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Abstract 
The spatial variability of soil properties can be assessed through concepts of scale invariance, fractals 
and multifractals. The aim of this study was to characterize the scaling patterns and structural 
heterogeneity properties of general soil chemical properties along a short (i.e. 52 m large) transect. 
Field measurements were carried out at the experimental farm of CIAM located in Mabegondo, 
A Coruña, Spain. The studied transect was marked following land slope, and 66 soil samples were 
collected at the 0-20 cm depth every 0.8 m. The soil properties analyzed were: pH (H2O ), organic 
carbon content, exchangeable Ca, Mg and K, exchangeable acidity (H + Al), exchangeable bases (SB), 
cation exchange capacity (CEC), percent base saturation (V) and extractable P. The soil properties 
studied showed various degrees of multifractality. The spatial distribution of pH was characterized 
by quasi-monofractal behaviour; CEC, (H+Al) and OM, presented a relatively low degree of 
multifractality, and the other soil properties studied showed stronger degrees of multifractality, 
being the highest one for Olsen extractable P. In general, the scaling features of the properties studied 
implied a multifractal nature, where the low and high density regions scaled differently. 
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1. INTRODUCTION

Spatial variability in earth sciences has 
been widely analyzed for different types of 
sampling schemes. Although samples have 
been more frequently collected in grids over 
areal surfaces (Caridad Cancela et al., 2005; 
Morales et al., 2010, 2014), several studies 
also performed sampling along transects 
(Caniego et al., 2005; Vidal-Vázquez et al., 
2013), mainly to appraise localized variabil-
ity. 

Variability of soil properties stems from 
interactions between the five factors of soil 
formation (climate, parent material, topo-
graphic relief, organisms and time) and a 
number of physical, mineralogical, chemi-
cal, biological and environmental processes 
that most often do not run independently. 
Moreover, soil forming factors and soil pro-
cesses can operate at various scales, so that 
the spatial variability of soil properties may 
exhibit nested effects. Consequently, either 
soil properties that are constant over time 
(such as particle size distributions, particle 
density, and to some extent also cation ex-
change capacity or organic carbon content) 
or those highly dynamic (water content, bulk 
density, porosity, nutrient status, fungal and 
bacterial biomass, etc.) can display a rich 
spatial (Vieira et al., 1983, 2010; Vieira and 
Paz González, 2003; Dafonte et al., 2010; 
Caridad-Cancela et al., 2005; Montanari et 
al., 2011) or spatial and temporal (Morales 
et al., 2010, 2014, Vidal Vázquez et al., 2012) 
variability.

Scaling analysis, such as fractal and 
multifractal analysis, also has been also 
used to adequately characterize the spatial 
variability of soil properties (Caniego et al., 

2005; Zeleke and Si, 2006; Vidal Vázquez et 
al., 2013) and to describe the combination 
of irregularity and structure of such prop-
erties for a large range of scales (Tarquis 
et al., 2008; Vidal Vázquez et al., 2008a, 
b; Siqueira et al., 2013; Paz-Ferreiro et al., 
2008, 2010, 2014). While in monofractal 
scaling one single exponent is sufficient to 
capture the scaling behavior of the studied 
data set, multifractal scaling involves en-
tire functions, which represents a hierarchy 
of exponents related to different levels of 
intensity or irregularities of the data series 
(Everstz and Mandelbrot, 1992; Falconer, 
1997). Thus, multifractals are intrinsically 
more complex and inhomogeneous than 
monofractals. Both, fractal and multifractal 
scaling assume a hierarchical distribution of 
mass in space, so that the whole results from 
the union of similar subsets (Caniego et al., 
2005; Tarquis et al., 2008). 

