
Escuela Politécnica Superior

Departamento de Computación

Doctoral Thesis

Autonomous Adaptation of User Interfaces

During Application Mobility Processes in

Ambient Intelligence Scenarios

Adaptación autónoma de interfaces de usuario en

procesos de movilidad de aplicaciones en

escenarios de Inteligencia Ambiental

Gervasio Varela Fernández

PhD Advisors:

José Antonio Becerra Permuy

Richard J. Duro Fernández

7th April 2015





D. Richard J. Duro Fernández, Catedrático de Universidad del Depar-
tamento de Computación de la Universidade da Coruña,

D. José Antonio Becerra Permuy, Contratado Doctor del Departa-
mento de Computación de la Universidade da Coruña,

CERTIFICAN:

Que la memoria titulada:

“Autonomous Adaptation of User Interfaces During Application Mobility
Processes in Ambient Intelligence Scenarios”

“Adaptación autónoma de interfaces de usuario en procesos de movilidad
de aplicaciones en escenarios de Inteligencia Ambiental”

ha sido realizada por D. Gervasio Varela Fernández bajo nuestra di-
rección en el Departamento de Computación de la Universidade da Coruña, y
constituye la Tesis que presenta para optar al grado de Doctor.

Fdo. José Antonio Becerra Permuy Fdo. Richard J. Duro Fernández

Codirector de la Tesis Doctoral Codirector de la Tesis Doctoral





Abstract

Ambient Intelligence (AmI) is about systems that assist people to improve
their quality of life. This work is focused on the problem of supporting the
adapted interaction between those systems and their users in different usage
scenarios. Unlike conventional software systems, AmI systems operate in what
we have called Human Interaction Environments, which must be understood as
any place where people carry out their daily life. As a consequence, the usage
scenarios of an AmI system can be diverse and quite different from one another,
thus making very difficult, and costly, the design of UIs capable of operating in
many of them.

This work addresses the problem of supporting the adaptation of AmI UIs
to the variety of scenarios through which a user moves while using an AmI
system. For this purpose, this work introduces a UI abstraction framework
that enhances the portability of AmI UIs. This framework elevates the level
of decoupling between UI code, and the high variety of interaction resources
and characteristics of each scenario. Furthermore, a complete and functional
implementation of the framework is provided, enabling the development of AmI
UIs capable of autonomously modifying, at run-time, their implementation to
adapt it to new scenarios.





Resumen

El objetivo de la Inteligencia Ambiental (AmI) es desarrollar sistemas que
mejoren la calidad de vida de las personas. Dentro de la AmI, este trabajo
se centra en el problema de soportar, en diferentes escenarios, una interacción
adaptada a cada usuario. A diferencia de los sistemas software convencionales,
los sistemas AmI operan en entornos altamente heterogéneos que hemos deno-
minado Entornos de Interacción Humana (HIE), y que abarcan cualquier lugar
en el que las personas llevan a cabo su vida diaria. Esta diversidad hace que
pueda haber notables diferencias entre los múltiples escenarios de uso de un
sistema AmI, dificultando enormemente el diseño de IUs que operen en varios
de ellos.

Este trabajo aborda el problema de facilitar la adaptación de las IUs de
sistemas AmI a la variedad de escenarios incluidos en un HIE. Para ello, se
presenta un framework de abstracción que mejora la portabilidad de las IUs,
elevando el nivel de desacoplamiento entre el código y la diversidad de recursos
de interacción y características de cada escenario. Además, también se presenta
una implementación completa y funcional del framework, posibilitando el desa-
rrollo de IUs capaces de modificar autónomamente, y en tiempo de ejecución,
su implementación, adaptándola a nuevos escenarios.





Resumo

O obxectivo da intelixencia ambiental (AmI) é desenvolver sistemas que
melloren a calidade de vida das persoas. Dentro da AmI, este traballo céntrase
no problema de soportar, en diferentes escenarios, unha interacción adaptada a
cada usuario. A diferenza dos sistemas de software convencionais, os sistemas
AmI operan en ámbitos altamente heteroxéneos que denominamos ámbitos de
interacción humana, que abranguen calquera lugar no que as persoas levan a
cabo a súa vida diaria. Esta diversidade fai que poidan existir notables dife-
renzas entre os múltiples escenarios de uso dun sistema AmI, o que dificulta
enormemente o deseño de IU que operen en varios deles.

Este traballo aborda o problema de facilitar a adaptación das IU de sistemas
AmI á variedade de escenarios incluídos nun ámbito de interacción humana.
Para isto, preséntase un framework de abstracción que mellora a portabilidade
das IU, o que eleva o nivel de desacoplamento entre o código e a diversidade de
recursos de interacción e as características de cada escenario. Ademais, tamén se
presenta unha implementación completa e funcional do devandito framework, o
que posibilita o desenvolvemento de IU capaces de modificar autonomamente, e
en tempo de execución, a súa implementación e adaptación a novos escenarios.





Acknowledgements

Firstly I wish to thank my PhD advisors, Richard and José Antonio. With-
out their passion, enthusiasm, and trust, this work would have never been pos-
sible.

I would also wish to thank the support and collaboration of all the members
of the Integrated Group for Engineering Research of the University of A Coruña.
We have become more than colleagues, creating a great working environment
in which it is a privilege to work.

Even if a doctoral thesis is a personal achievement, in practice, it is not
viable without the collaboration of many people. At the risk of forgetting some-
one, I would like to particularly thank some people for their special contribution
to this work. Alex, because we have suffered together the hard labor that have
been the diverse efforts of the group in the field of Ambient Intelligence and the
birth of HI3. ¡Ánimo! ¡Tu también estás a punto de acabar!. Victor, for his
invaluable collaboration in the implementation of UniDA. Santi, for his perse-
verance in keeping the HI3 idea alive. Juan Carlos, for the great front cover he
has designed for this work. And, of course, to the “hardware sector”, Andrés,
Álvaro, Félix and Martín, for making many of our ideas a physical reality.

I don’t want to miss the opportunity to mention my colleagues of the Lou-
vain Interaction Laboratory, of the Université Catholique de Louvain. Thank
you for your warm welcome to Belgium, and special thanks to Jean Vanderdon-
ckt, for giving me the opportunity to collaborate with them.

I also wish to thank the different companies whose research projects has
served as testbed examples for some of the technologies developed within this
thesis. SCIO Innovation Technologies, for his collaboration in the development
of the OMNI system, one of the main examples used in this thesis. Ghenova
Ingeniería, because their EMERBUQUE project has served as inspiration for
some examples shown in this thesis. And Mytech Ingenieria Aplicada, for his
important collaboration in the development of the UniDA technology.

This work has been partially founded by a predoctoral research grant from



xii

the Univerisity of A Coruña, and an Inditex-UDC predoctoral research stay
grant from the University of A Coruña and Inditex S. A.

Finally, I want to take this opportunity to give especial thanks to the most
important people in my life, those without which nothing would be possible.

To my parents and my sister, they instilled in me the desire to learn and
explore, and they gave me the opportunity to go beyond that. ¡Gracias por todo
lo que habéis hecho por mi!.

To my future wife, Sara, her constant affection and support has been es-
sential for this adventure to have come to fruition. ¡Gracias por estar siempre
ahí!.

To my friends, I don’t know what my life would be without those “cafeses”
at the terrace of the Valle Inclán. ¡Gracias por ser los mejores!.



Publications

For the development of the present work, the following articles related with
the main topic of the thesis have been published:

• Gervasio Varela, Alejandro Paz-Lopez, Jose Antonio Becerra Permuy,
Richard J. Duro Fernandez, Prototyping Distributed Physical User Inter-
faces in Ambient Intelligence Setups, Proceedings of the 2nd International
Conference on Distributed, Ambient and Pervasive Environments (DAPI
2014), pp 76 - 85, Heraklion, Greece, Springer, 2014.

• Varela G., Paz-Lopez A., Becerra J.A. and Duro R.J, The Generic Interac-
tion Protocol: Increasing portability of distributed physical user interfaces,
Romanian Journal of Human - Computer Interaction, 6 (3), pp 249 - 268,
2013.

• A. Paz-Lopez, G. Varela, J.A. Becerra, S. Vazquez-Rodriguez, R.J. Duro,
Towards ubiquity in ambient intelligence: User-guided component mobility
in the HI3 architecture, Science of Computer Programming, 78 (10), pp
1971 - 1986, Elsevier, 2013.

• Gervasio Varela, Autonomous adaptation of user interfaces to support
mobility in ambient intelligence systems, Proceedings of the 5th ACM
SIGCHI symposium on Engineering Interactive Computing Systems (EICS
2013), pp 179 - 182, London, U.K., ACM, 2013.

• G. Varela, A. Paz-Lopez, J. A. Becerra , R. J. Duro, Decoupled Distributed
User Interface Development Framework for Ambient Intelligence Systems,
Proceedings of the 3rd Workshop on Distributed User Interfaces: Models,
Methods and Tools (DUI 2013), pp 23 - 26, London, U.K., 2013.

• Gervasio Varela, Alejandro Paz-Lopez, Jose A. Becerra, Richard J. Duro,
Dandelion: Decoupled Distributed User Interfaces in the HI3 Ambient
Intelligence Platform, Proceedings of the 6th International Conference on
Ubiquitous Computing and Ambient Intelligence (UCAmI 2012), pp 161
- 164, Vitoria, Spain, Springer, 2012.



xiv

• A. Paz-Lopez, G. Varela, V. Sonora, J. A. Becerra, DAAF: a Device
Abstraction and Aggregation Framework for Smart Environments, Pro-
ceedings of the Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS 2012), pp 739 - 744,
Palermo, Italy, IEEE, 2012.

• G. Varela, A. Paz-Lopez, J. A. Becerra, S. Vazquez-Rodriguez, R. J.
Duro, Towards Mobility in Ambient Intelligence: Component Migration
and Adaptation Strategies in the HI3 Architecture, Proceedings of the 5th
International Symposium on Ubiquitous Computing and Ambient Intelli-
gence (UCAmI 2011), Riviera Maya, Mexico, 2011.

• Gervasio Varela, Alejandro Paz-Lopez, Jose Antonio Becerra, Santiago
Vazquez-Rodriguez and Richard José Duro, UniDA: Uniform Device Ac-
cess Framework for Human Interaction Environments, Sensors, 11 (10),
pp 9361 - 9392, MDPI, 2011.

• A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R.
J. Duro, Some Issues and Extensions of JADE to Cope with Multi-agent
Operation in the Context of Ambient Inteligence, Trends in Practical Ap-
plications of Agents and Multiagent Systems, pp 607 - 614, Springer, 2010.

• A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R. J.
Duro, Integrating Ambient Intelligence Technologies Using an Architec-
tural Approach, Ambient Intelligence, pp 1 - 26, INTECH Open Access
Publisher, 2010.

• A. Paz-Lopez, G. Varela, J.Monroy, S.Vazquez-Rodriguez, R.J. Duro, HI3
Project: Software Architecture System for Elderly Care in a Retirement
Home, 3rd Symposium of Ubiquitous Computing and Ambient Intelligence
2008 (UCAmI 2008), pp 11 - 20, Springer Berlin Heidelberg, 2008.

• G. Varela, A. Paz-López, S. Vázquez-Rodríguez, R. J. Duro, HI3 Project:
Design and Implementation of the Lower Level Layers, Proceedings of
the 2007 IEEE Symposium on Virtual Environments, Human-Computer
Interfaces and Measurement Systems (VECIMS 2007), pp 36 - 41, IEEE,
2007.



Contents

Abstract v

Acknowledgements xi

Publications xiii

1 Introduction 1

2 Objectives 11

3 Related Work 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Physical User Interfaces . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Home Automation and Internet of the Things . . . . . . 16

3.2.2 Ambient Intelligence and Ubiquitous Computing Frame-
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Physical User Interface Frameworks . . . . . . . . . . . . 19

3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Plasticity in Physical User Interfaces . . . . . . . . . . . . . . . . 22

3.3.1 Model-Driven Engineering to Achieve UI Plasticity . . . . 23

3.3.2 UI Plasticity in Ambient Intelligence and Ubiquitous Com-
puting Frameworks . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 UI Adaptation to the User Characteristics . . . . . . . . . 29

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



xvi Contents

4 Analysis and Design of a Framework for Ambient Intelligence
UI Development 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Analysis of the Characteristics of UIs in Ambient Intelligence
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 OMNI Virtual Assistant . . . . . . . . . . . . . . . . . . . 41

4.2.2 Environmental Music Player . . . . . . . . . . . . . . . . 44

4.2.3 Intelligent Ship Passenger Evacuation System . . . . . . . 46

4.3 Supporting Ambient Intelligence UI Development . . . . . . . . . 48

4.3.1 Requirements of AmI UIs . . . . . . . . . . . . . . . . . . 48

4.3.2 The Threefold Interaction Abstraction Framework . . . . 49

4.3.2.1 Interaction Modality Abstraction . . . . . . . . . 50

4.3.2.2 Interaction Location Abstraction . . . . . . . . . 53

4.3.2.3 Interaction Context Abstraction . . . . . . . . . 57

4.3.2.4 The Abstract Interaction Model . . . . . . . . . 60

4.3.2.5 The Generic Interaction Protocol . . . . . . . . . 64

4.3.2.6 The Context Models . . . . . . . . . . . . . . . . 66

5 Supporting Portable and Distributed Physical User Interfaces 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The Dandelion Framework . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Portable Physical User Interfaces . . . . . . . . . . . . . . . . . . 74

5.3.1 Abstract UI Design and Specification . . . . . . . . . . . . 76

5.3.2 UI Control Logic Implementation . . . . . . . . . . . . . . 80

5.3.3 From the Abstract to the Final User Interface . . . . . . . 85

5.4 Distributed Physical User Interfaces . . . . . . . . . . . . . . . . 86

5.4.1 The Generic Interaction Protocol . . . . . . . . . . . . . . 88

5.4.2 Final Interaction Objects . . . . . . . . . . . . . . . . . . 90

5.5 Physical Device Access and Control . . . . . . . . . . . . . . . . . 92

5.5.1 UniDA Conceptual Framework . . . . . . . . . . . . . . . 96

5.5.1.1 Device Network Model . . . . . . . . . . . . . . 96

5.5.1.2 Uniform Device Access Paradigm . . . . . . . . 100

5.5.1.3 Distributed Operation Protocol . . . . . . . . . 101



Contents xvii

5.5.2 UniDA Framework Implementation . . . . . . . . . . . . . 102

5.5.2.1 UniDA Library . . . . . . . . . . . . . . . . . . 103

5.5.2.2 UniDA Gateways . . . . . . . . . . . . . . . . . 104

5.6 Demonstration Examples and Summary . . . . . . . . . . . . . . 105

5.6.1 OMNI Virtual Assistant . . . . . . . . . . . . . . . . . . . 106

5.6.2 Environmental Music Player . . . . . . . . . . . . . . . . 116

5.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Physical UI Adaptation to Context . . . . . . . . . . . . . . . . . 127

6.3 Context Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 User Profile Model . . . . . . . . . . . . . . . . . . . . . . 131

6.3.2 Environment Profile Model . . . . . . . . . . . . . . . . . 135

6.3.3 Scene Profile Model . . . . . . . . . . . . . . . . . . . . . 138

6.4 Autonomous Selection of Interaction Resources . . . . . . . . . . 139

6.4.1 Generating Specifications of the Ideal FIO . . . . . . . . 140

6.4.1.1 FIO Description Model . . . . . . . . . . . . . . 141

6.4.1.2 Ideal FIO Specification Model . . . . . . . . . . 144

6.4.1.3 Ideal FIO Generation . . . . . . . . . . . . . . . 144

6.4.2 Selecting Adequate FIOs . . . . . . . . . . . . . . . . . . . 147

6.4.2.1 FIO Adequateness Calculation using the Fuzzy
Geometric Model . . . . . . . . . . . . . . . . . . 150

6.4.3 Building the Final User Interface . . . . . . . . . . . . . . 153

6.5 Demonstration Examples and Summary . . . . . . . . . . . . . . 155

6.5.1 Environment Adaptation: Environmental Music Player . . 156

6.5.2 User Adaptation: OMNI Virtual Assistant . . . . . . . . . 165

6.5.3 Environment and User Adaptation: EvacUI . . . . . . . . 172

6.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Conclusions and Future Work 183

A Resumen en castellano 193



xviii Contents

References 201



Chapter 1

Introduction

"The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it."

Mark Weiser

Ambient Intelligence (AmI) is about systems that assist people to carry
out their daily tasks in a transparently assisted way that improves their quality
of life. This PhD thesis is focused on the interaction between people and those
systems, and more specifically, on the problem of supporting the adapted inter-
action between the system and each user in the different scenarios in which an
AmI system may be operated.

Ambient Intelligence is such a broad field that it is difficult to agree on a
concise and accurate definition of the concept. However as AmI systems are
going to be the central aspect of this PhD dissertation, it seems mandatory to
start by establishing a definition of Ambient Intelligence. A commonly accepted
definition is the one provided by J.C. Augusto and P. McCullang in their article
“Ambient Intelligence: Concepts and Applications” [Augusto and McCullagh,
2007]:

"The basic idea behind AmI is that by enriching an environment
with technology (mainly sensors and devices interconnected through
a network), a system can be built to take decisions to benefit the
users of that environment based on real-time information gathered
and historical data accumulated. AmI inherits aspects of many cog-
nate areas of Computer Science, but should not be confused with
any of those in particular. Networks, Sensors, Human Computer



2

Interfaces (HCI), Pervasive Ubiquitous Computing and Artificial In-
telligence (AI) are all relevant and inter-related but none of them
conceptually covers the full scope of AmI. Ambient Intelligence puts
together all these resources to provide flexible and intelligent ser-
vices to users acting in their environments. AmI is aligned with
the concept of the disappearing computer.", J.C Augusto and P.
McCullagh, 2007.

This definition of AmI, even though it is quite broad, shows the two main
aspects of any Ambient Intelligence system:

1. The goal. Improve people’s life quality by making their life more comfort-
able and facilitating their daily tasks.

2. The path. By enriching physical environments with technology.

While this definition gives us a broad goal and a general path on how
to achieve that goal, it does not provide any clues about the characteristics
that are expected from an AmI system. By breaking up Ambient Intelligence
into its individual terms we can start extracting those characteristics. On the
one hand, Intelligence characterizes the response that users expect from the
system, that is, proactivity, predictability and adaptability in its behaviours
(functionalities offered by the system). On the other hand, the term Ambient is
related to ubiquitousness and human factors, characterizing the system as a non
invasive one in terms of its deployment and user interaction. The first term is
directly related to the application of Artificial Intelligence techniques to achieve
the expected smart behavior, while the second one is about the application of
Ubiquitous Computing solutions to build systems that, paraphrasing Weisser
[Weiser, 1991], “weave themselves into the fabric of everyday life until they are
indistinguishable from it”.

As can be extracted from this definition and specification of the charac-
teristics of AmI systems, their scope and operating environment make them
quite different from traditional software systems. It is true that they share
many common similarities and even technologies with widely studied systems
like distributed systems or Artificial Intelligence systems, but they have key
important differences in their own operational nature that directly impact the
way in which AmI systems must be conceived, designed and implemented.

Unlike traditional software systems, which usually operate in a reactive or
on-demand way, AmI systems are expected to operate in a proactive way, behind
the scenes, showing an autonomous behavior that allows them to anticipate
user needs and provide their output using the most integrated and natural way
adapted to each use scenario.



Chapter 1. Introduction 3

To complicate things a little bit more, usage scenarios of AmI systems are
usually much more complex than those of traditional software systems. AmI sys-
tems operate in what we have called Human Interaction Environments or HIEs
[Varela et al., 2011]. These environments must be understood as any place where
people make their daily life, including their work, family life, leisure and social
life. Therefore an HIE can include many different physical locations such as
the workplace, the home, the car, and public spaces such as malls or sport cen-
ters, among others. Hence the usage scenarios of an AmI system can be diverse
and quite different from one another. They can present different environmental
conditions (lighting, noise, privacy, etc.), different usage constraints (is not the
same to operate a system while driving than while watching a movie), differ-
ent user characteristics (abilities, vision, hearing, etc.) and last, but not least,
each scenario can have very different interaction resources (hardware devices
and software) available to interact with the user and the environment itself.

As if the complex operating environment conditions were not enough, in
order to fulfill their objective of facilitating people’s daily life, AmI systems
are expected to be strong performers in two key aspects [Cook et al., 2009,
Abascal, 2004]: user-adapted natural interaction [Abascal et al., 2011a, Abascal
et al., 2011b, Blumendorf and Albayrak, 2009, Blythe et al., 2005, Kranz et al.,
2010, Blumendorf et al., 2010] and ubiquitous operation [Aizpurua et al., 2013,
Blumendorf, 2009, Luyten et al., 2006, Luyten and Coninx, 2005].

Natural interaction is all about a user experience where the UI remains un-
obtrusive and almost invisible, blended into the physical environment [Fishkin
et al., 1999, Harrison et al., 1998, Ballagas et al., 2003, Xie et al., 2008]. Natu-
ral user interfaces (NUIs) take advantage of our senses and our own knowledge
about the objects, physics and the world itself in order to build user interfaces
that liberate the user from having to learn new concepts to interact with com-
puters [Ishii and Ullmer, 1997, Ullmer and Ishii, 2000, Sitdhisanguan et al.,
2012]. NUIs try to make the UI invisible by relying on devices embedded in the
environment and by using the most familiar interaction modality available for
each environment and user.

Ubiquity pursues the idea of being available anywhere at anytime [Ran-
ganathan et al., 2004, Ranganathan et al., 2005, Satoh, 2005]. Regarding AmI
systems and HIEs, ubiquity is a feature that allows a system to provide its
functionality in any of the places integrated in a specific HIE, thus supporting
the mobility of users inside their own HIEs.

Ubiquity, combined with NUIs, requires AmI systems to be deployed with
different configurations of the UI adapted to each scenario [Sousa and Gar-
lan, 2002, Ranganathan et al., 2005]. When the user moves from one place to
another, the execution scenario of the AmI system changes, and with it, the



4

available devices, the characteristics of the environment and even the users.
Given the high diversity of scenarios that could exist, predicting them during
the design and development stages of a system is very complex. Because of
this, the majority of the UIs of AmI systems are designed and implemented for
a specific scenario or set of scenarios, with a concrete set of devices and type
of user. Deploying these UIs in new, not predicted scenarios, is quite complex,
normally requiring modifications of the system and, therefore, hindering the
portability of AmI systems, as well as the mobility of systems and users.

An adapted UI is one of the most important features of an AmI system in
order to be successfully accepted by its users [Ranganathan et al., 2005, Abas-
cal et al., 2008, Cook et al., 2009, Pavan Dadlani, 2011, Sitdhisanguan et al.,
2012, Zuckerman and Gal-Oz, 2013]. For instance, a typical area of applica-
tion of AmI systems is to improve the quality of life of people with disabilities,
elderly people or kids, three collectives where an adapted UI makes the differ-
ence between a successful and a failed system [Abascal, 2004, Abascal et al.,
2011b, Gajos et al., 2008b]. AmI systems usually rely on NUIs to build highly
customized solutions for those users. In order to construct them, AmI de-
velopers employ different interaction resources (IRs) adapted to each scenario
(user and environment) characteristics [Pavan Dadlani, 2011]. These devices
come from different manufactures, use heterogeneous protocols and APIs, and
in some scenarios, even employ custom hardware that is especially built for
the system and the scenario. Furthermore they are usually embedded and dis-
tributed throughout the physical environment, configuring those customized UIs
as physical distributed UIs. Supporting this variety of devices and interaction
modalities is not an easy goal, and can introduce a lot of complexity in a sys-
tem. Furthermore, developing specific UIs for each possible scenario increases
development times and costs dramatically, and in many cases, it may be just
unfeasible to predict all the possible usage scenarios at development time.

The main objective of the work carried out in this PhD thesis is to enhance
the support for ubiquitous operation and user mobility in Ambient Intelligence
systems. As has been seen, one of the main obstacles to achieve ubiquitous AmI
systems is to support the wide range of user interaction techniques and devices
required to obtain UIs adapted to the user and the environment. To tackle this
problem, this PhD thesis proposes increasing the level of decoupling between
system software and the interaction resources that made up the UI. The objec-
tive is to improve the portability of AmI systems and with it, their capability
to support adapted interaction with different users in multiple environments.

This work poses an improvement at three different levels in the decoupling
between developers, system software and interaction resources. First, at the
logical level the idea is to decouple system logic developers and their code from



Chapter 1. Introduction 5

the specific modalities, technologies and APIs of the IRs used to build the UI.
Second, at the physical level, we want to isolate the system software from the
physical location of the interaction resources. And third, in order to support
ubiquitous operation and facilitate the deployment of the AmI systems in mul-
tiple environments, we aspire to increase the isolation between UI developers
and the concrete set of IRs used for each environment.

Better isolation between the system logic code and the final shape of the UI
will facilitate the deployment of the same business logic with different realiza-
tions of the UI, moreover it would make the installation of AmI systems in HIEs
that include multiple locations and users easier. An improvement of the decou-
pling in terms of interaction modalities and APIs of the interaction resources
will allow developers to change the implementation of the IRs without affecting
logic code, thus opening the possibility of deploying the same code in diverse
physical scenarios with different IRs for each deployment. This PhD thesis pro-
poses the utilization of model driven engineering (MDE) techniques to improve
the logic decoupling level between AmI systems and their UIs. MDE techniques
allow developers to build systems using high level models and then rely on a
set of transformation steps to translate those models into real operating soft-
ware. MDE approaches have been previously applied to UI development with
proven results. Thevenin and Coutaz proposed the use of model-driven engineer-
ing techniques in order to support ‘plasticity of user interfaces’ [Thevenin and
Coutaz, 1999, Coutaz, 2010], namely, the capacity of a UI to support changes
in the system’s physical characteristics and in the environment while preserving
usability, by applying transformations of models at design time. This proposal
has been very successful within the HCI community and many different authors
have used it as the basis for their own approach to UI adaptation [Collignon
et al., 2008, Blumendorf et al., 2010, Luyten, 2003], even in the field of Ambi-
ent Assisted Living and AmI [Abascal et al., 2008, Blumendorf and Albayrak,
2009, Blumendorf, 2009, Abascal et al., 2011b, Abascal et al., 2011a]. Neverthe-
less, all of those approaches have been focused on graphical, voice or gestures
based UIs, with little, or no support at all, for other modalities. On the con-
trary, this PhD thesis will provide a model based UI development framework
with integrated support for multimodal distributed physical UIs and NUIs, and
UI adaptation to context at runtime.

As previously indicated in this chapter, the intrinsic nature of AmI sys-
tems usually requires building their UIs on top of a set of physical devices dis-
tributed throughout the environment [Pavan Dadlani, 2011, Luyten and Coninx,
2005, Luyten et al., 2006]. Improving the logical separation between AmI system
code and the physical location of IRs will increment the portability of AmI sys-
tems, making their deployment in diverse environments with different physical



6

distributions of the IRs easier. The work of this PhD thesis proposes extending
the previously explained MDE approach to include support for physical decou-
pling. The proposal is to build the model-driven UI abstraction layer on top
of a distributed IR access layer that encapsulates the network technologies and
protocols required by the diverse IRs available in each location. By relying on
this abstraction layer, developers would be able to develop their systems with-
out specific knowledge of those protocols and technologies, and the same AmI
system logic could use the best suited devices for each scenario without modify-
ing their code. Moreover, this solution will allow AmI UI developers to design
and build distributed UIs specialized for each environment that are independent
from the system logic. UI distribution using MDE approaches has also been pre-
viously explored by the research community. Two prominent approaches are:
the Cameleon-rt [Balme et al., 2004] reference model for distributed, migratable
and adaptive user interfaces; and the W3C conceptual framework to support
multimodal UIs [W3C, 2003]. The work of this PhD thesis is inspired on the
reference model proposed by Cameleon-rt, but improving it to better support
distributed physical user interfaces. First, the abstract UI model is directly
transformed into a final executable UI at runtime, furthermore, this transfor-
mation is done during the migration of an UI, and it uses context information
to build a final UI adapted to the new context. Second, the platform layer
is modeled and implemented as a distributed interaction resource abstraction
layer, and it supports any kind of physical or digital IR.

By relying on the two previously explained decoupling solutions, develop-
ers would be able to design and implement AmI system logic with low or no
knowledge about the modalities, protocols, network technologies and APIs of
the IRs used for the interaction with the user. Furthermore UI designers and
developers would be able to build their IRs using any technology and device
that suit the needs of the scenario without interfering with system developers.
It is at deploy time that the system logic would be connected to a set of IRs
(that could be different for each scenario), thus providing the system with a
distributed UI adapted to the scenario. Nevertheless, in order to support ubiq-
uitous operation, AmI systems should be able to operate in any place included
in the HIE of its users, and they should be able to change the UI as the user
moves from one place to another. Each HIE would have diverse places and
scenarios, which, in turn would use a variety of IRs. As previously mentioned
in this chapter, designing the UIs for this variety seems unfeasible due to costs
and time, therefore, this PhD proposes a third level of abstraction to isolate the
AmI system and developers from the specific IRs used to implement the UI in
each scenario.

The main idea behind this third level of abstraction is to postpone the



Chapter 1. Introduction 7

assembling of the final UI until runtime, and use models about the scenario
to automate the selection of the IRs included in the final UI. This selection
process will be done by the system itself, that will assemble the final UI as a
collection of IRs that are adequate for each scenario’s characteristics. The IRs
will be selected among those available in each environment and connected to
the system logic using the two previously explained abstraction layers.

The problems addressed by these three levels of abstraction, UI adapta-
tion, reusability and migration in AmI applications, have been previously iden-
tified by different authors [Miñón and Abascal, 2012, Aizpurua et al., 2013]. In
[Blumendorf, 2009, Blumendorf et al., 2010, Blumendorf and Albayrak, 2009]
Blumendorf et al. introduce the problematic associated with user interaction in
Ambient Assisted Living (AAL) environments, which are a subset of AmI. The
paper presents a framework for UI development that also uses a MDE approach
and context information to drive the adaptation at runtime. In [Abascal et al.,
2008, Abascal et al., 2011b, Abascal et al., 2011a] Abascal et al. identify the
necessity of adaptation to the users, because their capabilities and disabilities
can greatly impact the performance of the UI of an AmI system. Nevertheless,
these solutions have focused on two modalities, GUIs and voice UIs, and do
not include support for physical UIs that require the use of distributed physical
devices with a variety of modalities. Furthermore, only Egoki [Abascal et al.,
2011b] supports adaptation to the user abilities and preferences, and none of
them support UI adaptation to the physical environment characteristics, which
is of great importance in AmI and UC systems, where the physical scenario and
device available can change dramatically from one location to another.

An Ambient Intelligence development platform providing these three levels
of abstraction between system and UI logic will effectively increase the support
for ubiquitous operation in AmI systems. Even if it is only a part of a solution
for ubiquitous operation, it will no only make the development of AmI systems
that support their deployment in multiple scenarios (environments and users)
easier, but it will also make the migration, in real-time, of AmI systems, and
their users, from one environment to another without modifying the system or
interaction logic code. It is important to note that autonomously built UIs
will hardly be better for a specific environment than a specially designed one,
nevertheless they present big advantages when a priori it is not possible to know
the details of the environment and users that will operate the UI a priori, and
thus, it is not possible to build an specific UI.

Summarizing, this PhD thesis addresses the problem of supporting the
adaptation of AmI system UIs to the multiple scenarios through which a user
moves while using an AmI system. This PhD thesis study solutions to en-
hance the support for ubiquitous operation of AmI systems by facilitating their



8

portability and mobility. It aims to provide developers with a series of tech-
nologies that allow them to decouple their systems from the wide variety of
interaction resources used to interact with the users. These technologies will
facilitate the development of AmI systems that are more portable and more
easily deployable in new scenarios, with new user and environment characteris-
tics. They will make the mobility of systems and users possible thanks to the
ability of dynamically adapting the interaction subsystem to the characteris-
tics of the scenario. With that objective in mind, this PhD thesis proposes a
new UI abstraction technology for the development of distributed physical UIs,
along with an autonomous mechanism for the selection, in real-time, of the most
adequate interaction resources for each usage scenario. This two proposed so-
lutions are implemented as an UI management system for Ambient Intelligence
systems, named Dandelion, that facilitates the development and deployment
of Distributed Physical User Interfaces capable of operate ubiquitously by mi-
grating from one scenario to a different one while keeping their UIs within the
constraints of natural interaction.

Structure of this thesis report

The remaining of this thesis report is structured as follows.

In chapter 2 the global objectives of this PhD thesis are established.

Chapter 3 is dedicated to review the most relevant works related to the topic
of this thesis. Furthermore, a comparison framework for Plastic Distributed
User Interface development solutions is introduced.

In chapter 4 we provide a thorough introduction to the field of Ambient
Intelligence User Interface development, with special emphasis on exploring var-
ious different examples of AmI UIs to identify their characteristics and require-
ments. In chapter 4 we also introduce the Threefold Interaction Abstraction
Framework (TIAF), a conceptual abstraction framework for the development of
Distributed Physical User Interfaces for Ambient Intelligence.

Chapter 5 is dedicated to present Dandelion, a reference implementation of
the TIAF conceptual framework previously introduced in chapter 4. Chapter
5 is specially dedicated to explore the first two levels of abstraction proposed
by the TIAF. The first one, the Interaction Modality Abstraction level (IMA),
in charge of decoupling developers from the modalities and technologies of the
distributed interaction resources. And the second one, the Interaction Location
Abstraction level (ILA), in charge of decoupling developers and their code from
the physical location of the interaction resources.

Chapter 6 is devoted to explore in detail the third abstraction level proposed



Chapter 1. Introduction 9

by the TIAF. The Interaction Context Abstraction level (ICA), that is in charge
of decoupling the UI from the particular context of use, enabling a UI to be
autonomously adapted, at run-time, to the characteristics of different usage
scenarios.

Finally, chapter 7 summarizes the main conclusions drawn from this work.





Chapter 2

Objectives

"It is good to have an end to journey toward; but it is the journey
that matters, in the end."

Ernest Hemingway

The general goal of this PhD thesis is to improve the support for ubiqui-
tous operation and user mobility in Ambient Intelligence (AmI) and Ubiquitous
Computing (UC) systems.

Within that very broad goal, this PhD thesis aims to support ubiquitous
AmI and UC systems by facilitating the development of distributed physical
user interfaces (DPUIs) capable of operating in multiple scenarios with different
devices, characteristics and constraints. Two fundamental goals arise from this
main idea. On the one hand, to enhance the migrability of distributed physical
user interfaces, so that they can be more easily deployed on a variety of scenarios
and migrated between them. On the other hand, to facilitate the development
of DPUIs capable of adapting their way of interaction with the user to the
requirements and characteristics of different scenarios, namely, the requirements
and characteristics of different users in a variety of environments.

In order to focalize and guide the work to be carried out in this PhD
thesis, it seems necessary to break down those two central goals into more
specific objectives that could be used as a reference for the research, design and
development of the solutions proposed in this work. In what follows, we provide
a list of objectives that this PhD thesis seeks to address:

• Conceive and implement mechanisms to support the design and imple-
mentation of AmI interaction and business logic with low or no knowledge



12

about the technologies, modalities, protocols and APIs used by the inter-
action resources (IRs) that made up their UI (mainly DPUIs). That is
to say, facilitate the decoupling between system and user interaction logic
and the IRs.

• Facilitate the development of distributed UIs capable of operating inde-
pendently of the physical location of the IRs used to interact with the
users.

• Facilitate the deployment of the same AmI system with different real-
izations of the UI. The main idea is to allow developers and installers
to modify the setup of IRs used to build a DPUI without affecting the
system’s code.

• Provide support for the migration of AmI applications from one scenario
to another without requiring modifications in the system or interaction
logic code.

• Reduce the cost of developing physical distributed UIs adapted to differ-
ent uses by facilitating the prototyping and testing of different physical
configurations of the UI.

• Reduce the costs, in time and effort, of supporting multiple different sce-
narios by the same AmI application. The goal is to provide mechanisms
that allow AmI applications to dynamically, and automatically, adapt
their UIs (DPUIs) to the characteristics and requirements of different
combinations of users, environments and devices available.



Chapter 3

Related Work

"It’s useful to go out of this world and see it from the perspective
of another one."

Terry Pratchet

3.1 Introduction

The main premise behind this PhD thesis is that one of the obstacles to
achieve truly ubiquitous AmI systems capable of operating in a diversity of
usage scenarios, while maintaining an acceptable level of user experience, is the
difficulty to foresee, and provide support, for the wide range of circumstances,
settings, technologies and devices (interaction resources) required to build UIs
capable of providing adequate user interaction in a diversity of AmI scenarios.

This work proposes to tackle this problem by increasing the level of decou-
pling between the UI control logic and the particular realization of the UI for
a specific usage scenario (modalities, devices, user characteristics, environment
characteristics, etc.). The goal is to improve the portability of AmI systems, so
that they can be more easily adaptable to different contexts of use.

The portability and adaptability of user interfaces has been an important
research topic for the UI community during the last years, specially due to the
proliferation of multiple hardware platforms (PC, smartphones, tablets, smart
TVs, etc.) and the necessity of providing UIs adapted to people with physical
or cognitive disabilities. The result of these works is the concept of plastic user
interfaces [Thevenin and Coutaz, 1999].

The term plasticity of UIs refers to user interfaces that can be adapted,



14 3.1. Introduction

either automatically or manually, to changes in the context, while preserving the
utility and usability of a system at acceptable levels. Plastic UIs help in reducing
the development cost of applications because they allow the reutilization of
the same application and UI code with different devices and in a variety of
environments.

Plastic UIs try to go beyond the code independence of the platform, pro-
vided by virtual machines, and the abstraction from graphic toolkits, provided
by IDLs (Interface Definition Languages). Plastic UIs are expected to provide
independence from the context of use, allowing developers to modify and adapt
the mode of interaction and even change the physical shape of the UI, prefer-
ably in an autonomous way, based on the interaction resources available and
the state and characteristics of the user and environment where the interaction
takes place.

As we will see in this chapter, much work have been dedicated to advanc-
ing in the addition of plasticity capabilities to traditional user interfaces, like
graphical and voice-based UIs. Nevertheless, we think that AmI user interfaces
present a series of characteristics that make them quite different from traditional
interfaces.

First, AmI UIs are usually built as distributed physical user interfaces
(DPUIs) [Harrison et al., 1998, Xie et al., 2008, Kranz et al., 2010, Pavan Dad-
lani, 2011] using many heterogeneous devices, each one of them specifically
selected to match the preferences and characteristics of one type of user or en-
vironment. Therefore, compared to traditional UIs, AmI UIs are exposed to a
much broader range of technologies, APIs and interaction modalities.

Second, AmI systems are expected to be physically integrated in the envi-
ronment and use the environment itself to interact with its users. Furthermore,
they are expected to be ubiquitous, so they must provide their functionality
in multiple physical locations. Because of that, the multiple devices that build
an AmI UI tend to be physically scattered throughout one or more physical
environments.

And third, due to the natural interaction constraints and the use of a
combination of multiple interaction modalities, an AmI UI can be dramatically
affected by context changes. A new user, a change of location, or a change in the
environment characteristics can even render an UI unusable. For example, in a
new location, the devices and modalities available can be completely different
from the previous one. A new user may need different modalities (imagine the
conflicting requirements of a deaf user compared to a blind user). And even a
change in environment characteristics, like lighting or movement, can affect the
functionality of the UI.



Chapter 3. Related Work 15

As can be seen, plasticity can be harder to support in Ambient Intelligence
UIs, but, nevertheless, it is a key requirement in order to achieve ubiquitous
AmI systems. In this chapter we are going to explore the most relevant works
related to the introduction of plasticity characteristics in Ambient Intelligence
user interfaces and, by extension, in Distributed Physical User Interfaces.

In this discussion of the related work, we are going to address very different
topics because, as introduced in chapter 1, Ambient Intelligence is a multidis-
ciplinary field, and AmI systems require the integration of multiple and varied
technologies in order to build a complete and functional system.

In section 3.2, we are going to address the issue of developing physical user
interfaces using a multitude of different physical devices as interaction resources
(IRs), putting special focus on those technologies that allow the distribution of
the UI to different remote devices. This kind of solutions commonly provide
applications with protocols and APIs to manage and control physical devices.
We will start by reviewing home automation solutions, which have been one of
the first available technologies to control physical devices and are the founda-
tion of many AmI and UC systems. Then, we will explore specific solutions
developed for AmI projects, and finally we will look at existing frameworks for
the development of physical user interfaces.

In section 3.3, we are going to address topics related to the addition of
plasticity characteristics to Distributed Physical User Interfaces. Thus, we are
going to explore technologies that facilitate the building of AmI and UC natu-
ral user interfaces capable of operating ubiquitously in a HIE with a variety of
scenarios. The main idea behind these solutions is to provide developers with
capabilities to adapt the application interaction to the changing scenarios where
a user may interact with a system. In this section, we are going to explore the
most prominent existing approaches to achieve UI adaptation to context, start-
ing from the concept of UI plasticity and model-driven engineering approaches
to AmI and UC focused approaches.

3.2 Physical User Interfaces

As we have seen in the introduction section, the intrinsic nature and re-
quirements of Ambient Intelligence systems make them rely on natural user
interfaces (NUIs) to interact with the users [Fishkin et al., 1999, Sitdhisanguan
et al., 2012, Zuckerman and Gal-Oz, 2013]. A common way to build NUIs for
AmI systems is by implementing customized distributed physical user interfaces
(DPUIs) [Kranz et al., 2010, Pavan Dadlani, 2011]. Physical User Interfaces take
advantage of the properties and capacities of physical objects to bridge the gap



16 3.2. Physical User Interfaces

between the users and the state of a digital system [Harrison et al., 1998, Xie
et al., 2008, Antle et al., 2009]. Those objects range from everyday objects in-
tegrated in the environment to specific setups like dedicated appliances or even
cockpits. These devices come from different manufacturers, use heterogeneous
technologies, diverse modalities, and in some scenarios, even use custom hard-
ware especially built for a particular system. Furthermore, if the system is going
to be deployed in a variety of scenarios, with different users or environments,
many different configurations of the UI may be required.

Due to their dependence on PUIs and the wide variability of device tech-
nologies associated to them, one key aspect of any AmI system is its ability to
support heterogeneous distributed devices that use different technologies. Their
UIs must be capable of changing their shape at run-time, relying on different
devices and modalities depending on the usage scenario in order to provide
natural interaction in all the scenarios of an HIE.

In this section, we are going to explore the most prominent solutions avail-
able to build distributed physical user interfaces that make use of physical de-
vices as interaction resources (of any kind and modality) to interact with the
user. As we will see, there exist many different technologies that can be used to
access and control physical devices for user interaction purposes. From custom
designed devices with ad-hoc technologies, up to PUI development frameworks,
and even a lot of device access technologies like Home Automation technologies,
uPnP or IoT technologies that, even though they have not been conceived to
build PUIs, they can be, and are being, used for that purpose.

3.2.1 Home Automation and Internet of the Things

Home automation and instrumentation systems are an important aspect
of many AmI systems. They allow AmI systems to transform typical objects
found in homes and buildings into connected devices that can be controlled
and accessed by the AmI applications. These technologies constitute a good
foundation for the development of PUIs that are embedded in the environment
and naturally perceived by the users.

Their components are installed in the homes during the construction of the
building as a substitute or complement to traditional systems like light switches,
blind open/close systems, security surveillance systems, etc. Home automation
technologies often make use of dedicated and proprietary communication buses,
requiring the use of proprietary devices that support them. This is the case
of technologies like EIB/KNX [KNX-Association, 2010] or Lonworks [Lonmark-
International, 2010]. Others, like X10 [X10-Europe, 2010], use the power lines
of the home to connect devices to each other, but they also require special



Chapter 3. Related Work 17

supported devices.

Home automation technologies share a common pitfall. They rely on pro-
prietary buses and protocols, requiring device manufactures to pay expensive
licenses in order to sell compatible products. Furthermore, they are not inter-
operable at all, thus you are limited to the devices available for each technology.

An interesting approach to increase home device interoperability is to de-
velop a home automation control gateway [Miori et al., 2006, Bonino and Corno,
2008]. This is a device that is connected to home automation buses and is in
charge of providing homogeneous access to those technologies and, in some cases,
some extent of high level intelligent behavior. A prominent example of these
approaches is the Domotic OSGi Gateway (DOG) [Bonino et al., 2008]. They
are developing a software Home Gateway that can be installed on an embedded
PC and contains plug-ins to support existing home automation technologies
(currently KNX and Bticino OpenWebNet [Bticino, 2015]). This PC can be
connected to a home network and provide a homogeneous API to access the
available home automation devices.

Related to home automation, a large number of new smart home technolo-
gies have appeared linked to the concept of the Internet of Things recently.
It seems like these technologies are starting to reach the general public, and,
associated to smartphones and tablets, many different companies are starting
to offer new solutions. The majority of these technologies are little more than
remotely controlled devices that allow users to open/close the garage door from
their smartphones, or monitor different physical properties of their home, like
power consumption, temperature, etc. Some examples are TWINE [Superme-
chanical, 2014], SmartThings [Physical-Graph-Corporation, 2014], CubeSensors
[CBSR, 2014], WeMo [Belkin-International-Inc., 2014] or Philips HUE [Philips-
Electronics-N.V., 2015]. These technologies are quite similar in purpose to home
automation technologies, but they rely on standard network hardware like Eth-
ernet or WiFi. However, each technology provides its own proprietary access
APIs, thus hindering the development of applications that make use of devices
from different manufacturers and technologies.

A recent approach to increase the interoperability of these solutions is the
Apple HomeKit project [Apple-Inc., 2015]. It is a framework for iOS devices that
allows the utilization, with the same API, of different distributed devices from
a variety of manufacturers. HomeKit uses devices as accessories of iOS devices,
allowing their control and the configuration of automated actions between them.

Home automation and IoT are important technologies for AmI and UC
systems because they allow the interaction through environment embedded de-
vices, but, even with technologies like HomeKit, they are characterized by in-
teroperability problems, with many different hardware and software solutions



18 3.2. Physical User Interfaces

competing for the market in an incompatible way. These incompatibilities make
it difficult for developers to build systems that mix devices from different tech-
nologies or even manufacturers, which in turn hinders the capability of AmI
applications and UIs to rely on the best and most natural devices for each
scenario.

3.2.2 Ambient Intelligence and Ubiquitous Computing Frame-
works

As we have stated before, Ambient Intelligence [Cook et al., 2009] and
Ubiquitous Computing are research areas that, by nature, have to address the
device interoperability problem, thus they are a good place to look for solutions
to decouple AmI UIs from the technologies and modalities of the devices used
to build the UI.

AmI applications must use and manage a wide range of devices to do their
job, and because of this, AmI and UC related projects like AMIGO, PERSONA
or AmI-Space have dedicated efforts to the development of solutions in the space
of physical device interoperability.

The AMIGO project [Janse et al., 2005] uses standardized solutions as much
as possible, developing abstractions to hide the heterogeneity of the devices and
translate their functionality to AMIGO compatible services. AMIGO proposes
UPnP [UPnP-Forum, 2011] as a standard for hardware access so, when a non-
UPnP compatible device needs to be used, it is necessary to develop proxy
services that use ad-hoc drivers to interact with the device and translate its
interface.

The AmI-Space project [Rui et al., 2007, Rui et al., 2009] proposes a similar
solution to AMIGO, integrating technologies through the use of encapsulating
proxies. The main difference is that they also provide a hardware solution to
simplify the physical integration of technologies, as well as the development of
new devices.

The PERSONA project [Lazaro-Ramos, 2010] uses SAIL [Girolami et al.,
2008], a sensing abstraction layer designed to provide access to wireless sensor
networks (WSN). SAIL uses a layered design in which a first layer contains the
logic to directly interact with the different WSNs supported, a second layer that
abstracts the functionalities of the WSNs as OSGi services, and a third layer
that exports those services with interfaces that are compatible with external
software, like UPnP or in the case of PERSONA, an event based system.

As can be seen, the typical approach found in the majority of AmI and
UC projects is to establish one specific technology (for example UPnP) as the



Chapter 3. Related Work 19

Figure 3.1: Various examples of Phidgets physical devices.

default option, and then rely on ad-hoc proxies to integrate devices from other
technologies when necessary. This way, their applications are able to use devices
from heterogeneous technologies, but at the cost of having to build specific
proxies for each new unsupported device required.

3.2.3 Physical User Interface Frameworks

Even though the previous technologies presented in this section can be used
to build Physical User Interfaces, they have not been designed with that purpose
in mind. Because of this, and in order to foster the development of PUIs, the
research community has introduced several PUI development frameworks that
are worth pointing out.

Phidgets [Greenberg et al., 2001] is one of the first and most interesting PUI
development frameworks. Phidgets include a series of prebuilt physical devices
that resemble typical graphical widgets, and a hardware development platform
to build new physical widgets. On top of that, an API allows developers to
access the diverse Phidgets functionality. Phidgets are connected to a computer
via USB, so they don’t support distributed UIs.

VoodooIO [Villar et al., 2006] follows a similar approach to Phidgets, but
it is especially focused on gaming UIs. VoodooIO provides a kit of components
(the VoodooIO Gaming Kit, VGK) that allows video-game players to build their
own video game controllers using a set of atomic components and changing
their layout. This custom controllers are then connected to a computer using
USB and the standard driver APIs for keyboard, mouse or joysticks. With
VoodooIO, players are able to build customized physical cockpits for each game,



20 3.2. Physical User Interfaces

Figure 3.2: Examples of VoodooIO devices.

thus enhancing the experience of playing games like flight or driving simulators.

iStuff [Ballagas et al., 2003, Borchers et al., 2002], which is part of the iROS
and iRoom projects [Johanson et al., 1999], is a framework for the development
and prototyping of post-desktop ubiquitous computing user interfaces. iStuff
components are wireless physical devices that are connected to a machine run-
ning a proxy software that encapsulates the device behavior and connects it to
the iROS operating environment. iStuff uses the iROS infrastructure to allow
distributed access to the component proxies and provides a virtual “patch-panel”
that facilitates the mapping between devices and applications, thus making it
quite easy for developers to try different configurations of a PUI.

EIToolkit [Holleis, 2007, Kranz et al., 2010] follows an approach very similar
to iStuff. It also connects applications to devices by using a software platform
that relies on proxies to encapsulate the protocols used by each device.

Even though those frameworks are closer to UI technologies, they continue
to be more designed to interconnect devices than to abstract them, thus, they
continue to operate on top of device/appliance concepts like functionalities and
not on top user interaction concepts, so they do not support things like UI
design, migration or adaptation. Furthermore, even if all devices can be accessed
using the same network protocols, each one has is own API. This makes the
integration of new devices difficult because applications must be modified to
use the new API. Furthermore, it complicates the development of solutions
that automatically manage the connection between devices and applications,



Chapter 3. Related Work 21

Figure 3.3: Examples of iStuff devices.

with only iStuff providing support to avoid the modification of the application
code by using a virtual patch-panel component that manually manages the
mapping between applications and devices.

3.2.4 Summary

In order to build natural user interfaces for Ambient Intelligence or Ubiq-
uitous Computing systems, it is not possible, or at least, not reasonable, to rely
on a single device technology. UIs for this kind of systems require the use of
many different interaction resources, and each one of them may use different
modalities and technologies specifically selected to match the preferences and
characteristics of a type of user or environment. While interaction resources
using a particular modality or technology, or even from one particular manu-
facturer, may be the best option for one location, IRs with other modalities, or
from other manufacturers and APIs, may be better for other location or user.
This is why the main AmI and UC projects like AMIGO[Janse et al., 2005],
PERSONA [Lazaro-Ramos, 2010], iRoom [Johanson et al., 1999], EIToolkit
[Kranz et al., 2010], AmI-Space [Rui et al., 2007] or HomeKit [Apple-Inc., 2015]
have relied, to some extent, on technology abstraction solutions that allows
them to use devices and appliances from different manufacturers using different
technologies.

