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“Today’s scientists have substituted mathematics for experiments, and they wander

off through equation after equation, and eventually build a structure which has no

relation to reality.”

Nikola Tesla





Abstract

Human behavior analysis is one of the most active computer vision research fields.

As the number of cameras are increased, especially in restricted environments, like

airports, train stations or museums, the need of automatic systems that can catalog

the information provided by the cameras becomes crucial. In the case of crowded

scenes, it is very difficult to distinguish people behavior because of the lack of visual

contact of the whole body. Thus, behavior analysis remains in the evaluation of

trajectories, adding high-level knowledge approaches in order to use that information

in several applications like video surveillance or traffic analysis.

The proposal of this research is the design of a fully-automatic human behavior

system from a distance. On the one hand, two different multiple-target tracking

methods and a target re-identification procedure are presented to detect every target

in the scene, returning their trajectories as output. On the other hand, a novel

behavior analysis system, which includes information about the environment, is

provided. It is based in the idea that every person tries to reach a goal in the

scene following the same path the majority of people should use. An extremely fast

abnormal behavior metric is presented, providing our method with the capabilities

needed to be used in real-time scenarios.
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Resumen

El análisis de comportamiento humano es uno de los campos más activos en la rama

de visión por computador. Con el incremento de cámaras, especialmente en entornos

controlados tales como aeropuertos, estaciones de tren o museos, se hace cada vez

más necesario el uso de sistemas automáticos que puedan catalogar la información

proporcionada. En el caso de entornos concurridos, es muy dif́ıcil el poder distinguir

el comportamiento de personas en base a sus gestos, debido a la falta de visión de

su cuerpo al completo. Por ende, el análisis de comportamiento se realiza en base a

sus trayectorias, añadiendo técnicas de razonamiento de alto nivel para ulilizar dicha

información en múltiples aplicaciones, tales como la video vigilancia o el análisis de

tráfico.

El propósito de esta investigación es el desarrollo de un sistema totalmente au-

tomático para el análisis de comportamiento de las personas. Por una parte, se

presentan dos sistemas para el seguimiento de múltiples objetivos, aśı como un sis-

tema novedoso para la re-identificación de personas, con la intención de detectar todo

objeto de interés en la escena, devolviendo sus trayectorias como salida. Por otra

parte, se presenta un sistema novedoso para el análisis de comportamiento basado en

información del entorno de la escena. Está basado en la idea que que toda persona,

cuando intenta llegar a un cierto lugar, tiende a seguir el mismo camino que suele

utilizar la mayoŕıa de la gente. Se presentan una serie de métricas para la detección

de movimientos anómalos, haciendo que este método sea ideal para su utilización en

sistemas de tiempo real.
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Resumo

A análise do comportamento humano é un dos campos máis activos na rama da

visión por computadora. Co incremento de cámaras, especialmente en entornos con-

trolados tales coma aeroportos, estacións de tren ou museos, faise cada vez máis

necesario o uso de sistemas automáticos que poidan catalogar a información pro-

porcionada. No caso de entornos concurridos, é moi complicado de poder distinguir

o comportamento de persoas dacordo cos seus xestos, debido á falta dunha visión

completa do corpo do suxeito. Por tanto, a análise de comportamento tende a re-

alizarse en base á traxectoria, engadindo técnicas de razoamento de alto nivel para

ulilizar dita información en diversas aplicacións, tales coma a video vixiancia ou a

análise de tráfico.

O propósito desta investigación é o desenrolo dun sistema totalmente automático

para a análise do comportamento das persoas. Por unha parte, preséntanse dous

sistemas para o seguimento de múltiples obxectivos, aśı coma un sistema novidoso

para a re-identificación de persoas, coa intención de detectar todo obxecto de in-

terés na escena, devolvendo as traxectorias asociadas como sáıda. Por outra parte,

preséntase un sistema novidoso para a análise de comportamente baseada na in-

formación do entorno da escena. Está baseado na idea de que toda persoa, cando

intenta acadar un certo luegar, tende a seguir o mesmo camiño que xeralmente usa

a maioŕıa da xente. Preséntanse unha serie de métricas para a detección de move-

mentos anómalos, facendo posible que este método poida ser utilizado en sistemas

de tempo real.
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Chapter 1

Introduction

Behaviour analysis is one of the most active research fields. The key idea is to develop

an automatic system that can catalog every action any target is doing. A target is

any object in a scene that has to be followed. Depending on the behaviour analysis

problem, the type of target could vary. Furthermore, the kind of action depends on

the kind of behaviour the system tries to search, either involving individual actions

(such as walking, running, jogging . . . ) or grouping events (having a meeting, leaving

a group, fighting . . . ).

Every automatic behaviour analysis system can, ideally, be divided in three

different techniques, as depicted in Fig. 1.1:

• Detection: having a video sequence as input, the detection block should be able

to detect every target at every frame in the scene. Computer vision techniques

are used to solve this issue.

• Tracking: using the detection block information, the tracking block should

assign label identifications to each detected target in the video. That means

grouping all the detections that belong to the same target into an unique label,

following them until the video has finished or the target has left the scene.

Figure 1.1: Behavior analysis framework structure.
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2 1. Introduction

• High-Level Behaviour Analysis: the detection information, along with the

tracking identification, is used to catalog the behaviour of each target. Pattern

recognition techniques are used to classify every action.

