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When you set out on your journey to Ithaca,

then pray that the road is long,

full of adventure, full of knowledge.

The Lestrygonians and the Cyclops,

the angry Poseidon... do not fear them:

You will never find such as these on your path,

if your thoughts remain lofty, if a fine

emotion touches your spirit and your body.

Ithaca, Constantine P. Cavafy (1911)

iii





Acknowledgments

The journey has been long, and truly full of adventure and knowledge, and it would

not have been possible without the support of many people I would like to thank.

Over the last years I have realized how my life has directed me to this moment.

Research has always been part of my life; I can not forget the Christmas when being

a 9-year-old girl my grandpa gave me a microscope or when my parent introduced

me to computers through the “attractive” MS-DOS or how I was always asking how

things work... Observation and curiosity are the two things that start the scientific

process, they both have accompanied me through years and I am sure they will

never leave me.

Several are the reasons I want to express my gratitude to my parents: they raised

me with love, taught me, provided me with unfailing support throughout my years

of study and through the process of researching this thesis and they allowed me to

be as ambitious as I wanted. Even if being an only child was great for a while,

they gave me a little sister so I can learn to share, to be patient and to care about

someone.

No one knows better than Pablo all the crazy ups and downs this journey has

brought me over the past few years. During these years of study and research, the

best outcome was finding the better person to share my life and all the journeys it

bring us with. Only one more thing to say to you: I know you will!

I also would like to extend my gratitude to the many people who helped to bring

this research project to fruition. First, I would like to thank my advisors. Manuel

G. Penedo for providing me the opportunity of taking part of the VARPA group and

for always being available to advise me. Marcos Ortega whose valuable guidance

has contributed to the success of this research.

I would also like to thank the experts from the Unit Dual Sensory Loss of the Fac-

ulty of Optics and Optometry of the University of Santiago de Compostela (Spain)

who proposed us to automate their manual processes: Luz Gigirey and Covadonga

v



Vázquez. Thank you for bringing me closer to the clinical world and sharing your

valuable experience.

My sincere thanks to my lab mates for their moral support, cheerfulness and fun.

You know how important a little of crazy is to survive a PhD.

Last but not least, thanks to all the friends and family who have walked with

me the path to becoming a doctor.

This journey is worth the highs and lows! Promise!

Alba Fernández Arias



Abstract

Hearing loss is a partial or full decrease in the ability to detect or understand sounds

which affects a wide range of population, and has a negative impact on their daily

activities. Pure Tone Audiometry is the standard test for the evaluation of the

hearing capacity. During the performance of this hearing assessment the audiologist

also tries to identify patients with abnormally slow responsiveness by means of their

response times to the perceived sounds. This identificacion is relevant since it could

be a symptom of any medical condition that should be studied. The other main

target is the evaluation of patients with cognitive decline or severe communication

disorders, since when evaluating this specific group of patients it is not possible to

maintain a normal question-answer interaction. In these cases the expert must focus

his attention on the detection of unconscious gestural reactions to the sound.

The subjective involved in the interpretation of both aims may affect the clas-

sification, introduces imprecisions, limits the reproducibility and also a high degree

of inter- and also intra- observer variability can be produced. In this manner, the

development of a systematic, objective computerized method for the analysis and

classification of response times and gestural reactions to the sound is thus highly

desirable, allowing for homogeneous diagnosis and relieving the experts from this

tedious task.

The proposal of this research is the design of an automatic system to assess the

gestural reactions to the sound and the patient’s response times by analyzing video

sequences recorded during the performance of the audiometric evaluations. On the

one hand, the response times are measured by detecting the auditory stimuli deliver-

ing and the patient’s hand raising (which corresponds with a positive response). On

the other hand, the gestural reactions to the sound are identifed by analyzing the

eye movements using two different approximations. The different automated assess-

ments proposed save time for experts, improve the precision and provide unbiased

results which are not affected by subjective factors.
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Resumen

La pérdida de audición consiste en una disminución parcial o total de la capacidad

para percibir sonidos que afecta a un amplio rango de población y tiene un impacto

negativo en sus actividades diarias. La audiometŕıa tonal liminar es uno de los tests

estándard para la evaluación de la capacidad auditiva. Durante la realización de esta

evaluación el audiólogo trata paralelamente de identificar pacientes con tiempos de

respuesta anormalmente lentos. Esta identificación es relevante pues podŕıa tratarse

de un śıntoma asociado a alguna patoloǵıa que debiera ser estudiada. El otro objetivo

principal es la evaluación de pacientes con deterioro cognitivo o trastornos graves de

comunicación, puesto que no es posible mantener una interacción t́ıpica de pregunta-

respuesta cuando se evalúa su audición. En estos casos, el experto debe centrar su

atención en la detección de reacciones gestuales espontáneas al sonido.

La subjetividad implicada en la interpretación de ambos objetivos puede afectar

a la clasificación, introducir imprecisiones, limitar la reproducibilidad y también

producir un alto grado de inter e intra varibialidad del observador. En este sentido,

el desarrollo de un método automatizado, objetivo y sistemático para el análisis y

clasificación de los tiempos de respuesta y de las reacciones gestuales al sonido es, por

tanto, altamente conveniente, permitiendo un diagnóstico homogéneo y relevando a

los expertos de esta tediosa tarea.

El propósito de esta investigación es el diseño de un sistema automático para la

evaluación de las reacciones gestuales y los tiempos de respuesta a través del análisis

de secuencias de v́ıdeo grabadas durante el desarrollo de la prueba audiométrica. Por

una parte, los tiempos de respuesta se miden detectando el env́ıo de est́ımulos y la

respuesta positiva del paciente (expresada levantando la mano). Por otra, las reac-

ciones gestuales son identificadas analizando los movimientos de la mirada usando

dos aproximaciones diferentes. Las diferentes propuestas automatizadas presentadas

ahorran tiempo a los expertos, mejoran la precisión y proporcionan resultados ob-

jetivos que no se ven afectados por factores subjetivos.
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Resumo

A perda de audición consiste nunha disminución parcial ou total da capacidade para

percibir sons que afecta a un amplo rango da poboación e ten un impacto negativo

nas súas actividades diarias. A audiometŕıa tonal liminar é un dos tests estándard

para a avaliación da capacidade auditiva. Durante a realización desta avaliación o

audiólogo trata paralelamente de identificar pacientes con tempos de resposta anor-

malmente lentos. Esta identificación é relevante pois poderá tratarse dun śıntoma

asociado a algunha patolox́ıa que debese ser estudada. O outro obxectivo principal

é a avaliación de pacientes con deterioro cognitivo ou trastornos graves de comuni-

cación, posto que non é posible manter unha interacción t́ıpica de pregunta-resposta

cando se avaĺıa a súa audición. Nestes casos, o experto debe centrar a súa atención

na detección de reaccións xestuais espontáneas ao son.

A subxectividade implicada na interpretación de ambos obxectivos pode afectar

á clasificación, introducir imprecisións, limitar a reproducibilidade e tamén producir

un alto grao de inter e intra varibialidade do observador. Neste sentido, o de-

senvolvemento dun método automatizado, obxectivo e sistemático para a análise e

clasificación dos tempos de resposta e das reaccións xestuais ao son é, por tanto, al-

tamente conveniente, permitindo unha diagnose homoxénea e relevando aos expertos

desta tediosa tarea.

O propósito desta investigación é o diseño dun sistema automático para a avaliación

das reaccións xestuais e os tempos de resposta a través da análise de secuencias de

v́ıdeo grabadas durante o desenvolvemento da proba audiométrica. Por unha parte,

os tempos de resposta mı́dense detectando o env́ıo de est́ımulos e a resposta pos-

itiva do paciente (expresada levantando a man). Por outra, as reaccións xestuais

son identificadas analizando os movementos da mirada usando dúas aproximacións

diferentes. As diferentes propostas automatizadas presentadas aforran tempo aos

expertos, melloran a precisión e proporcionan resultados obxectivos que no se ven

afectados por factores subxectivos.
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Chapter 1

Introduction

Hearing is the sense that enables the sound to be perceived. It is a major function of

the ear. Any reduction in the ability to perceive sounds results in hearing loss. Hear-

ing loss is an invisible condition implying a sudden or gradual decrease of hearing.

Although hearing loss is a global phenomenon and it extends to all age groups, there

is a progressive loss of sensitivity to hear high frequencies with increasing age. The

latest report on Aging by the General Foundation of the CSIC (IMSERSO, 2010)

states that the most common and earlier disability is the decrease of the sensory

abilities: hearing and vision. Furthermore, hearing loss is the third most preva-

lent chronic health condition facing older adults (Collins, 1997), and it is also one

of the most widely under-treated conditions. Hearing impairment commonly im-

plies problems to understand speech and to communicate, which results in a feeling

of progressive confinement. Different studies (Davis, 1989) have demonstrated the

considerable negative effects that untreated hearing loss may have on the physical,

social, psychological and cognitive well-being of a person.

Besides, population aging is a demographic revolution affecting the entire world

(IMSERSO, 2008; Kalache, Barreto, & Keller, 2005). This increase in longevity

involves a parallel increase of the years lived with incapacity and invalidity. Related

with hearing, the age distribution changes due to aging population have as conse-

quence not only a higher prevalence of hearing problems, but also a greater severity

of their effects. Age-related hearing loss, also called presbycusis, is characterized

by elevated hearing thresholds, difficulties to understand speech in noisy and rever-

berant environments and interferences in the perception of rapid changes of speech.

In turn, with age increases the possibility of emergence of neurodegenerative disor-

ders and communication problems. This problematic also implies limitations on the

1
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evaluation of the hearing capacity that are going to be considered later.

The World Health Organization (WHO) has set the criteria for hearing loss

above 25dB, i.e., a person with hearing thresholds above 25dB in both ears is not

able to hear as well as someone with normal hearing (with hearing thresholds of

25dB or better), so it is said that he or she suffers from hearing loss. Hearing

loss may be mild, moderate, severe or profound. It can affect to one or both ears.

Hard of hearing refers to people with hearing loss ranging from mild to severe.

Profound range corresponds with deafness and it implies very little or no hearing.

Disabling hearing loss (which corresponds with the profound range) refers to hearing

loss greater than 40dB for adults and a hearing loss greater that 30dB in children.

People with hard of hearing need to be proper diagnosed so they can benefit from

hearing aids, assistive listening devices or cochlear implants.

Over the 5% of the world’s population has disabling hearing loss (328 million

adults and 32 million children). Recent studies indicate that hearing problems are at

an increasingly early age (Agrawal, Platz, & Niparko, 2008). Davis (1989), Director

of the MRC Hearing & Communication Group at the University of Manchester,

estimates that more than 700 million people all over the world will suffer hearing

loss over 25dB for 2015, increasing this number to 900 million people worldwide for

2025.

Lack of hearing is one of the most frequent sensory deficits among elder popula-

tion. It certainly extends to all age ranges, but it is among elder people where it has

a higher incidence. According to the National Institute of Deafness and Other Com-

munication Disorders (of Deafness & Disorders, 2009) about 2% of North American

adults aged 45 to 54 have disabling hearing loss, the rate increases to 8.5% for adults

aged 55 to 64, nearly 25% of those aged 65 to 74 and 50% of those who are 75 and

older have disabling hearing loss. Meanwhile, the Australian Hearing Annual Report

(Hearing, 2009) states that more than half of individuals aged between 60-70 years

have some hearing deficit, increasing to 70% for people with 70 years old or more.

In general terms, approximately one-third of people over 65 years of age are affected

by disabling hearing loss. The prevalence in this age group is greatest in South Asia,

Asia Pacific and sub-Saharan Africa. In general terms, population aging is a global

reality (IMSERSO, 2010). Its onset is usually insidious but it gradually worsens.

Different studies have demonstrated the considerable negative effects that un-

treated hearing loss may have on the physical, social, psychological and cognitive

well-being of a person (Davis, 1989; Ciorba, Bianchini, Pelucchi, & Pastore, 2012;

Kochkin & Rogin, 2000). Impaired hearing results in distorted or incomplete com-
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munication. In fact, those who suffer from hearing loss can experience an incomplete

communication which will impact negatively to their social lives, at times leading

to isolation, withdrawal and lack of independence.

Hearing loss is the disability more closely related to aging (Davis, 1989; Mul-

row et al., 1990). In turn, with age it also increases the possibility of emergence of

neurodegenerative disorders and communication problems. One of the most com-

mon demonstrations of neurodegenerative disorders is the Alzheimer’s disease, which

tends to affect people over the age of 65 (Acton, 2013). The prevalence of neurode-

generative disorders and specially of Alzheimer’s disease is increasingly significant.

Worldwide, nearly 44 million people are believed to be living with Alzheimer’s dis-

ease or other dementias. By 2030, if breakthroughs are not discovered, we will see

an increase to nearly 76 million. By 2050, rates could exceed 135 million of people

affected by Alzheimer’s disease.

Furthermore, recent investigations show that hearing loss is a potential risk factor

for cognitive impairment (Lin, 2011). In turn, there is scientific evidence of a possible

association between decreased hearing and an increase in Alzheimer’s disease (Lin,

2011). Older adults with hearing loss have a rate of cognitive decline that is up to

40% faster than the rate in those with normal hearing. Lin et al. (2013) state that

rates of cognitive decline and the risk for incident cognitive impairment are linearly

associated with the severity of an individual’s baseline hearing loss. This study also

estimates that for 2050, 100 million people may suffer different problems related

with cognitive decline.

The reasons of this association between hearing loss and cognitive decline might

be due to the social isolation that suffer those individuals with degraded hearing,

since this social isolation has long-term consequences to healthy brain functioning.

Besides, hearing loss may also force the brain to devote too much energy on pro-

cessing sound, reducing the energy spent on memory or thinking. Co-pathology is a

major complication for the diagnosis of hearing problems. Almost all elderly adult

will develop some degree in cognitive decline capacity as time progresses. Since aging

is highly related to both hearing loss an age related cognitive decline, the coexistence

of these two conditions is substantially likely.

The use of hearing aids and hearing rehabilitation process is closely related to

the improvement of the social, emotional, psychological, and physical well being of

people with hearing disabilities (Gatehouse, Naylor, & Elberling, 2003; of Deafness

& Disorders, 2009). Modern hearing aids improve speech intelligibility and therefore

communication. The benefits of hearing aids have been demonstrated throughout
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different scientific research. All these considerations highlight the importance of the

conduction of regular hearing checks, specially among the elder population or in case

of doubt about the ability of hearing at any age.

Pure-Tone Audiometry (PTA) (addressed throughout Chapter I) has been un-

equivocally described as the gold standard test for the clinical evaluation of the

hearing sensitivity. It determines the faintest tones a person can hear at selected

frequencies. This test allows the audiologists to evaluate the hearing capacity and

also to determine the prevalence of hearing problems. It is a subjective behavioral

measurement of the hearing thresholds, as it relies on the patient response to the

pure tone stimuli. Therefore, patient’s cooperation is required during the test pro-

cedure, which may involve certain operational constraints that will be discussed

soon.

During the audiometric evaluation, pure tones are delivered to the patient via

earphones and the patient must indicate when he perceives the stimulus (typically,

by raising his hand). The performance of this test is typically a completely manual

process, which entails certain problems. The measurement of the response times is

an additional evaluation that the audiologists accomplish during the hearing assess-

ment. This measure is relevant for the identification of patients with abnormally

slow response times, which can be a symptom of any medical condition that should

be studied. The problem here is that the expert must have treated and studied a

large number of patients in order to be able to know what the average behavior is.

Despite the audiologist’s skills this is a subjective task making it prone to errors and

imprecisions. Even if the audiometric evaluations were recorded in video for a later

analysis, the measurement of the response times would be really time consuming for

the expert. This is why an automated solution would be very helpful so it would

speed up the process and would provide accurate and reproducible measurements.

However, in the case of patients with cognitive decline (or other severe com-

munication disorders), the standard protocol becomes unenforceable since no active

interaction audiologist-patient is possible. This specific group of patients has lim-

itations when it comes to maintaining a normal interaction, limitations that are

aggravated as the cognitive decline worsens. Even though the evaluation of these

patients becomes much more complex, it is still possible is the audiologist focus his

attention on the detection of spontaneous subtle facial reactions. The subjectivity

involved in the gesture interpretation and the subtlety of the facial reactions makes

of this task an imprecise problem, prone to errors and difficult to reproduce. All

these reasons make clear the improvements that an automated solution could offer
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by assisting the audiologists in the detection and interpretation of these unconscious

gestural reactions.

The main goal of this thesis is to provide an automatic tool for assisting the

audiologist in the evaluation of the hearing capacity. To that end, the detection

of the positive responses and the measurement of the reaction times should be ac-

complished. For overall patients, the typical positive response to the sound that

must be detected is the hand raising. In order to extend this automatic tool for the

particular case of patients with cognitive decline or severe communication disorders

it is necessary to analyze the unconscious gestural reactions to the sound as well.

Although they already exist manual solutions for these problematics, they are highly

affected by the subjective interpretation of the observer. Training and experience

also affect the interpretation of the gestural reactions, while a manual measurement

of the response times from a recorded video sequences is very time consuming for the

expert. Different computer vision techniques are studied, proposed and evaluated

in order to provide an automated methodology which assists the audiologists in the

two mentioned problematics.

1.1 Overview

The proposal of this research is to design a system to perform different automatic

assessments in the evaluation of the hearing capacity. This system is based on the

interpretation of the images acquired with a conventional video camera during the

performance of the audiometric evaluations. Different image processing techniques

and machine learning algorithms are applied in the development and validation of

the automated assessments following presented.

This chapter has introduced the main topics to be presented in this work an a

general description of our domain.

Part I initially describes the methodology traditionally conducted by the audi-

ologist to assess the hearing capacity. Throughout this Part a methodology for the

automatic assessment of general patients is proposed by assuming the hand raising

as the expected positive response. This methodology also addresses the measure-

ment of the patient’s response times, and it also evaluates the separability between

“normal” and “slow” patients. At the end of this Part, in Chapter 3, a web appli-

cation designed for the audiologists providing an interface that facilitates the use of

the automatic methodology is presented.



6 1. Introduction

The main operational problem arrives when the audiologist tries to evaluate

patients with cognitive decline or severe communication disorders and a typical

question-answer interaction can not be maintained. Throughout Part II different ap-

proaches for the detection of unconscious eye-based gestural reactions to the sound

are presented. The first approach is carried out using optical flow and machine learn-

ing algorithms. Then, a second approach addresses an alternative solution for the

detection these unconscious eye-based gestural reactions to the sound based on the

color distribution of the sclera (the white area in the eye). The previous approaches

provide accurate (but not optimum) results and they are based on different but

complementary foundations, for this reason, a final combination of both techniques

is proposed in order to improve the global accuracy. At the end of this Chapter

a final improvement in order to increase the classification accuracy of the relevant

categories by the use of machine learning techniques is presented.

Finally, Chapter 7 provides a brief overview of some concluding remarks and

proposes some future lines of research.

Appendices from A to D address different issues that complement the information

depicted throughout the different chapters. Notice that Appendix E reports the

author’s key publications and mentions.
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Chapter 2

Hearing assessment

This Part introduces the methodology for automatizing the hearing assessment by

the analysis of video sequences recorded during the perfomance of the audiometric

evaluations. In order to properly understand the domain and the related circum-

stances it is necessary to provide first a general description of the protocol for hearing

assessment.

Pure-Tone Audiometry (hereinafter PTA) is the standard test to identify the

hearing threshold levels of an individual. It determines the faintest tones a person

can hear at selected frequencies. It allows the audiologist to diagnose the presence

or absence of hearing loss by determining the softest sound that can be perceived in

a controlled environment. PTA is a subjective, behavioral measurement of hearing

threshold, as it relies on patient response to pure tone stimuli. Behavioral hearing

tests require the participant to reliably demonstrate a change in behaviour when

a test sound is heard. Therefore, PTA is mainly used on adults and children old

enough to cooperate with the test procedure. PTA provides ear specific thresholds,

and uses frequency specific pure tones to give place specific responses, so that the

configuration of a hearing loss can be identified.

The test should be conducted in a specific soundproof room or a quiet place with

no noises. The patient wears earphones connected to a device called audiometer (a

sample of this kind of devices can be seen in Figure 2.1), so auditory stimuli can

be delivered to each ear separately. These auditory stimuli are pure-tone sounds at

different frequencies and intensities. The audiologist will test if the patient is able to

hear a variety of different pitches. Cooperation is needed during the test procedure,

since the patient taking this test is typically asked to raise his hand or to show some

kind of positive reaction when he perceives the sound.

9
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Figure 2.1: Madsen Xeta by Otometrics audiometer.

The results of hearing sensitivity are plotted on a graph called audiogram (see

Figure 2.2), which is a graph displaying intensity as a function of frequency. The

frequency in hertz (Hz) is displayed over the horizontal axis (with low frequencies

on the left increasing to high frequencies on the right), and a linear dBHl scale on

the vertical axis. There will be a series of symbols across the chart (see Figure 2.3).

The position of these symbols on the chart indicates the quietest sounds the patient

can hear at different frequencies.

The frequencies more commonly tested are 100, 250 and 500 Hz, and 1, 2, 4,

and 8 KHz; and the intensities are commonly plotted range from -10dB to 110dB,

in multiples of 10. The range between 100Hz and 8KHz represents the most impor-

tant levels for clear understanding of speech. The results of the audiometric test

determine the subject’s hearing levels. Normal conversation speech is about 45dB.

Normal hearing is expected to be between -10dB and 20dB. According to the ob-

tained results hearing can be classified in (see Figure 2.2): normal hearing, mild

hearing loss, moderate hearing loss, moderately severe hearing loss, severe hearing

loss and profound hearing loss.

Prior to any exploration, an otoscopic examination is performed to check the

absence of any obstruction (e.g, earwax) in the outer ear canal, since obstructions

can interfere to the hearing capacity; for this reason, they must be solved prior to

any audiometric evaluation. For this exploration, audiologist typically use a manual

otoscope. In the case of excessive cerumen in the ear canal (inability to see more

that the 50% of the tympanic membrane), the patient must be referred to the ap-

propriate specialist and the hearing assessment must be rescheduled. This otoscopic
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Figure 2.2: Audiogram sample. According to the results charted here, hearing can be

classified in: normal, mild, moderate, moderately severe, severe or profound.

Figure 2.3: Audiogram sample. The X ’s and blue lines are responses for the left ear and

the 0 ’s and red lines correspond with the right ear.
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examination allows also to determine if the eardrum presents any damage that can

reduce hearing, such as perforations in the eardrum of congenital malformations, cir-

cumstances that should be considered in the interpretation of the hearing assessment

results.

Next, the audiologist explains to the patient the protocol for the audiometric test.

Since it is a behavioral test, it is highly important that the patient understands the

instructions given. This need of understanding is what makes difficult the assessment

of patients with cognitive decline or patients with a profound hearing loss without

hearing aids. For patients without impairments, the audiologist indicates to them

that they are going to receive different types of auditory stimuli via earphones and

that they must respond to them affirmatively, usually by raising his hand, when

they perceive them. Since each ear is evaluated separately, patient must respond

consistently, by raising his right hand when he perceives the auditory stimuli on the

right ear, and equivalently for the left ear.

The performance of the PTA allows the audiologist to evaluate air and bone

conduction, this way, the type of hearing loss can also be identified via the air-bone

gap. For the air conduction audiometry, the patient wears conventional earphones

and the results establish the extent of sound transmission through the bones of the

middle ear. For bone conduction, patient wears a vibrating ear-piece placed behind

the ear next to the mastoid bone. This bone vibrator uses the skull to transfer the

sound vibrations to the cochlea (the hearing organ of the inner ear), by-passing the

ear canal and middle ear. Thresholds obtained with the bone conductor are called

bone conduction thresholds. Occasionally a wind-like noise called masking is used to

occupy one ear while the tester determines in which ear the beeps are being heard.

Results of bone conduction determine the extent to which there is sensorineural

hearing loss. If a hearing loss exists, bone conduction helps the audiologists to

determine whether the problem is in the outer, middle, or inner ear. If hearing

difficulty is due to a problem with the middle ear it can be due to ear infection;

however, if the problem is in the inner ear it may be due to aging, noise exposure,

or a variety of other causes.

The auditory stimuli are sent through an audiometer, where the audiologist sets

the different frequencies and intensities that he wants to test. Once the expert

has selected the frequency and the intensity, he delivers the auditory stimuli to the

patient and waits for his reply. This way, the examiner systematically finds the

softest sounds the patient can hear across a range of frequencies and determines the

hearing thresholds (the softest sounds that the patient is able to perceive). If the
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patient is able to perceive the stimulus he raises his hand (see Figure 2.4); in the

event the patient does not respond to the delivered stimulus, the audiologist can

try to deliver the same stimulus again of to increase the intensity and send a new

stimulus. In the case of patients with cognitive decline, the communication process

will be more complex, but the handling of the audiometer and the delivery of the

auditory stimuli remain the same.

Figure 2.4: Audiometry sample into a soundproof room. The patient raises his hand to

indicate a positive response.

It must be noted here that it is highly important for all this kind of procedures to

maintain this clinical protocol as maximum stable as possible, without involving sig-

nificant changes in the behavior of the patient or the audiologist. A quiet and silent

environment is required for the proper development of audiometric evaluations. Be-

sides, a high level of concentration is required from the patient, since forgetfulness or

lack of concentration could lead to inaccurate diagnosis. It has been observed by the

experts that significant changes over the traditional protocol affect to the patient’s

concentration, for this reason, it is required to modify this protocol as minimum as

possible, which adds difficulties to provide automated technical solutions.

As mentioned before, the typical expected response during an audiometric eval-

uation is the hand raising, so this is the behavior that we are going to automatically
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detect with the proposed methodology. Besides providing a system able to analyze

the video sequences recorded during the performance of the audiometric evaluations

and automatically detect the patient’s positive responses as the audiologist does, it

is also important for us to measure the response times. A standard psychometric

measurement is response time, the interval elapsing between a stimulus and a re-

sponse. A substantial part of the response time reflects a central delay due to the

brain processing the input and elaborating a response. Inefficient central processing,

lack of motivation or low stimulus intensity (which raises doubts in the patient) are

among factors that increase reaction times.

The classification of patients according to how quickly or not they respond to

the auditory stimuli requires a certain degree of expertise to the audiologist. This

classification allows the experts to detect those patients who have a response time

considerably slow compared to the average. The importance of the detection of

patients with response times abnormally slow relies on the possible association of

this slowness as a symptom of some type of cognitive problems or other pathologies

that should be studied. In the case of response times abnormally slow, patients

are referred to an specialist. Response times in audiometries had been also under

study for clinical evaluations as the one presented in (Kelly, Walsh, Norman, &

Cunningham, 1999), where a study about the influences on the reaction times under

the effects of an specific drug was conducted.

To carry out this discrimination between normal and slow patients, the expert

must have treated and studied a large number of patients in order to determine

what the average behavior is, and thus, to be able to correctly classify the patients

according to their response times. Still, even for experts with enough experience,

this is a subjective task, which makes it very prone to errors. It is important to note

that, sometimes, slowness on the patient’s movements might confuse the expert’s

interpretation. Furthermore, the main target of the audiologist it to be focused on

the hearing assessment (handling the audiometer, waiting the patient’s answer and

registering results); for this reason, the fact of having to be focused on the response

times too might be lead to imprecisions.
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2.1 The automatic proposal

During the audiometric evaluation the patient is asked by the audiologist to raise his

hand when he perceives the auditory stimuli that are delivered to him through the

audiometer. Prior to this proposal there was not any tool to assist the audiologist

during this analysis, so the only conclusions that the expert could draw from the

test about the patient’s behavior were qualitative interpretations based on his ex-

perience. That is the main reason why the expert’s conclusions could be sometimes

subjective or influenced by previous experience with the patient. By automating the

detection of the hand raising and automatically measuring the response times we

allow the experts to extract quantitative information about the patient’s response

making possible the performance of new surveys and statistical studies. Besides,

since the hearing assessment are recorded in video, experts can evaluate the tests

after they have been conducted and compare their impressions with the objective

measurements provided by the methodology

The possibility of registering the tests on video allows the expert to assess the

results, and even to be interpreted by more than one expert in order to obtain a

classification more robust and less biased, but this solution has the problem of being

a slow process that requires a lot of time by the expert contributors, which is an

additional problem of the manual approach.

