust design
could be even higher if we could exploit in an adequate promdhe Gaussian input assumption to design the

initial codebook according to the Lloyd algorithm.

VII. CONCLUSION

In this paper, we have investigated the compression of GHaBtate Information (CSI) data in a MU-MISO
system with precoding and limited feedback channel. Thi#ferent type of precoders have been considered:
Linear Precoding (LP), Tomlinson-Harashima Precoding FTtdnd Vector Precoding (VP). We have followed a
Bayesian approach to obtain an adequate statistical dkération of the errors in the compressed CSI. Four
sources of errors have been considered: channel estimétimcation for rank reduction, coefficient quantization,
and feedback delay. The error modeling has allowed us toutate robust designs for each precoding scheme with
a performance considerably better than that of conventioma—robust schemes. Simulation results show that it is
possible to implement these techniques in MU-MISO time/vey channels while transmitting a minimum amount

of information through the feedback channel
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APPENDIXA

RECTANGULAR MULTIVARIATE GAUSSIAN PROBABILITY

With wy, = R(hqx) andxx = S(ho,), the PDF ofhq can be decomposed as follows (see (31))

Jro (i"Q,k =W +] Xk) = fuor. (Wi) fuor, (Xk)

where we have fo. = 1 that

i/2 )2
for (W) H7 /7 p<W)dg.

~i/2 7T<P/c i Pk

After substitutingu; = (¢; — wk.i)\/2/¢k,;, We obtain
feor (w H \/W L exp —u—? duy;
W k LY 7%*20% i 2 v

With f exp( t2/2)dt = Q(a) — Q(b), we finally reach the result of (32).

APPENDIXB

RECTANGULAR MULTIVARIATE GAUSSIAN CENTROID
Due to the symmetry of the real and imaginary partef(hq ), it suffices to find the real part oty (ho 1)
to proof (34). Let us split upag . into its real and imaginary part, i.ez, = R(hq) and xix = S(hqs). Then,

the real part ofmk(sz,k) that we denote ag;, reads as

- 6(;'!,Q7k) o 1
e Hf 172 /S(wlsC C)Wd det(Paom)
d
xeXp( 3 o= ) (xk,i—sif)dgd&
i=1 Ph.i

Here, ¢ and & denote the real and imaginary part @f, respectively. We see that we deal with nearly the same
integral as the one considered in Appendix A—except the aten with respect t@;, when we compute théth

entry of u. So, all terms ofs(sz,k) drop out except the one corresponding to the integratioh véspect ta);

/2 wi,i —Ci
ZVC/Q(Mk i CL) mpk exp ( UTf) dCZ

Hki =
Q —Yi—2wWk,i \ Q Vi —2Wk,i
V 29k, i V2¢k,i

Note thatyuy, ; only depends oy ;. Therefore, the real part O’hk(sz,k) only depends on the real part Bb,k.

With similar steps, it can be shown that the imaginary parmmizQ,k) has the same dependency on the imaginary
part of hq ;. Thus, (34) holds. With

which can be obtained with the substitutian= (a — b)? /¢, we also get (36).
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APPENDIXC

RECTANGULAR MULTIVARIATE GAUSSIAN COVARIANCE

That (35) holds for the off-diagonal elements can be easibyvd with similar steps as in Appendix B. So, we

only have to obtain the expression f@g,i(ﬁQ,k) that can be found in (37). Due to (35), we have that

~ - 2
Ok.i (hQ,k) = [My)i; — ’mk,z(hQ,k)‘
where [M]; ; denotes theé-th diagonal element oMk(izQ,k) and reads as
e(h -
[Mk]iﬂ' = (d Q,k)2 /’hQ,k,i — w;
Hi:1 Vi /S

3

’ f;lk (ilQ’k - w) dw.

Similar to Appendix B, (hqg)/ Hle ~+2 drops out and we get

[My)ii = Aiilwii) + Meyi(Xke,i)

with Wg = g%(ilQ,k), Xk = S(BQ,k), and

i 2 a— 2
7= QP e exp (— 155 ) ¢

Ar.i(a) =
T o) e (o)

The enumerator is an integral of the form

/(a — b)i/%p exp ((“@by) db =

VP e (@0 e, (V20 —a)
RN A p( ; ) 2Q< NG )

To obtain this expression, we used the last integral of AgpeB and employed the substitution= (b—a)+/2/.
From (34), we can follow that
- 2
’mk,i (hQ,k> ’ = pii(Wri) + s (Xnsi)
and thus,
Ok,i (ilQﬁk) = Nei (Wh) = 1,3 (Wis) + Nkt i) =t (Xki)-

Defining 7. (a) = Ar.i(a) — p ;(a) gives (37).
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