Furthermore, the system architecture highly depends on the number of targets

to take into account at the same time. To this end, behaviour analysis systems are

divided into two big groups:

• Action Recognition: systems are focused to catalog individual actions. These

kind of techniques describe the behaviour of isolated people. Detection and

tracking systems are focused to only detect one target in the scene. Camera

are placed near the target, causing the detection system to obtain a detailed

silhouette of the target. The high-level analysis is done by taking into account

both spatial and temporal information. Only a small number of actions are

detected, according to recent surveys in the topic (Turaga, Chellappa, Sub-

rahmanian, & Udrea, 2008; Poppe, 2010; Weinland, Ronfard, & Boyer, 2011).

The explanation of these models is out of the scope of this thesis.

• Crowd Analysis: systems try to infer behaviour between groups of targets.

This is a more complex discipline both in target detection and tracking. Cam-

eras are usually placed far from the floor, in order to give a better perspective

to the movements of the targets.

This thesis is focused in the development of a novel behaviour analysis technique

from a distance, that is, using crowd analysis. Thus, a more detailed explanation of

the state of the art of the three big blocks is included below. For more information,

there is also recent surveys in the topic (Zhan, Monekosso, Remagnino, Velastin, &

Xu, 2008; Candamo, Shreve, Goldgof, Sapper, & Kasturi, 2010; Popoola & Wang,

2012).

1.1 Detection System

In a scene with multiple targets, it is necessary to have a balance between accuracy

and velocity. In this section a brief explanation of the classic multiple-target de-

tection systems is provided. Note that more recent techniques were developed, but

they are essentially variants of these big three groups.
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1.1.1 Background Subtraction

This is the most basic technique. Having a video frame, instead of trying to detect

the foreground pixels that belongs to a target, the model does exactly the opposite:

it detects all the pixels that belongs to the background. Thus, all the pixels that

are not recognized as background should be, after removing the presence of noise,

foreground pixels. After that, a blob detection technique is used to detect every

different target in the scene.

To model the background, a training step must be previously defined. In early

attempts, the background was modelled by simply choosing its maximum and min-

imum intensity value (Haritaoglu, Harwood, & Davis, 1998, 2000). However, this

technique requires the training images not to have any possible target that may

distort the result. Thus, a simple statistical approach can be used by modelling

every pixel scene as a Gaussian distribution. Assuming the system is trained using

only a background sequence, the Gaussian model performs a good approach of the

background. Hence, pixel values that are considered as outliers by the Gaussian

distribution are marked as foreground.

Unfortunately, illumination changes and artifacts provided by the video com-

pression introduce some error in the result, due to the ’simplicity’ of the proposed

model. To solve that, Stauffer and Grimson (Stauffer & Grimson, 1999) store the

background as a Mixture of Gaussians (MoG). A bunch of Gaussians, are used to

define each background pixel. If a pixel value does not fit in the combination of the

background distributions, it is considered as foreground until it is included into the

model with enough evidence. Different color spaces can be used (for instance, L*a*b

obtains good results under sudden illumination changes. The method is updated ev-

ery time step, so no train step is needed. Unfortunately, this update causes a bad

estimation if the tracking object stops. After a few iterations, the tracking object

will be set as part of the background. The same problem arises in (Jepson, Fleet, &

El-Maraghi, 2003), where a recursive update of a Gaussian Mixture is used to track

human faces. It can cope with partial occlusions, but fails when dealing with both

total occlusions and collisions, since it is implemented to track isolated people.

Horprasert et al. (Horprasert, Hardwood, & Davis, 2000) used a method based

on a color background-subtraction. Two different parameters, chromaticity and

brightness, are computed and normalized for each pixel by using linear combinations

of the RGB color-space. Using four different thresholds, a mask image indicates

whether a pixel is part of the background or the foreground. It can also detect

shadow pixels caused by the targets, which are often removed. Unfortunately, this

technique requires the tuning of a parameter that is very dependent of the lighting
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condition, which varies in every scene. Thus, a bad calibration of this threshold

introduces a lot of noise.

In a similar way, Kim et al. (Kim, Chalidabhongse, Harwood, & Davis, 2005)

use a codebook. Each background pixel consists of one or more codewords. The

brightness, frequency of occurrence, the longest interval during the training period

that the codeword has not occurred, and the first and last access time are stored into

each codeword. Foreground pixels are detected by testing the difference between the

current image and the codebook. This method can be used in a dynamic or a static

way. Doshi and Trivedi (Doshi & Trivedi, 2006) combines the codebook model with

the shadow suppression in HSV -color space (Cucchiara, Grana, Piccardi, Prati, &

Sirotti, 2001) to improve the methodology.

Maddalena and Petrosino (Maddalena & Petrosino, 2008) use a self-organizing

map to model the background. Each background pixel is represented as a set of n×n
weight vectors, typically 3. The method obtains good results, but the processing

time is too high to be used in real-time systems.

1.1.2 Optical Flow

The problem with the background subtraction is that it is very difficult to segment

a pair of targets when they are overlapped. Whereas this is not a problem when

dealing with controlled scenarios, it is a crucial point when dealing with crowded

scenes, when every target could be merged into an unique blob. Thus, a different

technique must be used.

Instead of trying to define the background, optic flow techniques try to detect

moving pixels within the scene. Thus, new information is included in each foreground

pixel: velocity and orientation of the motion.

