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Abstract

Linear precoding is an attractive technique to combat interference in multi-
ple-input multiple-output systems because it reduces costs and power con-
sumption at the receiver end. Most of the frequency division duplex systems
with linear precoding acquire the channel state information at the receiver
side by using supervised algorithms. Such methods make use of pilot sym-
bols periodically provided by the transmitter. In a later step, this channel
state information is sent to the transmitter side through a low-cost feedback
channel. Thus, the available channel information allows the transmitter to
adapt signals to the channel conditions. Given that pilot symbols do not
convey user data, the inclusion of such symbols penalizes the throughput,
the spectral efficiency, and the transmission energy consumption of the sys-
tem. In this work, we propose to mitigate the above-mentioned limitations
by combining both supervised and unsupervised algorithms to acquire the
channel state information needed by the transmitter. The key idea consists of
introducing a simple criterion to determine whether the channel has suffered
a significant variation which could require the transmission of pilot symbols.
Otherwise, when small fluctuations happen, an unsupervised method is used
to track these channel variations instead. This criterion will be evaluated
by considering two types of strategies for the design of the linear precoders:
Zero–Forcing (ZF) and Wiener criteria.

∗Corresponding author. Phone: +34 98167000 ext. 1366, FAX: +34 981167160
Email addresses: pcastro@udc.es (Paula M. Castro), jagarcia@udc.es (José A.
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1. Introduction

Linear precoding is a powerful method to reduce interferences in Multiple-
Input Multiple-Output (MIMO) systems since it simplifies the receiver equip-
ment. The design of linear precoding schemes has been widely studied for the
ideal case in which the Channel State Information (CSI) is perfectly known at
the transmitter (TX) side. Although the zero–forcing criterion for the filters
design is very intuitive since the transmitter has not knowledge about chan-
nel noise [17, 19, 24, 26], its drawbacks about amplifying noise lead to better
choices for the precoder, such that Wiener linear precoder [9, 17, 18, 20, 24].

In practice, most of communication systems, including Frequency Divi-
sion Duplex (FDD) systems, the TX cannot obtain the CSI from the received
signals —even under the assumption of perfect calibration— since down– and
up-channels are not reciprocal. Thus, the CSI has to be estimated at the re-
ceiver (RX) side and transmitted back through a limited feedback channel.
As a rule, current wireless communications standards include pilot symbols
in the definition of the transmitted signals.

The best known and most widely used approach to acquire the CSI at
the RX side is the so-called Least Squares (LS) criterion. The LS-based
channel estimation consists of minimizing the Mean Square Error (MSE)
between the transmitted pilot symbols and the observed ones. Such pilots
are periodically sent by the TX which gets round whether the RX really needs
or not such symbols to track channel variations. This situation produces a
strong degradation in terms of throughput, spectral efficiency, and transmit
energy.

The so-called unsupervised techniques are able to estimate the channel
coefficients directly from the observations, without requiring pilot symbols.
They only assume that the transmitted signals are statistically indepen-
dent [25]. Unfortunately, such unsupervised approaches —also known as
Blind Source Separation (BSS) techniques [10, 25]— exhibit three major
drawbacks:

A poor performance in the event of significant channel variations. This
limitation can be mitigated by using a supervised approach to re-
estimate the channel.
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Two ambiguities: permutation and gain. This means that the trans-
mitted signals could be recovered with a different ordering and with a
distinct scale factor.

A considerable number of observations (received symbols) is required
to ensure the convergence to the channel estimate. This limitation can
be avoided by initializing the BSS algorithm to a valid channel estimate
obtained, for example, by using a supervised method.

Most of current wireless communications standards make use of feedback
channels (usually limited in terms of throughput) connecting the RX and the
TX sides of the communications link to periodically send channel state infor-
mation from the RX to the TX. However, to the knowledge of the authors,
none of the current standards —even those under development— make use
of such information to decide whether it is really necessary or not to send
pilot symbols and, consequently, reduce the above mentioned penalties intro-
duced by the use of pilot symbols. This idea constitutes the main motivation
of our work. We will take advantage of the feedback channel to inform the
TX when the channel has suffered a significant variation and pilot symbols
are thus required. Othervise, we use unsupervised approaches instead of
supervised ones to track the small fluctuations of the wireless channel.

Therefore, in this work we propose to use a hybrid channel estimation
setup based on combining both unsupervised and supervised approaches.
Such algorithms have recently been used in image classification [21] and
beamforming [4], for example. However, the way of combining these two
paradigms is an open issue for wireless systems, including the case of precod-
ing systems. In fact, the first hybrid schemes for linear precoding have been
proposed by the authors in [8, 11]. Both works evaluate the performance
achieved with the proposed hybrid setups using a Wiener criterion for the
filter design. Compared to those initial works, in this article we derive a less
complex decision criterion to be utilized by the hybrid algorithm, without
any penalties on the final performance. The Bit Error Rate (BER) perfor-
mance will be evaluated considering ZF– and Wiener–precoders, which let
us compare the two most widely used designs for transmit linear processing.