A common drawback of these solutions is that they are more device inter-
connection technologies than UI development technologies, thus their APIs and
protocols are built on top of device concepts and not interaction resource ones.
Furthermore they do not usually provide adequate abstraction capabilities, thus
hindering the integration of new devices without requiring modifications to the
application code.

From this review, we conclude that there exists a need to increase the
level of isolation between application developers and the devices or appliances



22 3.3. Plasticity in Physical User Interfaces

that made up a distributed physical UI. A common and homogeneous user in-
teraction API to access any kind of interaction resource, using any available
technology and modality, will enable developers to build their DPUIs indepen-
dently of the IRs used, allowing them to change the devices without affecting
the application. Furthermore, it would allow the development of autonomous
or semi-autonomous solutions to manage the change of IRs at runtime.

3.3 Plasticity in Physical User Interfaces

As stated in the introduction chapter, AmI UIs commonly rely on a mix
of traditional (graphical) UIs and a set of heterogeneous interaction resources
(IRs) [Harrison et al., 1998, Zuckerman and Gal-Oz, 2013], which can range
from physical devices embedded in the environment to custom designed devices,
tangible UIs, or even voice or gesture recognition systems. As a result of this,
unlike traditional software systems where, if the user moves to a new location,
the interaction resources hardly change, in AmI systems, a change of context
may imply a dramatic change in the IRs available (the hardware platform) to
the UI. Furthermore, not only the hardware platform could be different, but
the new characteristics of the environment or the users can render the previous
IRs inadequate.

This characteristic of AmI systems directly impacts the needs of their mo-
bility subsystem, so that, in the case of a change in the scenario, the adaptation
of the UI to the new context is essential to keep the system within the margins
of usability and transparency required by natural interaction systems. There-
fore, this is one of the most important topics that must be addressed by this
thesis.

In this section, we provide a review of the field of UI plasticity and adap-
tation to context, placing special emphasis on ubiquitous computing systems,
AmI systems, and distributed natural user interfaces.

As will be seen in this review, the Model-Driven Engineering (MDE) method-
ology and model-based techniques are the foundation of the majority of the
existing approaches to build plastic UIs. This is not a coincidence, but a con-
sequence of the characteristics of model-based techniques. With MDE, the
knowledge about the system, the users, and the environment is stored in ma-
chine readable models, allowing the system to exploit them, even at runtime,
to modify and adapt its behavior according to the information provided by the
models and the current context for each scene.



Chapter 3. Related Work 23

3.3.1 Model-Driven Engineering to Achieve UI Plasticity

Thevenin and Coutaz were the first to introduce the term plasticity of user
interfaces in 1999. In [Thevenin and Coutaz, 1999], they proposed a conceptual
framework to support the development of plastic UIs. It is a theoretical frame-
work that establishes a set of guidelines for the development of techniques and
tools that facilitate the implementation of plastic user interfaces.

This framework is one of the first approaches to apply MDE to UI devel-
opment. It proposes the specification of the UI as a set of models that provide
abstract and declarative descriptions of the interaction capabilities of the UI
and the physical environment where the UI will be executed. To exploit those
models, Thevenin and Coutaz propose the development of a series of tools, ei-
ther automatic or semiautomatic, that transform those models through a series
of decreasing levels of abstraction until the implementation is achieved. Finally,
once the UI is executing, they identify a process of plastic adaptation and trans-
formation that controls the execution and adaptation of the UI, either manually
or automatically.

Thevenin and Coutaz continued improving their conceptual proposal and,
in [Calvary et al., 2001b], they introduced a new model in the framework, the
evolution model, that would allow developers to model possible context changes
that could affect an application, thus facilitating and guiding the adaptation to
them. In [Calvary et al., 2001a], in addition to supporting the vertical trans-
formation of models, that is to say, move from abstract models to new models
at lower levels of abstraction, they introduced support for horizontal transfor-
mation, allowing the translation of models to new models in the same level of
abstraction but using different technologies or languages. In [Calvary et al.,
2002], they introduced a revision of the framework that allows starting the de-
velopment of the UI from any of the different levels of abstraction. In this
revision, they also introduced support for context changes in real-time with the
introduction of elements to monitor the context, detect changes in it, and react
to those changes.

The works of Thevenin and Coutaz led to the creation of the Unifying Refer-
ence Framework [Thevenin et al., 2003, Calvary et al., 2003] inside de Cameleon
project. This framework is designed as a reference design and guideline for the
development of plastic UIs using MDE techniques.

The Cameleon framework defines six initial models to describe the context
of execution of a UI and four additional models to specify the UI at different
levels of abstraction. Those additional models are inferred after the initial
models, either manually or automatically.

The initial models are:



24 3.3. Plasticity in Physical User Interfaces

• Concept model. Describes the different concepts managed by the end user
through the UI.

• Task model. Specifies the tasks that the user can perform with the appli-
cation.

• Platform and environment model. Specifies the context of use of the UI,
including the execution platform and physical environment.

• Evolution model. Describes possible context changes and the conditions
to change from one to another.

• Interaction model. Describes the interaction resources available to imple-
ment the UI.

Starting from those models, Cameleon proposes the inference of a new
series of models, named transitory and final, where the UI is specified at dif-
ferent levels of abstraction. The transitory models are abstract specifications
(at different levels of abstraction) of the UI, while the final model is a concrete
implementation (it can be executed) of the UI.

The framework establishes four different levels of abstraction for the spec-
ification of the interfaces:

• Task-oriented specification. The UI is specified at the highest level of
abstraction. This model only includes information about the tasks, and
their related concepts, that the UI must perform.

• Abstract interface. This is a description of the UI in terms of its interaction
capacities. The description is done at a high level, using generic interaction
resources that do not have an associated modality or a execution platform.

• Concrete interface. It is a transformation of the abstract interface where
the interaction modalities of each interaction resources are already speci-
fied.

• Execution model. This is the final implementation of the UI. This spec-
ification is already adapted to a context and uses the real interaction
capabilities available in a platform and environment.

The main idea behind the Cameleon framework is to infer these models
using the information available in the initial models and through reifications
(transformations), from one level of abstraction to a more concrete one, until
the final implementation of the UI is achieved.

This process of inference and transformation can be done manually by the
developer and user (adaptable plasticity), autonomously by the system itself



Chapter 3. Related Work 25

(adaptive plasticity), or semiautonomously, with some transformations done
automatically by the system and others manually by the user or developer
(mixed plasticity).

Finally, in [Balme et al., 2004], with the creation of CAMELEON-RT, the
Cameleon conceptual architecture was extended to support multi-modal, mobile
and distributed UIs within the philosophy of ubiquitous computing.

In parallel to the development of the Unifying Reference Framework, Sendín
and Lorés introduced a new development framework for plastic UIs that is very
related to the proposal of Thevenin and Coutaz [Sendín et al., 2003, Sendín and
Lorés, 2004]. It is also model-based and it manages the plasticity of the UI with
vertical transformations of models through different levels of abstraction. The
main innovation introduced by Sendín and Lorés was the division of applications
into two levels. The base level, which includes the business behavior of the
application and operates without knowledge of the UI, and the meta level,
where the UI is transformed from an abstract view to a concrete one according
to the current context state.

In [Veloso and Sendín, 2005, Sendín, 2007], Sendín and Lorés extended the
concept of plasticity of UIs by dividing it into two different facets that are very
similar to the division proposed by CAMELEON-RT [Balme et al., 2004]. On
the one hand, explicit plasticity, that is very similar to the original concept
proposed by Thevenin and Coutaz in [Thevenin and Coutaz, 1999], that is
to say, the capacity of adapting a generic UI to context changes (previously
identified during the design phase) that require a new specific UI, following a
semi-automatic or automatic process that is activated manually. On the other
hand, implicit plasticity is the capacity of the UI to adapt itself, in real-time
and without human intervention, to small context changes previously identified
during the design phase.

It is important to mention that those initial frameworks, the Unifying
Reference Framework, CAMELEON-RT or the Sendín and Lorés framework,
are reference architecture designs. They are conceptual proposals and not real
frameworks that could be used to build plastic user interfaces. Therefore, after
those initial works, many research groups started implementing complete frame-
works based on the concepts established by the Unifying Reference Framework
and Cameleon.

For example, the Transformation Environment for interactive Systems rep-
resentations [Berti et al., 2004, Mori et al., 2004] (TERESA) is a model-based
framework, and an associated tool and language, for the design and develop-
ment of user interfaces for different platforms. With some roots in the Unifying
Reference framework and Cameleon approach, TERESA is one the first imple-
mentations of a model-based transformation method. The development of UIs



26 3.3. Plasticity in Physical User Interfaces

starts at the abstract level with a single model specifying the tasks and different
contexts supported by the application. This description is achieved using the
ConcurTaskTrees notation [Paternò et al., 2000]. The second step is to trans-
form this abstract task model into a series of specific task models for each target
platform. Next, an abstract UI model for each platform is built, and, in the last
step, the final UI is generated from the abstract UI. This final UI is completely
platform dependent. Every model in TERESA is described using XML, and
the tool is able to generate UIs using XHTML and VoiceXML.

As a continuation of the TERESA project, the Model-based lAnguage foR
Interactive Applications (MARIA) [Paternò et al., 2009] introduces MARIA
XML, a new set of languages for UI definition that inherit the approach of
TERESA XML, with one language for the abstract description and a variety
of platform-independent languages depending on the deployment platform. In
comparison with TERESA, MARIA introduces new models, like the data model,
and new supported platforms like digital TV, multitouch or gestures.

Another prominent approach inspired by CAMELEON is the USer Inter-
face eXtensible Markup Language (USIXML) [Vanderdonckt et al., 2004]. It is
also a model-based framework centered around an user interface definition lan-
guage (UIDL), the USIXML set of languages, which support the development
of UIs using a multi-directional development method that allows developers to
start the development from any, and even multiple, levels of abstraction, and
proceed by transforming those models towards obtaining one or many final UIs.

The multi-directional UI development framework proposed by USIXML is
based on the Cameleon Reference Framework [Thevenin et al., 2003, Calvary
et al., 2003, Calvary et al., 2007]. Therefore, it supports the four levels of ab-
straction of Cameleon and provides language support for the specification of
models in each level. USIXML defines five different models: Task and concept
models for the task specification level, abstract user interface (AUI) model for
the abstract interaction level, concrete user interface (CUI) model for the con-
crete interaction level, and final user interface (FUI) model for the execution
level. The framework revolves around three different kinds of transformations
among models: reification, which is the process of selection of artifacts that are
more concrete than the artifacts used as input to the transformation process;
abstraction, which is the inverse process of reification, hence, the selection of
artifacts that are more abstract than the input; and translation, which is the
process of transforming a model from one context of use to a different one with-
out changing the abstraction level. In order to support these transformation
steps, USIXML introduces mappings to model and keep track of the relations
between the models in different contexts or levels of abstraction.

In addition to the conceptual framework and language, USIXML provides



Chapter 3. Related Work 27

a set of tools that allow developers to take advantage of the framework features.
ReversiXML [Bouillon et al., 2004] and VAQUITA [Bouillon et al., 2002] auto-
matically reverse engineer XHTML UIs into a CUI model. GrafiXML [Michotte
and Vanderdonckt, 2008] is an editor to allow the graphical development of CUI
models. ScketchiXML [Coyette et al., 2006, Coyette and Vanderdonckt, 2010]
allows the sketching of CUI models. TransformiXML [Stanciulescu et al., 2005]
supports the programming of transformations between models.

Frameworks like TERESA, MARIA or UsiXML represent the most promi-
nent approaches to UI generation using MDE approaches. They are general
purpose frameworks based on their own UI definition languages and populated
by many different tools for a variety of specific purposes like web UI generation,
graphical UIs generation for different platforms, or voice UI generation. Fur-
thermore, as we will see in the next section, they are also a prominent source of
inspiration for many of the approaches used by AmI and UC systems regarding
UI adaptation to context.

3.3.2 UI Plasticity in Ambient Intelligence and Ubiqui-
tous Computing Frameworks

As stated in the introduction of this section, the intrinsic characteristics
of AmI and UC systems require them to provide some kind of support for the
development of UIs adapted to context. Because of that, there exist diverse
examples of frameworks that introduced some level of support for UI plasticity
in the context of AmI and UC systems.

ICrafter [Ponnekanti et al., 2001] is one of the first approaches to tackle the
problem of UI development in ubiquitous computing environments. It is part of
the iRoom project [Borchers et al., 2002] at Stanford university and it is focused
on supporting the selection, generation, adaptation, and distribution of UIs for
the different appliances and applications available in an ubiquitous computing
environment. ICrafter uses a centralized component that distributes interfaces
to end devices (PDAs, PCs, etc.). These interfaces are either graphical UIs or
VoiceXML interfaces, and they can be either manually designed or, in some
cases, automatically generated by specific generator components. Furthermore,
the main characteristic of ICrafter is the aggregation of functionalities from dif-
ferent distributed appliances or applications into one user interface. Regarding
UI adaptation, ICrafter supports adaptation to the appliance and end-user de-
vice characteristics through the automatic generation of UIs, but it does not
support adaptation to the user or environment characteristics.

Another interesting proposal is the one in the Personal Universal Controller
(PUC) [Nichols, 2006]. It shares some similarities with ICrafter in their goal



28 3.3. Plasticity in Physical User Interfaces

and final functionality, but PUC is specially focused in the generation of con-
sistent user interfaces for remote appliances. PUC allows developers to specify
the functionalities and properties of an appliance using the PUC description
language and, then, automatically generate consistent UIs for different comput-
ing platforms like smartphones, desktop computers or even speech recognition
UIs. Among its similarities to ICrafter, PUC also shares some of its weaknesses.
While PUC is able to generate adapted UIs to the appliance capabilities and
the end-user device, it ignores the characteristics of the user and the physical
environment.

Model-based techniques have been also used to achieve UI plasticity in
the context of ubiquitous computing. Two prominent examples are Dynamo-
AID [Clerckx et al., 2004, Clerckx et al., 2006] and MASP [Blumendorf et al.,
2008a, Blumendorf et al., 2008b, Blumendorf and Albayrak, 2009, Roscher et al.,
2009, Blumendorf et al., 2010].

Dynamo-AID and its predecessor project, Dygimes [Vandervelpen and Con-
inx, 2004], started as model-based UI development frameworks for multiple
devices. The core idea behind them is to rely on task models to drive the
generation and adaptation of the UI to different services and devices. The task
model is enhanced with abstract information about the UI and linked to context
information through dynamic dialog and environment models. Then, the final
UIs are generated for each device. In [Clerckx et al., 2008], Dynamo-AID was
improved with better support of Ambient Intelligence and Ubiquitous Comput-
ing systems by enhancing the framework with support for UI distribution and
multimodality. Dynamo-AID keeps tasks as the main concept of the framework,
so the distribution and multimodal support is also related to tasks, supporting
the distribution of tasks and the utilization of different modalities for each task.
The UI distribution is managed by a component called “distribution controller”,
which selects, depending on the context, what device to use for each task. Then,
it sends the task UI to the device, which is in charge of rendering it. The final
UIs are generated from the task and dialog models using the UIML language
[Abrams et al., 1999]. Regarding multimodality, they enhanced the task model
with modality constraint information, thus letting the developer specify which
modalities are better for each task.

Another prominent model-based approach is the Multi-Access Service Plat-
form (MASP) presented by Blumendorf et al. in [Blumendorf et al., 2008a, Blu-
mendorf et al., 2008b, Blumendorf and Albayrak, 2009, Roscher et al., 2009, Blu-
mendorf et al., 2010]. It follows the ideas of the Cameleon framework and
USIXML and defines the UI by employing a set of models at different levels of
abstraction. The main contribution of MASP is that the vertical transforma-
tion of models is done at run-time, with the models evolving in memory during



Chapter 3. Related Work 29

the execution of the application. MASP models are called executable-models
because the models are interpreted at run-time and linked with the execution
state of the system. In MASP, models not only provide design information of
the UI during run-time, but they also reflect the changes of the state of the
system and how the UI keeps itself adapted to them. The capability to oper-
ate and reason with the models at runtime, together with the ability to enrich
those models with real-time information of the context, bring the possibility of
building new algorithms that exploit that information and capabilities to adapt
the UI to context-changes in real-time.

As a MDE framework, MASP starts from the definition of UI with three
high level models. Task model, context model, and abstract UI model. By
using the task and context model information, MASP transforms, at run-time,
the components of the abstract model into concrete components that use three
different modalities: WIMP web applications (windows, icons, menus, pointer),
voice recognition, and gesture recognition. Furthermore, the different concrete
components can be rendered in a variety of distributed devices like PCs, smart-
phones, or tablets.

As can be seen, all of these projects, ICrafter, PUC, Dynamo-AID, MASP,
and even others like [Bandelloni and Paternò, 2004] or [Berti, 2005], follow
a very similar approach. They generate graphical or voice UIs for different
end devices, like smartphones or tablets, starting from some kind of models
describing the UI or the capabilities of remote appliances. Those projects make
possible the generation of UIs adapted to each end device used for interaction,
but none of them allows the adaptation to the user abilities and preferences,
and, furthermore, they ignore the problem of physical user interfaces, because
they rely on remotely rendered GUIs to interact with the ubiquitous system.

3.3.3 UI Adaptation to the User Characteristics

The different solutions presented in the previous sections are mainly focused
on UI adaptation to end devices. They are able to generate a UI adapted
(even, in some cases, at run-time) to the characteristics of the end devices
used to interact with the system. In this sense, they are able, for example, to
generate different UIs for a smartphone and for a desktop. However, they do
not support adaptation to other characteristics of the scenario, like the physical
characteristics of the environment or, more importantly, the characteristics or
preferences of the user, which, for a natural interaction system, is of great
importance.

In this section, we want to highlight two prominent approaches to UI adap-
tation to the user abilities. One of them, Egoki [Abascal et al., 2008], is a UI



30 3.3. Plasticity in Physical User Interfaces

framework for UC and AmI systems, while the other, SUPPLE [Gajos and
Weld, 2008], is a very featured system for the generation of GUIs adapted to
users with motor or psychic disabilities.

The Egoki framework [Abascal et al., 2008, Abascal et al., 2011b, Miñón
and Abascal, 2012] is designed to support the adaptation of HTML web UIs for
their use by different users with physical or mental disabilities. The objective
of the framework is to allow the adaptation of Ambient Assisted living (AAL)
UIs to the different interaction abilities and preferences of a variety of users
and the devices (smartphones, tablets, PCs, etc.) they use to access the AAL
system. Egoki is model-based, but follows a different approach to Cameleon.
It uses only two models. On the one hand, an abstract UI model described
using an UIDL like UsiXML or UIML. On the other hand, a user profile model
describing the capacity of a user to interact with the system using each of the
supported interaction modalities. Furthermore, during the description of the
UI, developers must select the priority of each modality for each part of the
UI. Finally, Egoki manages a rule database where the supported modalities are
related to the interaction resources available. Using the information available
in the models and the rule database, Egoki selects those IRs that better match
the requirements of the user and builds a new web UI using XHTML.

SUPPLE [Gajos et al., 2004, Gajos et al., 2008a, Gajos et al., 2008b, Gajos
et al., 2010] is focused on the generation of GUIs adapted to users with motor
or psychic disabilities. The most prominent characteristic of SUPPLE is the
fact that its UI generation system is not rule-based and does not use model
transformation algorithms. Instead, it uses numerical algorithms in order to
optimize the UI layout and widget selection. Some of the main factors used by
the cost function of the SUPPLE optimization algorithm are: cost of navigation
between any two controls, cost of using a particular control for each function,
consistency between interfaces generated on different platforms, or the physical
abilities of the user. As a non rule-based system, SUPPLE has the ability to
explore the whole solution space in order to generate UIs, making SUPPLE
more flexible but also more liable to require exponentially increasing processing
power in order to build complex interfaces. Furthermore, it is difficult for a UI
designer to predict and intervene in the final result of the UI, as it is not possible
to provide the system with human-readable inputs as in the case of model-based
and rule-based systems. While SUPPLE is very focused on adaptation to the
user abilities, it also has capacities to generate UIs for different end platforms
(mainly PCs and PDAs) in a similar way to ICrafter or Egoki.

While SUPPLE is one of the most complete solutions for the generation
of user adapted UIs, it is focused on standalone graphical user interfaces, thus
ignoring many of the requirements of AmI systems, like UI distribution and



Chapter 3. Related Work 31

support for physical UIs. Regarding Egoki, it follows a very similar approach to
other AmI and UC solutions like ICrafter or MASP but extended with support
for adaptation to user abilities. Nevertheless, as ICrafter or MAPS, it ignores
the use of physical UIs.

3.3.4 Summary

MDE techniques have been adopted by the HCI research and develop-
ment community as the most promising approach to achieve UI plasticity. As
a result of this, during the last two decades a lot of systems have relied on
model-based approaches for the generation of UIs adapted to context. There is
an abundance of examples of MDE frameworks for UI generation and adapta-
tion to context. Some prominent examples are COUSIN [Hayes et al., 1985],
ITS [Wiecha et al., 1990], UIDE [Sukaviriya et al., 1993], HUMANOID [Luo
et al., 1993], GENIUS [Janssen et al., 1993], TRIDENT [Bodart et al., 1995],
UIML [Abrams et al., 1999], the Unifying Reference Framework [Thevenin and
Coutaz, 1999, Thevenin et al., 2003] and CAMELEON-RT [Balme et al., 2004],
XWeb [Olsen et al., 2000], ICrafter [Ponnekanti et al., 2001], TERESA [Berti
et al., 2004] and MARIA [Paternò et al., 2009], USIXML [Vanderdonckt et al.,
2004], DynaMo-AID [Clerckx et al., 2004], PUC [Nichols, 2006] and UNIFORM
[Nichols et al., 2006], MASP [Blumendorf et al., 2008a, Blumendorf and Al-
bayrak, 2009], or Egoki [Abascal et al., 2008]. In this review, we have explored
the most important ones, with special emphasis on those approaches more rel-
evant for this thesis and more related to its field of application.

The review shows how model-based techniques have been successfully ap-
plied to ubiquitous computing (UbiComp) and ambient intelligence (AmI) with
approaches like ICrafter [Ponnekanti et al., 2001], PUC [Nichols, 2006], UNI-
FORM [Nichols et al., 2006], Dynamo-AID [Clerckx et al., 2006], MASP [Blu-
mendorf et al., 2008a, Blumendorf and Albayrak, 2009], USIXML [Vanderdon-
ckt et al., 2008], Egoki [Abascal et al., 2008], or MARIA [Paternò et al., 2009].
Nevertheless, from our point of view, all of these approaches share a common
drawback. They have ignored the utilization of physical user interfaces (PUIs)
to build natural user interfaces (NUIs) in those environments. While these UIs
provide remote access to the services and appliances of an AmI or UC environ-
ment, and they can be multimodal (mainly WIMP, voice recognition or gesture
recognition) [Blumendorf et al., 2008a, Vanderdonckt et al., 2008] or even dis-
tributed [Blumendorf et al., 2010], they use desktops, tablets or smartphones
as hardware platforms for their interaction resources (IRs). They do not allow
direct manipulation of physical devices and appliances as a means to provide
natural and environment-integrated interaction with the system.



32 3.4. Discussion

From this review, we have concluded that there is a necessity to advance
in the development of solutions focused on improving the support for build-
ing distributed physical user interfaces capable of adapting themselves to the
characteristics of an application, their users, and the environment where it is
executed. The solution proposed in this PhD. thesis is built on top of model-
based techniques inspired by approaches like USIXML [Vanderdonckt et al.,
2004], CAMELEON-RT [Vanderdonckt et al., 2004], MASP [Blumendorf et al.,
2008a] or PUC [Nichols, 2006]. But compared to these previous works, it will
make possible the development of AmI UIs capable of using any kind of IR,
based on any hardware platform, and independently of its physical location in
the environment.

3.4 Discussion

If something can be extracted from the literature review presented in the
previous sections, is that the field of AmI user interface development is quite
broad and still open. While there are solutions proposed to facilitate the de-
velopment of AmI UIs, the fact is that the majority of AmI UIs are being
developed ad-hoc for each particular system and usage scenario, because, even
though many of the solutions proposed shine in some particular aspects, none
of them seems to cover all of the aspects required to build plastic Distributed
User Interfaces for Ambient Intelligence systems.

The purpose of this subsection is twofold. A first goal is to provide a
fair and direct comparison between all the solutions presented in this review
in order to know how they stand against the others and, more importantly,
in order to know how they stand against the ideal requirements of a solution
for the development of plastic DPUIs. A secondary objective is to establish a
comparison framework for solutions in the field of Plastic Distributed Physical
User Interfaces, thus establishing a set of characteristics required by this kind
of solutions, making possible the comparison of past and future developments
in the field.

From the review of the state of the art presented in this chapter and the fur-
ther study of Ambient Intelligence UIs presented in chapter 4, we have designed
a comparison framework that includes ten different characteristics organized
into three aspects:

• Autonomous plasticity of the UI. This aspect is about the capacity of a
solution to adapt a UI to different contexts of use.

– Adaptation to the user. Capacity to adapt the UI to different user
characteristics.



Chapter 3. Related Work 33

– Adaptation to the environment. Capacity to adapt the UI to a variety
of environment characteristics.

– Adaptation to the devices. Capacity to adapt the UI to different sets
of interaction resources.

• User Interface Development. This aspect covers desirable characteristics
of a UI development framework for any field of application.

– Distribution of the user interface. The degree of distribution of the
UI supported by a solution. This is, to what granularity can the
different elements that make up an UI be distributed.

– UI-centric development framework. Whether a solution provides an
specific framework for the development of UIs based on user interac-
tion concepts, or not.

– UI abstraction. The degree of decoupling between the UI develop-
ers/code and the particular technologies, modalities, and APIs used
to implement the user interface.

– Autonomous generation of the user interface. Whether a solution
supports the autonomous generation of user interfaces adapted to a
particular usage scenario.

– Capability to customize the generated user interface. The degree of
personalization of the final user interface autonomously generated by
a solution. This characteristic is only applicable to those solutions
that support UI generation.

• Physical User Interfaces. This aspect includes important characteristics
for the development of physical user interfaces.

– Number of different modalities supported. The number of different
types of interaction modalities supported by the solution.

– Number of different physical devices supported. The number of differ-
ent types of physical devices (used as interaction resources) supported
by the solution.

With the knowledge obtained from the literature review presented here, we
have subjected to our comparison framework each one of the solutions analyzed
in this chapter. The results of this comparison are shown in table 3.1.

As can be seen in the table, these results are a clear reflection of the variety
of solutions that exist in the field, as well as the diversity of degrees to which
those solutions fulfill the different characteristics proposed in the comparison
framework for Plastic Physical User Interfaces. It can be seen that there are



34 3.4. Discussion

User Env. Devices Distribution Dev. Abstraction Generation Custom. Modalities Devices

MASP No No Yes Medium Yes High Yes Low Low None

Dynamo-AID No No Yes Medium Yes High Yes Low Low None

Egoki Yes No Yes None Yes High Yes Low Low None

SUPPLE Yes No Yes None Yes Low Yes Medium Very	Low None

ICrafter No No Yes Low No Medium Yes Medium Low None

PUC No No Yes Low No Medium Yes Medium Low None

MARIA Yes* Yes* Yes* None Yes Medium No Medium Low None

UsiXML Yes* Yes* Yes* Low Yes Medium No Medium Low None

H.	Automation No No No Low No Low No N/A Very	Low Low

HomeKit No No No Low No Low No N/A Low Medium

Phidgets No No No None No Low No N/A Medium Low

VoodooIO No No No None Yes Low No Low Low Low

iStuff No No No Medium Yes Medium No Medium High Medium

EIToolkit No No No Medium No Medium No N/A High Medium

Autonomous	Plasticity User	Interface Physical	UI

*Plasticity	is	supported	by	transformation	processes	usally	performed	manually	by	the	developers

Table 3.1: Comparison of solutions for the development of Plastic Distributed
Physical User Interfaces.

solutions that perform really well in one of the aspects, but very poorly in the
others, and vice versa.

For example, there is a group of solutions that perform quite well in the
Physical UI aspect, but they have really poor performance in Autonomous Plas-
ticity. This is the case of technologies like HomeKit, Phidgets, EIToolkit or
iStuff. While they can be used to implemented PUIs, these technologies are
mainly designed to provide remote access to physical devices, thus they have
good qualities regarding physical device compatibility and support for very dif-
ferent modalities, but they do not have any kind of support for UI abstraction,
generation, or adaptation to different contexts. In fact, many of these solu-
tions are not even UI development frameworks, but device access and control
frameworks that are being used to build custom and ad-hoc user interfaces.

Looking at the table it is also easy to see another big group of solutions.
The first eight technologies displayed in the table have in common a very poor
support for physical user interfaces. They support very few modalities (usually
graphical and voice), and they do not include any kind of support for using phys-
ical devices as interaction resources. These are technologies that come from the
user interface field, thus in general they have good values in the User Interface
development characteristics, like UI development framework, UI customization,
or UI decoupling from implementation. However, it is possible to divide this
large group into a set of smaller groups by looking at their UI distribution and
Plasticity values.



Chapter 3. Related Work 35

Regarding distribution, on the one hand, there are some solutions that do
not support any kind of UI distribution at all, like Egoki or SUPPLE. They
are able to generate adapted interfaces, but these interfaces must be executed
in a single device. On the other hand, there are technologies like MASP or
Dynamo-AID that allow the distributed execution of some parts of the UI to
different devices, and other solutions, like PUC or ICrafter, that only allow the
remote distribution of the complete UI.

Regarding plasticity, all of the eight first solutions include some kind of
support for UI plasticity or adaptation to context, but there are important
differences between them.

UsiXML and MARIA are very big MDE frameworks designed to support
the complete development lifecycle of a User Interface. They operate by trans-
forming UI models from the abstract UI to a final UI adapted to the context,
thus they are designed to support UI plasticity. Nevertheless, in practice, this
transformation is performed manually or, in the best case, semi-automatically
by the UI designer.

There is another small group of technologies designed to support device
(or hardware platform) adaptation. These technologies are able to generate UIs
customized for the particular characteristics of the end device used by the users.
For example, PUC and ICrafter are able to automatically generate graphical or
voice UIs adapted to the functionalities offered by remote appliances and the
characteristics of the end user device (PC, smartphone, etc.).

Apart from UsiXML and MARIA, also Egoki and SUPPLE support the
adaptation to the user, in this case by automatically generating the UI. SUP-
PLE is a very complete solution for the generation of UIs adapted to people
with disabilities, nevertheless, it has very poor performance in almost all of the
other categories relevant for AmI UIs, like distribution or multimodality. Egoki
is designed to generate UIs adapted to users with disabilities in ubiquitous com-
puting environments, thus it supports device adaptation too, however, it has
poor support for UI distribution and Physical User Interfaces.

A result, which can be extracted from this review and the presented com-
parison framework, is a set of three critical aspects that a development frame-
work for Plastic Distributed Physical User Interfaces for Ambient Intelligence
or Ubiquitous Computing systems must deal with:

• Autonomous UI plasticity seems to be an essential feature for AmI and
UC user interfaces. Ubiquity requires those systems to operate in differ-
ent physical environments and scenarios, thus forcing the UI to provide
the system’s functionalities in very different contexts of use, where funda-
mentally different modalities and interaction resources should be used to



36 3.4. Discussion

provide an adequate user experience.

• Physical UIs are characterized by their heterogeneity; they use differ-
ent modalities, implemented with a variety of physical and digital ele-
ments, even relying on custom designed devices for particular scenarios.
Therefore, another key characteristic is the ability to support heteroge-
nous modalities and devices. A framework for DPUIs must provide a high
level of decoupling between developers and the specific technologies and
modalities of the interaction resources. Furthermore, it is desirable to
have integrated support to use multiple different devices from different
manufactures, technologies, APIs, etc.

• UI distribution is also another one of the key aspects of AmI and UC user
interfaces. Those systems are eminently distributed, and so it should be
their user interfaces.

In this review we have shown that, while many solutions perform well or
even excel in some of those aspects, there is no solution presenting a good
performance in every one of them:

• On the one hand, there exist development frameworks for distributed
physical user interfaces, but they are more remote device access frame-
works than UI development frameworks. They allow applications to use
different distributed input/output devices, but those frameworks are too
low level because their APIs are too device centric and they do not allow
developers to work on top of UI concepts instead of device access con-
cepts. Furthermore, they lack any kind of support for UI plasticity and
adaptation to context.

• On the other hand, many of the model-based approaches that we talked
about in section 3.3, have been extended to support multimodal and dis-
tributed user interfaces in an AmI or UC context. Nevertheless, these
frameworks have been mainly focused on supporting the generation and
distribution of GUI user interfaces using web technologies, with only mi-
nor support for additional modalities like voice recognition and gesture
recognition. They are mainly designed to generate graphical UIs adapted
to different end devices, like tablets, smartphones, PCs, or web interfaces.
Because of that, those frameworks are not well suited for the development
of physical user interfaces, where distributed physical and multimodal in-
teraction resources are used to interact with users.

As will be seen throughout this document, the three critical aspects of
AmI/UC user interface development previously introduced are the main build-



Chapter 3. Related Work 37

ing blocks of the UI abstraction framework for Distributed Physical User In-
terfaces prosed by this thesis. This framework, called the Threefold Interaction
Abstraction Framework (TIAF), and its reference implementation, the Dande-
lion framework, provide a complete and functional development framework for
AmI/UC user interfaces, with integrated support for heterogeneous interaction
resources, distributed physical UIs, and autonomous UI plasticity.

The next chapter is devoted to providing a further analysis of the require-
ments and necessities of Ambient Intelligence user interfaces, and to introduce
the characteristics and architecture of the Threefold Interaction Abstraction
Framework. Finally, the Dandelion framework, is thoroughly presented in chap-
ters 5 and 6.





Chapter 4

Analysis and Design of a
Framework for Ambient
Intelligence UI Development

"The best scientist is open to experience and begins with romance
- the idea that anything is possible."

Ray Bradbury

4.1 Introduction

In the introduction provided in chapter 1, we have seen that the intrin-
sic characteristics of Ambient Intelligence and Ubiquitous Computing systems
made their User Interfaces (UIs) quite different from the UIs of classical software
systems.

First of all, AmI systems are expected to operate in a proactive and intelli-
gent manner, providing their functionalities while staying out of the way of the
users and requiring minimal interaction with them.

Second, this interaction is expected to happen in a natural way, namely, in
a way adapted to the characteristics of the situation, the user preferences and
abilities, the environment characteristics, and the interactive devices available.
Because of that, in AmI, WIMP (Windows, Icons, Menus, Pointer) user inter-
faces are the exception and Natural User Interfaces (NUIs) implemented with



40 4.2. Analysis of the Characteristics of UIs in Ambient Intelligence Systems

Physical User Interfaces (PUIs) are the norm.

And last, but not least, AmI systems are expected to be ubiquitous or, at
least, to seem ubiquitous and provide their functionalities in any of the places
included in the HIE of their users.

If those three characteristics are combined, we can see how different AmI
UIs are compared to classical GUIs. AmI UIs must not only be proactive and
transparent, but they must also be adapted to the context, and, if that were
not enough, they must be able to operate in different places, with different
characteristics, disparate devices and multiple users.

The objective of this doctoral thesis is to study and design techniques to
facilitate the development of AmI UIs capable of complying with those three
expected characteristics. To achieve that objective, we propose the utilization
of model-driven engineering techniques together with the introduction of a new
development framework for AmI physical UIs. This framework introduces three
abstraction levels to isolate developers, and AmI application code, from many
of the specific decisions and technologies required to build AmI UIs that comply
with the three previously identified characteristics.

This chapter starts by providing an overview and examples of some AmI UIs
in order to extract their characteristics and justify the necessity of developing
new solutions to build AmI UIs. The next section continues by conceptually
describing the new abstraction levels proposed by this PhD. thesis. Finally,
the chapter ends by introducing a conceptual architecture and development
framework that supports the proposed abstraction levels.

4.2 Analysis of the Characteristics of UIs in Am-

bient Intelligence Systems

Throughout the previous chapters, we have been reiterating that, because
of the intrinsic and expected characteristic of AmI systems, their UIs must be
quite different to classical software system UIs. However, we have not examined
any example of an AmI system user interface yet. In this section, we are going
to explore three different examples of real AmI systems, so that we can clearly
establish the characteristics of these kind of UIs and the problems associated to
them. These examples will be reused throughout the next sections and chapters
to show how the different solutions contributed by this work are applied in order
to improve them and to make their implementation easier and cheaper.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 41

4.2.1 OMNI Virtual Assistant

Our research group has participated in the development of a home-care
assistant system for elderly people. This project is named OMNI Virtual Assis-
tant and its objective is to improve the self-sufficiency of elderly people in their
daily life at home. The system is designed to be embedded in the user’s home
and provide them with three core functionalities: telepresence service through
video-calls with family, friends, or tele-care centers; remote health monitoring;
and daily routine management.

The system is executed in a set-top-box shaped device connected to a TV
screen. The different functionalities of the system are naturally integrated in
the TV workflow as new channels. One channel per family member, friend or
care giver, and one channel per doctor or health monitoring application.

In order to keep the interaction simple, the system is designed to operate
in a proactive way, asking the user questions when it is necessary to perform
actions. This way, users interact with the system exclusively by changing chan-
nels and by answering questions using a ’Yes’ or a ’No’. Figure 4.1 shows three
examples of this kind of Yes/No proactive interaction between the OMNI sys-
tem and the user. In the first screenshot, the user has selected the tele-care
channel, so the system asks the user if she wants to call the tele-care center. In
the second screenshot, the system is reminding the user that she has to perform
some action, in this case, taking medication, and it asks the user to confirm
whether she has taken the medication or not. And finally, in the third screen-
shot, the user has received a call from a friend, and the system is asking if she
wants to answer the call.

As can be seen, the interaction subsystem is deliberately simple to facilitate
its use by elderly people with very different levels of knowledge and experience
in information technology. The TV screen is the primary output device, and a
remote controller, shown in Figure 4.2, with only five buttons, is the primary
input device.

While this primary interaction setup is enough for many users, elderly peo-
ple represents a very heterogeneous group of people with very different abilities.
There may be people with visual disabilities for whom the TV screen will be a
poor output channel. There may be people with motor or psychic disabilities
and problems to use the remote controller, etc. In order to accommodate this
high diversity of abilities, OMNI requires a multimodal user interface. It must
support different combinations of input and output devices, so that each user
can use the device that better fits her requirements.

Furthermore, OMNI is required to provide many of its functionalities in
different places of the home. While the video-call will be only possible in front of



42 4.2. Analysis of the Characteristics of UIs in Ambient Intelligence Systems

Figure 4.1: Examples of Yes/No interaction with the OMNI system.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 43

Figure 4.2: Picture of the OMNI remote controller.

the TV screen, the health and daily routine monitoring functionalities should be
available in different places of the home, or even at remote places like the homes
of relatives. To access those functionalities OMNI will also need a distributed
user interface.

In order to better illustrate the need for multimodal distributed UIs in
OMNI, lets take for example a small subsystem of OMNI and explore its UI a
little bit.

For example, the OMNI notification subsystem is in charge of notifying
events to the user. In OMNI, events are things like incoming calls, medication
intakes, schedule sport exercises, calendar events like a visit to the doctor, or
alarm events like fire alarms.

The notification subsystem requires a user interface to show the notifica-
tions to the users. In a classical PC system, with a graphical user interface, it
would be a simple notification dialog window with a label for the notification
message and one or two buttons to receive the response from the user. However,
in OMNI, this UI can have very different shapes depending on the user:

• The default option would be to use the TV as the dialog window with a
message, like in Figure 4.1, and rely on the remote controller to perform
the role of the button in the classical system.

• But, for a user with finger mobility problems, instead of the remote con-
troller, OMNI can use a gesture recognizer system or even a speech recog-
nition system as input devices.



44 4.2. Analysis of the Characteristics of UIs in Ambient Intelligence Systems

• For a blind user, instead of using the TV, OMNI can use a speech synthe-
sizer to perform the output of the notification message.

• If the user is not in the living room and it can’t see the TV screen, OMNI
can attract the attention of deaf users by using simple devices like colored
lights representing different events with colors.

• If the user is not at home, the events could be notified to different portable
devices. From a smartphone with a graphical UI to read the notifications,
to simple devices with vibration and color codes.

These are only some of the possible scenarios that can be quickly imagined, but
there can be many more if we want OMNI to support more specific disabilities
for which even custom designed devices must be used.

As can be seen, even a simple user interface like the one of the OMNI
notification subsystem can become complex to implement when we want to
support the characteristics of AmI systems.

4.2.2 Environmental Music Player

The Environmental Music Player (EMP) is a music player application with
ubiquitous capabilities, it plays music and follows the user when she changes
from one place to another inside her HIE. As a music player, it works in a similar
way to radio stations in Spotify or Groveeshark; it does not allow the user to
select specific songs or albums, it only allows her to select a music style or mood,
and the EMP chooses, among the songs available in the user collection, artists
and songs related to the selected style or mood.

Even though the final functionality is simple, the EMP user interface is
fairly more complex that the OMNI user interface. If we left ubiquitous and
natural interaction apart, the UI of this application for a WIMP system will
probably look similar to the sketch shown in Figure 4.3. As can be seen from
the sketch, the EMP application has to provide the user with many different
interaction capabilities in order to control the playback:

• As inputs:

– Music style or mood selection.

– Music volume control.

– Playback controls like play, pause, next, etc.

– Customization control to notify the system whether the user has liked
a song or not.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 45

Figure 4.3: Sketched UI of the Environmental Music Player using WIMP user
interfaces.

• As outputs:

– The album art image.

– The album and song titles, and the artist name.

In order to operate in an ubiquitous way and provide a natural user interface
adapted to the environment, the EMP UI should be adapted to the particular
characteristics of each physical place included in the HIE of its users. The
interaction with the system will not be the same in the living room, in the car,
in the garden, or even in the kitchen.

Lets take, for example, three possible scenarios and explore how the UI
could be implemented in each one of them:

• The user is in the living room listening to music:

– The EMP should use the TV screen as output channel for the album
art and the metadata of the song like song tittle, album tittle, or
artist name.

– A remote control device can be used for the input of commands (play,
pause, next, liked it, etc.) and selection of music style and mood.

• The user is cooking in the kitchen while listening to music:

– The album art will not be shown as there won’t be a screen, but an
speech synthesizing output channel can be used for the song meta-
data.

– The user will have her hands occupied while cooking, so the input
of commands should be done for example with a gesture recognizing
input channel.



46 4.2. Analysis of the Characteristics of UIs in Ambient Intelligence Systems

Figure 4.4: Example of various interaction possibilities for the volume selection
in the Environmental Music Player application.

• The user moves to her car and starts driving while the music continues
playing in the car:

– The song metadata, and even the album art if the screen allows it,
could be presented in one of the screens of the car dashboard.

– The playback control should be done using the specific music controls
integrated in the car steering wheel and dashboard.

Again, like in the case of OMNI, depending on the usage scenario of the
EMP application, any of the input/output capabilities can be implemented us-
ing very different modalities and devices, as shown in the example of Figure 4.4.
Furthermore, as the user moves from one place to another, in order to continue
operating within the constraints of adaptation to context required by Natural
User Interfaces, the UI should be modified and adapted to the characteristics
of each scenario.

4.2.3 Intelligent Ship Passenger Evacuation System

Another Ambient Intelligence project where our research group has partic-
ipated is an intelligent evacuation management system for passenger ships such
as cruises or ferries. The objective of the system is dual. On the one hand, it
has to monitor the status of the ship in order to detect emergency situations
(fire, flooding, etc.) and notify this situation to the ship crew. On the other
hand, once the crew orders the evacuation of the ship, the system is in charge
of providing guidance to passengers to go to their nearest evacuation point.

Apart from the multiple management and crew notification user interfaces,



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 47

Figure 4.5: Example view of a possible EvacUI running different UIs, for a
variety of users, in different locations of a ship, during an evacuation process.

which are implemented as classical WIMP UIs, this evacuation system requires
a user interface to interact with passengers during the evacuation process. The
objective of the Evacuation UI (EvacUI) is to provide passengers with accurate
guidance of the path to follow in order to leave the ship. The conditions of
the ship can change dramatically during the evolution of an emergency (limited
visibility due to smoke, noise, flooded corridors , etc.), and also the users char-
acteristics can be diverse as the passengers can have very different disabilities.
Because of that, the system must operate and interact with the users in dif-
ferent situations with different constraints, thus requiring multiple interaction
modalities operating complementarily and redundantly.

EvacUI is implemented as a combination of multiple distributed signaling
devices embedded in the ship. These devices, screens, sound systems, light
signals, etc., are used complementarily and redundantly in order to show di-
rections and messages to the passengers. Therefore, depending on the context
(environment conditions and user characteristics) of each place and user, the
system should use, at the same time, different combinations of output devices
to perform one specific action. For example:

• If the visibility is low due to smoke or a lighting failure, the system can
use sound signals to guide the passengers.

• If a passenger is deaf, the system can use visual signals in her cabin to
notify her of an emergency.

• A portable device, like for example the smartphone of the passenger, can
be used to provide personalized directions to each user.

As can be seen, this UI is a very good example of a distributed, physical and
multimodal UI. The system, which operates ubiquitously throughout the ship



48 4.3. Supporting Ambient Intelligence UI Development

(the HIE in this case), should use a large set of physical distributed devices to
interact with its users, the passengers. Furthermore, depending on the context of
each place included in the HIE, the devices used to perform the interaction must
change, either because the environment conditions, the user characteristics, or
both require it.

4.3 Supporting Ambient Intelligence UI Devel-

opment

After the presentation of three representative examples of AmI applications
and UIs in the pervious section, this sections is dedicated to establishing the
requirements and characteristics of AmI UIs, and it continues by presenting
a conceptual framework to support the development of AmI UIs capable of
complying with those requirements.

4.3.1 Requirements of AmI UIs

In the previous subsections we have explored three different examples of
AmI applications providing very different functionalities but with one important
thing in common. They all must support a large variety of constraints in their
interaction with the users.

The OMNI Virtual Assistant is designed to be used at home, so it doesn’t
have to support many different environments, but its users are elderly people
and disabled people with very diverse abilities and requirements.

In the case of the Environmental Music Player (EMP), even though it
could accommodate many different types of users, we are more interested in
its natural integration in the environment. Therefore, in order to operate in
an ubiquitous way, the EMP user interface should be perceived as natural in a
variety of physical environments with different constraints.

And last, but not least, regarding the EvacUI user interface, it must provide
evacuation directions to different users, with diverse abilities, in a variety of
environments with distinct physical constraints.

As can be seen, in their effort to provide an ubiquitous and natural user
interaction experience, all of these examples share the same two critical aspects
previously explained in the introduction of chapter 4.1:

• They need to support a variety of environments, users, and situation char-
acteristics; while keeping the UI natural and easy to use.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 49

• They need to support ubiquitous interaction by using physically distributed
user interfaces.

These two different problems can be solved using the same naive technique:
design and implement different UIs for each type of user/environment/situation.
Developers can build different UIs using different interaction modalities in order
to cope with the first problem, and use multiple APIs and networking protocols
to cope with the second one. Nevertheless, as can be easily imagined, this
solution does not scale well and, in many cases, requires a huge amount of
development effort and resources. Furthermore, any scenario that has not been
predicted at design time would be unsupported.

In this PhD. work we propose to address these problems by increasing the
level of decoupling between system software and the interaction resources that
build the UI. The core idea is to introduce a new conceptual framework for AmI
UI development that is built on top of three levels of conceptual decoupling be-
tween the business logic, the UI control logic, and the interaction resources. This
framework is called the Threefold Interaction Abstraction Framework (TIAF)
and we describe it it detail in the following subsections.

4.3.2 The Threefold Interaction Abstraction Framework

In the previous subsection we have established two main requirements as-
sociated to AmI UIs: Support ubiquitous operation and support natural inter-
action in a variety of scenarios. Unfortunately, as we have seen in chapter 3,
supporting those requirements is not an easy goal, and it currently requires a
lot of effort by AmI developers. The objective of this PhD. thesis is to alleviate
this problem and facilitate the work of AmI developers by reducing the costs of
building AmI UIs that comply with those two big requirements.

With that purpose in mind, we have designed a conceptual framework: the
Threefold Interaction Abstraction Framework (TIAF), which establishes a set
of conceptual layers and components to support the development of AmI UIs,
significantly reducing the effort required to build AmI UIs that comply with
those two requirements.

The TIAF conceptual framework uses models to store and manage the
information that will drive the adaptation of the UIs to the environment and,
as its name suggest, it revolves around three different and complementary levels
of decoupling between the UI control logic and the interaction resources that
build up a final UI.

The first level is called Interaction Modality Abstraction (IMA). The ob-
jective of this abstraction layer is to logically decouple application code and



50 4.3. Supporting Ambient Intelligence UI Development

developer knowledge from the specific technologies of the interaction resources
(hardware devices or software components) used to build the final UI. The IMA
allows developers to design and implement their application business logic and
UI control logic without any knowledge about the final UI underlying APIs or
interaction modalities. As can be seen in figure 4.6, to build a specific UI us-
ing the IMA, it would only be required to select a set of adequate interaction
resources (IRs) and connect them to the IMA without any specific coding.

The second level is the Interaction Location Abstraction (ILA). This layer is
in charge of isolating application and UI control code from the physical location
of the IRs that physically interact with the user. The ILA allows developers
to implement their application code and UI control code without bearing in
mind the different networking protocols required to connect the application to
the diverse IRs used. Furthermore, the ILA also allows installers to physically
deploy the UI distributed and embedded in the environment, without requiring
any modification to the application or UI control code.

The third level is the Interaction Context Abstraction (ICA). The objective
of the ICA is to isolate developers and installers from the selection of the spe-
cific IRs used to build each particular UI implementation. While the IMA and
ILA make the implementation of different UIs for the diverse usage scenarios
easier and cheaper by decoupling the code from the technologies and network-
ing protocols of the IRs, the ICA solves the scalability problem or producing
multiple UIs for each scenario. The ICA liberates developers and installers from
the responsibility of manually selecting the set of concrete IRs to use in each
situation. Furthermore, the ICA allows systems to adapt their UI to different
scenarios at run-time, supporting even unpredicted ones.

The combination of these three layers, IMA + ILA + ICA, makes the
development of systems capable of true ubiquitous interaction easier. They
facilitate and reduce the costs of developing UIs capable of adapting themselves
to changing scenarios, using multiple modalities to interact with the user and
distributed devices to provide ubiquity support.

The remainder of this chapter is devoted to exploring these three abstrac-
tion layers in more detail.

4.3.2.1 Interaction Modality Abstraction

As the name suggests, the main objective of the Interaction Modality Ab-
straction layer (IMA) is to isolate the application developer’s knowledge from
the particularities of the specific modalities used to interact with the user. The
idea is to allow application developers to design and implement the business logic
and the UI control logic with low, or even no knowledge at all of the modalities,



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 51

Figure 4.6: The IMA layer facilitates the implementation of different UIs by
decoupling the UI control logic from the interaction resources. On the left, the
application without using the IMA layer. On the right, the application when
using the IMA layer.

technologies, and APIs required by the devices or software components used as
interaction resources.

Figure 4.6 provides a good overview of how the IMA modifies the archi-
tecture of an application and the dependencies of their components. An AmI
application without modality abstraction, but a good separation between busi-
ness logic and UI control logic, would present an architecture similar to the
one on the left of Figure 4.6. One implementation of the business logic would
be coupled to multiple implementations of the UI control logic, one for each
different interaction scenario supported by the application. On the contrary, as
we can see on the right of Figure 4.6, with the IMA, only one implementation
of the UI control logic is required. It is the IMA who manages the diversity of
interaction scenarios and their specific interaction resources.