Lucas and Kanade (Lucas, Kanade, et al., 1981) developed the first optic flow

algorithm to be used in vision systems. It is based in the idea that the variation

of the target position in a video scene is relatively small. Thus, it it possible to

locate the moving target by looking for the same point of interest (corner, feature,

. . . ) near the last time that point of interest was previously detected. To control

the algorithm complexity, the point of interest between frames is computed within

a small region centered in the feature previous position. Thus, the algorithm fails

when target movement are too quick, causing the motion to happen far from the

local region where to look after it. To control this problem, a new version was

developed by Bouguet (Bouguet, 2001) using a pyramidal cascade.

Several different approaches were developed to detect motion into an image. For

instance, by using the Fourier domain (Shizawa & Maze, 1991; Heeger, 1988), the
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local image phase (Fleet & Jepson, 1990) or, more recently, tensor voting (Min

& Medioni, 2008; Rashwan, Garćıa, & Puig, 2013). In a different way Farnebäck

(Farnebäck, 2003) detect the image structure as a tensor, providing a 2nd order

degree polynomial to describe it.

Although there still exist interesting works dealing with dense optic flow tech-

niques (Zimmer, Bruhn, & Weickert, 2011), a number of points of interest are usually

chosen before, in order to decrease the computational cost of the model. In that

sense, the work of Shi and Tomasi (Shi & Tomasi, 1994) is the most used. However,

recently techniques are also achieving promising results (Brox & Malik, 2011).

1.1.3 High Level Approaches

The main idea into the high-level systems is to add information a priori about the

objects of interest. Contrary to background subtraction and optic flow techniques,

high-level approaches have the ability to distinguish between different types of tar-

gets. In particular, when dealing with people, information about the human shape

is searched. For instance, Dalal and Triggs (Dalal & Triggs, 2005) introduced the

Histograms of Oriented Gradients (HoGs), which are used to train a Support Vector

Machine (SVM) for each part of the body. A similar idea was also used in (Desai,

Ramanan, & Fowlkes, 2009; Felzenszwalb, Girshick, McAllester, & Ramanan, 2010)

to train any object in the scene. However, these methods try to detect every part

in the body, many of which are occluded in crowded scenes.

To solve this, Li et al. (M. Li, Zhang, Huang, & Tan, 2008, 2009) simplified

the method, trying to locate only the omega shape created by the head and the

shoulders. A HOG feature based SVM is used to confirm every target previously

located using a Viola-Jones type classifier (Viola & Jones, 2001), which improves

the speed of the algorithm. Using the same omega shape detection, Rodriguez et

al. (Rodriguez, Sivic, Laptev, & Audibert, 2011) improve the detection in crowded

scenes including a density estimation parameter. Unlike Li approach, this model

requires the computation of the HoG descriptor in every pixel image, which increases

the computational cost.

1.2 Tracking System

Once every target is detected within the frame, a tracking system has to assign

every new target detection with its target identification. Although this idea seems

to be simple, it is very complicated to solve it when dealing with crowded scenes.

Target occlusions or people crossing each other multiples times are just a couple of
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examples that often causes the system to either lose a target or to switch target

identifications. In this section an explanation of different state-of-the-art tracking

methods is provided.

1.2.1 Appearance Approaches

An appearance approach tries to model each target by considering color, texture

information, or a combination of both descriptors. This techniques are often used

in the re-identification problem: the ability to recognize whether two different de-

tections belongs to the same target or not. This is one of the most challenging fields

in the computer vision, since all the image problems appear in it: target pose and

local illumination changes. The ability to develop a good re-identification technique

is crucial to obtain a robust multiple-target tracking.

For instance, Collins et al. (Collins, Liu, & Leordeanu, 2005) approach is based

in a pool of 49 different histograms, using different combinations into the RGB-color

space. The technique selects a rectangular regions surrounding the target and divide

it into two big regions, foreground and background. A log-likelihood ratio between

the foreground and the background region is used to select a smaller pool of best

features. Finally, this small set is used to determine whether a new detection belong

to a previously tracked target or not. Additionally, a pool of historical ’best features’

is maintained to use them in cases of object occlusion recovery. This method obtains

good results under homogeneous backgrounds with constant brightness, failing when

the duration of the occlusion is high, causing the best pool of histograms to be

changed if the background highly varies.

1.2.2 Kalman Filter

The Kalman filter (Kalman, 1960) is a linear quadratic estimator that, using in-

formation about the target stored along time as input, predicts posterior target

estimations. The Kalman filter works under noise information, producing optimal

predictions of possible new states of the variables involved in the filter.

Assume a input vector zk. The Kalman filter needs to store both the conditional

mean of the input x̂k, the conditional covariance Pk, and the input covariance Rk

to model the state system, defined by

xk+1 = Ak+1xk +Bk+1uk+1 + wk, (1.1)

where Ak+1 is the state transition model, Bk+1 is the control input model, uk+1 the

control vector (which if often avoided), and wk ∼ N (0, Qk) is the noise vector (Qk

is the covariance matrix of the input). To translate the state vector to the input
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vector space, the observation model matrix Hk is used. The model works in two

different steps, the prediction step and the updating step.