For all these reasons, an automated solution is very relevant in this domain in

order to speed up the process and to obtain accurate and reproducible measurements

allowing an objective classification. This proposal will also pave the way for a totally

automated hearing assessment system. A novel method is proposed for human

body part detection focused on face and hands or arms detection for automatizing

the audiometric process (Fernández et al., 2012). This justifies the introduction

of computer vision techniques in order to automate a number of processes of the

problem by analyzing video sequences: detection of the stimuli sending, detection of

the patient, detection of the hand raising and measurement of the response times.

The proposed methodology needs to detect the patient and to be able to measure

how long he takes to positively react to the auditory stimuli, which in this case is

manifested by a hand raising. A schematic representation of the methodology is

depicted in Figure 2.5. The stimuli detection stage is accomplished due to the need of

correlating the patient’s responses and the auditory stimuli that he receives and it is

dependent on the device used by the audiologist. The response reaction corresponds

with the part aimed to detect the patient’s hand raising. And finally, the analysis
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of responses to the stimuli correlates both information and provides a measurement

of the response times. Each one of these steps is going to be addressed through the

next sections, but first, we are going to detail the video sequence acquisition.

 

Stimuli 
detection

Response
detection

Analysis of the
responses to 
the stimuli

Video 
sequence
acquisition

Figure 2.5: Schematic representation of the methodology.

2.2 Video sequence datasets

The procedure for the acquisition of the recorded scenes, and the different video

sequence datasets used in this research are subsequently described. These datasets

were acquired at different situations, with different illumination conditions and from

a wide range of patients. They were annotated by audiologists in order to test the

proposed automated assessments. All images have been acquired and annotated by

audiologists from the Faculty of Optics and Optometry, University of Santiago de

Compostela (Spain).

2.2.1 Video sequences acquisition

The recorded video sequences were obtained using a conventional video camera.

The only requirements for the video sequences used with this methodology are that:

they must have high resolution to cover with enough definition the whole scene and

a frame rate of 25 FPS (frames per second).

With the purpose of maintaining the clinical protocol as maximum stable as

possible, without disturbing the patient’s concentration, the video camera will be

located in a discrete location behind the audiologist (the audiologist will be seated in

front of the patient). This location will allow us to record not only the patient (which

will be seated at a determined position) but also the audiometer, through which the

audiologist will be delivering the auditory stimuli that the patient perceives via
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earphones. A schematic representation of this scene can be observed in 2.6.

Figure 2.6: Schematic representation of the scene

The reason for such a general scene is that it is necessary to study the patient’s re-

sponses (whether they are expressed as a hand raising or they are eye-based gestural

reactions) and also the delivery of the stimuli that the experts sends by perform-

ing the audiometer. The necessity for such a general scene in conjunction with the

precision required to evaluate eye gestural reactions is the reason why Full HD is

required for the development of this methodology. A sample of the recorded scenes

is presented in Figure 2.7.

2.2.2 Illumination conditions

The influence of the illumination conditions is specially relevant in those cases where

color information is used. For the measurement of the response times skin color

detection needs to be accomplished, so the methodology must take into account the

influence of the illumination conditions in order to guarantee the proper behavior of

the method regardless of the situation.

Changes in the illumination conditions during the performance of the audiomet-

ric evaluation can cause shades or other situations that substantially modify the

appearance of the scene and can induce to detection inaccuracies. For this reason,

it is suggested to try to maintain favorable and constant lighting conditions when

recording the scenes, in order to improve the quality of the recorded images and to

avoid shades or occlusions.
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Figure 2.7: Sample of the recorded images.

2.3 Stimuli detection

As pointed out by the audiologists, a response time should be measured from the

moment the auditory stimulus starts until the moment when the patient’s reaction

starts. Considering this, it is necessary to have information about the stimuli delivery

so it can be correlated with the information about the patient’s response.

Although there are digital audiometers in the audiological market, most of audiol-

ogists still work with analogical devices. In the case of digital devices, the correlation

of the positive reactions with the stimuli delivery could be more easily addressed

(anyway, it would be necessary to find a way to correlate and synchronize that in-

formation with the captured video sequence). However, in the case of analogical

devices it is necessary to automate somehow the detection of the moments when the

stimuli are being sent. Without this step, it would not be possible to automatically

correlate stimuli and responses using only the video sequences recorded.

This stage of the methodology is ad-hoc to the device. In our particular case,

audiologists work with two different analogical audiometers: the Beltone Electronics

190 audiometer and the Madsen Xeta by Otometrics audiometer (see Figure 2.8),

so the proposed method was adapted to both of them. Since analogical audiome-

ters usually have a similar design, the adaptation to new devices should be easily
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addressed.

(a) (b)

Figure 2.8: (a) Beltone Electronics 109 audiometer. (b) Madsen Xeta by Otometrics

audiometer.

In this specific domain, we know that when the expert delivers the auditory

stimuli a light turns on on the device (the location and color of that light depends

on the specific device). This way, this task is going to be accomplished by defining

areas of interest and seeking for image templates using normalized cross correlation.

These assumptions can be made since we are working in a specific domain and the

experiments are going to be recorded always following a similar layout as the one

shown in Figure 2.9, where the patient is seated in front of the camera, and in front

of the audiologist performing the test, and the audiometer is located on the lower

part of the image.

We are going to exemplify here the steps followed in the case of the Beltone

Electronics audiometer (Figure 2.8(a)). Anyway, these proposed steps are almost

analogous for the Madsen device (Figure 2.8(b)).

The first step consists on defining a region of interest (hereinafter ROI), and

within this region locating the light of the audiometer that indicates the stimuli

emission. In the case of the Beltone Electronics audiometer the stimuli indicator is

a red light located just above the touchpad. In the case of the Madsen audiometer

there are two stimuli indicators, one at each side of the digital screen, where the

left light indicator corresponds with the delivery of pure tone sound to the left ear,

and the right light indicates the delivery of stimuli to the right ear. Is it possible to

guarantee that in our domain this ROI is going to be located in the lower third of

the image (since the audiometer is always located at the bottom of the image); and,

considering that the stimuli indicators are in the central part of the two models of
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Figure 2.9: Screenshot during the audiometric evaluation

audiometers, we can center the ROI on the central third of the lower third of the

image (the highlighted area in Figure 2.10(a)).

Since the stimuli indicator is a small light located whitin the audiometer, we

reduce the search area by reducing the first ROI. To that end, we locate the blue

touchpad (in the case of the Madsen device, we locate the green digital screen).

This decision is motivated by two reasons: first, it is easier to find a larger region

which is also completely different from other items in the device; and second, the

light that indicates the stimuli emission is not the only light present in the panel,

so we need to establish a reliable criteria that allow us to distinguish the specific

light in which we are interested in. Thus, using a template image of the touchpad

(see Figure 2.11(a)) and normalized cross correlation we locate the position of this

touchpad panel, and based on this location, we define a second ROI.

To ensure the presence and the correct location of the touchpad, a normalized

cross correlation with a high value (greater than 0.95) for five frames (not necessarily

consecutive) is required. In order to prevent that a frame with a very different

location, but also with a high correlation, could alter the results, the four locations

with the most similar positions to each other are chosen, and their average position

is computed and taken as reference for the next steps. This way, we try to ensure

that the location that we obtain for the touchpad is stable and consistent.
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Figure 2.10: Steps towards the location of the stimuli indicator. (a) General scene with

the search area highlighted. (b) Initial search area. (c) Touchpad located and definition of

the new search area. (d) Secondary search area. (e) Location of the red light.

(a) (b)

Figure 2.11: (a) Blue touchpad template. (b) Stimuli indicator template
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The new region of interest is defined from this average position of the touchpad

as it can be seen in Figure 2.10(c): centered in the central third of the touchpad,

with a height equal to the height of the touchpad and starting 1.5 times above the

center of the region.

Within this narrower ROI (corresponding to Figure 2.10(d)) we use a new tem-

plate for the red light (see Figure 2.11(b)) in order to finally determine the location

of the stimuli indicator. After locating this position (by using normalized cross cor-

relation again), it will be stored by the system in order to check at each frame of the

video sequence if the light is on or if it is off, namely, if a stimulus is being delivered

by the audiologist or not.

Towards checking the on/off status of emission we assume that: during the initial

frames of the test the expert is not sending stimuli, and as consequence, during the

initial detections the light is off. So, in the HSV color space H and S components

are considered during two frames and their average is stored as the off-value. This

way, a relative threshold is established requiring that, to consider the light as on,

the value of the H and S components must be higher than 1.2 times the value stored

as off-value. In Figure 2.12 we can see two samples, Figure 2.12(a) when the stimuli

indicator is off and Figure 2.12(b) when the stimuli indicator is on. It was tested that

the establishment of a relative threshold is more appropriate than a fixed threshold

since the illumination conditions may affect the appearance of the stimuli indicator.

(a) (b)

Figure 2.12: (a) Stimuli indicator off. (b) Stimuli indicator on

Applying this criteria to all the frames across the video sequence, we can deter-

mine the precise moments when the auditory stimuli are delivered to the patient,

being able to obtain a stimuli signal as the one in Figure 2.13, where the pulse is up

when a stimulus is being sent and down otherwise.
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Figure 2.13: Auditory stimuli signal: the signal is up when a stimulus is being sent and

down otherwise.

2.4 Response detection

In Figure 2.14 a schematic representation of the different steps of this part of the

methodology can be observed. This approach receives as input the recorded video

sequence (which is going to be processed frame by frame) and, as a result, it provides

the detection of the positive responses of the patient (expressed as a hand raising).

To that end, we first determine the patient’s location, and after that, we detect the

hand raising.

 Patient
location

Hand location

Skin pixel detection

Connectivity analysis

Hand raising detection

Figure 2.14: Schematic representation of the hand raising detection steps.
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2.4.1 Patient location

The location of the patient is determined by the location of the face. Patients will

be seated in front of the camera, so the location of the face provides a consistent

location of the patient in the recorded scene. Since during the audiometric evaluation

patients will remain seated it is possible to ensure that his position will not vary

substantially during the test.

As we are working on a pre-fixed domain where the conditions in which the test

is performed are stable and already known, we can ensure that faces will always be

recorded in frontal position. The location of the face will serve as reference for the

subsequent steps of the methodology, since this location facilitates the location of

the hand when it is raised nearby the face. Due to the stability of the domain, we

can apply a Viola-Jones approach (Viola & Jones, 2001) for the location of the face.

Since face location is a recurrent procedure across this thesis, it will be addressed

in detail on the Appendix A, where we also present a couple of samples of the face

location provided by this method.

2.4.2 Hand detection

Although the hand raising is not the only positive reaction that a patient may

show, experts have pointed out that it is the more valid in their domain. There are

other alternatives where the patient must press a button in order to indicate that

he has perceived the stimulus, however, our experts consider that this alternative

could induce to inaccurate assessments. To press a button is not a big effort for the

patient, so, in some cases, he could start to automatically press the button without

paying his full attention to the assessment. Nevertheless, the fact of raising a hand is

a more conscious gesture, which implies that the patient needs to put more attention

on the assessment. For this reason, audiologists prefer to ask the patient to raise his

hands as sign of perception, and it is the only conscious reaction admitted by our

experts.

There is not an established and recognized technique along the literature for the

hand detection task. There are different solutions based on different approaches

but there is not a clear reference method. Our proposal here is to use skin color

information, since both hands and arms are skin regions and we can ensure that, at

least the hands, will always be exposed.

Some of the literature related to hand detection takes as input images in which

it only appears a hand on a more o less complex background. This is the case of
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the proposals of Peng, Wattanachote, Lin, and Li (2011) or Dawod, Abdullah, and

Alam (2010), where color information is used for the skin color detection; however,

these two methods have the limitation that they do not perform correctly with

more than one skin region in the scene. In (Caglar & Lobo, 2006) the authors

avoid the consequences of using skin color information by exploiting the geometric

properties of the hand, identifying parallel finger edges and curved fingertips. Using

color information in combination with motion information we can find some hand

tracking approaches such as (Spruyt, Ledda, & Geerts, 2010) or (Asaari & Suandi,

2010).

Since both hands and arms are skin areas, color information is a useful feature

for their detection. Color provides robust information against rotation, scaling and

partial occlusions (Kakumanu, Makrogiannis, & Bourbakis, 2007). The performance

of a suitable skin color segmentation is an essential task for the proper behavior of

the rest of the process. Prior studies have demonstrated that different skin colors

from different races fall in a compact region of the color spaces (Yoo & Oh, 1999;

Yang & Waibel, 1996).

In this section, the different stages for the detection of the hand raising are

addressed. To achieve this purpose it is necessary to identify skin areas; therefore,

we start by introducing a study on the suitability of different color spaces for the

skin detection task. After this initial study, the different stages addressed in this

section are: skin pixel detection, connectivity analysis and, finally, the hand raising

detection. The sequence of this steps is represented on Figure 2.15.

Hand location

Skin pixel detection Connectivity analysis Hand raising detection

Figure 2.15: Steps of the hand location.

Color space analysis

When working with color filtering, the correct choice of the color spaces becomes

very relevant. The selection of an appropriate model depends on the shape of the

skin distribution in a given chrominance space, which in turn depends on the space

that is chosen. The color spaces proposed to be considered in this formal study for
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skin detection were: RGB, HSV, CIE L*a*b* and TSL (Terrillon & Akamatsu, 2000)

(see Appendix B for more information). Since we have a special interest in having

good results regardless of the lighting conditions, we decided to work only with

those color spaces that have a specific component for brightness. This implied to

discard the RGB color space(which do not have a specific component for brightness),

considering only HSV, CIE L*a*b* and TSL color spaces for our analysis.

In the proposal of Sandeep and Rajagopalan (2002), the HSV color space is

chosen for skin segmentation tasks. According to the authors, it gives a good per-

formance for the skin pixel detection, providing clearly superior results to the ones

obtained with RGB or YCrCb color spaces. As well, the CIE L*a*b color space was

considered because it was designed to approximate human vision. Finally, TSL is a

color space specified in terms of tint (T), saturation (S) and luminance (L); it was

designed having as target to provide an efficient detection and location of human

faces in static images; their authors have demonstrated its robustness in the face

detection task under different lighting conditions, points of view or scale.

Factors such as the illumination conditions can spoil the performance of color

filtering based applications. Our goal is to obtain as much invariance as possible

regarding to the lighting conditions. We will show how, discarding the brightness

component from the considered color spaces, and working only with the two remain-

ing components, the skin tones are going to fall into similar areas with independence

of the illumination conditions.

In order to evince this particularity of the chosen color spaces, we took a face

image (Figure 2.16(a)) and we applied artificial light changes on it, obtaining this

way different illuminations over the original image: Figure 2.16(b) a darker image,

Figure 2.16(c) a lighter image and Figures 2.16(d) an image with heterogeneous

changes of illumination.

Samples of skin and non-skin pixel were taken from these images, discarding

the brightness component and considering only the two remaining components. As

shown in Figures 2.17(a)-(c), if the two remaining components are represented in a

2D space, the skin tones (red dots) fall broadly on similar areas.

For the color space analysis, color images from a human face database (FG-NET

Aging Database, n.d.) were used to extract skin pixels from them using manually

defined masks. The resulting training set consisted of more than 2700000 skin pixels

from 60 different faces.

Histograms for the skin and non-skin pixels of each color space were computed.
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(a) (b) (c) (d)

Figure 2.16: Illumination changes over a face image. (a) Original image. (b) Darker image.

(c) Lighter image. (d) Image with heterogeneous changes of illumination.

The considered components for the computation of these histograms were: H and

S for HSV color space, a and b for CIE L*a*b color space and T and S for TSL

color space. Values of these components are normalized to 100 bins. Finally, when

the histogram is totally computed, it can be observed in Figure 2.18 how one region

is very much apart, with high skin probability, which shows the separability of the

skin pixels.

Based on these computed histograms, and in order to classify a pixel as skin or

non-skin, we can establish a threshold defining a minimum probability (height) in

the histogram. The height of a bin in the histogram is proportional to the proba-

bility that the color represented by that bin corresponds with a skin color, so pixels

corresponding with a higher value than the threshold are classified as skin pixels.

Otherwise, they are classified as non-skin pixels. In order to compare the three

proposed color spaces (HS, ab and TS) we have calculated the false negative (FN)

and false positive (FP) rates for each one as a function of the threshold value in a

60 image test set. Figure 2.19 shows the obtained results.

According to the results represented in Figure 2.19, the CIE L*a*b color space is

the first one to be rejected. It showed to be clearly worst than the other color spaces

since it has a behavior much more abrupt than desired. Although the minimum error

rate correspond to HS(V), TS(L) seems like a more suitable color space because it

provides a much more stable error rate on the threshold range thus decreasing the

dependence of the method quality to threshold selection. In particular, even if the

false positive rate of the TS(L) color space takes longer to decrease, we have a

much larger interval where the behavior will be reasonably good since the TSL false

negative rate grows more slowly.

The main interest is the proper skin identification, rather than the misidentifi-
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(a)

(b)

(c)

Figure 2.17: Distribution of the two considered components for different lighting condi-

tions. First image: original, second image: darker, third image: heterogeneous and fourth

image: lighter. (a) H and S components for HSV color space. (b) a and b components for

CIE L*a*b* color space. (c) T and S components for TSL color space.

cation of some skin pixels as non-skin pixels. Since in our methodology connectivity

analysis is going to be considered for creating skin regions, it is more important not

to produce many false negatives in this step.

After the choice of the TS(L) color space, the threshold for the skin pixel classi-

fication needs to be established. If the threshold value is too high, all the non-skin

pixels are going to be correctly classified, but some of the skin pixels are going to

be classified as non-skin pixels too. By contrast, if the threshold value is too low all

the skin pixels are going to be correctly classified while some of the non-skin pixels

are going to be incorrectly identified as skin pixels. The goal is to find an optimum

threshold that allows the detection of most of the skin pixels and the rejection of

most of the non-skin pixels. Searching for a trade-off between the false positive and

the false negative rates, and also trying to find the center of the interval of the curve
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(a) (b) (c)

Figure 2.18: Skin histograms: (a) for HS(V), (b) for (L)ab and (c) for TS(L).

(a) (b) (c)

Figure 2.19: False negative (FN) and false positive (FP) rates as a function of the different

thresholds applied to the histograms of Figure 2.18. (a) For HS(V). (b) For (L)ab. (c) For

TS(L).

showed in Fig. 2.19(c), the 0.002 value was established as our threshold (called from

this moment on skinthreshold). Of course this is valid in a 100 bin scenario.

Once the color space is selected and the skintreshold is established, we are going

to be able to detect skin-like regions and use this information in order to detect

different human body parts. To that end, we resume the sequences detailed in

Figure 2.15, which were: skin pixel detection, connectivity analysis and, finally,

hand raising detection.

Skin pixel detection

Color filtering is a powerful tool in computer vision applications, specially for the de-

tection and tracking of human body parts. Color processing has a low computational

cost and it is robust against geometrical transformation (e.g., rotation, scaling and
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shape changes). However, it is necessary to be careful against illumination conditions

or other factors that can spoil the performance of color filtering based applications.

The detection of the different body parts is accomplished using color information

in order to detect skin-like regions. The combination of color information with other

types of information and an appropriate set of rules will allow us to detect the hands

(hands and exposed arms) in our audiological domain.

When working with color filtering, the correct choice of the color space becomes

very relevant. We conducted a formal study of some of the most well-known color

spaces in order to find the most suited one for the skin color detection task. As a

result of this previous analysis the TSL (Terrillon & Akamatsu, 2000) color space has

been chosen. In order to avoid the influence of the lighting conditions only the T and

S components are considered, while the luminance component (L) is discarded. For

each pixel, their T and S components are localized in the TS(L) histogram obtained

in the previous section. If the corresponding value is higher than the established

skinthreshold, the pixel is classified as skin pixel; otherwise, it is classified as non-

skin pixel. A simplified sample of this behavior can be observed on Figure 2.20,

where a quantized binary map in TS space is used for pixel classification.

Figure 2.20: Simplified example of the skin pixel classification. Each possible value on the

quantized TS map is assigned to a binary value for skin (1) or non-skin (0) classification

according to skinthreshold.

Connectivity analysis

In the previous step each pixel on the image is classified as skin or non-skin pixel.

However, the information on the pixel level is not enough for identifying human

body parts. At this stage we know whether a pixel corresponds to skin or not, but

we need to go into a higher level in order to group the connected skin pixels so they
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can represent something meaningful as a group, for example, a face or a hand.

The skin pixels geometrically connected to other skin pixels are classified into

the same group of pixels, this is done in our case by applying 8-connectivity neigh-

borhood. This way, if one skin pixel has got another skin pixel located in any of its

8 neighboring places, then, both skin pixels belong to the same region. After this

region growing step, we obtain different skin regions to be classified as the different

body parts.

However, color information can be insufficient in certain cases. For example,

when nearby body parts are present, they can be so close to each other that they

can be considered as a single skin region. Something similar can happen if we have

in the image colors that are similar to skin tones but that do not really correspond

with skin; different skin regions can be merged into one if those skin-like pixels (that

are not skin) connect the two real skin regions.

After studying those cases, we found out that many of the points located close

to a body part with similar tonalities to skin may be at the same time, edges. This

way, the skin pixel classification can be improved by considering in addition edge

information and modifying the way that skin pixels are classified. Pixels with high

gradients (like pixels located at the boundary of the body part) are removed from

the skin pixel classification in order to avoid the connecting path. The goal is to

remove only the stronger edges in the image; for this reason, soft edges such as scars

are not affected by this new rule. Sobel operator (Sobel & Feldman, 1968) is going

to be applied for detecting edges. It is a fast detector which detects edges at finest

scales and it also has got a smoothing along the edge direction, which avoids noise

edges.

This way, the skin pixel classification is modified as follows: to consider a pixel as

a skin pixel it is necessary that it exceeds the skinthreshold and also that it has got a

gradient lower than a certain threshold called edgethreshold, empirically computed

too (established on the 65% of the maximum edge on the image). The rest of the

process remains the same.

Once we have the skin region, a little optimization is accomplished: those skin

regions with a negligible size compared to the total size of the image are discarded in

order to avoid unnecessary processing. In most cases, these small regions correspond

to slight inaccuracies in the skin detection task or to tiny skin areas that were

disconnected from the rest of the region. Specifically, we discard those regions

having an area smaller than the 0.1% of the total area of the image. Finally, we

obtain skin regions to be classified as the different human body parts. All these
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steps are exemplified over a face image in Figure 2.21.

(a) (b) (c) (d)

Figure 2.21: Skin pixel classification. (a) Original image. (b) Classification using only the

skinthreshold. (c) Edge information. (d) Final classification considering the edge informa-

tion and discarding the regions with negligible size.

Hand raising detection

The first step towards the hand raising detection is the detection of valid skin regions.

Since we are focused in a specific domain and the conditions under which the test

is performed are quite stable, we can define search areas with high probability of

appearance of the hand within them in order to facilitate the detection. As it can

be seen in Figure 2.22, in the lower third of the image is where the audiometer is

located, so this is not a skin search area. Furthermore, since we know the location of

the head (addressed in the first step of the methodology) we can use this information

as reference. Hands are going to be raised to one side or another of the head, but

never over or under it. This way, we can define the search areas a and b (both

highlighted in Figure 2.22) which are defined relative to the face location. This

delimitation of the search areas reduces the computational cost and it also avoids

incorrect detections.

Skin pixel classification and connectivity analysis previously explained are ap-

plied into the two search areas (a and b). Once we obtain the skin regions, we

consider domain knowledge information that allows the establishment of a set of

conditions that a raised hand should fulfill. The first one is related to the required

number of skin pixels inside the region to be considered as a hand candidate: at least

40% of the pixels contained inside the region must be skin pixels. For the second

rule we define:
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Figure 2.22: Search regions for skin detection: a and b.

limSup = head.y - (0.25 * head.y);

limInf = head.y + head.height + (0.25 * head.y);
(2.1)

where limSup is the upper limit of the hand position and limInf is the bottom

limit of the hand position, where head.y represents the y coordinate of the upper

end of the head and head.height represents the height of the head. Next, a region

is discarded if:

(skinRegion.y < limSup) or (skinRegion.y > limInf) (2.2)

where skinRegion.y represents the y coordinate of the upper end of the skin

region evaluated at the moment. This means that, if the upper end of the considered

skin region is located above or below the location of the face, most likely it will not

correspond with a hand.

The size of the skin region is also taken into account. A region is also discarded

if some of these conditions apply:

(a) skinRegion.height < 0.42 * head.height

(b) skinRegion.width < 0.3 * head.width

(c) skinRegion.width > head.width + 0.25*head.width

(2.3)
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meaning that if the skin region is very small regarding to the size of the head,

or also in the case it is very much wider than the head, then, it can not correspond

to a hand.

Finally, the remaining regions are classified as hands, and we can proceed to

analyze the responses. In Figure 2.23 some examples during the hand raising detec-

tion can be observed. They show how the proposed method detects all the stages

during the hand raising procedure: prior to the perception of an auditory stimulus

the patient is waiting for the sound with his hand down (Figure 2.23(a)), then, when

he perceives the auditory stimulus he starts to raise his hand (Figure 2.23(b)), going

through the moments when the hand is fully raised (Figure 2.23(c)), and ending

with the descent of the hand (Figure 2.23(d)) until returning to the initial position

(Figure 2.23(a)).

2.5 Analysis of the responses to the stimuli

Once both the stimuli and the hand raising are detected, the next step according to

the schema shown in Figure 2.5 is the analysis of the responses to the auditory stim-

uli. Combining the information obtained in the previous stages of the methodology

we can analyze the response and some properties of interest about this patient’s

response.

For each auditory stimulus delivered by the expert we know: the moment when

it starts, the moment when it ends, and accordingly, its duration (Figure 2.24(a)

represents the signal for the auditory stimuli). The length of a stimulus is a variable

parameter that depends on the expert. Through the evaluation of the different

audiometric video sequences recorded it was observed that in cases where the expert

already knew the patient and this patient was a person with slow responsiveness,

the expert sent longer stimuli. On the opposite case, if the expert knew that the

patient is a person with fast responsiveness, the stimuli sent were shorter. The length

of the stimulus was also influenced by the slowness (or quickness) of the patient’s

movements. The stimuli sent to patient with parsimonious movements were longer

that the stimuli sent to quick patients.

The hand raising could be characterized not only by the moment when the patient

raises his hand, but also the height at which he does it. Figure 2.24(b) represents

the signal for the hand raising detection, where the pulse grows equivalently to the

height at which the patient raises his hand. By the combination of these two features

that we store for each frame of the hand raising, we would able to determine different
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(a) (b)

(c) (d)

Figure 2.23: Captions of the hand raising detection. (a) Hand down. (b) The patient

starts to raise his hand. (c) Hand fully raised. (d) The patient begins to low his hand.
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factors such as: the moment when the patient begins his response to the stimulus,

the speed of his hand raising, how long he has his hand up, the maximum height

reached by his hand, the speed with which he puts down his hand, and other possible

features that would characterize his response.

Audiologists reported that one of the most relevant informations that can be

derived from the analysis of this test is the evaluation of the patient’s reaction times.

Based on the impressions that the experts carry out during the performance of the

audiometric evaluation, patients are classified according to their speed of response

as “patients with a normal responsiveness” or “patients with a slow responsiveness”.