Figure 4.7 shows a detailed view of the Interaction Modality Abstraction
layer modeled inside the TIAF conceptual framework. The IMA is the founda-
tion of the TIAF framework. It provides the most basic and important abstrac-
tion feature, decoupling the UI control logic and the UI design from IRs specific
modalities and APIs. From the developers point of view, it provides them with
a common conceptual model to support the design and implementation of the
UI control logic of AmI applications. This model, the Abstract Interaction
Model, for which a more detailed description is provided in subsection 4.3.2.4,
must provide conceptual abstractions for all the common interaction concepts,
so that developers have enough freedom to support the majority of interaction
scenarios. Developers design and build the UI control logic on top of those ab-



52 4.3. Supporting Ambient Intelligence UI Development

Figure 4.7: Detailed conceptual block diagram of the TIAF with support for
the IMA layer. The User Interface is defined by developers using the concepts
provided by the Abstract Interaction Model. Instances of those concepts are
used in the UI Control Logic to implement the particular behavior of the UI
and its interaction with the system’s business logic.

stract concepts, instead of specific elements from concrete technologies. It is the
responsibility of the IMA to provide translations between those abstracted inter-
action concepts and the specific APIs of the interaction resources used for each
scenario. This translation is performed by the Interaction Realization Module
(IRM), which relies on specific realization modules for each different IR tech-
nology utilized. This translation process can be either performed at run-time
or at build-time, depending on the implementation of the framework.

To better illustrate the benefits of the IMA, in the remaining of this sub-
section, we are going to explore how the TIAF simplifies the development of an
example application UI.

For the sake of simplicity, we have selected a small application example:
the control module of a meeting room presentation system that is in charge of
allowing the presenter to change from one slide to the next (or previous) one.

Lets suppose that an important requirement of this control module is that it
can be used with different modalities and IRs depending on the usage scenario.
Users must be able to change slides using one of various input methods, like a
mouse, graphical buttons, gestures, a remote controller, or voice commands.

If we have to build it following a similar approach to the one shown on the
left side of Figure 4.6, first of all, we will have to decide which IRs we want



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 53

to support. Each of them has a completely different API, and what is worse,
each of them follows a completely different paradigm of interaction. In order to
keep the business logic decoupled, we will be obliged to provide an abstraction
of that interaction interface in the UI Control Logic module interface, and then
we will have to implement one UI Control Logic module for each one of the
selected devices. As can be seen, even this very small UI requires a lot of work
in order to support interaction using different modalities and IRs.

Instead, if we build the UI using an implementation of the TIAF, we will
be able to model the UI using a set of abstract interaction widgets with which
our UI Control Logic can interact. This way, we are only required to provide
one implementation of the UI Control Logic, because the TIAF, using the IMA,
will be in charge of translating those abstract interactions into real interactions.
As can be seen, the amount of work required has been vastly reduced, but
that’s not all, the use of a TIAF implementation introduces an important side-
benefit. Application developers are liberated from becoming experts in a bunch
of device’s APIs, and furthermore, applications will be able to directly use any
device that the TIAF support, thus even facilitating the adaptation of an UI to
different and even unpredicted usage scenarios.

As indicated, the IMA effectively reduces the costs and complexity of AmI
systems that require support for multiple and varied interaction scenarios. De-
velopers can focus on the design and implementation of the business and in-
teraction logic, and then, at deploy-time, or even at run-time, select the most
suitable interaction resources (hardware or software) depending on the par-
ticular characteristics of the interaction scenario (physical environment, users,
etc.) without affecting their system implementation. The next chapter, and in
particular section 5.3, will provide a detailed description of a particular imple-
mentation of the TIAF and the IMA+ILA layers.

4.3.2.2 Interaction Location Abstraction

As explained in section 4.2, in order to support ubiquitous operation and
interaction, a common situation in AmI systems is to require the utilization of
a variety of devices that are physically distributed throughout the environment.
In those situations, AmI systems and their UIs are required to access one or
more networks of distributed devices, thus exposing developers to the knowledge
of those protocols, and coupling system logic to the concrete APIs and protocols
used by each IR.

As can be seen in the left part of Figure 4.8, without the ILA, the developers
of AmI UIs, where distributed IR access is required, must know how to use the
different networking protocols required by each IR, and modify the UI control



54 4.3. Supporting Ambient Intelligence UI Development

Figure 4.8: The ILA allows developers to use remote IRs without any knowledge
about the required specific networking protocols. On the left, an application
without the ILA has to access the IRs directly using their specific protocols. On
the right, an application with the ILA is isolated from the knowledge of specific
networking protocols.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 55

logic accordingly for each IR access paradigm. However, as can be seen in
the right side of Figure 4.8, if the ILA is used, the knowledge about the IRs
communication protocols and APIs is transferred to the ILA, thus completely
isolating application and UI developers from it.

In the TIAF framework, the ILA is conceptually introduced as an extension
of the IMA. As can be seen in Figure 4.9, in order to support the ILA concepts,
we have made the TIAF become a distributed framework where the specific
logic required to drive each different IR technology can be physical distributed
and separated from the interaction code.

We have decoupled and physically separated the Interaction Realization
Module from the set of particular IR realization modules supported by the
framework. This decoupling is achieved by the Generic Interaction Protocol,
a distributed network protocol that must be implemented by each IR realiza-
tion module. This protocol is designed to mimic the conceptual operations
supported by the Abstract Interaction Model. This way, the Interaction Real-
ization Module job is simplified, and now it will be operating like a router of
interaction operations from the UI Control Logic to the specific IRs that are in
charge of implementing particular interactions. In order for this to work, each
IR Realization Module is in charge of providing a concrete implementation of
the protocol interface for a specific device or technology.

With the introduction of the Generic Interaction Protocol, for which a more
detailed description is provided in subsection 4.3.2.5, and the physical separation
between the Interaction Realization Module and the IR Realization modules,
the UI Control Logic is now not only decoupled from the specific technologies
and APIs of each IR, but it is also decoupled from their physical location. This
opens the possibility of building ubiquitous UIs that can be implemented using
multiple IRs, with different modalities and deployed in different physical places.

Lets recall the example application introduced in section 4.3.2.1. Our slide
controlling module must now support distributed interaction. Looking at Figure
4.8, in the first case, we will have to provide a new specific UI Control Logic
implementation for each remote IR that we want to use, and we will also be
in charge of establishing and managing the network connections between the
application and the IRs. Again, the work is increased linearly with the number
of IRs to support, and furthermore, we are required to master the networking
protocols and/or remote APIs of each IR. However, by using the TIAF with
IMA+ILA support, we will not be required to modify even one line of code of
our application or UI Control Logic, because they interact only with abstract
interaction components, which will be transparently connected by the TIAF to
physically distributed IRs that will perform the required interactions.

Like in the case of the IMA, the use of an Interaction Location Abstraction



56 4.3. Supporting Ambient Intelligence UI Development

Figure 4.9: Detailed conceptual block diagram of the TIAF with support for
the IMA+ILA layers.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 57

Figure 4.10: Without the ICA, developers and/or installers have the respon-
sibility to select the adequate IRs for each scenario. With the ICA, it is the
system itself, based on context models, who, autonomously, selects the most
adequate IRs for each scenario.

layer allows reducing the development costs and complexity of AmI systems.
First, it allows application developers to focus on AmI business logic, avoiding
the need for networking expertise. Furthermore, it facilitates the use of dif-
ferent IRs that use diverse networking technologies or protocols, thus allowing
developers and system installers to use the best IRs available without affecting
the cost of supporting them.

Finally, the combination of an IMA and an ILA implementation allows
developers to use any kind of interaction resources with little or no knowledge
about the interaction modalities, APIs, operating systems, hardware architec-
tures, and networking protocols used by the IRs.

4.3.2.3 Interaction Context Abstraction

While the IMA+ILA combo make the development of multiple versions
of an AmI system’s UI for different interaction scenarios easier and cheaper,
the Interaction Context Abstraction layer (ICA) is designed to minimize the
scalability problem of that solution, liberating developers and installers, to a
great extent, from the need to design, implement, and deploy different versions
of the UI for each scenario. The main idea behind the ICA layer is to let the
system autonomously manage the selection of IRs that will be used for each
particular scenario [Varela, 2013].

Figure 4.10 shows the difference between using the ICA or not. If the ICA
is not used, developers must build the final UI for each scenario by selecting a set



58 4.3. Supporting Ambient Intelligence UI Development

of IRs adequate for the combination of physical environment, user and situation
characteristics. However, if the ICA is used, the system itself is in charge of
building the final UIs for each scenario. As can be seen, the ICA requires the
utilization of the IMA+ILA, so that the system can easily accommodate any IR
selected, and it uses the information provided by a set of context models (user,
environment, situation, etc.) to perform the selection of the best IRs for each
scenario.

Like in the case of the ILA, the ICA is integrated in the TIAF as an exten-
sion to the IMA conceptual architecture. As we have previously explained, the
Interaction Realization Module is in charge of translating abstract interaction
operations, defined by the Abstract Interaction Model, into real interactions
with the user. With the IMA+ILA approach, this translation is reduced to a
transformation of operations into messages of the Generic Interaction Protocol,
and the routing of these messages to the adequate destination, the IRs that
must perform the interaction. Without the ICA, the mapping between the ab-
stract operations of the UI and the distributed IRs that perform them must be
manually done by the developer or installer of the system. At deployment time,
she selects, among the IRs available, which one will perform each interaction
action. However, with the ICA, this selection will be done by the TIAF itself,
either at deploy-time or even at run-time.

For that purpose, as can be seen in Figure 4.11, we have extended the
framework with two new components. To drive the IR selection process, and
therefore the UI adaptation to the context, the ICA uses contextual information
that is exploited by a set of IR Selection Algorithms. This contextual informa-
tion is stored in a variable set of context models that can include a user model,
an environment model and a scene model. The user model provides information
about the user or users, like their preferences, physical characteristics, or motor
and mental abilities. The environment model contains information about the
physical place, for example, constraints like noise, visibility, or space. And fi-
nally, the scene model provides information about the activity that is currently
going on, like the number of users, the kind of activity, etc. A more detailed
description of these models will be provided in subsection 4.3.2.6 and in chapter
6.

The IR Selection Algorithms employ computational intelligence methods
to exploit the information available in the models to select, among a set of IRs,
those that better fit the interaction requirements of the application, defined
by the usage of the Abstract Interaction Model, and the needs of the user,
environment, and interaction situation.

Lets recall again the small example presented in the previous subsections.
The slide controlling module can be set up to use different IRs and modalities



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 59

Figure 4.11: Detailed conceptual block diagram of the complete TIAF frame-
work with support for the IMA+ILA+ICA layers.



60 4.3. Supporting Ambient Intelligence UI Development

depending on the context of use. For example, it can be set up to use a speech
recognition system for a user with motor disabilities, or a gesture recognizer to
operate the presentation with the hands. Nevertheless, this selection of which
IR to use in each scenario must be done by the installer of the system during
its setup. It is the installer the one in charge of selecting the most adequate
IR (among those available) depending on the scenario characteristics (user, en-
vironment, and situation). If the scenario is changed, the installer is required
to modify again the selection of the IRs in order to adapt the UI to the new
characteristics.

If we want this UI, and therefore, the presentation system, to be a truly
ambient intelligence system, it should be able not only to operate ubiquitously
(thanks to the ILA), but it should also be able to adapt its UI to the charac-
teristics of the context, so that the UI is kept within the margins of natural
interaction requirements. This is the job of the ICA layer. It is in charge of
selecting the most suitable IR for each interaction depending on the characteris-
tics of the usage scenario, which are obtained from the models that describe the
user, the environment, and the situation. Depending on the implementation of
the TIAF and its ICA layer, this selection could be done either autonomously,
at run-time, or semiautonomously, at deploy-time, with a tool performing the
selection for different scenarios, and the installer configuring the system for each
scenario.

As shown, by using the ICA it is not only possible to automate the building
of multiple UIs adapted to different interaction scenarios, but it is also possible
to support the dynamic change of scenarios, thus facilitating the development
of ubiquitous interactive systems like AmI or UC applications. The ICA, in
combination with a context monitoring system to detect context changes, can
be used to build and adapt, even at run-time, the UI of an AmI application as
the user moves from one physical location to another.

4.3.2.4 The Abstract Interaction Model

As we have briefly introduced in subsection 4.3.2.1, the Abstract Interaction
Model is the main medium of interaction between developers, AmI UI code, and
the TIAF framework. Its purpose is twofold. First, it must provide developers
with a common model to describe the interaction requirements of their UIs.
Second, it must provide a common set of operations to make use of the available
Interaction Resources.

In order to accomplish the first goal, the Abstract Interaction Model should
be able to represent very different Interaction Resources, modalities, and tech-
nologies behind a reduced set of generic concepts. But, in order to achieve the



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 61

second goal, this reduced set of concepts should provide developers with enough
expressive power to describe the user interaction requirements of almost any UI.

As discussed in section 3.3, during the last years there has been a huge
effort by the UI research community to apply Model-Driven Engineering (MDE)
techniques to UI development. Among those developments, there have been
many authors working on the design and development of models to describe
UIs at different levels of abstraction, especially following the abstraction level
division of Thevenin and Coutaz [Thevenin and Coutaz, 1999, Calvary et al.,
2001a, Balme et al., 2004]. Three prominent approaches are the TERESA
project [Berti et al., 2004, Mori et al., 2004], the MARIA project [Paternò
et al., 2009] and the UsiXML project [Vanderdonckt et al., 2004]. Inspired by
the ideas of the Cameleon conceptual framework, each of those projects have
been building a complete model-based UI development framework. At the core
of those frameworks, there are a set of models that allow developers to describe
the different aspects of an UI at different levels of abstraction. To build UIs,
those frameworks provide methods and tools to transform the models from one
level of abstraction to a more concrete one.

With so many projects already proposing solutions to model UIs at different
levels of abstraction, we decided that the best way to go would be to rely on
one of those solutions for the definition of the Abstract Interaction Model of
the TIAF.

By reviewing the different solutions available, as presented in section 3.3.1,
we have seen that those three projects have more in common than differences.
In fact, they all define almost the same abstraction levels and models, because
they are inspired by the works of Thevenin and Coutaz [Thevenin and Coutaz,
1999] and by the CAMELEON framewok [Balme et al., 2004]. Regarding user
interaction description, they have divided it into four different levels of abstrac-
tion:

• Task model. This is the highest level of abstraction. The UI is specified
as the tasks, and their related concepts, that the user must perform.

• Abstract interface model. This is a description of the UI in terms of its
interaction capacities. The description is done using generic interaction
resources that do not have an associated modality or a execution platform.

• Concrete interface model. It is a transformation of the abstract interface
where the interaction modalities of each interaction resources are already
selected. Multiple CUIs may exists for each AIU, because it is modality
dependent, and the same AIU can be build using different modalities.

• Final interface model. This is the final implementation of the UI. This



62 4.3. Supporting Ambient Intelligence UI Development

specification is already adapted to a context and uses the real interaction
capabilities available in a platform and environment. Each CUI model can
be also transformed into multiple FUIs, depending on the technologies and
APIs used.

The most interesting models for our purposes are the Abstract interface
models. In all of the cited frameworks, they serve the same purpose as in
the TIAF; they provide developers with a generic set of concepts, independent
of any technology or modality, to describe the interaction requirements of the
UIs. With that in mind, we decided to directly use the Abstract User Interface
Model of the UsiXML project as the Abstract Interaction Model of the TIAF.
It has great expressive power, a lot of tools to create and manage models, and
more importantly, this conceptual model has been proposed by the W3C for the
definition of a standard Interface Definition Language (IDL) for abstract user
interfaces.

Figure 4.3.2.1 shows a conceptual class diagram describing the Abstract
Interaction Model directly inspired by the UsiXML AUI Model. The core con-
cept of the AUI Model is the Abstract Interaction Unit (AIU). It is a generic
representation of the typical widgets found in graphical user interface toolkits.
Each AIU is associated to a set of different interaction facets (input, output,
selection..) that represent the interaction capabilities required by the AIU. Fur-
thermore, AIUs can be organized into hierarchies by defining AIUs that are
composed of other AIUs.

While the AIU is the main organizing element of the model, the inter-
action facets, InteractionSupport, EventSupport, and PresentationSupport, are
the elements that provide expressive power to it. By combining the three con-
cepts available in the model, it is possible to describe an AIU that requires five
different interaction actions:

• Action. The TriggerSupport indicates that the AIU requires some kind of
support to trigger actions. Like a button in a GUI.

• Input. DataInputOutputSupport can be used to indicate that the AIU
requires support to input, output, or both, some kind of data from the
user.

• Output. The same as above.

• Selection. The DataSelectionSupport indicates the requirement to support
a selection of an item between a collection of them.

• Focus. All the interaction support elements share a common interaction
operation to request the attention of the user.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 63

Figure 4.12: Class conceptual model of the Abstract Interaction Model directly
inspired by the UsiXML Abstract User Interface Model.



64 4.3. Supporting Ambient Intelligence UI Development

In order to describe a complete user interface, developers only have to
define a collection of interrelated AIUs, with each AIU describing a set of user
interaction operations requirements.

As can be seen, the UsiXML AIU Model defines quite a reduced set of
generic user interaction concepts, but it provides a great amount of expressive
power, enough to describe even large and complex interfaces, with multiple
interaction requirements [Vanderdonckt et al., 2004].

The Abstract Interaction Model is used by the TIAF not only as an IDL
to describe the user interfaces of AmI systems, but also to provide an operative
interface between the UI control logic and the interaction resources that finally
realize the abstract interactions.

4.3.2.5 The Generic Interaction Protocol

The Generic Interaction Protocol (GIP) [Varela et al., 2013b] is conceptu-
ally conceived as a distributed communications protocol that creates a generic
remote interface to any kind of interaction device. By implementing the GIP
interface, any device or interaction resource can be accessed using the same set
of concepts and operations, thus decoupling the application from the underlying
interaction technologies and the location of the devices.

As can be seen in Figure 4.9, the GIP is right between the control logic and
the interaction resources (physical devices, graphical widgets, voice recognition
software, etc.), decoupling them in two ways. On the one hand, as the GIP is a
distributed protocol, it provides physical decoupling between the system logic
and the UI components. On the other hand, it provides logical decoupling by
isolating interaction resources behind a common generic interface.

The GIP, in combination with the Interaction Realization Module, provides
a way to directly map Abstract User Interface (AUI) elements to the Final User
Interface (FUI) elements at runtime. Since the actual IRs available are already
known at the time the mapping is defined (run-time or deploy-time), the GIP
eliminates the need for the definition of different CUI and FUI models for each
modality and technology, because the TIAF allows developers to build the UI,
and its control logic, at the abstract level, and then connect that abstract logic,
at run-time, directly to the final IRs available.

The common generic interface provided by the GIP is in charge of abstract-
ing the behavior of concrete interaction resources. Thus, it should be generic
enough to support multiple kinds of modalities and interaction devices, fur-
thermore it must support all the expressive power of the Abstract Interaction
Model. Therefore, the operations supported by the GIP are directly inspired by
the Abstract Interaction Model and, because of that, by the UsiXML Abstract



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 65

User Interface Model [Vanderdonckt et al., 2004].

The GIP interface is designed to match the set of generic interaction facets
described by the Abstract Interaction Model. Each IR implementing the GIP
interfaces provides support for one or more interaction facets, thus facilitating
the establishing of a mapping between an AIU interaction facet and an interac-
tion resource that will perform that interaction.

Using the TIAF framework, each AIU described in the abstract UI model
of an application will be associated to a collection of IRs, each one of them
implementing one interaction facet. Therefore, a complete UI will be a collection
of physically distributed IRs, organized in AIUs and accessed through a remote
interface of generic interaction operations.

The GIP is designed as an event based distributed protocol following a hy-
brid publish/subscribe and one-to-one communications model. On one hand, a
series of publishers, the interaction resources, publish events notifying actions
that the user has performed (input/selection of data or activation of an ac-
tion) and a series of subscribers (usually the system UI controller) receive those
events and react accordingly. On the other hand, when the system logic has
to send some event to an interaction resource, it does it by using one-to-one
communications. This way, the interaction resources are more decoupled from
the system logic.

In order to match the design of the Abstract Interaction Model, the GIP
interface is made up of five different events: input, output, selection, action and
focus. The first four events are directly inspired by the UsiXML AUI model:

• input. An interaction resource informs its subscribers that the user has
performed a data input action.

• output. The system logic commands one or many interaction resources to
output some data to the user.

• selection. This event has two different meanings depending on the sender.
If it is sent by an interaction resource, it means that the user has made a
selection. Otherwise, it means that the system logic requires an interaction
resource to show a selection to the user.

• action. An interaction resource informs its subscribers that the user has
triggered an action.

• focus. The system logic requires an interaction resource to gain focus over
the user attention.

It is not mandatory for every interaction resource to support all GIP events.
There can be many kinds of interaction resources with different levels of support



66 4.3. Supporting Ambient Intelligence UI Development

for user actions. Some will support input and output, while others will support
only input or will not be able to reclaim the focus of the user.

Every GIP event has an associated set of data properties that indicate the
data an interaction resource is able to either output to the user, or gather from
it as input. These data items are represented as a string and have an associated
basic type (integer, double, byte or string), so that the system can know what
kind of information an interaction resource is able to represent.

In order to allow some level of customization of the user interface, GIP
events are enhanced with a set of properties called Interaction Hints (IH). They
are a set of fixed properties that developers can use to provide indications to
the interaction resources about an interaction action (for example: priority, size
or color). The support for IHs is not mandatory, and each interaction resource
can interpret them as it wants.

Even if the GIP design has been inspired by the UsiXML AUI model, it is
generic enough to be used in combination with other UI abstraction languages
or technologies or even without previously specifying the UI at an abstract level.

4.3.2.6 The Context Models

The ICA layer described in subsection 4.3.2.3 requires the use of a set of
context models in order to provide the system with a description of the context
in which the UI is going to be operated. The TIAF is designed to accommodate
a variable number of context models, so that different implementations of the
TIAF can use a different number and type of models. It will be the nature and
characteristics of the IR Selection Algorithms what will make the final selection
of context models.

Nevertheless, by analyzing the use cases and user types of the majority of
AmI systems, like the examples provided in section 4.2, and from our review of
the literature in adaptive systems of section 3.3.1, it seems almost mandatory
to include, at least, models that cover the following aspects of the context:

• User profile information. As previously described in section 4.3.2.3, the
capabilities and characteristics of users are a key aspect for the develop-
ment of natural user interfaces. Because of that, it seems important to
have information about the user abilities and capacities during the adap-
tation process. As described by the MyUI work on Requirements for User
Interface Adaptation [Edlin-White et al., 2010], this model may include
information about the variability that affects a person’s capacity to inter-
act with a system, like vision ability, hearing ability, or motor and psychic
capacities.



Chapter 4. Analysis and Design of a Framework for Ambient Intelligence UI
Development 67

• Environment profile information. The environment plays an important
role for ubiquitous natural user interfaces. The same UI will not be per-
ceived as natural in different environments like a car or a sports stadium.
Because of that, it also seems mandatory to provide the adaptation process
with information about the status of the environment. Again, the MyUI
work [Wolf et al., 2011] on models for User Interface Adaptation gives us a
good starting point for modeling a personal environment. This model may
include information like visibility, noise, environment movement, privacy,
etc.

• Scene or situation information. Almost all MDE frameworks for UI de-
velopment agree on the necessity of feeding the adaptation process with
information about the task that the user is performing. In TIAF, we pro-
pose the use of a scene or situation model to provide information on what
kind of task the user is performing and in what circumstances. It may
include information like whether the task is about work or leisure, it is
indoors or outdoors, etc.

When building a concrete implementation of the TIAF framework, devel-
opers should consider these models as a reference proposal. The TIAF does not
impose any limitation on the number and type of models to use, thus letting
developers use the models that better match the concrete field of application
and the IR Selection Algorithms implemented. Chapter 6 explores a reference
implementation of the ICA layer together with an implementation of the three
conceptual models proposed in this section (see section 6.3).





Chapter 5

Supporting Portable and
Distributed Physical User
Interfaces

"If you wish to make an apple pie from scratch, you must first
invent the universe."

Carl Sagan

5.1 Introduction

In the last chapter we have introduced the Threefold Interaction Abstrac-
tion Framework (TIAF), a conceptual framework designed to reduce the com-
plexity and costs of developing applications that support natural interaction
with ubiquitous operation. In this chapter, we are going to explore an im-
plementation of the TIAF conceptual framework called Dandelion. Its main
objective is to provide a reference implementation of the TIAF proposals and
conceptual architecture with the aim of demonstrating the benefits of the solu-
tions proposed.

The Dandelion Framework provides a complete implementation of the TIAF
conceptual distributed architecture with support for the three proposed levels of
decoupling. This chapter will be focused in the implementation and demonstra-
tion of the first two levels of decoupling, the Interaction Modality Abstraction
(IMA) and the Interaction Location Abstraction (ILA), leaving the Interaction



70 5.1. Introduction

Context Abstraction (ICA) details for the next chapter. This division is a result
of the differences in nature of the three levels. The IMA and ILA are highly
related to the implementation of the UI, the objective is to isolate developers
and their software from the complexities of the different technologies required
for an ubiquitous and natural UI. On the other hand, the ICA is related to the
users, the usage environment, and their diversity.

Dandelion has been designed and implemented as a UI development frame-
work for Ambient Intelligence systems. As a consequence, it provides an im-
plementation of the TIAF abstraction levels as a distributed user interaction
system that uses model-driven engineering techniques to make the development
of distributed physical user interfaces (DPUIs) easier and cheaper.

By using Dandelion, AmI developers are decoupled from the specific modal-
ities, technologies and even physical location of the Interaction Resources (IRs)
used to implement a particular DPUI. Developers can design and describe the
UIs at the abstract level using the UsiXML language, and then implement the
application UI control logic on top of the abstract concepts defined in the ab-
stract UI. Dandelion uses a distributed user interaction controller to connect
those abstract elements with the physical elements that perform the interaction
with the user. This connection is managed by Dandelion itself, that performs
the translation from the abstract concepts to the real interaction with the user.
It does so by relying on a series of distributed proxy-like components that ele-
vate any kind of device or software component to the status of an Interaction
Resource (IR). They provide a common interface of interaction operations that
is remotely accessible though a networking protocol called the Generic Inter-
action Protocol (GIP) [Varela et al., 2013b, Varela et al., 2013a]. Finally, in
order to facilitate compatibility with a wide range of physical devices, Dandelion
introduces a device abstraction technology called UniDA [Varela et al., 2011],
which decouples Dandelion from the specific APIs of each device manufacturer.

This chapter is devoted to provide a thorough description of the Dandelion
Framework architecture and how it realizes the IMA and ILA levels of the TIAF.
Sections 5.2 provides an overview of the framework, while sections 5.3 and 5.4
provide a detailed description of the Dandelion IMA and ILA, respectively,
and section 5.5 provides a description of the UniDA device abstraction layer.
Finally, the last section, 5.6, is dedicated to exploring the implementation of
several examples of AmI systems to show how they benefit from the solutions
proposed by the TIAF and implemented by Dandelion.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 71

Figure 5.1: Dandelion deployment block diagram. UI Control logic is decou-
pled from the interaction resources by the Dandelion UI management system.
Furthermore, Dandelion relies on UniDA to support a wide range of physical
devices (sensors, actuators, appliances, etc.) from different manufacturers.

5.2 The Dandelion Framework

As previously introduced in section 5.1, Dandelion has been conceived as
a reference implementation of the conceptual architecture and solutions intro-
duced in section 4.3. In particular, it has been designed as a UI development
framework for AmI systems, facilitating the design and implementation of dis-
tributed physical UIs, capable of adapting their shape to the usage scenario in
order to preserve the system’s natural interaction constraints.

Figure 5.1 shows a block deployment diagram of a system using the Dande-
lion framework. As can be seen, the system logic and the interaction resources
operate in a distributed manner, with Dandelion in the middle decoupling them.

As an implementation of the TIAF framework, Dandelion provides decou-
pling mainly at three different levels. First, Dandelion provides an implementa-
tion of the IMA abstraction level, thus achieving logical decoupling between the
UI control code and the interaction modalities, APIs, or specific technologies
used by the devices that implement the UI. Second, by implementing the ILA
level, Dandelion provides physical decoupling, so that the system logic can be



72 5.2. The Dandelion Framework

Figure 5.2: Dandelion detailed architecture block diagram.

run without knowing where the devices implementing the UI are going to be
physically deployed. And third, the implementation of the ICA level allows the
decoupling between the system and the specific set of IRs used to build the UI,
thus allowing the UI to change its shape (the set of IRs) at run-time, without
affecting the application code.

Figure 5.2 provides a detailed overview of the Dandelion architecture and
how the different components of the framework support those three levels of
abstraction.

The IMA level is supported by the utilization of model-driven engineering
techniques to permit the design of the UI and the implementation of the UI
control logic. Dandelion allows developers to design UIs at a declarative and
abstract level using the UsiXML Abstract UI model, and then implement the
UI control logic on top of those abstract concepts. Therefore, as can be seen
in Figure 5.2, the UI designer and the UI control logic are effectively decoupled
from the concrete interaction resources used. A detailed description of the
Dandelion IMA implementation is provided in section 5.3.

The ILA level is supported by an implementation of the GIP distributed
device abstraction layer that encapsulates the specific behavior of each device
behind a generic interface of user interaction operations. This implementation
of the GIP is based on publish/subscriber messaging technologies, where the set
of interaction actions supported by the GIP are represented as events published
and received by distributed Interaction Resources. Any device or software com-



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 73

ponent that implements this event-based interface is called a Final Interaction
Object (FIO), and it is in charge of translating abstract interaction actions into
real and physical interactions with a user. Every FIO, independently of their
technologies or APIs, can be remotely accessed using the same set of concepts
and operations, thus the GIP and the FIOs decouple the application code from
the location of the interaction resources and from their underlying technologies
and interaction modalities. Section 5.4 provides a complete description of the
Dandelion ILA implementation.

The FIOs are the elements in charge of finally connecting Dandelion with
the real devices and software components that realize the interaction to the user.
To support the wide variety of IRs available, it is mandatory for Dandelion to
count on a large number of different FIO implementations. In order to alleviate
this problem, and reduce the cost of supporting a wide number of devices, we
have introduced a device abstraction technology, called UniDA, which provides
Dandelion with an homogeneous device access framework to control a network
of heterogeneous devices like sensors, actuators, or appliances. UniDA allows
the development of generic FIOs capable of using devices from different man-
ufacturers, with different APIs and protocols. The UniDA framework will be
described in detail in section 5.5.

The IMA+ILA combination, which allows the design and implementation
of distributed physical UIs without specific knowledge of the underlying IR tech-
nologies, is supported by managing a mapping between the abstract interaction
elements of the UI (from the UsiXML AUI model) and a specific set of FIOs
for each usage scenario.

Finally, the ICA level is provided by a dynamic UI management system
capable of modifying, at run-time, the mapping between the abstract UI of an
application and the specific set of FIOs used for each scenario. In Dandelion
this mapping is managed by the User Interface Builder component, which relies
on a set of context models and a variety of computational intelligence (CI)
algorithms to select the best suitable FIOs (IRs) for each scenario, among those
available in a FIO repository.

As a final note about the Dandelion framework, it is important to mention
that the implementation of the framework shown in this chapter and in chapter
6 has been released as open source software under the GNU Affero GPL v3
license, and it is accessible through a public GitHub repository available at
https://github.com/GII/Dandelion. We think that it is important for software
engineering thesis to provide implementations of the solutions proposed, not
only to demonstrate their validity, but also to possibilitate the comparison with
other solutions, and to provide the research and developer community with
usable solutions for the problems addressed by the thesis.



74 5.3. Portable Physical User Interfaces

5.3 Portable Physical User Interfaces

As previously indicated, this chapter is devoted to explaining the details of
the implementation of a reference framework supporting the first two levels of
abstraction proposed by the TIAF: the Interaction Modality Abstraction and
the Interaction Location Abstraction. In the previous section, we have presented
a small overview of that framework, Dandelion, and, in this section, we are going
to explore the details of the Dandelion components and technologies that are
mainly related to the support of the IMA abstraction level.

We have already shown, in section 4.3.2.1, how much physical user inter-
face (PUI) developers can benefit from having solutions to decouple their code
from the modalities, APIs, and specific technologies of the different physical
interaction resources (IRs) used to build a PUI.

A common problem of systems using PUIs without a good decoupling be-
tween UI control logic and the IRs is the difficulty of deploying them in different
scenarios, with diverse constraints and different IRs.

Without a good decoupling, there are two main options to deploy a PUI in
different scenarios. Either use the same IRs in every scenario, which can hinder
the integration of the system in the environment and its natural interaction
perception, or modify the system’s code to support new IRs (with different
APIs, modalities, etc.) more suitable for the characteristics of the new scenario,
which requires a lot of development effort.

The objective of the IMA layer is to alleviate this problem, making it easier
for developers to deploy the same control logic with different sets of IRs, thus
effectively improving the portability of PUIs between scenarios. The main idea
is that, by implementing the UI control logic on top of the IMA conceptual
model and API, developers and their code are isolated from the differences and
particularities of the different IRs available. This way, the same code can be
deployed on top of the most suitable devices for each scenario.

Dandelion, as a reference implementation of the TIAF, employs Model-
Driven Engineering (MDE) techniques to support the IMA. Particularly, Dan-
delion requires developers to specify the UI interaction requirements using an
abstract user interface model. This model provides developers with elements to
represent user interaction actions in a generic way, thus allowing developers to
specify a generic model of the interaction actions supported by their systems.

The abstract model of the UI is managed by the Dandelion User Interface
Controller (DUIC), which provides developers with an API to manage and con-
trol the UI. The DUIC allows developers to directly use the abstract UI model to
execute and/or receive interaction actions from the IRs that implement the final



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 75

UI. The DUIC is in charge of performing the translation between the generic
abstract interaction elements and the final and real interaction resources.

The majority of frameworks that apply MDE techniques for UI develop-
ment start from abstract models and perform a succession of transformations
to lower level abstraction models until a final UI is achieved. However, in Dan-
delion, we decided to perform the transformation directly, going from abstract
to final in just one transformation step.

This decision is the result of the differences in the operational nature be-
tween those frameworks and Dandelion. While the majority of frameworks
based on model transformations operate at development-time, Dandelion oper-
ates at run-time.

MDE frameworks for UI development usually employ models as a sup-
portive tool to guide developers during the development of the system. Thus,
the transformation from abstract to final is performed by the developers at
development-time. Consequently, the set-up of the scenario (the IRs available
and the characteristics of the environment) is not known. For this reason, these
frameworks start from the abstract UI and produce different versions of the UI
at different levels of abstraction. First, the concrete UI level, where the interac-
tion modalities are already selected, and then, the final UIs, which are multiple
versions of each modality where the final implementation technologies or APIs
are decided.

However, Dandelion performs the transformation at run-time, where the
characteristics of the scenario are already known. We can avoid the intermediate
transformation steps and go directly from the abstract to the final UI because we
know which IRs are available, which are the characteristics of the environment
and the user, etc. We don’t have to start by selecting the modality and then
the concrete implementation. We can already start by selecting particular IRs
to implement each of the interaction actions specified in the abstract UI model.

By taking advantage of this characteristic of Dandelion, developers are only
required to implement their UI control logic on top of components that represent
abstract user interaction primitives. In fact, developers can work completely at
the abstract level following the process illustrated in the Figure 5.3. They can
design the UI using the set of concepts provided by the UsiXML Abstract UI
Model, then specify the design in an XML file, and finally implement the UI
control logic on top of the Dandelion UI Controller interface, which provides a
very simplified interface to issue and receive user interaction actions. It is at
deployment time where the transformation from abstract to final is specified by
the installer of the system. This specification, essentially a mapping between
abstract and final components, is used by Dandelion at run-time to translate
the abstract interaction operations into real interactions with the users.



76 5.3. Portable Physical User Interfaces

Figure 5.3: Dandelion portable UIs development process with IMA+ILA lay-
ers. In chapter 6, we will see how Dandelion implements the ICA to manage,
at run-time, the mapping between abstract and final components, liberating
developers/installers from that responsibility.

As previously indicated, this section is focused on the IMA+ILA layers,
this is why the transformation from abstract to final, and thus, the adaptation
of the UI to the context, is performed by a human installer. In chapter 6, we will
see how Dandelion implements the ICA to manage, at run-time, the mapping
between abstract and final components.

The next subsections explain the Dandelion development process in detail,
starting from the abstract specification of the UI, then the implementation of
the UI control logic, and finally the mapping from abstract to final.

5.3.1 Abstract UI Design and Specification

In Dandelion, as with almost any UI development framework, the first step
for developing portable Physical UIs is to design the UI. The key character-
istic of Dandelion is that this design must be performed at a very abstract
and conceptual level. Developers are only required to specify the user interac-
tion requirements of the application. Dandelion then relies on the Abstract UI
model to allow developers to specify the user interaction requirements of their
applications. This model, as indicated in section 4.3.2.4, provides support for a
reduced set of only five different abstract user interaction primitives:



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 77

• The user can input information to the system.

• The system can output information to the user.

• The user can select information from a collection shown by the system.

• The user can request the execution of an action by system.

• The system can request the focus of the user to an specific element of the
UI.

Consequently, the user interaction requirements specification of an appli-
cation is reduced to a formal description of:

• How many information elements are going to be shown to the user.

• How many information elements are going to be introduced by the user.

• What type of information is going to be shown or introduced.

• How many interaction actions is the user allowed to perform.

• How the different components are organized and related to each other in
the UI.

As previously indicated, this specification of the UI requirements is achieved
using the Dandelion Abstract UI model, this is, as indicated in subsection
4.3.2.4, the UsiXML Abstract UI Model (AUIm) shown in Figure 4.12 of section
4.3.2.4. This model introduces the Abstract Interaction Unit concept (AIU) as
an abstract representation of the widgets found in classical GUI toolkits. The
AIUs work as containers for interaction primitives, thus allowing the specifica-
tion of the relations between the different user interaction elements. Further-
more, AIUs can also contain other AIUs, thus permitting the specification of
the UI shape at an abstract level using a hierarchical organization.

User interaction primitives are represented in UsiXML AIUm by the con-
cept of interaction facet. They represent the different interaction features (in-
put, output, selection, etc.) supported by an AIU, and each AIU can have
many different facets (e. g. one input facet and two selection facets). There
exist five different types of interaction facets to match the five different kinds
of interaction primitives supported by the model:

• The DataInputOutputFacet can be used for user input, output, or both,
depending on its parameters.

• The DataSelectionFacet can be used to specify user selection primitives.



78 5.3. Portable Physical User Interfaces

Figure 5.4: Sketched GUI version of the OMNI notification subsystem UI.

• The DataTriggerFacet can be used to specify system actions that can be
issued by the user.

• The RequestFocusFacet can be used to specify that an AIU must support
a way to request the focus of the user.

Both model elements, AIUs and interaction facets, can be parameterized
with important requirement information like data type or data cardinality,
among others.

In order to facilitate the comprehension of how the different concepts pro-
vided by the Abstract UI Model can be used to design UIs from an abstract
point of view, we are going to explore some examples of abstract UI design and
specification in the next part of this section.

Let’s start with a small and simple example: the UI of the OMNI notifi-
cation subsystem presented in section 4.2.1. It is a fairly simple UI that in a
GUI system would be implemented as a dialog window with a label and one
or two buttons as shown in Figure 5.4. Thinking about their specification in
interaction primitives, it requires to output one piece of information to the user,
the notification message, and it must allow the user to perform two different
actions, either confirm the notification or reject it.

The code listing of Algorithm 5.1 shows a simplified version of the XML
code required to specify the UI with the UsiXML AIUm. We use one Abstract
Interaction Unit as a container for the different interaction facets, taking the
roll of the dialog window. Then, we need to use three interaction facets: one
DataInputOutputFacet for outputting the message, and two TriggerFacet for
allowing the user to issue the ’yes’ or ’no’ actions.

As can be seen, a small UI can be specified with little effort just by de-
scribing the interaction primitives required, and by organizing them into AIUs
in order to specify how the different interaction elements are logically related
to each other.

Lets now take a look at a slightly more complex example of user interface;
the one of the Environmental Music Player described in section 4.2.2. As shown
in Figure 5.5, while still being a small UI, it requires many more interaction



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 79

Algorithm 5.1 XML code describing the OMNI notification UI with UsiXML.
<!– notification dialog –>
<aui:AbstractUIModel>

<aui:AbstractInteractionUnit id="NotificationDialog" ... >
<aui:DataInputOutputFacet id="NotificationMessage"
minCardinality="1" maxCardinality="1" dataFor-
mat="string" inputSupport="false" outputSup-
port="true" ... >

<aui:dataType>text</aui:dataType>
</aui:DataInputOutputFacet>
<aui:TriggerFacet id="YesAction">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>
<aui:TriggerFacet id="NoAction">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>

</aui:AbstractInteractionUnit>

</aui:AbstractUIModel>

primitives and specially more diverse ones.

Algorithm 5.2 shows a reduced version of the specification of the player
controls part of the EMP UI. This part of the UI is in charge of providing the
user with the required controls to manage the playing of music. This includes
the ability to change from one song to the next, start or stop playing music,
change the music style, or change the volume of the audio. These last two
requirements, change the music style or change the audio volume, are the most
interesting part of this example.

Regarding the volume selection, it could be designed in multiple ways. One
possibility would be to model it as two separate actions, one to increase the

Figure 5.5: Sketched UI of the Environmental Music Player using WIMP user
interfaces. Already shown in Figure 4.3.



80 5.3. Portable Physical User Interfaces

volume and another one to decrease it, thus managing the state of the volume
in the application logic. Nevertheless a better option seems to be to model it as
a data selection primitive, that is, a DataSelectionFacet. This kind of primitive
allows the selection of one (or more) data values from a group. Thus, in this
example, it allows the selection of a number between 1 and 100, and it internally
keeps control of the state of the selection.

The music style selection is a little bit more complex than the volume
selection. In this case, it is not easy to model it as individual actions, because
the number of music styles available can be dynamic and vary depending on
the collection of music available, thus it is mandatory to model it as a selection
primitive using text items. These items will be dynamically provided by the
application logic at runtime.

The example of the EMP UI is also useful to show how the Abstract Inter-
action Unit concept can be used in different ways to organize the UI elements.
In the control part of the UI, we use a main AIU as container for all the con-
trols (imagine it as a kind of an internal panel in a GUI), and then, we use
three AIUs to organize the different facets required by the UI. One AIU for
music player controls, one for song selection, and one for volume selection. This
organizational information is not only useful to facilitate the design by taking
advantage of the famous divide and conquer strategy, but it can also be used by
Dandelion as hints to select and manage the final and physical realization of the
UI. For example, keeping the controls together, physically separating controls
of different AIUs, etc.

It is important to note that input and output are not relegated to only basic
data types, like numbers or text. As shown in section 4.3.2.4, they support a
set of data types including images. For example, in the case of the EMP, it
requests to output the images of the album art for each song. In the code
listing of Algorithm 5.3, we display how a DataInputOutputFacet can be used
to output/input images to/from the user.

In this section, we have shown how the Dandelion Abstract UI Model can
be used to describe user interfaces at the abstract level, specifying their user
interaction requirements as generic interaction primitives, and organizing them
into containers in an hierarchical way. We have presented a couple of simple
examples for illustration purposes. Nevertheless, in subsection 5.6, the reader
will find a more complete version of those examples.

5.3.2 UI Control Logic Implementation

Recalling the process shown in Figure 5.3, once the UI has been designed
and specified at the abstract level, the next step is to implement the UI control



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 81

Algorithm 5.2 XML code describing the player controls part of the Abstract
UI model for the EMP.

...
<aui:AbstractInteractionUnit id="PlayerControl"">

<aui:Composition rationale="player control panel">
<aui:AbstractInteractionUnit id="PlayStop">

<aui:TriggerFacet id="PlayAction">
<aui:triggerType>operation</aui:triggerType>

</aui:TriggerFacet>
<aui:TriggerFacet id="StopAction">

<aui:triggerType>operation</aui:triggerType>

</aui:TriggerFacet>
</aui:AbstractInteractionUnit>
...
<aui:AbstractInteractionUnit id="VolumeControl">

<aui:DataSelectionFacet id="VolumeSelector"
start="1" end="100" isContinuous="true" se-
lectionType="SINGLE">

<aui:dataType>number</aui:dataType>
</aui:DataSelectionFacet>

</aui:AbstractInteractionUnit>
...
<aui:AbstractInteractionUnit id="MusicStyleControl">

<aui:DataSelectionFacet
id="MusicStyleSelector" isContinuous="false"
selectionType="SINGLE">

<aui:dataType>text</aui:dataType>
</aui:DataSelectionFacet>
<aui:DataSelectionFacet
id="MusicMoodSelector" isContinuous="false"
selectionType="SINGLE">

<aui:dataType>text</aui:dataType>
</aui:DataSelectionFacet>

</aui:AbstractInteractionUnit>
</aui:Composition>

</aui:AbstractInteractionUnit>
...



82 5.3. Portable Physical User Interfaces

Algorithm 5.3 XML code describing the audio metadata part of the Abstract
UI model for the EMP.

...
<aui:AbstractInteractionUnit id="MusicMetadata">

<aui:Composition rationale="player music metadata panel">
...
<aui:AbstractInteractionUnit id="AlbumMetadata">

<aui:DataInputOutputSupport id="AlbumCover"
dataFormat="image" inputSupport="false" outputSup-
port="true">

<aui:dataType>image</aui:dataType>
</aui:DataInputOutputSupport>
<aui:DataInputOutputSupport id="AlbumTitle"
dataFormat="string" inputSupport="false" outputSup-
port="true">

<aui:dataType>text</aui:dataType>
</aui:DataInputOutputSupport>
...

</aui:AbstractInteractionUnit>
...
</aui:Composition>

</aui:AbstractInteractionUnit>

logic code. This logic is specific for each application and it is in charge of
defining how it uses the different UI elements in order to exchange information
between the system and the user. It specifies, for example, when a message is
going to be shown to the user, what to do with the information introduced by
the user, or what business logic action to execute when the user issues a specific
UI action. More generally speaking, the job of the UI control logic is to fill the
gap between the business logic and the UI, thus decoupling one from the other.

As an implementation of the TIAF, the main characteristic of Dandelion
regarding this topic is that, given that the UI is designed at the abstract level,
the UI control logic can also be implemented on top of the same abstract UI
concepts. Dandelion provides developers with an external façade, the Dandelion
UI Controller (DUIC) interface shown in Figure 5.6, that exposes the function-
ality of the framework through a reduced set of operations tightly related to
the abstract concepts proposed by the Abstract UI Model. All the operations
exported by the DUIC interface are executed over abstract elements (AIUs and
interaction facets), which are then translated by the Dandelion User Interface
Controller (an implementation of the TIAF’s Interaction Realization Module
described in section 4.3.2.1 and Figure 4.7) into real operations over the IRs.
Thanks to that, by building the interaction control logic on top of this set
of abstract interaction operations, developers are able to completely decouple
that logic from the technologies, APIs, and specific hardware of the Interaction



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 83

Figure 5.6: External interface of the Dandelion User Interface Controller as seen
by developers and UI control logic code.

Resources (IRs).

As can be seen in Figure 5.6, this reduced set of operations supports all the
five interaction primitives proposed by the Abstract UI Model. In particular, it
allows the system to request Dandelion to:

• Show some information to the user.

• Show a collection of information items to the user, and let she select one
of them.

• Gain the user focus over an specific element (AIU) of the UI.

• Notify a callback system object when the user inputs some information.

• Notify a callback system object when the user triggers the execution of
some action.

It is noteworthy that all of these operations are abstract, and neither the UI
model or the UI control logic specify how they are implemented. As we will see
in more detail in section 5.3.3, it is the responsibility of the DUIC to provide a
concrete implementation of those abstract operations, specifying, for example,
how the UI is going to gain the focus of the user over a specific part of it, or
how the UI is going to show an information message to the user.

Just to clarify how the DUIC interface can be used to implemented the
UI control logic, let’s examine some small code examples from the EMP UI



84 5.3. Portable Physical User Interfaces

Algorithm 5.4 UI Control Logic code required to set the business logic actions
that must be called when the user triggers the actions to start playing music or
to stop it in the EMP example.

AbstractInteractionUnit playerControlAIU =
app.getAbstractUI().getAbstractInteractionUnitById("PlayStop");

TriggerFacet playTriggerFacet = (TriggerFacet)
playerControlAIU.getInteractionFacetById("PlayAction");

dandelionUIC.registerActionCallback(
playerControlAIU, playTriggerFacet, new StopActionCallback(musicPlayer));

TriggerFacet playTriggerFacet = (TriggerFacet)
playerControlAIU.getInteractionFacetById("StopAction");

dandelionUIC.registerActionCallback(
playerControlAIU, playTriggerFacet, new PlayActionCallback(musicPlayer));

example. Algorithm 5.4 shows a small JAVA code snippet from the EMP ex-
ample. This code uses the DUIC façade to configure the callback objects, from
the business logic, that must be called by Dandelion when the user triggers the
actions “PlayAction” or “StopAction” specified in the Abstract UI.

Following with the example of the EMP, the code listed in Algorithm 5.5
shows how to use the DUIC interface to output a string message to the user, in
this case the title of the song that the EMP is playing.

As can be seen in these small examples, the implementation of the UI
Control Logic is completely free of any details about how the UI is going to be
finally implemented. It is coded just on top of the abstract interaction elements
specified in the Abstract UI Model and by using abstract interaction operations
and primitives.

Finally, it is important to note that, unfortunately, the fact of designing
the UI and implementing the control logic at such a high level of abstraction has
an important drawback. As happens with any kind of abstraction technology,
many details and particular capabilities of the IRs are hidden to the developers,
thus hindering the fine grain customization of the UI and the user experience.
It is more difficult for developers to take advantage of all the particular possibil-
ities of each technology and device, and it is more difficult to implement highly
customized UI behaviors. This is a common and, to some extent inevitable,
issue of abstraction technologies. However, in Dandelion each abstract inter-
action operation supported by the DUIC can be customized by a collection of
Interaction Hints (IHs). They are fuzzy variables indicating suggestions or hints



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 85

Algorithm 5.5 UI Control Logic code required to output the song title string
to the user. It is executed each time the song changes.

//show the song title to the user
dandelionUIC.showOutput(

currentSong.getID3v1Tag().getSongTitle(),
songMetadataAIU, songTitleFacet, new Hash-
Set<FuzzyVariable>(0));

to the DUIC about how the developers want that operation to be implemented.
Some examples of Interaction Hints are the privacy level, the importance level,
or the color used to show an interaction operation.

5.3.3 From the Abstract to the Final User Interface

As shown in Figure 5.3, once the UI has been designed and the UI control
logic implemented, the system is ready for deployment. It is at that point where
the final UI has to be assembled for each specific usage scenario. In this section,
we are describing the Dandelion implementation of the IMA and ILA layers
without ICA support, thus, the selection of which particular IRs are going to
be used in each scenario is managed, manually, by the developer or system
installer during the deployment of the system in a particular scenario.

In Dandelion, the IMA and ILA layers are highly related because, as we
will see in more detail in section 5.4, the Particular IR Realization Module (see
Figure 4.7 and subsection 4.3.2.1) is directly implemented using the GIP and
remote proxy components that work as abstractions of the real IRs available.
As the GIP continues to provide an abstract interface of interaction primitives
directly inspired by the UsiXML Abstract UI model, the process of building the
final UI consists exclusively on selecting, among the physical IRs available, those
that better match the needs of the scenario, and then, establishing a mapping
between the different interaction facets specified in the UI abstract model and
the interaction capabilities of the IRs. The next section will provide much more
detail on how the IRs are abstracted and connected to the UI control logic.