Prediction Step

In this step, the new state measurement is obtained by solving the equation

xk+1 = Ak+1x̂k +Bk+1uk+1, (1.2)

the predicted estimation is defined as

z̃k+1 = Hkxk+1, (1.3)

and the predicted estimate conditional covariance

P̃k+1 = Ak+1PkA
T
k+1 +Qk. (1.4)

Updating step

Once we now the real estimation zk+1, the model is updated following these equa-

tions: first, the estimation error is computed

ỹk+1 = zk+1 − z̃k+1. (1.5)

The, the state measurement is updated by solving the equation

x̂k+1 = x̂k +Kkỹk+1, (1.6)

where

Kk = P̃k+1H
T
k S

−1
k , (1.7)

and

Sk = HkP̃k+1H
T
k +Rk. (1.8)

Furthermore, the conditional covariance is updated by solving

Pk+1 = (I −KkHk)P̃k+1. (1.9)

The difficulty of this method is to find an optimal Qk and Rk covariance matrices,

since updating them over each step will increase the computational cost. This filter

is often used in tracking systems to predict the position of each target in the scene

(Black, Ellis, & Rosin, 2002; Mittal & Davis, 2003; Iwase & Saito, 2004; Magee,

2004). However, the model fails when a target is lost during a long period, because

a linear prediction technique cannot deal with the uncertainty produced by the

human movement, that is, sudden changes in the direction of in the speed.
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1.2.3 Particle Filter

The Kalman filter, along with any other linear prediction method, is able to predict

the position under regular movements. However, this kind of algorithm only provides

one unique prediction. To solve that, it is desirable to throw multiple approximated

positions, assigning different probabilities to each one depending on how close it is

to the real target position.

That is the key point of the particle filter algorithm. It is a technique for imple-

menting recursive Bayesian filter by Monte Carlo sampling. In mathematical terms,

the idea is to represent the posterior density by a set of random particles with as-

sociated weights, and then the estimates are computed based on these samples and

weights.

Suppose we have a target that we need to track along the scene. The particle

filter algorithm for visual tracking follows these steps:

1. Initialize the state vector of the linear prediction technique used (e.g. Kalman)

and get an appearance model for the target.

2. Generate a set of N particles.

3. For each new frame

(a) Find the predicted state of each particle using the state equation and get

an appearance model for the predicted position.

(b) Compute the distance between the predicted and the target appearance

model.

(c) Weight each particle based on similarity between appearance models.

(d) Select the state of the target based on the weighted particles (mean,

maximum value, . . . ).

(e) Sample the particles for next iteration.

Contrary to the Kalman filter, this is a more robust algorithm, since it can com-

pute several different positions, including the one predicted by the Kalman filter. It

is widely used in tracking systems (Gustafsson et al., 2002; S. K. Zhou, Chellappa, &

Moghaddam, 2004; Breitenstein, Reichlin, Leibe, Koller-Meier, & Van Gool, 2011;

Hlinka, Sluciak, Hlawatsch, Djuric, & Rupp, 2012). It can be viewed as a general-

ization of the linear prediction models. However, the problem of this technique is

the computational cost: O(N), where N is the number of particles. A small number

causes the system to behave similar to the linear filter chosen. On the contrary, a

high number makes the model useless in real-time applications.
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1.2.4 Associated-based Tracking

An associated-based tracking formulates the tracking by joining trajectory segments

until a complete trajectory is defined. The segments are often obtained by low-level

trackers, such as the Kalman filter. This kind of tracked are the most used nowadays,

being the most studied. The development of this technique is quite recent.

In first place, a selection of tracklets is performed (Bose, Wang, & Grimson, 2007;

Xing, Ai, & Lao, 2009; Song, Jeng, Staudt, & Roy-Chowdhury, 2010). A tracklet

is defined as a set of detections that, with a high probability, belongs to the same

target. Given a sequence, the detection system detects a set of different possible

targets per frame. This detection system is often a high-level approach detector

which produces object hypotheses as observations for data association, focusing on

an specific kind of target, such as vehicles or pedestrians (Luo, Zhao, & Kim, 2014).

Then, a low-level tracker is conducted to obtain the probability that two different

detections belong to the same target.

Finally, tracklets are combined to find complete trajectories. Multiple tech-

niques were used to deal with this problem. For instance, Shitrit et al. (Ben Shitrit,

Berclaz, Fleuret, & Fua, 2011) formulated the associated-based tracking as a global

optimization problem. All trajectories are obtained by maximizing the model energy.

In an opposite way, Andriyenko and Schindler (Andriyenko & Schindler, 2011; An-

driyenko, Schindler, & Roth, 2012) use a similar scheme. They infer the most usual

path for every target, performing the matching by minimizing the energy related to

each trajectory.

Yang and Nevatia (Yang, Huang, & Nevatia, 2011; ?, ?) model the energy by

using a Conditional Random Field (CRF). An ad-hoc minimization is used to find

the optimum energy. A probabilistic graph is also used by Benfold and Reid (Benfold

& Reid, 2011), who introduced a Markov Chain Monte Carlo Data Association to

estimate the most probable trajectories.

1.2.5 Re-Identification

As previously explained, tracking approaches are based in assigning the same iden-

tification to detections that belongs to the same person, until the person leaves the

scene. However, if the target reappears in the scene again, it is possible to recover

the previous identification? This is the key point of the re-identification procedures.

The ability to re-identificate a person, no matter where it appears.

The classic re-identification field can be viewed as a retrieval problem: given a

predefined ‘gallery’ set of known individuals, systems try to label each new ‘probe’

detection with the identity of the matching gallery individual. The problem is
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significantly simpler, because it can be divided into a series of independent tasks:

‘For each probe person, find the top most similar in the gallery’.

