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Abstract

For the separation of the signals in the vectorBroadcast Channel(BC), some information about the channel

state is necessary at the transmitter. In many cases, thisChannel State Information(CSI) must be fed back from the

receivers to the transmitter. We jointly design the channel estimators and thequantizers at the receivers together with

the precoder at the transmitter based on a precoder-centric criterion, i.e., the minimization of aMean Square Error

(MSE) metric appropriate for the precoder design. This is in contrast to our previous works, where the quantizer

design was based on a CSI MSE metric, i.e., based on the minimization of theMSE between the true channel and the

channel recovered by the transmitter using a feedback channel. Interestingly, the estimators resulting from this joint

formulation are independent of the used codebook. The codebook entries are the employed precoders. Therefore, each

receiver feeds back the index of a set of precoders and the intersection of the sets gives the appropriate precoder.

Since the quantizers of the different receivers have to work separately, the metric for the computation of the partition

cells cannot be expressed as a simple squared error depending on thequantizer output. The proposed system based

on a joint optimization clearly outperforms previous designs with separate optimization of feedback and precoding.

Index Terms

Feedback channel, Bayesian approach, imperfect CSI, robust precoding, precoding MSE metric.

I. I NTRODUCTION

A Multi User Multiple Input Single Output(MU-MISO) system is an appropriate model for the downlink ofa

cellular system where it is reasonable to assume that the transmitter (base station) is equipped with multiple antennas

whereas the receivers (mobile stations) only support a single antenna in order to reduce size, power consumption,
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and cost. As the receivers have no interference suppressingcapabilities, the transmitter is in charge of all tasks

related to eliminating the inter-user interference.

The availability of CSI at the transmitter is crucial for thesignal separation in the considered vector BC. In cellular

systems that useFrequency Division Duplexing(FDD), the utilization of a finite-rate feedback channel is common

to send the CSI estimated at the receiver to the transmitter.The standard assumption for the design of these limited

feedback channels is to assume that the receivers have a perfect CSI knowledge (see [1]–[5]). In practice, however,

the information about the channels obtained by the transmitter via limited rate feedback is always erroneous. Thus,

perfect interference suppression with precoding is impossible. Additionally, an information theoretic approach to

the design of limited feedback channels with imperfect CSI is difficult due to the fact that the computation of the

mutual information cannot be found in closed form and is costly to be estimated via simulations (see [6], [7]).

For this reason, in this work we have resorted to precoding and limited feedback channel designs based on the

minimum MSE criterion. More specifically, we propose to jointly design the CSI estimator and quantizer at the

receiver together with the precoder at the transmitter based on a precoder-centric criterion, i.e., the minimization

of an MSE metric appropriate for the precoder design [8].

The utilization of such a precoding MSE for the design of boththe precoders and the feedback is motivated as

follows. In [9], it has been demonstrated that a function of the MSE is a lower bound to the mutual information for

Gaussian signaling and for perfect CSI at receiver. This result has been generalized in [10], i.e., a lower bound for

the mutual information can be found that is a function of the MSE and that is applicable irrespective of the quality

of CSI and the modulation format. Thus, the minimization of the MSE considered in this paper corresponds to

the maximization of a lower bound to the mutual information.Additionally, functions of the MSE constitute upper

bounds for the symbol error rate of QAM symbols (e.g., [11]) and for the bit error rate of QPSK symbols (e.g.,

[12]). Thus, the minimization of the MSE can also be interpreted as the minimization of an upper bound of error

probability.

The proposed limited feedback channel design procedure works as follows. First, the channel estimator is designed

to minimize the MSE between the transmitted symbols and the symbols recovered by the users (including the

precoder) averaged over all possible channel realizations, assuming a given quantizer (see Section IV). Interestingly,

the estimators resulting from this joint optimization are independent of the used quantizer codebook and are equal

to the estimators obtained from CSI MSE metrics.

Next, we design the codebook entries in Subsection V-A that consist of the precoders to be employed. These

precoders are found by minimizing the precoding MSE conditioned on the fed-back index. The utilization of white

estimates (by dropping the coloring with the square root of the respective covariance matrix) and the restriction

to rectangular regions leads to a simple computation of the conditional means necessary for the precoding design

step. The most difficult part of the proposed scheme is the design of the partition cells. The cell boundaries are

designed by minimizing the precoding MSE conditioned on thequantizer input (see Subsection V-B). We also

focus on how to implement bit allocation in Subsection V-D, and on how we can solve the problems related to

its computational complexity by means of a heuristic strategy. Finally, we present the results of some computer
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simulations in Section VI that were carried out to illustrate the performance of the proposed limited feedback

channel design in terms of uncoded BER.

Note that each user feeds back the index of a set of precoders and the intersection of the sets performed at the

transmitter gives the appropriate precoder to be used during the transmission. Since the quantizers of the different

receivers have to work separately, the metric for the computation of the partition cells cannot be expressed as a

simple squared error depending on the quantizer output and its computation is quite complex as shown in this work.

All derivations are based on the assumption of perfect knowledge of the second-order statistics of the noise,

the symbols, and the channels. However, these parameters have to be estimated and reported to the transmitter

in practice, although we will not deal with this problem in this work. We assume that all random variables are

zero-mean and stationary.

Vectors and matrices are denoted by lower case bold and capital bold letters, respectively. TheK × K identity

matrix is denoted byIK and0K is aK-dimensional zero vector. We useE[•], ℜ(•), ℑ(•), tr(•), (•)∗, (•)T, (•)H,

det(•), and‖•‖2 for expectation, real and imaginary part of the argument, trace of a matrix, complex conjugation,

transposition, conjugate transposition, determinant of amatrix, and Euclidean norm, respectively. Thei-th element

of a vectorx is xi. With fG(x,µx,Cx), we refer to a circularly symmetric complex GaussianProbability Density

Function(PDF) ofx ∈ C
m with the meanµx ∈ C

m and the covariance matrixCx ∈ C
m×m, i.e.,x ∼ NC(µx,Cx)

and

fG (x,µx,Cx) =
exp

(

− (x − µx)
H

C−1
x (x − µx)

)

πm det(Cx)
.