The proposed procedure is the following. At the beginning, the RX uses
a supervised algorithm to quickly obtain a valid channel estimate. Then,
the RX switches to an unsupervised adaptive method for tracking the small
channel fluctuations without requiring the transmission of any pilot symbols.
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Figure 1: System with precoding over a flat MIMO channel.

When the channel suffers a significant variation, the RX commutes to the
supervised working, instructs the TX to send pilot symbols, and re-estimates
the channel using the supervised method. Finally, the RX switches again
to run the unsupervised algorithm until a new significant channel change is
observed. By making use of computer simulations, we will show how the pro-
posed scheme leads to good performance in terms of Bit Error Ratio (BER)
avoiding periodical transmission of pilot symbols. From the results, it is clear
that the hybrid schemes for channel estimation could be implemented in the
recent wireless communications standards (like Worldwide Interoperability
for Microwave Access (WiMAX) or Long Term Evolution (LTE) standards),
where precoding setups are included.

This work is organized as follows. Section 2 describes signal and channel
models. Section 3 reviews supervised and unsupervised algorithms used for
channel estimation, which are utilized in Section 4 for the proposed novel
hybrid scheme. Illustrative omputer simulations results are presented in Sec-
tion 5 and some concluding remarks are stated in Section 6.

All derivations are based on the assumption of zero–mean and stationary
random variables. Vectors and matrices are denoted by lower case bold and
capital bold letters, respectively. We use E[·], tr(·), (·)∗, (·)T, (·)H, det(·)
and ‖·‖2, for expectation, trace of a matrix, complex conjugation, transposi-
tion, conjugate transposition, determinant of a matrix and Euclidean norm,
respectively. The i-th element of a vector x is denoted by xi.

2. System Model

We consider a MIMO system with Nt TX antennas and Nr RX antennas, as
plotted in Figure 1. For simplicity reasons, we consider Nt = Nr = N Tx and
RX antennas. The precoder generates the TX signal x from all data symbols
u = [u1, . . . , uN ]T corresponding to the different RX antennas 1, . . . , N . We
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denote the equivalent lowpass channel impulse response between the j–th
TX antenna and the i–th RX antenna as hi,j(τ, t). Thus, the random time-
varying channel is characterized by the N × N matrix H(τ, t) defined as

H(τ, t) =











h1,1(τ, t) h1,2(τ, t) · · · h1,N(τ, t)
h2,1(τ, t) h2,2(τ, t) · · · h2,N(τ, t)

...
...

. . .
...

hN,1(τ, t) hN,2(τ, t) · · · hN,N(τ, t)











Suppose that the transmitted signal from the i–th transmit antenna is
xi(t). Then, the received signal at the j–th receive antenna is given by

yj(t) =
N
∑

i=1

hj,i(τ, t) ∗ xi(t) + ηj(t),

where ∗ denotes the convolution between the channel and the transmitted
signal and ηj(t) is the additive noise. In matrix notation, this equation can
be rewritten as

y(t) = H(τ, t) ∗ x(t) + η(t), (1)

where x(t) = [x1(t), . . . , xN(t)]T ∈ C
N , y(t) = [y1(t), . . . , yN(t)]T ∈ C

N and
η(t) = [η1(t), . . . , ηN(t)]T ∈ C

N . For flat fading channels, the channel matrix
H(τ, t) is transformed into the matrix H(t) given by

H(t) =











h1,1(t) h1,2(t) · · · h1,N(t)
h2,1(t) h2,2(t) · · · h2,N(t)

...
...

. . .
...

hN,1(t) hN,2(t) · · · hN,N(t)











,

and the received signal is now

yj(t) =
N
∑

i=1

hj,i(t)xi(t) + ηj(t),

which can be expressed in matrix form as

y(t) = H(t)x(t) + η(t). (2)

Note that the convolution appeared in Equation(1) is transformed into a
product since the channel is formed by only one tap.
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Figure 2: MIMO system with linear precoding.