It is relevant for the audiologist to identify people with a behavior particularly slow

compared to what is is considered as the average behavior since this could be a

symptom of other pathologies such as inefficient central brain processing or also to

lack of motivation.

Experts stated that the response times should be measured from the moment the

auditory stimulus starts until the moment when the patient’s reaction starts, or, said

in a different manner, a reaction time is defined as the interval elapsing between the

stimulus and the response. Considering this, we are going to combine the information

from the auditory stimuli signal (Figure 2.24(a)) with the information from the hand

raising signal (Figure 2.24(b)), and, this way, we compute the response times as the

difference between the two initial moments as it is represented in Figure 2.24(c).

Consequently, a patient will be characterized by a sequence of n distances d, where

n is the number of reaction times measured for this particular patient, and each one

of the d distances is a reaction time.

Figure 2.25 shows some examples of the correspondence between different mo-

ments during a sequence and the signal obtained by the system for that particular

moment. In Figure 2.25(a) the auditory stimulus has already been sent, but the

patient has not yet begun his reaction. A few frames later, in Figure 2.25(b), the

patient he perceives the stimulus and he quickly raises his hand. In Figure 2.25(c)

the patient maintains his response, and finally, in Figure 2.25(d) he starts to lower

his hand.

With the proposed methodology we provide not only the detection of the pa-

tient’s positive responses to the sound, but also a precise and objective measure-

ment of his reaction times for each one of the auditory stimulus perceived. A set of

experiments measuring the effectiveness of this approach and proposal of different

metrics to classify patients according to their response times are addressed in the

next Section.
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(a)

(b)

(c)

Figure 2.24: Measurement of the response times in a partial sequence. (a) Auditory stimuli

signal. (b) Hand raising signal (where value 1 in the vertical axis is the maximum high at

which the hand is raised by that patient). (c) Combination of (a) and (b) and measurement

of the response times
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(a)

(b)

Figure 2.25: Correspondence between video sequences and detection signals. (a) Auditory

stimulus sent but not perceived. (b) The reaction starts. (c) The reaction continues. (d)

The patient begins to low his hand.
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(c)

(d)

Figure 2.25: Correspondence between video sequences and detection signals. (a) Auditory

stimulus sent but not perceived. (b) The reaction starts. (c) The reaction continues. (d)

The patient begins to low his hand.
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2.6 Experimental results

For the evaluation of this methodology a dataset provided by the audiologists con-

taining 77 video sequences recorded during the performance of audiometric evalu-

ations has been considered. Patients undergoing this test were randomly selected,

so they represent a sample from a normally distributed population. They are both

male and female, with different ages. No significant hearing loss was known before

the conduction of the test. Besides, for most of them, this was their first audiometric

evaluation, so the were not conditioned by previous experiences. Since this was the

first hearing assessment for most of them, the audiologist had not prior information

about their hearing thresholds. According to the established clinical protocol each

ear should be evaluated separately, thus, each video sequence corresponds to the

evaluation of one ear. For this experiment, video sequences were recorded using a

frame rate of 12 FPS (frames per second).

Each of these video sequences takes between two and four minutes, so, consid-

ering a frame rate of 12 FPS, it involves the evaluation of between 1500 and 3000

different frames per video sequence. At each of these video sequences between 30

and 60 auditory stimuli are delivered to the patient. Among these 30-60 auditory

stimuli, the patient usually perceives only between 15 and 35, and he positevely

responds to them by raising his hand. Since the purpose of the audiologist is to test

the patient’s hearing capacity, he systematically delivers different auditory stimuli

looking for the lowest hearing level (in dB) that the patient is able to perceive. That

is why not all the auditory stimuli will be answered, since some of them are too low

for the patient to notice, but the expert should try them anyway in order to find

the softest sounds the patient is able to perceive across a range of frequencies.

The provided video sequences are consistent in location but they are not consis-

tent in illumination conditions. They had been recorded on different days and at

different hours during the day, therefore, there is significant variability in the bright-

ness conditions. There are video sequences with more light intensity than others (in

most cases, due to the outside weather conditions), and also video sequences with

natural light versus other video sequences with artificial light.

Experimental results presented throughout this section are divided into two

parts: an initial validation of the detection techniques (the detection of the stimuli

delivery and the detection of the hand raising), and a second one where we study the

measurements obtained by the proposed methodology. But first of all, it is necessary

to deal with the problem of the illumination changes.
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2.6.1 Adaptation to illumination changes

It was observed that changes in illumination conditions between day scenes and night

scenes with artificial light were very abrupt. This causes that the skin detection

becomes imprecise when working with a fixed threshold. This situation suggest the

use of an adaptive threshold dependent on the illumination of the scene for a better

behavior of the methodology.

To compute threshold values we put a white screen as background behing the pa-

tient with the idea of using it as an indicator of the brightness of the scene. To that

end, we take as reference the brightness component L of the white screen that ap-

pears as the background of the scene. This white screen is virtually divided into two

halves, computing the average of the L component of the left side as avg white left,

and equivalently to right side as avg white right (as represented in Figure 2.26).

The skinthresholds defined taking into account these considerations are shown in

Table 2.1.

Figure 2.26: Estimation of image brightness
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Table 2.1: Skinthreshold values
1) avg white left ≥ 185

1.a) if (diff > 15) −→ skinthreshold = 0.0006;

1.b) if (diff ≤ 15) −→ skinthreshold = 0.00125;

2) (avg white left ≥ 170) and (avg white left ≤ 170)

2.a) if (diff ≥ 28) −→ skinthreshold = 0.0006;

2.b) if (diff ≥ 20) and (diff < 28) −→ skinthreshold = 0.00125;

2.c) if (diff < 20) −→ skinthreshold = 0.0005;

3) (avg white left ≥ 150) and (avg white left ≤ 165)

−→ skinthreshold = 0.00125;

4) avg white left ≤ 150

−→ skinthreshold = 0.004;

where diff = avg white left - avg white right

2.6.2 Validation of the detection techniques

The accuracy of the methodology has been tested for both the detection of the

light stimuli indicator (presented Section 2.3) and the detection of the hand raising

(presented in Section 2.4.2). To this end, a subset composed by 10 video sequences

has been manually labeled and then evaluated. Results are presented in Table 2.2.

The detection methodology offers a satisfactory rate of success to avoid the loss of

patient’s reactions.

Table 2.2: Accuracy of the methodology

Stimuli Hand raising

Number of events 479 288

Number of detected events 479 286

Accuracy 100% 99.31%

2.6.3 Measurements of response times

Once the accuracy of the detection methodology has been validated, the next and

most important step is to apply the proposed method over all the video sequences

at our disposal in order to test the quality of measurement of the patients’ response

times.

For each of the video sequences in our dataset we obtain a sequence of n response

times, depending on the number of positive reactions manifested by the patient.
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The speed of response of the patient must be evaluated taking into consideration all

these response times. To this end, five different metrics were evaluated to summarize

the responses of a patient into a single measure. It it important to clarify at this

point that the non-reactions to the auditory stimuli are not considered since they

are already manually registered by the audiologist, and at this stage we are only

interested on measuring response times for positive reactions, which only occur when

the patient correctly perceives the auditory stimuli.

To perform this experiment patients were selected completely randomly, which

should imply that our test population corresponds to a sample from a normally dis-

tributed population. A series of auditory stimuli was delivered to these patients, and

their response times were automatically measured with the proposed methodology.

Independently, patients were classified by the experts as “patients with normal re-

sponse times” and “patients with slow response times”. The target of this study is to

determine if the labels assigned by the experts are consistent with the measurements

obtained by the methodology.

The measurements obtained for each patient and each one of the five metrics

are detailed in Table 2.3. The first metric (Mean in Table 2.3) is the mean and

the second one (Median) represents the median, for the whole set of the patient’s

measures. The third one (Mean(Q1-Q3)) is the average of all the elements between

the first and the third quartile. The next two measures are defined considering that

response times of less than half second (less than 6 frames) can not occur but for an

error in measurement; and considering also that the highest times of the sequence

may be due to moments of doubt or they may be occur because at the beginning

the patient does not know what he has to perceive and takes longer to respond;

this will cause that it may exist times higher than the average, but they are not

representative because the real speed of response of the patient is the one that he

shows when there is no doubt and the behavior is normal. As a result, in Gt6-

15% measure the response times of less than 6 frames are removed, and to discard

spurious high times we will remove the 15% of the largest times of the sequence;

with the remaining elements we compute the mean. For Gt6-25% measure, we also

removed times lower than 6 frames and the 25% of the largest times of the sequence,

as in the previous case, with the remaining elements we compute the mean. The

corresponding response times for all the video sequences are detailed in Table 2.3, it

should be noted that all times are shown in number of frames (the video sequences

have a frame rate of 12 FPS).
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Table 2.3: Comparative table of the different measures for the response times

Video Mean Median Mean(Q1-Q3) Gt6-15% Gt6-25%

001 33.6522 35 33.5333 31.7368 29.3750

002 24.8333 25.5 23.5000 20.9000 19.7778

003 14.8788 10 10.7727 11.2400 10.3182

004 10.5000 10 10.1176 9.5000 9.1053

005 12.9167 12 11.4000 11.3000 10.7778

006 17.2812 16 15.2000 14.8148 14.0833

007 14.8387 14 14.8947 13.3462 12.7391

008 17.0769 14.5 15.1176 15.0909 14.0526

009 21.3214 22 21.5000 20.8261 20.3000

010 23.4500 24 23.7273 21.5294 20.5333

011 11.5357 10.5 10.1111 10.1250 9.8095

012 12.2692 11 11.4000 11.1818 10.5789

013 11.8571 12 11.5000 11.3478 10.9000

014 13.0455 12 12.3846 11.9444 11.5000

015 16.5357 14.5 15.4286 14.7083 13.5714

016 11.7308 11 11.4000 10.7727 10.1053

017 15.9600 14 14.4375 14.3810 13.6842

018 15.5238 14 14.7857 13.7222 13.0625

019 10.0000 10 9.2105 9.5000 8.8235

020 11.5500 9.5 10.1429 9.7647 9.3333

021 11.3500 10 10.0667 10.0667 9.6154

022 12.0000 10 10.4667 10.7500 10.2143

023 10.1538 10 9.6316 9.3810 9.2105

024 9.8000 8 8.5000 8.6842 8.1875

025 10.8148 10 9.8889 9.6818 9.1053

026 11.7083 11 10.8125 10.6000 10.2222

027 12.2632 12 12.1429 11.1875 10.7143

028 14.6154 15 14.1000 13.7273 13.4000

029 10.4400 10 10.2143 9.8000 9.5000

030 12.8077 12 11.9412 12.0526 11.1875

031 11.3333 10 9.9500 10.3043 9.6500

032 11.5128 11 10.9310 10.2424 9.8966

033 11.0000 9 9.6842 9.8000 9.3182

034 15.5862 15 15.4211 14.8333 14.3333

035 14.0588 14 14.1429 13.6923 13.3478
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Video Mean Median Mean(Q1-Q3) Gt6-15% Gt6-25%

036 14.7143 14 13.7391 13.5833 12.9524

037 13.8621 12 12.1579 12.6000 11.8636

038 10.7436 10 9.8889 9.6875 9.1071

039 11.5556 11 10.9524 10.3913 10.0000

040 13.2593 13 12.9412 12.3478 11.9500

041 14.8387 14 14.4000 13.7600 13.1364

042 11.2800 11 11.1111 10.6190 10.3684

043 12.3704 12 12.1176 11.4348 11.0500

044 12.1905 12 12.1875 11.7222 11.4378

045 11.6579 10.5 10.7391 10.8333 10.0385

046 14.3611 12.5 14.2273 12.8333 12.0385

047 13.1765 13 12.5833 12.2143 11.7200

048 11.2750 11 11.3214 12.4400 11.7727

049 12.5128 11 11.1111 10.9032 10.3212

050 13.6786 13.5 14.0556 13.2273 12.7895

051 13.2667 13 12.9412 12.5600 12.0455

052 15.6296 12 13.2500 14.6842 13.2500

053 12.7308 12 12.1111 11.7273 11.3158

054 14.6552 14 14.0556 12.9200 12.2273

055 21.9375 23.5 22.8889 21.0714 20.3333

056 13.3333 12 12.1739 11.8065 11.0741

057 12.2647 11 10.6818 11.0000 10.3750

058 10.5625 10 9.6818 9.8077 9.3043

059 13.5717 13 13.0000 12.4000 12.0000

060 12.3750 11 10.6190 10.2692 10.0000

061 12.8684 11 11.7917 11.4839 10.4444

062 15.5172 15 14.8889 14.3200 13.7273

063 11.7895 12 11.6190 11.4483 10.5200

064 9.0000 9 9.0500 8.5417 8.2381

065 10.9615 9 9.8889 9.9048 9.3157

066 11.5200 11 10.7778 10.6190 10.3158

067 13.5600 13 12.9286 12.3810 11.8947

068 13.9615 13 13.2000 12.9091 12.3684

069 13.1852 12 12.3500 12.2609 11.8000

070 13.8889 13 13.8947 12.7826 12.1500

071 13.8000 12 12.6500 12.4286 11.8421
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Video Mean Median Mean(Q1-Q3) Gt6-15% Gt6-25%

072 14.7000 13.5 13.7895 13.1600 12.3182

073 13.1071 12 12.2500 11.2917 10.7143

074 11.3333 11 11.3077 10.2222 9.7500

075 12.6667 11 11.5000 11.1500 10.6111

076 12.6667 12 12.1579 11.5217 11.1500

077 13.0000 13 12.7059 11.5200 10.7727

In order to see these results in a more visual way, in Figure 2.27 we show the

typical box and whisker plot for all the metrics. In these graphics, the bottom and

top of the box are always the 25th and 75th percentile (the lower and upper quartiles,

respectively), and the band near the middle of the box is always the 50th percentile

(the median); the whiskers extend to the most extreme points the algorithm does

not consider as outliers, and the outliers are plotted individually. According to this

definition, our method spots five outliers for each one of the five measures. By

consulting the experts, it is confirmed that the five detected outliers correspond

to the “slow” patients in our test population. Thus, a 100% agreement with the

audiologists is achieved, confirming that the automatic measurements correspond

with the same rating that the experts establishes.

Figure 2.27: Box and whisker plot for all the metrics

Moreover, although we may not have enough samples, it would be interesting to

carry out a preliminary study in order to determine if “normal” patients correspond

to a normally distributed population. Towards determining if the obtained results for

the normal patients can be approximated by a normally distributed population we
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are going to use the Lilliefors test. The Lilliefors test is a 2-sided goodness-of-fit test

suitable when a fully-specified null distribution is unknown and its parameters must

be estimated. The obtained results for this test allow us to accept the default null

hypothesis at the 5% significance level for all measures but the Median measure.

Except for the Median measure (whose normality has been rejected), the other

measures obtained high p-values (where the lower of these p-values is of 0.1338),

that allow us to accept the hypothesis of normality. Considering these results, it

can be established that the response times of the healthy population come from a

Gaussian distribution.

These results justify the experiment, in which the starting point consisted on

taking individuals from a normal population (which is approximated by a Gaus-

sian function). Since the patients were randomly taken from a normal population,

the results approximate the same way to a normal population (with a Gaussian

distribution).

In order to show the capacity of the methodology for distinguishing between

“slow” and “normal” patients, probability density functions (pdf) were calculated.

Results for all the measures are shown, except for the Median measure which showed

not to be normally distributed. Calculating the probability density function for the

slower measure from the “normal patients” versus the probability density function

for faster measure from the “slow patients”, it can be observed the capacity of each

one of the measures for distinguishing between both types of patients. These values

are presented in Table 2.4, showing for all cases that the distance between both

types is wide enough. These results will allow the choice of any of these measures

and the establishment of a threshold in future works, where we can have a wider

selection of video sequences.

Table 2.4: Distance between extremes

Mean Mean(Q1-Q3) Gt6-15% Gt6-25%

Slower “normal” 1.2e-3 8.9e-3 8.6e-3 1.08e-2

Faster “slow” 5.4675e-10 2.2365e-12 1.7271e-12 6.4593e-12
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2.7 Discussion

We have presented here a screening method to automatically measure the response

times during the performance of an audiometric evaluation. One of the premises

of this work consisted on trying to modify as minimum as possible the traditional

protocol of the audiometric assessment, for this purpose, we adapted the proposed

methodology to the way the audiologist proceeds during the assessment and also to

the audiometer that he uses.

The auditory stimuli light indicator was properly detected (for two different mod-

els of audiometers), in order to synchronize stimulus and response. It is necessary

to assume that we have a dependency on the device which implies that this method

is not as general as it would be desirable; however, the adaptation to the specific

device is quite simple and it can be easily included within the methodology. So

that, either the method is combined and synchronized with a digital device or an

analogical device it would be necessary and ad-hoc method for detecting the signal

adapted to each particular device.

For the detection of the hand raising, skin color information was used. Since

when working with color filtering the proper choice of the color space becomes very

relevant, different color spaces were evaluated for this specific task. From this survey

it was concluded that the TSL color space was the most suited one for our skin color

detection. By the combination of both auditory stimuli and hand raising detection,

the method finally provides a precise and objective measure of the patient’s reaction

times.

Throughout Section 2.6 the obtained results for the evaluation of the method-

ology are depicted. The obtained results for the detection and measurement of the

response times are highly promising. Furthermore, we have studied several metrics

in order to combine the patient’s response times to the different auditory stimuli

to which he responds during the session. It is noted that, although every measure

has its peculiarities, all of them allow us to establish a gap between the “normal”

patients and the “slow” ones.

The main strengths of this method begin by highlighting its capacity as screening

method in order to objectively identify patients abnormally slow (those in which

the experts are concerned because they could suffer other cognitive problems or

pathologies), and it continues by offering to the experts the possibility of precisely

quantify the patient’s speed of response and to carry out more detailed studies

using this information. It is important to note that the impact of the method is
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not only the detection of slow people by itself, but also the possibility of objectively

and precisely measure their response times in order to establish comparisons or to

conduct different clinical studies.

The limitation of this proposal arrives when the audiologist needs to evaluate

patients with cognitive decline or severe communication disorders. With this group

of patients it is not possible to maintain a conventional interaction and it is highly

unlikely that they follow the instructions given by the expert, so a hand raising

response should not be expected. Although the audiological evaluation of these

patients becomes much more complex, it is still possible if the expert focus his

attention on the detection of spontaneous gestural reactions to the sound. This

problematic will be addressed across the next Part of this thesis.

We shall conclude this discussion by emphasizing that the proposed methodology

has proven to be valid as screening method to objectively and precisely measure re-

action times of a patient during the performance of an audiometric evaluation. This

provides not only an objective measurement method for comparison and evaluation

between experts, but also a system for the detection of those patients who have an

abnormally slow response times.





Chapter 3

Web application

In addition to the proposed methodology a web application has been developed in

order to provide an interface that facilitates the use of the automatic methodology

by the audiologists.

The web application has restricted access through authentication, and it is simple

and easy to use for the audiologists. It allows the audiologist to easily manage all the

information related with his patients and their examinations. Furthermore, through

this tool they will be able to easily manage and to process the video sequences

associated to each patient. The application has been internationalized to Spanish,

English and Galician.

The application is managed by an administrator which is responsible for singing

up new audiologists and new clinical institutions. The administrator can manage

the audiologist and institutions but for reasons of Data Protection he is not allowed

to access to the patient’s information (unless the audiologist voluntarily allows him

in order to help him to solve an specific problem).

Once the audiologist has been signed up into the application by the administra-

tor, when he needs to access to the web application he must enter his user name and

password in the authentication screen (see Figure 3.1). There is also an option in

case the audiologist forgets his password (option “I forgot my password”). By using

this option, he will receive an email in the email address he has specified that will

allow him to enter to the web application and to restore his password. The “Re-

member me’ option could be selected by the audiologist in order to remain logged

in as long as it has open the web navigator, otherwise, the session will expire after

several minutes of inactivity.

51
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Figure 3.1: Authentication screen.

Once he has logged in into the system, the audiologist will be directed to the

Recent Tasks screen (see Figure 3.2). At this screen it will be displayed the last

tasks the system has processed for him, for example: a new video sequence has been

recently uploaded, an uploaded video has been processed by the system, if an error

has occurred while uploading or processing a video sequence, etc. This information

will allow him to know which are the last video sequences that he has evaluated and

had been already processed by the system or if any problem has recently occurred.

There is an option on the left sidebar that allows the user to clean the completed

tasks, by choosing this option, all the recent tasks will be automatically removed

from this screen.

Through option My profile the audiologist can manage and modify his account

information: name, surname, email address and phone number. It is important to

maintain updated the email address since it is the email account used in the case

the user forgets his password. Through My profile option the audiologist can also

establish a new password. To that end, and for security reasons, it is necessary

to introduce first the actual password which will be checked before allowing the

password modification.

As mentioned before, each one of the audiologists must be initially registered

by the administrator on the web application. When the administrator user reg-
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Figure 3.2: Recent tasks screen

isters the audiologist he associates him to an specific institution (institutions can

only be created by the administrator too). In order to sign up an institution the

administrator should introduce a name, a location and a contact phone number.

The relation audiologist-institution is a 1-to-1 relation; it means, at a determined

time, one audiologist can only belongs to one institution. However, it is possible

that one audiologist has belonged to different institutions at different moments in

time. The information of the institution and his relation with it can not be directly

modified by the audiologist, only the user with administration priviliges can apply

this modification.

In relation with patients, an audiologist can add a new patient through option

Add patient. In this case, he will be redirected to the Add patient page (presented in

Figure 3.3). To register a patient, the audiologist needs to enter a patient code, and

also the birth date and the sex of the patient. Patients are identified by a patient

code and not by name in order to keep the patient’s information anonymous in the

web application for Protection Data reasons. Sex (male or female) and birth date

are introduced by using a selector. The audiologist can also include any type of ob-

servations about the patient using a text field. All the fields (except the observations

field) are mandatory.
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Figure 3.3: Add patient screen

Through option View patients the audiologist can access to the complete list

of his patients ordered by patient code. The audiologist accesses to a paginated

list where 10 patients are displayed at each page (see Figure 3.4), different buttons

will allow the access to the next and previous pages (specific buttons for the two

next/previous pages, a button for the next/previous page and another one for direct

access to the last/initial) page). At this screen he also has search bar where he

can search for a patient by using the patient code. For each patient he is going to

see the most relevant information: patient code, age, sex, number of examinations

registered, and number of videos for that patient. Moreover, he has three available

options: see report, update and delete.

Through option Update the audiologist will be able to modify the patient’s

information. He will be redirected to a page similar to Figure 3.3 where he can

modify the fields: birth date, sex and observations. The only restriction is that the

patient’s code can not be modified by the audiologist since it is used as key value in

the database.

Action Delete will allows the audiologist to delete a patient from the web appli-

cation. Once he pushes the delete button a confirmation message appears in order

to confirm if he really wants to delete the patient or not. If he confirms the order,
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all the examinations and video sequences associated to that specific patient will be

automatically deleted by the system.

Finally, through option See report the audiologist will be able to access to pa-

tient’s audiological report. The patient’s report screen can be observed in Figure

3.5. At this screen he will see the patient’s information: code, birth date, sex, and

observations (if they were registered by the audiologist). Next, all the examinations

registered for that particular patient will be displayed. The examinations are iden-

tified by date, and the number of video sequences associated to that examination is

also detailed in the title. For a particular examination three actions are available:

transfer videos (which allows to associate new video sequences to the examination),

update (which allows to modify the examination’s information), and delete (which

displays a confirmation message before removing the examination and it has as con-

sequence the removal of the associated video sequences). Once a video sequence

has been transfered to the web application it will be automatically processed by the

system.

Figure 3.4: View patients screen
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By displaying a particular examination the audiologist will be able to see the

associated video sequences. For each of the videos three actions are available: play,

view analysis and delete. Option Play reproduces the original video as it was up-

loaded by the expert. Though Delete option the video sequence will be removed

(a confirmation message will be displayed before removing the item). And option

View analysis shows the processed video sequence (the information displayed for this

option will be discussed next).

Figure 3.5: Patient’s report screen

When the audiologist wants to upload a new examination he needs to access to

the patient to which he wants to associate it. Once he is at the Patient’s report

screen (see Figure 3.5) by clicking in option Add examination he will be redirected

to the Add examination screen (see Figure 3.6). A examination is identified by the

date when it was conducted, for this reason, the audiologist must specify day and

hour of the examination. The examination can also have associated information that

the audiologist would want to register so hi can manage all the relevant information

of a patient through this tool. Three text fields are displayed at this screen to that

end: observation, diagnosis and treatment.
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Figure 3.6: Add examination screen

Finally, the most relevant screen is the one that shows the processed video se-

quences. As mentioned before, this option is available for each of the video sequences

associated to an examination. By choosing the option View analysis the audiologist

will be redirected to the Video analysis screen (see Figure 3.7).

In the first place, the processed video sequences will be displayed and it can be

directly reproduced. On the left side of the image the original video sequence is

displayed highlighting the positive responses detected by the methodology. On the

right side of the image a graph showing the pure tone delivery, the positive responses

and the measured response times is represented. This graph moves forward according

to the video. Red pulses of the graph represent the pure tone sound delivered by the

audiologist, green pulses represent the positive responses provided by the patient,

and response times are measured from the moment when the stimulus begins until

the moment when the reaction begins (these times are also displayed at the graph).

In second term, a graph representing all the pure tones delivered by the audiolo-

gist (red pulses) and all the positive response provided by the patient (green pulses)

is displayed (zoom option is available). Each one of the response times measured

during the evaluation are represented on a table on the right side.
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Figure 3.7: Video analysis screen



Part II

Analysis of gestural reactions in

hearing assessment
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Over the course of Part I a methodology for the automatic measurement of

response times during typical audiometry was presented. However, as mentioned in

the Introduction, not all the patients are able to maintain the level of interaction

that the traditional development of this test requires. In the case of patients with

cognitive decline or other severe communication problems, the standard protocol of

hearing assessment becomes unenforceable since no active interaction audiologist-

patient is possible. With this specific group of patients there are some limitations

when it comes to maintaining a normal interaction, limitations that are aggravated

as the cognitive decline worsens.

Although the evaluation of these patients becomes much more complex, it is still

possible if the audiologist is experienced enough. Whereas “normal patients” react

by raising a hand (or with voice), patients with cognitive decline typically react

unconsciously with subtle facial reactions. These facial reactions occur mainly on

the eye region, so the audiologist needs to focus his attention within this region in

order to detect changes in the gaze direction, eye opening or closing, or another

specific expression change that could indicate some kind of perception to the sound

by the patient.

It is important to emphasize that the gestural reactions are particular for each

patient, even the same patient may react in different ways during the same session.

This variability requires from the audiologist broad experience so he can be able

of properly detecting and interpreting the gestural reactions. The subjectivity in-

volved in the gesture interpretation makes this task an imprecise problem, prone to

errors, and it greatly limits the reproducibility and robustness of the measurements

performed in different sessions or by different experts, leading to inaccuracies in the

assessment.

All these considerations make clear the improvements that an automated solution

could offer, helping the audiologists in the detection and interpretation of these

unconscious gestural reactions. During the next sections, we are going to propose a

novel method for the analysis of the eye movements specifically designed for this field.

This proposal makes use of computer vision techniques in order to analyze video

sequences recorded during the performance of the audiometry. The methodology

needs to detect the patient, locate the eye region, and be able to detect movements

produces within the eye region.

It is necessary to clarify at this point that other techniques aimed to the inter-

pretation of facial expressions are not directly applicable in this domain. Most of

these techniques (such as (Happy, George, & Routray, 2012) or (Chew, Rana, Lucey,
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Lucey, & Sridharan, 2012)) are focused on the classification of the facial expressions

into one of the typical expressions (anger, surprise, happiness, disgust, sadness, fear,

etc.). The facial expressions of this particular group of patients do not directly

correspond to any of those categories. They are specific to each patient, without

following a fixed pattern, and, as commented before, they can even vary within the

same patient.