II. SYSTEM MODEL

Fig. 1 depicts the block diagram of a MU–MISO system with linear precoding. We assume a transmitter equipped

with N antennas andK single-antenna receivers. Let us denote the information symbols byu ∈ C
K , a vector of

zero-mean complex-valued modulated signals with unit covariance matrix, i.e.,Cu = E[uuH] = I. This vector is

linearly transformed by the precoderP ∈ C
N×K to obtain the transmit signalx ∈ C

N . This signal propagates

over the channelhk ∈ C
N to thek-th receiver to produce the received signal

yk = hT
k x + ηk k = 1, ...,K (1)

whereηk is theAdditive White Gaussian Noise(AWGN). The channelhk ∈ C
N is assumed to be time-varying and

modeled by means of a vector of zero-mean complex-valued Gaussian random variables, i.e.,hk ∼ NC(0,Ch,k)

with the channel covariance matrix for thek-th userCh,k = E[hkhH
k ] ∈ C

N×N . The receiver applies the common

receive weightg ∈ C to get the estimatêuk = gyk. Note that the common weightg is only assumed in the

precoder design to allow for a closed form solution of the precoderP (see also the discussion in [13]) and to

simplify the presentation. In contrast, every receiver applies an MMSE optimal receiver weight in the final system

(see Subsection V-A). As shown in Fig. 1, combining the signals at the output of the different receivers yields

û = gHPu + gη (2)
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Fig. 1. System model for MU–MISO linear precoding combining signals from all users.
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Fig. 2. System model for feedback.

whereû = [û1, . . . , ûK ]T ∈ C
K , η = [η1, . . . , ηK ] ∈ C

K with η ∼ NC(0,Cη), andH = [h1, . . . ,hK ]T ∈ C
K×N .

We impose the constraint that the average total transmit energy is upper bounded byEtx, i.e.,

E
[

‖Pu‖2
2

]

≤ Etx.

Fig. 2 depicts the block diagram of the estimation and quantization of the CSI performed at the receivers. The

resulting index representing the setPk is fed back to the transmitter. We assume that the centralized transmitter

sends a sequence ofNtr pilot symbols from all transmit antennas. The received noisy pilot symbols are passed

through the linear estimatorGk ∈ C
N×Ntr to obtain the channel estimate

zk = Gk (Shk + ηk) ∈ C
N . (3)

This channel estimate will be the input to the quantizerQk(•) of userk. The matrixS ∈ C
Ntr×N contains the pilot

symbols andηk ∼ NC(0,Cη,k) is the noise of the pilot channel to thek-th receiver. For simplicity reasons, the

feedback channel is assumed to be error-free and without delay. The delay effect is relatively easy to correct (see

[14], [15]) but at the cost of unnecessarily complicating our notation.

After estimation, it is necessary to implement some type of quantization in order to compress all the information

sent through the finite-rate feedback channel. Contrary to the quantizers used in [14], [15], where the codebook

entries were white channel coefficients, the codebook entries of the quantizers proposed in this work are the

precoders of Fig. 1, i.e., the quantized information eventually represents a precoder and not a CSI.

A. Model for Quantizers

Let us initially assume a genie-aided MU–MISO system where all the users work in a cooperative way. In this

case, it is possible to carry out a joint quantization:

Q(z) =

M∑

i=1

Pi Si (z) (4)
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whereM is the codebook size. Here,z = [zT
1 , . . . ,zT

K ]T ∈ C
KN represents the estimated CSI of all users. The

selector functionSi(•) is 1 if the argument lies in the partition cellRi ⊆ C
KN , and0 elsewhere. Each of theM

codebook entriesPi ∈ C
N×K is a precoder andPi is chosen ifz ∈ Ri.

In practice, however, a joint quantization of the estimatedCSI is impossible because receivers do not cooperate

and each receiver has access only to its own CSIzk. Therefore, the partition cellRi must be decomposed intoK

subregionsRk,i ⊆ C
N , i.e.,Ri = R1,i × · · · × RK,i, where× denotes the cartesian product defined as

Ri = R1,i × · · · × RK,i = {(x1,i, . . . ,xK,i) | x1,i ∈ R1,i, . . . ,xK,i ∈ RK,i}. (5)

Here,Ri denotes the total partition cell corresponding to thei–th codebook entryPi andRk,i, with k = 1, . . . ,K,

represents the partition cell of thei-th codebook entry corresponding to userk. The aim of thek-th user’s quantizer

Qk(•) is to identify the regionRk,i in which the CSIzk lies. The resulting fed-back information of userk, i.e., the

output of its quantizerQk(zk), is equivalent to a set of indicesPk referring to the precoder representation points

that best fit to its current channel state. When collecting thefed-back information from all users, the transmitter

finds the index of the final precoder representation point by intersecting the sets of indices from all users. Therefore,

the selector function of the overall quantizer in Eq. (4) is finally defined as

Si(z) =







1 for i ∈
⋂K

k=1 Qk(zk)

0 else.

Note that the above intersection gives a set with cardinality one due to the properties of the cartesian product used

to split Ri into R1,i, . . . ,RK,i [see Eq. (5)]. This complicated representation is inevitable since the users are not

cooperative and, therefore, no single user has informationabout the others. Remember that the codebook entries

are the precoder representation points and the receive weights and not the CSI.

When restricting to scalar quantization, we can further decomposeRk,i as

Rk,i = R
(1)
k,i × · · · × R

(N)
k,i

i.e., the cartesian product of theN rectangular regionsR(n)
k,i ⊆ C, with n = 1, ..., N . Remember thatN is the

number of transmit antennas and is thus the maximum number ofscalar coefficients sent from userk to the

transmitter. Let us define each (complex) rectangular region R
(n)
k,i by means of its corner coordinatesα(Re,n)

k,j
(Re,n)
k

,

β
(Re,n)

k,j
(Re,n)
k

, α
(Im,n)

k,j
(Im,n)
k

, andβ
(Im,n)

k,j
(Im,n)
k

. In other words, the scalar quantizer for the complex-valued zk,n is split into

two real-valued quantizers with the two quantizer indicesj
(Re,n)
k and j

(Im,n)
k . Thus, when the real and imaginary

part of then-th entryzk,n of zk corresponding to thek-th user’s quantizerQk(•) lies in the cellsC(Re,n)

k,j
(Re,n)
k

and/or

C
(Im,n)

k,j
(Im,n)
k

, respectively, the conditionsα(Re,n)

k,j
(Re,n)
k

≤ ℜ(zk,n) < β
(Re,n)

k,j
(Re,n)
k

and/orα(Im,n)

k,j
(Im,n)
k

≤ ℑ(zk,n) < β
(Im,n)

k,j
(Im,n)
k

are

respectively fulfilled. In that case, a setP
(Re,n)

k,j
(Re,n)
k

or P
(Im,n)

k,j
(Im,n)
k

of indices is implicitly chosen, for which it holds

that

P
(Re,n)

k,j
(Re,n)
k

=

{

i = 1, . . . ,M
∣
∣
∣ Re

(

R
(n)
k,i

)

= C
(Re,n)

k,j
(Re,n)
k

}

(6)

or

P
(Im,n)

k,j
(Im,n)
k

=

{

i = 1, . . . ,M
∣
∣
∣ Im

(

R
(n)
k,i

)

= C
(Im,n)

k,j
(Im,n)
k

}

(7)
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respectively. The information that userk feeds back are the indicesj(Re,n)
k and j

(Im,n)
k with n = 1, . . . , N . To

obtain the quantizer outputQk(•), the quantized results for the different real and imaginaryparts of the entrieszk,n,

n = 1, . . . , N , i.e., j
(Re,n)
k and j

(Im,n)
k , should be combined by simply intersecting the setsP

(1)

k,j
(1)
k

, . . . , P
(N)

k,j
(N)
k

,

whereP
(n)

k,j
(n)
k

= P
(Re,n)

k,j
(Re,n)
k

∩ P
(Im,n)

k,j
(Im,n)
k

:

Qk(zk) = Pk =

N⋂

n=1

P
(n)

k,j
(n)
k

.

