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Abstract 

Mesenchymal stem cells (MSCs) are an accepted candidate for cell-based therapy of multiple diseases. The interest in 

MSCs and their possible application in cell therapy have resulted in a better understanding of the basic biology of 

these cells. Recently, like aggregation and transforming growth factor beta (TGFβ) delivery, hypoxia has been 

indicated as crucial for complete chondrogenesis. The aim of this study was to test different culture conditions for 

directing stem cell differentiation into the chondrogenic lineage in vitro by testing different TGFβ superfamily 

members into the culture media under normoxic conditions. All chondrogenic culture conditions used allowed the 

differentiation of bone marrow-MSCs (BM-MSCs) into chondrogenic lineage. Chondrogenic induction capacity 

depended on the growth factor added to the culture media. In particular, the chondrogenic culture condition that better 

induced chondrogenesis was the medium that included the combination of three growth factors: bone morphogenetic 

protein-2 (BMP-2), BMP-7 and TGFβ-3. In this culture media, differentiated cells showed the highest levels 

expression of two markers of chondrogenesis, SOX9 and COL2A1, compared to the control points (p < 0.05, two-

tailed t test). In our experimental conditions, the combination of BMP-2, BMP-7 and TGFβ-3 was the most effective 

in promoting chondrogenesis of BM-MSCs. These results underline the importance of determining in each 

experimental design the best protocol for in vitro directing stem cell differentiation into the chondrogenic lineage. 
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Abbreviations 

AA: Ascorbic acid 

AGG: Aggrecan 

ALP: Alkaline phosphatase 

APM1: Adiponectin 

BM-MSCs: Bone marrow-mesenchymal stem cells 

BMP-2: Bone morphogenetic protein-2 

BMP-7: Bone morphogenetic protein-7c 

DNA: Complementary deoxyribonucleic acid 

COL10A1: Collagen type XA1 

COL1A1: Collagen type IA1 

COL2A1: Collagen type IIA1 

DMEM: Dulbecco’s modified Eagle’s medium 

FABP4: Fatty acid-binding protein 4 

FBS: Fetal bovine serum 

HE: Hematoxylin–eosinI 

GF-1: Insulin-like growth factor-1 

KO: Knockout serum 

LPL: Lipoprotein lipase 

MMP13: Matrix metalloproteinase 13 

MSCs: Mesenchymal stem cells 

MT: Masson’s trichrome 

MTG: Monotioglycerol 

OP: Osteoprotegerin 

OP-1: Osteogenic protein 1 

P/S: Penicillin and streptomycin 

PCR: Polymerase chain reaction 

PCR: Real-Time PCR 

REL: Relative expression levels 

rHuBMP-2: Recombinant human bone morphogenetic protein 2 

RNA: Ribonucleic acid 

SaO: Safranin O 
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SOX9: Sex determining region Y-box 9 

TB: Toluidine blue 

TBP: TATA box binding protein 

TGFβ: Transforming growth factor beta 

TGFβ-3: Transforming growth factor beta-3 

Introduction 

Mesenchymal stem cells (MSCs) are undifferentiated, nonhematopoietic, multipotent adult stem cells that 

have the capability to renew themselves and differentiate into different cell types (fat, bone, cartilage and 

hematopoietic supporting stroma) as described abundantly in literature (Ryden et al. 2003; Pittenger, 

2008; Hombach-Klonisch et al. 2008; Diaz-Prado et al. 2011). 

The most commonly used tissue source for the isolation of MSCs is the bone marrow as discussed by 

different authors (Conget and Minguell, 1999; Pittenger et al. 1999). Three minimal criteria, established 

by the International Society for Cellular Therapy in 2006 (Dominici et al. 2006), defines bone marrow-

MSCs (BM-MSCs): adherence to plastic, specific surface antigen expression and multipotent 

differentiation potential. BM-MSCs represent a promising cell resource for tissue engineering and cell-

based therapies. 

The use of autologous or allogenic stem cells is suggested by Jung et al. (2009) and coauthors as an 

alternative therapeutic approach for treatment of cartilage defects . Cartilage tissue engineering has the 

potential to provide cartilaginous constructs capable of restoring the normal function of articular cartilage 

as described by Buckwalter and Mankin (1998). To improve the repair of cartilage by tissue engineering, 

several cell treatments have been developed with the aim of forming a repair tissue with structural, 

biochemical, and functional characteristics equivalent to those of natural articular cartilage as described 

by Díaz Prado et al. (2011). 