The main challenge of this methodology is the identification of gestures asso-

ciated with reactions to the auditory stimuli, which are totally dependent on the

patient. In most cases, these reactions are associated with changes on the gaze

direction (some samples can be observed in Figure 3.8), namely, when the patient

perceives a sound through one of his ears, he unconsciously changes his gaze direction

to that specific side.

Figure 3.8: Sample of the different eye movements target of detection

From these images, it can be inferred that reactions can be more subtle or marked

depending on the patient; in addition, sometimes, the presence of wrinkles or the

absence of eyebrow modify the appearance and the features of the area; besides, also

changes in the illumination or other lighting conditions may affect the process. To

the best of the authors’ knowledge, this problem has never been attempted to address

through a computational solution, which may be very helpful for the audiologists

when evaluating this particular group of patients. In order to provide an automated

solution to this specific problem, different approaches are proposed throughout this

Part of the thesis.

The development of an automated methodology for the detection and interpreta-

tion of the gestural reactions will be of great relevance for improving the objectivity

and repeatability in the evaluation of specific group of these patients. By the com-

bination of different computer vision solutions over the video sequences recorded

during the audiometric evaluations, we have developed a method aimed to support

the audiologists in the detection of eye-based gestural reactions as a response to the

auditory stimuli.
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A general schema of the global methodology is presented in Figure 3.9. This

methodology receives as input a video sequence recorded during the performance of

an audiometric evaluation and it gives as a result the detection of the gestural reac-

tions to the sound. This final methodology was obtained through the development

of different approaches and improvements which are going to be presented across

the next Chapters.

 
Eye region

location
Motion

detection
Motion

characterization
Classification 

Figure 3.9: Main steps of the gestural reactions analysis.





Chapter 4

1st approach: Optical flow

approximation

An initial approach based on the use of optical flow for the detection of movements

within the interest region was proposed. The schematic representation of the main

steps of this methodology can be seen in Figure 3.9. The method will receive as input

a video sequence recorded during the performance of the audiometric evaluations,

and this video sequence is going to be processed frame by frame. This proposal has

been initially presented in (Fernández, Ortega, Penedo, Vázquez, & Gigirey, 2014),

and it is going to be addressed in detail next. The first step of the method is the

location of the eye region, which is the region where we wan to detect the movement.

After that, the motion is detected using the optical flow, then characterized, and

finally classified.

 
Eye region

location
Motion

characterization
Classification 

Optical flow

Motion
detection

Figure 4.1: Main steps of the optical flow information part.

Since this is the first proposed approach, it will provide the basis for the rest of

the process.

65
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4.1 Eye region location

Proper location of the eye region is the first step since the recorded scene is larger

and it contains many information that is not relevant at this step. So, for this

method we need to establish the eye region as our region of interest (hereinafter

ROI). The recorded video sequences are processed frame by frame. In order to

detect the ROI, we first locate the face, and after that, within this region we locate

the eye region. The initial location of the face allow us to narrow the search area,

reduces the computational cost of the next step and makes it less error prone, as

already mentioned. Face location is addressed on the Appendix A.

Once the face area has been delimited, the next step is the location of the eye

region. We could have considered the detection of gestural reactions all over the

face, but the extensive experience of our audiologists with this type of patients al-

low them to claim that the gestural reactions that really correspond with responses

to the auditory stimuli most prominently occur within the eye region. This state-

ment allows us to limit the movement analysis to this particular area and to work

without considering other movements that may occur in the rest of the face leading

to confusion or inaccuracies.

Eye detection can be broadly divided into three types: template-based, feature-

based, and appearance-based methods. For example, in (Jorge, Carvalho, Manuel,

& Tavares, 2007) deformable templates are used to extract the eye boundaries.

A sample of the second group of methods can be found in (Kawato & Tetsutani,

2004), where blinks are detected based on differences between successive images.

The appearance-based ones can be integrated with machine-learning techniques and

have been widely developed by the research community during recent years. Some

representative algorithms can be found in (Murthy & Natarajan, 2011), where a

neural-network-based approach is proposed, and (Zhu & Ji, 2005), where a SVM is

applied.

For the location of the eye region the Viola and Jones object detection frame-

work (Viola & Jones, 2001) was considered. A cascade was specifically trained for

this study using more than 1000 images of the eye area. Each one of these 1000

images was manually selected in order to delimit our ROI. The training images were

cropped from different face images from different face databases. An accuracy of

the 98% was obtained during the evaluation of this eye detector. It is capable of

reliably detecting the eye region regardless of the expression and even when the eyes

are closed, which is a relevant feature given the unconstrained and unpredictable



4.1. Eye region location 67

gestures and expressions of target patients. Samples of eye region detections can be

observed in Figure 4.2.

Figure 4.2: Eye detection at different times during the test.

With the aim of facilitating the subsequent steps, it was established that the eye

regions captures during an audiometric evaluation must have the same size. Since

the Viola and Jones object detector does not fulfill this condition, a later correction

is required. To that end, a fixed size is established based on the measurements of

the first location. The subsequent eye locations are going to be scaled to this fixed

size.

Although the locations provided by the Viola-Jones detector are fairly stable,

there might be a small displacement of a few pixels between locations of consecutive

frames. Even though this displacement is almost non-significant for the human eye,

since the aim of this methodology is the analysis of movements within these regions,

it may introduce noise to the results. To solve this, cross correlation between images

is calculated.

The cross correlation between images calculates the greater similarity R of a

template T inside an image I, according to the classical equation (4.1). In this case,

the template corresponds with the eye region located in the previous frame, and

the image used for the correlation is based on the current location of the eye region

slightly enlarged.
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R(x, y) =

∑
x′,y′(T (x′, y′)I(x+ x′, y + y′)√∑

x′,y′ T (x′, y′)2
∑

x′,y′ I(x+ x′, y + y′)2
(4.1)

Figure 4.3 illustrates the impact of applying cross correlation normalization. In

Figure 4.3(a) the cross correlation was not applied, so, by the overlap of the images

it can be observed that there exists a displacement of several pixels. However, when

the cross correlation is applied, the displacement is almost non-existent as it can

be seen in Figure 4.3(b). Figure 4.4 shows examples of eye region detection for a

number of sequences.

(a) (b)

Figure 4.3: Eye region detection: (a) without considering cross correlation, (b) applying

cross correlation.

Figure 4.4: Eye region detection samples.

After the eye region location, the proposed methodology makes use of the optical

flow information in order to detect the movements occurred within this particular

region.
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4.2 Motion detection

After the eye region location, this step is aimed to start the detection and analysis

of movements or expression changes that occur within this particular area as a

reaction to the sound. Due to the nature of the problem, movements are analyzed

in a global sense, so a classical point to point feature registration (such as in (Geetha,

Ramalingam, Palanivel, & Palaniappan, 2009)) is less effective when the expected

set of movements cannot be initially expressed as a function of a particular point

in the ROI. Besides, each individual may show different gestures as a reaction and

even the same patient may act erratically performing different movements along the

audiometric test. Therefore, a template analysis (e.g. (Kumano, Otsuka, Yamato,

Maeda, & Sato, 2009; Akakin & Sankur, 2011)) is not possible either, since the

reaction gestures of these patients are erratic and they do not correspond to any

typical gestural expression.

In order to address this problem, a novel approach specifically aimed to this

domain and based on global movement analysis for description was proposed. By the

evaluation of the domain and the features of the images to be treated, it was decided

to analyze the optical flow between eye region images. The motion is estimated by

the use of the iterative Lucas and Kanade (Lucas & Kanade, 1981) optical flow

method with pyramids (Bouguet, 2000). Optical flow has shown optimal results in

the identification of general and unconstrained movements produced by expression

changes.

The recorded video sequences have associated a particular frame rate. If the

frame rate is high, comparisons between a frame and the next one may not show

changes notable enough, because expression changes cannot occur so quickly. With

the purpose of allowing expression changes notable enough, we consider a time win-

dow (t) between considered frames, i.e. optical flow is computed between frame i

and frame i+t. The t parameter must be chosen as a trade-off between ignoring

irrelevant movements and not losing relevant movement. For our particular video

sequences with a frame rate of 25 FPS (frames per second), t was empirically estab-

lished in 3 (see Figure 4.5).

The optical flow operation is based on the detection of interest points. An interest

operator (typically, Good Features to Track (Shi & Tomasi, 1994)) is applied over

the first reference image and their corresponding points are then localized over the

frame i+t. Usually, this interest operator is applied over the first reference image

and the obtained points are used for all the images in the video sequence. In this
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(a) (b) (c) (d)

Figure 4.5: Sequence of consecutive eye region locations. For t=3 the optical flow would

be performed between (a) and (d).

case, this behavior was modified, so that the interest operator is applied over the

first frame of each comparison. This modification is done because changes in the

eye expression (e.g. open eyes versus closed eyes) may highly affect the amount of

detected interest points and their features. As mentioned, Good Features to Track

is the interest operator commonly associated to the optical flow; anyway, a study

about the influence on the interest operator for this domain was conducted, this

study is presented in Appendix C.

A sample of the application of the interest operator and the optical flow can be

observed on Figure 4.6, where Figure 4.6(a) represents the interest points detected

over the reference frame i, Figure 4.6(b) shows the correspondence of the interest

points located over the second frame i+t, and, Figure 4.6 shows the motion vectors

with origin at the interest point in frame i (represented in blue) and end at their

corresponding point in frame i+t (represented in red), for a t=3 (in 25 FPS video).

(a) (b) (c)

Figure 4.6: Motion estimation with optical flow. (a) Detected reference points in frame

i. (b) Optical flow results with the location of the reference points over the frame i+3. (c)

Motion vectors (from blue to red).

Since vectors in Figure 4.6(c) represent direction and amount of movement, this

representation can be modified in order to show arrows instead of vectors, where the

arrow for a particular point represents its movement from the initial moment to the

final one. The length of each arrow represents the magnitude of the movement and

arrowhead indicates the direction of the movement.

Figure 4.7 shows a couple of samples with this type of representation. In Figure
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4.7(a) the direction of the gaze changes, the optical flow is able to detect this move-

ment and it provides as a results vectors pointing to the side. In the case of Figure

4.7(b) the eye opening increases, so vectors are pointing up, properly representing

the movement produced.

(a) (b)

Figure 4.7: Sample of movement vectors represented as arrows for different eye movements:

(a) gaze shift and (b) eye opening.

In order to adapt the obtained results to this specific domain and to consider

only the significant vectors for the subsequent steps, some considerations are applied

over the obtained vectors.

4.2.1 Non-significant vectors removal

Since every movement is detected regardless of its strength, it can be considered that

small movements should not be considered in our domain since they do not represent

significant movements. This approach removes the non-significant vectors in order

to only consider the vectors that really correspond with a significant movement and,

thus, facilitate the movement classification.

Movement vectors are ranked according to their magnitude into three different

categories. This clustering was established empirically after evaluating the move-

ment vectors of this domain. Since the eye region has been fixed at the beginning

of the procedure, the thresholds can be normalized according to these proportions.

Equation (4.2) shows the established thresholds for an eye region size of 115 x

62pixel, and Figure 4.8 shows a sample of this classification.

vector classification


0px ≤ vshort ≤ 1.5px

1.5px ≤ vinterm ≤ 2.5px

2.5px ≤ vlong ≤ 13px

(4.2)
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(a) (b) (c)

Figure 4.8: Movement vectors ranked by magnitude. (a) reference frame (b) frame to be

compared and (c) shows the ranked movement vectors: green for vshort, yellow for vinterm

and red for vlong.

Vectors labeled as vshort are considered too small to be significant and will be re-

moved, in Figure 4.9 it can be observed this situation. It can be visually concluded

that between Figure 4.9(a) and 4.9(b) there are not significant differences. Con-

sistently, the optical flow only detects slight movements corresponding with short

vectors (Figure4.9(c))). Since these slight movements are not relevant for our do-

main, it is correct to discard them.

The second category, vinterm, contains those vectors with an intermediate length

that does not always correspond with relevant movements, therefore, in principle,

they are not considered. Vectors in vlong have a length significant enough to always

correspond with significant movements, so they are the vectors considered for the

next stages of the methodology.

(a) (b) (c)

Figure 4.9: Movement vectors ranked by magnitude. (a) reference frame, (b) frame to be

compared and (c) shows the ranked movement vectors.

It can be observed that there is also an upper limit for vectors in vlong; as occurs

with too small vectors, very long vectors must be removed. These vectors are usually

related to inaccurate associations or interest points that do not appear in the second

image (these behavior can be observer on Figure 4.10).

4.2.2 Discarding the displacement component

It can occur sometimes that the detected motion is due to global movements between

the two images instead of movements within the eye region. This global displacement
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(a) (b) (c)

Figure 4.10: Correction for too long movement vectors. (a) and (b) are the frames to

be compared, (c) shows the movement vectors. Vectors in grey are removed due to their

excessive size.

implies a significant number of vectors with the same strength and direction. In order

to correct the displacement component of the image, the number of equal vectors

(both in angle and magnitude) is considered. This value is defined by (4.3).

Cθ,m = {v ∈ C | θv ' θ ∧ |v| ' m} (4.3)

where Cθ,m will contain the set of vectors with a similar angle (θ) and magnitude

(m). v represents the vector, C the entire set of vectors, θv is the angle of the vector

and |v| the magnitude of the vector.

Between all the Cθ,m the one with a higher number of elements is chosen (follow-

ing (4.4)), since, if there is a global displacement this occurs only in one direction.

Cmode = Cθ,m | ∀θ′,m′, θ′ 6= θ ∨m′ 6= m, |Cθ,m| > |Cθ′,m′ | (4.4)

where θ′ and θ are the angles and m′ and m the magnitudes.

To consider a global displacement, a high number of vectors with the same angle

and magnitude is required. This is established with (4.5).

Cmode ≥ |C| · λ (4.5)

where λ is a parameter that sets the limit for discarding vectors depending on

the number of vectors in Cmode.

When a global displacement is detected the removal of the displacement vectors

is not enough as it is also necessary to correct the remaining vectors. To that

end, a subtraction of the vectors is computed, where the displacement component

is subtracted to the remaining vectors. The consequences of this optimization can

be observed in Figure 4.11, where it can be noted that after the correction of the

displacement vectors, no significant movement is detected.
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(a) (b) (c) (d)

Figure 4.11: Correction for displacement vectors. (a) and (b) are the frames to be com-

pared, (c) shows the movement vectors, which point up when there is no real movement and

(d) show the vectors after the correction (vectors in gray are the discarded vectors).

4.3 Motion characterization

The information provided by the optical flow serves as basis to characterize the

produced movements. Movement detection allows the identification of those instants

during the process where the patient shows a sign of perception to the sound. Since

each patient is going to react differently to the auditory stimuli, a classical solution

for the global characterization of the facial expression changes is not applicable in

this case. Considering this, this proposal relies on the detection of basic gestures

within the detected ROI. So that, the aim is to process the complete video sequence

by the analysis of the optical flow in order to detect where the significant movements

occur.

In order of being able of reliably distinguishing the patient’s movements it is

needed to characterize the movement when it occurs using as base a group of prop-

erties associated to movement. It is necessary to find a set of features that describe

the movement that manifests the patient as a sign of perception in such a way that

all these movements are equally described. This is an important contribution of

this work, since it enables the possibility of modeling any spontaneous movement

from the patient in a compact and homogeneous feature space which allows the

subsequent analysis of these in a formal and repeatable way. When no significant

movement occurs the classification is not applicable, so it is not needed to charac-

terize the optical flow in these time intervals. Instead, when a significant movement

occurs, it needs to be characterized. With the aim of capturing all those features

that are relevant for the motion characterization we propose a descriptor based on

some features that are going to be detailed next.

A set of relevant features is considered in order to try to group all vectors ob-

tained after the previous step. The considered features are: orientation, magnitude

and dispersion. A general idea of this feature extraction can be observed from

Algorithm 4.1.
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Algorithm 4.1: Optical flow feature extraction

Data: iSamples which contains the optical flow vectors

Result: histOrient, histMagnit and histDist

for i = 0 to iSamples.size() do
p← iSamples[i].p; . p is the origin q ← iSamples[i].q; . q is the end

angle← iSamples[i].angle; . angle in degrees

histOrient[ceil(angle/45)− 1] + +;

histMagnit[ceil(angle/45)− 1]+ = euclideanDistance(p, q);

histPos[ceil(angle/45)− 1].pushback(q);

for i = 0 to histOrient.size() do

if histOrient[i] 6= 0 then

histMagnit[i] = histMagnit[i]/histOrient[i];

for i = 0 to histPost.size() do

centroides[i]← compute centroid as the average;

for i = 0 to histPost.size() do

for j = 0 to histPost[i].size() do
distances[i]←
distances[i] + euclideanDistance(centroid[i], histPos[i][j]);

histDist[i] = distances[i]/histPost[i].size();

First, it must be clarified that each eye is considered separately at this stage,

so that each movement generates two movement descriptors, one for the right eye

and the other one for the left eye. When generating a movement descriptor, one of

the relevant features is the orientation of that movement. The orientation vector

provides information about the direction of the movement produced within the eye

region. This orientation is different for a change in the gaze direction than for a

movement of eye closure or even for a movement of eye opening. For the definition

of these descriptors, vectors are divided into eight different equally distributed ranges

according to their angle. This classification can be represented mathematically as

in (4.6).

R∗i =
{
v ∈ C∗f | θv ∈ [45 · i, 45 · (i+ 1)]

}
(4.6)

where ∗ ∈ {L,R}, indicating the differentiation between left (L) and right (R)

eye, and i takes values from 0 to 7. This way, vectors are grouped according to their

angle and the 8 first values of the descriptor correspond to the number of vectors in
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each range (see (4.7)).

n∗i = |R∗i | (4.7)

It is also important to know the vector’s magnitude, because this feature provides

information about the intensity of the movement. Considering this, the next eight

values of the descriptor are associated with the vector’s magnitude. With vectors

grouped by ranges (the angle ranges previously defined), the average of the module

of the vector is calculated according to (4.8). This feature provides information

about the intensity of the movement, allowing to distinguish between strong and

soft movements.

m∗i =
1

n∗i
·
∑
v∈R∗i

|v| (4.8)

Finally, the dispersion of the optical flow vector contributes with other eight

values to the descriptor. The dispersion of the optical flow allows us to discriminate

between localized and global movements. The computation is considered by range, it

means, according to the angle of the vectors. From each one of the vectors (v =
−−→
AB)

the destination point is taken B = (Bx, By) and the center of them is calculated

according to (4.9) locating the centroid.

c∗i =

 1

n∗i
·

∑
v=
−→
AB,v∈R∗i

Bx,
1

n∗i
·

∑
v=
−→
AB,v∈R∗i

By

 (4.9)

Once the centroid is calculated, the dispersion is computed through the calcula-

tion of the average distance to that center, according to (4.10).

d∗i =
1

n∗i
·

∑
v=
−→
AB,v∈R∗i

d(B, c∗i ) (4.10)

where d(p, q) is the euclidean distance between p and q.

With all this, the descriptor is comprised by a vector of 24 values where the 8

first correspond to orientation, N∗, the 8 next are related to magnitude, M∗, and

the last 8 provide information about dispersion, D∗, as in (4.11), (4.12) and (4.13).

N∗ = {n∗i |i ∈ {0...7}} (4.11)
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M∗ = {m∗i |i ∈ {0...7}} (4.12)

D∗ = {d∗i |i ∈ {0...7}} (4.13)

A sample of these descriptors can be observed in Figure 4.12.

Figure 4.12: Descriptors sample. Left image shows the movement vectors for each eye and

right tables the corresponding descriptors for each eye. First row represents orientation, the

second one magnitude and the last one dispersion.

Once the vector descriptors are computed for each movement, the next step is

their classification, according to to movement classes determined for this domain.

4.4 Classification

The last step of the methodology is the classification of the descriptors. It must be

noted that this classification is not strictly required, different alternatives could be

attempted. This methodology allows to cover many more problematic, but consid-

ering that the experts tend to classify the type of movements that the patient shows

as a reaction, in this initial approach, we are going to handle the problem as similar

as possible to the experts’ procedure.

At this point, the different movement descriptors are associated with the different

movement categories and established by the audiologists for this domain. After

reaching an initial consensus with the experts, five typical movement were identified

as the most relevant: eye opening (EO), eye closure (EC), gaze shift to the right

(GR), gaze shift to the left (GL) and global movement (GM). Also, an extra category

was included to categorize those descriptors corresponding to small or insignificant

movements (class NM).
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At this stage, classification is conducted independently for each eye, meaning

that the descriptor for one of the eyes can be classified as eye closure (EC), whereas

the descriptor of the other eye can be classified into a different category, i.e. gaze

shift to the left (GR). It must be also noted that if the obtained movement vector is

totally composed by 0 values, the classification is not conducted since no movement

exists.

A previous training of the classifier is needed to accomplish this step. To that

end, a supervised training is conducted for several classifiers. The different clas-

sifiers considered for this evaluation are: Naive Bayes, Random Forest, Random

Committee, Logistic Model Tree (LMT), Random Tree, Logistic, Multilayer Percep-

tron and Support Vector Machines (SVM). The obtained results are shown in the

next Section, obtaining as result the most suited classifier.

Despite of the high resolution of the video sequences, the obtained eye regions do

not have the same quality. This is motivated by the need of a general scene includ-

ing elements other than the patient and also by changes in the lighting conditions

during the audiometric evaluation. These considerations increase motion detection

difficulties.

4.5 Experimental results

To perform these experiments different video sequences were analyzed and the eye

movements produced during them were manually labeled.

The audiologists were equipped with an audiometer Madsen Xeta from Otomet-

rics (represented in Figure 2.8(b)). The auditory stimuli used were pure-tone and

the frequency range was between 125-8000 Hz for air conduction, and 250-8000 Hz

for bone conduction. The stimulus levels can be set from -10 to 120 dB(HL) with

5 dB(HL) steps for air conduction, and from -10 to 70 dB(HL) also with 5 dB(HL)

steps for bone conduction.

The video sequences considered for the following experiments had Full HD res-

olution (1080 x 1920 pixels) and 25 frames per second (FPS). The device used for

recording them is a conventional video camera with full HD resolution and no par-

ticular hardware requirements. The only requirement is to try to maintain favorable

and constant lighting conditions in order to improve the recorded images and to

avoid shadows or occlusions. As mentioned before, the video sequences are focused

on the patient who is seated in front of the camera. The image shows the patient
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waist up and also the surrounding scenario: the audiometer, the hand of the audiol-

ogist handling the audiometer, the background, etc, exactly as in the previous part

of this work.

Despite of the high resolution of the video sequences, the obtained eye regions do

not have the same quality. This is motivated by the need of a general scene includ-

ing elements other than the patient and also by changes in the lighting conditions

during the audiometric evaluation. These considerations increase motion detection

difficulties.

Although we have recorded more than 150 audiometric evaluations, only 8 of

them are suited for this initial evaluation. As mentioned in the Introduction, these

gestural reactions are very specific and they only occur when the patient suffers

from cognitive decline or in the case of patients very expressive facially, otherwise,

they will raise their hands or respond vocally. This justifies the low number of video

sequences available for this evaluation, since it is a ratio that corresponds to the

percentage of people with these characteristics within a normal population. It is

also important to note the difficulties for recording this specific group of patients;

most of people with severe cognitive decline are entered in special centers and special

permits and authorizations are needed to record them.

There are 8 considered video sequences, all of them are from adult patients,

both male and female and with ages ranging from 45 to 85 years. Each of these

video sequences takes between 4 and 8 minutes, so considering a frame rate of 25

FPS, it involves the evaluation of between 6000 and 12000 different frames per video

sequence.

The experiments that are going to be addressed next show: a preliminary analysis

about the quality of the movement detection; subsequently, over the classification of

the detected movement a high number of different classifiers are evaluated in order to

select the one that offers better results using the proposed motion descriptor; after

that, applying that classifier, a more detailed analysis is conducted over specific

video sequences of patients with cognitive decline. And finally, the movements are

associated to the auditory stimuli in order to establish validity of characterized

reactions respect to the stimuli, setting the suitability of our methodology in the

target domain and purpose.
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4.5.1 Quality of the movement detection

In order to evaluate the quality of the movement detection, a number of 1500 labeled

frames were analyzed. Each one of them were processed to check if any significant

movement took place. The results of the classification are detailed in Table 4.1

using a contingency table. It can be noted from Table 4.1 that most frames are

classified as non-significant movements; this is an expected consequence of the fact

that, generally, the patients are static.

Table 4.1: Contingency table for detection

Labels

No movement Movement

Classifications
No movement 1176 12

Movement 42 270

Total: 1218 282 1500

Sensitivity: 95.74%

Specifity: 96.55%

Accuracy: 96.4%

F-score: 90.9%

An important measurement in these cases is the sensitivity, i.e. the ability to

detect significant movements when these occur. In our case, the sensitivity rate

has a value of 95.74%. Combining sensitivity with specificity (ability to detect non-

significant movements) we obtain an accuracy of 96.4%. The F-score of our method

is 90.9%.

4.5.2 Classifier assessment in the domain

Several classifiers are trained and evaluated for all the available video sequences

in this Section. Only those frames where the optical flow detected a significant

movement are considered for the classification. It it important to note that most of

the frames do not show a significant movement, since, by default, the patient does

not show any reaction. When a significant movement was detected, it was manually

classified into one of the possible categories (i.e., eye opening (class EO), eye closure

(class EC), gaze shift to the left (class GL), gaze shift to the right (class GR), global

movement (class GM) and no movement (class NM)). No additional categories were

needed in this dataset.

A total number of 820 descriptors were detected as significant movements and
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they were classified into one of the possible categories obtaining the distribution

showed in Table 4.2.

Table 4.2: Distribution of the significant movements between the considered categories.

Eye open Eye close Gaze left Gaze right Global mov. No mov.

(EO) (EC) (GL) (GR) (GM) (NM)

Number
241 339 64 34 108 34

of samples

As it can be observed in Table 4.2, the number of samples is not well balanced

because changes in the gaze direction are not very common. In order to improve the

training dataset, it is necessary to balance the number of samples of the different

classes. To that end, for those classes with a high number of samples (class EO,

class EC and class GM) a limit number of 75 samples was established. Thus, the

final dataset will be composed by 357 frames. Since in order to balance the training

datasets, 75 samples were randomly for three of the six classes, it is necessary to

conduct several trainings in order to obtain reliable results. For these reasons,

10 experiments were conducted, where each one of them corresponds to a ten-fold

cross validation. Furthermore, each one of the 10 training datasets was trained

for each one of the eight different classifiers considered for this experiment: Naive

Bayes, Random Tree, Logistic, Logistic Model Tree (LMT), Perceptron, Random

Forest, Random Committee and Support Vector Machines (SVM). Results of this

experiment are summarized in Table 4.3. In this Table, each column corresponds

with one of the eight considered classifiers and each row corresponds with one of

the ten experiments. Each cell shows the accuracy for the combination of training

dataset and classifier. Finally, the last two rows show the average and the variance

of the ten experiments for each classifier.

Although for reasons of space and simplicity, only a summary of the results is

shown here, all the experiments were studied and discussed in detail. In Table 4.3

only the global accuracy of the experiment is shown, however, the accuracy was

also analyzed considering the different classes in order to discuss the behavior of the

classifier related to each class. It was observed that, whereas almost all the classifiers

offer balanced accuracy for all the classes, the Naive Bayes classifier provides high

accuracy in the classification of class GL but very low for classes EO or GM. This

behavior can be observed in Table 4.4, where the accuracy by classes is detailed

for several experiments. From the global results in Table 4.3 it can be concluded

that Naive Bayes is the worst classifier in terms of accuracy, but even if this did

not happen, it would not be a valid classifier due to the imbalance of the different
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Table 4.3: Accuracy of the classifiers for 10 different trainings. Last two rows show the

average and the variance for each classifier.