The multifractal approach has been 
proved to be useful for characterizing the 
inner structure of  soil general properties 
measured along transects ant to compare 
them (Caniego et al., 2005; Zeleke and 
Si., 2006; Vidal Vázquez et al., 2013). 
Moreover, multifractal analysis has been 
demonstrated to provide more information 
about the inner structure and the spatial 
variability of  a data set than semivariogram 
analysis (e.g. Kravchenko, 2008). This is 
because multifractal characteristics allow 
the assessment of  anomalous behaviour of 
singular physical processes.The objective 
of  this research was to quantify the scaling 
patterns and structural heterogeneity of 
various soil chemical properties measured 
in a small transect using multifractal 
spectra and indices.
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2. MATERIAL AND METHODS 

2.1. Experimental site and sampling

Soil samples were collected at an experi-
mental field of the “Centro de Investiga-
ciones Agrarias de Mabegondo” (CIAM), 
A Coruña province, Spain, (Latitude 43° 
14’ 47” N, Longitude 8° 16’ 23” W). The 
site was on a gentle slope and the soil was a 
loamy textured Inceptisol (SSA, 2010). Sixty 
six soil samples were collected at 0 - 20 cm 
depth every 0.8 m along a transect, which 
was marked following the land slope. Thus 
the total length of the sampled transect was 
52 m.

2.2. Analysis of general soil properties

Soil samples were air-dried, crushed and 
sieved through a 2 mm mesh. Soil pH, or-
ganic carbon content, exchangeable bases 
(Ca+2 + Mg+2 + K+) exchangeable acidity 
(H+ plus Al+3), and extractable phosphorus 
were analyzed. In addition, cation exchange 
capacity (CEC), sum of exchangeable bases 
(SB = Ca+2 + Mg+2 + K+) and percent base 
saturation (V%) were computed from ex-
changeable cations. Organic carbon content 
was determined following the Walkley-Black 
method (van Raij et al. 2001; da Silva Días 
et al., 2013). Phosphorus was determined 
colorimetricaaly after extraction by the resin 
method (van Raij et al. 2001; Paz-Ferreiro et 
al., 2012). Exchangeable bases (Ca+2 + Mg+2 
+ K+) were determined after extraction with 
a cation exchange resin, whereas extractable 
acidity (H+ + Al+3) was determined after 
Al extraction with KCl, as described in van 
Raij et al. (2001). 

2.3. Multifractal analysis 

Multifractal analysis was implemented 
following the moment method, which is 
next summarized. First, a mesh with size d 
was employed to be superimposed over the 
whole support. In other words, the length 
of  the transect was divided into smaller and 
smaller segments based on dyadic downs-
caling. This was implemented by successive 
partitions of  the support in k stages (k=1, 
2, 3…) that generate at each scale, d a num-
ber of  segments, N(d) = 2k of  characteristic 
size length, d = L × 2-k,  covering the whole 
extent of  the support, L, in this case a tran-
sect (e.g. Evertsz and Mandelbrot, 1992; 
Caniego et al., 2005; Vidal Vázquez et al., 
2013). 

Then, the experimental data for each 
variable studied were converted into the 
distribution of mass along the geometric 
support. Therefore, the probability mass 
function, pi(d), for each segment was es-
timated as a proportion according to: 
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where Ni (d) is the value of the measure 
in a given segment, ith, and Nt is the sum of 
the measure in the whole transect. 

Multifractal analysis involves several 
scaling functions: mass exponent, tq, sin-
gularity spectrum, f(α), local scaling index, 
αq, and generalized or Rényi dimension, 
Dq. In practice, using the box counting 
method, the so-called partition function 
scales with the segment size as follows:
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Where n (d) is the number of segments 
with size d and statistical moments q are de-
fined for -∞ < q < ∞.

A log-log plot of the quantity c(q, d) ver-
sus d for different values of q yields:c(q, d)∝ 
d-t(q), where tq is the mass scaling function of 
order q. Note that the method of moments 
is justified if  the plots of c(q, d) versus d are 
straight lines (Halsey et al., 1986).