The selection of the IRs to build the final UI is the only point where the
developers or installers are not decoupled from the context and the particular
devices available. This is because they must bear in mind the characteristics
of the context (environment, user, use case, etc.) and the characteristics of the
IRs (modalities, physical characteristics, etc.), but, as can be seen, this happens
only at deploy time, thus the system has great portability to different scenarios,
possibilitating, as shown in Figure 5.7, the deployment of different UIs, depend-
ing on the scenario, without affecting the system’s code. Furthermore, even if



86 5.4. Distributed Physical User Interfaces

Figure 5.7: Many different UIs can be deployed for the same Abstract UI def-
inition and the same UI Control Logic. The installer of the system only has
to specify different mappings, between abstract and final UI elements, for each
scenario.

developers and installers are not decoupled from the context and characteristics
of IRs, they continue to be decoupled from their technologies and APIs.

In the next section, we are going to explore in detail how Dandelion imple-
ments the connection between the Abstract UI and the final IRs by implement-
ing the ILA and the GIP.

5.4 Distributed Physical User Interfaces

In the last section, we have shown how Dandelion implements the IMA
to facilitate the development of highly portable Physical User Interfaces. The
IMA in Dandelion allows developers to design and implement their UIs on top
of abstract user interaction components that are then transformed into final
and real interaction resources at deploy-time and run-time [Varela et al., 2013a,
Varela et al., 2014]. In this section, we are going to describe in detail the
implementation of the ILA, which in Dandelion is highly related to the IMA,
because, as we will see, it is an essential part of how Dandelion implements the
transformation from abstract to final UI.

Figure 5.8 shows a detailed overview of the ILA implementation in Dande-
lion. As can be seen, there are three main software components:

• The UI Controller. It is the link between the IMA and the ILA layers.

• The General Interaction Protocol (GIP). It provides distributed access to



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 87

Figure 5.8: Detailed overview of the ILA implementation in Dandelion. The
UI Controller operates as a router of abstract interaction operations from the
UI Control Logic to the Final Interaction Objects, using the GIP as transport
protocol.

the IRs using an interface of generic user interaction operations inspired
by the Abstract UI model.

• The Final Interaction Objects (FIOs). They provide concrete implemen-
tations of the GIP interface, translating the generic abstract concepts and
operations to the particular APIs of each IR supported.

The UI Controller lies between the IMA and ILA layer. It is an implemen-
tation of the Interaction Realization Module of the IMA but, thanks to the GIP,
its behavior is quite simple, it operates as a router of abstract user interaction
operations.

As introduced in subsection 4.3.2.5, the GIP event interface matches closely
the operational interface of the DUIC. Both support the same five different user
interaction primitives (input, output, selection, action and focus). Therefore,
the job of the DUIC is reduced to using the mapping between abstract and final



88 5.4. Distributed Physical User Interfaces

UI (FIO Mapping), established by the installers, to decide which FIOs must
receive a particular operation requested to the DUIC. For example, when the
DUIC receives a request to perform an output or gain the focus of the user,
it transforms the operation into a GIP event, looks at the FIO mapping table,
and sends it to a set of FIOs through the network. These FIOs are in charge
of translating those abstract operations into particular actions using the APIs
of their IR. The process is the reverse when the interaction operation is started
by the user. For an input or action operation, the FIO generates a GIP event
that is received by the DUIC and, again, using the mapping, the DUIC calls the
callback operation associated to the interaction facets mapped to that particular
FIO.

After this brief explanation of how the Dandelion ILA works, and what is
the main role of the DUIC, we are going to explore in detail the implementation
of the other two main components of the Dandelion ILA, the GIP and the FIOs,
in the next two subsections.

5.4.1 The Generic Interaction Protocol

The Generic Interaction Protocol [Varela et al., 2013b], already introduced
in subsection 4.3.2.5, is used by Dandelion to provide the decoupling between
the system and the IRs at two levels. First, it is the main element that en-
capsulates the behavior of heterogeneous IRs behind a common set of abstract
interaction operations. Second, as a distributed network protocol, it decou-
ples the system from the physical location of the IRs. Because of that, even
if it is more related to the ILA, in Dandelion, the GIP is a key element of the
IMA+ILA combination.

As the GIP is conceptually designed as an event based protocol, we decided
to implement it using a messaging protocol that supports the publisher/subscriber
paradigm. Each component of the system, essentially the DUIC and the FIOs,
will act as a publisher or subscriber of GIP events, depending on the situa-
tion. Therefore, on the one hand, the FIOs will act as publishers of GIP events
generated from actions of the user, while the DUIC will act as a subscriber of
those events. On the other hand, the DUIC will act as a publisher of events
generated from operations requested from the UI Control Logic and the FIOs
as subscribers of those events.

As previously indicated, the FIOs are in charge of translating physical
user interaction actions into GIP events representing those actions, and then
send those events to every DUIC that is using the FIO. For that purpose, as
shown in Figure 5.9, by taking advantage of the publish/subscribe paradigm
characteristics, every FIO, on startup, creates its own topic in the messaging



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 89

Figure 5.9: Each FIO creates its own topic in the broker and then uses it to
publish its generated GIP events. DUICs of all the applications using that FIO
are subscribed to that topic.

broker and uses the topic to publish its own GIP events. Then, every DUIC
interested in the events of a particular FIO only needs to subscribe itself to the
FIO topic. Furthermore, in order to send GIP events to the FIO, the DUIC
uses that same topic to publish them.

Dandelion uses STOMP [STOMP, 2012] (Simple Text Orientated Messag-
ing Protocol) as the transport protocol for GIP events and ActiveMQ [Apache-
Foundation, 2015] as the default messaging broker. This selection of technolo-
gies allows us to acquire two important characteristic for the Dandelion GIP
implementation. The use of ActiveMQ allows us to use the standard JMS API
[Monson-Haefel and Chappell, 2000] for the implementation of the DUIC using
Java. Furthermore, ActiveMQ abstracts its clients from the particular messag-
ing protocol used, thus, even if STOMP is the recommended transport proto-
col, it could be possible to use a different one, or even mix multiple protocols,
with different FIOs using different protocols depending on their implementation
technologies. So, why is STOMP the recommended protocol? Because, as its
name suggests, it is a very simple text protocol, very easy to implement, very
light on resources, and thus, very portable across devices and software plat-
forms. Furthermore, in order to facilitate even more the portability of the FIO
layer, Dandelion encodes the data of the GIP events using JSON[JSON.org,
2015, ECMA-International, 2013], which makes them very easy to parse in any



90 5.4. Distributed Physical User Interfaces

technology.

5.4.2 Final Interaction Objects

The Final Interaction Objects are the end elements in charge of physically
interacting with the user. They are software abstractions of heterogeneous inter-
action resources that could be either hardware (keyboards, remote controllers,
appliances, sensors, etc.) or software (GUIs, voice recognition, etc.).

FIOs are implemented as software applications that implement the GIP
remote interface. They can be implemented in any programming language,
for any software platform, and using any API required by an IR. The only
requirement to be compatible with Dandelion is to implement the GIP interface
according to the JSON GIP codec of Dandelion, and to use a STOMP client
to connect the FIO to the messaging broker. In fact, if the ActiveMQ broker
is used, as suggested, it is even possible to use messaging protocols different
than STOMP, because the broker handles the translation between protocols
transparently.

As previously indicated, the FIOs assume the role of GIP publishers, ab-
stracting the behavior of an IR as a set of events that notify the different actions
the user is performing. But each particular FIO implementation is only required
to support a subset of GIP events, as there can be IRs supporting only input,
output, action, etc. The type and number of interaction facets supported by
each FIO is defined in its description, which includes information like the type
of data the FIO is able to manage, the cardinality of that data, the type of
interaction supported, and the interaction modality used by the FIO. This is,
each FIO describes its supported interaction facets, and it indicates the kind of
data it can obtain from the user as input or selection, or show to the user as
output. This data can be of any basic type: integer, float, string or boolean,
and images in JPEG or PNG format. It is important to note that each FIO
can provide one or many different interaction facets. For example, a FIO can
specify that it is able to output a string, input an integer, and receive an action
from the user.

The FIO descriptions are used during the definition of the mapping from
abstract to final in order to match the abstract interaction facets to a set of
adequate FIO interaction facets. For example, the output interaction facet of
an AIU for a string type can be associated to an LCD display encapsulated
by a FIO with an output interaction facet supporting strings. As shown in
Figure 5.10, to facilitate the management of the system and to possibilitate the
autonomous selection of the FIOs when the ICA layer is available, Dandelion
uses a FIO repository to store the descriptions of all the FIOs available. For that



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 91

Figure 5.10: FIO’s registration process in the FIO repository. FIO descriptions
are stored in a repository that can be used by the installers, or the ICA, in
order to set up the abstract to final mappings.

purpose, every FIO must register itself, at startup, in the FIO repository. The
FIO repository is also connected to the Dandelion system using the messaging
broker and a protocol using JSON and STOMP.

For every different kind of device or interaction software used by a system,
a FIO must exist that abstracts it using the GIP. Obviously, a key point to
facilitate the use of Dandelion is that developers should not need to develop their
FIOs, or at least, not many of them. They should be provided by Dandelion
itself or by the manufacturers of the interaction resources.

In order to alleviate the problem of developing FIOs for the large number of
different devices and technologies available, we have designed and implemented a
hardware abstraction layer called UniDA [Varela et al., 2007, Varela et al., 2011,
MyTech-IA and GII, 2014], which provides a generic interface to remotely access
and use any kind of hardware device. In UniDA every device is accessed using a
generic model of devices and their operations, and each type of device is reduced
to a set of common operations typical of that kind of devices. It is, consequently,
possible to use similar devices from different manufacturers or technologies using
the same exact API. This way, one FIO can be implemented on top of an API
that allows it to be compatible with a large number of physical devices. The next
section provides a complete description of the UnIDA abstraction technology
and how it is used in Dandelion.



92 5.5. Physical Device Access and Control

5.5 Physical Device Access and Control

The TIAF and Dandelion are designed to transform any kind of device or
software component into an interaction resource by isolating them behind a set
of abstraction layers. In the case of Ambient Intelligence user interfaces, devel-
opers usually rely on embedded devices, like sensors, actuators, or appliances,
to build natural user interfaces making use of a technologically augmented en-
vironment to interact with the user. The market of this kind of devices is very
fragmented and very poorly standardized, thus difficulting the provisioning of
support for the wide diversity of devices than can be found in different scenar-
ios. In Dandelion, as described in subsection 5.4.2, the way to deal with this
diversity is by building different FIO implementations for each device technol-
ogy/API/kind. Nevertheless, this solution can become expensive due to the
large number of different technologies, APIs, and device types available, thus
requiring the implementation of a large number of different FIO applications.

In order to alleviate this problem, we have designed and implemented the
UniDA framework (Uniform Device Access, UniDA), which is for the world of
remote device access, the same as the TIAF and Dandelion are for the world
of Physical User Interfaces. It provides a distributed abstraction layer to fa-
cilitate and reduce the costs of developing applications that operate in Human
Interaction Environments (HIE) and require the use of multiple heterogeneous
physical devices.

It is possible to use UniDA for two different, but interrelated, purposes.
As an abstraction layer, it allows the development of applications that handle
hardware devices with independence of the technologies used in each device and
their particular characteristics. As a complete HIE instrumentation solution, it
permits building distributed device networks with support for the transparent
integration of existing installations and technologies.

Figures 5.11 and 5.12 compare the vision of the hardware devices that
an application has when it requires the interaction with heterogenous physical
devices. The first one, Figure 5.11, shows the vision of applications that use the
devices directly using their specific APIs and protocols. The second one, Figure
5.12, shows the vision of applications that use UniDA to interact with physical
devices.

In the first case, the applications have a heterogeneous vision of the net-
work of devices; they must include particular logic to interact with each specific
technology and device available in the network, thus complicating the develop-
ment process and making the addition of new devices more difficult, as they
need to take care of all the complexities and particularities of each hardware
technology deployed in the installation. In the second case, see Figure 5.12, the



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 93

Figure 5.11: Without UniDA, an HIE application using heterogenous devices is
exposed to the particular characteristics and APIs of each device technology.

Figure 5.12: By using UniDA, HIE applications are isolated from device APIs
and their particular characteristics. All the devices are accessed through the
same channel and API, and all the devices of the same type (independently of
their technology) are interfaced in the same way.



94 5.5. Physical Device Access and Control

applications have a homogeneous vision of the network, and they are able to use
the same concepts and operations to interact with every device independently of
their underlying technologies and APIs. Applications do not require knowledge
of specific technologies because they can use devices from different technologies
homogeneously, and new devices can be easily added to the network without
requiring any, or at most minimal, modifications of the application logic.

In the same way as the TIAF and Dandelion, there are two points of view to
describe the UniDA framework. On the one hand there is a set of abstract con-
ceptual components that made up a conceptual framework for the development
of solutions in the HIE instrumentation field. On the other hand, there are a
set of elements that implement this conceptual framework, providing usable so-
lutions for the design, implementation, and deployment of HIE instrumentation
systems.

The conceptual framework is made up of three components. A common
conceptual model for the description of an instrumentation network and its
devices, a uniform paradigm to model the interaction with devices, and a dis-
tributed operation protocol for the interaction between the different distributed
elements of the system.

These components are realized by two main elements, complemented with
some configuration tools, which allow developers to use the model to interact
with the available hardware devices within their software:

• A software library (developed in JAVA) implements the common concep-
tual model and provides a simplified façade with the operations supported
by the uniform device access paradigm. An ontology [Bonino and Corno,
2008] is used to support the model and enrich its semantics, allowing some
useful inference capabilities, like device class inheritance.

• Proxy-like components, called device gateways, one for each supported
instrumentation technology, are in charge of translating the abstract con-
cepts managed by UniDA to specific concepts of a particular technology.
These gateways are usually deployed on remotely accessible embedded
hardware devices that are physically connected to the end devices or to
other instrumentation network technologies.

The UniDA conceptual framework, together with its implementation com-
ponents, builds a complete framework for interoperability of instrumentation
hardware, thus alleviating the development costs of applications and installa-
tions for such heterogeneous environments as HIEs.

As shown in Figure 5.13, Dandelion, as a platform for the development of
UIs for AmI systems deployed on HIEs, uses UniDA to reduce the number of



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 95

Figure 5.13: UniDA allows us building FIOs that support many devices of the
same kind but with different technologies and APIs.

different FIOs necessary and to make the implementation of those FIOs easier.
UniDA homogenizes the devices, thus, devices that perform the same function,
but use different APIs, can be accessed using the same API and a common device
model. Dandelion, as we will see in more detail in the examples of section 5.6,
comes with various FIOs already implemented, some of them using UniDA.
This allows Dandelion to be compatible with a larger number of devices, thus
directly making AmI applications compatible with more devices. Furthermore,
UniDA makes the development of such FIOs easier and cheaper.

Finally, it is important to mention that the implementation of the UniDA
framework, developed within this thesis, has been released as open source soft-
ware, thus making it available for others to use it, study it, and for comparison
purposes with other solutions. The framework source code and documentation
is available in a public GitHub repository (https://github.com/GII/UNIDA),
and some binaries and further documentation is available at the project’s web
site (http://www.gii.udc.es/unida).

The next two subsections will provide a detailed description of the UniDA
framework and its reference implementation.



96 5.5. Physical Device Access and Control

5.5.1 UniDA Conceptual Framework

The UniDA framework is constructed around three conceptual components.
These components make up a complete conceptual framework for the devel-
opment of instrumentation systems for HIEs. Therefore, when using UniDA,
these components represent the shared knowledge that developers, installers,
and even manufacturers, need in order to design and implement applications,
systems, and devices for HIEs. This subsection is devoted to the description of
these three conceptual components.

5.5.1.1 Device Network Model

In UniDA, the homogeneous vision of a heterogeneous network of tech-
nologies is provided by a device network model and a uniform device access
paradigm. This conceptual model takes the similarities between the different
existing technologies and builds a new set of concepts that represent the essen-
tial characteristics of every instrumentation technology. This set of concepts ab-
stracts the peculiarities of a heterogeneous instrumentation network, providing
developers with a homogeneous language to interact with devices, backed up by
a set of software and hardware components that translate it into the particular
concepts and technologies required to interact with specific devices. When using
UniDA, developers, and more specifically, the applications that must make use
of the instrumentation network, only need to talk in the common language pro-
vided by the common conceptual model. Therefore, this conceptual model must
be, on one hand, powerful enough to support all the characteristics and func-
tionalities required by the applications, and on the other hand, simple enough
to be easy to use and not transfer the hardware complexities to the applications.

Trying to hide all the particularities and complexities of every instrumen-
tation technology is not an easy goal. Even if a set of common concepts can
be easily identified, the wide variety of devices and characteristics available can
pollute the model with an increasing number of low-level concepts such as the
types of devices that could exist, the different states a device can have, the
different operations supported, etc., complicating the usage of the model with a
lot of unneeded details and information. It would be really difficult and costly
to try to identify in advance every type of state or functionality that can be
available, and in fact, it must be taken into account that new types of devices
may appear in the future. Consequently, it was decided to decouple the model
into two models, a simple abstract model to represent the high-level concepts
and relationships that support the operation and management of an instrumen-
tation network, and another model to act as a taxonomy of the specific instances
of those concepts and the relationships that could exist. This way, the frame-



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 97

work can easily accommodate new types of devices by only defining them in
the taxonomy using the simple abstract model, and every operation supported
by the framework can be performed on top of those abstract concepts, isolated
from the particularities of each device.

One of the best ways to describe such a taxonomy is to use ontology descrip-
tion languages [Bandara et al., 2004, Dibowski and Kabitzsch, 2011], like RDF
[W3C, 2011b] or OWL [W3C, 2011a]. There are some device description ontolo-
gies available, unfortunately many of them are too related to computer devices
[FIPA, 2011, W3C, 2007] and, in general, they are only conceptual ontologies,
and it is difficult to find publicly accessible and usable implementations of them
[Bandara et al., 2004, Dibowski and Kabitzsch, 2011]. Nevertheless, one promi-
nent example of a device ontology is the DogOnt ontology [Bonino and Corno,
2008], a device reasoning ontology developed by the e-Lite research group of the
Politecnico di Torino, in Italy.

We decided to use the DogOnt ontology as our taxonomy of devices, not
only because it is very complete, well supported, and updated, but also be-
cause it matched very well the requirements of the conceptual model that we
were designing. Our model is based in three main concepts: the devices, the
functionality that those devices provide, and some kind of proxies or gateways
that connect the devices to the instrumentation network. The DogOnt ontol-
ogy offers very good support for these concepts, the device concept is directly
supported and its functionalities are represented by two elements: control func-
tionalities and notification functionalities. Furthermore, even the device proxy
concept is directly supported by a gateway concept represented in the taxonomy
as ‘DomoticNetworkComponent’.

Therefore, many of the concepts found in the model presented here are
adapted, and even some of them directly extracted, from the DogOnt ontology.
Thus, the conceptual model, as shown in Figure 5.14, is made up of eight main
concepts:

• Devices. These are the devices that a user expects in his instrumentation
network. They provide end users with services and functionalities. There
exist two different kinds of devices; physical devices and groups of devices.

• Physical devices. They are a conceptual representation of the real hard-
ware devices.

• Groups of devices. Multiple devices can be grouped together and a group
has the same entity as one device. Thus, a user or an application can
send commands, queries, etc. to a group of devices in the same way
(transparently) as to a single device.



98 5.5. Physical Device Access and Control

Figure 5.14: Class diagram showing the different concepts and their relations
that populate the UniDA Device Network Model.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 99

• Device gateways. They are the connection point between the devices and
the instrumentation network. They act as a control point for the devices,
controlling them and transferring to them the commands that came from
the instrumentation network, and vice versa.

• Device I/O. Physical devices are not directly connected to the gateways,
they are connected through what we call a device I/O. A gateway has a
set of device I/Os to which devices can be connected (this set can be static
or dynamic) and each device I/O has a list of states that restrict the type
of devices that it can hold, so the I/Os of a gateway specify the number
and type of devices it supports.

• Classes of devices. The class of a device represents its type. It supports
inheritance thanks to the use of ontologies.

• Device states. They represent the type of states that a device has. A
device can have multiple different states and they are specified by its
device class. The states of a device can be read and optionally written.

• Device commands and device notifications. Together, they represent the
functionality of a device. Commands can be received by a device and
it usually reacts by changing its state and acting over the environment
changing it. Notifications represent changes in the state of a device. De-
vices send notifications to notify the clients of the instrumentation network
about a change in its state.

As the objectives of this proposal are a bit different and broader than the
DogOnt objectives, even if some concepts of the model presented here directly
match concepts from the DogOnt ontology, there exist important conceptual
differences. One of the more prominent differences is the inclusion of the device
I/O concept. Even though it is a concept that developers do not need to know,
it is very important for the internal workings of UniDA and for the configuration
of the system. There are gateways that are able to automatically detect when a
device is connected to them and identify it. These gateways support a variable
number of devices and make use of dynamic device I/Os. Thus, when a device
is connected to them, they automatically create a new device I/O for the device
and configure it. Furthermore, there are gateways, known as static gateways,
that have a fixed number of physical interfaces to connect passive devices and,
in order to be compatible with very simple or legacy devices, they are usually
unable to detect the presence of the device, requiring manual configuration.

This last case is one of the main reasons for the introduction of the device
I/O concept. It provides the system and installers a way to know what kind of
devices can be connected to a particular gateway.



100 5.5. Physical Device Access and Control

5.5.1.2 Uniform Device Access Paradigm

The device network conceptual model will not be complete without a de-
scription of how these concepts can be operated to interact with the instrumen-
tation network. This description is the uniform device access paradigm, which
provides a set of generic operations that can be used to manage and command
the different elements that populate the system, allowing client applications and
other elements to access the functionality supplied by the available devices.

The uniform device access paradigm is made up of a very small set of
operations that, by relying on the common conceptual model, are enough to
access any device functionality defined in the ontology. It has three main device
access operations complemented by a set of management ones:

• Query a state of a device. Every state that a device supports can be
queried at any moment.

• Write a state of a device. Optionally, a device can support the modifica-
tion of its states with a state write operation.

• Send a command for execution. It is possible to send commands to the
devices. The commands supported by a device are defined in its metadata,
that is, specified in the ontology for every device class. Once a device
receives a supported command, it must act in accordance to the semantics
of the command.

• Subscribe to a device state. Devices must send notifications when one of
their states changes. Therefore, clients can subscribe to those notifica-
tions in order to receive them. These three operations are complemented
with a set of management operations that will allow clients of the model
(developers and applications) to find the devices and gateways available
or defined in a particular instrumentation network, as well as access their
descriptive information and metadata.

The concepts provided by the common conceptual model and how to op-
erate them (the uniform device access paradigm) is the only knowledge of the
instrumentation network that application developers need to have. Any imple-
mentation of UniDA will provide them with an API to manage those concepts
and issue operations, completely decoupling the application logic from the par-
ticular hardware technologies used to build the instrumentation network.

Finally, in the next section we describe the third component of the UniDA
framework: the distributed operation protocol that enables the interaction be-
tween the different physically distributed elements of the system.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 101

5.5.1.3 Distributed Operation Protocol

Due to the characteristics of HIEs and their intrinsic ubiquitous nature,
devices need to be physically distributed throughout the environment in order
to monitor and act over it. The UniDA framework is designed to support the
distributed operation of some of its elements. In particular, the elements that
implement the device gateway concept can be installed distributed to build a
network of devices.

The objective of the distributed operation protocol is to allow the interac-
tion between the clients of the framework and the devices deployed throughout
the environment. The protocol must support all the operational, maintenance,
and management tasks required for the correct operation of the instrumentation
network. These include support for:

• Control operations. Query and write states, send commands, subscribe to
state change notifications.

• Management operations. Access to descriptive information about devices
and gateways, discovery of devices/gateways available in the network, an-
nouncements of new devices/gateways available.

• Maintenance operations. Detection/notification of failures, announcements
of device disconnections.

This communication protocol is defined as a set of messages that can be
exchanged between the components of an instrumentation network. These mes-
sages are composed of three parts, a header, that contains metadata about the
message, the content of the message, and a checksum. Therefore, the protocol
is defined in an abstract way and it can be implemented by using any connec-
tionless transport protocol.

The interchange of messages is modeled as a request/response protocol,
except for the gateway announce message and the notification messages. The
announce message must be multicasted to all the members of the instrumenta-
tion network, so everyone can know which gateways and devices are connected to
the network. The notification messages must be multicasted to all the members
of the network subscribed to them.

The announce messages do not have to be answered or acknowledged, but
they must be sent periodically by every gateway, in order to alleviate possible
reception problems, and because there are also used by other elements of the
network to monitor the state of remote gateways and devices. The period of
gateway announcements is variable, defined by each gateway according to its



102 5.5. Physical Device Access and Control

requirements, and it is notified to the monitoring elements using the gateway
announce messages.

Notification messages can be acknowledged, but it is not mandatory, it
depends on the implementation. Every other message has an associated re-
sponse (or acknowledge) message, thus, it is mandatory for the implementation
of the protocol to establish some kind of reception control mechanism in order
to guarantee the reception of the messages, or at least, to be able to detect
communications errors and act accordingly.

5.5.2 UniDA Framework Implementation

In the previous subsections we have presented UniDA as three conceptual
components, a common conceptual model of an instrumentation network, a uni-
form device access paradigm that models the interactions between the members
of the instrumentation network, and a distributed operation protocol for the
remote interaction between some of the members of the network. In the present
subsection, we are going to show an actual implementation of those components.

Figure 5.15 shows a diagram of the UniDA framework implementation ar-
chitecture. As can be seen, it is divided into two main components: the UniDA
Library and the UniDA Gateway. The UniDA Library is an implementation
of the common conceptual model, the uniform device access paradigm, and the
distributed operation protocol as a Java library. The library (and its dependen-
cies) is the only software component that a client application needs in order to
command and control an instrumentation network.

The UniDA Gateway is the realization of the Device Gateway concept
defined in the common conceptual model. There can be multiple implemen-
tations of the UniDA Gateway, from generic implementations that will be run
in common hardware, such as computers or smartphones, to embedded imple-
mentations for specifically designed gateways. It is in the gateways where the
particular control logic of each device resides, and by using some components of
the UniDA library, like the distributed operation protocol, they provide access
to devices to clients of the UniDA Library. That is, UniDA Gateways translate
the common concepts managed by UniDA to the particular ones used by each
device technology.

As can be seen, Dandelion shares many similarities with UniDA, with the
FIOs performing the same translation work but at a different level of abstrac-
tion.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 103

Figure 5.15: This diagram shows an architecture and deployment diagram of
a system (the FIOs of Dandelion) using the UniDA Library and Gateways.
The FIO logic interacts exclusively with the UniDA library through the Device
Model and the Device Operations and Management. UniDA relies on a set of
Gateways to translate the Device Model concepts to the particular APIs and
protocols of each specific device technology.

5.5.2.1 UniDA Library

The functionality of the library is presented to external clients through a
reduced set of concepts (classes of objects, as it is implemented using JAVA, an
object-oriented language), directly implemented from the proposed conceptual
model shown in subsection 5.5.1.1, and three façades that export the operations
to manipulate those concepts in a uniform way. There exists one façade for the
operational functionality of the instrumentation network, like query the state of
a device or issue a command to a device, and two façades for management op-
erations, one for device management operations and another for device gateway
management operations.

As can be seen in Figure 5.15, the library is implemented as five modules
that are encapsulated behind the three façades: an implementation of the com-
mon conceptual model; a management subsystem, in charge of providing access
to information about the devices available in an instrumentation network; an
operational subsystem, in charge of providing control capabilities over those
devices; a communications subsystem, that implements the distributed oper-



104 5.5. Physical Device Access and Control

ation protocol; and a device ontology module that manages the access to the
DogOntontology.

The management subsystem implements two different sets of operations
related to two different concepts. On one hand, it provides operations to cre-
ate new devices or gateways, remove existing ones, edit their information and
relationships, etc. On the other hand, it provides query functionalities to allow
applications to access the information about the devices and device gateways
available in an instrumentation network.

In a similar way to the management subsystem, the operational subsystem
implements two different sets of functionalities. On one hand, it implements
the operations required to control the devices and the instrumentation network.
On the other hand, it supports the maintenance operations by implementing
the functionality required to continuously monitor, in real time, the operational
state of the network and update the management database through the man-
agement subsystem in order to reflect the current state of the network.

The communications subsystem implements the distributed operation pro-
tocol independently from the other subsystems, and it is divided into two com-
ponents. On one hand, a message handling system, made up of a set of messages,
logic to code and decode them in a binary format, and logic to manage their
processing, and on the other hand, a communications channel implementing the
particular logic to send and receive messages from a specific network technology.
The internal division of the communications subsystem into two components al-
lows reusing the message system with different network technologies.

Regarding the device ontology, one usual problem associated to ontologies is
that their management requires lots of memory and processing power to achieve
low response times. As it was of paramount importance to keep the device
access library light and responsive, it was decided to use ontologies in a limited
way, that is, only as a repository of metadata, instead of using them directly
for storing instances of the concepts and reasoning with them. Therefore, the
UniDA Library uses the DogOnt ontology exclusively as a taxonomy of the
different types of devices and gateways that could exist in an installation, and
as a repository of semantic metadata about those devices, their properties and
their relationships.

5.5.2.2 UniDA Gateways

In UniDA, the gateways are the elements in charge of translating concepts
from the common conceptual model and the uniform device access paradigm to
the particular concepts and APIs required by each specific device. Their job is
to control hardware devices and to interconnect them, building a kind of virtual



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 105

instrumentation network that can be accessed and managed by the clients of the
UniDA Library. Therefore, gateways are highly coupled to particular devices
or technologies, and they usually include specific software and hardware.

A UniDA gateway should include the particular control logic for each de-
vice connected to it, that is, the device drivers; and an implementation of the
distributed operation protocol, so that it can interact with other elements of
the network.

Depending on the requirements of the hardware devices, there can be many
UniDA gateways deployed on very different hardware. For example, there can
be gateways deployed on generic platforms, such as PCs, for devices that require
complex control software, like home automation network technologies; gateways
deployed on smartphones to provide access to their sensing devices; or gateways
deployed on custom embedded hardware to control simple devices or build new
hardware devices directly compatible with UniDA.

We have created a generic UniDA gateway software component, which can
be used to build new gateways. It is implemented in Java using the J2SE API,
so that it can run in any device with a J2SE virtual machine. It is a reference
implementation of a UniDA gateway, with all the logic required to interact with
the UniDA network and manage the processing of requests and notifications.
Developers are only required to provide the particular logic to control a device,
that is, the device drivers.

Using the generic UniDA gateway component, we have built gateways that
allow the integration of some existing technologies into a UniDA instrumenta-
tion network. These gateways are an integral part of the UniDA framework,
so they can be used by developers and installers to build their systems. By
using these gateways, any application that uses the proposed framework will
be directly compatible with the devices and technologies supported by these
gateways, including EIB/KNX home automation networks, uPnP media ren-
derer devices, Android smartphones, Philips HUE lights, and Belkin WeMo
[Belkin-International-Inc., 2014] home automation devices.

In the next section of this chapter, we are going to show some examples
of how Dandelion uses the UniDA Library and different UniDA Gateways to
implement some FIOs for the OMNI and EMP examples described previously
introduced in sections 4.2.1 and 4.2.2.

5.6 Demonstration Examples and Summary

In the last section of this chapter, we are going to show how two complete
example systems use the Dandelion framework in order to build two distributed



106 5.6. Demonstration Examples and Summary

physical user interfaces that are easily portable and deployable in different sce-
narios, with heterogeneous physical devices as IRs, and a variety of environment
and user characteristics and constraints.

5.6.1 OMNI Virtual Assistant

This section provides a detailed discussion of how the OMNI Virtual As-
sistant system, introduced in subsection 4.2.1, has been implemented using the
Dandelion Framework.

Due to the characteristics of the users of OMNI, as already indicated in
subsection 4.2.1, natural user interaction is vital for the successful adoption
of the system. Therefore, it is very important to use an UI adapted to each
usage scenario, and in particular, in this case, adapted to the characteristics,
constraints, and preferences of the user.

The OMNI system relies on the Dandelion Framework in order to reduce
the costs, in time and effort, of building a Physical Distributed User Interface
adaptable to the required different usage scenarios. While the main require-
ment of OMNI regarding the UI is adaptability, distributivity and ubiquitous
interaction is a welcome addition. It allows OMNI to operate outside the users
home, for example providing notifications at the homes of relatives, or even on
the go.

For illustrative purposes, we have identified four representative use case
scenarios that will provide a nice set of examples showing how the same abstract
UI can be deployed into very different final UIs.

The remaining of this section is dedicated to describing the OMNI UI,
and how it is built using Dandelion in order to support those three different
interaction scenarios, without requiring any modification in the UI or system
code.

Building the OMNI User Interface

Recalling the development process discussed in section 5.3, the first step
to use Dandelion is to specify the system’s user interface using the Abstract UI
Model. As previously indicated in subsection 4.2.1, the OMNI UI is designed
to be very simple and straightforward, using as few interaction primitives as
possible. This interface is implemented, by default, as the remote controller
device shown in Figure 4.2 and a display for outputting information. It has
three main requirements:

• First, changing channels. In OMNI, the channels represent the different



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 107

Algorithm 5.6 Container skeleton of the OMNI abstract UI.
<aui:UserInterfaceModel>

<aui:AbstractUIModel>
<aui:AbstractInteractionUnit id=”OmniInfo”>

<!– OMNI system information, like channel
metadata, etc. –>

</aui:AbstractInteractionUnit>
<aui:AbstractInteractionUnit id="OmniControl">

<!– OMNI controls like channel and volume
change –>

</aui:AbstractInteractionUnit>
<aui:AbstractInteractionUnit id="OmniNotification">

<!– OMNI notification dialog –>
</aui:AbstractInteractionUnit>

</aui:AbstractUIModel>

</aui:UserInterfaceModel>

functionalities of the system, so it must allow users to change from one
channel to another in order to select the functionality they want.

• Second, show system information to user. For example metadata (name,
etc.) of the channel selected.

• Third, answering the questions of the system. OMNI uses a proactive
interaction system that prompts questions to the user. As shown in Figure
4.1, there are two types of questions, those that offer the execution of some
function, and those that request some kind of confirmation of actions by
the user.

The first thing when designing an Abstract UI is to organize the different
interaction primitives in containers, so that we can provide the system with
information about the logical relations between the different elements. For
example, for the OMNI UI, we can clearly differentiate three different interaction
use cases: showing system information to the user, changing channels, and
answering questions. So, a good starting point would be an Abstract UI with
three Abstract Interaction Units as containers, as shown in the code listing of
Algorithm 5.6.

The next step is to populate these containers with the required interaction
primitives. We already know from the code listing of Algorithm 5.1 in section
5.3.1, that the notification subsystem requires three interaction facets. One for
outputting a message to the user, and two to receive the answer of the user, the
’yes’ or ’no’ actions. Regarding the control part of the system, while the most
important requirement is to change channels, in fact there are two additional



108 5.6. Demonstration Examples and Summary

Algorithm 5.7 Control part of the OMNI abstract UI. It contains the abstract
interaction primitives required to power on/off the system, change the channel,
and change the audio volume.

...
<aui:AbstractInteractionUnit id=”OmniInfo”>

<aui:DataInputOutputFacet id=”InfoMsg”>
<aui:dataType>text</aui:dataType>

</aui:DataInputOutputFacet>

</aui:AbstractInteractionUnit>
<aui:AbstractInteractionUnit id="OmniControl">

<aui:Composition rationale="Remote Control" role="groups all
the control interactions">

<aui:AbstractInteractionUnit id="PowerControl">
<aui:TriggerFacet id="power">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>

</aui:AbstractInteractionUnit>
<aui:AbstractInteractionUnit id="ChannelControl">

<aui:TriggerFacet id="next">
<aui:triggerType>operation</aui:triggerType>

</aui:TriggerFacet>
<aui:TriggerFacet id="previous">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>

</aui:AbstractInteractionUnit>
<aui:AbstractInteractionUnit id="VolumeControl">

<aui:TriggerFacet id="increase">
<aui:triggerType>operation</aui:triggerType>
</aui:TriggerSupport>

<aui:TriggerFacet id="decrease">
<aui:triggerType>operation</aui:triggerType>

</aui:TriggerSupport>
</aui:AbstractInteractionUnit>

</aui:Composition>

</aui:AbstractInteractionUnit>
...



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 109

Algorithm 5.8 Small code snippet showing an example implementation of a
user action callback (IDandelionActionCallback interface). In this case, this
code corresponds to the OMNI action to change the channel to the next one
available.

public class OmniNextChannelAction implements IDandelionActionCallback
{

IOmniChannelManager channelManager;
public OmniNextChannelAction(IOmniChannelManager channel-
Manager) {

this.channelManager = channelManager;

}
@Override public void notifyAction(IUser user, AbstractInteractio-
nUnit aiu, TriggerFacet facet) {

try {
this.channelManager.nextChannel();

}
catch (ChannelErrorException ex) {

Logging.log(Level.SEVERE, “Error while chang-
ing channel”, ex);

}

}

}

functionalities. Change the audio volume and power on/off the system. While it
is possible to organize those primitives in multiple ways, we decided to logically
separate them into three different AIUs, one for each block of control primitives,
as shown in the code listing of Algorithm 5.7. This way, very related interaction
facets, like ’previous’ and ’next’ channel actions, or ’increase’ and ’decrease’
the volume actions, are logically attached, but the groups are separated, thus
indicating Dandelion to use a similar physical configuration. Furthermore, there
is an additional AIU as a container of a data output facet for system information.

At this point, we have already specified the complete OMNI UI at the
abstract level, so the next step would be to implement the UI control logic that
will provide the behavior of the user interface by connecting the business logic
to the UI.

We have three main parts to implement:

• The OMNI control part, which is basically composed of user actions and,
thus, is quite easy to implement. We are only required to implement one
callback function for each user action, following the example shown in the
code listing of Algorithm 5.8. As can be seen, the code of each action can



110 5.6. Demonstration Examples and Summary

Algorithm 5.9 Example of how the DUIC can be used to output information
to the users. As can be seen, it is very easy to use, and it operates completely
at the abstract level, without exposing the code to any particularities of the
modalities and technologies of the UI.

...
private void showChannelInfo(IOmniChannel channel) {

String channelInfo = channel.getChannelName()+" - "+chan-
nel.getChannelProgram();
this.duic.showOutput(channelInfo, omniInfoAIU, infoMsgFacet,
new HashSet<FuzzyVariable>(0));

}
...
private void changeChannel(int index) throws ChannelErrorException {

...
if (this.currentChannel != null) this.currentChannel.close();
this.currentChannel = nextChannel;
this.currentChannel.open();
this.showChannelInfo(this.currentChannel);

}
...

be quite simple, just redirecting the UI action to a business logic action.

• The presentation of system’s information to the user, like channel names,
etc. For that purpose, we have to use the DUIC interface to output a
message to the user. For example, when the OMNI changes to a new TV
channel, it will output a message with the channel and program name, as
shown in Algorithm 5.9.

• The notification part of the UI. In this case, we have to implement two
user action callbacks for the ’yes’ and ’no’ actions, and use the DUIC
interface to output messages to the user.

As has been shown in this subsection, it is quite simple to use the DUIC
to implement the connection between the abstract UI and the business logic.
Furthermore, this can be completely done at the abstract level. This way,
the OMNI system can be easily deployable in a variety of environments with
different IRs for its final UI.

In the next subsections, we are going to describe four possible usage sce-
narios for the OMNI system, presenting the different FIOs required, and how
the final UI can be assembled, at deploy time, for each scenario.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 111

Figure 5.16: OMNI system IRs/FIOs for the different scenarios.

Default Usage Scenario

As previously indicated in subsection 4.2.1, the OMNI system uses a default
user interface with a display and a remote controller. The display is used for
showing system info and notifications to the user, and the remote controller is
used to capture user actions.

As shown in Figure 5.16, for this particular implementation of the OMNI
UI, we only need two FIOs. One of them will be in charge of presenting the
messages to the user through the display, and the other will be in charge of
receiving button presses from the OMNI remote controller.

The display FIO is implemented, using Java, as a software-only interaction
resource. It creates a semi-translucent window and superimposes it over the
OMNI channel screens during a specified amount of time. It supports only one
output interaction facet with data of type string.

In order to facilitate the development of new FIOs, Dandelion provides
a small development framework that only requires developers to implement a



112 5.6. Demonstration Examples and Summary

Algorithm 5.10 Example source of the OMNI display FIO for notifying mes-
sages. It uses one implementation of the IOutputAction interface in order to
support one output interaction facet.

//create and init the Dandelion FIO manager
IDandelionFIOManager fioManager =

new JmsJsonDandelionFIOManager(jmsBrokerUri);

fioManager.init();

//create FIO metadata object
notificationDialog = createExtendedMetadata("Omni-Display-Dialog");

//start a new FIO with support of one OUTPUT interaction facet
gipManager = fioManager.startFIO(notificationDialog,

new IOutputAction() {
@Override public void doOutput(Collection<Property>
properties, Collection<FuzzyVariable> fuzzyHints) {

String msg = getStringProperty(properties);
if (msg != null) {

display.getVideoPane().showNotificationMessage(msg,
true);

}
},
null, null);

set of actions, one for each interaction facet (either output, selection or focus)
supported by the FIO. For example, the code listed in Algorithm 5.10 shows
the implementation of the display FIO. As it must support only one output
interaction facet, it encapsulates the particular code to perform the output in
an implementation of the IOutputAction, and then starts a new FIO associated
to an instance of that action.

Regarding the remote controller FIO, we have used UniDA in order to
make its implementation easier. Thus, a remote UniDA gateway implements the
physical connection with the remote controller using Zigbee, and the FIO uses
the UniDA library to interact with the gateway. This FIO does not support any
interaction coming from the system to the user, it only supports the generation
of actions from the user to the system, so it uses the FIO Manager in a different
way than the display one. Instead of implementing any interaction facet actions,
this FIO only uses the FIO Manager to publish ’action’ events in the FIO topic,
for which the manager provides three specific methods, one for each kind of
interaction primitive (input, action and selection).

While the main idea of Dandelion is to provide as many integrated FIOs
as possible, thus providing direct support for a large number of IRs, it can be
seen that developing new FIOs, when necessary, can be as simple or complex as



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 113

the particular behavior requires and, moreover, the Dandelion FIO development
API allows developers to focus only on one particular FIO logic.

While the default OMNI UI can be useful in many different use cases, it
can be very inadequate or, at least difficult and unnatural to use, in another
large number of scenarios. In the next three subsections, we are going to present
three small examples of scenarios where a different UI, more adapted to the user
needs, can be a better option than the default. It is important to note that,
thanks to the ability of Dandelion to use multiple FIOs for the same interaction
primitive, the default UI is always available to the user, the new IRs are only
complementary means to interact with the system.

Blind User Scenario

Lets take, for example, a user with serious visual deficiencies. The use of
the screen to output the messages is probably one of the worst options, and
furthermore, the remote controller could be also a bad idea because, even if it
could be easy to use, it can be difficult to find around the home.

Dandelion does not impose any restriction on how the abstract interaction
facets of the AUI are associated to interaction facets from FIOs, so it is possible
to associate the same abstract interaction facet to more than one FIO, thus
permitting the use of IRs in a complementary and redundant way. For the
case of the blind user scenario, we added two new IRs in order to complement
the default UI. As shown in Figure 5.16, we added a voice synthesizer IR for
outputting messages and a gesture recognizer IR to receive user actions.

The voice synthesizer FIO is implemented using the Festival Speech Syn-
thesis System [Taylor et al., 2006], and, as the display one, it exports only one
output interaction facet through its GIP interface.

Regarding the gesture recognizer FIO, it is implemented using the Open
Natural Interface (OpenNI) framework for cameras with depth sensors. It ex-
ports the same GIP interface as the remote controller, supporting five action
interaction facets. This FIO uses the OpenNI API to receive events of hand
and arm gestures detected through the depth sensor cameras, it then translates
those gestures to GIP action events, and publishes them in its FIO topic.

To facilitate the mapping of the abstract UI to the FIOs, Dandelion allows
installers to specify the mapping in an XML file, so for this case, apart from
the mappings of the default UI, we have to add two mappings to associate the
OMNI ’InfoMsg’ interaction facet and the ’NotificationMsg’ to the output facet
of the voice synthesizer FIO, and then seven more mappings for the different
user actions required: two for the ’yes’ and ’no’ actions, and five for the control
actions (volume selection, channel selection and power on/off). Algorithm 5.11



114 5.6. Demonstration Examples and Summary

Algorithm 5.11 Example of mapping file for the OMNI system where the
notification dialog message is associated to the OMNI display FIO, and the
’yes’ and ’next channel’ actions are associated to hand gestures.

<uib:AIU2FIOMapping>

<uib:AbstractInteractionUnit-ID>NotificationDialog</uib:AbstractInteractionUnit-
ID> <uib:InteractionFacet-ID>NotificationMessage</uib:InteractionSupportElement-
ID>
<uib:AssociatedFIO-ID>Omni-Display-
Dialog</uib:AssociatedFIO-ID>
<uib:AssociatedFIO-Facet-ID>MessageOutput</uib:AssociatedFIO-
ID>

</uib:AIU2FIOMapping>
<uib:AIU2FIOMapping>

<uib:AbstractInteractionUnit-ID>NotificationDialog</uib:AbstractInteractionUnit-
ID>
<uib:InteractionSupportElement-
ID>YesAction</uib:InteractionSupportElement-ID>
<uib:AssociatedFIO-ID>Gesture-Recognizer</uib:AssociatedFIO-
ID>
<uib:AssociatedFIO-Facet-ID>Hand-Up</uib:AssociatedFIO-
ID>

</uib:AIU2FIOMapping>
<uib:AIU2FIOMapping>

<uib:AbstractInteractionUnit-ID>ChannelControl</uib:AbstractInteractionUnit-
ID>
<uib:InteractionSupportElement-
ID>Next</uib:InteractionSupportElement-ID>
<uib:AssociatedFIO-ID>Gesture-Recognizer</uib:AssociatedFIO-
ID>
<uib:AssociatedFIO-Facet-ID>Hand-Right</uib:AssociatedFIO-
ID>

</uib:AIU2FIOMapping>



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 115

Algorithm 5.12 How to use interaction hints to provide some level of cus-
tomization to the final UI. In this case, we are suggesting the color of the
notification message.

HashSet<FuzzyVariable> interactionHints = new HashSet<FuzzyVariable>();
interactionHints.add(new FuzzyVariable(“color”, “yellow”));
this.duic.showOutput(message, omniNotificationAIU, notificationMsgFacet, in-
teractionHints);

shows a small snippet of this mapping file.

Deaf User Scenario

It is worth noting that a key characteristic of the abstraction of IRs through
the GIP+FIO combination is that it is possible to use, for the same interaction, a
set of IRs with very different natures, modalities, and capabilities. Lets take for
example the notification UI of OMNI. It is in charge of notifying agenda events
to its users, so a key point is to attract their attention to the system UI when a
message is shown. The speech synthesizing IR is a good option in combination
with the screen, but lets imagine a user with auditive deficiencies. If she does
not have the screen in view, she may miss the notification. One simple option
would be to use colored lights spread through the home to signal the presence
of notification messages. By using the UniDA library, we have implemented a
simple FIO that uses colored lights to output messages. It exports only one
output interaction facet, the same as the notification display FIO, but instead
of rendering the output as a message on a screen, or by speech synthesis, it
lights up a bulb to notify the presence of a message.

This FIO accepts an Interaction Hint (IH), where the developer can specify
the color. As previously introduced, IHs are a mechanism to customize the
generic interactions provided by the FIOs, and each FIO implementation has
the right to use them or ignore them. In this case, the light bulb FIO accepts
the specification of its color by using an IH as shown in the code listing of
Algorithm 5.12.

Ubiquitous Notification Scenario

The colored light bulbs to notify the presence of notification messages looks
like a nice way to keep the user notified, even if she is not in the living room,
but what happens if the user is not at home?. One nice possibility would be
to show her the notification messages using a portable device, for example a
smartphone.

We have built a FIO as an Android application. It exports two output



116 5.6. Demonstration Examples and Summary

Figure 5.17: Two examples of FIOs for the OMNI notification user interface.
First example: a smartphone with two output interaction facets, one using
the screen, and one using voice synthesizing, and two action facets, for the
yes/no actions. Second example with three FIOs:a TV display, with one output
interaction facet using the screen; a voice synthesizing FIO using a Festival
server; and a notification FIO that uses colored lights to notify the presence of
a message.

facets through its GIP interface. One of them uses the screen to display a
message, and the other one uses speech synthesis. This way, it is possible to
configure the ubiquitous notification in three different ways:

• Only use the screen.

• Only use speech synthesis.

• Use both, the screen and speech synthesis.

Furthermore, this FIO accepts some IHs to customize the output, like color,
volume or vibration strength, and it also exports two action interaction facets
in order to allow the user to answer the notifications with a ’yes’ or a ’no’ using
on screen buttons or the volume rocker buttons.

5.6.2 Environmental Music Player

The Environmental Music Player (EMP), described in subsection 4.2.2, is
an ubiquitous music player system that follows the user, as she moves from
one place to another, while playing music and providing the user with a UI to
control the playing.

The EMP UI, as shown in the sketch of Figure 4.3, is a more complex UI
than the OMNI one, requiring many more interaction primitives, in number
and type. Therefore, for the illustration purpose of the example, and in order
to keep the description short, we are going to explore a couple of particular



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 117

Algorithm 5.13 Code snippet of the EMP abstract UI dedicated to the selec-
tion of music style.

...
<aui:AbstractInteractionUnit id="MusicStyleControl">

<aui:DataSelectionFacet id="MusicStyleSelector" isContinu-
ous="false" selectionType="SINGLE">

<aui:dataType>text</aui:dataType>
</aui:DataSelectionFacet>

</aui:AbstractInteractionUnit>
...

aspects of the UI that are different from the OMNI UI. Particularly, in the next
subsections, we are going to show in detail how to implement two interaction
facets that are required by the EMP and not by the OMNI UI:

• Selection. We are going to explain how a selection of data can be imple-
mented in the abstract UI, and also how it can be implemented in the
final UI using different FIOs for diverse scenarios.

• Output of images. The EMP requires displaying the album art to the user.
We are going to show how this interaction can be implemented from the
abstract UI point of view, as well as how different FIOs support it in a
variety of scenarios.

Selection of the Music Style

The Environmental Music Player does not play particular songs or albums.
Instead, it allows the user to select a specific music style, and then it creates a
playlist with all the songs, available in the user library, that match the selected
style.

As we previously mentioned in section 5.3.1, the music styles available for
selection are dynamic and dependent on the collection of the user. Because of
that, the selection of music styles must be modeled using a selection interaction
primitive dynamically populated from the UI control logic. The code snippet
presented in Algorithm 5.13 shows the part of the EMP abstract UI dedicated
to define the selection interaction facet required for music style selection.

Once the abstract UI is defined, we must implement the UI control logic
required to show the list of music styles to the user, and register a callback
to receive the style selected by the user when she changes the selection. The
code listed in Algorithms 5.14 and 5.15 show, respectively, these two aspects of
the EMP user interface control logic. First, the list of music styles is retrieved
from the music collection, and then, using the DUIC, it is shown to the user.