The use of differentiated chondrogenic progenitors has to be chosen on the use of undifferentiated 

stem cells. Chondrogenesis is the process by which MSCs differentiate towards chondrocyte, as resumed 

by Goldring et al. (2006). Different protocols allow the induction of BM-MSCs chondrogenic 

differentiation. To mimic mesenchymal condensation and cell–cell interactions, MSCs are cultured in 

high density aggregates as described in different papers (Cicione et al. 2010; DeLise et al. 2000; 

Johnstone et al. 1998). Derfoul reported the necessity of culture MSCs in medium containing 

dexamethasone to induce chondrogenic differentiation (Derfoul et al. 2006) and Tuli the necessity to add 

growth factors belonging to the TGFβ superfamily that constitute the earliest signals in chondrogenic 

condensation (Tuli et al. 2003). 

Several growth factors are known to influence the anabolic and catabolic processes of chondrocytes. 

Therefore, a number of these growth factors have been used in cartilage tissue engineering studies in vitro 

to promote the chondrogenic phenotype, to stimulate extracellular matrix production and to promote 

chondrogenesis of MSCs, as reviewed by Kock recently (Kock et al. 2012). Among others, TGFβ-3, 

BMP-2 and osteogenic protein 1 (OP-1 or BMP-7) stimulate the synthesis of proteoglycans and collagens 

matrix components as described by Spagnoli (2008) and are necessary for different steps during 

chondrogenesis as shown by Pizette and Niswander (2000). 

A number of studies (Blaney Davidson et al. 2007; Bobick et al. 2009; Yoon and Lyons, 2004) have 

demonstrated that TGFβ superfamily polypeptides (TGFβs and BMPs) induce the expression of 

chondrocyte specific genes, such as Collagen type 2 and SOX9, suggesting their critical role of signaling 

in chondrogenesis. 

In the last years, many studies have been focused on finding better culture conditions to differentiate 

MSCs towards mature chondrocytes. The use of chondrocyte-conditioned medium proposed by Hwang et 

al. (2008) or the co-culture of MSCs with chondrocytes described by Chen et al. (2009) have been 

described to be able to drive MSCs chondrogenic differentiation. 

In this study we examined the capacity of three different growth factors (BMP-2, BMP-7 and TGFβ-

3), alone or in combinations, to induce chondrogenic differentiation in normoxic conditions. We defined 

the optimal conditions, between the stimuli used, to obtain chondrogenic differentiation of BM-MSCs 

aggregate cultures by the use of histological, immunohistochemical analysis and real-time (qPCR) 

technique. We determined the expression levels of different genes involved in chondrogenesis 

corresponding to the mature chondrocyte phenotype (COL2A1, SOX9 and aggrecan). 
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Materials and methods 

Isolation and culture of MSCs 

The BM samples used to isolate MSCs were obtained from three patients (mean age 69 years, range 55–

82 years) undergoing total hip replacement. The donors were not selected; the samples submitted were 

processed as they arrived at the laboratory. This study was approved by the institutional review board, 

and informed consent was obtained from all subjects in the study. 

BM-derived mesenchymal stem cells (BM-MSCs) were isolated by washing the BM with 50 mL of 

Dulbecco’s modified Eagle’s medium (DMEM), 10 % fetal bovine serum (FBS) with a gauge needle (BD 

Microbalance™ 3, Oxford, Ireland) and a 20 mL syringe (Kendall Monoject Syringe, Istambul, Turkey) 

as previously described (Hermida-Gomez et al. 2011). The resulting cell suspension was filtered through 

a sterile 40 µm cell strainer and centrifuged at 300xg for 8 min. Isolated BM cells were cultured in 

monolayer in DMEM, 20 % FBS, 1 % penicillin and streptomycin (P/S) (all from Sigma-Aldrich, St. 

Louis, MO, USA) until 80 % confluent. Pre-plating for 15 min in the first two passages eliminated any 

fibroblasts remaining in the culture as suggested by Richler and Yaffe (1970). 