Contrary to the tracking approach, spatial information is no longer useful to

deal with this problem. Thus, the appearance information is crucial. Studies have

investigated good feature representations (Farenzena, Bazzani, Perina, Murino, &

Cristani, 2010) and discriminative models (Hirzer, Roth, Köstinger, & Bischof, 2012;

Tao, Jin, Wang, Yuan, & Li, 2013) to maximise the chance of correct matching.

They considered the contexts of single-shot (Prosser, Zheng, Gong, Xiang, & Mary,

2010; Zheng, Gong, & Xiang, 2011) (one image per person per camera) as well as

multi-shot (Bialkowski, Denman, Lucey, Sridharan, & Fookes, 2012; Karaman &

Bagdanov, 2012) (a series of images per person per camera, obtained from tracking)

scenarios. More information can be obtained in recent books (Gong, Cristani, Yan,

& Loy, 2014) or surveys (Vezzani, Baltieri, & Cucchiara, 2013) on the topic.

1.3 Trajectory Behavior Analysis

Once every target in the scene is tracked, the information of its trajectory is used

by a high-level layer which determines its behavior. Although there exist different

approaches in the literature, it can be divided into two big groups: clustering-based

behavior analysis and social force models.

1.3.1 Clustering-based Approaches

These techniques make use of classic machine learning procedures. The premise is

simple: ‘usual’ trajectories can be grouped into a limited number of clusters. Thus,

trajectories that do not fit within any of these clusters are marked as abnormal. The

different techniques relies on how the so-called ‘usual’ paths can be obtained.

Three different path models are used in the state-of-the art:

Centroid: The most usual and simple, which were used in early approaches to the

topic (Hu, Xiao, Xie, Tan, & Maybank, 2004; Naftel & Khalid, 2006; Hu, Xie, Fu,

Zeng, & Maybank, 2007) . Each cluster is described as one unique trajectory (a se-

quence of points). Several clustering techniques are used to obtain the initials ‘usual’

paths: Hybrid (Karypis, Han, & Kumar, 1999), agglomerative (Buzan, Sclaroff, &

Kollios, 2004), where we merge clusters until we obtain the desired number; divisive

(Biliotti, Antonini, & Thiran, 2005), Graph-based (X. Li, Hu, & Hu, 2006), Spectral

(Hu et al., 2007) or direct (B. Morris & Trivedi, 2008), using techniques such as

k-means or fuzzy c means.
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(a) (b)

Figure 1.2: These trajectories are defined as similar using classic distance measure tech-

niques, while including the scene information the red routes are clearly abnormal.

Envelope: The variation of each cluster is included when modeling it. Two com-

mon representations are usually chosen: extremal points path (Makris & Ellis, 2005;

Wang, Tieu, & Grimson, 2006) or Gaussian distribution representation (B. T. Mor-

ris & Trivedi, 2008; Wang, Ma, & Grimson, 2009; Wang, Ma, Ng, & Grimson, 2011;

B. T. Morris & Trivedi, 2011; Xu, Gong, & Hospedales, 2013).

Sub-paths: Instead of modeling complete paths, multiple segments are used to

define partial trajectories. Then, transitional probabilities between them are used to

model the complete paths (Piciarelli & Foresti, 2006; Bashir, Khokhar, & Schonfeld,

2007).

Once the ‘usual’ paths are modeled, a metric is necessary to determine whether

a new trajectory fits within a cluster or not. The most simple one is the euclidean

distance. However, these methods obtain poor results, requiring trajectories with

the same size to be compared. In (Keogh & Pazzani, 2000), Keogh et al. presented

the Dynamic Time Warping (DTW) technique. Basically, this method tries to find

a time warping that minimizes the distance between two different trajectories. It

can be used with trajectories with different sizes. Buzan et al. (Buzan et al., 2004)

introduced a similar idea, the Longest Common Subsequence (LCSS). It can also

be used with unequal length data, becoming more robust to noise. The reason is

that not all the trajectory points need to be matched. Similar to these methods,

Piciarelli and Foresti (PF) (Piciarelli & Foresti, 2006) uses a dynamic time warping

window, which is increased along time, that is, the maximum error allowed is low at

the starting trajectory point, becoming larger while we are reaching the end. The

performance of these metrics were tested in (B. Morris & Trivedi, 2009), achieving

good results.
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The problem with these metrics is that they do not take into account informa-

tion about the environment. For instance, let’s consider a highway. Imagine two

trajectories that start in the same position, having similar ending points (only differs

a few), like in Fig. 1.2-(b). Although every metric distance determines all routes

are similar, the red one is clearly abnormal since it crosses the central reservation.

Analogue, two parallel routes, like in Fig. 1.2-(a) may result similar without any

context. However, in the highway, one of them is behaving contrary to the traffic

motion.

1.3.2 Social Force Models

They are based in the idea that some stimuli, like the scene properties and other

people interactions, affect the pedestrian trajectory (Helbing, Farkas, & Vicsek,

2000), (Burstedde, Klauck, Schadschneider, & Zittartz, 2001). This approximation

is often used in computer graphic schemes, developing a set of different forces that

are added to infer the new movement (Treuille, Cooper, & Popović, 2006), (Reynolds,

2006), (van den Berg, Patil, Sewall, Manocha, & Lin, 2008). The main drawback

of these techniques is that although they are good approaches to model the usual

human behavior, there exist infinite solutions to model a normal behavior. Thus,

how can we use these kind of systems to decide whether a trajectory is abnormal

or not? Furthermore, these systems can distinguish high-level behaviours, but in a

general way. They take the complete scene as a whole. No individual information

about each pedestrian is provided.