In general, if we let f [n] = f(nTs + ∆) denote samples of f(t) every
Ts seconds with ∆ being the sampling delay and Ts the symbol time, then
sampling y(t) every Ts seconds yields the discrete time signal y[n] = y(nTs +
∆) given by

y[n] = H [n]x[n] + η(n), (3)

where n = 0, 1, 2, . . . corresponds to the sample index and the samples are
spaced Ts (in seconds). Given that the channel remains constant during sev-
eral frames of NB symbols, we henceforth use H instead of H [n]. Note that
this discrete-time model is equivalent to the continuous-time model in Equa-
tion (2) only if Inter-Symbol Interference (ISI) between samples is avoided,
i.e. if the Nyquist criterion is satisfied. In that case, we will be able to
reconstruct the original continuous signal from samples by means of inter-
polation. In the rest of this work, we assume this channel model, known as
time-varying flat block fading channel.

2.1. Linear Precoding Design

The equalization task can be performed at the TX and thus the channel is pre-
equalized or precoded before the transmission with the goal of simplifying the
requirements at the RX. Such an operation is only possible when a centralized
TX is employed (e.g. the base-station of the downlink of a cellular system).
We assume hereinafter that the RX filter is an identity matrix (multiplied
by a scalar β, with β ∈ C), which allows the utilization of decentralized
RX (see, for instance, [16]). Clearly, the restriction that all receivers apply
the same scalar weight β is not necessary for decentralized receivers, but it
ensures closed–form solutions for the filters design.

The goal is to find the optimum TX filter F ∈ C
N×N and the RX filter

G = βI ∈ C
N×N . The resulting communications system is shown in Figure 2.

It can be seen from the figure how the data symbols u[n] are passed through
the transmit filter F to form the transmitted signal x[n] = Fu[n] ∈ C

N .
Note that the constraint for the transmitted energy must be fulfilled, i.e.

E
[

‖x[n]‖2
2

]

= tr
(

FCuF H
)

≤ Etx,
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where Etx is the fixed total transmitted energy. The cross–correlation of
the uncoded symbols is represented by the matrix Cu = E[u[n]uH [n]]. The
received signal is thus given by

y[n] = HFu[n] + η[n], (4)

where y[n] ∈ C
N , H ∈ C

N×N , and η[n] ∈ C
N is the Additive White Gaussian

Noise (AWGN).
After multiplying by the receive gain β, we get the estimated symbols

û[n] = βHFu[n] + gη[n], (5)

where û[n] ∈ C
N .

The most widely used optimizations for linear precoding are performed
according to the Zero–Forcing (ZF) and Wiener criteria, in a similar way to
the known respective criteria for the receive processing schemes [19, 24]. We
focus on the standard approaches of MSE minimization with and without the
zero-forcing constraint assuming a constraint of the total average transmit
energy [26].

2.1.1. Linear Zero–Forcing Precoding

The most intuitive approach for precoding design is to apply the zero–
forcing optimization since the transmitter has no influence on the noise at
the receiver to remove interferences. Therefore, the transmit zero-forcing
filter eliminates global interference at the output of the receive filter (given
by G = βI) by means of forcing the chain formed by the precoder filter F ,
the channel H , and the receive filter G = βI, to be an identity matrix. This
criterion minimizes the following MSE taking into account the total transmit
energy constraint [17, 19, 24, 26]

{FZF, βZF} = argmin
{F ,β}

E
[

‖u[n] − û[n]‖2
2

]

s.t.: βHF = I and tr(FCuF H) ≤ Etx, (6)

where Etx is the total transmitted energy.
As it can be seen in [17], the solution for the linear precoder designed

using the ZF criterion is as follows

FZF = β−1
ZFHH(HHH)−1,

βZF =

√

tr((HHH)−1Cu)

Etx

.
(7)
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2.1.2. Linear Wiener Precoding

Although Wiener Filtering (WF) for precoding has been dealt with by
only few authors [18] in comparison with other criteria for precoding, it is a
very powerful transmit optimization that minimizes the MSE with a transmit
energy constraint [9, 17, 20, 24], i.e.

{FWF, βWF} = argmin
{F ,β}

E
[

‖u[n] − û[n]‖2
2

]

s.t.: tr(FCuF H) ≤ Etx. (8)

As it has been demonstrated in [17], taking into account this transmit energy
constraint tr(FCuF H) = Etx, the solution for the linear precoder designed
using this MSE criterion is given by

FWF = β−1
WF

(

HHH + ξI
)−1

HH,

βWF =

√

tr
(

(HHH + ξI)−2
HHCuH

)

Etx

, (9)

where ξ = tr
(

Cη

Etx

)

.

It is interesting to note that the linear Wiener precoder converges to the
linear zero–forcing precoder for ξ = tr(Cη )

Etx
→ 0, i.e. for SNR → ∞, where

SNR is the ratio of transmit and noise powers at the receiver.