The mass exponent function tq was es-
timated from the partition function as:
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The scaling function, tq is also re-
lated to the generalized fractal dimension 
(Hentschel and Procaccia, 1983), which 
can be defined by Equations 5a. In fact, 
the concept of generalized dimension, Dq, 
corresponds to the scaling exponent for 
the qth moment of the measure. Moreover, 
the generalized dimensions can be also de-
fined by Equation 5b. Note, however, that 
using Equations 5a or 5b D1 becomes in-
determinate because the value of the de-
nominator is zero. Therefore, for the par-
ticular case that q =1, Equation 5c is used.
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For a monofractal, Dq is a constant 
function of q, so no additional information 
is obtained by examining higher moments. 
However, for multifractal measures, the re-
lationship between Dq and q is not constant. 
In this case, the most frequently used gener-

αi
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alized dimensions are D0 for q = 0, D1 for q 
= 1 and D2 for q = 2, which are referred to 
as capacity, information (Shannon entropy) 
and correlation dimension, respectively. 

The capacity or box-counting dimen-
sion, D0, is the scaling exponent of the num-
ber of non-empty segments. Thus, it is in-
dependent of the quantity of mass in each 
box, but takes into account the fact that the 
segments are occupied or not. The informa-
tion dimension, D1, gives the probability of 
occupation of the ith segment of size d, with-
out taking into account the way in which the 
measure is distributed within each of these 
segments. Thus, D1 provides a physical char-
acterization, indicating how heterogeneity 
changes across a certain range of scales, and 
it is also related to the Shannon entropy. 
The correlation dimension, D2, describes 
the uniformity of the measure values among 
intervals. The generalized dimension, Dq, is 
widely used for the comprehensive study of 
multifractals. Differences between Dq allow 
comparison of the complexity between the 
studied data sets. The higher the homogene-

ity of a structure, the closer the Dq values; 
thus in a monofractal Dq is constant.

3. RESULTS AND DISCUSSION

3.1. Statistical analysis

A summary statistical analysis of the 
studied soil properties is listed in Table 1. 
Mean soil pH was 4.9 and overall pH values 
along the sampled transect varied from 4.6 
to 5.4 along, which means very strongly acid 
to strongly acidic soil reaction. Mean organ-
ic matter content was 41.7 mg kg-1, and the 
range of OM values varied from 28.0 to 62.0 
mg kg-1. Cation exchange capacity ranged 
from 9.37 to 15.06 Cmol+kg-1, with a mean 
value of  12.23 Cmol+kg-1, and the sum of 
exchangeable bases was lower than exchange-
able acidity, as expected from the low pH val-
ues. Subsequently percent base saturation was 
lower than 50%. Olsen extractable phospho-
rus content ranged from 6.0 to 39.0 mg kg-1.

Coefficients of variation were highest for 
Olsen extractable P and lowest for pH, and 

mean std c.v. variance maximum minimum

pH 4.9 0.16 3.3 0.03 5.4 4.6

OM (g.kg-1) 41.7 7.76 18.6 60.23 62.0 28.0

CEC (Cmol+kg-1) 12.23 11.51 9.4 132.52 15.06 9.37

SB (Cmol+kg-1) 3.22 9.08 28.2 82.36 6.11 1.94

Ca (Cmol+kg-1) 2.54 7.72 30.4 59.59 0.50 1.50

Mg (Vmol+kg-1) 0.32 1.39 43.3 1.93 0.69 0.13

K (Cmol+kg-1) 0.36 0.72 20.1 0.51 0.56 0.23

H+Al (Cmol+kg-1) 9.01 11.84 13.1 140.07 12.10 5.80

V (%) 26.3 6.94 26.4 48.14 44.0 14.0

P (mgkg-1) 12.5 6.26 50.3 39.17 39.0 6.0

Table 1. Summary statistics of the studied soil properties measured along a transect (std = 
standard deviation, c.v.= coefficient of variation).
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ranked as follows: P> Mg > Ca > SB > V 
> K > OM > H + Al > CEC > pH. There-
fore, Olsen-P showed a CV higher than 50%; 
moreover exchangeable bases and the attrib-
utes of the exchange complex SB an V ex-
hibited a relatively high statistical variability 
with CV’s higher than 20%.  Previous stud-
ies also have reported high and low values 
of spatial variability for exchangeable bases 
(Vidal Vázquez et al., 2013) and pH (Can-
iego et al., 2005; Vidal Vázquez et al., 2013), 
respectively. 