The cells were cultured and expanded in monolayer until the beginning of the differentiations 

experiments at 37 °C in a humidified atmosphere containing 5 % CO2. At this point, when cells reached 

80 % of confluence, they were trypsinized, washed and submitted both to phenotypical analysis and to 

differentiation experiments. 

Phenotypic characterization using flow cytometry 

At the 3rd passage, after culture expansion, the cells were trypsinized, washed and analyzed by flow 

cytometry for hematopoietic and MSCs markers as described before (Cicione et al. 2013). The antibodies 

listed in supplementary Table 1 were used for these experiments. A minimum of 25,000 cell events per 

assay were acquired on a FACsCalibur flow cytometer (BD Biosciences, Madrid, Spain). Data were 

analyzed using Cell Quest software (BD Biosciences) and the results were expressed as positive 

percentage. 

Multipotential characterization 

At 3rd passage the cells were differentiated towards three different lineages (adipocyte, osteoblast and 

chondrocyte) in humidified atmosphere with 5 % CO2. The culture conditions used to induce each 

differentiation are described in the following paragraphs. 

Adipogenic and osteogenic differentiation 

At 3rd passage BM-MSCs were detached using trypsin–EDTA (Sigma-Aldrich, St. Louis, MO, USA), 

seeded at 1.5 × 105 cells/cm2 in a chamber slide (BD Falcon, France) and cultured in growth medium until 

confluence in normoxic conditions. Adipogenesis was induced by culturing for 3 weeks in hMSC 

Commercial Adipogenic Differentiation Medium (Lonza, Biowhittaker, Belgium), following the 

manufacturer’s instructions. Osteogenesis was induced by culture for 3 weeks in normoxic conditions in 

hMSC Commercial Osteogenic Differentiation Medium (Lonza, Biowhittaker, Belgium), following the 

manufacturer’s instructions. Each differentiation point was compared with a control point that 

corresponded to cells cultured for the same period of time with DMEM and 20 % FBS. Differentiation 

was assessed trough histological and real-time PCR (qPCR) techniques. 

Chondrogenic differentiation 

Chondrogenesis was assessed using the micropellet formation (2.5 × 105 cells) technique first described 

by Johnstone et al. (1998), with some modifications. BM-derived cells from the third passage were 

detached using trypsin–EDTA and centrifuged at 300g for 10 min. The resulting pellet was treated for 

14 days to induce chondrogenic differentiation. The medium used for the first 2 days contained DMEM 

with 15 % FBS, supplemented with 5 mg/mL ascorbic acid (AA), 1/1,000 monotioglycerol (MTG), and 

1 % P/S to promote chondroprogenitor condensation. This medium was replaced by DMEM with 15 % 

knockout (KO) serum (Gibco, Madrid, Spain), 1 % P/S and supplemented with 5 mg/mL AA, 10 µM 
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dexamethasone, 6 µg/mL transferrin, 1 × 10−7 M retinoic acid, and the use of three different growth 

factors alone or in combination: TGFβ-3 1 ng/mL (Prospec-Tany Technogene Ltd., Rehovot, Israel); 

TGFβ-3 10 ng/mL; BMP-2 10 ng/mL (Prospec-Tany Technogene Ltd., Rehovot, Israel); BMP-7 

10 ng/mL (Prospec-Tany Technogene Ltd., Rehovot, Israel); TGFβ-3 1 ng/mL + BMP-2 

10 ng/mL + BMP-7 10 ng/mL. All the differentiation points were compared to cells grown in DMEM 

with 15 % KO serum. The culture medium was changed every 3–4 days. After 14 days, cell aggregates 

were directly frozen for RNA extraction or embedded in Tissue-Tech OCT compound (Sakura Finetek) 

and frozen for histological and immunohistochemical techniques. The presence of hyaline cartilage-

characteristic molecules, such as type II collagen and proteoglycans, were detected by histological, 

immunohistochemical and qPCR techniques as described below. 

Histologic analyses 

For adipogenesis evaluation, differentiation was confirmed by detection of cytoplasmic lipid droplets by 

Oil Red O staining after cell fixation in 4 % paraformaldehyde. Quantification of Oil Red O-positive cells 

was performed using analiSIS1 software (version D; Olympus, Germany). 