3. Adaptive Algorithms

The model described by Equations (3) and (4) can be summarized as follows

y[n] = Ad[n] + η[n], (10)

where the meaning of the mixing matrix A and of d[n] will depend on our
target. In Equation (3), the mixing matrix is the channel matrix H with
d[n] containing the coded signals, x[n]. However, in Equation (4), it is
considered the whole coding-channel system, given by FH , as the mixing
matrix, and d[n] contains the uncoded signals, u[n], instead of the coded ones
as before. For both cases, we assume that the mixing matrix is unknown,
although it is full rank nevertheless. The sources are also assumed to be
statistically independent. Without any loss of generality, we can suppose
that the sources have a normalized power value equal to one since possible
fluctuations of power values can be included into the mixing matrix A.
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The source data can be recovered by means of a linear system whose
output is an instantaneous combination of the observations, expressed as

z[n] = W H[n]y[n], (11)

where W [n] ∈ C
N×N is a matrix containing the so–called separation coeffi-

cients obtained from adaptive algorithms as follows

W [n + 1] = W [n] + µ∆(W [n],y[n]), (12)

where µ is the step-size parameter that satisfies 0 ≤ µ ≤ 1 and ∆(·, ·) is a
matrix computed from both the separating matrix W [n] and the observed
signal vector y[n] at the time instant n. The exact expression for ∆(·, ·)
depends on the separation criterion. Adaptive algorithms are especially at-
tractive for real-time applications since each iteration only depends on the
input at the instant n, thus avoiding the need of storing the values for the
observations corresponding to previous instants, and it obtains an updated
output sample each time a new observation is received.

The purpose of many adaptive algorithms is to minimize (or maximize)
a cost function J [n]. In this case, the matrix ∆(W [n],y[n]) would be com-
puted as the gradient of J [n] with respect to W [n], denoted as ∇WJ . There-
fore, the separation coefficients are obtained using the following rule

W [n + 1] = W [n] − µ ∇WJ [n]. (13)

An alternative way to compute the minimum of this cost function consists
in using a relative gradient. As shown in [1, 5], the relative gradient is
obtained by means of multiplying the gradient ∇WJ [n] by W [n]W H[n], i.e.
the recursion takes the form

W [n + 1] = W [n] − µ W [n]W H[n]∇WJ [n]. (14)

3.1. Supervised Approach

An important family of adaptive filtering algorithms arises from considering
the minimization of the MSE between the outputs y[n] and the desired signals
d[n] [14, 15]. Mathematically, the cost function is defined as

JMSE =
N
∑

i=1

E
[

|zi[n] − di[n]|2
]

= E
[

tr
(

(W H[n]y[n] − d[n])(W H[n]y[n] − d[n])H
)]

. (15)
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The gradient of this cost function is obtained as

∇WJMSE = E
[

y[n](W H[n]y[n] − d[n])H
]

. (16)

The classical stability analysis for gradient-based algorithms consists in the
study of the point where the gradient vanishes and in the definition of the
Hessian matrix containing the second derivatives of JMSE [3]. In particular,
it can be demonstrated that the stationary points of the Least Mean Squares
(LMS) rule are obtained as

∇WJMSE = 0 ⇒ W = C−1
y Cyd, (17)

where Cy = E[y[n]yH[n]] is the autocorrelation of the observations and
Cyd = E[y[n]dH[n]] is the cross-correlation between the observations and
the desired signals.

In practice, the desired signals are considered known only during a finite
number of instants (pilot symbols) so estimation is used to recover several
frames. For this reason, the performance of this type of algorithms is de-
graded in presence of calibration errors.

3.2. Unsupervised Approach

Unsupervised approaches allow the mixing matrix A to be estimated directly
from the observations, without using pilot symbols. In this section, we show
two strategies for obtaining the estimate of the joint channel-precoding ma-
trix (HF ).

The first approach directly arises from Equation (16) by assuming that
the sources are uncorrelated with unitary power, i.e. Cu = I. Then, Equation
(16) can be expressed as follows

∇WJMSE = E
[

y[n](W H[n]y[n] − d[n])H
]

= E
[

y[n](z[n] − d[n])H
]

= E
[

y[n]zH[n]
]

− E
[

y[n]dH [n]
]

= E
[

y[n]zH[n]
]

− A E
[

d[n]dH[n]
]

= E
[

y[n]zH[n]
]

− A, (18)

since E[d[n]dH[n]] = E[u[n]uH[n]] = Cu = I and where the expectation only
uses one sample. Thus, the following adaptive algorithm is derived

W [n + 1] = W [n] − µ
(

y[n]zH[n] − A
)

, (19)
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with µ being the step-size parameter. Equation (19) can be interpreted as a
generalization of the P-vector algorithm described by Griffiths [13]. In such
a case, the separation matrix requires information about the mixing matrix
A = HF , which can be acquired using the supervised approach previously
explained. This supervised setup gives us the channel matrix estimate and,
consequently, the precoder matrix F , as shown in Equation (9).