118 5.6. Demonstration Examples and Summary

Algorithm 5.14 Code snippet of the EMP UI control logic to show the dynamic
list of music styles as a selection

private static void showMusicStyleList(

ApplicationMetadata app, IUserInterfaceController dandelionUIC,
MusicPlayer musicPlayer)

{

AbstractInteractionUnit musicStyleControl =
app.getAbstractUI().getAbstractInteractionUnitById("MusicStyleControl");
DataSelectionSupport styleSelectionFacet =

(DataSelectionSupport) musicStyleCon-
trol.getInteractionSupportElementById("MusicStyleSelector");

Collection<String> allAudioGenres = music-
Player.getMusicLibrary().getAllAudioGenres();
ArrayList<Property> audioGenresList = new Ar-
rayList<Property>(allAudioGenres.size());
for(String genre : allAudioGenres) {

audioGenresList.add(new Prop-
erty(PropertyType.stringProperty, null, genre));

}
Property defaultGenre = audioGenresList.get(0);
dandelionUIC.showSelection(defaultGenre, audioGenresList, music-
StyleControl, styleSelectionFacet, new HashSet<FuzzyVariable>());

}

Finally, a selection callback is implemented and registered to receive selection
GIP events from the FIOs that implement the final UI.

As can be seen, like in the case of the OMNI UI, the definition of the UI
and its particular behavior (UI control logic) has been performed completely at
the abstract level, without any knowledge about how the selection of the music
style is going to be finally implemented in the different usage scenarios.

The music style selection interaction facet can be implemented in multiple
ways using different FIOs to build various final UIs adapted to diverse usage
scenarios. Figure 5.18 shows three different ways of physically implementing
the selection of music styles.

First, a FIO implemented as an Android application for smartphones allows
the selection of the music style using the touch screen of a smartphone. It
exports a simple GIP interface supporting only two interaction facets, selection
and focus. This kind of selection FIO can be useful in many situations, it can
be used to control de music style on-the-go, using a personal device, but it can
also be useful at home.

Second, a cube-shaped device with different colors in each face. Each color
represents a music style, and the color that is facing upwards represents the
selected style. This FIO is implemented using an Intel Edison development



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 119

Algorithm 5.15 EMP implementation of the selection callback to change the
music style.

public class MusicStyleSelectionAction implements IDandelionSelectionCallback
{

...
@Override public void notifySelection( Property styleSelected, Col-
lection<Property> styleList, IUser user, AbstractInteractionUnit
aiu, DataSelectionSupport datass)
{

//is the music style selection facet
if (this.musicStyleSelection == datass) {

//the FIO returned a string?
if (styleSelected.getType() == Property-
Type.stringProperty) {

//change the music style
this.musicPlayer.setMusicStyle(styleSelected.getValue());

}
}

}

}

board, a 3-axis accelerometer, and a battery. It is implemented in JAVA, and
it exports a GIP interface supporting only a selection interaction facet. The
number of available styles for selection is limited to six (the sides of the cube),
so, if there are more than six, only the first six styles will be available for
selection. This is an example of a restriction that a particular FIO can impose
to the interaction facets it supports. This kind of FIO can be useful, for example,
for kids or seniors with low ICT knowledge.

Finally, the selection can also be controlled using hand and finger gestures.
For example, the number of fingers pointing can be used to select among five
different music styles. This FIO is implemented using a Leap Motion controller
and the Java language. It limits the maximum number of selection to five, and
it exports only one selection facet.

Output of the Album Art

Dandelion not only allows the input and output of basic data types like
numbers or strings, but it also allows the input and output of images in PNG
format. In this subsection, we are going to present a small example of how
Dandelion can be used to show the album art image of the EMP UI, while
keeping the UI decoupled from its final implementation.

For the definition of the abstract UI, as with any other output interaction
primitive, we need an AIU and a DataInputOutputFacet. The only difference



120 5.6. Demonstration Examples and Summary

Figure 5.18: Two different possibilities for the final implementation of the music
style selection interaction primitive. First, a touch UI using a smartphone,
useful for mobile and outdoor environments. Second, a leap motion controller
allows the selection of the style using hand and finger gestures.

Algorithm 5.16 Example of abstract UI code defining an output interaction
primitive for images.

<aui:AbstractInteractionUnit id="AlbumMetadata">

<aui:DataInputOutputSupport id="AlbumArt" dataFor-
mat="image" inputSupport="false" outputSupport="true">

<aui:dataType>image</aui:dataType>
</aui:DataInputOutputSupport>
...

</aui:AbstractInteractionUnit>

is the data-type of the facet, that will be ’image’, as shown in the code listed in
Algorithm 5.16.

The UI logic required to manage images requires a little bit more effort
than strings or other basic datatypes, but as shown in Algorithm 5.17, it remains
quite simple. In the case of the EMP example, we retrieve the Album Art image
from the music database. Next, we convert it to PNG format, because we have
selected it as the standard way to interchange images using the GIP. Finally, we
create an ImageProperty object by providing the RAW data of the image, that
will codified in base64 to send it using STOMP and JSON. The usual Dandelion
UIC API is used to perform the output interaction, as we would do in any other
case. Therefore, the main difference is the necessity to convert the image to
PNG, something that could be encapsulated in the Dandelion API, but we have
decided to let it outside, so that the API is not coupled to particular Image
APIs, that would make the JAVA implementation of Dandelion incompatible
with Android or other Java platforms.



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 121

Algorithm 5.17 Example of how to use Dandelion to output an image. The
image data must be first converted to PNG format. Dandelion automatically
encodes the raw data of the image in base64 to send it to the FIOs using the
GIP.

BufferedImage albumArtImage = song.getAlbumArt();
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ImageIO.write(albumArtImage, "png", bos);
ImageProperty albumArtProperty =

new ImageProperty(“”, bos.toByteArray());

dandelionUIC.showOutput(

albumArtProperty, albumMetadataAUI,
albumCoverFacet, new HashSet<FuzzyVariable>());

The implementation of a FIO that uses images as output or input is also
quite easy. The developer only has to perform the inverse process. She will re-
ceive an ImageProperty with the raw data of the image in PNG format, and she
have to convert it to an adequate data type in the receiving platform. An ex-
ample is shown in Algorithm 5.18, that displays the code required to implement
a FIO that shows the Album Art to the user in an Android application.

5.6.3 Summary

In this chapter we have presented a detailed description of the Dandelion
framework architecture, along with a description of how it realizes the IMA+ILA
abstraction levels proposed by the TIAF. Dandelion can be considered as a ref-
erence implementation of the TIAF conceptual proposals, providing developers
of AmI UIs with the following key characteristics:

• Design and specify the User Interfaces of AmI systems from an abstract
point of view, completely decoupled from the modalities and technologies
of the set of heterogeneous IRs that will build the UI.

• Design and implement the UI control logic of their systems isolated from
the APIs and particularities of the IRs.

• Assemble, at deploy-time, multiple different final UIs for the same system
and UI control logic.

• Build Distributed Physical User Interfaces that are isolated from the phys-
ical location and protocols of the different IRs.



122 5.6. Demonstration Examples and Summary

Algorithm 5.18 Example of output action of a FIO that uses an Android
smartphone screen to show the album art of the EMP to the user.

IOutputAction outputAlbumArt = new IOutputAction()
{

public String getId() { return "art";

}
public void doOutput(

Collection<Property> properties,
Collection<FuzzyVariable> fuzzyHints)

{
if (properties.size() >= 1) {

final Property out = properties.iterator().next();
artistTitle.post(new Runnable() { public void run() {

if (out.getType() == PropertyType.imageProperty) {
ImageProperty image = (ImageProperty) out;

byte[] imgData = image.getImageData();
Bitmap bitmap = BitmapFac-
tory.decodeByteArray(imgData, 0,
imgData.length);
albumArt.setImageBitmap(bitmap);

}
} });

}
} };



Chapter 5. Supporting Portable and Distributed Physical User Interfaces 123

Finally, in section 5.6, this capabilities have also been demonstrated with
the exploration of two complete application examples that use Dandelion to
build Physical Distributed UIs in Ambient Intelligence Environments.

Furthermore, in this chapter we have also presented the UniDA technology.
A device abstraction technology developed within this thesis that facilitates
the development of applications requiring the use of heterogeneous physical
devices. This technology is used in Dandelion in order to greatly increment
the compatibility of the framework with a large number of different devices,
especially in the field of home automation and the Internet of Things. The
implementation of the UniDA technology produced within this thesis has been
released as open source software, thus provided developers and researchers with
a directly usable solution for the development of applications using heterogenous
devices.





Chapter 6

Adding Real-Time,
Autonomous and Dynamic
Adaptation to Physical User
Interfaces

"Adapt or perish, now as ever, is nature’s inexorable imperative."

H. G. Wells

6.1 Introduction

The previous chapter was dedicated to describing the Dandelion framework
and, in particular, its implementation of the IMA and ILA abstraction layers
proposed by the TIAF. In this chapter, we are going to introduce the Dandelion
implementation of the ICA abstraction layer.

The goal of the Interaction Context Abstraction (ICA) layer is to decouple
the system and developers from the specific characteristics of the context and,
in particular, from the characteristics of the usage scenario, including the user,
the environment, and the usage situation.

With the IMA and ILA, developers are able to implement a physical UI
without knowledge about the modalities, APIs, and protocols of the under-
lying interaction resources. Therefore, they are decoupled from the IRs at



126 6.1. Introduction

Figure 6.1: The ICA allows Dandelion to autonomously select, at run-time,
which set of FIOs to use for each usage scenario. This way, Dandelion is able to
react to context changes at run-time, modifying the Final UI to keep it operating
within the natural interaction constraints required by Ambient Intelligence UIs.

development-time. Nevertheless, they are exposed to the IR characteristics
at deployment-time, because either the developers or the installers are required
to select the most appropriate IRs for each particular scenario. Furthermore,
with the implementation of Dandelion introduced in chapter 5, the adaptation
of UI to the context is performed manually by the installer, thus, while the UIs
are more easily portable, they are not able to adapt to changes in the usage
scenario.

The main idea behind the ICA layer is to change the Dandelion UI de-
velopment process explained in section 5.3 and Figure 5.3, where the installer
selects the FIOs to build the final UI, to the development process shown in
Figure 6.1, where Dandelion itself, using the ICA, selects at run-time the most
adequate FIOs for each usage scenario. This way, Dandelion will be in charge of
managing, autonomously, the mapping between abstract interaction facets and
FIOs.

The Dandelion implementation of the ICA is built on top of two main
elements. On the one hand, a set of models describing the scenario (context).
On the other hand, a set of Computational Intelligence algorithms to select,
among the IRs available, those that better match the requirements of the UI,



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 127

the user, and the environment. The context models provide developers with a
way to specify the characteristics of each usage scenario, while the FIO selection
algorithms provide the system with a mechanism to decide which FIO is better
for each particular scenario.

In this chapter, we are going to describe in detail how the ICA is imple-
mented in the Dandelion framework. We are going to start by providing an
overview of the whole physical UI adaptation to context process in section 6.2.
Then, we are going to continue with two sections to explain the two main com-
ponents of the ICA, the context models in section 6.3, and the autonomous
FIO selection process in section 6.4. Finally, we are going to end the chapter
with the presentation, in section 6.5, of three examples of how Dandelion can
be used to implement distributed physical user interfaces capable of adapting
to changes, at run-time, in the usage scenario.

6.2 Physical UI Adaptation to Context

The combination of the IMA and ILA abstraction layers allows developers
to achieve a high level of decoupling between the system/UI logic, and the fi-
nal shape of the UI. This feature facilitates the development of easily portable
DPUIs, but, in addition, it is a key enabler for the implementation of a mecha-
nism to autonomously adapt the user interface to changes in the context.

As previously shown in chapter 5, thanks to the features provided by the
IMA and ILA abstraction layers, implementing a concrete Distributed Physical
UI is reduced to performing a selection of which particular IRs, among those
available, are going to realize each abstract interaction requirement specified
by the abstract UI. Therefore, the adaptation of PUIs to context is reduced to
managing the mappings between abstract interaction facets and Final Interac-
tion Objects. This feature introduces two main characteristics that facilitate the
implementation of the ICA. First, Dandelion is already designed and prepared
to easily change, at run-time, the IRs used for a particular UI implementation.
And second, the process of managing and modifying the shape of the final UI
can be easily decoupled, as shown in 5.2, where the ICA is displayed as a sepa-
rate box with only one connection to the rest of Dandelion, required to modify
the FIO to AIU mapping.

As a consequence, the final goal of the Dandelion ICA implementation is
to manage, at run-time and in an autonomous way, the mappings between FIOs
and the Abstract UI. This means that the ICA will be in charge of autonomously
managing the selection of FIOs, choosing those that provide the best possible
natural user interaction experience in a particular usage scenario and that better



128 6.2. Physical UI Adaptation to Context

Figure 6.2: Overview of the Dandelion UI adaptation to context process. The
UIB creates a query to ask the FIO repository for a list of FIOs that comply
with the requirements of the usage scenario. This list is used to configure, in
the UI controller, the mappings between FIOs and abstract UI elements.

match the interaction requirements of the Abstract UI.

Figure 6.2 displays a block diagram showing an overview of how Dandelion
implements the autonomous FIO selection process. The main component in
charge of implementing the ICA is the User Interface Builder (UIB), which
receives context change events, and reacts to them by performing a new selection
of FIOs and modifying the mapping in the UI Controller.

The context change events are generated by external sources to Dandelion,
the UIB just creates a topic in the messaging broker and subscribes itself to the
topic in order to receive context change events published by other components.
This way, Dandelion is decoupled from the monitoring of the context, and it is
the responsibility of the system developer to provide a way to detect and notify
context changes. As we will see in more detail in section 6.5, for illustrative
purposes, we have implemented a UI Context Manager application that allows
the users to select, from their smartphones, in which place of the HIE they are
located, thus triggering the adaptation of the system to that scenario.

Once a context change event is received by the UIB, it starts the process
of adapting the UI to the context. This process is driven by a series of con-
text models that provide the UIB with information about the scenario in which
the UI is being used. As introduced in section 4.3.2.6, the TIAF does not
imposes any limitation on the type and number of context models used to im-



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 129

plement the ICA, nevertheless, it suggests having, at least, context information
about three different topics: user characteristics and preferences, environment
characteristics, and situation characteristics. Dandelion provides reference im-
plementations for three models covering those different topics, and, as displayed
in Figure 6.2, it uses those three models and the abstract UI model to feed the
FIO selection algorithms with context information. This is one possible imple-
mentation of the ICA layer proposed by the TIAF, but it would be possible to
implement it in different ways using a different type and number of models and
selection algorithms. In fact, given that in Dandelion the ICA is very decoupled
from the rest of the framework, it would also be easy to use different imple-
mentations of the ICA (i. e. the User Interface Builder) for distinct application
fields.

The UIB uses a series of Computational Intelligence (CI) algorithms to
exploit the context information provided by the models in order to select the
most adequate FIOs for each usage scenario. In particular, it uses fuzzy infer-
ence systems to implement many of the phases involved in the process.

First, when the FIO selection process is started, the UIB uses the informa-
tion provided by the abstract UI model and the context models to generate a
FIO specification for each abstract interaction facet required by the abstract UI.
This specification describes the desirable characteristics of a FIO that match the
interaction requirements of the AUI, and that should be adequate to the user,
environment, and situation characteristics. This specification is generated by a
set of fuzzy inference systems (FIS), and it is described using fuzzy variables.
Therefore, it is a fuzzy description of the characteristics an IR should have to
be adequate for the UI in that particular context.

Second, those FIO fuzzy specifications are used by the UIB to create queries
for the FIO Repository. This queries allow the UIB to ask the FIO Repository
for FIOs that are compatible with the specifications. The repository uses a series
of similarity metrics to compare the fuzzy specifications provided by the UIB
with the descriptions of the FIOs available in a location, and finally, it answers
the query with a list of FIOs sorted by their similarity with the specification
provided.

Third, the list of FIOs returned by the repository is processed by the UIB
in order to select only one FIO, the one that will be notified to the UI Controller
in order to establish an adequate mapping between a user interaction facet and
the FIO.

In the next two sections of this chapter, we are going to describe this process
in more detail, starting with a description of the different context models in
section 6.3 and a thorough description of the FIO selection process and its
algorithms in section 6.4.



130 6.3. Context Models

6.3 Context Models

As previously indicated, the user interface builder relies on a set of models
of the context to obtain the information needed to autonomously perform the
selection of the FIOs that better match the requirements of each usage sce-
nario. As a reference implementation of the TIAF, in Dandelion, we propose
the utilization of three different models of the context, one model for each kind
of context information proposed by the TIAF:

• User Profile Model (UPM). One of the main requirements of Ambient
Intelligence UIs is to be considered as natural user interfaces. For that
purpose, it is essential to bear in mind the characteristics, preferences, and
abilities of the user when building the final UI. This User Profile Model
provides Dandelion with information about the user’s capacities, includ-
ing their physical characteristics and their abilities, like vision, hearing,
cognitive, or pyschomotor abitilies.

• Environment Profile Model (EPM). The same Physical UI will not be
perceived as natural and easy to use in every environment. It is not
the same to interact with a system in a car than at home in the living
room. Therefore, in order to build NUIs, environmental characteristics
like noise, movement, visibility, or space, must be taken into account.
The Environment Profile Model provides this kind of information for each
of the physical environments included in the user’s HIE.

• Scene Profile Model (SPM). The situation or circumstances in which the
interaction is taking place and the task that the user is performing can
affect, in a major way, the form in which the interaction between the user
and the system takes place. In a similar way to the case of the different
environments, the natural perception of a UI will be different if the user
is working at the office, resting at home in the living room, or practicing
sports outdoors. The Scene Profile Model provides this information, in-
cluding the kind of activity that she is performing, the kind of place where
she is interacting, or the number of simultaneous users.

For the definition of these three models, we have relied mainly on one
prominent reference, the work carried by the MyUI project in the definition of
requirements for user interface adaptation [Edlin-White et al., 2010, Wolf et al.,
2011, Peissner et al., 2011]. The MyUI project explores the development of user
adaptive multimodal UIs for elderly people. As a consequence, their work is
quite relevant for the purposes of this PhD, because elderly people is one of
the main focus groups of Ambient Intelligence, and Physical User Interfaces are
eminently multimodal. Therefore, the MyUI requirements definition seems a



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 131

good starting point to discover the different information that a PUI context-
adaptation system requires to do its job.

While it is possible to imagine many more models supporting other types
of context information, we think that those three models provide the essential
information required to demonstrate the objective of this thesis, which is to al-
low the implementation of multimodal Physical User Interfaces for AmI systems
capable of adapting to context changes at run-time. Furthermore, it is impor-
tant to note that those models must be created by the installer or administrator
of the system. Therefore, in order to facilitate their job, it is also essential to
keep them simple and small in number.

In the next three subsections, we are going to describe in detail the three
proposed models. Finally, in section 6.5, we are going to show some usage
examples of how those models can be enough to provide an UI customized for
the user and usage scenario.

6.3.1 User Profile Model

The job of the User Profile Model (UPM) is to provide the UI builder
with information about the variability of characteristics that affect a person’s
capacity to interact with a system, so that Dandelion can build an UI adapted
to the user characteristics and abilities.

As previously introduced, the main goal of Ambient Intelligence systems
is to facilitate the life of its users, assisting and helping them in their daily
life. As a consequence, one prominent field of application of AmI technologies
is elderly and child care. These two groups, and in particular the elderly, are
characterized by a high diversity of abilities and capacities. This variability of
user characteristics hinder the design and development of natural user interfaces
for those users, but, at the same time, these groups of users usually have more
difficulties using information technologies, thus they tend to be who benefit
most from the utilization of natural user interfaces implemented with physical
user interfaces.

In order to design an UPM adequate to these groups of users, we have used
the statistical study of [Brault, 2012] and the work of MyUI [Edlin-White et al.,
2010, Wolf et al., 2011, Peissner et al., 2011] in user interface adaptation as our
main references for the development of the UPM.

Looking at the results the statistical study of Brault [Brault, 2012], which
presents the results of a report on disability prevalence across the USA, it is
easy to see how disabilities affect a large number of people considered inside
the group of elderly users. According to the study, in 2010, 49.8% of americans



132 6.3. Context Models

aged 65 and older had some kind of disability and 36.6% a severe disability.
But it is also important to note that 16.6% of americans between 21 and 64
have a disability and 11.4% a severe disability. Therefore, while it is clear that
the disability rate increases with age and affects a large percentage of elderly
people, we cannot ignore that, with a 16.6% rate in people of working age, there
is a large portion of the population that is affected by some kind of disability
which can hinder their capacity to interact with IT systems.

This statistical study also highlights the large diversity of disabilities that
affect the elderly to varying degrees. Among the people aged 65 and older, the
study found that categorizing the disabilities in three domains, communicative,
physical, and mental, there is a 28.7% of people with disabilities in one domain
(2.0% communicative, 26.0 physical and 0.7% mental), 16.4% with disabilities
in two domains (12.3% in C+P, 0.3% in C+M and 3.9% in P+M), and 4.3%
of people with disabilities in all three domains. Furthermore, even inside those
three domains, the diversity of disabilities can affect the ability of the users to
interact with the system in variety of ways. For example, the study found that
among people aged 65 and older:

• 17.8% have a disability related to seeing, hearing, or speaking, with 13.5%
having some kind of seeing difficulty (9.8% a severe one), and 10.8% having
a hearing difficulty.

• 39.4% have difficulties walking or using stairs.

• 23.8% have some kind of physical disability, with 21.2% having difficulties
for lifting objects, and 7.4% having difficulties grasping objects.

• 12.0% have difficulties performing activities of daily living, like getting
into bed (7.8%), dressing (5.5%), or eating (2.4%).

As can be seen, there is a high diversity of disabilities affecting the elderly,
with seeing, hearing, and motor disabilities among the most prevalent.

In [Edlin-White et al., 2010], the authors provide a thorough revision of
standards and guidelines for the development of UIs for older people, people with
disabilities, and stroke patients. Furthermore, the work also analyzes several
user studies with the objective of identifying how the aging affects the capacity
of people to interact with IT systems. They highlight one prominent source
for the identification of user requirements in UI adaptation for the elderly, the
ISO/TR 22411 “Ergonomics Data and Guidelines for the application of ISO/IEC
Guide 71 to products and services to address the needs of older persons and
persons with disabilities” [Bristish-Standards-Institute, 2008], and based on it,
they propose in [Wolf et al., 2011] a user profile ontology with information



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 133

Figure 6.3: UML class diagram showing the different concepts, and their rela-
tions, in the Dandelion User Profile Model.

organized into three different areas inspired by the three disability domains
proposed by Brault in a previous work [Brault, 2008]:

• Perceptual. Including user seeing and hearing abilities, but also environ-
ment characteristics like light conditions.

• Cognitive. Including language production and understanding, memory
characteristics, and Information and Communication Technology (ICT)
literacy.

• Motor. Including hand, finger or arm articulation, grip and lifting abilities,
etc.

Figure 6.3 shows a conceptual class diagram of the Dandelion User Pro-
file Model (UPM), which is directly inspired by the ISO/TR 22411 guideline
[Bristish-Standards-Institute, 2008] and the user profile ontology proposed by
[Wolf et al., 2011]. The main difference is that, in the UPM, we have extracted
from the user model some environmental information (like ambient lighting and
noise) and disaggregated the three areas into five, more specific, aspects. Fur-
thermore, we have included additional personal data about the users, like age,
religion or sex.

Regarding the reorganization of the model and the extraction of environ-



134 6.3. Context Models

ment information, in TIAF and Dandelion we propose the use of two additional
models with information about the environment and the usage situation, thus
the environmental information will be covered by those models. In regards to
the additional personal information of the users, as Dandelion is not only lim-
ited to elderly people, the age can be an important factor while performing the
FIO selection, because, for example, it may not select the same physical device
to interact with a kid than with an adult or an old man. Furthermore, cultural
aspects can also affect the selection in many ways, for example, different icons
are used in different countries to represent the same concepts.

The proposed User Profile Model divides the user information into five
different aspects, with each aspect covering a specific set of user interaction
abilities. It uses fuzzy variables to measure the difficulties the user has using
a particular ability. This variables are represented by a double number where
10.0 means normal ability, and 0.0 means a severe disability.

The next list provides an explanation for each one of the different aspects
and abilities covered by the model:

• User Profile. The main element of the model. It includes personal in-
formation of the user and links to abilities information for the different
interaction abilities covered by the model.

– Name. The name of the user.

– Age. The age of the user.

– Gender . The gender of the user.

– Nationality . The country of birth of the user.

– Religion. The religion followed by the user.

– Preferred language. The main language of the user.

• Vision Abilities. Covers the seeing abilities of the user.

– Visual acuity . The ability of the user to perceive the objects shown to her,
including physical objects and objects displayed in screens.

– Visual field . Ability to perceive without limitations in certain areas.

• Hearing Abilities. Covers the hearing abilities of the user.

– Hearing . Ability of the user to hear sounds.

• Cognitive Abilities. Covers mental abilities of the user like the usage of
language and memory.

– Language reception. The ability to understand language, either written or
spoken.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 135

– Language production. The ability to produce language, either written or
spoken.

– Abstract signs. Ability to comprehend icons and symbols.

– Attention. Global measure of the attention abilities of the user.

– Processing speed . The ability to process information in an adequate time.

– Working memory . Ability of the user to use short-term memory, i. e.
remembering sequences of steps during a short period of time.

– Longterm memory . Ability of the user to learn and store new information.

• Motor Abilities. Covers psychomotor abilities of the user that can affect
interaction with ICT systems, like the ability of moving hands and fingers.

– Speech articulation. Ability of the user to express herself using speech.

– Finger precision. Ability to move the fingers of the hand.

– Hand precision. Ability to move the hands.

– Arm precision. Ability to move the arms.

– Contact grip. Ability to interact by touching.

– Pinch grip. Ability to pick up, grasp, and manipulate objects with the
fingers of one hand.

– Clench grip. Ability to wrap objects with all the fingers.

– Hand-Eye coordination. Ability to move hands according to visual feed-
back.

• ICT Abilities. Skills using ICT systems.

– Literacy . Measure of the skills and experience using ICT systems.

The Dandelion User Profile Model must be considered as a reference im-
plementation of a user model. It includes the essential information about the
abilities of the users that can affect their interaction with a Physical User In-
terface.

6.3.2 Environment Profile Model

While the job of the User Profile Model is to model the variability of user
abilities that can affect the interaction with the system, the job of the Envi-
ronment Profile Model (EPM) is to model the variability of environment char-
acteristics that can affect the interaction between users and a Physical User
Interface.



136 6.3. Context Models

Figure 6.4: UML class diagram displaying the different concepts, and their
relations, that make up the Dandelion Environment Profile Model.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 137

The EPM is based in the analysis of environmental variability presented
by Edlin-White et al. in their work on requirements analysis for UI adaptation
[Edlin-White et al., 2010].

They identify five different areas of environmental variability: Lighting
conditions, noise and sound, vibration and motion issues, climate issues, and
space. As can be seen in Figure 6.4, the Environment Profile Model follows the
same style of the UPM, a central concept associated to four different aspects
representing the first four areas identified by MyUI. The space characteristics
are described by the location attribute of the Environment Profile concept. Fur-
thermore, the model includes two additional aspects that specify supplementary
information about the environment, like the type (mobile or stationary) and its
situation (indoors or outdoors).

The next list provide a description for every environment characteristic
covered by the EPM:

• Environment Profile. In Dandelion, an environment represents any delim-
ited physical location that is included in an HIE.

– Name. Descriptive name of the environment.

– Location. Reference of the location inside the HIE.

• Visibility Profile. Covers the characteristics of the environment that affect
the capacity of the user to view the objects of the environment.

– Visibility . An indication of the visibility quality inside the environment.

– Contrast . An indication of the lighting contrast (high or low).

– Lighting . A measure of the kind and quantity of light of the environment.

• Noise Profile. Information about the noise characteristics of the physical
environment.

– Ambient noise. A measure of the background noise of the environment.

• Motion Profile. Covers the movement characteristics of the environment.

– Motion. A measure of whether the environment is in movement or not.

– Vibration. An indication of the vibration level of the environment.

• Climate Profile. Weather information about the environment.

– Temperature. The temperature of the place.

– Humidity . Humidity level of the environment.

– Wind . A measure of the wind force in the environment.



138 6.3. Context Models

Figure 6.5: UML class diagram showing the concepts, and their relations, of
the Dandelion Scene Profile Model.

• Environment Type. Whether it is an stationary environment (home, office,
etc.) or a mobile one (car, train, etc.).

• Environment Situation. Physical situation of the environment (indoor,
outdoor).

6.3.3 Scene Profile Model

Apart form modeling the user and environment variability, the Threefold
Interaction Framework proposes the utilization of a scene or situation model to
provide the adaptation system with information about the current usage scene of
the UI. The Scene Profile Model (SPM) is in charge of modeling the variability
of usage situations that can affect the interaction between the users and the
system. As can be seen in Figure 6.5, this model covers mainly information
regarding the task that the user is performing and in what kind of situations
she is performing that task. This kind of information may permit the system
to adjust the user interface depending on the task and objective of the user, for
example, using different approaches for work tasks than leisure ones.

The next list provide a description for every characteristic covered by the
SPM:

• Scene Profile. The main concept of the SPM. It includes the links to the
different aspects describing the scene.

– User Count . The number of simultaneous users of the user interface.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 139

• Activity Profile. Information about the activity or task the user is per-
forming.

• Activity Type. Whether the user is performing a work, daily, fitness, or
leisure activity.

• Activity Style. Whether the activity can be considered individual or social,
i. e. shared with other people.

• Activity Mode. Whether the task is performed while on the go or in a
fixed location.

• Ability Requirements. An indication of to what extend are required some
particular abilities of the user for an specific activity.

6.4 Autonomous Selection of Interaction Resources

As previously introduced in section 6.2 and in Figure 6.2, the main job of
the ICA in the TIAF, and therefore the main job of User Interface Builder in
Dandelion, is to transform an abstract UI into a final UI capable of providing
natural interaction in a specific usage scenario. In Dandelion, the process of
building a final UI is reduced to performing a selection of a set of FIOs and
their mapping to the different elements of the abstract UI. Thus, the UIB must
choose, at run-time and in an autonomous way, those IRs (among the ones
available in each environment) that better match the interaction requirements of
the abstract UI and the natural interaction requirements of each usage scenario
(user, environment, and scene).

In this section, we are going to show how this selection process, already
introduced in section 6.2, is implemented in Dandelion by using fuzzy inference
systems to exploit the information available in the usage scenario models.

As displayed in Figure 6.6, the FIO selection process can be divided into
four different stages or phases. In the first step, that will be described in detail
in section 6.4.1, the information available in the usage scenario models (User
Profile Model, Environment Profile Model, and Scene Profile Model) is used
to generate an specification of how a FIO should be in order to be considered
adequate for the usage scenario. This is an ideal specification that represents,
to some extent, the best possible FIO for each scenario, and it is generated by
exploiting the model’s information using a series of fuzzy inference systems.

The second step, described in subsection 6.4.2, consists in using this ideal
FIO specification to look for those IRs that comply better with the specifica-



140 6.4. Autonomous Selection of Interaction Resources

Figure 6.6: The FIO selection process is performed in four different phases.
First, the models are used to create a specification of the characteristics re-
quired of a FIO to be considered adequate for the usage scenario. Second, the
specification is used to select a list of FIOs from all the ones available in a
particular physical environment. Third, one FIO is selected for each interaction
facet. Finally, the FIO mapping is updated in the UIC.

tions. This phase is performed by the FIO Repository using an adequateness
metric that measures how compliant is a particular FIO with the ideal specifica-
tions produced by the UIB. One list of candidates is generated for each abstract
interaction facet of the abstract UI.

The result of the second step is a list of FIOs sorted by their adequateness
for the ideal specification. This list is used by the third phase, presented in
subsection 6.4.3, to select only one particular FIO that will be associated to a
specific interaction facet from the abstract UI.

In the last step, also presented in subsection 6.4.3, each FIO chosen by
the UIB is associated to a particular abstract interaction facet, updating the
FIO mapping that is used by the User Interface Controller to route GIP events.
This update is done at run-time, without affecting the AmI application, thus
allowing the dynamic, and real-time, adaptation of the application to context
changes.

6.4.1 Generating Specifications of the Ideal FIO

While all the four phases of the FIO selection procedure have an important
role in the process, the first phase is the one that will have, by far, the greatest



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 141

impact in the shape of the final UI produced. In this first phase, the UIB must
decide what kind of modalities and physical characteristic the final UI should
have. For that purpose, we produce a specification of the desired modalities,
physical shapes, and other characteristics, that an IR should present in order to
be able to produce a natural user interaction experience in a particular usage
scenario. We call this specification the Ideal FIO , and it must be considered
as a wish list of what kind of IRs we want to use to assemble our final UI. In
the second step of the process, this Ideal FIO will be used as the reference with
which to compare all the physically available FIOs.

The Ideal FIO uses fuzzy variables to provide an indication of how de-
sired each particular characteristic is, thus it is a fuzzy specification of what
modalities and physical characteristics are supported (and to what extent) by a
particular set of user, environment, and scene characteristics. Before describing
the Ideal FIO specification and its generation process in detail, it is necessary
to introduce the FIO Description Model. As previously indicated, the Ideal FIO
will be used to compare to it the available FIOs, but for that, it is necessary to
have a description of the FIOs in the same terms as the Ideal FIO. Therefore,
either the IR manufactures, the developers, or the installers of the system must
provide Dandelion with a description of each IR that is available for use in each
environment. This description is performed using the FIO Description Model,
and as will be seen, the Ideal FIO specification shares many concepts with it.

The next two subsections are dedicated to introducing the FIO Description
Model and the Ideal FIO Specification Model respectively. In a third subsection
after them, the Ideal FIO generation process is described in detail.

6.4.1.1 FIO Description Model

The goal of the FIO Description Model (FDM) is to describe the different
characteristics that an interaction resource, represented by a FIO, can con-
tribute to a final user interface. This description must include all the informa-
tion required by the UIB to perform an adequate selection of FIOs for a specific
abstract UI in a particular usage scenario.

Therefore, on the one hand, it must include user interaction support in-
formation (i. e. what interactions it allows the user to perform), because this
information is essential to allow the FIO selection algorithms to choose IRs that
match the different interaction requirements of the abstract UI. On the other
hand, it should include information about the interaction modalities used by
the IR and information about its physical shape. The modality information
is necessary for the UIB algorithms to correctly select FIOs adequate for each
user and environment characteristics, because different modalities will be better



142 6.4. Autonomous Selection of Interaction Resources

adapted to the different abilities of each user, or even to different characteris-
tics of the environment. For example, a speech production modality would be
completely inadequate for a user with a high value of hearing difficulties, while
a keyboard modality would be inadequate for a user with difficulties using her
fingers and hands. Regarding the physical shape of the FIO, it can provide im-
portant information to consider in the selection process, because, depending on
the user and environment characteristics, one shape or size can be considered a
better option than others. For example, toy shaped devices will be, probably,
more accepted by kids than by adults, an vice versa.

Figure 6.7 displays a conceptual class diagram showing the different con-
cepts included in the FIO Description Model, and how they are related.

As can be seen, we decided to go for a quite simple and small model,
specially for the description of the modalities and physical properties of the
IRs. Even if an approach like the one by Obrenovic et al. in [Obrenović and
Starcević, 2004, Obrenović et al., 2007] would feed the adaptation process with
much more accurate information about how a human can manipulate an IR,
because they propose a very complete and complex ontology that uses human
functionalities and anatomical structures to describe the modalities used by
interaction resources, we think that it is important to keep the model as simple
as possible and as far as possible from complex definitions related to health
and anatomic issues. In an ideal world, this description information should be
provided by the manufacturer of the interaction resource, but, in its absence,
it should be the FIO developer or even the system installer. It is obvious
that neither the manufacturer, nor the developer or installers will be trained to
provide a detailed anatomic and psychomotor specification as the one proposed
by Obrenovic.

As shown in 6.7, the description of the interaction capabilities directly
matches the style of the abstract UI model. Each IR just specifies the number
and type of the interaction facets it supports. So, it should be easy to establish
direct relations (the FIO mapping) between abstract UI elements (interaction
facets from the abstract UI) and FIO interaction elements (interaction facets
from FIOs).

Regarding the specification of the modalities and physical properties of the
FIOs, we have designed a very simple mechanism which is used in a very similar
way for the two descriptions. The kind of shape or modality is specified by a
type, selected from a limited set of modalities and shapes supported, and a value
called granularity. This value, which is used in a different way for each case,
ranges from 0.0 to 10.0, with the lower values representing a coarser granularity,
and the higher values a finer granularity.

For modalities, the granularity represents an indication of the skills required



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 143

Figure 6.7: UML class diagram showing the concepts, and their relations, of
the FIO description model.



144 6.4. Autonomous Selection of Interaction Resources

to use the specified type of granularity. Thus, in the case of a keyboard modality,
a coarser granularity will mean a keyboard with a small number of large keys,
while a fine granularity will mean a keyboard with small keys and a large number
of them. In the case of gesture-based modality, a fine granularity would suppose
the use of a large number of different gestures, and probably more detailed ones
(with the fingers), while a coarser granularity would mean a small set of gestures,
probably using only the arms or hands, depending on the value.

For the specification of the physical shape, the granularity value represents
how close the shape is to the specified shape type.

6.4.1.2 Ideal FIO Specification Model

The Ideal FIO Specification Model and the FIO Description Model share
many similarities, including the use of the same concepts. This similarity is
necessary because, during the second phase, different instances of them are
going to be compared, this is, each FIO available in a physical environment is
going to be compared to the Ideal FIO specification in order to know how alike
they are.

As can be seen in Figure 6.8, the Ideal FIO is basically composed of a de-
scription of what modalities and physical shapes are considered good candidates
for a particular usage scenario. The adequateness factor of each characteristic
(modality, physical shape, usage characteristic) is specified by a granularity
value, which ranges from 0.0, that indicates that the characteristic is not desir-
able at all, to 10.0, that is the highest possible degree of adequateness.

6.4.1.3 Ideal FIO Generation

While the UIB is designed to support different strategies for the generation
of the Ideal FIO specification, for demonstration purposes we have implemented
one strategy using Fuzzy Logic, in particular, it uses three Fuzzy Inference
Systems (FIS) as displayed in Figure 6.9. Each one of them is in charge of
generating one of the three different aspects of the specification. There is a FIS
dedicated to selecting the most adequate modalities for each usage scenario,
another one dedicated to selecting the best physical characteristics, including
shape, and a last one dedicated to specifying the usage characteristics.

Those FIS have been implemented using the JFuzzyLogic library [Cingolani
and Alcala-Fdez, 2012, Cingolani and Alcala-Fdez, 2013], a Java library that
facilitates the implementation of fuzzy inference systems, and their rules have
been programmed using the Fuzzy Control Language (FCL) [IEC, 1997]. The
FCL language provides a standard way to specify fuzzy sets and fuzzy variables,



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 145

Figure 6.8: Conceptual class diagram displaying the components, and their
relations, of the FIO Specification and FIO Query models.



146 6.4. Autonomous Selection of Interaction Resources

as well as the fuzzy rules that will provide the knowledge required by the fuzzy
inference systems to operate.

As previously introduced, the Ideal FIO is composed of three different
groups of specifications:

• Modality Specification. The modality specification is a set of pairs of
modality type and granularity values, that specifies to what extent a
modality is supported by a specific usage scenario. This value can also
be interpreted as a measure of how adequate is each modality for the
usage scenario, because it can be assumed that if the granularity is well
supported, it must be a good candidate for the scenario. The modal-
ity specification is generated by a series of small fuzzy inference systems,
each one of them specialized in a particular modality. These FIS systems
receive different properties of the user, environment and scene as input,
and produce a granularity value for the modality as output. 6.1 displays
a small example of one of those FIS, in particular, the one in charge of
providing a granularity value of the SYMBOL modality.

• Physical Specification. The physical specification includes physical prop-
erties of the IR, like its size, and a set of pairs of physical shape and
granularity values specifying how adequate each physical shape is con-
sidered. The physical specification is generated by two different FIS, one
specialized in providing values of the physical properties, and the other one
which uses the context models and the modality specification information
to infer an adequateness value (granularity) for each physical shape.

• Usage Specification. This specification is generated by one FIS that relies
on the information provided by the user model in order to infer the re-
quired usage characteristics for the IRs, like the ICT abilities required by
the user or the user’s recommended age.

As can be seen, the Ideal FIO is a kind of fuzzy wish list of FIO character-
istics, which is generated by the UIB for each usage scenario, this is, for each
particular combination of user, environment and usage characteristics. This
specification does not include user interaction characteristics, apart from the
modalities, thus it is independent from the concrete user interaction primitives
supported by the IRs, and therefore, the same Ideal FIO specification is valid for
all the Abstract Interaction Units and all the interaction facets of the abstract
UI.

In order to continue with the FIO selection process, in the second step, a
FIO Query is generated for each interaction facet and AIU that makes up the
abstract UI. This FIO Query, as shown in Figure 6.9, is a combination of the



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 147

Algorithm 6.1 Fuzzy rules for the SYMBOL modality selection FIS.
RULE 1:

IF user_visual_acuity IS normal AND
user_cognitive_abstract_signs IS normal
THEN modality_symbol IS high_granularity;

RULE 2:

IF user_visual_acuity IS somewhat_impaired AND
user_cognitive_abstract_signs IS normal
THEN modality_symbol IS low_granularity;

RULE 3:

IF user_cognitive_abstract_signs IS somewhat_impaired
OR user_cognitive_abstract_signs IS impaired OR
user_cognitive_abstract_signs IS severely_impaired
THEN modality_symbol IS not_supported;

RULE 4:

IF user_visual_acuity IS severely_impaired OR
user_visual_acuity IS impaired
THEN modality_symbol IS not_supported;

RULE 5:

IF env_visibility IS low
THEN modality_symbol IS medium_granularity;

RULE 6:

IF env_visibility IS very_low
THEN modality_symbol IS low_granularity;

Ideal FIO specification with a user interaction specification that describes the
interaction primitives (input, output, etc.) required by a specific interaction
facet. This query is sent to the FIO Repository that, as will be described in
the next subsection, generates a list of the available FIOs that better match
the characteristics of the Ideal FIO and the interaction requirements of the
interaction facet.

6.4.2 Selecting Adequate FIOs

As indicated in Figures 6.6 and 6.9, the Ideal FIO is used to generate
queries to ask the FIO repository about the FIOs, available in the physical
environment, that better match the needs of the abstract UI and the usage
scenario.

A FIO query is composed of two different kinds of information. On the one
hand, the Ideal FIO, that provides a fuzzy specification of how a FIO should be
in order to be considered adequate for a specific usage scenario. On the other
hand, an Interaction Specification, that provides a description of the interaction



148 6.4. Autonomous Selection of Interaction Resources

Figure 6.9: The Ideal FIO specification is generated for each usage scenario,
while the interaction specification is generated for each one of the interaction
facets included in the abstract UI.

capabilities required by the UI, like the type of interaction primitive, the type
of the data, or its cardinality, as displayed in Figure 6.8.

The Ideal FIO is fixed for each particular usage scenario (combination
of user profile, environment profile and scene profile), while the Interaction
Specification changes for each interaction facet described in the abstract UI.
Thus, in order to provide a FIO mapping for each interaction facet, and build
the complete final UI, the UIB must generate one FIO Query for each interaction
facet.

The FIO repository keeps a database of the FIOs available in the different
physical environments of an HIE. This database is composed of a collection of
FIO descriptions associated to each physical location of the HIE. When the
repository receives a FIO query, the goal of the repository is to find those FIOs
that better match the specification provided by the query. For that purpose, it
uses a series of metrics to compare the Ideal FIO and the interaction specifica-
tions of the query to the descriptions of all the FIOs deployed in a particular
location.

These metrics provide the repository with a measure of how similar is each
particular FIO to the specifications of the Ideal FIO. As the Ideal FIO is a
description of a FIO considered to be very adequate for a specific usage scenario,



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 149

Figure 6.10: The FIO adequateness metric is calculated by an aggregation of
four independent adequateness measures (Interaction, Modality, Physical and
Usage similarities) between the query specifications and a FIO description.

these metrics provide a measure of how adequate a FIO is for a particular usage
scenario. Therefore, we call these values the FIO adequateness for a scenario.

As shown in Figure 6.10, the adequateness measure is a result of the com-
bination of multiple specific measures of each one of the aspects of a FIO:

• Modality adequateness. Provides a measure of how adequate is a FIO
description, in terms of modalities, to the Ideal FIO specification.

• Physical adequateness. Provides a measure of how adequate is the physical
description of the FIO with regards to the Ideal FIO.

• Usage adequateness. Provides a measure of how adequate are the usage
characteristics of the FIO compared to the Ideal FIO.

• Interaction adequateness. Provides a measure of how adequate is the
support for user interaction of the FIO compared to a particular abstract
interaction facet.

This division of the FIO adequateness into different factors allows us to
implement it as a weighted function of the different individual measures, thus
allowing us to give more importance to some particular aspects. Furthermore,
as will be seen in the next subsection, this division allows the implementation
of Final UI building strategies capable of reasoning using the CARE properties
for assessing usability in multimodal interfaces [Coutaz et al., 1995].



150 6.4. Autonomous Selection of Interaction Resources

The repository calculates the FIO adequateness factor of each FIO deployed
in the location specified by the FIO query, and then, it answers the query with
a list of FIO descriptions sorted by their adequateness.

The FIO Repository is designed to support multiple different FIO adequate-
ness metric implementations, permitting the UIB to select one or another by
specifying the metric-id in each FIO query. For illustration and demonstration
purposes, we have provided one implementation of a FIO adequateness metric
that uses the Fuzzy Geometric Model, a fuzzy object comparison method pro-
posed by Bashon in [Bashon et al., 2010, Bashon, 2013]. This metric is described
in detail in the subsection bellow.

6.4.2.1 FIO Adequateness Calculation using the Fuzzy Geometric
Model

As previously introduced, we have defined the FIO Adequateness factor
as the similarity between the Ideal FIO specification and a FIO Description.
Calculating similarity or compatibility between objects is a fundamental aspect
of human reasoning, consequently, it has also become an important factor in the
development of classification and decision systems, resulting in the development
of multiple similarity or distance metrics for different purposes [Deza and Deza,
2009].

Both the Ideal FIO and the FIO Description are objects made up of fuzzy
attributes, therefore, we need a mechanism to compare fuzzy objects, i. e. a
similarity metric capable of dealing with uncertain and imprecise information.
While there exist multiple different similarity measures for fuzzy data [Cross
and Sudkamp, 2002], we decided to apply the Fuzzy Geometric Model (FGM)
proposed by Bashon [Bashon et al., 2010, Bashon, 2013], because it matches
very well the characteristics of the objects we want to compare.

The FGM is a generalization of the Euclidean distance adapted for com-
paring fuzzy sets. It evaluates the similarity between two objects by comparing
their fuzzy attributes. An important characteristic is that the two objects must
have the same number of attributes, and each pair of them must share the
same fuzzy domain, i. e. they must have the same units and the same range
of values. As can be seen, our comparing objects, the Ideal FIO and the FIO
description, match these characteristics very well, as the two models share the
same attributes and fuzzy domains.

We use the FGM, in combination with specific heuristics, for the calculation
of the Modality, Physical, and Usage similarities, but not for the Interaction
similarity, because the interaction specification does not use fuzzy attributes.
In that case the Euclidean distance is used if the interaction type is the same,



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 151

in any other case, the interaction similarity is 0.0.

The Fuzzy Geometric Model performs the calculation of similarity between
fuzzy objects in two steps:

1. Calculate the similarity among each corresponding pair for attributes.

2. Aggregate the similarities of all the pairs of attributes in order to give a
final judgement of how similar the objects are.

For the first step, the calculation of the similarity between each pair of at-
tributes, the FGM uses the next three equations.

The distance between two fuzzy sets Aij , Bij✏F (Uj) is defined by the map-
ping dis : F (Uj) ⇥ F (Uj) ! [0, 1] shown in equation 6.1, where Uj stands for
the domain of the j

th attribute, and i = 1, 2, ...,mj stands for the number of
linguistic terms defined by the membership functions µAij and µBij (in our case:
µAij (x) = µBij (x) for all x✏Uj). Equation 6.1 calculates the distance between
the values of each pair of attributes (x1, x2✏Uj) taking into account only one of
the specific linguistic terms of the fuzzy set for any.

dis(Aij , Bij) = |µAij (x1)� µBij (x2)| (6.1)

Equation 6.2 shows a normalized generalization of the Euclidean distance,
dF : atF1 ⇥ atF2 ! [0, 1], that calculates the distance between two pair of fuzzy
attributes by taking into account the shape of the membership function that
characterizes their membership to the fuzzy set. This is done by including the
attribute distances regarding all the different linguistic terms (mj).

dF (aj , bj) =

qPmj

i=1 dis(Aij , Bij)2

p
mj

(6.2)

Finally, the similarity, SF : atF1 ⇥ atF2 , between each corresponding pair
of fuzzy attributes aj and bj is defined by equation 6.3, where kj (� 0) is a
weight that can be used to customize the contribution of each attribute to the
final calculation of the object similarity.

SF (aj , bj) =
1� dF (aj , bj)

1 + kjdF (aj , bj)
(6.3)

Once we have calculated the similarity between each of the corresponding
attributes, step two consists in aggregating all of them to produce an overall
measure of how similar the two objects are. This can be done in multiple ways,
but we have decided to use the weighted average of attribute similarities, because



152 6.4. Autonomous Selection of Interaction Resources

it allows us to customize the importance of some attributes in the final similarity
metric. The overall fuzzy object similarity metric is provided by equation 6.4,
where ↵j✏ [0, 1]:

FuzSim(Fs, Ft) =

Pr
j=1 ↵jSF (aj , bj)Pr

j=1 ↵j
(6.4)

As previously introduced, the FGM, i. e. the FuzSim function, in combi-
nation with some simple heuristics is used to implement the Modality, Physical,
and Usage similarities. For each particular attribute of each similarity we have
used different weights to customize their importance in the final similarity cal-
culation:

• The modality adequateness is calculated using a combination of heuristics
and FGM similarity. It compares the granularity of each modality speci-
fied by the Ideal FIO to the granularities of the modalities supported by
the FIO. If the granularity of the scenario is greater than, or equal to, the
granularity of the FIO, the adequateness is 1.0, because the granularity of
the Ideal FIO represents the maximum complexity supported by the sce-
nario, and it supports a more complex modality than the one specified by
the FIO. If the granularity of the scenario is smaller than the granularity
of the FIO, we use the FGM to compare the two values according to their
fuzzy definition as shown in equation 6.5, where gs and gf are the granu-
larity values of modalities Ms and Mf respectively. Finally, the modality
adequateness value is adjusted using a simple heuristic (see equation 6.6)
that penalizes the complexity of modalities.

ModAdq(Ms,Mf ) = FuzSim(gs, gf ) (6.5)

ModAdq(Ms,Mf ) = ModAdq(Ms,Mf )� 0.01 ⇤ gf (6.6)

• The physical similarity is in fact calculated as the weighted aggregation of
the application of the FuzSim function to two different objects: the shape
of the FIO and its physical characteristics (size, etc.). Its definition can be
seen in equations 6.7 and 6.8, where sp stands for the shape granularity,
Ch for the physical characteristics object, sz for the size attribute, st for
the status attribute, and d for the usage distance attribute of the physical
characteristics.

PhAdq(Ps, Pf ) = 0.35FuzSim(sps, spf ) + 0.65PhCSim(Chs, Chf ) (6.7)

PhCSim(Chs, Chf ) = 0.5SF (szs, szf ) + 0.35SF (sts, stf ) + 0.15SF (ds, df )

(6.8)



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 153

• The usage similarity is calculated using the FuzSim function with the
weights shown in equation 6.9, where Ug stands for the usage character-
istics object, age for the recommended age attribute, and ict for the ICT
literacy attribute.

UsgAdq(Ugs, Ugf ) = 0.2SF (ages, agef ) + 0.8SF (icts, ictf ) (6.9)

Finally, the overall FIO adequateness is calculated using the next equation
if the interaction similarity is greater than or equal to 0.25. When the interaction
similarity is less than 0.25, Adequateness = 0.0.