For osteogenesis evaluation, differentiation was analyzed by Alizarin Red staining after cell fixation 

in 4 % paraformaldehyde, to assess the presence of calcium deposits. Quantification of Alizarin Red-

positive cells was performed using analiSIS1 software (version D; Olympus, Germany). 

For chondrogenesis evaluation, 4 µm-thick frozen sections of aggregates were stained with 

hematoxylin and eosin (HE), Masson´s trichrome (MT), toluidine blue (TB) and safranin O (SaO) for 

proteoglycans and collagens. 

Immunohistochemical analyses 

For chondrogenesis evaluation, 4 µm-thick frozen sections were incubated with primary antibodies to 

detect the presence of types I (Abcam, Cambridge, UK), II (Chemicon, Australia) and X (Sigma Aldrich 

Quimica, Spain) collagens and metalloproteinase 13 (Thermo Fisher Scientific, Spain) (supplementary 

table 2). The peroxidase/DAB ChemMateTM DAKO EnVision™ detection kit (Dako, Barcelona, Spain) 

was used to determine antigen–antibody interactions. Negative staining controls were achieved by 

omitting the primary monoclonal antibody. Samples were visualized using an optical microscope. 

Quantification of the immunostaining for Col II was performed using analiSIS1 software (version D; 

Olympus, Germany). 

RNA isolation, cDNA (complementary DNA) synthesis and reverse transcription-PCR analysis (qPCR) 

Isolation of total RNA from cell cultures was accomplished using Trizol Reagent (Invitrogen, Barcelona, 

Spain), following the manufacturer´s protocol as described before (Cicione et al. 2013). RNA was 

assessed for quantity at 260 nm using a NanoDrop™ spectrophotometer (Thermo Scientific, Madrid, 

Spain). The A260/A280 ratio was calculated to assess quality and purity. Total RNA (1 µg) was further 

processed or stored at -80°C until used (Table 1). 

Total RNA underwent DNase digestion (Fermentas, Spain) for complete removal of DNA 

contamination. Subsequently, the reverse-transcription reaction was performed on 1 µg of total RNA 

using SuperScript™ First-Strand Synthesis System for RT-PCR (Invitrogen™, Spain), following the 

manufacturer instructions as described before (Cicione et al. 2010). Samples were stored at −20 °C before 

the amplification of target cDNAs. Positive and negative controls were included in each experiment. 

Real-time PCR analysis (qPCR) was performed on a LightCycler® 480 Instrument (Roche, 

Mannheim, Germany) to study mRNA expression of the genes implicated in chondrogenesis (SOX9, 

aggrecan, COL1A1 and COL2A1), osteogenesis (ALP, OP) and adipogenesis (FABP4, APM1, and LPL). 

For this purpose the primers shown in Table 1 were used. 

The primers were purchased from Roche (Mannheim, Germany). The TATA box binding protein gene 

(TBP) was used as the internal control housekeeping gene to normalize the amount of target cDNA. 

Data analysis was performed using LightCycler 480 Relative Quantification software (Roche). 

Relative levels of expression were calculated by the 2−ΔΔCt method. Each assay was done at least in 

triplicate and included marker-positive and marker-negative controls and reagent with no template 

controls. Each data was normalized against the housekeeping gene. For each gene expression, we 

assigned the value 1 to the lowest level of expression and the values were measured as relative expression 

levels (REL). 
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RNA extraction, reverse transcription-PCR assay setup and post reverse transcription-PCR product 

analysis were carried out in separate dedicated rooms to prevent cross-contamination. 

Statistical analysis 

Each experiment was repeated at least three times. The statistical significance of the differences between 

mean values was determined using a two-tailed t test; p < 0.05 was considered significant. Results are 

expressed as the mean ± standard error (mean ± SE) and mean ± standard deviation (mean ± SD) 

Results 

Isolation of BM-MSCs and characterization of cultured expanded cells 

Spindle-shaped bipolar cells attached to the flask were observed at the first medium change at 48 h of 

culture. We expanded, differentiated and analyzed the surface antigens expression and multipotentiality 

of the cells isolated from three donors. 