III. PROPOSEDMMSE OPTIMIZATION

In this section, we focus on the optimization of the following elements pertaining to the limited feedback channel:

the channel estimators{Gk}
K
k=1 and the quantizers{Qk(•)}K

k=1, i.e., the partition cells{Ri}
M
i=1 and the precoders

representation points{Pi}M
i=1. We choose as a feasible designing criterion the minimization of the MSE between

the transmitted and received symbols, that is,

MSE = E
[

‖u − û‖2
2

]

=
M∑

i=1

pi E
[

‖u − û‖2
2

∣
∣
∣ z ∈ Ri

]

(8)

where pi denotes the probability thatz ∈ Ri. Taking into account that the output signals at the receivers are

given by û = g(HPu + η) [see Eq. (2)], whereP is the precoder obtained from the overall quantizer, i.e.,

P = Q(z) =
∑M

i=1 Pi Si(z) [cf. Eq. (4)] andg =
∑M

i=1 gi Si (z), we can further elaborate the MSE cost function

as follows

MSE =
M∑

i=1

pi

(
K − 2giℜ (tr (E [H|z ∈ Ri]Pi)) + g2

i tr (Cη) +g2
i tr

(
E

[
HHH|z ∈ Ri

]
PiP

H
i

))
(9)

due toE[uηH] = 0K andE[uuH] = IK . Note again that we neglect the delay of the feedback in our system model

for the sake of brevity.

The optimization problem that we have to solve is

{{Gk}
K
k=1, {Pi}

M
i=1, {Ri}

M
i=1}opt = argmin

{{Gk}K
k=1,{Pi}M

i=1,{Ri}M
i=1}

MSE = E
[

‖u − û‖2
2

]

subject to:E
[

‖Pu‖2
2

]

≤ Etx. (10)

Unfortunately, no closed form expressions can be obtained for both the estimators and the quantizers of the feedback

systems. Instead, we will follow an alternating optimization approach to minimize the MSE, because it is possible

to obtain closed form expressions for the minimization of certain quantities while the other quantities are kept fixed.

Indeed, let us start by fixing the partition regionsRi and the precoder representation pointsPi. It is possible to

obtain a closed-form expression for the optimum estimatorGk and afterwards use the Lloyd algorithm to iteratively

optimize the partition cells and codebook representation points of the quantizers of each user.

IV. CHANNEL ESTIMATORS

In this subsection, the channel estimatorGk is optimized for a given codebook (precoder and receiver weights)

and partition cells. It is apparent from Eq. (3) that

Cz,k = E
[
zkzH

k

]
= Gk

(
SCh,kSH + Cη,k

)
GH

k .
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Thus, we can write the following alternative parameterization of the channel estimator

Gk = C
1/2
z,k XH

k

(
SCh,kSH + Cη,k

)−1/2
(11)

where the unknownXk ∈ C
Ntr×N has orthonormal columns, i.e.,XH

k Xk = IN . It is very easy to verify that this

expression forGk leads toCz,k when we substitute it intoGk(SCh,kSH +Cη,k)GH
k . Note that the transformation

of Shk + ηk with (SCh,kSH + Cη,k)−1/2 leads to an uncorrelated signal with unit covariance matrixand the

additional transformation withXH
k again gives an uncorrelated signal with unit covariance matrix no matter the

choice forCz,k. Therefore, the optimization with respect toGk can be split into an optimization with respect to

Xk and a subsequent optimization with respect toCz,k.

Before carrying out the minimization of the MSEE[‖u − û‖2
2] with respect toXk, let us rewrite the MSE in

terms of an auxiliary matrixAk defined as

Ak = Ch,kSH
(
SCh,kSH + Cη,k

)−1/2
∈ C

N×Ntr . (12)

To this end, let us obtain the conditional momentsE[H|z ∈ Ri] andE[HHH|z ∈ Ri]. Taking into account that

hk andzk are jointly Gaussian, we have



hk

zk



 ∼ NC



0,




Ch,k CH

zh,k

Czh,k Cz,k









whereCzh,k is given by [see Eqs. (3), (11), and (12)]

Czh,k = E
[
zkhH

k

]
= C

1/2
z,k XH

k AH
k . (13)

Thus, the conditional moments are (e.g., [16])

E[hk|zk] = CH
zh,kC−1

z,kzk = AkXkC
−1/2
z,k zk

E[hkhH
k |zk] = Ch,k − CH

zh,kC−1
z,kCzh,k + E[hk|zk] E[hk|zk]H

= Ch,k − AkXkXH
k AH

k + AkXkC−1/2
zk

zkzH
k C

−1/2,H
z,k XH

k AH
k .

Clearly, it holds thatE[H|z ∈ Ri]) = E[E[H|z]|z ∈ Ri]. Therefore, taking into account thatH = [h1, . . . ,hK ]T,

we have

E[H|z ∈ Ri] = [A1X1µ1,i, . . . ,AKXKµK,i]
T (14)

E[HHH|z ∈ Ri] =
K∑

k=1

(
Ch,k − AkXk (I − Rk,i) XH

k AH
k

)T

with [cf. Eq. (5)]

µk,i = E
[

C
−1/2
z,k zk

∣
∣
∣ zk ∈ Rk,i

]

Rk,i = E
[

C
−1/2
z,k zkzH

k C
−1/2,H
z,k

∣
∣
∣ zk ∈ Rk,i

]

.