Adequateness = 0.10IntrAdq(Is, If ) + 0.65ModAdq(Ms,Mf ) +

0.15PhAdq(Ps, Pf ) + 0.10UsgAdq(Ugs, Ugf ) (6.10)

As can be seen, we have considered the modality adequateness as the more
relevant factor for the calculation of the overall adequateness because we think
that modality is the factor that has more impact on the natural interaction
perception of the UI.

Regarding interaction adequateness, we have set a limit for its lower value.
If the interaction similarity is too low (less than 0.25), the adequateness is 0.0,
because if a FIO does not match the interaction requirements of an interaction
facet, it will be useless.

6.4.3 Building the Final User Interface

As previously introduced in this chapter, the last step in the Dandelion
UI adaptation to context process is to build a Final UI by establishing a new
mapping between the interaction elements of the abstract UI and the FIOs
selected by the User Interface Builder. In the previous two subsections, we have
seen how the UIB uses the FIO repository to obtain a list of FIOs available
and measure how adequate they are to build a final UI for a specific usage
scenario. In this subsection, we are going to describe how the UIB selects, for
each particular abstract interaction facet, one specific FIO and then updates
the FIO mapping in the User Interface Controller.

Like in the case of the Ideal FIO generation and the FIO adequateness met-
rics, the UIB is designed to support different implementations of FIO selection
strategies. Nevertheless, for demonstration purposes we have provided just one
implementation of a FIO selection strategy.

The implemented strategy takes advantage, as indicated in the previous



154 6.4. Autonomous Selection of Interaction Resources

section, of the division of the FIO adequateness metric into four sub-factors to
rely on the CARE properties [Nigay and Coutaz, 1994, Coutaz et al., 1995] to
drive the selection process.

The CARE properties (Complementarity, Assignment, Redundancy and
Equivalence), as described by Coutaz et al. [Coutaz et al., 1995], provide a
way to characterize different aspects of multimodal interaction and facilitate
the reasoning about how the multiple modalities can be combined to produce
usable multimodal user interfaces:

• Equivalence. It occurs when two different modalities (or more) are enough,
considered individually, to implement a particular user interaction primi-
tive.

• Redundancy. It occurs when a UI must use multiple different, but equiv-
alent, modalities to implement the same user interaction primitive in dif-
ferent ways. In contrast to complementarity, each one of the modalities is
enough to implement the action.

• Complementarity. It is the characteristic of an UI of using a combination
of different modalities for the implementation of one particular user inter-
action primitive. In contrast to redundancy, when two or more modalities
are used in a complementary way, all of them are necessary to implement
the interaction primitive.

• Assignment. Assignment is the complementary of redundancy. It indi-
cates that there is only one possible modality to implement a particular
user interaction primitive.

Regarding the CARE properties, in Dandelion we consider FIOs as modali-
ties and the interaction facets and Abstract Interaction Units as the interaction
primitives. Therefore, looking at the different metrics that make up the FIO
adequateness measure, we can conclude that:

• The Interaction similarity measure can be considered as a measure of the
equivalence between two different FIOs. Two FIOs with a high value
of interaction similarity will implement the same interaction facets, thus
providing the same interaction capabilities.

• The Modality, Physical, and Usage similarities can be used to reason about
the selection of redundant FIOs. By using the interaction similarity to
select equivalent FIOs, we can use the other three similarities to select
FIOs that provide the same interaction capabilities while using different
modalities, different physical shapes or usage characteristics.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 155

• The same as above can be done to reason about complementarity. When
multiple FIOs are required to implement a particular interaction (for ex-
ample, an Abstract Interaction Unit with multiple interaction facets), we
can select FIOs with high degrees of Modality, Physical, and Usage simi-
larities, but lower degrees of interaction similarities.

The selection process applies the CARE properties to select FIOs with the
objective of producing an usable multimodal user interface:

• It relies mainly in the FIO adequateness value, so that it tends to select
those FIOs with the higher values in adequateness.

• When multiple interaction facets belong to the same Abstract Interaction
Unit, they are logically grouped and they are probably part of the same
complex interaction action. Therefore, the system applies the Comple-
mentarity property in order to look for FIOs that are similar regarding
modalities, physical shape, and usage characteristics, but are not equiva-
lent, i. e. they provide different interaction capabilities.

• The Redundancy property is applied when the developer specifies that
one interaction facet is required to have multiple simultaneous implemen-
tations. In such case, the UIB can select different FIOs with a high degree
of Equivalence, but different modalities, physical shapes, or usage charac-
teristics.

Once a FIO has been selected for each one of the interaction facets of the
abstract UI, the final step is to update the FIO mapping, and thus, provide a
new Final UI for the application. The update process is managed by the UIB,
which uses a remote interface provided by the User Interface Controller (acces-
sible though a messaging protocol using STOMP and JSON). The mapping is
updated at run-time, without affecting the application, thus, once the update
is finished, the UIC starts routing the GIP messages to the new FIOs, and the
application automatically starts using the new Final UI without interruption.

6.5 Demonstration Examples and Summary

In this subsection, we are going to present three examples to demonstrate
the capabilities of the Dandelion framework to implement context-adaptive UIs.

In subsection 6.5.1, we use the Environmental Music Player system, already
introduced in previous chapters, to show an example of UI adaptation to context
changes in the environment of use. Section 6.5.2 is dedicated to adaptation of
UIs to the characteristics of different users. And finally, in section 6.5.3, we



156 6.5. Demonstration Examples and Summary

use the EvacUI system to provide a complete example of a physical distributed
UI capable of adapting itself to different users interacting with the system in a
variety of physical environments and situations.

6.5.1 Environment Adaptation: Environmental Music Player

In this subsection, we are going to demonstrate the capabilities of the
Dandelion framework to adapt, at run-time, a Physical User Interface to changes
in the physical environment. Therefore, we are going to focus exclusively on
physical environment adaptation, thus only the environment characteristics, i.
e. the environment and scene profiles, are going to change dynamically, while
the user profile is going to remain the same for all the scenarios.

For that purpose, we are going to use the Environmental Music Player
example, the UI of which was already introduced in subsections 4.2.2 and 5.6.2.

For this demonstration example, we have envisioned four different usage
scenarios:

• The living-room. The user is listening to music in the living-room while
she is doing any leisure activity, like reading.

• The kitchen. The user is listening to music while she is cooking in the
kitchen.

• The car. The user is listening to music while she is driving to her work-
place.

• Outdoors. The user is listening to music while she is doing some sport
activity.

Table 6.1 shows the detailed environment profile information of each usage
scenario, and table 6.2 shows the scene profiles for each different usage scenario.
With regard to the user profile, we have configured a user with the maximum
value (10.0) in all physical and motor characteristics and a medium ICT literacy
value (6.0), so that the user does not impose any limitation on the selection of
FIOs.

As the EMP abstract UI is quite big, in order to keep the explanation
of the adaptation process simple, we have selected four particular interaction
facets of the EMP abstract UI introduced in section 5.6.2. For each one of
this facets, we have executed the Dandelion context adaptation process using
the previously mentioned profiles as inputs. Furthermore, we have provided
the FIO Repository with a set of FIOs and their descriptions, in order to let



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 157

Noise Type Situation Space

ambient visibility contrast lighting motion vibration temp. humidity wind type situation space

Livingroom 2,0 7,0 2,0 2,0 0,0 0,0 20,0 65,0 0,0 7,0 0,0 4,5

Kitchen 7,0 7,0 4,0 7,0 0,0 0,0 21,0 55,0 0,0 5,5 0,0 3,0

Car 5,5 2,0 7,0 5,0 7,0 5,5 18,0 70,0 0,0 4,0 5,5 1,5

Outdoors 4,0 5,5 8,0 5,0 5,5 1,25 10,0 75,0 15,0 1,25 10,0 9,0

Visiblity Motion Climate

Table 6.1: Values of the different environment profiles associated to each usage
scenario of the EMP example.

usr.	count act.	type act.	mode act.	style hands vision attention

Livingroom 1,0 10.0 8,0 0,0 0,0 0,0 1,0

Kitchen 1,0 10.0 5,5 0,0 7,0 4,0 3,0

Car 1,0 10.0 4,0 0,0 8.5 8,0 5,0

Outdoors 1,0 10.0 1,25 0,0 1,0 2,0 2,0

Scene

Table 6.2: Values of the different scene profiles associated to each usage scenario
of the EMP example.

Dandelion select among them those that are more adequate for each combination
of interaction facet and physical environment.

In the following subsections, we are going to present the results obtained
by the Dandelion autonomous UI building system for the different interaction
facets selected as examples.

Control Actions like Play, Pause, Next Song, etc.

The EMP UI allows the user to perform many different actions, like change
the song (next and previous actions) or control the playing of music (play,
pause, and stop). Each one of these actions is modeled in the abstract UI as an
interaction facet with cardinality 1 and a trigger interaction type.

For demonstration purposes, we have implemented a small set of FIOs
capable of supporting the different interaction requirements of the EMP UI
(some of them are shown in Figure 6.11):

• A remote controller with support for 10 interaction facets of type trigger.

• A Kinect [Microsoft, 2015] gesture recognition IR with support for 7 in-
teraction facets of type trigger.



158 6.5. Demonstration Examples and Summary

• A Leap Motion [Leap-Motion-Inc., 2015] gesture recognition IR with sup-
port for 7 interaction facets of type trigger and 1 interaction facet of type
selection.

• A button-based IR, which uses home automation wall switches supporting
4 interaction facets of type trigger and 1 interaction facet of type selection.

• A smartphone IR, which uses an Android GUI application to show but-
tons and text fields, supporting 7 interaction facets of type trigger, 1
interaction facet of type selection, 3 interaction facets of type output, and
1 interaction facet of type input.

• A speech recognition IR providing 5 interaction facets of type output and
1 interaction facet of type input.

• A display IR using a JAVA GUI application that supports 4 interaction
facets of type output.

• A speech synthesizing IR using Festival [Taylor et al., 2006, of Edinburgh,
2015] that supports 3 interaction facets of type output.

These FIOs have been described using the FIO Description model and
registered in the FIO repository, so that Dandelion can use them during the
FIO selection process. Table 6.3 shows the detailed description of each one of
those FIOs supporting ACTION interaction facets. For example, the remote
controller uses a keyboard modality with a granularity of 4.0 (it only has 10
keys), it has a small size of 1.0, and a recommended distance of usage of 50 cm.
Another example is the Kinect-based FIO, which uses a gesture modality with
a granularity of 5.0 and it has a recommended usage distance of 300 cm.

While in normal circumstances not all of those FIOs would be available in
every physical environment, for illustration purposes we are going to assume
that the six FIOs are accessible in every one of the four physical environments
of the example.

Recalling section 6.4, the Dandelion context-adaptation process consists
in selecting a set of FIOs adequate for a particular combination of abstract
UI and usage scenario. The first step in this selection process is to generate
the Ideal FIO specification for each scenario. This specification indicates what
kind of modalities, physical shapes, and usage characteristics (and to what
level of granularity) are supported by a specific usage scenario. As previously
introduced in this chapter, this specification is generated by a set of Fuzzy
Inference Systems that receive the scenario models as inputs. Table 6.4 shows
the Ideal FIO specifications generated for the different scenarios of this example.
As can be seen, there are big differences between each scenario. Modalities and



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 159

Figure 6.11: Four of the FIOs used for the EMP example. First, a KNX home
automation remote controller, connected to Dandelion using UniDA. Second, a
Leap Motion device for finger and hand gesture recognition. Third, a custom
Android GUI application. Fourth, a TV display for output with a Kinect camera
for input (using gesture recognition).

shapes are specified in the range [0..10], but it is important to note that they
are values inside a fuzzy domain where values below 2,5 must considered as “not
supported”, thus values below 5,0 can be considered as “very low” or “very coarse”
granularity. Furthermore, it is also important to highlight that the granularity
value of modalities and shapes can be interpreted, at the same time, from two
different points of view.

On the one hand, it represents the level of complexity (granularity) sup-
ported for a particular modality, for example, for the case of the keyboard
modality, in the Living-room environment it is supported up to a granularity of
9,025, while in the car it is supported up to 5,104. This indicates that in the
Living-room it is possible to use a very complex keyboard, with many and small
keys, while in the car only simple keyboards, with few and large keys, will be
well supported.

On the other hand, the granularity can be also considered as a good in-
dication of whether a modality, or shape, is adequate for a particular usage



160 6.5. Demonstration Examples and Summary

Remote Kinnect Motion	Leap Buttons Smartphone Speech	Rec.
cardinality 8 10 10 4 8 5

type TRIGGER TRIGGER TRIGGER TRIGGER TRIGGER TRIGGER

sound_prod 0,0 0,0 0,0 0,0 0,0 0,0

speech_rec 0,0 0,0 0,0 0,0 0,0 4,0

speech_prod 0,0 0,0 0,0 0,0 0,0 0,0

touch 0,0 0,0 0,0 0,0 7,0 0,0

wimp 0,0 0,0 0,0 0,0 0,0 0,0

gesture 0,0 5,0 8,0 0,0 0,0 0,0

keyboard 4,0 0,0 0,0 2,0 0,0 0,0

symbol 0,0 0,0 0,0 0,0 0,0 0,0

video 0,0 0,0 0,0 0,0 0,0 0,0

size 1,0 8,0 4,0 1,0 3,0 8,0

status 1,0 10,0 8,0 10,0 1.5 3,0

distance 50,0 300,0 100,0 60,0 80,0 200,0

display 0 0 0 0 1 0

button 1 0 0 1 1 0

remote 1 0 0 0 1 0

toy 0 0 0 0 0 0

embedded 0 1 1 1 0 1

keyboard 1 0 0 0 0 0

surface 0 0 0 0 0 0

age 20 20 20 20 20 20

ict 2,0 4,0 6,0 2,0 6,0 5,0

SH
AP

ES
U
SA

GE
IN
TE
R.

M
O
DA

LI
TI
ES

PH
YS
IC
AL

Table 6.3: Detailed description of the EMP FIOs using the FIO Description
model.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 161

Livingroom Kitchen Car Outdoors

sound_prod 9,025 4,986 6,455 9,025

speech_rec 9,025 4,986 6,455 9,025

speech_prod 9,025 4,986 6,455 9,025

touch 9,025 6,007 4,341 6,377

wimp 6,911 3,593 3,593 3,593

gesture 9,025 4,986 4,91 7,444

keyboard 9,025 4,677 5,104 7,444

symbol 9,025 9,025 7,107 8,027

video 9,025 5,14 2,964 2,08

size 7,913 4,999 2,604 2,08

status 6,249 3,309 1,506 0,969

distance 250,465 58 57,142 25,555

display 9,025 6,249 4,798 4,443

button 3,749 7,732 8,12 6,045

remote 7,822 0 0 0

toy 3,749 3,749 3,749 3,749

embedded 9,025 8,997 8,828 9,025

keyboard 6,911 5,623 6,249 7,588

surface 6,947 6,249 5,104 6,672

age 25 25 25 25

ict 6 6 6 6

M
O
DA

LI
TI
ES

PH
YS
IC
AL

SH
AP

ES
U
SA

GE

Table 6.4: Ideal FIO specifications generated for the four usage scenarios of the
EMP example.

scenario. If the scenario has a high level of support for a modality, it seems fair
to assume that the modality should be considered adequate by the user in that
specific environment and scene.

Therefore, looking at the results shown in table 6.4, we can see that the
kitchen and car environments are a little bit conflicting. They both have low or
medium values in almost all modalities. This is due to the fact that both scenes
have a high level of “ambient noise” and a high level of “hand-occupancy” (7,0
and 8,50 respectively), thus they support only “coarse granularity” modalities
to receive input from the user. The contrary happens with the living-room
environment, where the user are hands-free, so she can use almost any modality
at its highest level, except from the “wimp” (Windows-Icons-Mouse-Pointer)
modality, which has the lowest value because it is not considered by Dandelion
as a good option, in part because of the 6,0 value of the user ICT literacy, and
in part due to the recommended interaction distance of 250,465 cm and other
scene constraints, like the fact that the user is performing a leisure activity.

Once we have the Ideal FIO specifications for a particular usage scenario,
the next step is to check all the available FIOs looking for those that better



162 6.5. Demonstration Examples and Summary

Remote Kinnect Leap	M. Buttons Smartph. Speech	R. Speech	S. Display

Adequateness 0,894 0,912 0,408 0,905 0,733 0,915 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,995 0,273 0,98 0,69 0,96 0,96 0,95

Physical 0,52 0,487 0,582 0,511 0,617 0,66 0,564 0,454

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0,923 0,893 0,395 0,914 0,562 0,901 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,972 0,262 0,98 0,378 0,96 0,97 0,714

Physical 0,719 0,465 0,541 0,571 0,828 0,569 0,43 0,341

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0,877 0,929 0,824 0,908 0,871 0,928 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,95 0,92 0,98 0,929 0,96 0,96 0,95

Physical 0,407 0,798 0,553 0,528 0,501 0,746 0,746 0,701

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0,934 0,878 0,731 0,922 0,79 0,899 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,95 0,79 0,98 0,767 0,96 0,97 0,292

Physical 0,792 0,461 0,49 0,62 0,659 0,55 0,425 0,311

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Ki
tc
he

n
Ca

r
Li
vi
ng
ro
om

O
ut
do

or
s

Table 6.5: This table displays the FIO adequateness values calculated for each
combination of FIO and usage scenario. The green rows show the overall FIO
adequateness values, while the other rows show the values of different sub-
metrics that make up the overall adequateness using the equation 6.10.

match the requirements of the scenario. This is done by using the Ideal FIO
specifications as a query for the FIO repository, which will answer the query
with a list of available FIOs accompanied by their level of adequateness for the
usage scenario. As previously introduced, this adequateness value is calculated
using the FIO descriptions (see table 6.3) and the Ideal FIO specifications (see
table 6.4) as inputs for the equations explained in subsection 6.4.2.1.

The adequateness results for the trigger interaction facets are shown in
table 6.5. It is important to mention that, in this example, only the physical
environment and the scene profiles are changing, while the user profile remains
the same, thus the adequateness value is only affected by environment and scene
characteristics. This is why, as can be seen, there are only slight differences
between the results of the different scenarios. The most relevant differences are
that FIOs with high granularity values in modalities requiring the use of hands,
like the Leap Motion or the Smartphone (due to its touch interface), have the
lowest adequateness values for the Kitchen and Car scenarios.

As in the case of granularity values, the adequateness values must be con-



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 163

sidered inside their fuzzy domain, where values bellow 0,25 must be considered
as “not supported”, and values below 0,5 must be considered as “low adequate-
ness”.

Looking at the disaggregated values of Interaction, Modality, Physical, and
Usage adequateness, we can also see some interesting results. For example, only
the Speech Synthesizing and Display FIOs have a value of 0,0 in Interaction
adequateness, while all the others have a value of 1,0. This is due to the fact
that those two FIOs do not support trigger interaction facets, thus they are
completely inadequate, while the others support multiple trigger interaction
facets with cardinality 1, thus they are considered very good candidates. The
interaction adequateness, as we will see in the next subsections, can have also
intermediate values when the interaction facets have the same type but different
cardinalities.

Another interesting result is to confirm the high relevance that modalities
have on the adequateness values. We can see how FIOs with higher degrees
of physical and usage adequateness have lower values of overall adequateness
because they have low values of modality adequateness. This is the case of the
Smartphone FIO in the Car and Kitchen environments. We think that this
is a good behavior of the FIO adequateness metric, because modality is the
characteristic that has the biggest impact in the natural interaction perception
of a user interface.

The last step in the FIO selection process would be to build the Final UI
by selecting the most adequate FIO for each interaction facet. This selection is
performed using the strategy introduced in subsection 6.4.3. Therefore, bearing
in mind the results shown in table 6.5, the FIOs selected for the music control
actions will be:

• Speech recognition for the Kitchen environment.

• The remote controller keyboard for the Car environment, with the buttons
(which will be more probably available in that environment) in the second
place.

• The Kinect gesture-based FIO for the living-room environment.

• The remote controller keyboard (for example the remote controller in a
hands-free headset) for the outdoor environment.

Music Style Selection

In this subsection we are going to explore how the Dandelion ICA performs
the adaptation process of the EMP Abstract Interaction Unit in charge of man-



164 6.5. Demonstration Examples and Summary

Leap	M. Smartphone Buttons

cardinality 5 3 3

data	type text text text

type SELECTION SELECTION SELECTION

sound_prod 0,0 0,0 0,0

speech_rec 0,0 0,0 0,0

speech_prod 0,0 0,0 0,0

touch 0,0 7,0 0,0

wimp 0,0 0,0 0,0

gesture 6.5 0,0 0,0

keyboard 0,0 0,0 3,0

symbol 0,0 0,0 0,0

video 0,0 0,0 0,0

size 4,0 3,0 2,0

status 8.0 1,5 10,0

distance 100,0 70,0 60,0

display 0 1 0

button 0 0 1

remote 0 0 0

toy 0 0 0

embedded 1 0 1

keyboard 0 0 0

surface 1 0 0

age 20 20 20

ict 3 6 2

SH
AP

ES
U
SA

GE
IN
TE
RA

CT
.

M
O
DA

LI
TI
ES

PH
YS
IC
AL

Table 6.6: Detailed description of the FIOs available for the implementation of
the music selection abstract interaction facet.

aging the selection of the music style. This AIU, as shown in algorithm 5.2, uses
one interaction facet of type selection, with a variable cardinality depending on
the number of music styles available in the user’s music collection.

We have implemented three different FIOs with support for selection inter-
action facets:

• A Leap Motion device, which allows the user to select among five different
styles using her fingers.

• A smartphone touch interface, which allows the selection between three
different styles.

• Three physical buttons allow the selection of three different styles.

The detailed description of these three FIOs can be seen in table 6.6.

As previously explained in section 6.4.1, the Ideal FIO specifications remain
the same for all the interaction facets, only the interaction specifications, used in
the FIO Query, change. Therefore the Ideal FIOs for each environment continue
to be the same one already shown in table 6.4.

Table 6.7 shows the adequateness results obtained by the FIO repository
for the available FIOs in each one of the four usage scenarios of this example.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 165

Remote Kinnect Leap	M. Buttons Smartph. Speech	R. Speech	S. Display

Adequateness 0 0 0,615 0,899 0,721 0 0 0

Interaction 0 0 0,875 1 0,875 0 0 0

Modality 0,96 0,995 0,61 0,97 0,69 0,96 0,96 0,95

Physical 0,52 0,487 0,582 0,511 0,617 0,66 0,564 0,454

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0 0 0,597 0,908 0,549 0 0 0

Interaction 0 0 0,875 1 0,875 0 0 0

Modality 0,96 0,972 0,593 0,97 0,378 0,96 0,96 0,496

Physical 0,719 0,465 0,541 0,571 0,828 0,569 0,428 0,339

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0 0 0,821 0,901 0,859 0 0 0

Interaction 0 0 0,875 1 0,875 0 0 0

Modality 0,96 0,95 0,935 0,97 0,929 0,96 0,97 0,95

Physical 0,407 0,798 0,553 0,528 0,501 0,746 0,746 0,701

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Adequateness 0 0 0,812 0,915 0,777 0 0 0

Interaction 0 0 0,875 1 0,875 0 0 0

Modality 0,96 0,95 0,935 0,97 0,767 0,96 0,97 0,292

Physical 0,792 0,461 0,49 0,62 0,659 0,555 0,394 0,311

Usage 0,92 0,92 0,435 0,92 0,92 0,92 0,92 0,92

Ki
tc
he

n
Ca

r
Li
vi
ng
ro
om

O
ut
do

or
s

Table 6.7: FIO adequateness values calculated for each FIO and usage scenario
for the EMP music selection interaction facet.

As can be seen, in this case, not all the FIOs have a value of 1,0 in Interaction
adequateness. We are querying the repository for FIOs supporting a selection
facet with cardinality of 5, but the Buttons and Smartphone FIOs only support
3, thus they have a lower value in Interaction adequateness. Apart from that,
we can see that the Buttons are considered the best option in all the four cases,
mainly because they have a very low requirement of keyboard modality and
ICT literacy.

6.5.2 User Adaptation: OMNI Virtual Assistant

In the previous section, we have used the Environmental Music Player
application to explore an example of how Dandelion can adapt a Physical UI
to changes in the physical environment and usage scene. In this section, we
are going to use the OMNI Virtual Assistant example, already introduced in
subsections 4.2.1 and 5.6.1, to present an example of Physical UI adaptation to
user characteristics variation.

For illustration purposes, we have taken only a subsystem of the OMNI
UI example: the user notification subsystem UI, which is in charge of notifying



166 6.5. Demonstration Examples and Summary

Algorithm 6.2 UsiXML definition of the OMNI notification abstract UI.
<!– notification dialog –>
<aui:AbstractUIModel>

<aui:AbstractInteractionUnit id="NotificationDialog" ... >
<aui:DataInputOutputFacet id="NotificationMessage"
minCardinality="1" maxCardinality="1" dataFor-
mat="string" inputSupport="false" outputSup-
port="true" ... >

<aui:dataType>text</aui:dataType>
</aui:DataInputOutputFacet>
<aui:TriggerFacet id="YesAction">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>
<aui:TriggerFacet id="NoAction">

<aui:triggerType>operation</aui:triggerType>
</aui:TriggerFacet>

</aui:AbstractInteractionUnit>

</aui:AbstractUIModel>

events to the user. This UI, as shown in algorithm 6.2, is composed of only
one Abstract Interaction Unit that includes three interaction facets: one OUT-
PUT facet for showing messages (or questions) to the user, and two TRIGGER
facets to receive the response of the user (Yes or No). As already explained in
subsection 4.2.1, in a classic GUI, it will take the form of a dialog box with a
label and two buttons, but as we will see, in an Ambient Intelligence system,
using Physical Distributed UIs, it can take many different forms.

In contrast to the previous example, in this case, the environment and scene
profiles are going to remain the same for all scenarios, while the user profile is
going to change. We have used the Living-room example from the previous
section as environment and scene profiles (see tables 6.1 and 6.2), and we have
defined six user profiles, representative of the variety of user types to which the
UI must be adapted:

• Deaf User. A user with a severe hearing impairment.

• Blind User. A user with a severe visual impairment.

• Elderly 1. An elderly user with hearing and visual impairments and high
ICT literacy.

• Elderly 2. An elderly user with mild hearing and visual impairments and
some motor difficulties affecting her ability to move her arms, hands, and
fingers.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 167

Deaf	U. Blind	U. Elderly	1 Elderly	2 Kid Arms	Imp. Cogn.	Imp.

Hearing hearing 2,00 10,00 5,50 8,00 10,00 10,00 10,00
vision_ability 10,00 2,00 5,50 7,00 10,00 10,00 10,00
vision_field 10,00 1,50 4,50 7,00 10,00 10,00 10,00

language_rec 10,00 10,00 7,50 8,50 7,00 10,00 4,00
language_prod 10,00 10,00 9,00 9,00 6,50 10,00 4,00

abstract_symbol 10,00 10,00 10,00 10,00 7,00 10,00 6,00
attention 8,50 8,50 8,50 9,00 6,00 10,00 4,00

processing_speed 10,00 10,00 10,00 8,50 10,00 10,00 5,00
work_mem 10,00 10,00 10,00 7,50 10,00 10,00 6,00

long_term_mem 10,00 10,00 10,00 9,00 10,00 10,00 6,00
speech_artic. 6,00 10,00 7,50 9,00 7,00 10,00 4,00

finger_preciss. 9,00 9,00 9,00 6,50 7,50 2,00 10,00
hand_preciss. 9,00 9,00 9,00 7,00 7,50 2,50 10,00
arm_preciss. 9,00 9,00 9,00 7,50 7,50 3,50 10,00
contact_grip 9,00 9,00 9,00 7,50 8,00 2,50 10,00
pinch_grip 9,00 9,00 9,00 6,50 8,00 2,00 10,00
clench_grip 9,00 9,00 9,00 7,00 8,00 3,50 10,00

hand-eye_coord 8,00 8,00 8,00 6,00 7,00 2,50 5,00
ict_literacy 7,00 7,00 7,00 2,50 3,50 7,50 2,00
ict_anxiety 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Personal age 50,00 50,00 75,00 75,00 5,00 40,00 30,00

Vision

Cognitive

Motor

ICT

Table 6.8: User profile definitions for the six different users included in the
OMNI example for UI adaptation to user characteristics.

• Kid. A five year old kid, so she has some difficulties with language pro-
duction, as well as hand and finger precision.

• Upper Body Impaired. A user with severe impairments that affect the
movement of her arms, hands, and fingers.

• Cognitive Impaired. A user with severe impairments affecting her cognitive
abilities.

The detailed description of the six user profiles is shown in table 6.8.

In the next subsections, we are going to describe the details of the FIO
selection process for the three previously mentioned interface facets, but before
that, we are going to explore the first step in the FIO selection process, the
generation of the Ideal FIO specifications, which only depends on the usage
scenarios profiles. We have six users, all of them operating the system in the
same environment and scene, thus we have six different usage scenarios as shown
in table 6.9.

As can be seen in the table, there are important differences between the
Ideal FIOs generated for each scenario. For example, we can clearly see that
the system indicates that sound-based modalities are a very bad option for the



168 6.5. Demonstration Examples and Summary

Deaf	U. Blind	U. Elderly	1 Elderly	2 Kid Arms	Imp. Cogn.	Imp.

sound_prod 0,969 9,025 3,064 7,456 9,025 9,025 9,025

speech_rec 0,969 9,025 1,071 9,025 6,249 9,025 0,969

speech_prod 0,969 9,025 2,102 6,761 3,749 9,025 0,969

touch 7,456 7,456 7,456 4,358 4,999 0,969 0,969

wimp 5,889 3,593 6,007 3,042 3,749 2,080 2,080

gesture 9,025 9,025 9,025 3,749 3,749 0,969 9,025

keyboard 9,025 6,911 7,128 6,249 4,999 0,969 3,749

symbol 9,025 0,969 2,100 3,749 0,969 9,025 1,018

video 9,025 0,969 2,537 0,969 9,025 9,025 9,025

size 7,913 7,913 7,913 7,913 7,913 7,913 7,913

status 6,249 6,249 6,249 6,249 6,249 6,249 6,249

distance 250,465 250,465 250,465 250,465 250,465 250,465 250,465

display 8,904 4,960 6,860 2,925 7,913 4,986 4,986

button 3,909 6,085 5,584 8,109 7,913 0,000 6,249

remote 7,822 7,538 7,717 7,822 7,822 6,249 7,727

toy 3,749 3,749 3,749 3,749 9,025 3,749 3,749

embedded 9,025 9,025 7,913 7,969 7,969 9,025 9,025

keyboard 6,895 6,225 6,484 6,249 6,249 0,969 3,749

surface 6,895 3,749 6,895 4,827 5,017 2,060 2,060

age 50 50 75 75 5 40 30

ict 7,0 7,0 7,0 2,5 3,5 7,5 2,0U
SA

GE
M
O
DA

LI
TI
ES

PH
YS
IC
AL

SH
AP

ES

Table 6.9: Ideal FIO specifications generated for each usage scenario considered
in the OMNI example.

Deaf User and the Elderly 1, because they have severe hearing impairments.
Gestures are a bad option for the Elderly 2, the Kid, and the user with arm and
hands impairments. Language-based modalities are not adequate for the user
with cognitive impairments. On the other hand, sound-based modalities seem
very adequate for the Blind User or the user with upper body impairments.

Regarding other aspects of the results, it can be seen that the physical
characteristics of the FIOs depend mainly on environmental and scene char-
acteristics, as they all remain the same for all the scenarios. The results in
physical shapes are very related to the results in modalities, with, for example,
shapes like keyboard or display having high values when keyboard and video
modalities are high respectively and vice versa.

Showing Notifications

The job of the OMNI notification subsystem UI is to show event messages
to the user, they can be either events from the agenda or questions about the



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 169

Display Smartphone Speech	Prod.

cardinality 1 1 1

data	type text text text

type OUTPUT OUTPUT OUTPUT

sound_prod 0 0 0

speech_rec 0 0 0

speech_prod 0 0 6

touch 0 0 0

wimp 0 0 0

gesture 0 0 0

keyboard 0 0 0

symbol 0 0 0

video 5 7 0

size 6 3 8

status 10 1.5 3

distance 200 70 200

display 1 1 0

button 0 0 0

remote 0 0 0

toy 0 0 0

embedded 0 0 1

keyboard 0 0 0

surface 0 0 0

age 20 20 20

ict 1 6 3

SH
AP

ES
U
SA

GE
IN
TE
RA

CT
.

M
O
DA

LI
TI
ES

PH
YS
IC
AL

Table 6.10: Detailed description of the FIOs available for the implementation
of the notification message output abstract interaction facet.

operation of the system, because, as previously introduced in subsection 4.2.1,
the OMNI system operates by proactively asking the user what action she wants
to perform next.

In order to find the adequate FIOs for the notification message interaction
facet, we need to query the Repository for FIOs that support, at least, one
interaction facet of type output, and that have a set of characteristics similar
to the specifications described by the Ideal FIOs, displayed in table 6.9. For
this example, we have extended some of the FIOs already defined for the EMP
example with support for one interaction facet of type output (see table 6.10).
The results of the query to the FIO repository can be seen in table 6.11.

There are only three FIOs capable of supporting output interaction facets,
and among those three FIOs, there are huge differences in adequateness de-
pending on the user abilities. For example, in the case of the Deaf User, speech
recognition has a value of 0.0 in modality adequateness, thus it has a very low
value in FIO adequateness for the Speech Recognition IR. On the contrary, the
blind subject has a very high value of adequateness for the Speech Recognition
IR and very low values for Display and Smartphone IRs, because they depend
a lot on the vision ability of the user.

Another interesting result is the one of the Elderly 1. She is a user with



170 6.5. Demonstration Examples and Summary

Remote Kinnect Leap	M. Buttons Smartph. Speech	R. Speech	S. Display

Adequateness 0 0 0 0 0,867 0 0,299 0,91

Interaction 0 0 0 0 1 0 1 1

Modality 0,96 0,95 0,935 0,98 0,929 0 0 0,95

Physical 0,407 0,798 0,553 0,528 0,497 0,746 0,742 0,697

Usage 0,882 0,882 0,551 0,882 0,882 0,882 0,882 0,882

Adequateness 0 0 0 0 0,255 0 0,902 0,272

Interaction 0 0 0 0 1 0 1 1

Modality 0,96 0,95 0,935 0,98 0 0,96 0,96 0

Physical 0,397 0,798 0,553 0,528 0,449 0,746 0,604 0,559

Usage 0,882 0,882 0,551 0,882 0,882 0,882 0,882 0,882

Adequateness 0 0 0 0 0,254 0 0,568 0,538

Interaction 0 0 0 0 1 0 1 1

Modality 0,96 0,95 0,935 0,98 0 0 0,432 0,396

Physical 0,403 0,759 0,514 0,489 0,455 0,707 0,67 0,625

Usage 0,864 0,864 0,534 0,864 0,864 0,864 0,864 0,864

Adequateness 0 0 0 0 0,198 0 0,873 0,259

Interaction 0 0 0 0 1 0 1 1

Modality 0 0,656 0,348 0,98 0 0,96 0,96 0

Physical 0,96 0,761 0,516 0,491 0,469 0,709 0,533 0,488

Usage 0,417 0,476 0,179 0,864 0,276 0,394 0,693 0,864

Adequateness 0 0 0 0 0,812 0 0,892 0,902

Interaction 0 0 0 0 1 0 1 1

Modality 0,96 0,656 0,348 0,98 0,929 0,96 0,924 0,95

Physical 0,41 0,761 0,516 0,491 0,462 0,709 0,707 0,662

Usage 0,854 0,731 0,216 0,854 0,385 0,58 0,854 0,954

Adequateness 0 0 0 0 0,854 0 0,904 0,89

Interaction 0 0 0 0 1 0 1 1

Modality 0 0 0 0,636 0,929 0,96 0,96 0,95

Physical 0,352 0,798 0,553 0,528 0,404 0,746 0,605 0,56

Usage 0,892 0,892 0,614 0,892 0,892 0,892 0,892 0,892

Adequateness 0 0 0 0 0,803 0 0,251 0,892

Interaction 0 0 0 0 1 0 1 1

Modality 0,924 0,95 0,935 0,98 0,929 0 0 0,95

Physical 0,404 0,798 0,553 0,528 0,456 0,746 0,605 0,56

Usage 0,905 0,436 0,23 0,905 0,301 0,377 0,603 0,905

Ki
d

U
pp

er
	B
od

y	
Im

pa
ire

d
Co

gn
iti
ve
	Im

pa
ire

d
De

af
	U
.

Bl
in
d	
U
.

El
de

rly
	1

El
de

rly
	2

Table 6.11: Results of the FIO query looking for FIOs with output support and
high level of adequateness regarding the Ideal FIO specifications of table 6.9.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 171

Figure 6.12: The OMNI UI adapted to the Deaf User scenario. The Kinect
and the wall buttons can be used to control system (change channels, answer
questions). The display is used to output notification messages, and the colored
lights are used to request the focus of the user when a notification is displayed.

many difficulties regarding hearing and vision abilities, thus the result obtained
for Dandelion is that neither of the IRs is going to be very adequate, because the
modality requirements (granularity) of all of them are higher than the modality
support of the usage scenario. For example, the Ideal FIO for the Elderly 1 has a
value of 2,537, which is in the edge of being considered as “not supported”, thus,
even if the Display FIO requires a low video granularity, it has a value of 5,0,
so finally, the overall adequateness value for the Display is 0,538, which means
“low adequateness”. Unfortunately, in this case, the resulting UI is not going
to be very adequate for the scenario, but as there are no more FIOs available,
Dandelion is going to build the least bad UI possible with the available resources.

Answering Notifications

OMNI operates by proactively asking the user what to do next, thus, once
the OMNI system shows a message to the user, she is requested to provide an
answer which can be either a “Yes” or a “No”. This interaction is modeled in the
abstract UI as two different trigger interaction facets, thus, when the user select
“Yes” or “No”, the OMNI system logic will receive different callbacks triggering
the user action.

Like in the previous case, we have reused the FIOs shown in table 6.3
that we have already used for the EMP example. Table 6.12 shows the FIO list
resulting from querying the FIO repository for a list of FIOs that support output
and are adequate FIOs for each one of the different OMNI usage scenarios.



172 6.5. Demonstration Examples and Summary

As can be seen, as in the case of the Ideal FIO specifications, there are
important differences in adequateness between the multiple FIOs and each usage
scenario. Some usage scenarios, like the Blind User, have very high adequateness
in all the FIOs, because none of them depend on modalities that require a high
level of visual abilities. The contrary happens with the user with Upper Body
impairments. Almost all of the FIOs use touch or keyboard modalities, which,
looking at table 6.9, are not well supported by the scenario, thus the Speech
Recognition FIOs has the greatest value of adequateness for that scenario.

6.5.3 Environment and User Adaptation: EvacUI

As previously introduced in section 4.2.3, the EvacUI user interface is in
charge of providing guidance to the passengers of a ship during an emergency
evacuation process.

A passenger ship is a very large and complex Human Interaction Environ-
ment, where the EvacUI must deal with many different physical environments
(cabins, corridors, decks, etc.), changing conditions during the evolution of an
emergency (fire, smoke, flooded areas, etc.), and a large variety of users (el-
derly people, disabled people, kids, etc.). The goal of the EvacUI is to provide
those users (the passengers) with accurate directions of the path to follow to
leave the ship safely, and for that purpose, it uses a series of interaction devices
distributed along the ship, like information displays, symbolic signals, sound
signals, speech synthesizing through the public address system (PA), or even
the passenger’s smartphone displays.

A key characteristic of EvacUI is that, during the evolution of an emer-
gency, such as a fire or a flooding, the conditions of the ship are constantly
changing, thus, an UI adequate for one usage scenario can be rendered invalid
due to, for example, a lighting failure or the presence of smoke. Because of
that, EvacUI must use those devices complementarily and redundantly in order
to provide directions regardless of the conditions of the physical environment
and the abilities of the users.

For illustration and demonstration purposes, and in order to keep this
description simple, we are going to explore only a small subset of the EvacUI
in charge of notifying the next direction each user must follow. Furthermore,
we have limited our example to just four different physical environments and
five representative user profiles, so that combining all of them, we have twenty
different usage scenarios.

For the physical environments, we have imagined a ferry ship, and we
selected four types of physical environments to which the passengers can access
(see the tables 6.13 for detailed information about the environment and scene



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 173

Remote Kinnect Leap	M. Buttons Smartph. Speech	R. Speech	S. Display

Adequateness 0,873 0,925 0,936 0,904 0,867 0,3 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,95 0,92 0,98 0,929 0 0 0,95

Physical 0,407 0,798 0,553 0,528 0,497 0,746 0,742 0,697

Usage 0,882 0,882 0,551 0,882 0,882 0,882 0,882 0,882

Adequateness 0,873 0,925 0,836 0,904 0,861 0,924 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,95 0,92 0,98 0,929 0,96 0,96 0,618

Physical 0,397 0,798 0,553 0,528 0,449 0,746 0,604 0,559

Usage 0,882 0,882 0,551 0,882 0,882 0,882 0,882 0,882

Adequateness 0,871 0,917 0,828 0,896 0,865 0,292 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,95 0,92 0,98 0,929 0 0,432 0,685

Physical 0,403 0,759 0,514 0,489 0,455 0,707 0,625 0,625

Usage 0,864 0,864 0,534 0,864 0,864 0,864 0,864 0,864

Adequateness 0,873 0,688 0,195 0,897 0,445 0,869 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,656 0 0,98 0,381 0,96 0,96 0,434

Physical 0,417 0,761 0,516 0,491 0,469 0,417 0,533 0,488

Usage 0,864 0,476 0,179 0,864 0,276 0,864 0,693 0,864

Adequateness 0,871 0,714 0,199 0,896 0,535 0,888 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,96 0,656 0 0,98 0,504 0,96 0,924 0,95

Physical 0,41 0,761 0,516 0,491 0,462 0,709 0,707 0,662

Usage 0,854 0,731 0,216 0,854 0,385 0,58 0,854 0,854

Adequateness 0,242 0,309 0,244 0,682 0,249 0,925 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0 0 0 0,636 0 0,96 0,96 0,95

Physical 0,352 0,798 0,553 0,528 0,404 0,746 0,605 0,56

Usage 0,892 0,892 0,892 0,892 0,892 0,892 0,892 0,892

Adequateness 0,851 0,88 0,804 0,906 0,198 0,249 0 0

Interaction 1 1 1 1 1 1 0 0

Modality 0,924 0,95 0,92 0,98 0 0 0 0,95

Physical 0,404 0,798 0,553 0,528 0,456 0,746 0,605 0,56

Usage 0,905 0,436 0,23 0,905 0,301 0,377 0,603 0,905

Ki
d

U
pp

er
	B
od

y	
Im

pa
ire

d
Co

gn
iti
ve
	Im

pa
ire

d
De

af
	U
.

Bl
in
d	
U
.

El
de

rly
	1

El
de

rly
	2

Table 6.12: FIO list provided by the FIO Repository for the query looking for
FIOs supporting one ACTION interaction facet and adequate to the Ideal FIOs
of the different usage scenarios of the OMNI example.



174 6.5. Demonstration Examples and Summary

Noise Type Situation Space

ambient visibility contrast lighting motion vibration temp. humidity wind type situation space

Cabin 2,0 7,0 4,0 5,0 0,0 0,0 20,0 65,0 0,0 7,0 0,0 1.5

Corridor 4,0 5,0 3,0 6,0 4,0 4,0 20,0 80,0 0,0 7,0 3,0 2.5

Deck 6,0 5,0 7,0 6,0 6,0 6,0 15,0 90,0 20,0 5,0 5,5 6,5

Vehicle	Room 8,0 3,0 3,0 3,0 5,0 6,0 18,0 75,0 0,0 7.5 0,0 8,0

Visiblity Motion Climate

usr.	count act.	type act.	mode act.	style hands vision attention

Cabin 1,0 10,0 8,0 0,0 0,0 0,0 4,0

Corridor 1,0 10,0 5.5 7,0 0,0 0,0 4,0

Deck 1,0 10,0 4,0 7,0 0,0 0,0 4,0

Vehicle	Room 1,0 10,0 8,0 0,0 0,0 0,0 4,0

Scene

Table 6.13: Environment and scene profiles for the EvacUI ferry ship Human
Interaction Environment example.

profiles):

• Cabin. Some passengers are in private cabins.

• Corridor. The different corridors of the ship that connect other physical
environments between them.

• Deck. The open-air deck of the ship.

• Vehicle Room. The room where the passenger vehicles are parked inside
the ship.

Regarding the user profiles (see table 6.8), we have reused four of the users
from the previous example, and we have added one more user profile, in this
case representing what we consider the standard user that will probably account
for the majority of the passage.

For demonstration purposes, in this example, the environment characteris-
tics are static for each usage scenario, but it is important to bear in mind that in
a real scenario, with Dandelion operating at run-time to adapt the UI to context
changes in real-time, the environment characteristics will change dynamically
with the state of the ship and the emergency. As we have seen in section 6.4,
it is the responsibility of the system to feed Dandelion with information about
those context changes by providing updated and accurate context models.

With this context in mind, table 6.15 displays the Ideal FIOs that Dan-
delion would generate for each one of the twenty example usage scenarios of
the EvacUI. Examining the results, we can see notable changes in all the as-
pects (modalities, physical, and usage specification) when the usage scenario is



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 175

Deaf	U. Blind	U. Elderly	1 Cogn.	Imp. Stndrd.

Hearing hearing 2.0 10.0 5.5 10.0 8.5
vision_ability 10.0 2.0 5.5 10.0 8.5
vision_field 10.0 1.5 4.5 10.0 8.5

language_rec 10.0 10.0 7.5 4.0 10
language_prod 10 10.0 9.0 4.0 10

abstract_symbol 10.0 10.0 10.0 6.0 10
attention 8.5 8.5 8.5 4.0 10.0

processing_speed 10.0 10.0 10.0 5.0 10
work_mem 10.0 10.0 10.0 6.0 10

long_term_mem 10.0 10.0 10.0 6.0 10
speech_artic. 6 10 7.5 4.0 10

finger_preciss. 9.0 9.0 9.0 10.0 10
hand_preciss. 9.0 9.0 9.0 10.0 10
arm_preciss. 9.0 9.0 9.0 10.0 10
contact_grip 9.0 9.0 9.0 10.0 10
pinch_grip 9.0 9.0 9.0 10.0 10
clench_grip 9.0 9.0 9.0 10.0 10

hand-eye_coord 8.0 8.0 8.0 5.0 8.5
ict_literacy 7.0 7.0 7.0 2.0 5.0
ict_anxiety 0.0 0.0 0.0 0 0

Personal Age 50 50 75 30 40

Vision

Cognitive

Motor

ICT

Table 6.14: Detailed description of the user profiles defined for the EvacUI
example.

modified. For example, the recommended distance of usage varies considerably
from the Cabin usage scenarios to the Corridor ones, mainly because of the size
of the environment and the differences in scene modality and style. There are
also notable differences in the modalities specifications, for example, the video
modality has a granularity of 9,025 for the Deaf User in the Cabin environment,
but it has a value of 4,677 for the the same user in the Deck environment, a
large outdoor environment where a display with high detail information can be
difficult to see.

As previously indicated, in this example, we are exploring a small subset
of the EvacUI user interface, the part that is in charge of informing the users
about the next immediate direction they must follow. We have implemented five
different examples of FIOs that could be used for that purpose in the EvacUI:

• Smartphone. It uses the display to show direction arrows to the user.

• Sound Production. It uses speakers distributed along the ship to produce
different sound signals that indicate the direction to follow.

• Speech Synthesizing. Implemented with Festival. It uses speech to notify
users about the direction to follow.



176 6.5. Demonstration Examples and Summary

Deaf	U. Blind	U. Elderly	1 Mental Standard Deaf	U. Blind	U. Elderly	1 Cogn.	Imp. Standard

sound_prod 0,970 9,025 3,065 9,025 8,377 0,970 9,025 3,065 9,025 8,377

speech_rec 0,970 9,025 1,071 0,970 9,025 0,970 9,025 1,071 0,970 9,025

speech_prod 0,970 9,025 2,102 0,970 8,377 0,970 9,025 2,102 0,970 8,377

touch 7,457 7,457 7,457 0,970 8,377 7,457 7,457 7,457 0,970 8,377

wimp 5,890 3,593 6,008 2,080 6,681 5,890 3,593 6,008 2,080 6,681

gesture 9,025 9,025 9,025 9,025 9,025 9,025 9,025 9,025 9,025 9,025

keyboard 9,025 6,912 7,128 3,750 9,025 9,025 6,912 7,128 3,750 9,025

symbol 9,025 0,970 2,102 1,018 7,827 7,913 3,078 3,660 3,310 7,229

video 9,025 0,970 2,538 9,025 7,187 9,025 0,970 2,538 9,025 7,187

size 7,913 7,913 7,913 7,913 7,913 9,025 9,025 9,025 9,025 9,025

status 6,250 6,250 6,250 6,250 6,250 6,250 6,250 6,250 6,250 6,250

distance 208,239 208,239 208,239 208,239 208,239 106,667 106,667 106,667 106,667 106,667

display 8,905 4,964 6,860 4,987 8,396 8,905 4,964 6,860 4,987 8,396

button 3,909 6,086 5,585 6,250 3,750 3,909 6,086 5,585 6,250 3,750

remote 7,898 7,520 7,699 7,709 7,898 7,519 7,519 7,519 7,519 7,519

toy 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750

embedded 9,025 9,025 7,913 9,025 9,025 9,025 7,913 7,913 7,914 9,025

keyboard 6,896 6,226 6,485 3,750 6,912 6,896 6,226 6,485 3,750 6,912

surface 6,861 6,861 6,861 2,079 6,913 8,494 8,494 8,494 1,189 8,607

age 50 50 75 30 40 50 50 75 30 40

ict 7 7 7 2 5 7 7 7 2 5

Corridor

M
O
DA

LI
TI
ES

PH
YS
IC
AL

SH
AP

ES
U
SA

GE

Cabin

Deaf	U. Blind	U. Elderly	1 Mental Standard Deaf	U. Blind	U. Elderly	1 Cogn.	Imp. Standard

sound_prod 0,970 5,328 2,759 5,328 5,143 0,970 5,796 3,065 5,796 5,568

speech_rec 0,970 5,328 1,018 0,970 5,328 0,970 5,796 1,071 0,970 5,796

speech_prod 0,970 5,328 1,927 0,970 5,143 0,970 5,796 2,102 0,970 5,568

touch 6,044 6,044 6,044 2,053 6,666 6,044 6,044 6,044 2,053 6,666

wimp 3,593 3,593 4,143 2,080 4,409 5,890 3,593 6,008 2,080 6,681

gesture 6,963 6,963 6,963 6,963 6,963 9,025 9,025 9,025 9,025 9,025

keyboard 6,763 6,728 6,763 4,974 6,763 7,940 6,728 6,872 4,974 7,940

symbol 7,913 3,078 3,660 3,310 7,229 7,913 3,078 3,660 3,310 7,229

video 4,677 2,080 2,080 4,677 4,409 9,025 0,970 2,538 9,025 7,187

size 6,912 6,912 6,912 6,912 6,912 9,025 9,025 9,025 9,025 9,025

status 3,750 3,750 3,750 3,750 3,750 6,250 6,250 6,250 6,250 6,250

distance 201,394 201,394 201,394 201,394 201,394 253,030 253,030 253,030 253,030 253,030

display 5,623 4,107 4,107 4,006 6,337 7,913 3,078 5,000 5,798 7,817

button 7,588 7,617 7,588 8,967 6,778 6,250 7,617 7,486 8,967 5,289

remote 7,588 7,617 7,588 7,901 7,588 7,818 7,638 7,507 7,818 7,818

toy 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750 3,750

embedded 9,025 7,913 7,567 7,914 9,025 9,025 7,913 7,913 7,914 9,025

keyboard 7,360 7,317 7,360 6,180 6,497 7,913 7,317 7,481 6,180 7,190

surface 5,000 5,000 5,000 2,719 5,883 5,020 5,020 5,020 2,699 5,910

age 50 50 75 30 40 50 50 75 30 40

ict 7 7 7 2 5 7 7 7 2 5

Vehicle	Room

M
O
DA

LI
TI
ES

PH
YS
IC
AL

SH
AP

ES
U
SA

GE

Deck

Table 6.15: Ideal FIO specifications generated by Dandelion for the different
EvacUI usage scenarios associated to the Cabin, Corridor, Deck, and Vehicle
Room physical environments.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 177

Figure 6.13: An example of FIO for the EvacUI user interface example. It uses
a smartphone display to show direction information using symbol and language
production modalities. Furthermore, it also provides another interaction facet
using speech production. In the second image, there are two different FIOs.