Phenotypic analysis 

At the third passage, at the beginning of the differentiation experiments, the BM-MSCs were 

characterized according to the expression of surface markers using flow cytometry. Table 2 shows data 

for age, gender and surface marker expressions obtained doing the mean value between the three BM-

MSCs donors. The cells displayed very similar expression of surface antigen expression and were 

negative for the expression of CD34, CD45 and STRO-1. In the table, each antigen expression value is 

expressed as positive percentage and the range of its expression is reported. CD73 and CD44 antigens 

were co-expressed at 94 % ± 0.05. CD105 was expressed at 96 % ± 0.12 when alone and co-expressed 

with CD106 at 24 % ± 0.14. CD166 was expressed at 92 % ± 0.06. The percentage of CD90 expression 

was around 95 % ± 0.02 and of CD29 was around 94 % ± 0.03. Our cultured cells expressed CD117 at 

23 % ± 0.38 and SSEA4 at 83 % ± 0.09.  

Table 1 Sequences of qPCR primers used for the amplification of human mRNA genes implicated in chondrogenesis 

Gene name Forward primer (5′-3′) Reverse primer (5′-3′) mRNA ID number 

    

SOX9 gtacccgcacttgcacaac tcgctctcgttcagaagtctc NM_000346 

COL2A1 gtgtcagggccaggatgt tcccagtgtcacagacacagat NM_001844 

AGG gcctacgaagcaggctatga gcacgccataggtcctga BC036445 

COL1A1 gtgatgctggtcctgttggt caccatcgtgagccttctct NM_000088 

FABP4 ggatgataaactggtggtgga cacagaatgttgtagagttcaatgc NM_001442 

APM1 ggtgagaaaggagatccaggt tgctgagcggtatacataggc NM_004797 

LPL agaacatcccattcactctgc ccatttgagcttcaacatgagt NM_000237 

ALP gacggacccgtcactctc gtgcccgtggtcaattct NM_000478 

OP cgcagacctgacatccagt ggctgtcccaatcagaagg NM_000582 

TBP gcccatagtgatctttgcagt cgctggaactcgtctcacta NM_003194 

    

 
SOX9, SRY (sex determining region Y)-box 9; COL2A1, type 2A1 collagen; AGG, Aggrecan; COL1A1, type 1A1 

collagen; FABP4, fatty acid-binding protein 4; APM1, adiponectine; LPL, lipoprotein lipase; ALP, alkaline 

phosphatase; OP, osteopontin; TBP, TATA box binding protein 
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Table 2 General information of the donors showing flow cytometry results of the cells at the third passage (mean ± SD) 

Phenotypical characterization of the cells 

Donor Years Gender CD73/CD44 
CD105/CD

106 
CD105 CD166 CD29 CD90 CD117 SSSEA4 

           

Media 69 2 M & 1F 94 % ± 0.05 
24 % ± 0.1

4 

96 % ± 

0.12 
92 % ± 0.06 94 % ± 0.03 95 % ± 0.02 23 % ± 0.38 83 % ± 0.09 

           

 
M means male and F means female 

Multi-differentiation potential 

We induced adipogenic, osteogenic and chondrogenic differentiations under normoxic conditions, as 

described in the materials and methods part, in order to confirm the multi-potentiality of our cultured 

expanded cells. 

Adipogenic and osteogenic differentiation 

After 21 days of culture with the appropriate differentiation medium or with DMEM plus 20 % FBS 

serum for the control points, the cells were stained with Oil Red O for lipid droplets to evaluate 

adipogenic differentiation and with Alizarin Red for calcium deposits to evaluate osteogenic 

differentiation. All the controls resulted nearly almost negative for staining, showing the absence of lipid 

droplets and calcium deposits. The cells grown in differentiation medium were positively stained 

(Fig. 1a), indicating differentiation. In the adipogenic and in the osteogenic differentiation, the percentage 

of cells with positive Oil Red O staining and Alizarin Red staining was respectively more than 40 and 60 

times higher than in the control medium (p value <0.05, two-tailed t test) (Fig. 1b). To confirm this result, 

total RNA was extracted from cells treated in the same way, reverse transcribed into cDNA and the 

resulting cDNA was used as template for subsequent qPCR amplification. We measured the expression 

levels of LPL, APM1 and FABP4 marker genes for adipogenic differentiation and of OP and ALP marker 

genes for osteogenic differentiation (Fig. 1c). In each experiment, each gene expression level of cells 

treated with the differentiation medium was compared to cells cultured in DMEM with 20 % FBS 