3.2. Multifractal analysis.

The distribution of  a measure is consid-
ered fractal (mono- or multifractal) when 

the partition function for successive mo-
ments can be fitted by power law functions 
(Evertsz and Mandelbrot, 1992; Zeleke and 
Si, 2006). Therefore, plots of  the normal-
ized measure c (q,d) versus measurement 
scale, d, were examined, for all the statisti-
cal moments of  interest, to find out whether 
the studied properties obeyed or not power 
law scaling. For moment orders in the range 
between q = +5 and q = -5, the logarithm of 
c(q,d) versus the logarithm of d fitted a lin-
ear model when the partition function was 
constructed for successive box sizes in steps 
of  2k, k=0 to k=7. Consequently, partition 
functions have been estimated in the range 
of  linear behaviour, involving box sizes lim-
ited to 0< k <7. 
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Figure 1. Examples of log–log plots of the partition function, χ (q,δ),versus measurement scale, δ, for 
pH and Olsen extractable P. 

Examples of partition functions are shown in Figure 1. The log-log plots of (q,)- always fitted a 

linear model with high and coefficients of determination (P<0.05), and there were some differences in 
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Examples of partition functions are 
shown in Figure 1. The log-log plots of 
c(q,d)-d always fitted a linear model with 
high and coefficients of determination 
(P<0.05), and there were some differences in 
the goodness of fit to a power law between 
the variables studied.

The singularity spectrum was estimated 
by Equations 4a and 4b. The range of  sta-
tistical moments used to compute f(α)-α 
plots was = -5.0 < ∆q < 5.0 for all the data 

sets studied. Singularity spectra were con-
cave down parabolic curves with more or 
less asymmetry, and for all the studied cases 
the left branch was longer than the right 
branch. Selected examples of  singularity 
spectra are shown in Figure 2. Shape, am-
plitude and symmetry of  the f(α)-α plots in 
Figure 2 show wide differences, which will 
be next addressed for testing the hypothesis 
of  singular behavior of  the measured soil 
properties. 
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Figure 1. Examples of log–log plots of the partition function, c (q,d),versus measurement 
scale, d, for pH and Olsen extractable P.
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the goodness of fit to a power law between the variables studied. 

The singularity spectrumwas estimated by Equations 4a and 4b. The range of statistical moments used 
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2. Shape, amplitude and symmetry of the f()-plots in Figure 2 show wide differences, which will be 

next addressed for testing the hypothesis of singular behavior of the measured soil properties.  
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Figure 2. Singularity spectra for pH, exchangeable Ca and extractable P.  

Several multifractal parameters obtained from the singularity spectra are listed in Table 2. The Hölder 

exponent of order zero, 0, varied between 1.001 and 1.020 and determination coefficients in 

estimating 0 were 1.000. Moreover, when calculating -5 and +5, determination coefficients were 

0.996 and 0.986, respectively. Goodness of fit statistics of the singularity spectra showed the scaling 

properties of the studied soil variables can be fitted reasonably well with fractal or multifractal models. 

Width or amplitude of the singularity spectrum, (αq- - αq+), in this case, (α-5 – α5), is an indicator of 

heterogeneity, because it provides information on the diversity of the scaling exponents of a measure. 

So, the wider the f() spectrum is, the higher is the heterogeneity in the scaling indices. Differences in 

the width of the measure assessed as (α-5 – α5) ranged from 0.047 for pH to 0.0319 for Olsen 

extractable P.  