Naive Random Logis- LMT Percep- Random Random SVM

Bayes Tree tic tron Forest Comm.

T. 1 55.6% 73.3% 73.3% 73.6% 71.4% 77.5% 76.1% 75.8%

T. 2 55.0% 72.8% 69.7% 72.5% 72.8% 76.7% 77.2% 77.2%

T. 3 51.9% 68.9% 71.7% 73.3% 69.2% 74.2% 73.1% 75.6%

T. 4 58.6% 72.2% 73.6% 74.7% 72.5% 76.4% 76.9% 75.8%

T. 5 53.6% 70.6% 67.8% 70.6% 70.3% 74.2% 75.6% 75.8%

T. 6 55.3% 71.4% 69.7% 73.6% 72.2% 75.8% 78.6% 77.5%

T. 7 56.6% 73.6% 71.4% 72.8% 76.9% 78.1% 79.2% 79.2%

T. 8 55.3% 73.6% 67.5% 71.7% 71.7% 77.2% 76.9% 77.5%

T. 9 55.2% 71.3% 69.1% 69.6% 74.1% 77.2% 75.2% 76.3%

T. 10 59.2% 68.1% 69.2% 70.0% 73.1% 74.2% 75.6% 81.4%

Avg 55.6% 71.6% 70.3% 72.2% 72.4% 76.1% 76.4% 77.2%

Var 4.55 3.78 4.54 2.94 4.52 2.20 3.10 3.40

classes. The problem of imbalance does not happen to the other classifiers, so they

can be considered.

Table 4.4: Accuracy by classes of Naive Bayes for different experiments.

Test 3 Test 5 Test 7 Test 9

Class NM 0.529 0.529 0.529 0.471

Class EO 0.303 0.329 0.408 0.276

Class EC 0.632 0.697 0.776 0.789

Class GL 0.859 0.859 0.859 0.891

Class GR 0.647 0.647 0.618 0.618

Class GM 0.276 0.263 0.263 0.307

Global 51.9444% 53.6111% 56.6667% 55.1532%

Analyzing the global results from Table 4.3 it can be observed that the best

results are obtained with the Random Committee and the SVM classifiers. The

average accuracy is better for the SVM classifier, whereas the variance is better for

Random Committee. Although the variance for SVM is not the minimum, it is one

of the lowest values, and thus, it is acceptable. These results only show the global

accuracy of the classification, so in order to evaluate the classification by classes

and check for the imbalance, in Table 4.5 the accuracy by classes is detailed for the
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Table 4.5: Accuracy of the classifiers by classes for the training dataset number 10. Last

row shows the average for each classifier.

Naive Random Logis- LMT Percep- Random Random SVM

Bayes Tree tic tron Forest Comm.

Class
47.1% 67.6% 55.9% 55.9% 61.8% 64.7% 58.8% 69.1%

NM

Class
35.5% 67.1% 65.8% 67.1% 61.8% 73.7% 73.7% 73.6%

EO

Class
73.7% 57.9% 76.3% 76.3% 77.6% 69.7% 75.0% 92.5%

EC

Class
90.6% 73.4% 76.6% 76.6% 79.7% 78.1% 82.8% 76.9%

GL

Class
64.7% 55.9% 38.2% 38.2% 50.0% 58.8% 61.8% 85.0%

GR

Class
44.7% 80.3% 78.9% 81.6% 89.5% 86.8% 85.5% 89.9%

GM

Avg 59.2% 68.1% 69.2% 70.0% 73.1% 74.2% 75.6% 81.4%

experiment number 10.

As it can be observed from Table 4.5, no major imbalances occur neither for

Random Committee neither for SVM classifiers. So, going back to the main table

(Table 4.3), if we analyze the obtained accuracies, it can be observed that the best

accuracy is obtained for the combination of experiment number 10 and the SVM

classifier (accuracy of 81.4%). So, this combination (experiment 10 and SVM clas-

sifier) is selected as the most suited for the classification task and it will be the one

applied for the following experiments.

4.5.3 Classifier evaluation

In order to evaluate the performance of the trained classifier, it was applied to five

different sequences from three different patients, who reacted with some kind of eye

movement. These three patients were elderly, but they did not have any cognitive

impairment, this is why their spontaneous reactions expressed like eye movements

were few and far between.

A total number of 1950 frames were analyzed in this experiment, within these

1950 frames, a total number of 545 were classified as significant movements, for the
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remaining it was considered that no significant movements occur. Result of this

classification are detailed in Table 4.6. The columns of this table correspond to the

number of frames evaluated, the number of frames where a significant movement

was detected, the number of frames correctly classified and, finally, the accuracy of

the classification in terms of percentage.

Table 4.6: Initial classification results.

Number of Significant Correctly % Accuracy

frames frames classified

Video 1, seq. 1 350 124 87 70.16129%

Video 1, seq. 2 400 134 80 59.70149%

Video 2, seq. 1 400 90 68 75.55556%

Video 2, seq. 2 400 122 80 65.57377%

Video 3, seq. 1 400 75 59 78.66667%

Global 1950 545 374 68.62385%

By the evaluation of the classification results, it was observed that a couple of

optimizations could be applied. First, having into consideration the domain knowl-

edge, it can be established that it must exist continuity along the movement, i.e.,

if a movement of eye closure (EC) is detected for three consecutive frames in one

eye, and in the other eye two frames are classified as eye closure (EC) too, whereas

an intermediate frame is classified as global movement (GM), it is very likely that

a miss-classification has occurred and that particular frame should be classified as

eye closure too. By the application of a voting system, based on the requirement of

this continuity, some miss-classifications may be corrected and, this, the accuracy

may be improved.

Furthermore, considering the domain and according to the experts opinion, iso-

lated movements of only one frame of length are discarded, because a movement

without continuity does not represent a significant movement. Moreover, this sys-

tem attempts to automate the expert behavior, and the expert does not consider

movements of one frame of length since he is not able to detect them in real time,

and thus, they are irrelevant for the characterization of patients as they can induce

error.

Taking into account these two considerations, the results were optimized and

the new obtained results are detailed in Table 4.7. For an easier comparison the

accuracies before and after the optimizations are compared in Table 4.8. This last

table shows the improvement in accuracy due to the optimizations applied. It can be
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noted that for Video 3, seq. 1, the accuracy suffers a greater increase. By the analysis

of this sequence, it was observed that the lighting conditions were significantly better;

thus, under optimal recording conditions, the influence of the proposed optimizations

is even greater. Nevertheless, under normal recording conditions, the optimizations

also provide an improvement.

Table 4.7: Classification results after the optimizations

Number of Significant Correctly % Accuracy

frames frames classified

Video 1, seq. 1 350 124 93 75.0%

Video 1, seq. 2 400 134 82 61.19403%

Video 2, seq. 1 400 90 73 81.11111%

Video 2, seq. 2 400 122 86 70.49180%

Video 3, seq. 1 400 75 69 92.0%

Global 1950 545 403 73.94495%

Table 4.8: Comparative of the accuracy before and after the optimizations

% Accuracy % Accuracy

before optimization after optimization

Video 1, seq. 1 70.16129% 75.0%

Video 1, seq. 2 59.70149% 61.19403%

Video 2, seq. 1 75.55556% 81.11111%

Video 2, seq. 2 65.57377% 70.49180%

Video 3, seq. 1 78.66667% 92.0%

Global 68.62385% 73.94495%

4.5.4 Association of movements and stimuli reactions

Finally, the most relevant results are related to the correct detection of eye gestural

reactions to the stimuli. Previously, it has been seen that the movements are de-

tected and they are correctly classified. Now, it must be demonstrated that by the

correlation of the detected movements and the auditory stimuli, the system is able

to detect the reactions to the stimuli.

For this last analysis, the amount of data is not high, but even so, it is interesting

to conduct a preliminary analysis to determine if the reactions can be correctly

associated with the detected movements. With five different video sequences from
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three different patients, the aim is to corroborate if the detected reactions correspond

to the ones labeled by the experts.

For this experiment, it is considered that a gestural reaction exists when a signif-

icant movement occurs during two consecutive frames or more. For this particular

group of patients, besides all the rest of eye movements, they expressed their uncon-

scious reactions by gaze movements, so, in this case, only movements of classes gaze

shift to the left (GL) and gaze shift to the right (GR) are interpreted as positive

reactions to the stimuli.

Besides, it is expected that the eye gestural reactions occur after an auditory

stimulus has been delivered. In order to correlate the information from the eye

movements and the auditory stimuli it is necessary to know when the auditory

stimuli are sent, the methodology that handles the stimuli detection is addressed

in Appendix B. A sample of the correlation between stimuli and reactions can be

observed in Figure 4.13.

Figure 4.13: Correlation between the stimulus and the reaction. Red signal for the stimuli

(signal up when stimulus delivered) and green for reaction (signal up when reaction occurs).

Classification results are processed in this final experiment, and it is established

that an eye gestural reaction exists when two or more consecutive frames are classi-

fied as gaze sift to the left (GL) or gaze shift to the right (GR). According to this,

the number of detected reactions for each video sequence is detailed in Table 4.9.

As it can be derived from the results of this Table, all the eye gestural reactions

detected by the experts are correctly detected with this methodology too, achieving

a 100% of accuracy in the detection of these reactions, which is the main goal of this

proposal.
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Table 4.9: Number of existing and detected eye gestural reactions for each video sequence.

The correlation between natural reactions and our methodology is maximum

Classification Number of Detected

accuracy reactions reactions

Video 1, seq. 1 75.0% 2 2

Video 1, seq. 2 61.19403% 1 1

Video 2, seq. 1 81.11111% 3 3

Video 2, seq. 2 70.49180% 1 1

Video 3, seq. 1 92.0% 1 1

Global 73.94495% 8 8

Finally, associated to the auditory stimuli we have shown here the reactions

labeled by the experts against those obtained by the system. Although the data are

insufficient for a definitive validation, it has been shown that the methodology here

proposed offers useful characteristics for this domain.

4.6 Discussion

The methodology presented until this point is capable of characterizing the eye

movements of patients with communication difficulties in the audiometric domain,

something that had not been addressed so far.

One of the premises of this work is to modify as minimum as possible the tra-

ditional protocol of the audiometric assessment. When working with this particular

group of patients it is very important to avoid distractions, for this reason, the

only requirement of our approach is to place a video camera behind the audiologist

performing the assessment.

The auditory stimuli light indicator is properly detected for two different models

of audiometers in order to synchronize stimulus and response. Besides this step is

dependent on the device, it could be easily adapted to different models.

The detection of the eye gestural reactions is addressed using as base optical flow

information. The obtained results showed promising results in the detection and clas-

sification of these unconscious eye movements. Besides, the proposed methodology

is not only able of classifying the eye movements with reasonable classification rates,

but also these rates seem to indicate that the methodology is appropriate for the

detection or gestural reactions to the stimuli, paving the way for the development of
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an automatic tool for this particular domain. The methodology has shown encour-

aging and positive results, especially considering that it is the first fully automated

approximation proposed for this domain.

Furthermore, one of the highlights of this proposal is that its behavior suggests

that it may be a useful tool in different domain where the eye gestural reactions

could provide relevant information. The proposed steps could be adapted to different

domains or to different classification requirements.

Anyway, it can be observed that classification accuracy could still be improved.

There are some situations where the a global analysis as the one provided by the

optical flow is not enough, i.e., when face movements introduce noise to the move-

ment detection. This situation leads us to consider the proposal of a complementary

approach more focused on local features.



Chapter 5

2nd approach: Color

information from sclera

As commented before, the proper hearing assessment of patients with cognitive

decline or other communication problems becomes a challenge for the audiologists.

In Chapter 4 an automated solution based on the use of optical flow was proposed in

order to detect the unconscious eye gestural reactions to the sound of this particular

group of patients. In this case, we propose a different approach in order to provide

an alternative solution based on an alternative feature: the color information from

the sclera. The sclera (see Figure 5.1), also known as the white of the eye, is the

opaque, fibrous, protective, outer layer of the eye containing collagen and elastic

fiber.

Figure 5.1: Structure of the eye.

89
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In humans the whole sclera is white, contrasting with the colored iris. The human

eye is relatively rare for having an iris that is small enough for its position to be

plainly visible against the sclera. This makes it easier to infer where an individual is

looking at. The relation between the location of the iris and the white distribution

of the sclera allows to determine the gaze direction. This relation must be identified

and characterized in order to determine if, in our specific domain, a movement has

occurred as a reaction to the auditory stimuli. This way, the methodology will

enable the proper assessment of patients when no typical interaction is possible, but

unconscious gestural reactions to the sound occur.

The development of an automatic solution capable of analyzing the eye move-

ments and detecting gestural reactions to the stimuli would be very helpful for the

hearing assessment of patients with severe cognitive decline or other communication

difficulties. The proposed solution will receive as input a video sequence recorded

during the development of the hearing assessment, and it is going to by analyzed

frame by frame.

Using as starting point the general schema presented in the previous Chapter,

we propose here an alternative approach for the movement analysis. The proposed

methodology is divided into five main stages represented in Figure 5.2. In the first

one, we locate the eye region, which is our region of interest. After that, we obtain

the location of the pupils’ centers. Then we delimit the eyes by the location the

eyes’ corners, and finally, we characterize and classify the eye position using color

information about the sclera. Each one of these steps is going to be discussed next,

unless the Eye region location step which is addressed as introduced in Chapter 4

Section 4.1.

 
Eye region

location
Motion

characterization
Classification 

Pupil location

Motion
detection

Accurate
delimitation

of eyes

Figure 5.2: Main steps of the color information from the sclera.
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5.1 Motion detection

Once the eye region is located, at this step the motion will be detection through the

detection of the pupil’s center and the accurate delimitation of the eye’s boundaries,

as depicted in Figure 5.3.

Pupil location

Motion detection
Accurate

delimitation
of eyes

Figure 5.3: Motion detection substeps.

5.1.1 Pupil location

After the location of the eye region, this step is aimed to the location of the center

of both pupils, so we can use this information as a reference point in the subsequent

steps of the methodology. To that end, a method based in gradients (Timm &

Barth, 2011) is applied. The yellow points in Figure 5.4 correspond to the pupil’s

locations provided as a result by the proposed method for some eye region samples

from different patients.

Figure 5.4: Yellow points represent the center of pupil obtained at this step

Two more different methods aimed to the location of the pupil’s center were

considered too: a method also based in gradients (Kothari & Mitchell, 1996) and

the Starburst method (Li, Winfield, & Parkhurst, 2005). However, the Timm &

Barth, 2011 approach was the one that show the most accurate results for our

domain. The experiment conducted for the choice of the pupil location method
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is detailed in next. This experiment consisted on measuring the distance between

the locations provided by each one of the three methods and the expected pupil’s

locations manually labeled by the experts. Since the Timm & Barth, 2011 approach

was the one the provided the minimum distances, it was the selected solution.

Choice of the pupil location method

In this experiment three different alternatives were compared for the pupil location

task. The three methods for the location of the pupil’s center analyzed in this study

are: method 1 (Starbust (Li et al., 2005)) and methods 2 and 3 (both based on the

gradient (Kothari & Mitchell, 1996) and (Timm & Barth, 2011)).

The test set was established used in this experiment was built from 10 different

video sequences recorded during hearing assessment. From each one of these 10

video sequences, 20 frames were selected. From is each of these frames, the eye

region of each one of the eyes was labeled, obtaining this way a total number of 40

samples for each video sequence. Considering that we have 10 video sequences, a

total number of 400 samples will be evaluated, 200 for the right eye and 200 more

of the left eye.

In order to conduct this experiment the expected pupils’ centers were previously

labeled so a comparison with the obtained results from the three different methods

could be established. Once we have both the expected center Pe and the center

provided as a result by the method Pc, we compute the error in the location as

indicated in (5.1). Since both Pe and Pc are pixel locations, the obtained error is

also measured in pixels.

error = |Pe − Pc| (5.1)

Table 5.1 contains the average and the standard deviation (expressed in number

of pixels) of the obtained errors for the complete dataset. Each row corresponds

with one of the ten video sequences.

For better understanding, based on the data presented in the above table, Figure

5.5 shows a graph representing the average global error (measured in number of

pixels) for each one of the ten considered video sequences. It can be observed from

this graph that the highest errors are obtained with video sequences 3 and 5, which

have an average error considerably higher than the errors obtained for the remaining

video sequences.
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Table 5.1: Individual results for the pupil location methods.

Error Error Error

method 1 method 2 method 3

Video 1
Average 3.1810 1.0028 2.0688

Std. dev. 0.8841 0.3156 0.9450

Video 2
Average 2.0700 1.7400 1.6200

Std. dev 1.0483 1.1902 0.8084

Video 3
Average 2.8263 7.1919 7.0540

Std. dev 1.2967 7.3473 6.9875

Video 4
Average 4.1156 3.5661 1.1719

Std. dev 0.9843 2.3030 0.3917

Video 5
Average 6.9201 6.0677 9.8813

Std. dev 8.5483 7.2433 14.419

Video 6
Average 2.6337 1.6156 1.6697

Std. dev 0.9093 0.8837 0.6646

Video 7
Average 2.9304 1.2061 1.4733

Std. dev 1.2719 0.5860 0.9176

Video 8
Average 2.0825 0.9825 0.6255

Std. dev 0.7741 0.6550 0.5528

Video 9
Average 4.8747 1.6059 1.2394

Std.dev 5.5548 0.7163 0.5876

Video 10
Average 2.8151 3.0882 0.7506

Std.dev 0.7367 4.1131 0.7339

After a detailed study of each one of these two videos, it was detected the ex-

istence of shades and abrupt illumination changes that noticeably modified the ap-

pearance of the eye region. Thus, it can be concluded that the existence of these

particular circumstances directly influenced on the results obtained for these spe-

cific video sequences. In the remaining video sequences there also exist illumination

changes, but they are not so abrupt; so they do not modify as much the appearance

of the eye region.

Finally, Table 5.2 presents the global results for this experiment in terms of

average and standard deviation. Generally speaking, the results provided by the

three different alternatives are quite similar in terms of error. Since the results

provided by the Timm and Barth (2011)) approach are slightly better than the

others, this is the method chosen in order to be included in our methodology.
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Figure 5.5: Average global error for each video sequence.

Table 5.2: Global error results for pupil location.

Error Error Error

method 1 method 2 method 3

Global average 3.4479 2.7711 2.7380

Global std. dev 2.0645 2.7467 2.7154
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5.1.2 Accurate delimitation of eyes

This step aims to locate eye corners. The detection of eye corners is quite more

complex than the detection of the iris. This occurs because the eye’s corner is a

corner located within a skin region that does not have specific features that makes

it unique and it is not as well defined as the pupil. Furthermore, the presence of

wrinkles or puffiness around the eyes will disturb the appearance of the corner in the

image (Lam & Yan, 1996). These circumstances have as consequence that the eye’s

corner is a area difficult to characterize using edge descriptors, corners, textures or

other low level methods (Santos & Proenca, 2011); so, a more complex solution is

required here.

Using as information the eye region location and the pupil location provided by

the previous steps, we have designed a method that locates the eyes’ corners in three

steps (see Figure 5.6): selection of the candidate points, selection of the reference

points and choosing the best candidates. Each one of these steps is going to be

addressed next.

Accurate delimitation of eyes

Selection of candidate
points

Selection of reference
points

Choosing the best
candidates

Figure 5.6: Phases of the delimitation of the eyes stage.

Phase 1: selection of the candidate points

First, we are going to detect points that can be considered as candidates to cor-

respond with the eyes’ corners. In order to facilitate this detection, four areas of

interest are established using as reference the pupils’ centers. For each eye, two

ROIs are defined: one on the right side of the eye and the other on the left side (see

Figure 5.7). These four areas correspond with those regions where the eyes’ corners

are expected to be. The main target of these ROIs is to reduce the search area and

also to avoid the iris area, which would produce false negatives when applying an

interest operator.

So, within these four regions, we are going to apply an interest operator. At this

step, three different interest operators were evaluated for this task: Harris (Harris &
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Figure 5.7: ROIs for the detection on the eyes’ corners.

Stephens, 1988), Shi-Tomasi (Shi & Tomasi, 1994) and FAST (Rosten & Drummond,

2005) (Rosten & Drummond, 2006). Particularly, we have applied the Shi-Tomasi

method. The choice of this method is justified in the study presented in Appendix

D, where we compute the distance between the candidate points and the expected

eye corner. A sample of the results obtained at this point can be observed in Figure

5.8.

Figure 5.8: Interest operator applied over the four search areas.

As a result of this step, we obtain a set of points that are candidates to be the

eyes’ corners. Between them, we need to choose those that better represent the eyes’

corners.

Phase 2: selection of the reference points

The aim of this phase is to find a set of reference points that allow the removal

of false positives from the list of candidate points obtained in the phase previously

presented.
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Edge information is used at this step in order to obtain edges associated with

the limits of the eyelids, so they can be used as a reference of the eyes’ limits. The

main idea is to apply a different technique in order to complement the information

obtained in the previous step. The joint use of both methods provides greater

robustness.

We use as input two areas of interest (one for each eye) containing the eye.

In order to facilitate edge detection, we increase the enhancement of the eyelid by

increasing the contrast of the image. First, we convert the images from the RGB

color space to HSV color space, in order to use the saturation channel S. It mus be

considered that, regardless of the skin color, pixels from the sclera have always low

intensity on the saturation channel due to their white color. Next, an erosion filter

considering the radius of the iris is applied. The image obtained as a result from

the application of the erosion filter Sf (x, y) is subtracted from the saturation images

S(x, y), obtaining this way the subtraction images R(x, y) (as indicated in (5.2)).

This process is showed in Figure 5.9, where it can be observed how the eyelid has

now more contrast.

R(x, y) = S(x, y)− Sf (x, y) (5.2)

Figure 5.9: Process of the enhancement of the eyelids’ contrast.

Next, a threshold for the binarization of the image is computed using as reference

some features of the image according to (5.3), where µ is the average value of the

pixels from the difference image Idiff and σ is the standard deviation.

ths = µ(Idiff ) + 0.75 ∗ σ(Idiff ) (5.3)

The binarization is computed according to (5.4) where Iths is the thresholded

image (see Figure 5.10).
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Iths(x, y) =

1, if Idiff (x, y) > ths;

0, otherwise.
(5.4)

Figure 5.10: Thresholding the subtraction images R(x, y).

Although the eyelids are now easily segmentable, there also exist other tiny

elements that need to be removed in order to avoid errors. These elements are

small clusters of pixels obtained from the thresholding. In order to remove them,

we are going to group the connected pixels as blobs. Once all the pixels are grouped

as blobs, we take the biggest one and remove the remaining blob. This step is

represented in Figure 5.11, where the bigger blob stays and the three tiny blobs are

removed.

Figure 5.11: Blob filtering for removing noise.

Next, considering the anthropometric constraints that involve the human eye, we

can define the eyes’ corners as the intersections between the ellipses that represent

the eyelid, which correspond with the lower and upper limits over the x coordinate of

the blob previously obtained. In the case of obtaining two point with the same value

for the x coordinate, we choose the one that has a lower value for the y coordinate.

This way, the reference points obtained at the end of this phase can be observed in

Figure 5.12.
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Figure 5.12: Reference points for a sample image.

Phase 3: Choosing the best candidates

At this point, we are going to consider the candidate points and the reference points

obtained in the previous phases with the aim of choosing the best candidates to

correspond with the eyes’ corners.

In order to ensure the robustness of the points representing the eyes’ corners, it

is necessary to ensure that the reference point associated to those points are good

enough, i.e, that they close to the eye corners. To that end, we evaluate the quality

of those points based on the anthropometric references of the human eye. Since

in our domain the patient remains seated throughout the audiometric evaluation

with a stable position, we can ensure that they will not occur significant changes

regarding the eye’s features during the performance of the assessment.

The reference points obtained from the previous phase are labeled as Pr1, Pr2,

Pr3 and Pr4, where Pr2 and Pr3 represent the internal reference points (see Figure

5.13). We also consider the average size of the eye tceye and the inner distance dcin

(where dcin is the distance between Pr2 and Pr3) computed for the complete video

sequence. According to (5.5) we accept the reference point whenever the distance

between the ends of the eye is similar to the average size of the eye tceye computed

for the complete video sequence. dright represents the euclidean distance between

Pr1 and Pr2, dleft is the euclidean distance between Pr3 and Pr4, and α is the

allowed deviation. Otherwise, we reject those reference points. The same occurs

for the inner reference points, where dint is the euclidean distance between Pr2 and

Pr3, dcint is the inner distance computed for the video sequence and α is the allowed

deviation (see (5.6)).

f(dleft, dright, tceye, α) =

|dleft − tceye| ≤ α|dright − tceye| ≤ α
(5.5)
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Figure 5.13: Location of the reference points.

f(dint, dcint, α) =

|dint − dcint| ≤ α, Accept;

|dint − dcint| > α, Reject.
(5.6)

Once the validity of the reference points has been checked, this information is

used to we compute the distances between the candidate points and the associated

reference points, finally choosing the candidate point nearest to the reference point

Pe. In the case of two or more candidate points with the same euclidean distance

to the reference point, we compute the average of those points according to (5.7),

where Pc represents each one of the n candidate points with the same euclidean

distance to the reference point.

Pe(x, y) = Pc

(∑n
i=1 xi
n

,

∑n
i=1 yi
n

)
(5.7)

Finally, the quality of the selected points Pei is analyzed. If Pei is far from the

nearest reference point Pri, considering β as the maximum distance allowed, that

Pei is going to be discarded and replaced by the reference point Pri, as indicated

in (5.8).

Pei =


Pei si |Pei − Pri| < β

∀i ∈ {1 . . . 4}
Pri otherwise

(5.8)

The results of this step of the methodology can be observed in Figure 5.14,

where the yellow points represent the candidate points, red points correspond with

the reference points and green points represent the final points selected as eyes’

corners.
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Figure 5.14: Choosing the best candidates: yellow for candidate points, red for reference

points and green for the selected eyes’ corners.

5.2 Motion characterization and classification

The last step is the characterization of the eye movement. This is going to be

accomplished using color information from the sclera, the white area of the eye. To

that end, we need to estimate the amount of white in the eye, using as reference the

characteristic points previously obtained.

First, the input image is converted to gray-scale color space and a histogram

equalization is applied over it. For the characterization of the movement, we are

going to compute a gray level distribution representing the gray level for each one of

the pixels located in the line connecting both eye corners. A visual representation

of this step can be observed in the sample presented in Figure 5.15, where the sclera

(since it is the white area in the eye) corresponds to high values in the gray level

distribution, while the iris (the colored area of the eye) corresponds with low values

in the distribution.
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Figure 5.15: Sample of the gray level distribution.

Once the gray level distribution is computed it is possible to divide it into three

areas of interest: iris, left side of the sclera and right side of the sclera. To that end,

we make use of the information provided by the pupil’s center and the estimation

of the radius of the iris.

The proposed method is based on the analysis of significant color changes along

the gray level distribution. This way, starting from the pupil center we go through

the gray level distribution, both to the right and to the left, until we detect the first

white pixel that indicates the boundary between the iris and the sclera. This value

is accepted as boundary whenever it does not exceed the estimation of the radius

of the iris. As a result of this step, we obtain the delimitation of the three areas of

interest: iris, left side of the sclera and right side of the sclera. The distribution of

the delimitation of these three interest areas can be observed in the sample presented

in Figure 5.16.

The distribution of the gray levels in the sclera provides a useful representation

of the location of the iris, allowing to deduce the direction of the gaze. According

to the audiologists’ criteria, four eye movements are considered as relevant in this

domain: eye open, eye closed, gaze shift to the left and gaze shift to the right.