(control points). Cells treated with adipogenic medium showed higher levels of LPL, APM1 and FABP4 

expressions compared to the control cells (4534.31; 3404.75 and 13369.58 times, respectively) and were 

statistically significant (p value <0.005, two-tailed t test). Cells treated with osteogenic medium showed 

higher levels of OP and ALP expressions compared to the control cells (27.67 and 57.28 times, 

respectively) and were statistically significant (p value <0.05, two-tailed t test). These results confirmed 

the histological stainings. 
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Fig. 1 Adipogenic and osteogenic differentiation of BM-MSCs grown in adipogenic (ADM) and osteogenic (ODM) differentiation 

medium with their respective control grown in DMEM with 20 % FBS (CTRL) (a). The percentage of cells positive for Oil Red O 

(adipogenic differentiation) and for Alizarin Red (osteogenic differentiation) stain is expressed as the mean ± SE; *p < 0.05 and 

**p < 0.005 (b). The adipogenic and osteogenic differentiation potential was confirmed by qPCR, comparing results to the 

corresponding control. Data are expressed as mean ± SE of the REL (c) 

Chondrogenic differentiation 

After 14 days of culture with the diverse chondrogenic differentiation media or with DMEM plus 15 % 

KO serum for the control cells, the aggregates were analyzed by histochemistry using HE, TB, MT and 

SaO staining, and immunohistochemistry for type I, II and X collagens, and metalloproteinase 13. These 

techniques confirmed chondrogenic differentiation under our experimental conditions (Fig. 2a,b). 

Specifically, TB and SaO showed the presence of extracellular matrix, stained respectively in violet-blue 

and orange-red, mainly in the points corresponding to cells treated with TGFβ-3 10 ng/mL and when 

combination of the three growth factors. By means of histochemistry, the presence of type II collagen and 

proteoglycans were higher in the different chondrogenic differentiation media than in the corresponding 

controls. Immunohistochemistry results for Col1A1, Col10A1 and MMP13 were nearly almost negative 

(data not shown). To confirm this result, total RNA was extracted from cells treated in the same way, 

reverse transcribed into cDNA and the resulting cDNA was used as template for subsequent qPCR 

amplification (Fig. 3). In each experiment, each gene expression level of cells treated with each of the 

chondrogenic differentiation medium was compared to cells cultured in DMEM plus 15 % KO serum 

(control points). We determined the expression levels of different genes involved in chondrogenesis 

corresponding to the mature chondrocyte phenotype (COL2A1, SOX9 and aggrecan) and also COL1A1 

(corresponding to hypertrophic chondrocytes). Treated cells showed higher levels of SOX9 expression 

compared to the control points, obtaining the higher values when the combination TGFβ-3 

1 ng/mL + BMP-2 10 ng/mL + BMP-7 10 ng/mL and also BMP-2 10 ng/mL alone were added as growth 

factors to the culture media (5.13 and 2.51 times, respectively) and were statistically significant (p < 0.05, 

two-tailed t test) when using the combination TGFβ-3 1 ng/mL + BMP-2 10 ng/mL + BMP-7 10 ng/mL. 

However aggrecan and COL1A1 expression levels were only higher than the control points when TGFβ-3 

10 ng/mL was added to the culture media (1.76 times for aggrecan and 1.94 for COL1A1), resulting to be 

statistically significant (p < 0.05, two-tailed t test) for aggrecan. The COL2A1 gene was detected 
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(Ct = 27) only when the following combination of growth factors was added: TGFβ-3 1 ng/mL + BMP-2 

10 ng/mL + BMP-7 10 ng/mL. The results of the expression of COL2A1 cannot be shown due to the 

absence of its detection in the other conditions analyzed. 