The wider the f()- spectrum is, the higher is the heterogeneity in the local scaling indices of the 

study variable and vice versa. Moreover, in a homogeneous fractal system the f() spectra would be 

Several multifractal parameters ob-
tained from the singularity spectra are listed 
in Table 2. The Hölder exponent of order 
zero, α0, varied between 1.001 and 1.020 
and determination coefficients in estimating 
α0 were 1.000. Moreover, when calculating 
α-5 and α+5, determination coefficients were 
0.996 and 0.986, respectively. Goodness 
of fit statistics of the singularity spectra 
showed the scaling properties of the studied 
soil variables can be fitted reasonably well 
with fractal or multifractal models.

Width or amplitude of the singularity 
spectrum, (αq- - αq+), in this case, (α-5 – α5), 
is an indicator of heterogeneity, because it 

provides information on the diversity of the 
scaling exponents of a measure. So, the wid-
er the f(α) spectrum is, the higher is the het-
erogeneity in the scaling indices. Differences 
in the width of the measure assessed as (α-5 
– α5) ranged from 0.047 for pH to 0.0319 for 
Olsen extractable P. 

The wider the f(α)-α spectrum is, the 
higher is the heterogeneity in the local scal-
ing indices of the study variable and vice 
versa. Moreover, in a homogeneous fractal 
system the f(α) spectra would be reduced to 
a single point. Therefore, Figure 2 and Table 
2 show that the studied variables have very 
different degrees of multifractality.

Figure 2. Singularity spectra for pH, exchangeable Ca and extractable P. 
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In addition, shape and asymmetry of the 
f(α)-α spectrum can be employed to assess 
the heterogeneity of the measure. Note also 
that the presence of extremely high and ex-
tremely low data values and dominance of 
either low or high data are related to the left 
(q >>1) and right (q<<1) parts of the f(α) 
spectrum, respectively. For the studied soil 
properties measured along profiles, the left 
branch of the f(α)-α spectrum was wider 
than the left branch. Asymmetry toward the 
left indicates dominance of the lowest singu-
larity exponents, α. In general, the left side 
was also longer than the right side, revealing 
that the geometrical size of points with the 
smallest exponents, α was smaller. The op-
posite was true for the narrower and shorter 
right side of the singularity spectrum. This 
suggest dominance of lowest values along 
de measured profiles and that these were 
quite similar to each other, as compared to 

the highest values that were less frequent 
and showed more differences between one 
another along the profile.

Selected examples of  generalized dimen-
sion spectra are shown in Figure 3. They 
follow a typical sigma shaped curve that 
crosses through 1.0 at q=0. The amplitude 
of  the Dq curvature, however, varied widely 
and it was very narrow for pH, intermedi-
ate for exchangeable Ca and rather wide 
for Olsen-P. Standard errors of  Dq also in-
creased with increasing |q|, and their maxi-
mum values for q=10, q=1, q=2, q=5 and 
q=-5 were as high as ± 0.000, ± 0.005 ± 
0.005, ± 0.021 and ± 0.019, respectively. De-
termination coefficients were highest for q = 
0, (R2=1.000) and decreased with increased 
|q|; for q = 1, q =2, q = 5, and q = -5, the 
value of  R2 was higher than 1,000, 0.999, 
and 0.997 and 0.998, respectively (data not 
shown).