Both pilot symbols and prior knowledge about mixing matrices could be
avoided by using Blind Source Separation (BSS) algorithms. BSS methods
simultaneously obtain the mixing matrix as well as the realizations of the
source vector, d[n], all from the corresponding realizations of the observed
vector, y[n]. This prior unknowledge may limit the achievable performance,
but makes blind approaches more robust against calibration errors (i.e. devi-
ations of the model assumptions from the resulting ones) than conventional
array processing techniques [6]. A property commonly exploited in BSS
methods is that sources are statistically independent.

One of the best known BSS algorithms has been approached by Bell and
Sejnowski [2]. Given an activation function h(·), the idea proposed by these
authors is to obtain the weighted coefficients of a Neural Network, W [n],
in order to maximize the mutual information between the outputs of the
activation function, given by h(z[n]) = h(W H[n]y[n]), and the inputs y[n].
The resulting method can be expressed as

JMI = ln(det(W H[n])) +
N
∑

i=1

E[ln(h′
i(zi[n]))], (20)

with MI being the abbreviation for Mutual Information. hi is the i–th element
of the vector h(z[n]), and ′ denotes the first derivative. The maximum of
this cost function can be obtained using a gradient algorithm [2], or a relative
gradient algorithm [1, 22]. Both approaches use the gradient of Equation (20)
given by

∇WJMI = ∇W

(

ln(det(W H[n]))
)

+ ∇W

(

NB
∑

i=1

E[ln(h′
i(zi[n]))]

)

=
adj(W H[n])

det(W H[n])
− E[y[n]gH(z[n])]

= W−H[n] − E[y[n]gH(z[n])], (21)
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where adj(·) is the adjunct of a matrix and

g(z[n]) = [−h′′
1(z1[n])/h′

1(z1[n]), · · · ,−h′′
N(zN [n])/h′

N(zN [n])]T,

depends on the activation function. Finally, for the case in which the above
expectation is estimated using only one sample, we obtain the following rel-
ative gradient algorithm (termed as Infomax):

W [n + 1] = W [n] + µW [n]W H[n]
(

y[n] gH(z[n]) − W−H[n]
)

= W [n] + µW [n]
(

z[n]gH(z[n]) − I
)

, (22)

where we have used that z[n] = W H[n]y[n]. The expression in Equation
(22) admits an interesting interpretation by means of the use of the non-
linear function g(z) = z∗(1 − |z|2). In this case, Castedo and Macchi [7]
have shown that the Bell and Sejnowski rule is equivalent to the Constant
Modulus Algorithm (CMA) proposed by Godard [12].

4. Hybrid Approach

The main advantage of adaptive unsupervised algorithms is their ability to
track low channel variations. On the contrary, supervised solutions provide
a fast channel estimate for both low and high variations at the cost of using
pilot symbols. In this section, we propose to combine these two strategies in
order to obtain a performance close to that offered by supervised approaches,
but using a lower number of pilot symbols. Fig 3 shows a simplified block
diagram for this hybrid approach.
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We denote by Wu[n] and Ws[n] the matrices containing the separation co-
efficients for the unsupervised and supervised modules, respectively. We start
with an initial estimate of the channel matrix obtained using the Widrow-
Hoff solution given by Equation (17) with d[n] = x[n]. This channel estimate
is used at the TX to design the optimum precoding matrix F , and at the
RX, to initialize the unsupervised algorithm to Wu[n] = ˆ(HF )−H.

When the module termed as “decision module” determines that the chan-
nel has not suffered a significant variation, the matrix Wu[n] is adapted
and the data symbols u[n] are recovered by using z[n] = W H

u [n]y[n], being
z[n] = û[n]. Otherwise, if a significant variation has occurred, the RX sends
an “alarm” to the TX through the feedback channel. In that moment, pilot
symbols have to be sent by the TX to the RX, so at the RX, the supervised
algorithm estimates the channel from those pilots. For that purpose, we con-
sider the Widrow-Hoff solution of Equation (17). This solution provides us
the channel matrix estimate which is sent to the TX for updating the precod-
ing matrix. The RX also computes that precoding matrix F , together with
the whole reference matrix ĤF , and initializes the unsupervised algorithms
according to Wu[n] = (ĤF )−H .