 
 

 

Fig. 2 Histologic and immunohistochemical analysis of the BM-MSCs chondrogenic differentiation in normoxic conditions. The 

pictures show the results obtained after 14 days of pellet culture with chondrogenic medium plus three different growth factors alone 

or in combination. TGFβ3-1 means 1 ng/mL TGFβ-3; TGFβ3-10 means 10 ng/mL TGFβ-3; BMP2 means 10 ng/mL BMP-2; BMP7 

means 10 ng/mL BMP-7; TGF + BMPs means 1 ng/mL TGFβ-3 + 10 ng/mL BMP-2 + 10 ng/mL BMP-7. All the chondrogenic 

differentiation points were compared to cells grown in DMEM with 15 % KO serum (CTRL). HE, Hematoxylin-eosin; TB, 

toluidine blue; MT, Masson´s trichrome; SaO, safranin O; and Col2A1, type II collagen stainings (a). Percentage of cells positive 

for Col2A1 staining is expressed as the mean ± SE (b) 

  



 
 

 

Fig. 3 Chondrogenic differentiation potential was analyzed by qRT-PCR, comparing the different chondrogenic culture media 

(TGFβ3-1, TGFβ3-10, BMP-2, BMP-7 and TGF + BMPs) with the control grown in DMEM with 15 % KO serum (CTRL). 

Expression levels of SOX9, aggrecan (AGG) and COL1A1 at day 14 of culture in normoxic conditions; *p < 0.05. Data are 

expressed as mean ± SE of the RELs 

Discussion 

Chondrogenic differentiation of MSCs leads to the expression of two chondrocyte hypertrophy-associated 

genes, collagen X and MMP13 as shown by Sekiya et al. (2002) and by Pelttari et al. (2006). Due to this, 

it is imperative to establish the best protocol for in vitro directing stem cell differentiation into the 

chondrogenic lineage in each experimental design. In this study we examined the in vitro chondrogenic 

induction of BM-MSCs by three different growth factors (BMP-2, BMP-7 and TGFβ-3), alone or in 

combination, in normoxic conditions. In all the experiments performed, BM-MSCs from the three donors 

were able to differentiate toward adipogenic, osteogenic and chondrogenic lineage. In addition, qPCR 

analysis of the marker genes for each specific lineage confirmed these results, since it was observed an 

up-regulation of the genes analyzed in the treated cells compared to the corresponding controls. 

In the last years, many studies have been focused on finding better culture conditions capable to 

differentiate MSCs towards mature chondrocytes (Heng et al. 2004). For this purpose different growth 

and differentiation factors were studied in detail by Sekiya et al. (2002) and by Kim et al. (2005). In 

particular, the ability of BMPs to promote chondrogenesis of MSCs and to increase matrix production by 

these multipotent cells have been studied extensively over the past two decades (Kurth et al. 2007; 

Nawata et al. 2005; Kaps et al. 2002; Keller et al. 2011). BMPs are members of the TGFβ superfamily of 

growth and differentiation factors. These proteins, originally identified by Toh as inducers of bone and 

cartilage formation in ectopic sites (Toh et al. 2007), act as autocrine and/or paracrine factors regulating 

bone growth, development and remodeling. It is well-known that bone and cartilaginous cells produce 

BMPs. BMPs induce differentiation of pluripotent mesenchymal cell lines into chondrocytes when grown 

at high density, since high-density culture mimics the condensation step that precedes the chondrogenesis 

in vivo. Kameda reported that BMP-2, -5, and -6 maintain and promote later stages of chondrocyte 

differentiation rather than initiation of maturation (Kameda et al. 2000) while Haaijman that BMP-7, 

which is expressed in proliferating chondrocytes, promoted chondrocyte proliferation and inhibited 

terminal differentiation (Haaijman et al. 2000). BMP-2 regulates the chondrogenic differentiation, the 

maturation of mesenchymal progenitors and stimulates the synthesis of chondrocyte matrix components, 

as described by Toh et al. (2007). For this reason BMP-2 has been proposed as a tool for cartilage repair 

and as an inducer of chondrogenesis. In healthy cartilage, Blaney assessed that BMP-2 is hardly present, 

whereas it is highly expressed during osteoarthritis (Blaney Davidson et al. 2007). In our study, and 

regarding chondrogenic differentiation, we obtained the better chondrogenic induction when the 

combination TGFβ-3, BMP-2 and BMP-7 of growth factors was added to the culture medium, since it 

was the unique culture condition that showed COL2A1 gene expression and that revealed the highest 

SOX9 expression level. Likewise, chondrogenic culture medium containing only BMP2 also showed high 

SOX9 mRNA expression levels. This result is in agreement with those published by Nawata et al. (2005) 

and Toh et al. (2007). The former generated cartilage tissue by inducing the in vivo differentiation of rat 
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muscle-derived cells into the chondrocytic lineage with recombinant human bone morphogenetic protein 

2 (rHuBMP-2). The latter demonstrated that the high-density 3D micromass culture condition, in 

combination with BMP-2, resulted in an enhancement and enrichment of chondrogenic differentiation. 