As it can be observed from Figure 5.15 where the direction of the gaze is centered,

the gray level distribution grows in the sides (where the sclera is located) and it

decreases in the center (where the iris is located). In this case, since the direction

of the gaze is centered, the gray level distribution grows at both sides of the iris. In

the case the direction of the gaze is focused to one side, the gray level distribution

will grow on the opposite size.
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Figure 5.16: Delimitation of the three areas of interest over the gray level distribution.

This behavior is going to be clarified with the following rules:

5.2.1 Eye closed

Due to the absence of the sclera when the eye is closed, it is expected to have low in-

tensity of white values over the gray level distribution. Considering this, we compute

the summation of all the gray values Gi for all the points in the distribution. If the

summation has a low value we can consider that the eye is closed. Mathematically,

this rule can be expressed as (5.9), where θ is a threshold empirically established in

order to distinguish between open and closed states as θ = 1700/n, where n is the

average size of the eye.

n∑
i=1

Gi < θ (5.9)

A sample of this category is represented in Figure 5.17 where it can be observed

that there is no white information along the distribution, which represents that the

eye is closed.
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Figure 5.17: Gray level distribution for closed eye.

5.2.2 Eye open

The eye open status is the opposite case of the previous state eye closed, so, in this

case, unlike previous case, white information associated to the sclera is present.

The mathematical expression that characterizes this status is just the opposite of

the mathematical expression of the previous status (see (5.10)), where Gi represents

the gray value of each one of the n points between the boundaries, and θ is the same

threshold.

n∑
i=1

Gi ≥ θ (5.10)

Figure 5.18 shows an image sample where it can be observed from the gray level

distribution that there is white information from the sclera. In this case, since the

gaze is directed to a central fixed point, the white area is distributed at both sides

of the iris.

This classification allows a subsequent classification between gaze shift to the

left and gaze shift to the right. Only in the case the eye is classified as open the

two next rules will be applied in order to determine the direction of the gaze at a

specific moment.
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Figure 5.18: Gray level distribution for open eye.

5.2.3 Gaze shift to the right

This status is only possible when the eye has been previously classified open. Oth-

erwise, this rule will not be applied.

In order to distinguish it, we are going to use the information previously obtained

about the delimitation of the areas of interest, in this case: left side of the sclera

and right side of the sclera. When the eye is classified as open, we compute the

summation of the gray level values for each one of the sides of the sclera. Next, it

is checked whether the summation of the right side of the sclera represents a small

part of the total summation of both sides. This can be expressed mathematically as

in (5.11) where Ed represents the nr points located in the right side of the sclera,

Tj represents the n point at both sides of the sclera and β is a threshold empirically

established with value 0.20.

nr∑
i=1

Edi ≤ β ∗
n∑
j=1

Tj (5.11)

A sample of this status is presented in Figure 5.19. As it can be observed, since

the gaze is oriented to the right, the iris is located near to the right boundary, so

the white area is mainly distributed in the left side of the eye, while in the right side

of the eye there is almost no white.
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Figure 5.19: Gray level distribution for gaze shift to the right.

5.2.4 Gaze shift to the left

This status is defined analogously to the previous state, and equally, it is only

possible when the eye is classified as open. In this case, it is checked whether the

summation of the left side of the sclera represents a small part of the total summation

of both sides. In (5.12), El represents the nl points located in the left side of the

sclera, Tj the n points at both sides of the sclera and β is the threshold. Figure 5.20

shows a sample of this status.

nl∑
i=1

Eli ≤ β ∗
n∑
j=1

Tj (5.12)

Figure 5.20: Gray level distribution for gaze shift to the leftt.
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5.3 Experimental results

Given the preliminary nature of this study, the aim was to test the viability of the

methodology over a small dataset.

The proposed methodology is applied frame by frame over three video sequences

recorded during the performance of the audiometric evaluations. These video se-

quences were recorded in the same environment than the images used in the first

approach. Video sequences are high resolution images (1080x1920 pixels) with a

frame rate of 25 FPS (frames per second). Each video sequence corresponds with a

different patient and they have an average duration of 6 minutes. So, with a frame

rate of 25 FPS and an average duration of 6 minutes, we analyze an average of 9000

frames for each video sequence.

This experiment is divided into two studies: the analysis of accuracy in the

classification of the eye movements and the analysis about the detection of eye

gestural reactions to the sound.

5.3.1 Movement classification accuracy

The aim here is to study the suitability of the method in the classification of the eye

movements. Three video sequences from three different hearing assessments were

analyzed and classified frame by frame. Table 5.3 shows the accuracy for each one

of the four eye movement categories considered in this domain: class Eye Closure

(EC), class Eye Opening (EO), class Gaze to the Left (GL) and class Gaze to the

right (GR). It must be noted that the category Eye open not only corresponds to

the situation in which the eyes are open with the gaze fixed to a central point, but

it also contains the categories Gaze shift to the left and Gaze shift to the right.

Table 5.3: Accuracy for each one of the eye movement categories

Class Class Class Class

EC EO GL GR

% Accuracy 84.31% 98.2% 85.89% 82.84%

These results are quite acceptable since they are above 82.84%. The high accu-

racy obtained for the category Eye open is justified because the empirical threshold

applied here is optimized for this class, since it contains the gaze movements that

are the most relevant categories in this domain. It is important to emphasize that
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the main goal of this work is not the classification of the eye movements, but the

detection of eye gestural reactions to the stimuli, which is the analysis that we are

going to conduct next.

For reasons of comparison Table 5.4 present a brief comparative between the

accuracy obtained with this approach and the accuracy previously obtained for the

optical flow method with the most accurate classifier (SVM). It can be observed how

in some cases the accuracies are complementary.

Table 5.4: Accuracy for each one of the eye movement categories: optical flow vs. color

from sclera

Class Class Class Class

EC EO GL GR

Optical flow accuracy 92.5% 73.6% 76.9% 85.0%

Color sclera accuracy 84.31% 98.2% 85.89% 82.84%

5.3.2 Detection of reactions to the sound

As commented before, the great contribution that we can provide to the audiolo-

gists is the proper detection of the eye movements associated with reactions to the

auditory stimuli. Since the video sequences have a frame rate of 25 FPS we know

for certain that a reaction will last more than one frame, this is why we are not

concerned about obtaining a high success rate in classification, because a typical

reaction lasts between 5 and 15 frames, so, the miss-classification of one frame will

not affect the proper detection of a reaction.

For this experiment, we consider that a state can be established when three or

more consecutive frames receive the same category in classification. Results are

detailed in Table 5.5, where we evaluate the agreement between the methodology

and the audiologists based on the number of reaction to the stimuli detected by

each one of them. The agreement between the methodology and the audiologists is

complete (100% of agreement) for the video sequences evaluated in this test. It must

be considered here that the detections provided by the experts were obtained by the

visualization of the recorded video sequences, in order to maximize their success and

also to avoid the inaccuracies that may occur in real time.

Therefore, despite of the not optimum accuracy in the classification of eye move-

ments (around the 87.8%), the detection of the eye gestural reactions is optimal
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Table 5.5: Evaluation in the detection of reactions to the sound. Results are expressed in

number of reactions.

Gaze shift Gaze shift

to left to right

Expected Detected Expected Detected

Video 1 17 17 15 15

Video 2 17 17 21 21

Video 3 20 20 18 18

Agreement 100% 100%

(100% of agreement with the experts). This is because of the high frame rate of

our video sequences; since a typical gestural reaction lasts more than 5 frames, the

misclassification of one frame does not affect to the proper detection of the reaction.

It must be also considered here that the detections provided by the experts were

obtained by the visualization of the recorded video sequences, in order to maximize

their success and also to avoid the inaccuracies that may occur in real time.

5.4 Discussion

This work proposed a novel methodology for the detection and identification of eye

gestural reactions as a positive response to auditory stimuli with the aim of sup-

porting the audiologists in the hearing assessment of patients when no cooperation

exists. This task is accomplished using information about the color distribution of

the sclera.

As in the approach previously presented in Chapter 4, one of the main premises

of this work is to modify as minimum as possible the traditional protocol of the

audiometric assessment, in order to not influence on the spontaneous behavior of the

patient. The conducted experiments have proven the validity of the methodology

placing the video camera behind the audiologist (which is seated in front of the

patient), an unobtrusive location that minimally perturbs the patient’s behavior

and provides enough image resolution to apply the proposed methodology obtaining

proper results.

As mentioned before, the detection of the eye gestural reactions is accomplished

using information about the color distribution of the sclera. The results obtained
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in this first approach point out the suitability of the method for the detection of

these specific kind of reactions. Although in this proposal we only consider four

movement categories (the ones that are relevant for the experts in this domain), the

methodology could be extended to more or alternative categories. This flexibility

would allow the use or the adaptation of this approach to different domains where

the eye movements provide relevant information.

The final contribution of this work might be very interesting for the audiolo-

gist community since it is a novel method for the detection of eye bases gestural

reactions. This methodology will facilitate the hearing assessment of patients with

severe cognitive decline or other communication difficulties, patients that can not

be evaluated following a standard procedure. A proper hearing assessment of these

patients is more difficult to conduct, but it is very important to solve this issue since

a proper evaluation may help to treat the hearing loss and improve the quality of

life of these patients.

Until this point we have proposed two different alternatives, one comprehensive

and generic (the optical flow approach) and the other one more focused on local

features (the white color distribution of the sclera). Considering this, we propose

now to merge the two proposal in order to evaluate the impact. The combination

of these two techniques could provide more robust results by complementing the

strengths of each one of the proposals.



Chapter 6

3rd approach: Combining

optical flow & color from sclera

Two different approaches were proposed until this point with the aim of providing an

automatic support tool for the proper hearing assessment of patients with cognitive

decline or other severe communication problems. The optical flow approach was

firstly established as the reference method since it was designed in order to represent

eye movements, while the color information from the sclera approach is more oriented

to the static direction of the gaze, so they can be considered as complementary

sources.

Since both approaches are of different natures and provide promising results it

was considered that by the combination of both foundations, there obtained results

could be supplemented, and therefore they could be improved. From this theory,

a methodology combining optical flow information and color information from the

sclera was proposed. It is expected that from the combination of these two tech-

niques, the detection accuracy gets improved.

A schematic representation of the main steps of this method can be seen in

Figure 6.1. As it can be observed, after the location of the region of interest (i.e.

the eye region), the proposed methodology combines the optical flow information

about changes in the region of interest and color information from the sclera in

order to analyze the eye gestural reactions. Next sections discuss the main one

stages presented in the schema. The eye region detection has been presented in

Chapter 4 Section 4.1, Optical flow information corresponds with Chapter 4 and

Color information from the sclera is addressed throughout Chapter 5.

111
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 

Optical flow
information

Color information
from sclera

Eye region
location

Information
fusion

Classification

Figure 6.1: Main steps of the proposed methodology.

6.1 Information fusion

The optical flow provides global information about the movements occurred within

the eye region, while the information provided by the color information from the

sclera is more focused on the local level. In order to provide a more robust and

precise characterization, both approaches are combined. To that end, it is necessary

to join the features obtained with both approaches into a single descriptor. Next

subsections remind us how the movement descriptors should be obtained for both

proposals.

6.1.1 Optical flow information

The optical flow branch was presented throughout Chapter 4. With the aim of

reliably distinguishing the patient’s movements, it is necessary to characterize the

movements detected by the optical flow.

The descriptor provided by this branch is going to be combined with a descriptor

representing the color information from the sclera. The characterization of the

optical flow vectors was addressed in Chapter 4 Section 4.3, where all the procedure

and basis were explained in detail. Vectors were described in terms of: orientation,

magnitude and dispersion; composing a descriptor of 24 values for each one of the

eyes.

A sample of these descriptors can be observed in Figure 6.2. The formulas that

define the each one of the rows in the descriptor can be consulted in Chapter 4

Section 4.3.
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Figure 6.2: Optical flow descriptors sample. Left image shows the movement vectors for

each eye and right tables the corresponding descriptors for each eye. First row represents

orientation, the second one magnitude and the last one dispersion.

6.1.2 Color information from the sclera

This second branch of the methodology is based on the proposal presented through-

out Chapter 5. In the original proposal, the eye movements were classified into the

considered categories using a set of rules based on the distribution of the gray values.

For this new approach, we want to characterize the color distribution as a move-

ment descriptor equivalent to the one defined for the optical flow branch. It would

be interesting to define these descriptors in a way they also represent changes in the

gaze direction, equivalently as how the optical flow branch does it. The set of rules

established in the original proposal classified the direction of the gaze throughout

the actual position, but they did not consider previous information. It is important

to consider the previous information since we are interested on changes within the

eye region, not only on the actual state.

For this proposal, a movement descriptor composed by 66 values is defined, 33

values for the actual state and 33 more values considering previous information.

First, the gray level distribution is normalized to 30 values, so each one of this

new 30 values in the gray level distribution is a descriptor in the final movement

descriptor. Moreover, considering the delimited sides of the sclera, the summation

of the gray level for each one these sides is computed. These two values, along with

their sum, are added as 3 additional values of to the movement descriptor.

Besides, since we are interested not only in the actual current moment but also

on the movement with respect to previous frames, we are going to compare the

actual descriptor with a previous descriptor. As in the optical flow case (Chapter

4), with the purpose of allowing expression changes notable enough, we consider

a time window (t) between considered frames, i.e. we are going to compare the

descriptors between frame i and frame i+t. The t parameter has been established in
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3 for our video sequences (which have a 25 FPS frame rate). Considering this, the

subtraction of the descriptors of frames i and i+t is computed adding this way 33

new values to the final descriptor. This way, the movement descriptor is composed

by 66 values according to Figure 6.3.

Figure 6.3: Color descriptors sample. In the first row, the first 30 values correspond with

the normalized gray level distribution, L is the summation of the gray levels in the left side

of the sclera, R is with the summation of the gray levels in the right side of the sclera and

T is the summation of both sides. In the second row, the first 30 values correspond with

the subtraction of the normalized gray level distribution of frame i and frame i+t, DL is

the subtraction of the summation of gray levels in the left side of the sclera, DR is with the

subtraction of the summation of gray levels in the right side of the sclera, and DR is the

subtraction of the summations at both sides.

In the first row of Figure 6.3, the first 30 values correspond with the normalized

gray level distribution, L represents the summation of the gray levels in the left side

of the sclera, R corresponds with the summation of the gray levels in the right side

of the sclera and T is the summation of both sides. In the second row, the first

30 values correspond with the subtraction of the normalized gray level distribution

of frame i and frame i+t (6.1), DL represents the subtraction of the summation of

gray levels in the left side of the sclera (6.2), DR corresponds with the subtraction

of the summation of gray levels in the right side of the sclera (6.3), and DR is the

subtraction of the summations at both sides (6.4).

Dgln = gli+t,n − gli,n,where n ∈ [1, 30] (6.1)

DL = Li+t − Li (6.2)

DR = Ri+t −Ri (6.3)
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DT = Ti+t − Ti (6.4)

Once the vector descriptors are computed for each movement, the next step is

their combination with the optical flow information and their classification according

to the movement categories determined for this domain.

6.1.3 Descriptor fusion

The final descriptors are composed by 90 elements: 24 descriptors from the optical

flow and 66 descriptors from the color information from the sclera. This situation is

represented on Figure 6.4, where the first three rows of each eye correspond with the

optical flow descriptors, while the fourth and fifth rows correspond with the color

information from the sclera descriptors.

Figure 6.4: Descriptor sample. The first three rows of each eye correspond with the optical

flow descriptors, while the fourth and fifth row correspond with the color information from

the sclera descriptors.

6.2 Classification

Using the combined descriptors obtained after the previous step, the last step of the

methodology is their classification into the considered movement categories. A final

experiment on classification was conducted in order to find the most suited classifier.

A supervised training is conducted with the following classifiers: Naive Bayes, C4.5,

Random Forest, Random Committee, Logistic Model Tree (LMT), Random Tree,
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Logistic, Multilayer Perceptron and Support Vector Machines (SVM). The complete

experiment and the final results are detailed in the next Sections.

6.3 Experimental results

For the development of this evaluation different video sequences recorded during

the performance of audiometric evaluation were analyzed and the eye movements

occurred during them were manually labeled.

The considered video sequences had Full HD resolution (1080 x 1920 pixels)

and 25 frames per second (FPS). The device used for recording the experiments is

a conventional video camera with full HD resolution and no particular hardware

requirements. The only requirement is to try to maintain favorable and constant

lighting conditions in order to improve quality of the recorded images and to avoid

shadows or occlusions. Another important consideration is to place the video camera

behind the audiologist (which is seated in front of the patient), an unobtrusive

location that minimally perturbs the patient’s behavior and provides enough image

resolution to apply the proposed methodology obtaining proper results.

As mentioned before, the video sequences are focused on the patient who is

seated in front of the video camera. The image shows the patient waist up and

also the surrounding scenario: the audiometer, the hand of the audiologist handling

the audiometer, the background, etc. The reason for such a general scene is the

need of recording the audiometer in order to detect the moments when the auditory

stimuli are being sent, which allows to correlate this information with the detected

eye movements.

As it occurred in the previous approaches, despite of the high resolution of the

video sequences, the obtained eye regions do not have the same quality. This is

motivated by the need of a general scene including elements other than the patient

and also by changes in the lighting conditions during the audiometric evaluation.

This limitation of resolution increases motion detection difficulties.

Another major barrier is the difficulty on obtaining video sequences of this spe-

cific group of patients. Unconscious gestural reactions tend to occur as a reaction

when the patient suffers from cognitive decline or other severe communication dis-

orders. This situation implies two problematics: first, not all the population will

exhibit these gestural reactions to the sound, which implies the necessity of specif-

ically searching for patients in this situation. Second, most of people with severe
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cognitive decline are entered in specific institutions and special permits and autho-

rizations are needed to record them.

To the eight video sequences considered for the experiments in Chapter ??, three

new videos with several eye gestural reactions to the sound were achieved for this

final experiment. This 11 video sequences correspond to male and female patients

with different ages. Each one of the video sequences takes between 4 and 8 minutes,

and each one of them is analyzed frame by frame (remember that the frame rate is

25 FPS).

The considered movement categories for this experiment are: eye opening (EO),

eye closure (EC), gaze shift to the right (GR) and gaze shift to the left (GL); since

they are the four movement categories indicated as relevant for this domain by the

audiologists. The test video sequences were analyzed frame by frame, and each one of

the relevant movements was labeled into the corresponding category. A total number

of 1180 descriptors were classified as significant movements and they were classified

into the corresponding category, obtaining the descriptors distribution showed in

Table 6.1.

Table 6.1: Distribution of the significant movements between the considered categories.

Eye open Eye close Gaze left Gaze right

(EO) (EC) (GL) (GR)

Number
408 310 230 232

of samples

As it can be observed in Table 6.1 we still have a small imbalance for the cat-

egories gaze shift to the right (GR) and gaze shift to the left (GL). However, this

imbalance is less pronounced than the one we had in the experiments of Chapter ??

(see Table 4.2), since the new video sequences obtained for this experiment outweigh

the situation.

With all the 1180 labeled descriptors, a supervised training is conducted for

several classifiers. The considered classifiers are: Naive Bayes, C4.5, Random Forest,

Random Committee, Logistic Model Tree (LMT), Random Tree, Logistic, Multilayer

Perceptron and Support Vector Machines (SVM). A 10-fold cross validation was

applied for the experiment. Results of this experiment are detailed in Table 6.2,

where a comparison between applying only the optical flow descriptors vs. the

optical flow and color from the sclera descriptors is presented.

As it can be observed from these results, the classification accuracy is improved
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in all cases with the introduction of the complementary information from the color

distribution of the sclera. Worst results are obtained for the C4.5 and Random Tree

classifiers, both cases with an accuracy under the 90%. The rest of the classifiers

achieve classification accuracies over the 90%. Best results are obtained for the

Support Vector Machines, with an accuracy of the 97.46%, which is highly accurate

result for this domain.

Table 6.2: Classification accuracy comparative: left column for optical flow descriptors and

right column for optical flow & color from the sclera descriptors.

% Accuracy

Optical flow Optical flow &

Method color sclera

Naive Bayes 84.5059% 93.2203%

C4.5 87.2697% 89.8305%

Random Tree 86.8509% 88.3051%

Logistic 88.7772% 90.3390%

LMT 89.7822% 97.0339%

Perceptron 88.9447% 97.2034%

Random Forest 90.1173% 94.5763%

Random Committee 90.3685% 95.6780%

SVM 91.4573% 97.4576%

For a deeper study, Table 6.3 presents the true positive rate by classes for the

combined approach.

Table 6.3: Classification results by classes for the combined approach using a 10-fold cross

validation for different algorithms

True positive rate

Method % Accuracy Class EC Class EO Class GL Class GR

Naive Bayes 93.2203% 0.944 0.955 0.939 0.875

C4.5 89.8305% 0.924 0.903 0.896 0.849

Random Tree 88.3051% 0.895 0.887 0.896 0.862

Logistic 90.3390% 0.951 0.877 0.896 0.862

LMT 97.0339% 0.983 0.965 0.978 0.961

Perceptron 97.2034% 0.983 0.961 0.978 0.961

Random Forest 94.5763% 0.973 0.945 0.952 0.892

Random Committee 95.6780% 0.973 0.961 0.943 0.935

SVM 97.4576% 0.980 0.977 0.978 0.957
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6.4 Discussion

The previous approach presents a methodology for the detection and classification

of eye gestural movements as a response to auditory stimuli during the performance

of audiometric evaluations. This methodology will allow the automatic detection of

positive unconscious gestural reactions which can be interpreted as positive reac-

tions in the hearing assessments of patients with cognitive decline or other severe

communication difficulties. When no cooperation exists, the audiologist focus his

attention of the detection of these particular reactions, but the development of an

automated tool will facilitate his work, avoid subjectivities and make it less error

prone.

In this novel proposal, the detection of eye-based gestural movements is accom-

plished by the combination of the optical flow information and the analysis of the

color distribution of the sclera. These two approaches were presented and justified

along the previous chapters (Chapter 4 and Chapter 5). The results obtained with

this combined proposal allow us to conclude that the inclusion of the information

provided by the color distribution of the sclera improves the obtained results. In

the presented results it can be observed how the combined descriptors obtain in all

cases an accuracy higher that the one obtained when considering only the optical

flow descriptors. The most accurate results were obtained for the SVM classifier,

with a classification accuracy of the 97.46%, which is highly accurate result for this

domain. However, if the true positive rate by classess is considered, it can be noted

that class GR (gaze shift to the right) is the one with the lower value. In most cases,

classes GL and GR are going to be considered as the relevant ones, so it would be

interesting to improve somehow their classification accuracy.

As in the individual approaches presented before, one of the main premises is to

not alter the traditional protocol of the audiometric assessment. As in the previous

proposals, the only requirement of the methodology is to place the video camera

behind the audiologist at an unobtrusive location that does not pertub the patient’s

behavior.

In clinical terms, the manual analysis conducted by the audiologists can be auto-

mated with the main benefit of being unaffected by subjective factors when evaluat-

ing patients with cognitive decline or severe communication difficulties. Besides the

fact that the automatic proposal produces unbiased results, it also saves times for

the experts and provides a detailed identification of the eye-based gestural reactions.

In this sense, the audiologist can have a more objective detection of the unconscious
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positive reactions to the sound, which means a great help in the proper evaluation of

the hearing hearing assessment. The proper diagnosis of hearing loss will allow the

prescription of appropriate hearing aids, thus improving the quality of life of these

particular group of patients.

As it was also commented for the individual approaches, the proposed method-

ology could be easily adapted to other domains where the eye movements provide

relevant information.

6.5 Machine learning techniques for improving relevant

categories

In the final proposal presented until this point the movement categories considered

as relevant by the experts were: eye closure, eye opening, gaze shift to the left and

gaze shift to the right. However, two are the categories typically associated with

gestural reactions to the sound: gaze shift to the left and gaze shift to the right.

This is justified because patients with cognitive decline or severe communication

difficulties tend to stay still and passive during the hearing evaluation, but, when

they perceive an auditory stimulus they usually tend to direct their gaze to the side

on which they perceive the sound. This is a unconscious reaction to the sound that

has been considered as consistent by the experts.

After extracting the final features from the video sequences, machine learning

techniques are applied aiming at automatically classifying the data into one of these

four classes. Specifically, we have applied several classifiers and at this stage we

are going to try to improve the true positive rate of the most important classes by

using oversampling techniques. It is expected that the proposed methodology will

enable the proper assessment of patients when no interaction is possible with high

classification accuracy rates.

There are several aspects that might influence the performance achieved by clas-

sification algorithms. It has been reported that one of these aspects is related to

class imbalance. A dataset is imbalanced if the classification categories are not ap-

proximately equally represented. In this situation the learning system may have

difficulties to learn the concept related to the minority class. Most of real-world

datasets are predominately composed by one class with an abundant number of

instances (known as the majority or negative class) and the other class with few

number of samples (known as the minority or positive class). Moreover, the classes
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which are underrepresented are usually the cases under consideration on the study;

therefore, its correct identification becomes even more important. This problem has

gained much importance in the last years because of its presence in lots of real-

world applications such as medical diagnosis, software defects detection, finances, or

bioinformatics.

The imbalance in class distribution poses a major challenge to standard machine

learning algorithms because the search process that is embedded in most of these is

guided by a global search measure that does not consider the differences in the num-

ber of instances that belong to each class. Machine learning algorithms is typically

evaluated using predictive accuracy, something that might not be appropriate when

the data is imbalanced and/or the costs of different errors vary markedly. In this

manner, the instances of the minority class are usually neglected during the model

construction as its identification is performed using specific learning rules and its

representation inside the dataset is not strong enough. These specific rules are usu-

ally ignored in favor of more general rules, which are precisely the rules that cover

the majority class.

Learning with imbalanced data is one of the emergent challenges in machine

learning. The machine learning community has addressed the issue of imbalanced

datasets in two different ways: by assigning distinct costs to training examples

(Domingos, 1999) or by re-sampling the original dataset. The re-sampling can be

achieved by over-sampling the minority class or/and under-sampling the majority

class (Kubat & Matwin, 1997; Japkowicz, 2000). The re-sampling is applied until

the dataset is nearly balanced, before feeding it into any classifiers. Over-sampling

methods (Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009; Han, Wang, &

Mao, 2005) address the imbalance by adding to the new dataset instances from the

minority class in order to gain importance, under-sampling methods (Laurikkala,

2001; Garćıa & Herrera, 2009) aim of equalizing the number of examples of each

class by deleting instances from the majority class; and hybrid methods (Batista,

Prati, & Monard, 2004) combine the two previous approaches, usually starting with

an oversampling step that creates new samples for the minority class and then

applying undersampling in order to delete samples from the majority class. All

these techniques are sampling the dataset until the classes are approximately equally

represented.
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6.5.1 Experimental results

The methodology is going to been tested on a normalized dataset which is composed

of 1194 samples and 66 features. Four different classes are included: eye closure (class

EC) (408 samples), eye opening (class EO) (314 samples), gaze shift to the left (class

GL) (233 samples) and gaze shift to the right (class GR)(239 samples). Notice that

the most important classes to detect are gaze shift to the left and gaze shift to the

right, since they are associated with gestural reactions to the sound. However, not

every patient shows the same reaction, so the detection of the other eye movements

could be relevant in particular cases. Table 6.4 shows the classification results using

different classification algorithms, trying to determine which one is more appropriate

for the problem at hand.