More recently, techniques that try to merge computer vision techniques with

social models are arising. For instance, some works introduce the social force model

to detect abnormal behavior (Mehran, Oyama, & Shah, 2009), (Pellegrini, Ess,

Schindler, & Van Gool, 2009). Flow models were also included to predict crowd

behavior (Moore, Ali, Mehran, & Shah, 2011).

1.4 Thesis

Based in the information provided in this introduction, the purpose of this thesis

is to develop a full-automatic behavior analysis system in crowded scenes from a

distance. As there still exist problems in each behavior analysis module, the specific

objectives of this thesis are the following:

1. Introduce new methodologies for multiple-target tracking that can solve, to-

tally or partially, the main issues related to these systems: that is, the relation

between accuracy and computational cost.
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2. Explanation of what is defined as a pedestrian ‘usual’ behavior, according to

trajectory analysis.

3. Definition, based in the previous explanation, of a novel pedestrian trajectory

analysis model that can distinguish whether a person is having an abnormal

behavior or not by introducing information about the environment.

4. Improvement of the model to be able to deal with a more general object,

making the algorithm suitable to be used with any kind of target.

5. Improvement of the model in terms of computational cost, enabling the model

to be used in crowded scenes.

To create a fully-automatic behaviour analysis system it is needed to deal with

all the question arose in previous sections. None of the state-of-the-art approaches in

each step have completely solved its problematic. To that end, the proposal of this

research is to design an automatic system to perform a human behaviour analysis.

Contrary to state-or-the-art techniques, the proposed framework is based in a set of

human behaviour hypothesis that are evaluated by the experimental results.

As it is very hard to achieve a real-time behaviour analysis system according to

the current state-of-the art techniques, this research was focused in the improve-

ment of every step in a classic behaviour analysis system. To this end, this section

contains a brief introduction of the contributions included in this paper. To a bet-

ter comprehension, this section is divided into three different blocks, related with

the classic behaviour analysis system boxes, that is, detection, tracking, and human

behaviour analysis.

1.4.1 Hierarchical framework for robust and fast multiple-target

tracking in surveillance scenarios

As previously exposed, it is very difficult to achieve a balance between efficiency

and accuracy. During the detection procedure, low-level techniques like optic flow or

background subtraction achieve real-time performance when using regular computers

(one core, less than 4GB of RAM memory, no GPU acceleration, . . . ) but fails when

dealing with crowded scenes, being unable to distinguish between people that are

close enough. On the other hand, high-level approaches like the Viola-Jones or the

HOG can solve the crowd issue. However, the computational cost make them unable

to be used in real time scenarios. In a similar way, low-level tracking techniques like

the Kalman filter cannot cope with complex human movements, whereas associated-

based tracking methods requires too much processing time.
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In our first contribution to this research, a real-time multiple-target tracking

was developed (Cancela, Ortega, Penedo, & Fernández, 2011; Cancela, Ortega,

Fernández, & Penedo, 2012). The main idea behind this project was to obtain

a human tracking model that could be used in a regular computer, without any kind

of acceleration hardware. Thus, this real-time tracking methodology is focused in

the simplicity of its components, whereas the complexity of the model lies in how

the components are merged.

Object Detection: A background subtraction technique is used to detect every

target in the scene. Three techniques were tested. A few considerations have to be

taken into account when dealing with each technique. In first place, the method used

by Horprasert (Horprasert et al., 2000) has a manual parameter, causing the system

to behave incorrectly if it is not chosen correctly. On the contrary, both Mixture of

Gaussians (MoG) (Stauffer & Grimson, 1999) and the Codebook model (Kim et al.,

2005) achieve similar results. The Codebook model (using the YCbCr-color space)

is selected because of the computational cost. A shadow suppression technique over

the HSV-color space is also used (Cucchiara et al., 2001). Finally, every isolated

blob j at time t is marked as a new detection and it is encapsulated as an ellipse

representation

ztj = (xtj , y
t
j , h

t
j , w

t
j , θ

t
j), (1.10)

that includes the center (xtj , y
t
j), axis lengths (htj , w

t
j) and its orientation (θtj).

Low-level Tracker: When there is no large variations between the speed along

successive frames (little noise), the Kalman filter achieve good results when tracking

isolated targets in the scene. However, when dealing with a large amount of noise,

as it occurs with the axes size hj and wj more problems arise. This usually happens

because both the legs and the head are too thick, causing the background subtraction

to remove them if the noise is high. The consequence of this problem is a high

variation of the ellipse size between frames. When a target is lost, instead of maintain

the values between a certain range, it starts to decrease quickly (Fig. 1.3-(a)), which

is not desirable when trying to recover the tracking after a few iterations. This issue

becomes critical when a target is lost and its position has to be predicted. Thus, a

different low-level tracker is proposed, based in a classic linear filter (Adaline). The

prediction techniques behaves similar to the Kalman filter as the noise remains low.

However, when dealing with a large amount of noise, it is able to stabilize the value

near to the average, causing the model to perform better than the Kalman filter

under occlusions (Fig. 1.3-(b)).