Notice thatµk,i andRk,i only depend on the choice of the partition regionsRk,i which are assumed to be given

in this section.
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The obtained results forE[H|z ∈ Ri] andE[HHH|z ∈ Ri] can be substituted into Eq. (9). Thus, the MSE for

the given codebook entries{Pi, gi}
M
i=1 and partition cells{Ri}

M
i=1 is expressed as

MSE =

M∑

i=1

pi

(

K − 2giℜ
(

tr
(

[A1X1µ1,i, . . . ,AKXKµK,i]
T

Pi

))

+ g2
i tr (Cη)

+g2
i

K∑

k=1

tr
((

Ch,k − AkXk (I − Rk,i) XH
k AH

k

)T
PiP

H
i

)
)

. (15)

As mentioned before, thanks to introducing the alternativerepresentation of the channel estimatorGk in Eq. (11),

we can obtain the optimum channel estimator by finding the basis Xk that minimizes the above MSE expression

for a fixedCz,k, i.e.,

Xopt,k = argmin
Xk

MSE subject to XH
k Xk = IN

where the constraint has been introduced to ensure the sub-unitarity of Xk ∈ C
Ntr×N . Let us solve this optimization

problem using the Lagrangian multipliers method. The corresponding Lagrangian function reads as

L(Xk,Λk) = MSE+ tr
(
Λk

(
XH

k Xk − I
))

whereΛk ∈ C
N×N is the Lagrangian multiplier which is Hermitian by definition since the constraint is Hermitian.

A necessary condition for optimality is that

∂L(Xk,Λk)

∂XT
k

=
∂MSE
∂XT

k

+ ΛkXH
k = 0.

From this Karush-Kuhn-Tucker (KKT) condition we obtain that [cf. Eq. (15)]

M∑

i=1

−piµk,ie
T
k P T

i giAk − piX
H
k AH

k g2
i P ∗

i P T
i Ak + piRk,iX

H
k AH

k g2
i P ∗

i P T
i Ak + ΛkXH

k = 0.

Since the range of the first three summands reachable for row vectors multiplied from the left is the span of the

rows of Ak, the space spanned by the rows ofXH
k must be the same to fulfill the above condition and thus

range(Xk) = range
(
AH

k

)
. (16)

By considering theSingular Value Decomposition(SVD) of a matrixB = MDNH, whereD is a square diagonal

matrix andM and N are unitary or sub-unitary, it is satisfied that the range ofB is equal to the range ofM

[17]. Having in mind this property and the SVD decompositionof Ak given by

Ak = VkΦkW H
k

with unitary Vk ∈ C
N×N , diagonalΦk = diag(φk,1, · · · , φk,N ) ∈ R

N×N whose diagonal elementsφk,i are

positive, and sub-unitaryWk ∈ C
Ntr×N , we have that range(AH

k ) = range(Wk). Thus, we can conclude that the

optimal basis is given by

Xopt,k = WkUH
k ∈ C

Ntr×N (17)

to fulfill the condition in Eq. (16).
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The so far undefined unitaryUk ∈ C
N×N must be chosen to minimize the precoding MSE in Eq. (15). Since

ΦkW H
k = V H

k Ak, the optimal estimator must have the form [cf. Eq. (11)]

Gopt,k = C
1/2
z,k UkW H

k

(
SCh,kSH + Cη,k

)−1/2
= C

1/2
z,k UkΦ−1

k V H
k Ak

(
SCh,kSH + Cη,k

)−1/2

= C
1/2
z,k UkΦ−1

k V H
k GMMSE-estim,k (18)

where the conventional linearMinimum Mean Square Error(MMSE) estimator is given by

GMMSE-estim,k = Ch,kSH(SCh,kSH + Cη,k)−1.

Let us examine in more detail the expression for the optimal estimator given by Eq. (18). Notice thatV H
k

decorrelates the output of the linear MMSE estimator andΦ−1
k forces that its variance be the identity matrix. Then,

some rotation withUk is applied that does not change the property of unit covariance and, finally, the estimate is

colored withC
1/2
z,k . This result is quite surprising and is a consequence of not optimizing the mean squared error

between the true channel and the channel recovered at the transmitter but the precoding MSEE[‖u − û‖2
2] [see

Eq. (10)].

We also see from Eq. (18) that the optimal estimatorGopt,k can be written in closed form except for the covariance

matrix Cz,k and the unitary matrixUk. The optimization of these two parts of the estimator is difficult and cannot

be done analytically. However, they can be moved into the quantizer Qk(•) as in [14] by a proper redefinition of

the partition cellsRk,i. Therefore, we can set without loss of optimality that

Gopt,k = Φ−1
k V H

k GMMSE-estim,k ∈ C
N×Ntr (19)

and proceed to the quantization of this estimator’s output instead of quantizing the output of the estimator given in

Eq. (18). Accordingly, the optimalXk in the parameterization of Eq. (11) is

Xopt,k = Wk (20)

with the SVDAk = VkΦkW H
k . Additionally, Cz,k = I.

A. MSE with Optimal Estimators

The advantage of the approach described above is that now theoptimal estimator is independent of the codebook

and the other estimators. Additionally, notice that the estimator’s outputzk is Gaussian distributed with unit

covariance matrix. Thus, we rename the estimator output aswk ∼ NC(0, I). Due to the relationship between

Xopt,k andAk [see Eq. (20)], we have [cf. Eq. (15)]

Ch,k − AkXopt,kXH
opt,kAH

k = Ch,k − VkΦ2
kV H

k

and

AkXopt,kRk,iX
H
opt,kAH

k = VkΦkRk,iΦkV H
k .
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Having in mind the above results, the conditional moments from Eq. (14) can be rewritten as

E [H|z ∈ Ri] = [µ1,i, . . . ,µK,i]
T

E
[
HHH|z ∈ Ri

]
=

K∑

k=1

(
Ch,k − VkΦ2

kV H
k + Rk,i

)T
(21)

whereµk,i andRk,i are redefined as

µk,i = VkΦk E [wk |wk ∈ Rk,i ]

Rk,i = VkΦk E
[
wkwH

k |wk ∈ Rk,i

]
ΦkV H

k

(22)

with wk ∼ NC(0,I) ∀k. Applying E[yyH|x] = E[(y − µy|x)(y − µy|x)H|x] + µy|xµH
y|x to Rk,i leads to

E
[
HHH|z ∈ Ri

]
=

K∑

k=1

(
Ch,k − VkΦ2

kV H
k + µk,iµ

H
k,i

+VkΦk E
[(

wk − Φ−1
k V H

k µk,i

) (
wk − Φ−1

k V H
k µk,i

)H
|wk ∈ Rk,i

]

ΦkV H
k

)T

=

K∑

k=1

(Ch,k − VkΦ2
kV H

k
︸ ︷︷ ︸

Cestim,k

+µk,iµ
H
k,i + VkΦkCQ,k,iΦkV H

k
︸ ︷︷ ︸

Cquantize,k,i

)T (23)

=

K∑

k=1

(
Ch,k + µk,iµ

H
k,i − VkΦkΓk,iΦkV H

k

)T
. (24)

Notice thatCestim,k is the MSE error matrix due to the estimation withGMMSE-estim,k andCquantize,k,i is the error

covariance matrix due to the quantization error. The matrixΓk,i = I−CQ,k,i ∈ R
0,+ depends only on the quantizer

parameters. Notice that when we assume perfect channel knowledge at the receiver, i.e., when there are no errors

caused by estimation,Cestim,k = 0, and when there is no limited rate for the feedback, i.e., no quantization errors,

we have thatCquantize,k,i = 0. Therefore, the regularization that is introduced due to imperfect CSI at the transmitter

is given byCestim,k + Cquantize,k,i.