 Variable q- q+ (α-5 - α5) α0 α-5 α5

pH -5 + 5 0.047 1.001 ± 0.000 1.005 ± 0.000 0.958 ± 0.021

OM -5 + 5 0.094 1.005 ± 0.001 1.043 ± 0.006 0.949 ± 0.019

CEC .5 + 5 0.055 1.002 ± 0.001 1.013 ± 0.004 0.958 ± 0.026

SB -5 + 5 0.238 1.011 ± 0.003 1.068 ± 0.022 0.830 ± 0.070

Ca -5 + 5 0.146 1.009 ± 0.002 1.073 ± 0.016 0.927 ± 0.012

Mg -5 + 5 0.222 1.017 ± 0.008 1.105 ± 0.050 0.883 ± 0.043

K -5 + 5 0.150 1.006 ± 0.001 1.045 ± 0.010 0.895 ± 0.051

H+Al -5 + 5 0.078 1.003 ± 0.001 1.029 ± 0.012 0.950 ± 0.032

V -5 + 5 0.179 1.009 ± 0.002 1.070 ± 0.020 0.891 ± 0.040

P -5 + 5 0.319 1.020 ± 0.003 1.103 ± 0.025 0.784 ± 0.019

Table 2. Parameters and indices obtained from the singularity spectrum. 
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The curvature of the generalized di-
mension, Dq, was always much higher for 
positive than for negative values of q. This 
branch of the Rényi spectra corresponds to 

the smallest concentrations of the measure. 
This is in accordance with the fact that the 
singularity spectra, f(α)-α, had a wider left 
branch.
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Figure 3. Singularity spectra for pH, exchangeable Ca and extractable P.  

The generalized dimension function also provides information to assess whether the scaling properties 

observed correspond to monofractal o multifractal behaviour. The spatial distribution of the soil 

properties studied would have a tendency to follow multifractal type of scaling if D0 > D1> D2. Table 3 

shows that for pH, D0 ≈ D1 ≈ D2, as the difference between D0 and D2 were lower than 0.05. Moreover, 

for CEC, (H+Al) and OM, values of (D0 - D2) were lower than 0.01. However the remaining variables 

can be regarded as multifractal measures. This result evidences various degrees of multifractality of the 

studied soil properties.  

 Variable (D-5 - D5) D-5 D5 D0 D1 D2 
pH 0,019 1.003 ± 0.000 0.984 ± 0.004 1.000 ± 0.000 0.999 ± 0.000 0.997 ± 0.001 
OM  0.047 1.021 ± 0.002 0.974 ± 0.005 1.000 ± 0.000 0.995 ± 0.001 0.990 ± 0.002 
CEC 0.024 1.006 ± 0.001 0.982 ± 0.006 1.000 ± 0.000 0.998 ± 0.001 0.995 ± 0.001 
SB 0.125 1.037 ± 0.007 0.912 ± 0.021 1.000 ± 0.000 0.988 ± 0.002 0.973 ± 0.004 
Ca 0.081 1.038 ± 0.005 0.957 ± 0.005 1.000 ± 0.000 0.991 ± 0.001 0.982 ± 0.002 
Mg 0.135 1.059 ± 0.019 0.924 ± 0.019 1.000 ± 0.000 0.982 ± 0.005 0.964 ± 0.010 
K 0.072 1.023 ± 0.003 0.951 ± 0.013 1.000 ± 0.000 0.994 ± 0.001 0.986 ± 0.002 
H+Al 0.035 1.013 ± 0.003 0.978 ± 0.008 1.000 ± 0.000 0.997 ± 0.001 0.994 ± 0.002 
V 0.092 1.035 ± 0.006 0.943 ± 0.011 1.000 ± 0.000 0.991 ± 0.001 0.980 ± 0.003 
P 0.191 1.059 ± 0.009 0.868 ± 0.009 1.000 ± 0.000 0.977 ± 0.002 0.950 ± 0.005 

Table 3. Parameters and indices obtained from the generalized dimension.  

Following previous criteria (Vidal Vázquez et al. 2013) the spatial distribution of pH is characterized 

by quasi-monofractal behaviour, CEC, (H+Al) and OM, present a relatively low degree of 

multifractality, and the other soil properties studied (exchangeable K, Mg and Ca, SB, V and Olsen-P) 

show a stronger degrees of multifractality. 

The generalized dimension function 
also provides information to assess whether 
the scaling properties observed correspond 
to monofractal o multifractal behaviour. 
The spatial distribution of  the soil prop-
erties studied would have a tendency to 
follow multifractal type of  scaling if  D0 > 
D1> D2. Table 3 shows that for pH, D0 ≈ D1 

≈ D2, as the difference between D0 and D2 
were lower than 0.05. Moreover, for CEC, 
(H+Al) and OM, values of  (D0 - D2) were 
lower than 0.01. However the remaining 
variables can be regarded as multifractal 
measures. This result evidences various de-
grees of  multifractality of  the studied soil 
properties. 