• Display. It uses public information displays distributed along the ship to
show direction information to the users.

• Signal. They are very low resolution and highly bright displays capable of
showing only five different direction signals (forward, reverse, left, right,
and forbidden).

The detailed description of those five FIOs is shown in table 6.16.

The abstract UI definition of the part of EvacUI in charge of providing
immediate directions is quite simple, it has just one Abstract Interaction Unit
with two abstract interaction facets, one of type output and one of type focus.
EvacUI relies on multiple instances of this abstract UI, one for each physical
environment that exists inside the whole HIE (the ship). Therefore, Dandelion
would be managing multiple UIs simultaneously, adapting each one of them to
a particular combination of user, environment and scene profiles.

Furthermore, as the information provided by this UI is critical, it is im-
portant that it can operate with redundant resources whenever is possible. As
introduced in previous chapters, using the Dandelion UI Controller API, it is
possible to provide Dandelion with different “Interaction Hints” that allow devel-
opers to customize, to some extent, the behavior of Dandelion, like customizing
the operation of particular FIOs, or customizing the result of the FIO selection
process. In this case, as shown in the code snippet displayed in algorithm 6.3,
we are indicating Dandelion to implemented the output interaction facet using
redundancy, so that Dandelion will try to select more than one FIO when build-
ing the Final UI. Dandelion will take advantage of the disaggregated metrics in



178 6.5. Demonstration Examples and Summary

Smartph. Sound	P. Speech	S. Display Signal

cardinality 1 1 1 1 1

data	type - - - - -

type FOCUS,	OUT FOCUS,	OUT FOCUS,	OUT FOCUS,	OUT FOCUS,	OUT

sound_prod 0,0 5.0 0,0 0,0 0,0

speech_rec 0,0 0,0 0,0 0,0 0,0

speech_prod 0,0 0,0 6,0 0,0 0,0

touch 0,0 0,0 0,0 0,0 0,0

wimp 0,0 0,0 0,0 0,0 0,0

gesture 0,0 0,0 0,0 0,0 0,0

keyboard 0,0 0,0 0,0 0,0 0,0

symbol 0,0 0,0 0,0 0,0 7.0

video 7.0 0,0 0,0 4.0 0,0

size 2.0 8,0 8,0 5.5 4,0

status 1.5 3,0 3,0 10,0 10,0

distance 80,0 300,0 300,0 150,0 300,0

display 1 0 0 1 1

button 0 0 0 0 0

remote 0 0 0 0 0

toy 0 0 0 0 0

embedded 0 1 1 0 1

keyboard 0 0 0 0 0

surface 0 0 0 0 1

age 30 20 20 30 30

ict 7,0 1,0 4,0 3,0 2,0

IN
TE
RA

CT
.

U
SA

GE
M
O
DA

LI
TI
ES

PH
YS
IC
AL

SH
AP

ES

Table 6.16: Detailed descriptions of the FIOs used for the EvacUI demonstration
example.

order to select multiple complementary FIOs according to the CARE properties.

Within EvacUI, when a context change is detected, Dandelion uses the
associated context profiles to query the FIO Repository for a list of adequate
FIOs that support output and focus interaction facets. Table 6.17 shows the
results returned by the FIO Repository for the twenty different usage scenarios
proposed in this example.

As can be seen, the results are coherent with the previous results of the
Ideal FIOs. For example, the Display and Signal FIOs are considered the best
option for the Deaf User in all physical environments, while sound based FIOs
are very discouraged. Almost the contrary happens with the user with a severe
visual impairment. In the case of the Elderly user, due to her multiple impair-
ments, there are no FIOs with high adequateness values, but the FIO repository
indicates that the best options would be to use the Sound Signaling and Dis-
play FIOs with low granularity. Finally, an interesting result is to see that the
standard user has a high value of adequateness in almost all FIOs and usage
scenarios, because she does not have any impairment affecting her capacity to in-
teract with the system. Nevertheless, there are some minor differences between
each physical environment. For example, while Sound Production and Speech
Synthesis FIOs are considered the best options for the Cabin, the Display and



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 179

Algorithm 6.3 Code snippet showing an example of how to use the Interaction
Hints mechanism to indicate Dandelion that one particular interaction must be
implemented in a redundant way.

AbstractInteractionUnit directionAIU =

app.getAbstractUI().getAbstractInteractionUnitById("DirectionMessage");

DataInputOutputSupport dirOutput =

(DataInputOutputSupport) lblMsg.getInteractionSupportElementById("direction");

HashSet<FuzzyVariable> interactionHints =

new HashSet<FuzzyVariable>(1);

interactionHints.add(

new FuzzyVariable(“redundancy”, “redundancy_level”, 10.0));

uic.manageAbstractInteractionUnit(

dirOutput, directionAIU, interactionHints);

Signaling FIOS are the most adequate options in the other three environments,
mainly due to ambient noise constraints.

Finally, the last step in the adaptation to context process would be to build
the final UI. This is performed by selecting, among the FIOs returned by the
repository, those that are considered more adequate for the scenario, and then
establish a mapping in the EvacUI controller.

As previously indicated, we have requested Dandelion to produce a final UI
with redundancy for the output interaction facet used to notify directions to the
users. Therefore, the User Interface Builder is going to try to select more that
one FIO. The UIB will use the CARE properties and the disaggregated metrics
to select FIOs that employ different modalities and have different physical and
usage characteristics. For example, for the Elderly and Cognitive Impaired
user, it will select the Sound Production and the Display FIOs. For the Deaf
and Blind users redundancy cannot be supported because the FIOs that use
complementary modalities have very low (not supported) adequateness values.

As a final note regarding the ICA implementation of Dandelion, it is impor-
tant to highlight that it not only is able to modify the UI at run-time, thanks to
the decoupling provided by the IMA+ILA, but also in real-time. The median
time required to select and configure a FIO for a particular interaction facet is
about 24-30 ms, with 18-23 ms required to build the Ideal FIO, 3-5 ms dedi-
cated to query the FIO repository, and 1-2 ms to establish the FIO mapping.
Therefore, for example, in the case of the EMP UI, which has 14 interaction
facets, it will take about 400 ms to adapt the UI. For a more complex UI, with



180 6.5. Demonstration Examples and Summary

Smartph. Sound	P. Speech	S. Display Signal Smartph. Sound	P. Speech	S. Display Signal

Adequateness 0,870 0,299 0,299 0,900 0,876 0,866 0,283 0,283 0,893 0,871

Interaction 1,000 1,000 1,000 1,000 1,000 1 1 1 1 1

Modality 0,930 0,000 0,000 0,960 0,930 0,93 0 0 0,96 0,93

Physical 0,506 0,741 0,741 0,583 0,549 0,479 0,633 0,633 0,537 0,515

Usage 0,892 0,882 0,882 0,882 0,892 0,892 0,882 0,882 0,882 0,892

Adequateness 0,244 0,917 0,910 0,255 0,272 0,24 0,895 0,888 0,248 0,402

Interaction 1,000 1,000 1,000 1,000 1,000 1 1 1 1 1

Modality 0,000 0,950 0,940 0,000 0,000 0 0,95 0,94 0 0,213

Physical 0,368 0,741 0,741 0,445 0,549 0,342 0,594 0,594 0,399 0,496

Usage 0,892 0,882 0,882 0,882 0,892 0,892 0,882 0,882 0,882 0,892

Adequateness 0,252 0,629 0,292 0,621 0,264 0,248 0,613 0,276 0,614 0,434

Interaction 1,000 1,000 1,000 1,000 1,000 1 1 1 1 1

Modality 0,000 0,519 0,000 0,551 0,000 0 0,519 0 0,551 0,265

Physical 0,434 0,702 0,702 0,512 0,510 0,408 0,594 0,594 0,465 0,496

Usage 0,872 0,865 0,865 0,865 0,872 0,872 0,865 0,865 0,865 0,872

Adequateness 0,792 0,919 0,255 0,851 0,282 0,788 0,897 0,233 0,844 0,425

Interaction 1,000 1,000 1,000 1,000 1,000 1 1 1 1 1

Modality 0,930 0,950 0,000 0,960 0,000 0,93 0,95 0 0,96 0,236

Physical 0,369 0,741 0,741 0,446 0,549 0,342 0,594 0,594 0,4 0,476

Usage 0,325 0,906 0,436 0,603 1,000 0,325 0,906 0,436 0,603 1

Adequateness 0,816 0,918 0,911 0,898 0,879 0,812 0,874 0,891 0,895 0,902

Interaction 1,000 1,000 1,000 1,000 1,000 1 1 1 1 1

Modality 0,930 0,950 0,940 0,960 0,930 0,93 0,93 0,96 0,94 0,95

Physical 0,488 0,741 0,741 0,565 0,549 0,462 0,515 0,519 0,633 0,633

Usage 0,383 0,893 0,893 0,893 0,922 0,383 0,922 0,893 0,893 0,893

Corridor

De
af
	U
.

Bl
in
d	
U
.

El
de

rly
	1

Co
gn
iti
ve
	Im

p.
St
an

da
rd

Cabin

Smartph. Sound	P. Speech	S. Display Signal Smartph. Sound	P. Speech	S. Display Signal

Adequateness 0,543 0,293 0,293 0,886 0,868 0,859 0,289 0,289 0,883 0,876

Interaction 1 1 1 1 1 1 1 1 1 1

Modality 0,442 0 0 0,96 0,93 0,93 0 0 0,96 0,93

Physical 0,446 0,698 0,698 0,489 0,495 0,437 0,669 0,669 0,471 0,551

Usage 0,892 0,882 0,882 0,882 0,892 0,892 0,882 0,882 0,882 0,892

Adequateness 0,248 0,905 0,81 0,531 0,396 0,229 0,9 0,892 0,234 0,404

Interaction 1 1 1 1 1 1 1 1 1 1

Modality 0 0,95 0,805 0,427 0,213 0 0,95 0,938 0 0,213

Physical 0,393 0,659 0,659 0,436 0,456 0,268 0,63 0,63 0,302 0,512

Usage 0,892 0,882 0,882 0,882 0,892 0,892 0,882 0,882 0,882 0,892

Adequateness 0,246 0,575 0,284 0,529 0,426 0,237 0,619 0,281 0,6 0,436

Interaction 1 1 1 1 1 1 1 1 1 1

Modality 0 0,448 0 0,427 0,265 0 0,519 0 0,551 0,265

Physical 0,393 0,647 0,647 0,436 0,444 0,335 0,63 0,63 0,369 0,512

Usage 0,872 0,865 0,865 0,865 0,872 0,872 0,865 0,865 0,865 0,872

Adequateness 0,478 0,907 0,243 0,849 0,422 0,791 0,903 0,238 0,844 0,43

Interaction 1 1 1 1 1 1 1 1 1 1

Modality 0,442 0,95 0 0,96 0,236 0,93 0,95 0 0,96 0,236

Physical 0,389 0,659 0,659 0,432 0,456 0,363 0,63 0,63 0,397 0,512

Usage 0,325 0,906 0,436 0,603 1 0,325 0,906 0,436 0,603 1

Adequateness 0,463 0,785 0,871 0,89 0,912 0,808 0,907 0,856 0,883 0,879

Interaction 1 1 1 1 1 1 1 1 1 1

Modality 0,391 0,756 0,93 0,96 0,95 0,93 0,95 0,872 0,96 0,93

Physical 0,471 0,698 0,495 0,514 0,698 0,434 0,669 0,669 0,468 0,551

Usage 0,383 0,893 0,922 0,893 0,893 0,383 0,893 0,893 0,893 0,922

Vehicle	Room

De
af
	U
.

Bl
in
d	
U
.

El
de

rly
	1

Co
gn
iti
ve
	Im

p.
St
an

da
rd

Deck

Table 6.17: FIO adequateness results for the different EvacUI usage scenarios
related to Cabin, Corridor, Deck, and Vehicle Room environments.



Chapter 6. Adding Real-Time, Autonomous and Dynamic Adaptation to
Physical User Interfaces 181

for example 50 independent interaction facets, it will take about 1.2-1.5 seconds
to build a new final UI adapted to a new context.

6.5.4 Summary

The end goal of the Interaction Context Abstraction layer proposed by the
TIAF is to isolate AmI user interfaces from the particular context in which they
are being executed. In this chapter, we have presented how we have implemented
this layer in the Dandelion framework.

In this section, we have seen that, by taking advantage of the features
provided by the IMA and ILA layers, the job of the ICA is reduced to per-
forming a adequate selection of Interaction Resources to fulfill the interaction
requirements of an abstract UI and the natural interaction constraints of the
usage scenario. For that purpose, the Dandelion ICA implementation relies on
a series of fuzzy inference systems that processes a set of models with fuzzy
information about the scenario and the user interaction requirements. The re-
sult of this processing is a selection of IRs that are considered adequate for a
particular combination of abstract UI and usage scenario. In order to build a
final adapted to the scenario, this particular selection of IRs is notified to the
UI Controller at run-time, so that it can start routing the GIP events to the
new set of IRs, and therefore, modify the UI at run-time without affecting the
business logic of the application.

It is important to mention that the selection of IRs, and the final UI of an
application, depends exclusively on information that is decoupled from the ap-
plication code: interaction requirements of the application (the abstract UI), the
IRs available in the physical environment (accessible through the FIO Reposi-
tory), and the dynamic characteristics of the usage scenario (user, environment,
and scene profiles). Therefore, it is possible to build a final UI for any kind of
usage scenario (as long as it is supported by the models), even for scenarios not
predicted or imagined during the development of the application.

The UI adaptation examples shown in section 6.5 have demonstrated the
viability of the implementation of an ICA layer that allows AmI UIs to react to
context changes and modify their UI at run-time, adapting their user interfaces
to the usage constraints introduced by the new context. A key aspect of this
adaptation process is that it allows very deep adaptations, because it is pos-
sible to change the physical IRs that perform each particular user interaction
primitive, thus permitting dramatic changes in the shape of the UI, including
modalities, physical shape and look, or even the physical location.

In this regard, it is important to note that the implementation of the ICA
described in this chapter must be understood as a reference implementation



182 6.5. Demonstration Examples and Summary

with the objective of demonstrating the validity of the TIAF concept as a com-
plete solution for the development of context-adaptive Physical User Interfaces
for Ambient Intelligence systems. Thus, while it is a complete and functional
implementation of the ICA, it would be possible to extend the models and algo-
rithms so that Dandelion can provide better adaptation support in many more
contexts of use.

Finally, it is important to mention that, apart from enabling Dandelion
UIs to adapt, at run-time, to context changes, this implementation of the ICA
provides four additional results that are relevant by themselves:

• A model to describe physical interaction resources using fuzzy logic, in-
cluding their modalities and physical shapes.

• A model to specify the interaction constraints and requirements of a par-
ticular usage scenario.

• A metric to compare the adequateness of one particular physical interac-
tion resource regarding a specific usage scenario. Furthermore, the pro-
posed adequateness metric allows the utilization of the CARE properties
to reason about the multimodality of the IRs used to build a final UI.

• The adequateness metric can also be used as a similarity metric in order
to compare physical interaction resources.



Chapter 7

Conclusions and Future Work

"The beginning of knowledge is the discovery of something we do
not understand."

Frank Herbert

To conclude this dissertation, the first section of this chapter summarizes
the main results and original contributions of this research work, with special
emphasis on the conclusions that can be drawn from them. Finally, the last
section introduces different questions and topics that have been raised during
the realization of this PhD. thesis and are yet open to research and development.

Conclusions

In chapter 2, we introduced the main goal of this PhD work: to improve
the support for ubiquitous operation and user mobility in Ambient Intelligence
(AmI) and Ubiquitous Computing (UC) systems. In that same chapter, we also
divided that broad goal into two fundamental sub-goals:

• To enhance the migrability of distributed physical user interfaces, so that
they can be more easily deployed on a variety of scenarios and migrated
between them.

• To facilitate the development of DPUIs capable of adapting their inter-
action with the user to the requirements and characteristics of different



184

scenarios (users, physical environments, etc.).

In order to fulfill these two sub-goals, this thesis has produced two main results.
First, the Threefold Interaction Abstraction Framework (TIAF), a conceptual
abstraction framework addressing those two sub-goals in order to provide a tech-
nological solution for the development of ubiquitous user interfaces for AmI and
UC systems. Second, the Dandelion framework, a reference implementation of
the TIAF conceptual proposal, providing a complete and functional develop-
ment framework that facilitates the development of highly portable and plastic
AmI user interfaces and Distributed Physical User Interfaces.

Within the TIAF conceptual framework, we have addressed those two sub-
goals by defining three different levels of abstraction required to decouple AmI
UI developers from the complexities and particularities of Distributed Physical
User Interfaces and facilitate the development of UIs capable of operating in
different scenarios, with different constraints, while providing an adequate user
interaction experience to the users:

• The first abstraction level, known as the Interaction Modality Abstraction
level (IMA),is in charge of decoupling AmI UI developers and their code
from the diverse modalities, technologies, and even APIs used to build
a user interface. Thanks to this abstraction, the same UI code can be
reused in different scenarios where different interaction resources must be
used. Furthermore, it is important to mention that this abstraction makes
UI code completely agnostic of the modalities used by the interaction
resources, thus facilitating the usage of very different physical devices as
interaction resources.

• The second abstraction level, known as Interaction Location Abstraction
level (ILA), is dedicated to decouple AmI UI code from the physical dis-
tribution of the user interface. It allows the transparent distribution of
any single element of the UI in such a way that each element of the UI
can be realized by any remote interaction resource available.

• The third abstraction level, known as Interaction Context Abstraction
level (ICA) is built on top of the two previous ones, and it is in charge
of providing autonomous plasticity capabilities to AmI UIs. It decouples
UI developers and code from the different contexts or usage scenarios.
This decoupling is achieved by allowing the change, at run-time and in
real time, of the interaction resources used to render each one of the UI
elements.

With the Dandelion framework [Varela, 2013, Varela et al., 2014], we have
provided a complete and functional implementation of each one of the three



Chapter 7. Conclusions and Future Work 185

TIAF abstraction levels. This particular implementation, as has been presented
in chapters 5 and 6, addresses not only those two big sub-goals, but also the list
of concrete objectives established in chapter 2.

Regarding the objectives of conceiving and implementing mechanisms to
support the design and implementation of AmI interaction and business logic
with low or no knowledge about the technologies, modalities, protocols, and
APIs used by the IRs, section 5.6 has shown that the development framework
provided by the IMA abstraction layer, and its Dandelion reference implemen-
tation, is generic enough to support very different modalities and devices, even
unknown or unpredicted ones. This framework allows the implementation of
user interfaces by declaratively describing its interaction requirements using a
high-level abstraction model and implementing the UI logic on top of those
abstract interaction components. The proposed abstraction model manages in-
teractions concepts that are modality and technology agnostic, thus making the
UI definition and behavior completely independent of the final implementation.

Furthermore, this capacity of the proposed solution to completely isolate
the developers, and their code, from the particular implementation of the UI is
what enables it to allow the deployment of the same AmI system with different
realizations of the UI. As presented in subsection 5.3.3, the final UI implementa-
tion is not decided at development-time, but at deployment-time (or run-time if
using the ICA), thus it is possible to deploy different UIs in different scenarios.
Moreover, the implementation is easily performed by establishing a mapping,
in an XML file, between abstract interaction elements and real interaction re-
sources.

In regard to the objective of facilitating the development of distributed
UIs capable of operating independently of the physical location of the IRs, the
examples shown in section 5.6 have demonstrated that the Generic Interaction
Protocol (GIP), together with the concept of using the Final Interaction Ob-
jects (FIO) as proxy-like abstraction components, allows the distribution of a
Physical UI up to a fine-grained level. The provided implementation of the
ILA abstraction layer and its core element, the GIP, allows the distribution of
every single interaction element of the UI to one, or many, different interaction
resources, which could be deployed in any physical location. Furthermore, the
particular implementation of the GIP, using the STOMP messaging technol-
ogy, makes the system easily compatible with a large number of hardware and
software platforms, thus facilitating the integration of interaction resources into
the framework. In addition, along with Dandelion, we have developed a device
abstraction technology, UniDA, which, integrated in Dandelion, enables the UIs
to be directly compatible with a large range of existing physical devices.



186

With reference to the goal of facilitating the prototyping and testing of
different physical configurations of an UI, thus possibilitating a reduction in the
costs of developing distributed physical user interfaces adapted to different use
cases, the examples provided in section 5.6 have shown that Dandelion allows
the easy change (just a mapping in an XML file), at deployment-time, of each
physical element that builds up an UI. This feature can be exploited by develop-
ers, or installers, to easily test different implementations of an UI. Furthermore,
the previously mentioned abstraction characteristics, together with this ability
to easily change the implementation, allows the easy implementation of very
different prototypes of an UI without modifying the system and UI code, thus
effectively reducing the cost of developing user interfaces adapted to particular
usages scenarios.

This easiness to change the implementation of Ambient Intelligence UIs,
and in particular, physical distributed user interfaces, allows us to fulfill another
one of the sub-goals established in chapter 2: provide support for the migration
of AmI applications from one scene to another without requiring modifications
in the system or interaction logic code. An AmI developer can setup one FIO-
mapping file for each scenario, thus when the user changes from one scenario to
another, the migration of the UI is easily performed by loading a new mapping
file that changes, at run-time, the implementation of UI, so that the AmI appli-
cation automatically starts using the new interaction resources available in the
new physical environment.

Regarding the final sub-goal settled in chapter 2, to reduce the costs, in
time and effort, of supporting different scenarios with the same AmI applica-
tion by automatically adapting the UI to each scenario, the results presented
in section 6.5 have shown that the TIAF conceptual design, and its Dandelion
implementation, provide integrated support for autonomous UI plasticity, in-
cluding adaptation to user, environment, and device characteristics. On the
one hand, the UI decoupling capabilities previously introduced enable devel-
opers of AmI UIs, implemented with Dandelion, to modify the UI shape at
run-time and without affecting the application. On the other hand, the ICA
abstraction level design and implementation shown in subsection 4.3.2.3 and in
chapter 6, allows Dandelion to react to context changes by modifying the shape
of a DPUI without human intervention, thanks to an autonomous IR selection
mechanism.

As previously introduced, the TIAF and GIP design simplify the process of
implementing a DPUI to the point of just having to specify a mapping between
abstract and physical interaction resources. Therefore, the job of a developer or
installer building a final UI for a Dandelion system would consist in selecting,
among the IRs available, one or many IRs for each interaction facet declared in



Chapter 7. Conclusions and Future Work 187

the abstract UI definition. This selection is the last point of coupling between
developers/installers and the context, thus, in order to decouple developers from
the interaction and the context characteristics, the ICA implementation is in
charge of autonomously managing that mapping.

As shown in chapter 6, the Dandelion ICA implementation uses models
and Computational Intelligence algorithms to autonomously drive the IR selec-
tion process. The whole process implementation is build on top of fuzzy logic
technologies. First, three different context models, a user profile, an environ-
ment profile, and a scene profile, provide input information about the context
using fuzzy characteristics. Second, a set of Fuzzy Inference Systems are used
to exploit the information provided by the context models in order to generate
a fuzzy specification of the characteristics that a FIO should have to be consid-
ered adequate for a particular scenario. And third, a fuzzy comparison measure,
named FIO Adequateness metric, is introduced in subsection 6.4.2.1, providing
a way to measure how adequate is to use a FIO in one particular scenario. As it
is shown in section 6.5, by using this fuzzy FIO selection process, Dandelion is
able to autonomously generate or adapt, at run-time and in real-time, a DPUI
for a particular context of use.

In section 3.4, we have provided an extensive comparison of AmI and DPUI
development frameworks, drawing the main conclusion that there were a lack
of support for the particular problematics of Distributed Physical User Inter-
faces in the context of Ubiquitous Computing and Ambient Intelligence. The
TIAF and Dandelion have been specifically designed and implemented to en-
able developers to build DPUIs for AmI systems, with special attention to be
compliant with the features established in chapter 3 as critical characteristics
for AmI UIs. Therefore, recalling the comparison table previously introduced
in section 3.4, we have updated it with a new entry for Dandelion in order to
show how it copes with the existing competition. This new table is shown in
table 7.1 and, as can be seen, Dandelion, as a reference implementation of the
TIAF conceptual solutions, performs quite well in almost all the characteristics
evaluated.

As can be seen, Dandelion only presents poor performance in one of the
characteristics analyzed, UI customization, and it is a result of the high level of
abstraction introduced by the TIAF. Developers are so isolated from the final
shape of the UI that it is difficult to provide them with capabilities to customize
and modify that shape. While Dandelion provides some capabilities of this kind,
mainly through the Interaction Hints mechanism, it only allows developers to
specify a small set of customizations.

Regarding the other analyzed characteristics, as previously introduced in
this chapter, section 6.5 has shown the UI plasticity characteristics of the TIAF



188

User Env. Devices Distribution Dev. Abstraction Generation Custom. Modalities Devices

MASP No No Yes Medium Yes High Yes Low Low None

Dynamo-AID No No Yes Medium Yes High Yes Low Low None

Egoki Yes No Yes None Yes High Yes Low Low None

SUPPLE Yes No Yes None Yes Low Yes Medium Very	Low None

ICrafter No No Yes Low No Medium Yes Medium Low None

PUC No No Yes Low No Medium Yes Medium Low None

MARIA Yes* Yes* Yes* None Yes Medium No Medium Low None

UsiXML Yes* Yes* Yes* Low Yes Medium No Medium Low None

H.	Automation No No No Low No Low No N/A Very	Low Low

HomeKit No No No Low No Low No N/A Low Medium

Phidgets No No No None No Low No N/A Medium Low

VoodooIO No No No None Yes Low No Low Low Low

iStuff No No No Medium Yes Medium No Medium High Medium

EIToolkit No No No Medium No Medium No N/A High Medium

Dandelion Yes Yes Yes High Yes High Yes Low High High

Autonomous	Plasticity User	Interface Physical	UI

*Plasticity	is	supported	by	transformation	processes	usally	performed	manually	by	the	developers

Table 7.1: Comparison of Dandelion against the main available solutions for the
development of Plastic Distributed Physical User Interfaces reviewed in chapter
3.

and Dandelion, demonstrating their capability to dynamically adapt the UI to
the context. Furthermore, with the examples provided in section 5.6, we have
demonstrated the UI distribution and modality decoupling capabilities of the
solutions, allowing the developing of highly-distributed, modality and device
agnostic AmI User Interfaces.

Finally, besides the evident results achieved with the TIAF and Dandelion,
the work in Plastic DPUIs has produced various results that are relevant by
themselves.

First, we have introduced a model, using fuzzy characteristics, to describe
physical interaction resources, including their modalities, physical shapes, and
user interaction capabilities. This model is independent from the rest of the
solution, and it can be easily reused for other purposes. For example, the man-
ufactures of interaction devices and software could use the model to provide
their customers with a machine readable description of the IRs, which could be
exploited by the customer’s applications at run-time in order to, for example,
recognize the IRs connected to the application. Moreover, we have also pro-
vided an independent FIO repository component that can be used to build a
remotely accessible database of FIOs, thus enabling applications to detect the
IRs available in one location, or even search for IRs that present some particular
characteristics.



Chapter 7. Conclusions and Future Work 189

Second, we have designed a model to specify the interaction constraints
and interaction resource requirements of a particular usage scenario. As in
the previous case, this model can be reused outside the proposed solution, for
example by AmI application developers in order to provide system installers
with interaction resource requirements information.

And third, we have introduced a metric that, using the two previous cited
description models, enables the calculation of how adequate is one particular
physical interaction resource for its use in a specific usage scenario. This metric,
in combination with the FIO repository, can be used by AmI system installers
to receive advice of what IR to use in each case. Furthermore, it can also
be used, for example, to guide developers during the prototyping of AmI UIs,
providing them with information about what kind of IRs would be better for
each scenario analyzed. Finally, it is relevant to highlight that this adequateness
metric, and the FIO description model, are designed to support the utilization
of the CARE properties, thus enabling prototype developers to reason about the
multimodality of the IRs used to build a final UI. Moreover, the proposed metric
can be easily used as IR similarity metric, allowing the comparison between
different physical interaction resources.

Finally it is important to mention that all the software solutions imple-
mented within this doctoral thesis have been released under an open source
software license, and are publicly available for download, study, compare and
use at http://github.com/GII/Dandelion and http://github.com/GII/UNIDA.
We think that is important for software engineering thesis to provide functional
implementations of the solutions proposed, not just because the direct avail-
ability of the solutions is a great contribution to the research and development
community, in this case the Ambient Intelligence and Ubiquitous Computing
community, but also because making the implementation available is the only
way to enable the community to compare the proposed solution with others,
either previously existing, or new ones.

Future Work

As in almost every research work, is not feasible to cover all the different
topics at once, not only due to time limitations, but also because new problems
are raised while others are being solved. In this PhD work we have designed, im-
plemented and demonstrated an integral solution for the development of Plastic
Physical Distributed User Interfaces for Ambient Intelligence systems. Never-
theless, while functional and complete, we have identified many different aspects
where further research and development would be required.



190

Improve UI Customization Capabilities

First of all, UI abstraction technologies usually share a common drawback:
a lack or reduced support for UI customization.

While UI abstraction technologies can considerably reduce the efforts, and
thus the cost, of UI development and even, in cases like the solution proposed
in this work, are able to enable UIs to operate in non predicted scenarios, they
usually impose severe limitations on the capacities of developers to produce a
fine customized user experience.

The solution proposed in this work incorporates some basic support for
UI customization by using a “hints” mechanism, allowing developers to indicate
small UI customizations like colors, sizes, or even the redundancy level of a
particular interaction facet. Nevertheless, in order to achieve fine grained cus-
tomization, developers are required to implement specific FIOs, designed with
one or various particular scenarios in mind.

Additional research would be required in order to design new techniques
to support a finer level of customization without compromising the decoupling
between developers, their code, and the particular implementation of the UI for
each scenario.

Improve UI Generation and Adaptation Capabilities

In this PhD work we have presented a complete conceptual framework
supporting the autonomous generation and adaptation to context, at run-time,
of UIs for Ambient Intelligence systems. Furthermore, we have provided and
demonstrated a reference implementation of that conceptual framework. While
has been demonstrated that this implementation is able to produce viable UIs
for very different scenarios and UI requirements, it is true that its implemen-
tation, using Fuzzy Inference Systems, limits its capacity of generation and
adaptation to the expert knowledge available in the different rule databases
used.

An interesting future research regarding this topic would be to introduce
some techniques for the autonomous generation of the rule databases. We think
that a rule-based system is a good approximation for UI generation systems,
because it allow developers and installers to get reasoned information about
why a final UI has been implemented in one way or another. Nevertheless, the
production of rules by experts is and arduous and prone to error process. The
idea would be to generate the rule database using some Computational Intelli-
gence techniques like Artificial Neural Networks or Evolutionary Computation.
In this regard, it is important to highlight that, as presented in chapter 6, Dan-



Chapter 7. Conclusions and Future Work 191

delion has been designed to be very decoupled from the UI adaptation engine,
thus making very easy the integration of new engines.

Another interesting research line in this topic would be to add learning
capabilities to the adaptation engine. It would be possible to receive, or infer,
feedback information from the users and exploit that information in order to
produce more finely customized UIs in other scenarios. For example, if a user
has liked one particular modality, the system could try to use FIOs with that
modality in other scenarios or even, if the system detects a user with a similar
profile, it could assume that the modality would be also liked by the new user.
This learning capabilities could also help to provide more consistent UIs, taking
in mind the previous experience of the users, and thus trying to minimizing
the problems raised by the introducing dramatic changes in the UI from one
scenario to the next.

Another important aspect related to the UI adaptation and generation ca-
pabilities are the context models. The proposed TIAF conceptual framework
suggest the utilization of at least three different context models, but it does
not imposes any limitation on the number or kind of information used. Our
reference implementation uses only those three models (User, Environment and
Scene), but it would be possible to extend the adaptation engine to support
new additional models, or even to extend the available models with more in-
formation in order to support new scenarios, new adaptation capacities or even
new application fields.

The usability and perceived quality of the generated/adapted user inter-
faces has been deliberately left out of this work. Not only because it is a very
broad and complex topic on its own, but because the objectives of this work,
as established in chapter 2, were to enable AmI and UC UIs, and in particular
DPUIS, to support multiple and variated usage scenarios without affecting the
business or interaction logic. The solution presented in chapter 6 has demon-
strated the capability to generate and adapt AmI UIs at runtime, but it mostly
ignores the quality and usability of the generated UI. A required, and very in-
teresting, future research line would be to analyze the quality and usability of
the UIs, and use the information retrieved in order to improve the UI generation
capabilities.

Support for Task-based UI Development

Another important topic that has been raised during the development of
this work is that the current implementation of the UI generation and adapta-
tion system uses a dialog-based approach. It considers an UI as a set of unre-
lated dialogs or displays (the developers must provide one abstract UI model for



192

each one) and, when requested, it generates a particular UI for one dialog and
then, at another different time, when requested, it generates the UI for another.
Each of this generation/adaptation processes are individual and isolated, thus
they can produce inconsistent user interfaces for each dialog, thus hindering the
natural interaction experience of the users.

An interesting research line would be to improve Dandelion to exploit task
information during the generation/adaptation process. This information could
be used to generate consistent multi-dialog UIs and to manage autonomously
the life-cycle of the UI in order to perform a particular task.

In this regard, it could also be interesting to introduce formal verification
capabilities in order to autonomously verify the consistency and completeness
of the generated UIs regarding a specified task.



Apéndice A

Resumen en castellano

El objetivo final de la Inteligencia Ambiental (AmI) consiste en desarrollar
sistemas que asistan a las persona en su vida diaria, mejorando así su calidad de
vida. Esta tesis doctoral se centra en la interacción entre este tipo de sistemas y
sus usuarios, y más en particular, en el problema de proporcionar una interacción
adaptada al contexto particular de cada uno de los posibles escenarios en los
que un sistema AmI pueda ser utilizado.

La Inteligencia Ambiental es un área tan amplia que resulta difícil propor-
cionar una definición precisa del concepto. Sin embargo, dado que los sistemas
de Inteligencia Ambiental van a ser el elemento central de esta tesis doctoral,
resulta necesario establecer, antes de comenzar, una definición de Inteligencia
Ambiental que sirva de marco para todo el trabajo. Una de las definiciones más
comúnmente aceptada es la proporcionada por J. C. Augusto y P. McCullang
en su artículo “Ambient Intelligence: Concepts and Applications” [Augusto and
McCullagh, 2007]:

«La idea básica detrás de la Inteligencia Ambiental es que, me-
diante el enriquecimiento de los entornos con tecnología (sensores
y otros dispositivos conectados en red), se puede construir un sis-
tema que capaz de tomar decisiones que beneficien a los usuarios,
basándose para ello en información obtenida en tiempo real, y datos
históricos acumulados. La Inteligencia Ambiental hereda aspectos
de muchas áreas de las ciencias de la computación, pero no debe
ser confundida con ninguna de ellas en particular. Redes, Sensores,
Interacción-Hombre Máquina, Computación Ubicua e Inteligencia
Artificial, todas son relevantes y están interrelacionadas con AmI,
pero ninguna de ellas la abarca conceptualmente de forma completa.
La Inteligencia Ambiental orquesta todos estos recursos para propor-



194

cionar a los usuarios servicios inteligentes y flexibles. La Inteligencia
Ambiental se encuentra en la línea de investigación del ordenador
oculto.» J. C. Augusto y P. McCullagh, 2007.

Esta definición de AmI, aunque muy amplia, ya establece los dos aspectos prin-
cipales de todo sistema AmI:

1. El objetivo. Mejorar la calidad de vida de las personas haciendo su vida
más confortable y facilitando sus tareas diarias.

2. El como. Enriqueciendo los entornos físicos con tecnología.

Aunque esta definición nos proporciona un objetivo global y un camino genérico
para conseguirlo, no nos proporciona ningún detalle acerca de las características
que debería de presentar un sistema AmI. Una forma de comenzar a explorar
esas características es dividir el término Inteligencia Ambiental en sus compo-
nentes individuales. Por un lado, el término Inteligencia nos habla acerca del
tipo de respuesta que los usuarios esperan del sistema, como por ejemplo proac-
tividad, previsibilidad y comportamiento adaptado al contexto. Por otro lado,
el término Ambiental está relacionado con la ubicuidad del sistema, y la opera-
ción natural y poco intrusiva del mismo. El primer término está directamente
relacionado con la aplicación de técnicas de Inteligencia Computacional para
dotarlo de comportamiento autónomo, mientras que el segundo término está
relacionado con la Computación Ubicua, y el objetivo establecido por Mark
Weisser [Weiser, 1991] de desarrollar sistemas que «se integren en la vida diaria
hasta hacerlos indistinguibles de ella».

Como se puede extraer de esta especificación de características, el alcan-
ce y los ámbitos de aplicación de los sistemas AmI los hace muy diferentes
a los sistemas software tradicionales. Si bien es cierto que comparten muchas
similitudes, e incluso tecnologías, con sistemas ampliamente estudiados como
los sistemas distribuidos y los sistemas de Inteligencia Ambiental, los sistemas
AmI presentan una serie de características propias que hacen que su diseño e
implementación sea muy diferente.

A diferencia de los sistemas software tradicionales, que normalmente operan
bajo demanda y de forma reactiva, los sistemas AmI deben operar de forma
proactiva y transparente, mostrando un comportamiento autónomo e inteligente
que se anticipe a las necesidades de los usuarios, y además, interactuando con
estos a través de los mecanismos más adecuados en cada contexto.

Para complicar las cosas un poco más, los escenarios de uso de los sistemas
AmI son normalmente mucho más complejos que los escenarios de los sistemas
tradicionales. Los sistemas AmI operan en entornos que, en este trabajo, hemos
llamado Entornos de Interacción Humana (HIE) [Varela et al., 2011], que deben



Apéndice A. Resumen en castellano 195

ser entendidos como entornos extendidos que abarcan los múltiples lugares en los
que una persona lleva a cabo su vida diaria, incluyendo por ejemplo, su trabajo,
su vida familiar u ocio. Así pues, un HIE integra lugares como la oficina, el
hogar, el coche o incluso lugares públicos, como estadios o centros comerciales.
Como se puede imaginar, los escenarios de uso de un sistema AmI pueden ser
muy diversos, y sobre todo, muy diferentes entre si. Estos pueden presentar
diferentes características en su entorno físico (iluminación, ruido, privacidad,
etc.), diferentes restricciones de uso (no es lo mismo utilizar un sistema mientras
se conduce, que mientras se está viendo una película en el salón, etc.), usuarios
con diferentes características (habilidades, capacidad de visión, oído, etc.) y
por último, pero no por ello menos importante, cada escenario puede presentar
recursos de interacción (dispositivos hardware o elementos software) diferentes
con los que interactuar con los usuarios.

Aparte de estas complejas condiciones operativas, los sistemas de Inteligen-
cia Ambiental deben de presentar buenas características en dos aspectos prin-
cipales [Cook et al., 2009]: interacción natural adaptada a los usuarios [Abascal
et al., 2011b, Abascal et al., 2011a, Blumendorf and Albayrak, 2009, Blythe
et al., 2005, Kranz et al., 2010] y operación ubicua [Aizpurua et al., 2013, Blu-
mendorf, 2009, Luyten et al., 2006, Luyten and Coninx, 2005].

La interacción natural trata de obtener una experiencia de usuario donde
la interfaz de usuario sea casi invisible, integrada en el entorno, y funcionando
de forma muy poco intrusiva [Fishkin et al., 1999, Harrison et al., 1998, Ba-
llagas et al., 2003, Xie et al., 2008]. Las interfaces de usuario naturales (NUIs)
aprovechan nuestros sentidos y nuestro conocimiento acerca de los objetos coti-
dianos, la física, y el mundo que nos rodea, para construir interfaces de usuario
que liberen a los usuarios de tener que aprender nuevos conceptos e ideas para
interactuar con los sistemas informáticos [Ishii and Ullmer, 1997, Ullmer and
Ishii, 2000, Sitdhisanguan et al., 2012]. Las NUIs sustituyen objetos cotidia-
nos por dispositivos conectados, y utilizan las modalidades de interacción más
adecuadas a cada entorno con el objetivo de hacer invisibles las interfaces de
usuario.

La ubicuidad persigue la idea de que un sistema este disponible en cual-
quier momento y en cualquier lugar [Ranganathan et al., 2004, Ranganathan
et al., 2005, Satoh, 2005]. Con respecto a los sistemas AmI y los HIEs, la ubi-
cuidad es una característica que permite a un sistema AmI proporcionar sus
funcionalidades en cualquiera de los lugares físicos incluidos en un HIE parti-
cular, proporcionando a sus usuarios la capacidad de moverse dentro sus HIEs
mientras continúan haciendo uso, u obteniendo los beneficios, de los sistemas
AmI.

La ubicuidad, combinada con las Interfaces de Usuario Naturales, hacen



196

que sea necesario desplegar los sistemas AmI con implementaciones diferentes
de la IU para cada escenario [Sousa and Garlan, 2002, Ranganathan et al., 2005].
Cuando un usuario se mueve de un sitio a otro, el escenario de ejecución del
sistema AmI cambia, y con el, los dispositivos disponibles, las características
del entorno, e incluso los usuarios. Dada la gran diversidad de escenarios que
pueden existir, resulta prácticamente imposible predecirlos durante la fase de
diseño y desarrollo del sistema. Debido a esto, la mayoría de sistemas AmI son
diseñados e implementados para un único escenario particular, o en todo caso,
un conjunto concreto de escenarios, con unos dispositivos y tipos de usuario
preestablecidos. Desplegar este tipo de IUs en nuevos escenarios, que han sido
predichos anteriormente, resulta muy complejo, y habitualmente requiere im-
portantes modificaciones en el sistema, afectando enormemente a la capacidad
portar y desplegar un mismo sistema AmI en diferentes entornos u escenarios,
y por tanto, afectando a la movilidad de los usuarios de dichos sistemas.

Disponer de una interfaz de usuario natural, y adaptada al contexto, es una
de las características más importantes para que un sistema de Inteligencia Am-
biental sea aceptado por los usuarios [Ranganathan et al., 2005, Abascal et al.,
2008, Cook et al., 2009, Pavan Dadlani, 2011, Sitdhisanguan et al., 2012, Zuc-
kerman and Gal-Oz, 2013]. Un área habitual para la aplicación de la Inteligencia
Ambiental es mejorar la calidad de vida de personas con discapacidades o de-
pendencia, personas mayores, o niños. Tres colectivos en los que disponer de
una Interfaz de Usuario adaptada puede marcar la diferencia entre un sistema
exitoso y otro fallido.

Los desarrolladores de sistemas AmI suelen utilizar NUIs para construir IUs
personalizadas para cada tipo de usuario, y para ello, suelen emplear diferentes
recursos de interacción (IRs) adaptados a las características de cada escenario
de uso (usuario y entorno) [Pavan Dadlani, 2011]. Estos dispositivos provienen
de diferentes fabricantes, usan protocolos y APIs heterogéneas, y en algunos es-
cenarios, incluso se utilizan IRs especialmente desarrollados para ese caso. Por
si fuera poco, estos IRs suelen ser dispositivos empotrados y estar distribuidos
por el entorno físico, formando interfaces de usuario físicas y distribuidas. So-
portar esta variedad de dispositivos y modalidades de interacción no es fácil,
y puede introducir mucha complejidad en un sistema. Además, desarrollar IUs
específicas para cada escenario incrementa enormemente el tiempo y el coste de
desarrollo. Sin mencionar que en numerosos casos resulta inviable predecir de
antemano todos los posibles escenarios de uso de un sistema.

El objetivo principal del trabajo llevado a cabo en esta tesis doctoral es
mejorar la capacidad de operación ubicua de los sistemas de Inteligencia Am-
biental, y con ello, facilitar la movilidad de sus usuarios. Como se ha indicando
anteriormente, uno de los principales obstáculos para conseguir sistemas AmI



Apéndice A. Resumen en castellano 197

ubicuos es soportar la inmensa variedad de técnicas y dispositivos de interacción
necesarios para producir IUs adaptadas a cada contexto de uso. Para abordar
este problema, esta tesis doctoral propone incrementar el nivel de desacopla-
miento entre el software de sistema y los recursos de interacción que forma la
IU. El objetivo pasa por mejorar la portabilidad de los sistemas AmI, facilitando
su despliegue en diferentes escenarios, y por tanto, mejorando su capacidad para
adaptar su interacción a diferentes usuarios en múltiples y variados entornos.

Este trabajo introduce una mejora a tres niveles en el desacoplamiento entre
desarrolladores, software de sistema y recursos de interacción. Primero, a nivel
lógico la desacopla a los desarrolladores y su código fuente, de las modalidades
de interacción, APIs, y tecnologías utilizadas por cada uno de los IRs que forman
la IU. Segundo, a nivel físico, es aísla al software de sistema de la localización
física de los IRs. Y tercero, para obtener una operación realmente ubicua y
facilitar el despliegue de sistemas AmI en múltiples escenarios, incrementa el
aislamiento entre los desarrolladores de la IU y el conjunto concreto de IRs que
forman la IU en cada escenario.

Un mejor aislamiento entre la lógica de negocio y control de un sistema
AmI, y el aspecto final de su interfaz de usuario, facilita enormemente el des-
pliegue de la misma lógica con diferentes realizaciones de la IU, posibilitando
así la instalación y despliegue de sistemas AmI en HIEs que incluyan diferentes
localizaciones y múltiples usuarios. En este sentido, el aislamiento de las mo-
dalidades y APIs de los IRs permite a los desarrolladores de AmI cambiar la
implementación y tipo de los IRs sin afectar al código del sistema, de forma que
es posible utilizar el mismo código fuente en diversos escenarios, con diferentes
IRs en cada caso.

Así pues, esta tesis doctoral propone la utilización de técnicas de ingeniería
basada en modelos (MDE) para mejorar el nivel de desacoplamiento entre los
sistemas AmI y sus interfaces de usuario. Las técnicas de MDE permiten a los
desarrolladores construir sistemas utilizando modelos de alto nivel, y posterior-
mente utilizar métodos de transformación que conviertan esos modelos en otros
modelos más concretos, así hasta llegar a obtener un sistema final y funcional.

Las técnicas de MDE has sido aplicadas anteriormente con éxito al campo
de las interfaces de usuario. Por ejemplo, Thevenin y Coutaz propusieron ya
en 1999 el uso de técnicas MDE para dar soporte a la plasticidad en interfaces
de usuario [Thevenin and Coutaz, 1999, Coutaz, 2010], esto es, la capacidad
de una IU para mantener sus nivel de usabilidad ante cambios importantes en
las condiciones y características del sistema y/o entorno de interacción. Esta
propuesta cosechó un importante éxito en la comunidad de investigadores en
HCI (Human-Computer Interaction), y han sido numerosos los autores que la
han utilizado como base para sus propias aproximaciones a la adaptación de



198

IUs al contexto [Collignon et al., 2008, Blumendorf et al., 2010, Luyten, 2003].
Existiendo incluso algunas aproximaciones dentro del ámbito del Ambient Assis-
ted Living (AAL), la Computación Ubicua y la Inteligencia Ambiental [Abascal
et al., 2008, Blumendorf and Albayrak, 2009, Blumendorf, 2009, Abascal et al.,
2011a, Abascal et al., 2011b]. Sin embargo, todas estas aproximaciones se han
centrado en interfaces de usuario gráficas, de voz, o en todo caso gestuales, in-
corporando un soporte reducido, o nulo, para otro tipo de modalidades. Por
el contrario, el trabajo desarrollado en esta tesis doctoral proporciona un fra-
mework de desarrollo de IUs basado en modelos y con soporte integrado para
la construcción de interfaces de usuario multimodales, físicas y distribuidas,
capaces de adaptarse al contexto en tiempo real.

Como se ha indicado previamente, la propia naturaleza de los sistemas AmI
requiere que sus interfaces de usuario se construyan sobre un conjunto de dispo-
sitivos físicos distribuidos a lo largo del entorno [Pavan Dadlani, 2011, Luyten
and Coninx, 2005, Luyten et al., 2006]. Un incremento en el desacoplamiento
entre los sistemas AmI y la localización física de los IRs permitiría mejorar la
portabilidad de los sistemas AmI, facilitando su despliegue en diferentes en-
tornos, con diferentes distribuciones de dispositivos. Este trabajo integra en el
framework MDE mencionado anteriormente, un capa de abstracción de IRs dis-
tribuidos. Esta capa se encarga de encapsular las tecnologías de red y protocolos
utilizados por cada IR, posibilitando así el desarrollo de IUs físicas y distribui-
das sin tener conocimiento de dichos protocolos y tecnologías, y permitiendo
que el mismo código de pueda utilizar diferentes dispositivos, desplegados en
diferentes lugares en cada caso.

El desarrollo de IUs distribuida utilizando técnicas MDE ha sido también
previamente estudiado por la comunidad investigadora, existiendo dos aproxi-
maciones destacadas: El modelo conceptual de referencia para el desarrollo de
interfaces de usuario adaptativas, distribuidas y migrables, proporcionado por
Cameleon-rt [Balme et al., 2004]; y el framework conceptual para interfaces
multimodales del W3C [W3C, 2003]. En esta tesis doctoral nos hemos inspira-
do en el modelo propuesto por Cameleon-rt, pero ampliándolo y mejorándolo
para incluir un mejor soporte para interfaces de usuario físicas y distribuidas.
Primero, en este trabajo el modelo de IU abstracta se transforma directamente
en una IU final adaptada al contexto, a diferencia de Cameleon, donde debe
pasar por varios estados intermedios. Segundo, la capa de plataforma ha sido
modelada e implementada como una capa distribuida de abstracción de recur-
sos de interacción, y además, soporta cualquier tipo de IR, tanto físicos como
digitales.

Apoyándose en estas dos soluciones de abstracción o desacoplamiento, los
desarrolladores pueden diseñar e implementar interfaces de usuario para sis-



Apéndice A. Resumen en castellano 199

temas AmI con muy poco, o incluso nulo, conocimiento de las modalidades,
protocolos, tecnologías de red, localización física y APIs de los IRs utilizados
finalmente para interactuar con los usuarios. Es más, los diseñadores e insta-
ladores de las UIs pueden utilizar los IRs que consideren más adecuados para
cada escenario, sin preocuparse de que los desarrolladores del sistema tengan
que modificar su código para soportarlo, pues la solución proporcionada en esta
tesis permite posponer hasta el momento del despliegue, la decisión final de qué
dispositivos (IRs) concretos utilizar en cada escenario.

Sin embargo, estas dos soluciones no son suficientes para soportar comple-
tamente la operación ubicua de los sistemas e interfaces de usuario AmI. Para
ello es necesario que las IU puedan operar de forma natural, y adaptada, en
cada uno de los escenarios incluidos en un HIE, y por tanto, las IUs deberían de
ser capaces de cambiar de forma y aspecto a medida que los usuarios se mueven
de un entorno a otro dentro del HIE.