Remember that the effect of feedback delay was omitted when deriving Eqs. (23) and (24). If we assume a

simple Jakes model, we would have that the correlation between the channelhk[q] at slotq andhk[ν], the channel

delayed byD = q − ν slots, is given by

E
[
hk[q]hH

k [ν]
]

= J0(2πfD,max,kD/fslot)Ch,k = rkCh,k

wherefD,max,k is the maximum Doppler frequency of thek-th user,fslot is the slot rate, andJ0(•) is the zero-th

order Bessel function of the first kind [18]. The factorrk in the last equality is implicitly defined. Notice that the

delay can be neglected when considering a speed value ofv = 0 km/h (rk = 1). However, the only impact on the

previous derivations is that this termrk must be included into the expression ofAk in Eq. (12) since the input of

the quantizerzk given by Eq. (3) is obtained from outdated channel vectors and, therefore,Czh,k = rkC
1/2
z,k XH

k AH
k

[cf. Eq. (13)]. Consequently, alsoΦk is weighted withrk.
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Finally, for the sake of notational brevity, we introduce

Mi = [µ1,i, . . . ,µK,i]
T ∈ C

K×N

Cestim =

K∑

k=1

Ch,k − VkΦ2
kV H

k ∈ C
N×N

Cquantize,i =

K∑

k=1

VkΦkCQ,k,iΦkV H
k ∈ C

N×N . (25)

This way, the precoding MSE when using the optimal estimators can be concisely written as

MSE =

M∑

i=1

pi

(

K − 2ℜ (tr (MigiPi)) + g2
i tr (Cη) + g2

i tr
((

MH
i Mi + CT

estim+ CT
quantize,i

)
PiP

H
i

))

. (26)

In the ensuing section, we assume that the optimal estimators Gopt,k, k = 1, . . . ,K, are employed, i.e., the

precoding MSE given by Eq. (26) has to be minimized when designing the quantizers. It is interesting to note

that the conditional moments provided by this scheme are equal to the conditional moments obtained for the joint

optimization based on a CSI-metric (see [14], [15], [19]).

V. CODEBOOK ENTRIES

A. Codebook entries: precoder representation points

In this section, we proceed with solving Eq. (10) by designing the codebook entries (precoder representation

points) Pi and the respective receive weightsgi in order to minimize the precoding MSE of Eq. (26) under a

transmit power constraint for a given set of partition cellsRi, i = 1, . . . ,M :

{Popt,i, gopt,i} = argmin
{Pi,gi}

MSE subject to:E
[

‖Piu‖
2
2

]

≤ Etx. (27)

Again, this constrained optimization problem will be solved using the method of Lagrangian multipliers.

Without destroying optimality, we make a change of variables and setPi = g−1
i Fi. Consequently, the Lagrangian

function reads as

L (Fi, gi, λ) =

M∑

i=1

pi

(

K − 2ℜ (tr (MiFi)) + g2
i tr (Cη)

+ tr
((

MH
i Mi + CT

estim+ CT
quantize,i

)
FiF

H
i

)
+ λ

(

g−2
i ‖Fi‖

2
F − Etx

)

(28)

with the Lagrangian multiplierλ ∈ R
0,+.

One KKT condition is obtained by deriving with respect togi, which is assumed to be real. Equating this

derivative to zero yields
∂L (•)

∂gi
= 2gi tr (Cη) − 2λg−3

i ‖Fi‖
2
F = 0

which leads toλ = g2
i

tr(Cη)

g−2
i

‖Fi‖
2
F

> 0. As it is apparent that the transmit energy constraint is active, that is,

g−2
i ‖Fi‖

2
F = Etx, we haveλ = g2

i
tr(Cη)

Etx
.

March 26, 2012 DRAFT



12

When we set the derivative with respect toF ∗
i to zero, we obtain the following KKT condition

∂L (•)

∂F ∗
i

= −MH
i +

(
MH

i Mi + CT
estim+ CT

quantize,i

)
Fi +

λ

g2
i

Fi = 0. (29)

This result, together with the above result forλ and the transmit power constraint, leads to the optimal precoder

representation point (codebook entry) corresponding to the i-th partition cellRi given by

Fopt,i =
(
MH

i Mi + CT
estim+ CT

quantize,i + ξI
)−1

MH
i

gopt,i =

√

1

Etx
tr

((

MH
i Mi + CT

estim+ CT
quantize,i

)−2

MH
i Mi

) (30)

where ξ = tr(Cη)/Etx. Interestingly, this result can be interpreted as thecentroid condition. Note that we use

MMSE optimal receiver weights (different for different receivers) although the optimization of Eq. (27) givesgopt,i.

The MMSE optimal receiver weights correct the phase and leadto an approximately coherent detection (see [15]

for more details).

Note also that the solution for the precoder representationpoints is inherently robust against errors, since the

respective error covariance matrices regularize the pseudo inversion in the definition ofFopt,i = gopt,iPopt,i.

Due to the expectationsE [wk |wk ∈ Rk,i ] for k = 1, . . . ,K [see Eqs. (22) and (25)], the computation of the

precoderFi is difficult for a general set of partition cellsR1,i, . . . ,RK,i such as those obtained when usingvector

quantization. However, by restricting ourselves toscalar quantization, the integration over the rectangular regions

R
(n)
k,i can be solved in closed form (see [14], [15]). Note that this precoder is basically the same precoder as that

based on the CSI MSE metric although the design considered inthis paper is based on the precoding MSE only

(see [14], [15]). Both linear precoders are robust against errors in CSI by means of regularization terms. Contrary

to the CSI MSE metric, however, where the precoder is based onalready optimized and fixed partition cells that are

independent of the channel statistics,1 the joint design according to the precoding MSE metric shownin this work

optimizes the precoder and the partition cells using the Lloyd algorithm. The Lloyd algorithm switches between the

precoder design and the partition cell computation and converges to locally optimum precoders and regions since

every step reduces the MSE, and the MSE is lower bounded. Notethat both, precoders and partition cells, must

be recomputed as soon as the channel statistics change. Additionally, note that the obtained estimators in Eq. (18)

are optimal for any codebook and the codebook entries in Eq. (30) are optimal for given partition cells. In the

next subsection, the optimal partition cells for given codebook entries are derived. This motivates the alternating

optimization of the Lloyd algorithm.