Table 6.4: Classification results using a 10-fold cross validation for different algorithms

True positive rate

Method Accuracy ROC Area Class EC Class EO Class GL Class GR

C4.5 0.9000 0.9343 0.9152 0.9083 0.8948 0.8666

Naive Bayes 0.9331 0.9848 0.9487 0.9559 0.9447 0.8713

k-NN 0.9593 0.9721 0.9747 0.9532 0.9619 0.9368

SVM 0.9712 0.9899 0.9838 0.9623 0.9787 0.9579

RandomForest 0.9585 0.9972 0.9714 0.9567 0.9666 0.9357

In light of the results depicted in Table 6.4, the highest accuracy and TP rates

were obtained with SVM. This fact is not surprising at all, since Support Vector

Machines have demonstrated to be successful modeling and prediction tools for a

variety of applications. Regarding the true positive rates, it is easy to note that these

algorithms are often biased towards learning the majority class (López, Fernández,

Garćıa, Palade, & Herrera, 2013), leading to higher misclassification rates for the

minority class instances (gaze left and gaze right). Furthermore, it is worth pointing

out that the minority classes are the ones that have the highest interest in the

problem at hand, so we will try to improve their classification.

Numerous techniques are used to deal with imbalanced datasets in classification,

among all of them we would like to highlight the use of over-sampling methods,

which aim to balance the class distribution by adding to the new dataset instances

from the minority class. In particular, the SMOTE algorithm (Synthetic Minority

Oversampling TEchnique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is an over-

sampling method that adds synthetic minority class examples to the original dataset

until the class distribution becomes balanced. In order to do so, the SMOTE al-
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gorithm generates the synthetic minority class examples using the original minority

class examples in the following way: the SMOTE algorithm searches the k nearest

neighbors of the minority class sample that is going to be used as base for the new

synthetic sample. Then, in the segment that unites the minority class sample with

one or all of its neighbors, a synthetic sample is randomly taken and is added to the

new oversampled dataset.

As stated before, the usual approach is to replicate the minority classes until the

class distribution becomes balanced, so we applied an over-sampling rate of 100%

on the classes gaze left and gaze right. In the second row of Table 6.5 we can see the

results of this experiment, in which the true positive rates for the two classes that are

the most important in this problem (gaze left and gaze right) have increased, while

maintaining the global accuracy. Based on some ideas raised in (del Ŕıo, López,

Beńıtez, & Herrera, 2014), and considering that what was of real interest for us

was to improve the identification of these two minority classes, we performed some

experiments increasing the oversampling rate to 200%, 300% and 400%, as can bee

seen in the remaining rows of Table 6.5. For the sake of comparison, the first row

shows the classification results when no oversampling technique is applied.

Table 6.5: SVM classification results using a 10-fold cross validation and applying different

levels of oversampling

True positive rate

% Oversampling Accuracy ROC Area Closure Opening Left Right

0 0.9712 0.9899 0.9838 0.9623 0.9787 0.9579

100 0.9703 0.9907 0.9793 0.9589 0.9829 0.9607

200 0.9695 0.9898 0.9773 0.9625 0.9787 0.9615

300 0.9712 0.9901 0.9769 0.9589 0.9860 0.9667

400 0.9686 0.9909 0.9723 0.9528 0.9882 0.9707

The best results for the gaze shifts were obtained when the level of oversampling

is 400%. In this case, we achieve maximum true positive rates for the detection

of the most important classes (gaze left and gaze right) whilst the global accuracy

has been deteriorated in less than 0.3%. However, with 300% oversampling, we

can maintain the global accuracy with an important increase in the detection of

gaze shifts. Notice that, with these configurations, the TP rates for the detection

of closure and opening decrease, but they are still in acceptable values considering

their lower incidence in the detection of gestural reactions.
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6.5.2 Discussion

In previous Chapters we have proposed a methodology for the correct classification

of eye gestural reactions to the auditory stimuli in order to facilitate the hearing

assessment of patients when no cooperation exists. There are four eye movement

categories: eye closure, eye opening, gaze shift to the left and gaze shift to the right.

The two gaze shifts are typically associated with gestural reactions to the sound, so

its correct detection is of utmost importance. However, these two categories are the

ones with the smallest number of classes, so we proposed to include oversampling

techniques in our methodology.

After extracting the features from the existing videos, we applied several state-

of-the-art classification algorithms to determine which one was more appropriate.

Since SVM clearly outperformed the other techniques, we decided to use it for our

case study. Then, and trying to increase the true positive rates for the two classes of

interest (gaze left and gaze right), we opted for applying oversampling techniques,

in particular, SMOTE. The novelty of this work lies in the fact that, instead of

replicating the minority classes until they are balanced with respect to the majority

classes, we decided to apply higher oversampling rates so that the minority classes

have now much more instances than the previous majority classes. In this way, our

hypothesis was that by forcing the classifier to learn from a data where the two

classes of interest were the majority classes, their true positive rates would increase.

Indeed, by choosing an oversampling rate of 300%, we were able to obtain true

positive rates over 0.986 and 0.966 with a global classification accuracy over 97%.

In conclusion, the proposed methodology is able to classify the different move-

ments with reasonable detection rates, especially for the two classes that deserve

more importance. This methodology has shown encouraging and positive results,

paving the way to its inclusion in an fully automated tool. As future work, there is

a need of more video sequences of patients with this particular conditions so a more

comprehensive analysis can be conducted. Also, we plan to try feature selection

methods to check if accuracy can be improved.
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Conclusions

Hearing loss is the most common sensory deficit in the elderly, and it is becoming

a severe social and health problem. Impaired hearing results in distorted or incom-

plete communication, thus significantly impacting everyday life, causing loneliness,

isolation, withdrawal, dependence, and frustration, as well as communication dis-

orders. The proper assessment of hearing and the use of hearing aids or hearing

rehabilitation process will improve the quality of life of people with hearing disabil-

ities.

The evaluation of the hearing capacity has sometimes some associated assess-

ments or particular development limitations which hinder the expert’s work. There-

fore, the development of a computer-based analysis is highly desirable for assisting

the audiologists and providing more objectivity and accuracy to their traditional

assessments.

Several automated assessments related with the evaluation of the hearing capac-

ity have been proposed and developed throughout this PhD thesis. The two main

aims are the measurement of the response times and the detection of eye-based ges-

tural reactions as a response to the sound. These automated assessments are not

intended to override the judgment of an expert, but they should prove helpful in the

conduct of clinical routine and research.

In Part I, a screening method to automatically measure the response times during

the performance of an audiometric evaluation has been presented. In this case, the

positive response most commonly requested by the audiologist was the one that

we have considered as reference to measure the response times: the patient’s hand

raising. The process is carried out using color analysis techniques for the detection of

the hand, obtaining an accuracy over 99% for the detection of this reaction. Besides,
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the auditory stimuli light indicator was properly detected (for two different models

of audiometers), in order to synchronize stimulus and response. By the combination

of both auditory stimuli and hand raising detection, the method finally provides a

measure of the patient’s reaction times. Several metrics were evaluated in order to

combine the patient’s response times; although every measure has its peculiarities,

all of them allow us to establish a gap between the “normal” patients and the

“slow” ones. The proposed method not only precisely quantifies the patient’s speed

of response but it also allows to objectively identify patients abnormally slow (those

in which the experts are concerned because they could have other cognitive problems

or pathologies). Furthermore, it paves the way to the development of more complex

clinical studies.

Once the measurement of the response times was successfully resolved, the re-

maining work of this thesis was focused on the detection of the unconscious gestural

reactions that patients with cognitive decline or severe communication difficulties

show as a response to the auditory stimuli. Throughout Part II, several approaches

were proposed in order to finally obtain a methodology which solves this second

main aim.

Firstly, in Chapter 4 the detection of the eye gestural reactions is addressed us-

ing as base optical flow information and machine learning algorithms. The obtained

results showed promising results in the detection and classification of these uncon-

scious eye movements. Although accuracy rates are not optimum, the proposed

method it is still able to detect all the reactions of the test dataset. Thus, consider-

ing that it is the first fully automated approximation proposed for this domain, the

results are encouraging.

In Chapter 5 an alternative method for the detection and identification of eye

gestural reactions was proposed. This task is accomplished using information about

the color distribution of the sclera. This solution shows interesting classification

accuracies (over the 82.8%) and it is able to detect all the reactions of the test

dataset.

Finally, Chapter 6 the detection of eye-based gestural movements is accomplished

by the combination of the optical flow information and the analysis of the color dis-

tribution of the sclera. The optical flow is more focused on global features, while the

color distribution of the sclera works in a local level. They both provide complemen-

tary results, so its combination is highly recommended. The results obtained with

this combined proposal allow us to conclude that the inclusion of the information

provided by the color distribution of the sclera improves the results obtained with
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the use of the optical flow.

For all the approaches presented throughout this thesis one of the main premises

was to modify as minimum as possible the traditional protocol of the audiometric

assessment, in order to not influence on the spontaneous behavior of the patient.

The conducted experiments have proven the validity of the methodology placing

the video camera behind the audiologist (which is seated in front of the patient),

an unobtrusive location that minimally perturbs the patient’s behavior and pro-

vides enough image resolution to apply the proposed methodology obtaining proper

results. The most accurate results were obtained for the SVM classifier, with a clas-

sification accuracy of the 97.46%, which is highly accurate result for this domain

and it improves all the previous approaches.

Furthermore, a final improvement was applied in order to improve the accuracy

of the most relevant categories (gaze shift to the left and gaze shift to the right) by

using machine learning techniques. Trying to increase the true positive rates for the

two classes of interest, we opted for applying oversampling techniques, in particular,

SMOTE. The hypothesis was to increase their true positive rates by forcing the

classifier to learn from a data where the two classes of interest were the majority

classes. Indeed, by choosing an oversampling rate of 300%, we were able to obtain

true positive rates over 0.986 and 0.966 with a global classification accuracy over

97%.

This final approach presents a methodology for the detection and classification

of eye gestural movements as a response to auditory stimuli during the performance

of audiometric evaluations. This methodology will allow the automatic detection of

positive unconscious gestural reactions which can be interpreted as positive reac-

tions in the hearing assessments of patients with cognitive decline or other severe

communication difficulties. When no cooperation exists, the audiologist focus his

attention of the detection of these particular reactions, but the development of an

automated tool will facilitate his work, avoid subjectivities and make it less error

prone.

In clinical terms, the manual analysis conducted by the audiologists can be auto-

mated with the main benefit of being unaffected by subjective factors when evaluat-

ing non-cooperative patients. Besides the fact that the automatic proposal produces

unbiased results, it also saves times for the experts and provides a detailed identi-

fication of the eye-based gestural reactions. In this sense, the audiologist can have

a more objective detection, which means a great help in the proper evaluation of

the hearing hearing assessment. The proper diagnosis of hearing loss will allow the
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prescription of appropriate hearing aids, thus improving the quality of life of these

particular group of patients.

Besides, the fact that the recorded video sequences can be visualized after they

have been analyzed by the proposed methodology will facilitate the training of new

experts in the detection and interpretation of unconscious reactions. As mentioned

in the Introduction, since these reactions are quite inconsistent and subtle their

proper interpretation requires broad experience from the audiologist. If we provide

to the inexperienced audiologist a tool where they can observe previous assessments

where the eye-based gestural reactions are properly labeled we will facilitate their

training.

Although in this thesis we are focused on the audiometric domain, the proposed

methodologies for the detection of eye movements could be easily adapted to other

domains where these movements could provide relevant information.

7.1 Further research

In the case of the analysis of the eye-based gestural reactions detection there is

a need of more video sequences of patients with cognitive decline or other severe

communication disorders and which show gestural reactions as a response to the

sound so a more comprehensive analysis can be conducted. The problem here is the

difficulty in obtaining the required permissions for recording this particular group

of patients. Most of these patients are entered in special centers and special permits

and authorizations are needed to record them.

Although the final methodology only considers four movement categories (the

ones that were highlighted by the experts as the most relevant) it could be easily

extended for new categories. In this case, the classification training should be rebuild

by using the SVM classifier.

The behavior of the method for the detection of eye movements as a reaction to

the sound suggest that it may be a useful for different domains. With this idea in

mind, it might be proposed the adaptation of our methodology to different domains

where eye movements could provide relevant information.
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Face location

The location of the face is an initial step in different stages of this thesis. Proper

face location will allow us to narrow the subsequent search areas. This way, this

initial location reduces the computational cost of the next steps and makes them

less error prone.

Although the location of the face is a natural process for a human being, it

becomes a challenging task in computer vision. In addition to the inherent com-

plexity of defining a face for a computer, the variations in scale, orientation, pose,

facial expression, lighting conditions, and background, increase the complexity of

the problem.

Different methods have been developed in order to detect faces in a scene. First,

earliest and easiest proposals worked in monocolor backgrounds or with a predefined

static background, in these cases, the face was obtained by removing the background.

Other approaches (e.g. (Sandeep & Rajagopalan, 2002)) use color information as

base, seeking for skin color regions. The use of color as the main base of the method

may involve limitations with some skin colors or with varying lighting conditions.

If we work with video sequences instead of static images, we can use motion infor-

mation to find the face if we can consider that face is almost always moving (Graf,

Cosatto, Gibbon, Kocheisen, & Petajan, 1996). The problem with motion informa-

tion arrives when we have a non static background. There also exist many other

different alternatives: using feature analysis, active shape models, neural networks,

and so on.

In our case, the domain is very stable in terms of location: the audiologist

is always seated in front of the patient and the video camera is located behind

the audiologist to ensure that the patient’s face will always be recorded in frontal
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position. This particular setup can be observed in Figure A.1. The certainty of

having a frontal position of the patient’s face allow us to apply the Viola and Jones

approach (Viola & Jones, 2001).

The Viola-Jones detector is a general object detection framework which provides

competitive object detection rates in real time. It can be trained to detect a variety

of different objects; however, its initial motivation was to provide a solution for

the face detection task. As consequence of this, an optimized classifier for the

face detection was obtained. Particularly, a classifier for the detection of frontal

faces is available in the OpenCV library. The fact that faces must be in frontal

position in order to be correctly detected may slightly compromise the requirement

for being unconstrained, but considering that the detection algorithm most often

will be succeeded these demands seem quite reasonable. This classifier is not as

flexible as other approaches, but it is low computational and very robust for the

detection of frontal faces, so it is a good solution for this domain.

Figure A.1: Face detection layout.

The basic principle of the Viola-Jones algorithm is to scan a sub-window capable

of detecting faces across a given input image. The algorithm has mainly four stages:

Haar feature selection, creating integral image, Adaboost training algorithm and

cascade classifiers.

Some samples of face detection can be seen in Figure A.2.
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Figure A.2: Face detection samples at different times during the test.





Appendix B

TSL color space

The TSL (Tint, Saturation and Lightness) is a perceptual color space proposed by

Terrillon and Akamatsu (2000) with the primarily purpose of providing an efficient

detection and location of human faces in static images. TSL has been selected as

better color space to extract skin color from complex backgrounds because it has

the advantage of extracting a given color robustly while minimazing illumination in-

flunce. Robustness under changing lighting conditions, viewpoint or scale is achieved

by a color space that effectively separates the chrominance and luminance using a

proper model for the distribution of human skin chrominance.

This color space defines color as a combination of tint (the degree to which a

stimulus can be described as similar to or different from another stimuli that are

described as red, green, blue, yellow, and white, can be thought of as hue with white

added), saturation (the colorfulness of a stimulus relative to its own brightness), and

lightness (the brightness of a stimulus relative to a stimulus that appears white in

similar viewing conditions).

In (Terrillon & Akamatsu, 2000), authors compare the efficiency of multiple color

spaces in the face detection task (among them, the normalized color space TSL

and a version without illumination TS) by conducting several experiments. They

conclude that the TS space is the one that provides better results in segmentation

and more robust face detection. The advantages of TSL color space lie within

the normalization within the RGB-TSL transform. Utilizing normalized r and g

allows for chrominance spaces TSL to be more efficient for skin color segmentation.

Additionally with this normalization, the sensitivity of the chrominance distributions

to the variability of skin color is significantly reduced, allowing for an easier detection

of different skin tones.
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A normalized chrominance-luminance TSL space is a transformation of the nor-

malized RGB into more intuitive values, close to hue and saturation in their meaning.

The transformation required for the normalized TSL color space are the ones detailed

in (B.1), (B.2) and (B.3). r′ y g′ are computed according to (B.4) and (B.5), which

are based on the amounts of red and green in zero (since when the proportions of

red, green and blue are equal r = g =
1

3
, then r′ = g′ = 0), while through equations

(B.6) and (B.7) the proportions to red and green are computed. It can be noted

how r y g match with the chromaticity values derived from RGB color space and

that L′ is obtained by the usual formula of luminance. Using these transformations

values for T ′, S′, and L′ ∈ [0, 1] are obtained, since the components R, G and B

have been initially transformed to that interval.

L′ = 0.299R+ 0.587G+ 0.114B (B.1)

S′ =

√
9

5
(r′2 + g′2) (B.2)

H ′ =
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(B.3)

r′ = r − 1

3
(B.4)

g′ = g − 1

3
(B.5)

r =
R

R+G+B
(B.6)

g =
G

R+G+B
(B.7)
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Finally, T ′, S′ y L′ are rescaled in order to use the full range offered by 8-bit

through formulas (B.8), (B.9) and (B.10).

T = 255T ′ (B.8)

S = 255S′ (B.9)

L = 255L′ (B.10)





Appendix C

Interest operators for the

detection of gestural reactions

The methodology proposed in Chapter 2.1 makes use of the optical flow. Optical flow

needs an interest operator as pre-step. Good Features to Track (Shi & Tomasi, 1994)

is the interest operator associated to optical flow by default, anyway, we wanted to

test the behavior of other interest operators in our particular domain. Since the

results of the optical flow depend on the interest points that the method receives as

input, choosing these interest point is a crucial step, since the following steps will

be highly affected by the results of this stage of the methodology. In this Appendix,

different interest operators were studied in order to find the most appropriate.

Firstly, it is important to describe the features that define an interest point.

Usually, these points are define by qualities like: well-defined position on the image,

mathematically well-founded, rich in terms of local information and stable to global

perturbations. These properties are assigned regularly to corners or to locations

where the color of the region suffers a big change.

Considering this, we want to choose those interest points that can be easily

matched by the optical flow. To select them, an analysis between different interest

operators was conducted. Each of these methods has different foundations, and

consequently, a different way of performing, so the results that one of them provides

can be very different from those provided by any of the others.

The interest operators analyzed here are: Harris corner detector (Harris &

Stephens, 1988), Good Features to Track (Shi & Tomasi, 1994), SIFT (Lowe, 2004),

SURF (Bay, Ess, Tuytelaars, & Van Gool, 2008), FAST (Rosten & Drummond,
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2005) (Rosten & Drummond, 2006) and a particular version of Harris with a little

modification. Also different classification techniques were tested, in order to find

the best detector-classifier combination.

C.1 Experimental results

Experiments were conducted over a dataset of video sequences from audiometric

evaluation considering only the eye region. The original video sequences (before

considering only the eye region) are Full HD resolution (1080x1920 pixels) with

a frame rate of 25 FPS. Despite the high resolution of the original images, it is

important to take into account that the resolution of the eye region will not be as

optimal (since the recorded scene is very wide), and moreover, lighting conditions

will affect considerably.

Tests were conducted with 9 different video sequences, each one from a different

patient. Each audiometric test takes between 4 and 8 minutes. Considering that the

video sequences have a frame rate of 25 FPS, an average video sequence of 6 minutes

will have 9000 frames, implying a total number of 81000 frames for the entire video

set. Taking into account that reacions only occur in a timely, we finally have 128

pairs of frames to be considered. Since each eye is considered separately, the test

set will consist of 256 movements. These movements are labeled into four classes

depending on the movement they represent (see Table C.1) and they are classified

according to the methodology presented in Chapter ??.

Table C.1: Number of samples for each class of movement.

Eye opening Eye closure Gaze left Gaze right

80 82 46 48

Four different experiments were conducted in order to find the best detector for

this domain. The three experiments are:

1. Find the best classifiers.

2. Find the best configuration parameters for each interest points detector.

3. Evaluate the detector-classifier results.

4. Evaluate the classification by classes
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C.1.1 Classifier selection

In this part of the survey, different classifiers were tested with the aim of selecting

the three best methods for applying them on the following tests. The considered

classifiers are provided by the WEKA tool (Hall et al., 2009), and they are: Naive

Bayes, Logistic, Multilayer Perceptron, Random Committee, Logistic Model Trees

(LMT), Random Tree, Random Forest and SVM.

In order to obtain these results, 18 test were conducted for each pair detector-

classifier, where each one of these tests is the result of a 10-fold cross validation.

Computing the average per method (without considering the detector used) we ob-

tain the results shown in Figure C.1. As it can be observed on this graph, all the

methods obtain an accuracy between 60 and 75%. Worst results are observed for

Naive Bayes, Logistic and Random Tree. Best results are obtained for SVM, fol-

lowed by Random Committee and Random Forest, so these are going to be the three

classifiers considered for the next survey.

Figure C.1: Minimum, maximum and average success percentage by classifier.
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C.1.2 Adjustment of parameters

The methodology proposed in Chapter ?? makes use of different parameters that

are going to be adjusted for the different interest operators in this experiment.

The parameter adjustment is performed dependently on the method used. The

parameters studied in this experiment are:

• Number of detected points: it indicated the number of points that the detector

must select. Very few point may not be enough to create a proper motion

descriptors and a number too high might introduce too much noise.

• Minimum percentage of equal point to remove the movement: sometimes, the

detected motion is due to global motion between two frames and not to a real

movement within the region (addressed in Chapter ?? Section 4.2.2). This will

imply a high number of vectors with the same direction and strength. With

the aim of removing this offset component, the parameter λ is introduced.

This parameter indicates the required minimum percentage of equal vectors

to be considered a global motion, and consequently, discard them.

• Minimum length: very short vectors wil not be representative of movement.

In order to choose the representative vectors three classes were established

depending on the length of the vector (Chapter ?? Section 4.2.1): u1 for

vectors smaller than 1.5 pixels, u2 for vectors between 1.5 and 2.5 pixels and

u3 for vector between 2.5 and 13 pixels (vectors larger than 13 pixels will be

considered erroneous). Vectors in u1 are considered too small and are not taken

into account for the descriptor, while vectors in u3 are considered relevant and

are always part of the descriptors. The inclusion or not of vectors in u2 is

going to be studied on this section.

Harris corner detector

Harris has a particular behavior, it detects few points concentrated in areas with high

contrast. The obtained results are represented in Figure C.2. Each line represents a

classifier (Random Committee, Random Forest and SVM), distinguishing between

using only u3 vectors (green lines) and u2 and u3 vectors (blue lines).

It can be observed that, the higher λ is, the better the results are. Moreover,

the inclusion of vectors in u2 provides worst results. It can be noticed that in Figure

C.2(c) there is a value nearly the 100% of accuracy. This value is an outliers that
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(a) (b) (c)

Figure C.2: Classification results for Harris. Green lines for u3 vectors and blue lines for

u3 and u2 vectors. Each of the three lines for each color corresponds to a different classifier.

(a) For 40 points of interest. (b) 80 points. (c) 160 points.

may not be repeatable, since it breaks the tendency of other values, and for this

reason it should not be considered. However, it confirms the tendency that, with

higher λ values, the accuracy increases.

Good features to track

This interest operator was specifically designed for its use together with the optical

flow. Figure C.3 shows the obtained results for this operator. As it can be observed,

results are quite consistent regardless of the values of the parameters. The behavior

is better for low values of λ, and also considering 80 points of interest. Although

results are very similar, including vectors in u2 slightly increases the success rate in

some cases.

(a) (b) (c)

Figure C.3: Classification results for Good Features to Track. Green lines for u3 vectors

and blue lines for u3 and u2 vectors. Each of the three lines for each color corresponds to a

different classifier. (a) For 40 points of interest. (b) 80 points. (c) 160 points.
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SIFT

The SIFT detections are quite similar to the detections obtained with Good Features

to Track. Its results are also broadly similar (see Figure C.4). However, unlike the

previous method, in this case the obtained results for 80 points of interest are slightly

worse than the ones obtained for 40 or 160 points of interest. The λ parameter does

not affect the results too much. Inclusion of the intermediate vectors (u2) offers also

better results.

(a) (b) (c)

Figure C.4: Classification results for SIFT. Green lines for u3 vectors and blue lines for u3

and u2 vectors. Each of the three lines for each color corresponds to a different classifier.

(a) For 40 points of interest. (b) 80 points. (c) 160 points.

SURF

SURF detector is a very particular method since it is very selective about the de-

tected points. With images from our domain it is not possible to detect more than

35-40 point, even applying very permissive thresholds. Due to this particularity, the

only results obtained are the ones shown in Figure C.5. Better results are obtained

when including vectors in u2, for which the most appropriate value of λ is 0.8.

Figure C.5: Classification results for SURF. Green lines for u3 vectors and blue lines for

u3 and u2 vectors. Each of the three lines for each color corresponds to a different classifier.
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FAST

Through a visual observation, it can be established that the interest points detected

by FAST are quite significant for this domain. Charts with the results can be

observed in Figure C.6. Regarding the length of the vectors, results vary according

the number of considered points. For 40 and 80 points best results are obtained only

considering the strong vectors (u3), while for 160 points best results are obtained

when considering vectors in u3 and u2. For 40 points of interest the most appropriate

is a high value for λ, for 80 points the results are quite stable regardless of the value

of λ, and for 160 points low values for λ offer better results.

(a) (b) (c)

Figure C.6: Classification results for FAST. Green lines for u3 vectors and blue lines for

u3 and u2 vectors. Each of the three lines for each color corresponds to a different classifier.

(a) For 40 points of interest. (b) 80 points. (c) 160 points.

Harris modified

The original Harris detector detects few points in areas where the contrast is high.

To achieve a greater separation between points, and therefore more representative

points, a location of the local maximums is conducted. Also a thresholding is applied

over the Harris image, and finally, the and operation is computed with these two

images, obtaining this way more distributed interest points.

Results for this alternative version of Harris are charted in Figure C.7.

These results are similar to the ones obtained with FAST. In the general case,

better results are obtained considering onlu vectors in u3. For 80 and 160 interest

points, the best behavior occurs for the lower value of λ (0.2). In the case of

considering 40 points, best results occur for λ equal to 0.4.



144 C. Interest operators for the detection of gestural reactions

(a) (b) (c)

Figure C.7: Classification results for Harris modified. Green lines for u3 vectors and blue

lines for u3 and u2 vectors. Each of the three lines for each color corresponds to a different

classifier. (a) For 40 points of interest. (b) 80 points. (c) 160 points.

C.1.3 Final evaluation of the results

Once the behavior of the different methods in relation to their configuration param-

eters has been analyzed, we are going to compare here the results of the different

methods considering only their best configuration. The optimum configuration pa-

rameter and classifier for each one of the considered interest operators is detailed in

Table C.2.

Table C.2: Optimum configuration parameters for each method.

Method Classifier No. points λ Vectors

Harris SVM 160 0.8 u3

Good Feature R. Forest 80 0.2 u2 & u3

SIFT SVM 160 0.8 u2 & u3

SURF SVM 40 0.4 u3

FAST R. Forest 160 0.2 u2 & u3

Harris mod. SVM 160 0.2 u3

Results are shown graphically for better understanding. In order to assess the

capacity of each one of the interest operators in the detection of relevant movements,

the obtained descriptors are compared with the ground truth of the movements

previously labeled by the experts.

The graph presented in Figure C.8 shows the true positive and false positive

rate (Ttp(d) and Tfp(d) respectively). It can be noted that SURF has a good value

for the false positive rate, but a poor value for the true positive rate. SIFT is the
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opposite case, it has a good value for the Ttp(d) but poor for the Tfp(d). The same

happens with Harris, which offers intermediate values for both rates. Instead, FAST,

Good Features to Track and Harris modified show good values for both rates. Good

Features and FAST offer almost equivalent results, while Harris modified has a worst

Ttp(d) but it is compensated with a optimum Tfp(d) rate.