Como se ha mencionado anteriormente, un HIE podría incluir diversos lu-
gares y escenarios, cada uno de ellos requiriendo el uso de unas modalidades
y/o dispositivos diferentes, lo que hace que diseñar e implementar una IU parti-
cular para cada uno de ellos sea inviable debido a los costes en tiempo y dinero
que implicaría. Así pues, en este trabajo se proporciona un tercer nivel de abs-
tracción que permite aislar a los desarrolladores, e instaladores, del conjunto
específico de IRs necesarios o adecuados para cada escenario.

La idea principal detrás de este tercer nivel de abstracción es posponer el
ensamblaje de la IU hasta el tiempo de ejecución del sistema, y utilizar modelos
del contexto para automatizar dicho ensamblaje, eligiendo autónomamente el
conjunto de IRs que conformarán la IU final en cada escenario. Esta selección
de los IRs más adecuados para cada las características de cada escenario, es
llevada a cabo por el propio sistema, que los elige entre los IRs disponibles en
cada entorno, y lo conecta a la lógica de control del sistema a través de las otras
dos capas de abstracción.

Los problemas abordados por estos tres niveles de abstracción, adapta-
ción, migración y portabilidad de interfaces de usuario en aplicaciones AmI,
han sido identificados previamente por diferentes autores [Miñón and Abascal,
2012, Aizpurua et al., 2013]. Por ejemplo, en [Blumendorf, 2009, Blumendorf
et al., 2010, Blumendorf and Albayrak, 2009], Blumendorf et al. presentan la
problemática asociada a la interacción con el usuario en sistemas de Ambient
Assisted Living (AAL), que son un subconjunto de los sistemas AmI. El artículo
presenta un framework de desarrollo de IUs que también utiliza técnicas MDE
e información del contexto para adaptar las IUs en tiempo de ejecución. En
[Abascal et al., 2008, Abascal et al., 2011a, Abascal et al., 2011b] Abascal et
al. destacan la necesidad de adaptación a los usuarios en sistemas AmI, debi-



200

do a que las diversas capacidades de estos pueden afectar enormemente a la
percepción, usabilidad y utilidad del sistema. Sin embargo, estas soluciones se
han focalizado principalmente en solo dos modalidades, IUs gráficas y basadas
en voz, y no incorporan soporte alguno para interfaces físicas que requieren de
la utilización de dispositivos distribuidos y utilizando gran variedad de modali-
dades. Así mismo, aunque Egoki [Abascal et al., 2011a] soporta la adaptación
de la IU a las características y preferencias de los usuarios, ninguna de ellas
soporte la adaptación a las características del entorno y sus dispositivos, lo cual
resulta de vital importancia en sistemas AmI y UC, donde como hemos men-
cionado, un cambio de contexto y/o localización, puede cambiar drásticamente
las condiciones del entorno, y los dispositivos disponible.

Así pues, en esta tesis doctoral se ha estudiado, diseñado y desarrollado una
solución que permite integrar estos tres niveles de abstracción en cualquier siste-
ma de Inteligencia Ambiental, aumentado así el nivel de desacoplamiento entre
este, y la implementación final de su interfaz de usuario, y por tanto, mejoran-
do la capacidad de operación ubicua de dicho sistema AmI. Esta solución se ha
estudiado y diseñado primeramente desde un punto de vista conceptual y arqui-
tectónico, proporcionando un marco teórico de referencia, llamado el Threefold
Interaction Abstraction Framework (TIAF), que da respuesta a los principales
problemas asociados a las interfaces de usuario en Inteligencia Ambiental, y
proporciona soporte teórico para los tres niveles de abstracción expuestos ante-
riormente. A continuación, en este marco teórico se a abordado desde un punto
de vista de implementación, obteniéndose en esta tesis doctoral una implemen-
tación de referencia del mismo, llamada Dandelion framework, proporcionando
así un una implementación funcional y operativa que da soporte real a los tres
niveles de abstracción propuestos en este trabajo. De esta forma, Dandelion pro-
porciona un conjunto de herramientas y librerías que facilitan la utilización de
cualquier tipo de dispositivo y/o modalidad de interacción sin afectar al código
fuente de la interfaz de usuario. Facilitando así el desarrollo de interfaces de
usuario físicas y distribuidas capaces de operar de forma natural y adapta en
diferentes escenarios, incluso adaptándose autónomamente, y en tiempo real, a
cambios en las características del escenario.



References

[Abascal, 2004] Abascal, J. (2004). Ambient intelligence for people with dis-
abilities and elderly people. In ACM’s Special Interest Group on Computer-
Human Interaction (SIGCHI), pages 1–3.

[Abascal et al., 2011a] Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B.,
Garay, N., and Miñón, R. (2011a). Some issues regarding the design of adap-
tive interface generation systems. In Lecture Notes in Computer Science,
volume 6765 LNCS, pages 307–316.

[Abascal et al., 2011b] Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B.,
Garay-Vitoria, N., and Miñón, R. (2011b). Automatically generating tailored
accessible user interfaces for ubiquitous services. In Proceedings of the 13th
international ACM SIGACCESS conference on Computers and accessibility,
ASSETS (XIII), pages 187–194.

[Abascal et al., 2008] Abascal, J., Fernández de Castro, I., Lafuente, A., and
Cia, J. M. (2008). Adaptive interfaces for supportive ambient intelligence
environments. In ICCHP ’08 Proceedings of the 11th international conference
on Computers Helping People with Special Needs, pages 30–37.

[Abrams et al., 1999] Abrams, M., Phanouriou, C., Batongbacal, A. L.,
Williams, S. M., and Shuster, J. E. (1999). UIML: an appliance-independent
XML user interface language. Computer Networks, 31:1695–1708.

[Aizpurua et al., 2013] Aizpurua, A., Cearreta, I., and Gamecho, B. (2013).
Extending in-home user and context models to provide ubiquitous adaptive
support outside the home. User Modeling and Adaptation for Daily Routines,
pages pp 25–59.

[Antle et al., 2009] Antle, A. N., Corness, G., Droumeva, M., and Bevans, A.
(2009). Exploring Embodied Metaphors for Full Body Interaction. Technol-
ogy, pages 1–4.



202 References

[Apache-Foundation, 2015] Apache-Foundation (2015). Activemq. URL:
http://activemq.apache.org.

[Apple-Inc., 2015] Apple-Inc. (2015). Apple homekit. URL:
https://developer.apple.com/homekit/.

[Augusto and McCullagh, 2007] Augusto, J. C. and McCullagh, P. (2007). Am-
bient intelligence: Concepts and applications. Computer Science and Infor-
mation Systems, 4(1):228–250.

[Ballagas et al., 2003] Ballagas, R., Ringel, M., Stone, M., and Borchers, J.
(2003). iStuff: a physical user interface toolkit for ubiquitous computing
environments. In Proceedings of the SIGCHI conference on Human factors
in computing systems, number 5, pages 537–544. ACM.

[Balme et al., 2004] Balme, L., Demeure, A., Barralon, N., Coutaz, J., and
Calvary, G. (2004). CAMELEON-RT: A Software Architecture Reference
Model for Distributed, Migratable, and Plastic User Interfaces. Ambient
Intelligence, 3295:291–302.

[Bandara et al., 2004] Bandara, A., Payne, T. R., de Roure, D., and Clemo,
G. (2004). An Ontological Framework for Semantic Description of Devices.
pages 2–3.

[Bandelloni and Paternò, 2004] Bandelloni, R. and Paternò, F. (2004). Flexi-
ble interface migration. Proceedings of the 9th international conference on
Intelligent user interface - IUI ’04, page 148.

[Bashon et al., 2010] Bashon, Y., Neagu, D., and Ridley, M. (2010). A new
approach for comparing fuzzy objects. In Hüllermeier, E., Kruse, R., and
Hoffmann, F., editors, Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems. Applications, volume 81, pages 115–125.
Springer Berlin Heidelberg.

[Bashon, 2013] Bashon, Y. M. (2013). CONTRIBUTIONS TO FUZZY OB-
JECT COMPARISON AND APPLICATIONS. PhD thesis, University of
Bradford.

[Belkin-International-Inc., 2014] Belkin-International-Inc. (2014). Wemo home
automation. URL: http://goo.gl/JMdzfq.

[Berti, 2005] Berti, S. (2005). Migratory MultiModal Interfaces in MultiDevice
Environments. In Proceedings of the 7th international conference on Multi-
modal interfaces, pages 92–99.



References 203

[Berti et al., 2004] Berti, S., Correani, F., and Mori, G. (2004). TERESA: a
transformation-based environment for designing and developing multi-device
interfaces. CHI’04 extended abstracts on Human factors in computing sys-
tems, pages 793–794.

[Blumendorf, 2009] Blumendorf, M. (2009). Multimodal interaction in smart
environments: a model-based runtime system for ubiquitous user interfaces.
PhD thesis.

[Blumendorf and Albayrak, 2009] Blumendorf, M. and Albayrak, S. (2009). To-
wards a framework for the development of adaptive multimodal user interfaces
for ambient assisted living environments. Universal access in human-computer
interaction. Intelligent and ubiquitous interaction environments, pages 150–
159.

[Blumendorf et al., 2008a] Blumendorf, M., Feuerstack, S., and Albayrak, S.
(2008a). Multimodal User Interfaces for Smart Environments: The Multi-
Access Service Platform. Computer, pages 478–479.

[Blumendorf et al., 2010] Blumendorf, M., Lehmann, G., and Albayrak, S.
(2010). Bridging models and systems at runtime to build adaptive user inter-
faces. In Symposium on Engineering Interactive Computing Systems, pages
9–18, New York, New York, USA. ACM Press.

[Blumendorf et al., 2008b] Blumendorf, M., Lehmann, G., Feuerstack, S., and
Albayrak, S. (2008b). Executable models for human-computer interaction.
Interactive Systems., pages 238 – 251.

[Blythe et al., 2005] Blythe, M. A., Monk, A. F., and Doughty, K. (2005). So-
cially dependable design: The challenge of ageing populations for HCI.

[Bodart et al., 1995] Bodart, F., Hennebert, A., Leheureux, J., Provot, I.,
Sacre, B., and Vanderdonckt, J. (1995). Towards a Systematic Building of
Software Architectures: the Trident methodological guide. In Proc. of 2nd
Eurographics Workshop on Design, Specification, Verification of Interactive
Systems DSV-IS’95, volume 95, pages 262–278.

[Bonino et al., 2008] Bonino, D., Castellina, E., and Corno, F. (2008). The
DOG gateway: Enabling ontology-based intelligent domotic environments.
IEEE Transactions on Consumer Electronics, 54(4):1656–1664.

[Bonino and Corno, 2008] Bonino, D. and Corno, F. (2008). DogOnt - Ontology
Modeling for Intelligent Domotic Environments. The Semantic Web-ISWC
2008, 19(2):790–803.



204 References

[Borchers et al., 2002] Borchers, J., Ringel, M., Tyler, J., and Fox, A. (2002).
Stanford interactive workspaces: A framework for physical and graphical user
interface prototyping. IEEE Wireless Communications, 9(6):64–69.

[Bouillon et al., 2004] Bouillon, L., Vanderdonckt, J., and Chow, K. C. (2004).
Flexible re-engineering of web sites. In Proceedings of the 9th international
conference on Intelligent user interface - IUI ’04, page 132.

[Bouillon et al., 2002] Bouillon, L., Vanderdonckt, J., and Souchon, N. (2002).
RECOVERING ALTERNATIVE PRESENTATION MODELS OF A WEB
PAGE WITH VAQUITA. In Computer-Aided Design of User Interfaces III,
pages 311–322.

[Brault, 2008] Brault, M. W. (2008). Americans with Disabilities: 2005. Tech-
nical report, US Census Bureau.

[Brault, 2012] Brault, M. W. (2012). Americans with disabilities: 2010. Tech-
nical report, US Census Bureau.

[Bristish-Standards-Institute, 2008] Bristish-Standards-Institute (2008). Er-
gonomics data and guidelines for the application of iso/iec guide 71 to prod-
ucts and services to address the needs of older persons and persons with
disabilities. Technical report, Bristish Standards Institute.

[Bticino, 2015] Bticino (2015). Openwebnet library and tools. URL:
https://openwebnet.codeplex.com.

[Calvary et al., 2007] Calvary, G., Coutaz, J., Favre, J., Vanderdonckt, J., and
Stanciulescu, A. (2007). A language perspective on the development of
plastic multimodal user interfaces. Journal on Multimodal User Interfaces,
(October):1–12.

[Calvary et al., 2001a] Calvary, G., Coutaz, J., and Thevenin, D. (2001a). A
Development Process for Plastic User Interfaces. In Proceedings of the
CHI2001 Workshop on Transforming the UI for Anyone, Anywhere, page
349. Citeseer.

[Calvary et al., 2001b] Calvary, G., Coutaz, J., and Thevenin, D. (2001b). Sup-
porting context changes for plastic user interfaces: a process and a mecha-
nism. People and Computers XV Interaction without Frontiers, pages 349–
363.

[Calvary et al., 2003] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. (2003). A Unifying Reference Framework
for Multi-Target User Interfaces. Interacting with Computers, 15(3):289–308.



References 205

[Calvary et al., 2002] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Sou-
chon, N., Bouillon, L., Florins, M., and Vanderdonckt, J. (2002). Plasticity
of user interfaces: A revised reference framework. Proceedings of the First
International Workshop on Task Models and Diagrams for User Interface
Design.

[CBSR, 2014] CBSR (2014). Cubesensors. URL: http://cubesensors.com.

[Cingolani and Alcala-Fdez, 2012] Cingolani, P. and Alcala-Fdez, J. (2012).
jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language im-
plementation. 2012 IEEE International Conference on Fuzzy Systems, pages
1–8.

[Cingolani and Alcala-Fdez, 2013] Cingolani, P. and Alcala-Fdez, J. (2013).
jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According
to the Standard for Fuzzy Control Programming. International Journal of
Computational Intelligence Systems, 6(sup1):61–75.

[Clerckx et al., 2004] Clerckx, T., Luyten, K., and Coninx, K. (2004). DynaMo-
AID : a Design Process and a Runtime Architecture for Dynamic Model-
Based User Interface Development. In Lecture Notes in Computer Sci-
ence 3425 Proceedings of the 9th IFIP Working Conference on Engineering
for Human-Computer Interaction Jointly with The 11th International Work-
shop on Design, Specification and Verification of Interactive Systems, EHCI-
DSVIS’2, pages 11–13.

[Clerckx et al., 2008] Clerckx, T., Vandervelpen, C., and Coninx, K. (2008).
Task-based design and runtime support for multimodal user interface distri-
bution. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
4940 LNCS, pages 89–105. Springer.

[Clerckx et al., 2006] Clerckx, T., Vandervelpen, C., Luyten, K., and Coninx,
K. (2006). A task-driven user interface architecture for ambient intelligent
environments. Proceedings of the 11th international conference on Intelligent
user interfaces - IUI ’06, page 309.

[Collignon et al., 2008] Collignon, B., Vanderdonckt, J., and Calvary, G.
(2008). Model-driven engineering of multi-target plastic user interfaces. In
Proceedings - 4th International Conference on Autonomic and Autonomous
Systems, ICAS 2008, pages 7–14. Ieee.

[Cook et al., 2009] Cook, D. j., Augusto, J. C., and Jakkula, V. R. (2009). Am-
bient intelligence: Technologies, applications, and opportunities. Pervasive
and Mobile Computing, 5(4):277–298.



206 References

[Coutaz, 2010] Coutaz, J. (2010). User Interface Plasticity: Model Driven En-
gineering to the Limit! In Proceedings of the 2Nd ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, pages 1–8.

[Coutaz et al., 1995] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.,
and Young, R. M. (1995). Four Easy Pieces for Assessing the Usability of Mul-
timodal Interaction: The CARE Properties. In Proc. Of IFIP Int. Conf. on
Human-Computer Interaction Interact’95, Chapman & Hall, London, num-
ber June, pages 115–120.

[Coyette et al., 2006] Coyette, A., V, J., and Limbourg, Q. (2006).
SketchiXML: An Informal Design Tool for User Interface Early Prototyping.
In Proceedings of RISE’2006 Workshop on Rapid User Interface Prototyping
Infrastructures Applied to Control Systems.

[Coyette and Vanderdonckt, 2010] Coyette, A. and Vanderdonckt, J. (2010).
Prototyping Digital, Physical, and Mixed User Interfaces by Sketching. In 1st
Int. Workshop on User Interface eXtensible Markup Language UsiXML’2010,
volume 2010, pages 27–36.

[Cross and Sudkamp, 2002] Cross, V. V. and Sudkamp, T. a. (2002). Similarity
and Compatibility in Fuzzy Set Theory. 93.

[Deza and Deza, 2009] Deza, M.-M. and Deza, E. (2009). Enclyclopedia of Dis-
tances. Springer Berlin Heilderberg.

[Dibowski and Kabitzsch, 2011] Dibowski, H. and Kabitzsch, K. (2011).
Ontology-Based Device Descriptions and Device Repository for Building Au-
tomation Devices. EURASIP Journal on Embedded Systems, 2011:1–17.

[ECMA-International, 2013] ECMA-International (2013). The json data inter-
change format. URL: http://goo.gl/hVk2ct.

[Edlin-White et al., 2010] Edlin-White, R., D’Cruz, M., Floyde, A., Riedel, J.,
Cobb, S., Broadley, S., Marsá, V. S., Hernández, J. A., Gacimartín, C., and
Bruikman, H. (2010). MyUI: Requirements for User Interfaces Adaptation.
Technical report.

[FIPA, 2011] FIPA (2011). Fipa device ontology specification. URL:
http://www.fipa.org/specs/fipa00091/PC00091A.html.

[Fishkin et al., 1999] Fishkin, K. P., Moran, T. P., and Harrison, B. L. (1999).
Embodied user interfaces: Towards invisible user interfaces. In Proceedings of
the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engi-
neering for Human-Computer Interaction, pages 1–18, Deventer, The Nether-
lands, The Netherlands. Kluwer, B.V.



References 207

[Gajos et al., 2004] Gajos, K., Hoffmann, R., and Weld, D. (2004). Improving
user interface personalization. Supplementary Proceedings of UIST, 4.

[Gajos and Weld, 2008] Gajos, K. and Weld, D. S. (2008). Automatically Gen-
erating Personalized User Interfaces. In Proceedings of the 9th international
conference on Intelligent user interfaces, pages 1–210.

[Gajos et al., 2008a] Gajos, K. Z., Weld, D. S., and Wobbrock, J. O. (2008a).
Decision-theoretic user interface generation. Proc. of the 22 nd AAAI Conf.
on Artificial Intelligence.

[Gajos et al., 2010] Gajos, K. Z., Weld, D. S., and Wobbrock, J. O. (2010).
Automatically generating personalized user interfaces with Supple. Artificial
Intelligence, 174(12-13):910–950.

[Gajos et al., 2008b] Gajos, K. Z., Wobbrock, J. O., and Weld, D. S. (2008b).
Improving the performance of motor-impaired users with automatically-
generated, ability-based interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1257–1266, New York, New
York, USA. ACM Press.

[Girolami et al., 2008] Girolami, M., Lenzi, S., Furfari, F., and Chessa, S.
(2008). SAIL: A Sensor Abstraction and Integration Layer for Context Aware-
ness. 2008 34th Euromicro Conference Software Engineering and Advanced
Applications, pages 374–381.

[Greenberg et al., 2001] Greenberg, S., Greenberg, S., Fitchett, C., and Fitch-
ett, C. (2001). Phidgets: easy development of physical interfaces through
physical widgets. In Proceedings of the 14th annual ACM symposium on
User interface software and technology, volume 3, pages 209 – 218.

[Harrison et al., 1998] Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C.,
and Want, R. (1998). Squeeze Me, Hold Me, Tilt Me! An Exploration
of Manipulative User Interfaces. Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’98, (April):17–24.

[Hayes et al., 1985] Hayes, P. J., Szekely, P. A., and Lerner, R. A. (1985). De-
sign alternatives for user interface management sytems based on experience
with COUSIN.

[Holleis, 2007] Holleis, P. (2007). Programming Interactive Physical Prototypes.
In Proc. 1st International Workshop on Design and Integration Principles for
Smart Objects.

[IEC, 1997] IEC (1997). IEC 61131 - Part 7 - Fuzzy Control Programming.
Technical report.



208 References

[Ishii and Ullmer, 1997] Ishii, H. and Ullmer, B. (1997). Tangible bits: to-
wards seamless interfaces between people, bits and atoms. Proceedings of the
SIGCHI conference on Human factors in computing systems, (March):241.

[Janse et al., 2005] Janse, M., Ramparany, F., Kladis, B., Rozendaal, L.,
Broens, T., and Eertink, H. (2005). Specification of the Amigo Abstract
System Architecture. Technical report.

[Janssen et al., 1993] Janssen, C., Weisbecker, A., and Ziegler, J. (1993). Gen-
erating User Interfaces from Data Models and Dialogue Net Specifications.
In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, pages 418–423.

[Johanson et al., 1999] Johanson, B., Fox, A., and Winograd, T. (1999). The
Interactive Workspaces Project : Experiences with Pervasive Computing
Magazine. pages 1–17.

[JSON.org, 2015] JSON.org (2015). Json (javascript object notation). URL:
http://www.json.org.

[KNX-Association, 2010] KNX-Association (2010). Konnex association official
web. URL: http://www.knx.org.

[Kranz et al., 2010] Kranz, M., Holleis, P., and Schmidt, A. (2010). Embedded
Interaction: Interacting with the Internet of Things. IEEE Internet Comput-
ing.

[Lazaro-Ramos, 2010] Lazaro-Ramos, J. P. (2010). Reference Architecture and
information model for service infrastructure final version. Technical report,
ITACA.

[Leap-Motion-Inc., 2015] Leap-Motion-Inc. (2015). Leap motion. URL:
https://www.leapmotion.com/product.

[Lonmark-International, 2010] Lonmark-International (2010). Lonmark inter-
national official web. URL: http://www.lonmark.org.

[Luo et al., 1993] Luo, P., Szekely, P., and Neches, R. (1993). {M}anagement
of interface design in {H}umanoid. In {INTERCHI}’93, pages 107–114.

[Luyten, 2003] Luyten, K. (2003). Runtime transformations for modal indepen-
dent user interface migration. Interacting with Computers, 15(3):329–347.

[Luyten and Coninx, 2005] Luyten, K. and Coninx, K. (2005). Distributed user
interface elements to support smart interaction spaces. Multimedia, Seventh
IEEE International.



References 209

[Luyten et al., 2006] Luyten, K., Van den Bergh, J., Vandervelpen, C., and
Coninx, K. (2006). Designing distributed user interfaces for ambient intelli-
gent environments using models and simulations.

[Miñón and Abascal, 2012] Miñón, R. and Abascal, J. (2012). Supportive adap-
tive user interfaces inside and outside the home. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 7138 LNCS, pages 320–334.

[Michotte and Vanderdonckt, 2008] Michotte, B. and Vanderdonckt, J. (2008).
GrafiXML, a Multi-target User Interface Builder Based on UsiXML.
Fourth International Conference on Autonomic and Autonomous Systems
(ICAS’08), pages 15–22.

[Microsoft, 2015] Microsoft (2015). Kinect for windows. URL:
http://goo.gl/yzRaj8.

[Miori et al., 2006] Miori, V., Tarrini, L., Manca, M., and Tolomei, G. (2006).
An open standard solution for domotic interoperability. IEEE Transactions
on Consumer Electronics, 52(1):97–103.

[Monson-Haefel and Chappell, 2000] Monson-Haefel, R. and Chappell, D.
(2000). Java Message Service. O’Reilly & Associates, Inc., Sebastopol, CA,
USA.

[Mori et al., 2004] Mori, G., Paterno, F., and Santoro, C. (2004). Design and
development of multidevice user interfaces through multiple logical descrip-
tions. IEEE Transactions on Software Engineering, 30(8):507–520.

[MyTech-IA and GII, 2014] MyTech-IA and GII (2014). Unida framework.
URL: http://www.gii.udc.es/unida.

[Nichols, 2006] Nichols, J. (2006). Automatically Generating High-Quality User
Interfaces for Appliances. (December):1–358.

[Nichols et al., 2006] Nichols, J., Myers, B. A., Rothrock, B., and Nichols, J.
(2006). UNIFORM : Automatically Generating Consistent Remote Control
User Interfaces.

[Nigay and Coutaz, 1994] Nigay, L. and Coutaz, J. (1994). Multifeature Sys-
tems : The CARE Properties and Their Impact on Software Design The
Design Space : Physical Devices and Interaction Languages. (Nigay).

[Obrenović and Starcević, 2004] Obrenović, Z. and Starcević, D. (2004). Mod-
eling multimodal human-computer interaction. Computer, 37(9):65–72.



210 References

[Obrenović et al., 2007] Obrenović, Z., Troncy, R., and Hardman, L. (2007).
Vocabularies for Description of Accessibility Issues in Multimodal User Inter-
faces. In International Classification, number 2002.

[of Edinburgh, 2015] of Edinburgh, U. (2015). The festival speech synthesis
system. URL: http://www.cstr.ed.ac.uk/projects/festival/.

[Olsen et al., 2000] Olsen, D. R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. (2000). Cross-modal interaction using XWeb. In Proceed-
ings of the 13th annual ACM symposium on User interface software and
technology - UIST ’00, volume 2, pages 191–200.

[Paternò et al., 2000] Paternò, F., Mancini, C., and Paterno, F. (2000). Model-
based design of interactive applications. intelligence, 11(4):26–38.

[Paternò et al., 2009] Paternò, F., Santoro, C., and Spano, L. D. (2009).
MARIA: A universal, declarative, multiple abstraction-level language for
service-oriente applications in ubiquitous environments. ACM Transactions
on Computer-Human Interaction, 16(4):1–30.

[Pavan Dadlani, 2011] Pavan Dadlani, Joser Pergrín Emparanza, P. M. (2011).
Distributed User Interfaces in Ambient Intelligence Environments, volume 1,
chapter Exploring Distributed User Interfaces in Ambient Intelligent Envi-
ronments, pages 161–168. Springer London.

[Peissner et al., 2011] Peissner, M., Häbe, D., and Schuller, A. (2011). MyUI:
Mainstreaming Accesibility through Synergistic User Modelling and Adapt-
ability.

[Philips-Electronics-N.V., 2015] Philips-Electronics-N.V. (2015). Philips hue
developer program. URL: http://www.developers.meethue.com/.

[Physical-Graph-Corporation, 2014] Physical-Graph-Corporation (2014).
Smartthings. URL: http://smartthings.com/explore/.

[Ponnekanti et al., 2001] Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and
Winograd, T. (2001). ICrafter: A service framework for ubiquitous computing
environments. Ubiquitous Computing.

[Ranganathan et al., 2004] Ranganathan, a., Chetan, S., and Campbell, R.
(2004). Mobile polymorphic applications in ubiquitous computing environ-
ments. The First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2004. MOBIQUITOUS 2004., pages 402–
411.



References 211

[Ranganathan et al., 2005] Ranganathan, A., Shankar, C., and Campbell, R.
(2005). Application polymorphism for autonomic ubiquitous computing. Mul-
tiagent and Grid Systems, 1(2):109–129.

[Roscher et al., 2009] Roscher, D., Blumendorf, M., and Albayrak, S. (2009). A
Multimodal User Interface Model For Runtime Distribution. In CHI, pages
1–4.

[Rui et al., 2009] Rui, C., Yi-bin, H., Zhang-qin, H., and Jian, H. (2009). Mod-
eling the Ambient Intelligence Application System: Concept, Software, Data,
and Network. IEEE transactions on systems, man, and cybernetics. Part C.,
39(3):299–314.

[Rui et al., 2007] Rui, C., Yi-bin, H., Zhang-qin, H., Yong, Z., and Hui, L.
(2007). Framework for Local Ambient Intelligence Space: The AmI-Space
Project. Computer Software and Applications Conference Annual Interna-
tional, 2(Compsac):95–100.

[Satoh, 2005] Satoh, I. (2005). Mobile Applications in Ubiquitous Computing
Environments. EICE transactions on communications, 88(5):1026–1033.

[Sendín, 2007] Sendín, M. (2007). Infraestructura Software de Soporte al De-
sarrollo de Interfaces de Usuario Plásticas bajo una Visión Dicotómica. PhD
thesis, Universitat de Lleida.

[Sendín and Lorés, 2004] Sendín, M. and Lorés, J. (2004). Plasticity in mobile
devices: a dichomotic and semantic view. volume 5.

[Sendín et al., 2003] Sendín, M., Lorés, J., Montero, F., and López-Jaquero, V.
(2003). Towards a framework to develop plastic user interfaces. Human-
Computer Interaction with Mobile Devices and Services, 3:428–433.

[Sitdhisanguan et al., 2012] Sitdhisanguan, K., Chotikakamthorn, N., Decha-
boon, A., and Out, P. (2012). Using tangible user interfaces in computer-
based training systems for low-functioning autistic children. Personal and
Ubiquitous Computing, 16:143–155.

[Sousa and Garlan, 2002] Sousa, J. P. and Garlan, D. (2002). Aura: An archi-
tectural framework for user mobility in ubiquitous computing environments.
Proceedings of the 3rd Working IEEE/IFIP Conference on Software Archi-
tecture, 25(August):29–43.

[Stanciulescu et al., 2005] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J.,
Michotte, B., and Montero, F. (2005). A transformational approach for mul-
timodal web user interfaces based on UsiXML. In Proceedings of the 7th
international conference on Multimodal interfaces, pages 259–266. ACM.



212 References

[STOMP, 2012] STOMP (2012). Stomp (simple text-orientated messaging
protocol) specification. URL: https://stomp.github.io/stomp-specification-
1.2.html.

[Sukaviriya et al., 1993] Sukaviriya, P., Sukaviriya, P., Foley, J. D., Foley, J. D.,
Griffith, T., and Griffith, T. (1993). A second generation user interface design
environment: the model and the runtime architecture. Conference on Human
Factors in Computing Systems.

[Supermechanical, 2014] Supermechanical (2014). Twine. URL:
http://supermechanical.com.

[Taylor et al., 2006] Taylor, P., Black, A. W., and Caley, R. (2006). The Archi-
tecture of the Festival Speech Synthesis System.

[Thevenin and Coutaz, 1999] Thevenin, D. and Coutaz, J. (1999). Plasticity
of user interfaces: Framework and research agenda. Proceedings of INTER-
ACT’99.

[Thevenin et al., 2003] Thevenin, D., Coutaz, J., and Calvary, G. (2003). A
Reference Framework for the Development of Plastic User Interfaces. In
Multi-Device and Multi-Context User Interfaces: Engineering and Applica-
tions Frameworks, pages 27–51.

[Ullmer and Ishii, 2000] Ullmer, B. and Ishii, H. (2000). Emerging frameworks
for tangible user interfaces. IBM systems journal, 39(3):1–15.

[UPnP-Forum, 2011] UPnP-Forum (2011). Upnp device architecture 1.1. URL:
http://goo.gl/qXK3zW.

[Vanderdonckt et al., 2004] Vanderdonckt, J., Limbourg, Q., Michotte, B.,
Bouillon, L., Trevisan, D., and Florins, M. (2004). USIXML : a User In-
terface Description Language for Specifying Multimodal User Interfaces The
Reference Framework used for Multi-Directional UI Development. In Pro-
ceedings of W3C Workshop on Multimodal Interaction WMI, pages 19–20.

[Vanderdonckt et al., 2008] Vanderdonckt, J., Mendonca, H., and Massó, J.
(2008). Distributed user interfaces in ambient environment. Constructing
Ambient Intelligence, pages 121–130.

[Vandervelpen and Coninx, 2004] Vandervelpen, C. and Coninx, K. (2004). To-
wards model-based design support for distributed user interfaces. Proceedings
of the third Nordic conference on Human-computer interaction - NordiCHI
’04, pages 61–70.



References 213

[Varela, 2013] Varela, G. (2013). Autonomous adaptation of user interfaces to
support mobility in ambient intelligence systems. In EICS 2013 - Proceed-
ings of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pages 179–182.

[Varela et al., 2011] Varela, G., Paz-Lopez, A., Becerra, J. A., Vazquez-
Rodriguez, S., and Duro, R. J. (2011). UniDA: Uniform device access frame-
work for human interaction environments. Sensors, 11(10):9361–9392.

[Varela et al., 2013a] Varela, G., Paz-Lopez, A., Becerra Permuy, J. A., and
Duro, R. J. (2013a). Decoupled Distributed User Interface Development
Framework for Ambient Intelligence Systems. In Proceedings of the 3rd
Workhsop on Distributed User Interfaces: Models, Methods and Tools, In
conjunction with ACM EICS 2013, London.

[Varela et al., 2013b] Varela, G., Paz-Lopez, A., Becerra Permuy, J. A., and
Duro, R. J. (2013b). The Generic Interaction Protocol: Increasing porta-
bility of distributed physical user interfaces. Romanian Journal of Human -
Computer Interaction, 6(3):249–268.

[Varela et al., 2014] Varela, G., Paz-Lopez, A., Becerra Permuy, J. A., and
Duro, R. J. (2014). Prototyping Distributed Physical User Interfaces in Am-
bient Intelligence Setups. Distributed, Ambient, and Pervasive Interactions,
pages 76–85.

[Varela et al., 2007] Varela, G., Paz-López, A., Vázquez-Rodríguez, S., and
Duro, R. J. (2007). HI3 project: Design and implementation of the lower
level layers. In Proceedings of the 2007 IEEE International Conference on
Virtual Environments, Human-Computer Interfaces, and Measurement Sys-
tems, VECIMS 2007, number June, pages 36–41.

[Veloso and Sendín, 2005] Veloso, M. and Sendín, M. (2005). Infrastructure for
Plastic User Interfaces under a Dichotomic View. In Proceeding of the Inter-
national Congress Communicating Naturally Through Computers (Interact
2005).

[Villar et al., 2006] Villar, N., Gilleade, K. M., Ramduny-Ellis, D., and
Gellersen, H. (2006). VoodooIO Gaming Kit: A real-time adaptable gam-
ing controller. Computers in Entertainment (CIE), 5(3):7.

[W3C, 2003] W3C (2003). W3c multimodal interaction framework. URL:
http://www.w3.org/TR/mmi-framework/.

[W3C, 2007] W3C (2007). Cc/pp information page. URL:
http://www.w3.org/Mobile/CCPP/.



214 References

[W3C, 2011a] W3C (2011a). Owl 2 web ontology language document overview.
URL: http://www.w3.org/TR/owl2-overview/.

[W3C, 2011b] W3C (2011b). Resource description framework (rdf): Concepts
and abstract syntax. URL: http://www.w3.org/TR/rdf-concepts/.

[Weiser, 1991] Weiser, M. (1991). The Computer for the 21st Century. Scientific
American, 265(3):94–104.

[Wiecha et al., 1990] Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene,
S. (1990). ITS: a tool for rapidly developing interactive applications. ACM
Transactions on Information Systems, 8(3):204–236.

[Wolf et al., 2011] Wolf, P., Strnad, O., Haller, H., Schmidt, A., Peibner, M.,
Hernandez, J. A., and van de Korput, R. (2011). MyUI: Context Ontology,
User Modelling Concept and Context Management Architecture. Technical
report.

[X10-Europe, 2010] X10-Europe (2010). X10 europe official web site. URL:
http://www.x10europe.com.

[Xie et al., 2008] Xie, L., Antle, A. N., and Motamedi, N. (2008). Are tangibles
more fun? Proceedings of the 2nd international conference on Tangible and
embedded interaction - TEI ’08, pages 191–198.

[Zuckerman and Gal-Oz, 2013] Zuckerman, O. and Gal-Oz, A. (2013). To TUI
or not to TUI: Evaluating performance and preference in tangible vs. graphi-
cal user interfaces. International Journal of Human Computer Studies, 71(7-
8):803–820.



List of Figures

3.1 Various examples of Phidgets physical devices. . . . . . . . . . . 19

3.2 Examples of VoodooIO devices. . . . . . . . . . . . . . . . . . . . 20

3.3 Examples of iStuff devices. . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Examples of Yes/No interaction with the OMNI system. . . . . . 42

4.2 Picture of the OMNI remote controller. . . . . . . . . . . . . . . 43

4.3 Sketched UI of the Environmental Music Player using WIMP
user interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Example of various interaction possibilities for the volume selec-
tion in the Environmental Music Player application. . . . . . . . 46

4.5 Example view of a possible EvacUI running different UIs, for a
variety of users, in different locations of a ship, during an evacu-
ation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 The IMA layer facilitates the implementation of different UIs by
decoupling the UI control logic from the interaction resources.
On the left, the application without using the IMA layer. On the
right, the application when using the IMA layer. . . . . . . . . . 51

4.7 Detailed conceptual block diagram of the TIAF with support
for the IMA layer. The User Interface is defined by developers
using the concepts provided by the Abstract Interaction Model.
Instances of those concepts are used in the UI Control Logic to
implement the particular behavior of the UI and its interaction
with the system’s business logic. . . . . . . . . . . . . . . . . . . 52



216 List of Figures

4.8 The ILA allows developers to use remote IRs without any knowl-
edge about the required specific networking protocols. On the
left, an application without the ILA has to access the IRs di-
rectly using their specific protocols. On the right, an application
with the ILA is isolated from the knowledge of specific networking
protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Detailed conceptual block diagram of the TIAF with support for
the IMA+ILA layers. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Without the ICA, developers and/or installers have the respon-
sibility to select the adequate IRs for each scenario. With the
ICA, it is the system itself, based on context models, who, au-
tonomously, selects the most adequate IRs for each scenario. . . . 57

4.11 Detailed conceptual block diagram of the complete TIAF frame-
work with support for the IMA+ILA+ICA layers. . . . . . . . . 59

4.12 Class conceptual model of the Abstract Interaction Model di-
rectly inspired by the UsiXML Abstract User Interface Model. . 63

5.1 Dandelion deployment block diagram. UI Control logic is decou-
pled from the interaction resources by the Dandelion UI man-
agement system. Furthermore, Dandelion relies on UniDA to
support a wide range of physical devices (sensors, actuators, ap-
pliances, etc.) from different manufacturers. . . . . . . . . . . . . 71

5.2 Dandelion detailed architecture block diagram. . . . . . . . . . . 72

5.3 Dandelion portable UIs development process with IMA+ILA lay-
ers. In chapter 6, we will see how Dandelion implements the ICA
to manage, at run-time, the mapping between abstract and final
components, liberating developers/installers from that responsi-
bility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Sketched GUI version of the OMNI notification subsystem UI. . . 78

5.5 Sketched UI of the Environmental Music Player using WIMP
user interfaces. Already shown in Figure 4.3. . . . . . . . . . . . 79

5.6 External interface of the Dandelion User Interface Controller as
seen by developers and UI control logic code. . . . . . . . . . . . 83

5.7 Many different UIs can be deployed for the same Abstract UI
definition and the same UI Control Logic. The installer of the
system only has to specify different mappings, between abstract
and final UI elements, for each scenario. . . . . . . . . . . . . . . 86



List of Figures 217

5.8 Detailed overview of the ILA implementation in Dandelion. The
UI Controller operates as a router of abstract interaction opera-
tions from the UI Control Logic to the Final Interaction Objects,
using the GIP as transport protocol. . . . . . . . . . . . . . . . . 87

5.9 Each FIO creates its own topic in the broker and then uses it to
publish its generated GIP events. DUICs of all the applications
using that FIO are subscribed to that topic. . . . . . . . . . . . . 89

5.10 FIO’s registration process in the FIO repository. FIO descrip-
tions are stored in a repository that can be used by the installers,
or the ICA, in order to set up the abstract to final mappings. . . 91

5.11 Without UniDA, an HIE application using heterogenous devices
is exposed to the particular characteristics and APIs of each de-
vice technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.12 By using UniDA, HIE applications are isolated from device APIs
and their particular characteristics. All the devices are accessed
through the same channel and API, and all the devices of the
same type (independently of their technology) are interfaced in
the same way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.13 UniDA allows us building FIOs that support many devices of the
same kind but with different technologies and APIs. . . . . . . . 95

5.14 Class diagram showing the different concepts and their relations
that populate the UniDA Device Network Model. . . . . . . . . . 98

5.15 This diagram shows an architecture and deployment diagram of
a system (the FIOs of Dandelion) using the UniDA Library and
Gateways. The FIO logic interacts exclusively with the UniDA
library through the Device Model and the Device Operations and
Management. UniDA relies on a set of Gateways to translate the
Device Model concepts to the particular APIs and protocols of
each specific device technology. . . . . . . . . . . . . . . . . . . . 103

5.16 OMNI system IRs/FIOs for the different scenarios. . . . . . . . . 111

5.17 Two examples of FIOs for the OMNI notification user interface.
First example: a smartphone with two output interaction facets,
one using the screen, and one using voice synthesizing, and two
action facets, for the yes/no actions. Second example with three
FIOs:a TV display, with one output interaction facet using the
screen; a voice synthesizing FIO using a Festival server; and a
notification FIO that uses colored lights to notify the presence of
a message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



218 List of Figures

5.18 Two different possibilities for the final implementation of the mu-
sic style selection interaction primitive. First, a touch UI using
a smartphone, useful for mobile and outdoor environments. Sec-
ond, a leap motion controller allows the selection of the style
using hand and finger gestures. . . . . . . . . . . . . . . . . . . . 120

6.1 The ICA allows Dandelion to autonomously select, at run-time,
which set of FIOs to use for each usage scenario. This way, Dan-
delion is able to react to context changes at run-time, modifying
the Final UI to keep it operating within the natural interaction
constraints required by Ambient Intelligence UIs. . . . . . . . . . 126

6.2 Overview of the Dandelion UI adaptation to context process. The
UIB creates a query to ask the FIO repository for a list of FIOs
that comply with the requirements of the usage scenario. This list
is used to configure, in the UI controller, the mappings between
FIOs and abstract UI elements. . . . . . . . . . . . . . . . . . . . 128

6.3 UML class diagram showing the different concepts, and their re-
lations, in the Dandelion User Profile Model. . . . . . . . . . . . 133

6.4 UML class diagram displaying the different concepts, and their
relations, that make up the Dandelion Environment Profile Model.136

6.5 UML class diagram showing the concepts, and their relations, of
the Dandelion Scene Profile Model. . . . . . . . . . . . . . . . . . 138

6.6 The FIO selection process is performed in four different phases.
First, the models are used to create a specification of the char-
acteristics required of a FIO to be considered adequate for the
usage scenario. Second, the specification is used to select a list
of FIOs from all the ones available in a particular physical envi-
ronment. Third, one FIO is selected for each interaction facet.
Finally, the FIO mapping is updated in the UIC. . . . . . . . . . 140

6.7 UML class diagram showing the concepts, and their relations, of
the FIO description model. . . . . . . . . . . . . . . . . . . . . . 143

6.8 Conceptual class diagram displaying the components, and their
relations, of the FIO Specification and FIO Query models. . . . . 145

6.9 The Ideal FIO specification is generated for each usage scenario,
while the interaction specification is generated for each one of the
interaction facets included in the abstract UI. . . . . . . . . . . . 148



List of Figures 219

6.10 The FIO adequateness metric is calculated by an aggregation of
four independent adequateness measures (Interaction, Modality,
Physical and Usage similarities) between the query specifications
and a FIO description. . . . . . . . . . . . . . . . . . . . . . . . . 149

6.11 Four of the FIOs used for the EMP example. First, a KNX
home automation remote controller, connected to Dandelion us-
ing UniDA. Second, a Leap Motion device for finger and hand
gesture recognition. Third, a custom Android GUI application.
Fourth, a TV display for output with a Kinect camera for input
(using gesture recognition). . . . . . . . . . . . . . . . . . . . . . 159

6.12 The OMNI UI adapted to the Deaf User scenario. The Kinect and
the wall buttons can be used to control system (change channels,
answer questions). The display is used to output notification
messages, and the colored lights are used to request the focus of
the user when a notification is displayed. . . . . . . . . . . . . . . 171

6.13 An example of FIO for the EvacUI user interface example. It
uses a smartphone display to show direction information using
symbol and language production modalities. Furthermore, it also
provides another interaction facet using speech production. In
the second image, there are two different FIOs. . . . . . . . . . . 177





List of Algorithms

5.1 XML code describing the OMNI notification UI with UsiXML. . 79

5.2 XML code describing the player controls part of the Abstract UI
model for the EMP. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 XML code describing the audio metadata part of the Abstract
UI model for the EMP. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 UI Control Logic code required to set the business logic actions
that must be called when the user triggers the actions to start
playing music or to stop it in the EMP example. . . . . . . . . . 84

5.5 UI Control Logic code required to output the song title string to
the user. It is executed each time the song changes. . . . . . . . . 85

5.6 Container skeleton of the OMNI abstract UI. . . . . . . . . . . . 107

5.7 Control part of the OMNI abstract UI. It contains the abstract in-
teraction primitives required to power on/off the system, change
the channel, and change the audio volume. . . . . . . . . . . . . . 108

5.8 Small code snippet showing an example implementation of a user
action callback (IDandelionActionCallback interface). In this
case, this code corresponds to the OMNI action to change the
channel to the next one available. . . . . . . . . . . . . . . . . . . 109

5.9 Example of how the DUIC can be used to output information to
the users. As can be seen, it is very easy to use, and it operates
completely at the abstract level, without exposing the code to
any particularities of the modalities and technologies of the UI. . 110

5.10 Example source of the OMNI display FIO for notifying messages.
It uses one implementation of the IOutputAction interface in or-
der to support one output interaction facet. . . . . . . . . . . . . 112

5.11 Example of mapping file for the OMNI system where the noti-
fication dialog message is associated to the OMNI display FIO,
and the ’yes’ and ’next channel’ actions are associated to hand
gestures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



222 List of Algorithms

5.12 How to use interaction hints to provide some level of customiza-
tion to the final UI. In this case, we are suggesting the color of
the notification message. . . . . . . . . . . . . . . . . . . . . . . . 115

5.13 Code snippet of the EMP abstract UI dedicated to the selection
of music style. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.14 Code snippet of the EMP UI control logic to show the dynamic
list of music styles as a selection . . . . . . . . . . . . . . . . . . 118

5.15 EMP implementation of the selection callback to change the mu-
sic style. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 Example of abstract UI code defining an output interaction prim-
itive for images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.17 Example of how to use Dandelion to output an image. The image
data must be first converted to PNG format. Dandelion automat-
ically encodes the raw data of the image in base64 to send it to
the FIOs using the GIP. . . . . . . . . . . . . . . . . . . . . . . . 121

5.18 Example of output action of a FIO that uses an Android smart-
phone screen to show the album art of the EMP to the user. . . . 122

6.1 Fuzzy rules for the SYMBOL modality selection FIS. . . . . . . . 147
6.2 UsiXML definition of the OMNI notification abstract UI. . . . . 166
6.3 Code snippet showing an example of how to use the Interaction

Hints mechanism to indicate Dandelion that one particular inter-
action must be implemented in a redundant way. . . . . . . . . . 179



List of Tables

3.1 Comparison of solutions for the development of Plastic Distributed
Physical User Interfaces. . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Values of the different environment profiles associated to each
usage scenario of the EMP example. . . . . . . . . . . . . . . . . 157

6.2 Values of the different scene profiles associated to each usage
scenario of the EMP example. . . . . . . . . . . . . . . . . . . . . 157

6.3 Detailed description of the EMP FIOs using the FIO Description
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Ideal FIO specifications generated for the four usage scenarios of
the EMP example. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 This table displays the FIO adequateness values calculated for
each combination of FIO and usage scenario. The green rows
show the overall FIO adequateness values, while the other rows
show the values of different sub-metrics that make up the overall
adequateness using the equation 6.10. . . . . . . . . . . . . . . . 162

6.6 Detailed description of the FIOs available for the implementation
of the music selection abstract interaction facet. . . . . . . . . . . 164

6.7 FIO adequateness values calculated for each FIO and usage sce-
nario for the EMP music selection interaction facet. . . . . . . . 165

6.8 User profile definitions for the six different users included in the
OMNI example for UI adaptation to user characteristics. . . . . . 167

6.9 Ideal FIO specifications generated for each usage scenario con-
sidered in the OMNI example. . . . . . . . . . . . . . . . . . . . . 168

6.10 Detailed description of the FIOs available for the implementation
of the notification message output abstract interaction facet. . . 169



224 List of Tables

6.11 Results of the FIO query looking for FIOs with output support
and high level of adequateness regarding the Ideal FIO specifica-
tions of table 6.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.12 FIO list provided by the FIO Repository for the query looking
for FIOs supporting one ACTION interaction facet and adequate
to the Ideal FIOs of the different usage scenarios of the OMNI
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.13 Environment and scene profiles for the EvacUI ferry ship Human
Interaction Environment example. . . . . . . . . . . . . . . . . . 174

6.14 Detailed description of the user profiles defined for the EvacUI
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.15 Ideal FIO specifications generated by Dandelion for the different
EvacUI usage scenarios associated to the Cabin, Corridor, Deck,
and Vehicle Room physical environments. . . . . . . . . . . . . . 176

6.16 Detailed descriptions of the FIOs used for the EvacUI demon-
stration example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.17 FIO adequateness results for the different EvacUI usage scenarios
related to Cabin, Corridor, Deck, and Vehicle Room environments.180

7.1 Comparison of Dandelion against the main available solutions for
the development of Plastic Distributed Physical User Interfaces
reviewed in chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . 188


	Abstract
	Acknowledgements
	Publications
	Introduction
	Objectives 
	Related Work
	Introduction
	Physical User Interfaces
	Home Automation and Internet of the Things 
	Ambient Intelligence and Ubiquitous Computing Frameworks
	Physical User Interface Frameworks 
	Summary

	Plasticity in Physical User Interfaces
	Model-Driven Engineering to Achieve UI Plasticity
	UI Plasticity in Ambient Intelligence and Ubiquitous Computing Frameworks
	UI Adaptation to the User Characteristics
	Summary

	Discussion

	Analysis and Design of a Framework for Ambient Intelligence UI Development 
	Introduction
	Analysis of the Characteristics of UIs in Ambient Intelligence Systems
	OMNI Virtual Assistant
	Environmental Music Player
	Intelligent Ship Passenger Evacuation System

	Supporting Ambient Intelligence UI Development
	Requirements of AmI UIs
	The Threefold Interaction Abstraction Framework
	Interaction Modality Abstraction
	Interaction Location Abstraction
	Interaction Context Abstraction
	The Abstract Interaction Model
	The Generic Interaction Protocol
	The Context Models



	Supporting Portable and Distributed Physical User Interfaces
	Introduction
	The Dandelion Framework
	Portable Physical User Interfaces 
	Abstract UI Design and Specification
	UI Control Logic Implementation
	From the Abstract to the Final User Interface

	Distributed Physical User Interfaces
	The Generic Interaction Protocol
	Final Interaction Objects

	Physical Device Access and Control
	UniDA Conceptual Framework 
	Device Network Model
	Uniform Device Access Paradigm
	Distributed Operation Protocol 

	UniDA Framework Implementation
	UniDA Library 
	UniDA Gateways


	Demonstration Examples and Summary
	OMNI Virtual Assistant
	Environmental Music Player
	Summary


	Adding Real-Time, Autonomous and Dynamic Adaptation to Physical User Interfaces
	Introduction
	Physical UI Adaptation to Context
	Context Models
	User Profile Model
	Environment Profile Model
	Scene Profile Model

	Autonomous Selection of Interaction Resources 
	Generating Specifications of the Ideal FIO 
	FIO Description Model
	Ideal FIO Specification Model
	Ideal FIO Generation

	Selecting Adequate FIOs
	FIO Adequateness Calculation using the Fuzzy Geometric Model

	Building the Final User Interface

	Demonstration Examples and Summary 
	Environment Adaptation: Environmental Music Player
	User Adaptation: OMNI Virtual Assistant
	Environment and User Adaptation: EvacUI
	Summary


	Conclusions and Future Work 
	Resumen en castellano
	References