4.1. Decision Rule

An important issue is how to determine when the channel has suffered a
significant variation. By combining Equations (10) and (11) and considering
d[n] = u[n], the output z[n] can be rewritten as a linear combination of the
sources

z[n] = Γ [n]u[n], (23)

where Γ [n] = W H[n]A represents the overall mixing/separating system.
Sources are optimally recovered when the matrix W [n] is selected such that
every output extracts a different single source. This happens when the matrix
Γ [n] has the form

Γ [n] = DP , (24)

where D is a diagonal invertible matrix and P is a permutation matrix. The
difference of Γ [n] with respect to the aforementioned diagonal matrix can
be measured using the following “error” criterion proposed by Macchi and
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Moreau [23] to evaluate the performance of BSS algorithms

Error[n] =
N
∑

i=1

(

N
∑

j=1

|γi,j[n]|2

|maxl (γi,l[n]) |2
− 1

)

+
N
∑

j=1

(

N
∑

i=1

|γi,j[n]|2

|maxl (γl,j[n]) |2
− 1

)

,

(25)
where γi,j[n] denotes the element of the i–th row and j-th column of Γ [n].
Note that the first summation is zero when each row of Γ [n] contains only
one non-zero entry, i.e. in the event of each output extracting only one source
although the same source could be extracted by several outputs. The sec-
ond summation is zero when each column contains only one non-zero entry.
In such a case, each source is extracted by only one output. Obviously,
Errori[n] = 0 if Γ [n] is diagonal.

An interesting consequence of using a linear precoder is that the permuta-
tion indeterminacy associated to unsupervised algorithms is avoided because

of the initialization Wu[n] = ˆ(HF )
−H

. This means that the sources are
recovered in the same ordering as they were transmitted, i.e, maxl(γi,l[n]) =
γi,i[n] and maxl(γl,j[n]) = γj,j[n]. This property has been already used in
[8, 11] to simplify Equation (25).

A way of computing the distortion with regard to a diagonal matrix con-
sists on measuring

Errori[n] =
N
∑

j=1,j 6=i

|γi,j[n]|2

|γi,i[n]|2
, (26)

where we are considering only the rows of Γ [n]. Thus, the Errori[n] is zero
when only the element γi,i[n] is not equal to zero. Compared to [8, 11], the
above error has not to be computed for each row instead. If some value
of Errori[n] computed for a certain row is greater than the fixed threshold,
then pilot symbols must be required. Therefore, this decision criterion is less
complex than that explained in [8, 11], which implies a reduction in terms
of computational complexity and a more intuitive way of deciding whether
pilots are needed or not. Table 1 summarizes the aforementioned method to
detect the instants in which pilot symbols are required.

5. Experimental Results

In order to show the performance achieved with the proposed hybrid scheme,
we present the results for several computer simulations performed by con-
sidering that 10 000 QPSK symbols have been transmitted through a MIMO
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1. Compute the gain matrix Γ [n] = W H
u [n]ĤF ,

where Wu[n] is obtained after processing all the frame symbols.

2. Estimate ĤF ,
computed by Equations (7) (ZF criterion) or (9) (Wiener criterion),
using the supervised approach as a reference.

3. Compute the error for each row, Errori(n), using Equation (26).
4. Decide when the channel has significantly changed.

If some Errori[n] > t → Request pilot symbols.

Table 1: Algorithm steps for tracking large channel variations.

system in blocks of 100 symbols each one. The system consists of four TX
and four RX antennas. All the simulation results have been obtained by aver-
aging 100 independent channel realizations. From one realization to another,
the channel matrix is changed using the following model:

H = (1 − α)H + αHnew, (27)

where Hnew is a 4 × 4 complex matrix randomly generated according to a
Gaussian distribution, and α is termed as channel updating parameter, which
lies on the interval [0, 1]. Thus, if α is high (close to one), the channel totally
changes from one realization to another, and if it is low (close to zero), the
channel almost remains unchanged from one realization to another.

By computer simulations, the performance of the following schemes has
been evaluated:

As the supervised approach, the Widrow-Hoff algorithm described in
Equation (17) is computed using 100 pilot symbols transmitted each
2 000 symbols.

As unsupervised approaches, the generalized P-vector of Equation (19)
and the Infomax algorithm of Equation (22), both initialized to the
whole matrix HF obtained from the above Widrow-Hoff solution. The
step-size parameter has been set to µ = 0.001.

By combining supervised and unsupervised approaches, the hybrid pro-
posal which makes use of the generalized P-vector and of the Infomax
algoritms for different values of the threshold t. The step-size parame-
ter has also been set to µ = 0.001. A frame of 100 pilot symbols is sent
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when the measured error is greater than the given threshold, i.e. when
the hybrid approach switches to the supervised working.