The linear filter is used to predict the position of a target in a new frame. To
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Figure 1.3: (a) Kalman filter predictions (xtj and htj component). (b) Adaline filter pre-

dictions (xtj and htj component).

establish the similarity between a new detection and any given target, the method-

ology checks if the detection ellipse center fits within the target prediction ellipse.

Appearance tracker: Using the background subtraction information, an ap-

pearance tracker is performed in order to distinguish between different targets when

the low-level tracker cannot. A pool of histograms are used as target representation.

The proposed methodology uses L*a*b, which is a color-opponent space with dimen-

sion L for lightness and a and b for the color-opponent dimensions. Illumination is

isolated into one unique component, being easier to distinguish every target within

the scene by using the other two. Thus, the selected pool of histograms are the

following:

h = ω1L+ ω2a+ ω3b, (1.11)

(ω1, ω2, ω3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 1,−1)}.

The illumination component is kept as a backup in cases there is no enough

evidence to make a decision with the other histograms. All histograms are normal-

ized and discretized into 64 bins to perform the computation, forming a 320 feature

vector. The Bhattacharyya distance (Bhattacharyya, 1946) is used to compute the

similarity between two different pool of histograms.
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Collision Detection: The background subtraction technique cannot distinguish

between different targets that are close together. Thus, a different module is needed

in order to detect whether one blob contains more than one target. To solve that,

two different cases are considered

• Grouping event: A grouping event occurs whenever two or more target pre-

dicted ellipse centroids fit within an ellipse detection in the new frame. Note

that it is possible that one centroid of a tracking object could be within more

than one different predicted ellipses. In that case, only the ellipse which cen-

troid is closer to its centroid is considered.

• Splitting event: A splitting event occurs whenever two or more new ellipse

detections in the new frame fit within a group predicted ellipse centroid. The

same case mentioned on the grouping detection about centroids that fit within

two or more ellipses has to be considered.

After a splitting event occurs, the model has to re-identify every target involved

within the erased group. A re-identification technique must also be used after a

occlusion event. Thus, the high-level tracker is used to cope with this situation.

A recover id is confirmed whenever every color histograms pass the test using the

Bhattacharyya Distance.

Experimental Results: This approach was tested in two different datasets:

CANDELA Intersection Scenarios (CANDELA, Content Analysis and Networked

DELivery Architectures, Date accessed: february, 2015) and CAVIAR (CAVIAR,

Context Aware Vision using Image-based Active Recognition, Date accessed: febru-

ary, 2015). The CANDELA dataset videos take place outdoors, in an intersection.

Although the light conditions in these videos are good, these scenarios have a lot of

complexity. There are multiple object interactions in a short space of time, which

implies the system has to be robust against collision events. In Fig. 1.4 it is shown

how our algorithm can detect target collisions, and how it can successfully recover

the correct identifications after that.

On the other hand, the CAVIAR dataset contains 26 different videos using two

different cameras. Although state-of-the-art papers use the corridor camera to test

their algorithms, there is no frame without moving objects in the scene, so the

background subtraction algorithm cannot be successfully trained. Instead, the front

camera is used. Objects that are tracked within a group are considered as a correct

match. Table 1.1 shows the obtained results. Our method can successfully track

multiple target in non-crowded environments. Furthermore, our method can process
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(frame 495) (frame 495) (frame 565)

(frame 596) (frame 608) (frame 618)

(frame 623) (frame 947) (frame 1107)

Figure 1.4: Quick succession of people collision events. The system is able to recover the

previous id of all the four people involved in this collision.

more than 50 fps using a regular computer (Pentium Quad Core running at 2.40GHz

with 4 RAM GB), making it suitable to be used in real-time scenarios.

1.4.2 Multiple Human Tracking System for Unpredictable Trajec-

tories

As mentioned in section 1.1.2, it is very difficult to segment a pair of targets when

they are overlapped by using background subtraction techniques. Although the

frame rate of the previous approach is high (it can process more than 50 frames per

second), it is not a suitable methodology to deal with crowded scenarios. Thus, a

different multiple-target tracking approach, based in high-level detection techniques,

was developed (Cancela, Ortega, & Penedo, 2014).

The main idea of this research is the development of a pedestrian multiple-target

tracking system that can work under crowded scenarios, where it is not possible to

achieve a good background reference. At the same time, it has to be able to distin-

guish between pedestrians that are close together. Finally, similar to the previous

approach, the computational cost is a key factor. Thus, our research are focused in

reducing, as long as possible, the complexity of the methodology.

A combination between two different detection techniques (Viola-Jones and HoG
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Table 1.1: CAVIAR dataset results. Good results are achieved, having in mind our system

can be used in real-time scenarios.
GT MT PT ML IDS FRAG

Wu et al. (Wu & Nevatia, 2006) 144 72, 22% 23, 61% 4, 15% 13 42

Wu et al. (Wu & Nevatia, 2007) 189 74, 07% 21, 69% 4, 24% 19 40

Zhang et al. (Zhang, Li, & Nevatia, 2008) 140 85, 71% 10, 71% 3, 58% 15 20

Huang et al. (Huang, Wu, & Nevatia,

2008)

143 78, 30% 14, 70% 7, 00% 12 54

Xing et al. (Xing et al., 2009) 140 84, 28% 12, 14% 3, 58% 14 24

Li et al. (Y. Li, Huang, & Nevatia, 2009) 143 84, 60% 14, 00% 1, 40% 11 17

Song et al. (Song et al., 2010) 75 84, 00% 12, 00% 4, 00% 8 6

Ours 1 110 90, 00% 7, 26% 2, 74% 8 16

type-classifiers) are used to increase both the speed and the accuracy of the target

head detection. A particle filter is used to track every target in the scene, whereas an

appearance tracker is used to recover the identification of occluded targets. This ap-

proach is particularly appropriate for uncontrolled scenarios like sport events, where

it is difficult to predict the targets’ behaviour. Assume, for instance, a basketball

video. When an offensive player makes a crossover, or a fake movement, and the

defender falls into the trap, an associated based tracking would swap the identi-

fications, as Fig. 1.5 shows. Associated based tracking techniques assume target

motions are stable, i.e., linear and constant speed in a short period, being incapable

of dealing with big and unpredictable movements like that in sports. It is very

difficult anticipate that kind of movements.