B. Partition Cells

In this subsection, we explain how to optimize the quantizerpartition cells. Since the receivers do not cooperate,

the estimates of other users are unknown to the quantizer of userℓ. Thus, we will design the regionsRℓ,i of theℓ-th

quantizer in order to minimize the distortiondℓ = E[‖u − û‖2
2|zℓ] for given codebook entriesPi, i = 1, . . . ,M ,

1Neglecting the effect of bit allocation.
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and according receive weightsgi, i = 1, . . . ,M . Motivated by the fact thatzℓ ∼ NC(0, I), i.e., the quantizer’s

inputs are Gaussian and uncorrelated, and that the computation of the precoders is difficult for vector quantization,

we restrict ourselves to scalar quantization which impliesthat the entries ofzℓ are quantized separately. In this

case, the partition cellsC(Re,n)

ℓ,j
(Re,n)
k

and C
(Im,n)

ℓ,j
(Im,n)
k

[see Eqs. (6) and (7)], that is, their corner coordinatesα
(Re,n)

ℓ,j
(Re,n)
k

,

β
(Re,n)

ℓ,j
(Re,n)
k

, α
(Im,n)

ℓ,j
(Im,n)
k

, and β
(Im,n)

ℓ,j
(Im,n)
k

of the scalar quantizers for, respectively, real and imaginary parts of then-th

entry zℓ,n of zℓ, minimize the distortions

d
(Re,n)
ℓ (ℜ[zℓ,n]) = E

[

‖u − û‖2
2

∣
∣
∣ℜ[zℓ,n]

]

=

M
(n)
ℓ∑

j=1

S
(Re,n)
ℓ,j (ℜ[zℓ,n]) d

(Re,n)
ℓ,j (ℜ[zℓ,n]) (31)

and

d
(Im,n)
ℓ (ℑ[zℓ,n]) = E

[

‖u − û‖2
2

∣
∣
∣ℑ[zℓ,n]

]

=

M
(n)
ℓ∑

j=1

S
(Im,n)
ℓ,j (ℑ[zℓ,n]) d

(Im,n)
ℓ,j (ℑ[zℓ,n]) (32)

respectively. Here,M (n)
ℓ is the number of codebook entries for the quantizers ofℜ[zℓ,n] andℑ[zℓ,n]. As a result

of computing these expressions for eachzℓ,n, we can obtain the indicesj(Re,n)
ℓ and j

(Im,n)
ℓ that minimize these

distortions, i.e., the respective partition cellsC
(Re,n)

ℓ,j
(Re,n)
k

andC(Im,n)

ℓ,j
(Im,n)
k

are optimized. Note that, given then–th quantizer

input of userℓ, zℓ,n, we assume that the other quantizer inputszk,n, with k 6= ℓ, are unknown and, therefore, it is

necessary to average over all the possiblezk,n. Although the other entrieszℓ,ν with ν 6= n are known to receiverℓ,

also over these quantities is averaged, since scalar quantizers are used. However, the corresponding cells are given

since the codebook design is centralized at the transmitterand stored at both the transmitter and all the receivers.

The distortions due to thej-th codebook entry for both real and imaginary entries of theinputzℓ,n read respectively

as [cf. Eq. (9)]

d
(Re,n)
ℓ,j (ℜ[zℓ,n]) =

∑

i∈P
(Re,n)
ℓ,j

pi

p
(Re,n)
ℓ,j



K + g2
i tr (Cη) −

K∑

k=1,k 6=ℓ

2ℜ
(
µT

k,iFiek

)

− 2ℜ
(

µ
(Re,n),T
ℓ,i Fieℓ

)

+ tr
(
CT

estimFiF
H
i

)
+

K∑

k=1,k 6=ℓ

tr
(
RT

k,iFiF
H
i

)
+tr

(

R
(Re,n),T
ℓ,i FiF

H
i

))

(33)

and

d
(Im,n)
ℓ,j (ℑ[zℓ,n]) =

∑

i∈P
(Im,n)
ℓ,j

pi

p
(Im,n)
ℓ,j



K + g2
i tr (Cη) −

K∑

k=1,k 6=ℓ

2ℜ
(
µT

k,iFiek

)

− 2ℜ
(

µ
(Im,n),T
ℓ,i Fieℓ

)

+ tr
(
CT

estimFiF
H
i

)
+

K∑

k=1,k 6=ℓ

tr
(
RT

k,iFiF
H
i

)
+tr

(

R
(Im,n),T
ℓ,i FiF

H
i

))

(34)

whereFi = giPi andek denotes thek-th column of theK × K identity matrix. Forµk,i andRk,i, see Eq. (22).

p
(Re,n)
ℓ,j =

∑

i∈P
(Re,n)
l,j

pi andp
(Im,n)
ℓ,j =

∑

i∈P
(Im,n)
l,j

pi are the probabilities ofℜ[zℓ,n] ∈ C
(Re,n)
ℓ,j andℑ[zℓ,n] ∈ C

(Im,n)
ℓ,j

[see Eqs. (6) and (7)], respectively. Additionally, the conditional momentsµℓ,i andRℓ,i under the conditionsℜ[zℓ,n]

March 26, 2012 DRAFT



14

andℑ[zℓ,n], denoted byµ(Re,n)
ℓ,i , µ

(Im,n)
ℓ,i , R

(Re,n)
ℓ,i , andR

(Im,n)
ℓ,i , can be found as follows [cf. Eq. (22)]:

µ
(Re,n)
ℓ,i = VℓΦℓ E [zℓ |zℓ ∈ Rℓ,i,ℜ[zℓ,n] ]

µ
(Im,n)
ℓ,i = VℓΦℓ E [zℓ |zℓ ∈ Rℓ,i,ℑ[zℓ,n] ]

(35)

and
R

(Re,n)
ℓ,i = VℓΦℓ E

[
zℓz

H
ℓ |zℓ ∈ Rℓ,i,ℜ[zℓ,n]

]
ΦℓV

H
ℓ

R
(Im,n)
ℓ,i = VℓΦℓ E

[
zℓz

H
ℓ |zℓ ∈ Rℓ,i,ℑ[zℓ,n]

]
ΦℓV

H
ℓ .