Figure C.8: True positive rate (Ttp(d)) and false negative rate (Tfp(d)) for the different

methods.

Given the previous results, only FAST, Good Features to Track and Harris mod-

ified are considered for the last evaluation. Figure C.9 shows the true positive rate

in detection (Ttp(d)), the specificity (1 − Tfp(d)) and the true positive rate in clas-

sification (Ttp(c)).

All the methods have a similar value for the true positive rate in classification

(Ttp(c)). FAST offers better results than Good Feature for the three evaluated mea-

sures; so between these two methods, FAST would be chosen. Comparing between

FAST and Harris modified, it can be observed that the Ttp(c) is quite similar, while

the Ttp(d) and the specificity are slightly opposite. FAST offers better results for the

Ttp(d) while with Harris better results are obtained for the specificity. The decision

of choosing one or another depends on the suitable results for this domain. If we

want to reduce the number of false positives Harris is the best solution, while if the

true positive detections are more important, FAST is the method that should be
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Figure C.9: True positive rate (Ttp(d)) and specificity (1− Ttp(d)) for detection and true

positive rate for classification (Ttp(c)).

chosen. Anyway, the obtained results for Good Features to Track are considerably

good so it would be a suited option too.

C.1.4 Classification by classes

A more detailed survey about the results was conducted in order to analyze the clas-

sification results by classes. Tables C.3, C.4 and C.5 represent the confusion matrices

for the three best interest operators selected from the previous results combined with

the best classifier for each one of them, i.e., FAST - Random Forest (Table C.3),

Good Features to Track - Random Forest (Table C.4) and Harris ad. - SVM (Table

C.5). Where Open, Close, Left and Right correspond with the considered movement

categories: eye opening, eye closure, gaze shift to the left and gaze shift to the right.

As it can be inferred from these confusion matrices, the classification accuracy

for the eye closure movement is always over the 90%. Instead, the worst results

are obtained for the movements of gaze shift to the right and gaze shift to the left.

None of them is able to achieve the 80% of accuracy; which which worsens in the

case of Harris ad. and Good Features to Tack where the accuracy falls to 60%.



C.1. Experimental results 147

Table C.3: Confusion matrix for FAST - Random Forest
Open Close Left Right

Open 0.772 0.050 0.076 0.101

Close 0.012 0.927 0.060 0

Left 0.068 0.205 0.727 0

Right 0.174 0 0.065 0.761

Table C.4: Confusion matrix for Good Features to Track - Random Forest
Open Close Left Right

Open 0.818 0.039 0.026 0.117

Close 0.049 0.89 0.061 0

Left 0.075 0.3 0.625 0

Right 0.25 0 0.023 0.727

Table C.5: Confusion matrix for Harris ad. - SVM
Open Close Left Right

Open 0.811 0.04 0.027 0.122

Close 0.012 0.901 0.086 0

Left 0.033 0.2 0.767 0

Right 0.357 0 0.048 0.595
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This negative effect for Harris ad. and Good Features to Tack is offset by a better

behavior for the eye opening movements, where they outperform FAST.

It can be observed that the main problem in classification occurs when distin-

guishing between the classes eye opening and gaze shift to the right, in this case,

the miss-classification occurs in both directions, sometimes samples of the class eye

opening are classified as gaze shift to the right and sometimes the opposite happens.

It can be also observed that there is a considerable number of miss-classifications

between classes eye closure and gaze shift to the left, but in this case, it only occurs

when classifying samples of the class gaze shift to the left, and not in the opposite

direction. Between the remaining classes there are also some errors in the classifica-

tion, but they are almost negligible.

For a more general understanding, in Table C.6 we show the true positive rate in

classification Ttp(c) for each class (the diagonal of the confusion matrices previously

presented) and the false positive rate in classification Tfp(c) computed from the miss-

classifications. Likewise, we show the ROC area value, which provides a measure of

how good the classification is.

Table C.6: Results by classes for FAST, Good Features to Track and Harris ad.

Open Close Left Right Average

FAST

Ttp(c) 0.772 0.927 0.727 0.761 0.813

Tfp(c) 0.07 0.077 0.068 0.039 0.066

ROC area 0.896 0.969 0.88 0.934 0.924

Good Features

Ttp(c) 0.818 0.89 0.625 0.727 0.794

Tfp(c) 0.108 0.093 0.039 0.045 0.08

ROC area 0.928 0.966 0.929 0.941 0.943

Harris ad.

Ttp(c) 0.811 0.901 0.767 0.595 0.797

Tfp(c) 0.111 0.062 0.056 0.049 0.0075

ROC area 0.923 0.974 0.915 0.907 0.94

As it can be inferred from Table C.6 all the three methods show successfully

results for the ROC area, near to the ideal, where the best of them is Good Features

to Track with a 0.943 value. From the evaluation of the false positive rate Tfp(c) the

results confirm the same idea that was deducted from the evaluation of the confusion

matrices, which is that the class eye opening is the worst in terms of classification,

since it has the highest Tfp(c) value. In general terms, the obtained results are

promising for both the detection and the classification for any of the interest opera-
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tors presented here. This indicates that any of these three interest operators could

provide optimal results when integrated with in the final methodology.

C.2 Conclusions

The survey here conducted allow us to determine that FAST, Good Features to Track

and Harris modified are the most appropriate interest operators for our domain.

Since the differences between them are not clear enough, Good Features to Track

is the interest operator chosen for the proposed methodology detailed in Chapter

??. This decision is supported by its accurate behavior (with values nearly to the

ones obtained with FAST and Harris modified) and also because it is the interest

operator defectively associated with the optical flow.





Appendix D

Interest operators for the

detection of candidate points

In this experiment three different interest operators are analyzed with the aim of

choosing the one that offers better result in the detection of candidate points to cor-

respond with eyes’ corners. This task is accomplished in the methodology presented

in Chapter 5 Section 5.1.2. The three interest operators considered for this study

are: Harris (Harris & Stephens, 1988), Shi-Tomasi (Shi & Tomasi, 1994) and FAST

(Rosten & Drummond, 2005) (Rosten & Drummond, 2006). Each one of them has

different foundations, so the provided results may be different.

For this experiment we use three different video sequences recorded during the

audiometric evaluation. From each one these videos, 100 frames are selected. If we

consider each eye separately, consequently we have 200 samples per video sequence.

This way, our test dataset is composed by a total number of 600 samples, 300 for

the right eye and 300 more for the left eye.

For the evaluation of this experiment, it is necessary to compute the average and

the standard deviation of the detection error. To that end, the expected points are

previously labeled. The expected points Pe are compared with the candidate points

Pc in order to compute the detection error. Between all the candidate points Pc,

the one with the minimum distance to the expected point Pe is labeled as Pcmin,

the point that better represents and eye corner. With these considerations, we can

compute the error the module of the difference between the expected point Pe and

the best obtained point Pcmin, according to (D.1), where i represents each one of

the four eyes’ corners.
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errori = |Pe − Pcmin| ∀i ∈ {1, 2, 3, 4} (D.1)

Figure D.1 represents how the error calculation is computed. Points represented

in red correspond with the expected point Pe and points represented in yellow rep-

resent the candidate points Pc provided as a result by the interest operator. It can

be observed that for this error calculation only the nearest candidate point to the

expected point is considered.

Figure D.1: Error calculation for the interest operators, following (D.1).

Next, the obtained results for each one of the interest operator are going to be

presented.

D.1 Harris results

The Harris method is based on corner detection, by understanding as corners those

points where the near horizontal and vertical gradients are significant. The main

advantage of this approach is that the computations involved do not require high

performance times.

Figure D.2 shows the interest points detected by the Harris operator for a sample

image from our domain, the obtained interest points are represented in red.

In Table D.1 the average and the standard deviation of the detection error for

each one of the eyes’ corners (P1, P2, P3 and P4) are presented. The last column
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presents the global results (both for average and standard deviation) computing

together the four considered corners.

Figure D.2: Sample interest points detected by Harris.

Table D.1: Detection error results for Harris.

Error Error Error Error Error

P1 P2 P3 P4 (P1, P2, P3, P4)

Average 1.9545 4.7121 3.2526 2.2400 2.7703

Std. dev. 1.2238 1.9150 2.4984 2.2246 2.1150

D.2 Shi-Tomasi results

The Shi-Tomasi algorithm is based on the Harris corner detector. It has as basis to

modify the criteria for choosing the characteristic point.

Figure D.3 shows as red points the interest points detected by the Shi-Tomasi

operator for a sample image from our domain.

In Table D.2 the calculation error is showed in terms of average and standard

deviation for each one of the eyes’ corners. Last column represent the global results

when considering all the corners simultaneously.

Table D.2: Detection error results for Shi-Tomasi.

Error Error Error Error Error

P1 P2 P3 P4 (P1, P2, P3, P4)

Average 1.0000 0.9481 1.1403 1.0113 1.0227

Std. dev. 0.4444 0.5109 0.6410 0.6336 0.5456
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Figure D.3: Sample interest points detected by Shi-Tomasi.

D.3 FAST results

The FAST (Features from Accelerated Segment Test) approach appears with the

aim of providing a interest operator with low computational without compromising

the quality of the detected points. It is highly suited for real time applications

regardless of their complexity.

Figure D.4 shows the interest points provided by the FAST approach for a sample

image. These points are represented in red.

Table D.3 presents the detection errors for FAST. First four columns represent

eye one of the eyes’ corners, and the last column represents the global error in terms

of average and standard deviation.

Figure D.4: Sample interest points detected by FAST.
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Table D.3: Detection error results for FAST.

Error Error Error Error Error

P1 P2 P3 P4 (P1, P2, P3, P4)

Average 1.1324 1.3251 1.6103 1.1754 1.3082

Std. dev. 0.5990 0.8054 1.2853 0.7021 0.8515

D.4 Comparison between interest operators

From the previous results it was built a global table in order to summarize the results.

Table D.4 allow to establish a global analysis in order to conclude which one of the

three proposed interest operators is most suited for this particular domain. From

the results presented in this table it can be concluded that the Shi-Tomasi method

is the one that better approximate the eyes’ corners, since the detection errors for

this method are the smaller ones. For this reason, as a result of this survey, the Shi-

Tomasi is the interest operator applied in the methodology presented in Chapter 5

Section 5.1.2.

Table D.4: Global results for the detection of candidate points.

Harris Shi-Tomasi FAST

Average 2.7703 1.0227 1.3082

Std. dev. 2.1150 0.5456 0.8515
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Alba Fernández Arias.

Software registration of the product Herramienta para la detección de reacciones
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Appendix F

Resumen

El sentido del óıdo permite la percepción de sonidos; nos informa de los sonidos y

ruidos que se producen a nuestro alrededor y de nuestra posición en el espacio. La

pérdida de audición es una afección invisible que implica una disminución repentina

o gradual de la audición. Aunque la pérdida de audición es un fenómeno global

que afecta indistintamente a todos los grupos de edad, también es cierto que existe

una mayor incidencia en la población de más edad; concretamente en la pérdida

progresiva de audición para las altas frecuencias según aumenta la edad. La pérdida

auditiva es la tercera enfermedad crónica más presente entre los adultos de avanzada

edad, siendo también una de las menos tratadas.

Por otra parte, el envejecimiento de la población es un fenómeno demográfico que

afecta al mundo entero. Este aumento de la esperanza de vida lleva asociado consigo

un aumento de los años vividos con incapacidad e invalidez. En relación con la

audición, este envejecimiento tiene como consecuencia no solo una mayor prevalencia

de problemas auditivos, sino también una mayor severidad en sus efectos. La pérdida

auditiva asociada a la edad, también llamada presbiacusia, se caracteriza por una

elevación de los umbrales auditivos, la dificultad para entender el habla en entornos

ruidosos y reverberantes y las interferencias en la percepción de los cambios rápidos

del habla. A mayores, con el aumento de edad también aumenta la posibilidad

de sufrir trastornos neurodegenerativos u otras limitaciones comunicativas. Esta

problemática implicará una serie de limitaciones a la hora de evaluar la capacidad

auditiva que se comentarán más adelante.

Diferentes estudios han demostrado los efectos negativos que la no correción de

la pérdida auditiva pueda tener sobre el bienestar f́ısico, psicológico, social y cog-

nitivo de quienes las sufren. El deterioro auditivo puede derivar en comunicaciones
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distorsionadas o incompletas. De hecho, aquellos que sufren pérdida auditiva pueden

llegar a experimentar una comunicación tan incompleta que afecte de manera nega-

tiva a su vida social, abocando en ocasiones en aislamiento, retraimiento y falta de

independencia.

Como se comentó anteriormente, con la edad no solo aumentan las posibilidades

de sufrir pérdida auditiva sino también el riesgo de aparición de trastornos neurode-

generativos. Una de las manifestaciones más comunes de entre las enfermedades

neurodegenerativas es la enfermedad de Alzheimer, que tiende a afectar a personas

mayores de 65 años. La prevalencia de trastornos neurodegenerativos, y especial-

mente de la enfermedad de Alzheimer, es cada vez más significativo en nuestra

sociedad actual. Además, investigaciones recientes demuestran que la pérdida de

audición es un factor de riesgo potencial para el deterioro cognitivo. Existen eviden-

cias cient́ficas que relacionan la pérdida auditiva con el aumento de la enfermedad de

Alzheimer. Los mayores con pérdida auditiva tienen una tasa de deterioro cognitivo

que es hasta un 40% más rápida que la tasa de personas con audición normal.

La razón para esta relación entre pérdida auditiva y deterioro cognitivo puede

ser debida al aislamiento social que sufren los individuos que tienen la audición

afectada, ya que este aislamiento social tiene consecuencias a largo plazo sobre el

funcionamiento del cerebro. Además, la pérdida de audición puede forzar al cerebro

a dedicar demasiada enerǵıa al procesado del sonido, reduciendo el gasto de enerǵıa

dedicado a la memoria o al pensamiento. La coexistencia de estas patoloǵıas supone

una importante complicación en la evaluación de la capacidad auditiva. Casi todos

los mayores desarrollarán algún grado de deterioro cognitivo con el paso del tiempo.

Dado que el envejecimiento está altamente relacionado tanto con la pérdida de au-

diciń como con el deterioro cognitivo, la coexistencia de estas dos problemáticas es

altamente probable.

El empleo de aud́ıfonos y programas de rehabilitación auditiva tiene como conse-

cuencia una mejora en el estado social, emocional, psicológico y f́ısico de las personas

con problemas auditivos. Los aud́ıfonos modernos mejoran la inteligibilidad del

habla y, por lo tanto, la comunicación. Todas estas consideraciones ponen de relieve

la importancia de la realización de controles regulares de audición, especialmente

entre la población mayor o a cualquier edad en caso de que se observen dificultades

auditivas de algún tipo.

La audiometŕıa tonal liminar (ATL) ha sido descrita de manera ineqúıvoca como

la prueba estándar para la evaluación cĺınica de la sensibilidad auditiva. Esta prueba

determina los tonos más bajos que una persona puede óır a determinadas frecuencias.
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Con ella, los audiólogos evaluan la capacidad auditiva y pueden diagnosticar la

presencia de problemas auditivos y su severidad. Es una medición conductual de los

umbrales de audición, puesto que se basa en la respuesta que el paciente muestre

de manera voluntaria a los est́ımulos sonoros. Por lo tanto, la cooperación del

paciente es necesaria para poder llevar la prueba a cabo, lo cual puede implicar

ciertas limitaciones operativas que se discutirán pronto.

F.1 Tesis

Durante la evaluación audiométrica se env́ıan al paciente sonidos puros a través de

unos auriculares conectados a un dispositivo llamado audiómetro. Manejando este

dispositivo el experto irá modulando diferentes frecuencias a intensidades que enviará

al paciente. El paciente deberá responder afirmativamente cuando sea capaz de

percibirlos (t́ıpicamente se le pedirá que levante la mano para mostrar esta respuesta

positiva).

La medición de los tiempos de respuesta es una evaluación adicional que los espe-

cialistas llevan a cabo durante la realización de la evaluación auditiva. Esta medición

es de especial relevancia para lograr la identificación de pacientes con tiempos de

respuesta anormalmente lentos, ya que esto puede ser un śıntoma que indique algún

tipo de problema asociado y que deberá ser estudiado por el especialista correspon-

diente. El problema aqúı es que el experto necesita haber tratado y estudiado a un

elevando número de pacientes con el fin de ser capaz de discriminar cual es el tiempo

de respuesta medio de los pacientes “normales”. Incluso a pesar de las habilidades

del especialista ésta no deja de ser una tarea cargada de subjetividad, lo que implica

que sea una evaluación proclive a errores e imprecisiones. Una alternativa más pre-

cisa consistiŕıa en grabar las pruebas en v́ıdeo para una posterior medición manual de

cada unos de los tiempos de respuesta, pero esta solución consumiŕıa mucho tiempo

por parte de la persona encargada de ello. Es por todo ello que el desarrollo de una

solución automática para la medición de estos tiempos de respuesta seŕıa muy útil

para los expertos puesto que aceleraŕıa la tarea y proporcionaŕıa mediciones precisas

y reproducibles.

En la Parte I se presenta un método que mide de forma automática los tiempos

de respuesta a partir de secuencias de v́ıdeo grabadas durante la realización de las

pruebas audiométricas. Se utilizan técnicas basadas en el uso del color para la de-

tección de la mano cuando ésta es levantada por el paciente. Puesto que la mano es

una zona de piel que durante la realización de la prueba permanecerá expuesta, si
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se consigue detectar adecuadamente su presencia y movimiento se podrán detectar

las respuestas positivas del paciente. Puesto que los tiempos de respuesta se deben

medir como el tiempo transcurrido desde el momento en que se inicia el env́ıo del

est́ımulo hasta el momento en que se inicia la respuesta del paciente, es necesario

identificar en el audiómetro los momentos en los que se env́ıa est́ımulo auditivo con

el fin de combinar ambas informaciones. Debido a que los expertos están trabajando

con dispositivos analógicos, la detección del env́ıo de est́ımulos se realizará utilizando

propiedades de color buscando el indicador luminoso que se enciende cuando se está

enviando est́ımulo. Los resultados obtenidos por la metodoloǵıa propuesta son al-

tamente positivos, alcanzando valores superiores al 99% de acierto en la detección

de las reacciones del paciente. Además, el método proporciona una medición pre-

cisa y objetiva de los tiempos de respuesta, medición que es obtenida a partir de la

combinación de la detección de la respuesta del paciente y de la detección del env́ıo

de est́ımulos por parte del experto. A través de los resultados experimentales se ha

demostrado la capacidad del método para permitir la discriminación entre pacientes

con tiempos de respuesta normales y pacientes con tiempos de respuesta anormal-

mente lentos. De este modo, la propuesta aqúı presentada permite la identificación

de los pacientes con tiempos de respuesta significativamente más lentos de lo normal

(lo cual era una de las metas de este trabajo) y se facilita la medición precisa de

cada uno de estos tiempos facilitando a los expertos poder llevar a cabo diferentes

estudios cĺınicos.

Por otra parte, en el caso de pacientes con deterioro cognitivo u otros trastornos

severos que afecten a la comunicación, el protocolo estándar en el cual el experto

le explica al paciente la prueba y le pide que levante la mano cuando perciba en

est́ımulo auditivo es prácticamente inaplicable. En estos casos, la existencia de

una interacción activa entre paciente y experto es altamente improbable, ya que

este tipo de pacientes tiene importantes limitaciones a la hora de mantener una

interacción estable, limitaciones que se ven agravadas según el deterioro cognitivo

empeora. Si bien es cierto que la evaluación auditiva de estos pacientes se vuelve

mucho más compleja, todav́ıa es posible llevarla a cabo si el audiólogo centra su

atención en la detección de sutiles reacciones espontáneas faciales (reacciones que

se centrarán principalmente en la región de los ojos). La subjetividad asociada a

esta intepretación de gestos y la sutileza que pueden tener estas reacciones faciales

hace de esta tarea un problema cargado de imprecisión, proclive a errores y dif́ıcil

de reproducir. Todas estas razones ponen en relieve las mejoras que una solución

automatizada podŕıa aportar al dominio, ayudando a los audiólogos en la detección

e interpretación de estas reacciones. Esta problemática se estudiará a lo largo de la
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Parte II de esta tesis.

Una primera aproximación para la detección de estas reacciones gestuales se

presenta a lo largo del Caṕıtulo 4. La detección de estas reacciones espontáneas

el llevada a cabo utilizando como base el flujo óptico sobre la región de interés,

que en este caso se corresponde con la región de los ojos. El flujo óptico analiza

el movimiento existente entre una serie de puntos detectados como significativos en

los dos momentos a comparar. Se calcula la correspondencia entre esos puntos, y el

movimiento detectado (en caso de que éste exista) se caracterizará en función de su

orientación, magnitud y dispersión. Una vez caracterizado, se clasificará en una de

las categoŕıas de movimiento determinadas como revelantes para este dominio por

los expertos. Los resultados obtenidos muestran la capacidad del método propuesto

para la correcta identificación y clasificación de dichas reacciones, abriendo el camino

para el desarrollo de una herramienta automática adaptada a este dominio.

En el Caṕıtulo 5 la detección de las reacciones gestuales se realiza a partir de

información sobre la distribución de color en la esclerótica (la parte blanca del ojo).

La distribución de color de la esclerótica permite obtener una aproximación de la

dirección de la mirada, puesto que si la distribución de esta región está caracterizada

por una zona clara, seguida de una zona oscura (que se corresponde con el iris), para

luego terminar de nuevo con una zona clara, se podrá deducir que la mirada está

dirigida a un punto central. En cambio, si se tiene primero una zona oscura y

luego una gran zona clara, se podrá deducir que en este caso la mirada está dirigida

hacia un lado. Estas distribuciones serán clasificadas en función de su forma en las

distintas categoŕıas consideradas. Los resultados obtenidos son positivos y apuntan

hacia la suficiencia de este método para la detección de reacciones faciales.

Finalmente, en el Caṕıtulo 6 se propone la combinación de las dos técnicas

anteriores. En esta nueva propuesta, la detección de las reacciones faciales se lleva a

cabo a partir de la combinación de la información aportada por el flujo óptico y por

el análisis de la distrubición de color en la esclerótica. En el caso del flujo óptico,

como en la propuestas inicial ya se trabajaba con un vector descriptor, el proceso se

mantiente igual. En cambio, en el caso de la distribución de color de la esclerótica es

necesario caracterizar la información en forma de vector de caracteŕısticas. Además,

esta aproximación será considerada tanto para el momento actual de la distribución,

como en comparación con el momento con el cual estemos tratando de observar el

cambio. Los resultados obtenidos muestran que la combinación de ambas técnicas

consigue mejores resultados que si se considera cada una de ellas por separado. La

mayor tasa de acierto obtenida es del 97,46%, lo cual es un valor muy positivo
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teniendo en cuenta las dificultades del dominio. A modo de mejora, en el Caṕıtulo

6.5 se propone la aplicación técnicas de aprendizaje máquina para la mejora de la

tasa de clasificación de las dos categoŕıas más relevantes: movimiento de mirada

hacia la izquierda y movimiento de mirada hacia la derecha. Para ello, se aplicaron

técnicas de oversampling, en particular, el método SMOTE. Incrementando las dos

categoŕıas que queremos potenciar hasta un oversampling del 300%, se obtuvieron

tasas de acierto por encima de 0.986 y 0.966 para ambas clases, con un acierto global

de clasificación superior al 97%.

F.2 Conclusiones

A lo largo de esta tesis se han propuesto diferentes técnicas para facilitar la eval-

uación automática de la capacidad auditiva. Las dos principales metas eran la

medición de los tiempos de respuesta y la detección de reacciones faciales como

respuesta a los est́ımulos auditivos para el caso de pacientes con dificultades comu-

nicativas graves. Estas soluciones automatizadas no pretenden sustituir el juicio del

experto, pero podrán ser de gran ayuda en la realización de la rutina cĺınica y en

investigación.

Una de las principales premisas bajo las que se tuvo que desarrollar este trabajo

fue la de no alterar, en la medida de lo posible, el protocolo estándar que siguen los

expertos para la evaluación de la audición. El silencio y la ausencia de distracciones

son vitales para el correcto desarrollo de esta prueba. Es importante también crear

un ambiente tranquilo, en el que el paciente se sienta cómodo y actúe de forma

natural y espontánea. Es importante intentar no condicionar la respuesta natural

del paciente, por lo que no es conveniente evitar que se sienta observado. Las

metodoloǵıas aqúı presentadas no implican ningún cambio en el protocolo estándar

de realización de las pruebas audiométricas, el único requisito es la colocación de

un video cámara para la grabación de las pruebas. Esta video cámara se colococará

detrás del audiólogo, que estará sentado frente al paciente. Es una localización

discreta que perturbará mı́nimamente el comportamiento del paciente.

Primeramente se propone un método capaz de medir de forma automática y

precisa los tiempos de respuesta del paciente. Para ello es necesario detectar el

momento en que se env́ıa el est́ımulo y el momento en que el paciente levanta la

mano. La precisión obtenida es óptima y la precisión de las mediciones obtenidas

permitirá el desarrollo de estudios cĺınicos.

El siguiente paso consist́ıa en resolver la detección de las reacciones gestuales
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espontáneas mostradas por los pacientes con dificultades comunicativas severas. Se

propusieron dos formas alternativas de abordarlo: el análisis de movimiento a partir

del flujo óptico, y la localización de la dirección de la mirada a través del análisis

de la distribución de color de la esclerótica. Aunque ambas aproximaciones ofrećıan

resultados aceptables, se optó por combinarlas con el fin de dotar al método de mayor

robustez. Los resultados obtenidos de la combinación de ambas técnicas avalan la

decisión.

Esta aproximación final permite presentar una metodoloǵıa para la detección

y clasificación de movimientos gestuales como respuesta a los est́ımulos auditivos

durante la realización de evaluaciones auditivas en pacientes con deterioro cognitivo

u otras dificultades comunicativas severas. Cuando no existe interacción por parte

del paciente el experto focalizaba su atención en busca de este tipo de reacciones,

pero la disponibilidad de una herramienta automática que se encargue de esta labor

facilitará su trabajo, evitará la subjetividad y lo hará menos proclive a errores.

En términos cĺınicos, el anális manual llevado a cabo por los audiólogos puede ser

automatizado con el principal beneficio de no verse afectado por factores subjetivos.

Además del hecho de que la propuesta automática produce resultados imparciales,

también ahorra tiempo para los expertos y proporciona una identificación detallada

de las reacciones gestuales. En este sentido, el audiólogo logrará valoraciones más

objetivas, lo cual será de gran ayuda para conseguir una evaluación adecuada de

la capacidad auditiva. El correcto diagnóstico correcto de la pérdida de audición

permitirá la prescripción de aud́ıfonos apropiados, mejorando aśı la calidad de vida

de estos pacientes.

Por otra parte, el hecho de que las secuencias de v́ıdeo puedan ser visualizadas

después de haber sido analizadas por la metodoloǵıa propuesta facilitará el entre-

namiento de nuevo expertos en la detección e interpretación de estas reacciones.

Como este tipo de reacciones son bastante inconsistentes y sutiles, su adecuada

interpretación requiere amplia experiencia por parte del audiólogo. Si se le propor-

ciona a los audiólogos inexpertos en esta tarea una herramienta en la que puedan

observar evaluaciones previas donde las reacciones gestuales estén adecuadamente

etiquetadas, se estará facilitando su entrenamiento, pues podrán ir aprendiendo de

casos previos que se encuentren archivados.

Aunque en esta tesis nos hemos centrado en el dominio de la audioloǵıa, la

metodoloǵıas propuestas para la detección de movimientos de la mirada podŕıan

ser fácilmente adaptadas a otros dominios donde estos movimientos proporcionasen

algún tipo de información relevante.
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