5.1. Experiment 1: Fixed channel coherence time

In the first set of experiments, the channel updating parameter α in Equa-
tion (27) is fixed to 0.1. Moreover, it is considered that the channel remains
constant during the transmission of 2 000 symbols. This is an ideal scenario
for the supervised approach since the pilots are transmitted each 2 000 sym-
bols, i.e. just in the time instants when the channel changes. Consequently,
the performance achieved for the supervised approach constitutes the lower
bound for the performances experienced by all the schemes.

Figure .4 shows the BER performance as a function of the SNR for a ZF
precoding setup. For both, the generalized P–vector and the Infomax algo-
rithms, note the considerable improvement in terms of the BER obtained
with the hybrid approaches compared to the unsupervised ones. We can
also conclude that Infomax is always the best choice independently from
the threshold previously fixed. However, the number of pilot symbols sent
from the TX to the RX is lightly higher, specially for medium SNR, as de-
picted in Figure .5. In this figure, the overhead of the feedback channel
expressed in terms of the number of pilot symbols needed to track channel
variations is plotted. In this case, the lower bound is given by the unsuper-
vised approaches, since only 100 pilots are needed to initialize its respective
algorithms. As considered in the computer simulations, the figure represents
the results for two different values of the threshold t, which has an influence
on the switching of hybrid proposal working. As can be observed from the
figure, a good choice for the threshold t, for example t = 0.2, let us reduce
the number of pilots in a significant percentage (about 50% for 10 dB), with
respect to a bad choice, t = 0.05, but as a consequence a loss in BER per-
formance appeared. Therefore, by choosing appropriate parameters for the
hybrid approach, its adequate trade–off between BER performance and feed-
back channel overhead leads the hybrid proposal to be quite interesting in
scenarios with transmit processing and unavailable channel state information
at the transmitter side.

Figures .6 and .7 also show the BER performance and the number of
pilots sent through the feedback channel versus SNR but for a MIMO WF-
precoding system instead. Again, the performance of the hybrid approach
is much better than that obtained with the unsupervised approach. Taking
into account these results, we can affirm that the hybrid setup implementing
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the Infomax algorithm for t = 0.2 is an attractive technique since it achieves
a BER close to the one offered by the supervised approach, but requiring
fewer pilot symbols, and consequently, increasing the spectral efficiency of
the system. Compared to the ZF approach, we always obtain better BER
performances for the Wiener designs, as expected, due to the drawback of
amplifying noise inherent to ZF designs. However, looking at the number
of pilots, it can be observed that the Wiener hybrid proposal needs more
pilots for very low SNR (SNR < 4 dB). This effect is not very important
for Infomax, but it is quite obvious for P-vector, and therefore, P–vector is
clearly overcome by Infomax in Wiener implementations.

5.2. Experiment 2: Variable channel coherence time

In the second set of experiments, we consider that the channel remains
constant during the transmission of a random number of symbols, ranging
from 2 000 to 3 000.

The results of BER and number of pilots versus SNR for α = 0.1 with
a ZF linear precoder are shown in Figures .8 and .9, respectively. For a
Wiener linear precoder, the results are respectively plotted in Figures .10
and .11. It can be seen that the supervised approach presents a considerable
performance loss —in terms of BER— since the pilot symbols are transmitted
periodically each 2 000 symbols, although the channel may change between
the transmission of two consecutive sendings of pilots. However, as it can
be seen from the figures, the hybrid approach is robust against calibration
errors. Again, the use of the Infomax algorithm improves the BER results,
and similar behaviour as before is observed for low SNR with regard to the
number of pilots needed by the Wiener hybrid proposal.

Finally, Figures .12 and .13 illustrate the BER achieved by all the schemes
under study as a function of the channel updating parameter α restricting the
transmit filter to be designed according to the ZF criterion. The respective
results for the Wiener case are plotted in Figures .14 and .15, respectively.
For both setups, the SNR is set to 15 dB. Note that the BER curves cor-
responding to the hybrid approaches implementing Infomax converge to the
P-vector curves for α → 1 but sending more pilot symbols to reach that
performance. As can be observed from all the figures, our hybrid proposal
always works better than exclusively supervised or unsupervised appraches
for any α. Anyway, for a given channel fading value α, and an adequate
choice of t (for example, t = 0.2 and α = 0.1 or smaller than that value)
leads to get a reduction of about 50% in the number of pilots compared to
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the supervised number needed to track channel variations. Moreover, the
BER reduction is of about 2 × 10−2 and 6 × 10−3 at the operation point
corresponding to α = 0.1, for ZF and Wiener lienar precoding, respectively.

5.3. Computational Complexity

Table 2 shows the computational complexity of all the recovering algo-
rithms compared in this section by computer simulations, as well as the
complexity associated to the detection criterion used by the proposed hybrid
scheme. It can be seen that the use of this criterion implies a negligible in-
creasing of the computational complexity since it is computed once for each
frame. In this table, NB represents the total number of symbols in a frame
and N the number of antennas at each side of the link.