Figure 3. Generalized dimension. 

 Variable (D-5 - D5) D-5 D5 D0 D1 D2

pH 0,019 1.003 ± 0.000 0.984 ± 0.004 1.000 ± 0.000 0.999 ± 0.000 0.997 ± 0.001

OM 0.047 1.021 ± 0.002 0.974 ± 0.005 1.000 ± 0.000 0.995 ± 0.001 0.990 ± 0.002

CEC 0.024 1.006 ± 0.001 0.982 ± 0.006 1.000 ± 0.000 0.998 ± 0.001 0.995 ± 0.001

SB 0.125 1.037 ± 0.007 0.912 ± 0.021 1.000 ± 0.000 0.988 ± 0.002 0.973 ± 0.004

Ca 0.081 1.038 ± 0.005 0.957 ± 0.005 1.000 ± 0.000 0.991 ± 0.001 0.982 ± 0.002

Mg 0.135 1.059 ± 0.019 0.924 ± 0.019 1.000 ± 0.000 0.982 ± 0.005 0.964 ± 0.010

K 0.072 1.023 ± 0.003 0.951 ± 0.013 1.000 ± 0.000 0.994 ± 0.001 0.986 ± 0.002

H+Al 0.035 1.013 ± 0.003 0.978 ± 0.008 1.000 ± 0.000 0.997 ± 0.001 0.994 ± 0.002

V 0.092 1.035 ± 0.006 0.943 ± 0.011 1.000 ± 0.000 0.991 ± 0.001 0.980 ± 0.003

P 0.191 1.059 ± 0.009 0.868 ± 0.009 1.000 ± 0.000 0.977 ± 0.002 0.950 ± 0.005

Table 3. Parameters and indices obtained from the generalized dimension. 
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Following previous criteria (Vidal 
Vázquez et al. 2013) the spatial distribution 
of pH is characterized by quasi-monofractal 
behaviour, CEC, (H+Al) and OM, present a 
relatively low degree of multifractality, and 
the other soil properties studied (exchangea-
ble K, Mg and Ca, SB, V and Olsen-P) show 
a stronger degrees of multifractality.

The difference (D-5 - D5) also has been 
frequently used as an index of multifractal-
ity. The value of this parameter ranged from 
0.019 (pH) to 0.191 (Olsen-P). Therefore, 
again analysis of Dq spectra showed that the 
spatial distribution of the studied soil at-
tributes exhibited various degrees of scaling 
heterogeneity or multifractality. 

The sampled transects was representative 
of the main pedological conditions along a 
slope at the studied site. The spatial variabil-
ity of this transect, sampled reflects the local 
effects of the main soil forming factors and 
processes. Therefore, the scaling properties 
of the soil attributes embody a realistic situ-
ation, consistent with observations at the 
small plot level. At this level, the multifrac-
tal approach gives a good description of the 
spatial variability along transects.

CONCLUSIONS

We investigated the multifractal proper-
ties of several soil chemical properties, includ-
ing pH, OM, attributes of the soil exchange 
complex and Olsen extractable P sampled 
along a transect transects on a gentle slope. 
All the singularity spectra studied were char-
acterized by a wider left branch, whereas the 
generalized dimension spectra had a wider 
right branch, which correspond to the small-
est concentrations of the measure.

Singularity spectrum, f(α)-α, and gen-
eralized dimension, Dq, curves showed that 

the spatial distributions of these soil proper-
ties exhibited various degrees of multifrac-
tality. Thus, the spatial distribution of pH 
was characterized by quasi-monofractal be-
haviour, CEC, (H+Al) and OM, showed a 
relatively low degree of multifractality, and  
the other soil properties studied (exchange-
able K, Mg and Ca, SB, V and Olsen-P) ex-
hibited a stronger degrees of multifractality. 
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