Combinations of growth factors have also been used in the past to promote chondrogenic 

differentiation of MSCs. Xiang et al. (2007) induced the chondrogenesis of MSCs using the combination 

of IGF-1 (insulin-like growth factor-1) and TGFβ-1; whereas Kim and Im (2009) demonstrated that 

administration of a combination of TGFβ-2 and BMP-7 was the most effective in promoting 

chondrogenesis. 

Both COL2A1, that encodes a key cartilage-specific extracellular matrix protein, and SOX9, that 

encodes a nuclear transcription factor, are two of the earlier markers expressed during chondrogenesis. 

SOX9 is required for the differentiation of chondroprogenitors towards mature chondrocytes and for the 

deposition of cartilage matrix containing collagens II, IX, XI and aggrecan, as described by Lefebvre et 

al. (1997). This transcription factor is expressed continuously in chondrocytes up to the hypertrophic 

stage and is required not only to maintain the chondrocyte phenotype but also for BMP induced 

chondrogenesis, as described by Yoon and Lyons (2004). In all the chondrogenic media tested we 

observed, by immunohistochemistry, the presence of type II collagen immunoreactivity in the 

extracellular matrix, however mRNA transcript level of collagen II was only detected when the 

combination TGFβ-3, BMP-2 and BMP-7 was added. This absence of type II collagen mRNA expression 

in the other culture conditions analyzed may be due to the destabilization during the translation of some 

mRNAs with AU-rich elements as described by Lian et al. (2007). 

Aggrecan is one of the more abundant proteoglycans in the hyaline articular cartilage, as reported by 

Heinegard (2009). This large proteoglycan consists of a 200 kDa core protein to which keratin sulphate 

and chondroitin sulphate glycosaminoglycan side-chains are attached. During chondrogenesis, agreccan 

mRNA begins to accumulate at the onset of cellular condensation and continues to be expressed 

throughout differentiation. In our study, we observed the highest aggrecan mRNA expression level when 

TGFβ-3 10 ng/mL alone or the combination TGFβ-3, BMP-2 and BMP-7 of growth factors were added to 

the chondrogenic culture medium. Regarding the use of TGFβ-3 alone, the work by Kim (2005) 

demonstrated that cells derived from human embryonic germ cells differentiate toward chondrogenic 

lineage when they are culture in the presence of this transforming growth factor. These authors 

demonstrated that accumulation of proteoglycans, not only in cell pellets but also in culture medium, was 

increased by TGFβ-3 treatment. This proteoglycan release was maintained higher in cells treated with 

TGFβ-3 than in the controls without treatment, suggesting chondrogenic differentiation. However, after 

21 days of culture control-cell pellets without treatment and cell pellets treated with BMP-2 alone or co-

treated with BMP-2 and TGFβ-3, showed a similar proteoglycan release. On the other hand, it has been 

demonstrated that BMP-2 and BMP-7 promote cartilage differentiation and matrix maturation in artificial 

engineered cartilage tissues in vitro. In this sense, Kaps et al. (2002) demonstrated that BMP-7-expressing 

chondrocytes are able to promote and maintain the chondrocyte phenotype by inverting the collagen 

expression profile from type I collagen to type II collagen during prolonged cultivation in vitro. On the 

contrary, BMP-2-expressing chondrocytes showed no alteration in collagen gene expression compared 

with control-transfected chondrocytes still displaying a de-differentiated phenotype, surprisingly in these 

cells the expression of the large cartilage proteoglycan aggrecan was slightly down-regulated. 

Conclusions 

In our experimental conditions the three growth factors used, alone or in combination, were capable to 

induce the beginning of chondrogenesis in normoxia environment. Nevertheless, the chondrogenic culture 

condition that better induced BM-MSCs chondrogenesis was the one that included the combination of the 

three growth factors tested followed by the medium with the higher concentration of TGFβ-3. In our 

experimental conditions, we have determined the best method for in vitro studying BM-MSCs efficient 

chondrogenesis in normoxia conditions. This method could provide a powerful tool for study the 

contribution of specific genes to the process of chondrogenesis. 
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