6. Conclusions

This paper deals with the utilization of supervised and/or unsupervised al-
gorithms in FDD systems together with ZF and Wiener linear precoding.
We have introduced the well–known Wiener-Hoff solution as an adequate su-
pervised method to estimate channel coefficients with reduced MSE between
observations and coded signals. We have also derived the unsupervised algo-
rithm termed as generalized P-vector, which allows us to estimate the whole
precoding-channel matrix without sending pilot symbols. This algorithm
uses the whole matrix estimate previously obtained making use of the su-
pervised technique. Moreover, we have introduced the Infomax algorithm,
proposed in the context of BSS, as an adaptive method that makes possible
the estimation of the whole precoding-channel matrix directly from the obser-
vations, with the only assumption of that sources and channel are completely
unknown.

Considering a communications model where the channel is block flat fad-
ing, we have proposed a simple scheme to detect channel variations in those
FDD systems with linear precoding. The hybrid approach combines both
supervised and unsupervised algorithms making use of the new decision cri-
terion. When channel variations are significant, the system implements a
supervised approach to get channel estimates to be sent to the TX through
the feedback channel. In other case, an unsupervised adaptive algorithm is
used to recover the transmitted signals. The aforementioned decision rule
determines when the system has to switch from the unsupervised working to
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Widrow-Hoff Solution
Compute Cy (or Cyd) N2 × NB complex multiplications

N2 × (NB − 1) complex summations

Matrix inversion C−1
y O(N3) for the Gauss-Jordan method

Compute C−1
y Cyd N3 complex multiplications

N2 × (N − 1) complex summations

Total O(N2 × NP)

Unsupervised approach Infomax-CM
For each iteration:

Compute g(z) = z∗i (1 − |zi|
2) for the N outputs N complex multiplications

N real summations
N real-complex multiplications

Compute P1 = zgH(z) − I N2 complex multiplications
N complex summations

Compute P2 = W[n]P1 N3 complex multiplications
N2 × (N − 1) complex summations

Update W[n + 1] = W[n] + µP2 N2 real-complex multiplications
N2 complex summations
N(N − 1) real summations

Total (for NB symbols) O(N3 × NB)

Unsupervised approach P-vector
For each iteration:

Compute P1 = yzH − A N2 complex multiplications
N complex summations

Update W[n + 1] = W[n] − µP1 N2 real-complex multiplications
N2 complex summations
N(N − 1) real summations

Total (for NB symbols) O(N3 × NB)

Decision criterion
For each frame:

Compute Γ = WH
u ĤF N3 complex multiplications

N2 × (N − 1) complex summations

Compute Errori =
∑N

j=1,j 6=i
|γij |

2

|γii|2
N2 complex multiplications

N(N − 1) real divisions

Total (once per frame) O(N3)

Table 2: Computational cost of the supervised and unsupervised algorithms and of the
decision criterion.
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the supervised one. Simulation results have shown that the combined pro-
posal is an attractive solution for communications systems since it provides
an adequate BER with a low overhead due to the transmission of pilot sym-
bols. Moreover, when the ZF linear precoding designs are compared to the
respective MMSE designs, the first criterion is clearly outperformed by the
second one, as expected.
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Figure .4: Experiment 1. Fixed distance for channel updating: BER versus SNR for
ZF–precoding.
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Figure .5: Experiment 1. Fixed distance for channel updating: Number of pilots versus
SNR for ZF–precoding.
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Figure .6: Experiment 1. Fixed distance for channel updating: BER versus SNR for
WF–precoding.
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Figure .7: Experiment 1. Fixed distance for channel updating: Number of pilots versus
SNR for WF–precoding.
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Figure .8: Experiment 2. Variable distance for channel updating: BER versus SNR for
ZF–precoding.
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Figure .9: Experiment 2. Variable distance for channel updating: Number of pilots versus
SNR for ZF–precoding.
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Figure .10: Experiment 2. Variable distance for channel updating: BER versus SNR for
WF–precoding.
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Figure .11: Experiment 2. Variable distance for channel updating: Number of pilots versus
SNR for WF–precoding.
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Figure .12: Experiment 2. Variable distance for channel updating: BER in terms of the
channel updating parameter for ZF–precoding.
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Figure .13: Experiment 2. Variable distance for channel updating: Number of pilots in
terms of the channel updating parameter for ZF–precoding.
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Figure .14: Experiment 2. Variable distance for channel updating: BER in terms of the
channel updating parameter for WF–precoding.
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Figure .15: Experiment 2. Variable distance for channel updating: Number of pilots in
terms of the channel updating parameter for WF–precoding.
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