(36)

Following the nearest neighbor condition, the partition cellsC(Re,n)
ℓ,j must be chosen such that for any input

ℜ[zℓ,n] the minimum distortiond(Re,n)
ℓ,j (ℜ[zℓ,n]) is picked by the quantizer. Equivalently, for the imaginarypart,

the partition cellsC(Im,n)
ℓ,j are chosen such that for any inputℑ[zℓ,n] the quantizer uses the minimum distortion

d
(Im,n)
ℓ,j (ℑ[zℓ,n]). Sinceµ

(Re,n)
ℓ,i andµ

(Im,n)
ℓ,i are linear, andR(Re,n)

ℓ,i andR
(Im,n)
ℓ,i are quadratic functions ofℜ[zℓ,n]

andℑ[zℓ,n], respectively, the distortionsd(Re,n)
ℓ,j (ℜ[zℓ,n]) and d

(Im,n)
ℓ,j (ℑ[zℓ,n]) are also quadratic functions. Thus,

for the real part ofzℓ,n the optimal cell bordersα(Re,n)
ℓ,j and β

(Re,n)
ℓ,j are simply the roots of the quadratic

polynomial equationsd(Re,n)
ℓ,j (ℜ[zℓ,n])− d

(Re,n)
ℓ,j−1 (ℜ[zℓ,n]) andd

(Re,n)
ℓ,j (ℜ[zℓ,n])− d

(Re,n)
ℓ,j+1 (ℜ[zℓ,n]), respectively. The

two roots that determine both cell borders,α
(Re,n)
ℓ,j andβ

(Re,n)
ℓ,j , must verifyα

(Re,n)
ℓ,j−1 < α

(Re,n)
ℓ,j < β

(Re,n)
ℓ,j . Again,

similarly for the imaginary part ofzℓ,n, the region boundaries are given by the roots of the quadratic polynomials

d
(Im,n)
ℓ,j (ℑ[zℓ,n]) − d

(Im,n)
ℓ,j−1 (ℑ[zℓ,n]) andd

(Im,n)
ℓ,j (ℑ[zℓ,n]) − d

(Im,n)
ℓ,j+1 (ℑ[zℓ,n]).

C. Codebook Computation

Although the estimators and the quantizers are jointly optimized by minimizing the precoding MSE in Eq. (8), the

codebook parameters have to be computed only once since the channel estimators are independent of the codebook

choice [see Eq. (19)]. For the computation of the codebook parameters, we use the Lloyd algorithm (see [20], [21]),

i.e., we alternately optimize the precoders by using the centroid condition in Eq. (30) and optimize the partition

cells following the nearest neighbor condition as discussed in the previous subsection. Since the MSE in Eq. (26)

is reduced in every step and the MSE is non-negative, this iterative procedure converges.

The Lloyd algorithm is initialized with the quantizers based on codebooks appropriate for unit variance complex

Gaussian inputs [14]. Therefore, the parameters of these scalar quantizers can be stored and do not have to be

recomputed for varying channel statistics. As a consequence, the initialization of the proposed feedback scheme

based on the precoding MSE of Eq. (26) is very cheap.

Table I summarizes the overall design procedure for computing the codebook, which is basically a modified

version of the Lloyd algorithm. Note that this new codebook has to be recomputed each time that the channel

statistics change.

D. Bit Allocation

When using scalar quantization (transform coding, [21]) instead of vector quantization, the available bits have

to be allocated to the different scalar coefficients. Contrary to the case of CSI MSE based feedback, the distortion
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1. Setm = 1

2. Initial codebookC1 and regions{Ri}
M
i=1

3. Set the threshold to stop the iterationsǫmin and setǫ =∞

while ǫ > ǫmin do

4. obtain the quadratic functions:

∀l, j : d
(Re,n)
ℓ,j (ℜ[zℓ,n]) andd

(Im,n)
ℓ,j (ℑ[zℓ,n])

5. (Nearest Neighbor Condition) solve the quadratic equations:

∀l, j : d
(Re,n)
ℓ,j (ℜ[zℓ,n])− d

(Re,n)
ℓ,j−1 (ℜ[zℓ,n]) = 0 andd

(Re,n)
ℓ,j (ℜ[zℓ,n])− d

(Re,n)
ℓ,j+1 (ℜ[zℓ,n]) = 0

d
(Im,n)
ℓ,j (ℑ[zℓ,n])− d

(Im,n)
ℓ,j−1 (ℑ[zℓ,n]) = 0 andd

(Im,n)
ℓ,j (ℑ[zℓ,n])− d

(Im,n)
ℓ,j+1 (ℑ[zℓ,n]) = 0

to get the new partition regions{Ri}
M
i=1

6. compute the new conditional channel moments:

E [H |z ∈ Ri] andE
[
HHH |z ∈ Ri

]

7. (Centroid condition) compute the new precoders{Pi}
M
i=1

8. compute the precoding MSE metric for the new codebook (precoders) {Pi}
M
i=1

and the new partition regions{Ri}
M
i=1

9. m← m + 1

end while

TABLE I

CODEBOOK OPTIMIZATION .

function obtained for the case that the precoders are included in the optimization given by

MSE =

M∑

i=1

pi

(

K − 2ℜ (tr (MigiPi)) + g2
i tr (Cη) + g2

i tr
((

MH
i Mi + CT

estim+ CT
quantize,i

)
PiP

H
i

))

(37)

has a very complicated structure since all the parameters are mixed together. Thus, it is impossible to separate the

influence relative to each user and each scalar quantizer which makes it very difficult to find an efficient optimum

bit allocation. We can therefore decide the optimum bit allocation by trying out all the possible bit allocation

combinations and taking as a result the best one in terms of minimizing the MSE in Eq. (37).

The bit allocation optimization is expressed as

Bopt = argmin
B

MSE(B) subject to: B = [b1, . . . , bK ] ∈ B
N×K , bk = [bk,1, . . . , bk,N ]T

with B = 0, 2, 4, ... and
N∑

n=1

bk,n = Nbit (38)

whereB is the matrix that determines the bit allocation corresponding to the coefficients of each user andNbit

is the number of bits available for each user. Notice that only an even number of bits is used to quantize each

coefficient, since both real and imaginary parts of each coefficient make use of the same number of bits. Initially,

we use the scalar quantizers (codebook entries and partition cells) obtained from the CSI metric for a unit-variance

input as in [14].
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Bits per user No bit allocation Rank reduction Heur. bit allocation

Nbit = 6 [2, 2, 2, 0]T [4, 2, 0, 0]T Select the best from:

3 for real part [2, 2, 2, 0]T, [4, 2, 0, 0]T

3 for imaginary part [6, 0, 0, 0]T

Nbit = 8 [2, 2, 2, 2]T [4, 4, 0, 0]T Select the best from:

4 for real part [2, 2, 2, 2]T, [4, 2, 2, 0]T

4 for imaginary part [4, 4, 0, 0]T, [6, 2, 0, 0]T

[8, 0, 0, 0]T

Nbit = 10 [4, 2, 2, 2]T [4, 4, 2, 0]T Select the best from:

5 for real part [4, 2, 2, 2]T, [4, 4, 2, 0]T

5 for imaginary part [6, 4, 0, 0]T, [8, 2, 0, 0]T

[10, 0, 0, 0]T

TABLE II

NUMBER OF BITS ASSIGNED PERUSER’ S COEFFICIENT FORPRECODINGMSE METRIC.

When the number of bits is low, there are no serious problems arising from the computational complexity, but

the search for optimum bit allocation becomes infeasible asthe number of bits increases. Therefore, we propose a

heuristic solution to the problem by reducing the number of combinations to be tested on the MSE. It seems that

an uniform distribution over all the coefficients without implementing rank reduction is the most likely allocation

in the sense of minimizing the MSE. Thus, a first trial consists of distributing the bits over all the coefficients as

uniformly as possible. On the other hand, it is obvious that the coefficients with more energy, i.e., the coefficients

whose eigenvalues are larger, have more impact on the final MSE performance and, therefore, we must tend to

allocate more bits to the first coefficients in order to minimize the MSE. Bearing this fact in mind, successive

combinations will move the bits from the initial bit allocation to the coefficients with larger eigenvalues. Therefore,

the MSE of Eq. (37) is sequentially computed by following this ordering for bit allocation so the process is stopped

when, given a certain bit allocation, the MSE is greater thanthe previous one in the list. This will be termed

heuristic bit allocation.

To illustrate this idea, let us assume that we have to distribute 8 bits for each user (see Table II). According

to the heuristic bit allocation described above, the chain of possible bit allocations is given by[2, 2, 2, 2]T →

[4, 2, 2, 0]T → [4, 4, 0, 0]T → [6, 2, 0, 0]T → [8, 0, 0, 0]T. Imagine the combination given by[4, 2, 2, 0]T gives us

less MSE than[2, 2, 2, 2]T. In that case, we have to test the result when[4, 4, 0, 0]T is considered. As long as the

new MSE obtained is less than the previous one, we have to continue with the search until the last possibility

embodied by[8, 0, 0, 0]T. If not, we choose[4, 2, 2, 0]T as the optimum bit allocation for our joint approach based

on precoding MSE metric. This heuristic solution significantly reduces the computational complexity of the search

with negligible loss in performance.
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Fig. 3. MU–MISO system with robust linear precoding,N = 4 antennas,K = 2 users, and8 bits per user.

VI. SIMULATION RESULTS

Given the enormous computational complexity due to the calculation of the distortions in Subsection V-B, we

consider a system with a transmitter equipped withN = 4 antennas that servesK = 2 users using QPSK modulation.

We use the urban microSpatial Channel Model(SCM) described in [22], which is the most difficult for precoding,

out of the three spatial channel models introduced in [22], because the second and the third channel eigenvalues

have a non-negligible magnitude. The results for the CSI metric are the mean of100 channel realizations with1 000

symbols being transmitted per channel realization. The number of averaged channel settings or channel covariance

matrices is10. The training sequence hasNtr = 16 symbols. In the figures, the number of bits per user is given in

the legends. Although the optimization of Eq. (27) gives theweight gopt,i, we use MMSE receive weights instead

those weights arising from the optimization to correct the phase caused by imperfect CSI at the transmitter and get

an approximately coherent detection [14], [15].

We implemented three different types of bit allocation. First, no bit allocation, which tries to spread the bits as

uniformly as possible (in the case that any bits are left over, e.g. with10 bits for 4 dimensions, the dimensions

corresponding to the largestφk,i get additional bits). Second,rank reduction, which allocates as evenly as possible

the bits to the firstd dimensions. And third, theheuristic bit allocation, which tries out different bit allocations

and takes the result of the best one. Remember that we do not try all the possible combinations but the heuristic

search explained in Subsection V-D is performed instead. Toillustrate the different strategies, Table II summarizes

the bit allocation strategies for different number of bits per user.
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Fig. 4. MU-MISO system with robust linear precoding,N = 4 antennas,K = 2 users with different number of bits per user.

In Fig. 3, the feedback design based on the CSI MSE discussed in [14], [15] is compared to the scheme proposed

in this paper, that minimizes the precoding MSE, for8 bits fed back per user. As expected, bit allocation has a

considerable impact on the BER performance and the feedbackdesign based on the precoding MSE outperforms

the CSI MSE feedback.

Though the result that the uncoded BER saturates for high SNRis disappointing, it cannot be avoided in a

system with limited rate feedback (e.g., eight bits per userin Fig. 3). The saturation of the BER results from the

residual interference caused by the errors in the channel state information delivered to the transmitter via limited

rate feedback. To circumvent this saturation, a feedback data rate increasing with the SNR would be necessary (see

e.g., [23]). However, such a setup is impractical.

Similar results were obtained for a higher and lower number of bits per user, as shown in Fig. 4. Not surprisingly,

a higher number of bits per user improves the BER performanceof all schemes. Additionally, it seems that the

advantage of the precoding MSE based design compared to the CSI MSE based design becomes more pronounced

for a higher number of bits as the degrees of freedom increase.

Notice that, independently from the number of bits fed back per user, rank reduction always shows a loss in

performance with respect to heuristic bit allocation sincethe information contained on some coefficients is dropped.

VII. C ONCLUSIONS

In this work, we have shown how to obtain the robust precoder parameters, the channel estimators, and the

quantizer parameters in a joint optimization by minimizingthe MSE between the transmitted symbols and the

March 26, 2012 DRAFT



19

estimated symbols. Interestingly, the channel estimatorsand precoders obtained with the metric oriented to the

precoder are equal to the estimators and precoders resulting from the joint optimization based on minimizing the MSE

between the true and estimated channel presented in [14], [15]. However, the crucial part of the scheme proposed

in this work is the design of the partition cells corresponding to each user, which are designed by minimizing its

own distortion but averaging over the quantizer inputs for the other users, since there is no cooperation between

users in the downlink of a multiuser MISO system.

As a result, we get better BER performance with a no increase of the overhead in the feedback channel. The

transmitter performs the intersection of the precoder setscorresponding to the indices received from all the users

to find out the optimal precoder to be used during the transmission. It is important to note that the codebook

entries are now the precoders rather than the white channel coefficients. Therefore, it is obvious that the design of

the quantizer parameters (i.e., the codebook entries and the partition cells) becomes the hardest part of this new

precoding approach, with the advantage of minimizing the MSE by including the precoder in the optimization. This

improvement is even more significant when the number of fed-back bits per user is increased, albeit at the cost of

higher computational complexity.
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