Object Detection: To detect every person in the scene, this architecture follows

a similar approach than exposed in (M. Li et al., 2009): a Viola-Jones detector

is combined with a HOG featured based SVM in order to obtain a good balance

between accuracy and speed. The reason about combining two different classifiers is

related with the efficiency: as the HoG computational cost is high, a less expensive

technique is used to limit the positions where the HoG is computed. In this case, a

Haar-like method, the Viola-Jones type classifier, is used to detect head-shoulders

omega shape feature. This method reduces the computational cost. However, the

classification performance is poor. Thus, a HoG-feature SVM is used whenever

the Viola-Jones type-classifier obtains a positive match, whether to reinforce the

hypothesis or to refute it.

The target detection is performed as follows: First, a background subtraction

technique is used in order to restrict the regions in the scene where to perform the

next steps. Later, a Viola-Jones type classifier is applied in that regions, that is,
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(a) Real trajectories (b) Associated based tracking output

Figure 1.5: Associated based tracking issue. When dealing with sudden orientation

changes, associated based tracking swap the identifications.

(a) (b) (c) (d)

Figure 1.6: Particle filter error. Along successive frames, purple target is losing the quality

of the detection.

where movement is detected. Finally, the HOG feature based histogram is responsi-

ble for evaluating the Viola-Jones positive detections. To reduce the computational

cost of the Viola-Jones type classifier, only one patch size per pixel is taken into

account. To establish that, the object height h at the position i follows the equation

hi =
yi
yc

(vi − v0), (1.12)

being yi the 3D object size, yc the camera height, vi the position in the image that

is considered and v0 the horizon point.

Tracking System: Following the same reasoning explained in the previous ap-

proach, a bunch of adalines is used to predict the velocity of each target. Contrary

to the previously explained approach, only the velocity of the parameters related

with their position are detected, since the size of the patch is determined by using

Eq. 1.12, reducing the computational cost.

Prior to use any appearance tracker, the target detection technique explained

before is also used as part of the detection technique. The use of the detection

system can correct the error caused by the appearance tracker. For instance, in Fig.

1.6-(d), the purple target head is lost after using the appearance tracker during a
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few iterations, resulting in a bad performance. However, if the detection system can

successfully recover the head position, the error caused by the appearance tracker can

be reduced. The hungarian method (Kuhn, 1955) is used to perform the detection

assignment. Targets that are not associated with any patch detected by the Viola-

Jones type classifier are tracked by using the appearance tracker.

The combination between the Viola-Jones type classifier with the HOG-based

SVM achieves a high precision. However, the recall is low, causing the detections

module to often lose every target within the scene. A particle filter is proposed to

deal with this issue. The extracted local HOG features are used as object representa-

tion, whereas the Bhattacharyya coefficient compares a pair of appearance vectors,

which has been proved as a good method for tracking non-rigid objects (Comaniciu,

Ramesh, & Meer, 2000).

A particle filter is deployed for every tracked target. Let zj be a target previously

tracked, a number of particles are thrown following the equation

z̆t+1
j = z̃t+1

j + ω, (1.13)

where z̃t+1
j the predicted position of the target zj at time t + 1 and ω ∼ N(0,Σ)

is Gaussian noise. By adding the latter to the equation, a set of different particles

are obtained. The new target position is selected as the patch that maximizes the

Bhattacharyya coefficient between that particle and the target appearance.

Re-Identification Procedure: It is very difficult to re-identify a person by using

the head appearance. The head pose is critical: the appearance when a person is

looking to the camera is totally different compared with the pedestrian looking in

the opposite direction (skin vs hair). Thus, this approach proposes to define a

rectangle in the bottom of the head-shoulder detection as a simple body estimation.

This body estimation is split into different horizontal stripes, each one with its own

pool of histograms. Each histogram is normalized and discretized into N bins. A

modified Bhattacharyya coefficient is used to compare two different appearances,

since the metric has to take into account that some body regions may be occluded

and have to be avoided.

This approach takes advantage of one of the features explained in the previous

approach. Every time a target is lost, an ellipse representation of the blob that con-

tained the person is instantiated. This blob is followed over the entire scene. Thus,

the re-identification technique is only executed within that ellipse representations.

This restriction reduces the computational cost of the tracking system by delimiting

the number of re-identification procedure, as long as the possible wrong matches.

Experimental Results: A full sport event was recorded in order to test this
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Table 1.2: Tracking performance on the basket sequence for our tracking system. Different

configurations are shown, depending on the modules enabled.

Method MOTP MOTA Prec Rec

HOG head detections 75.6% 27.5% 55.3%

Our tracking with no Colli-

sion/Recovery System

77.5% 43.4% 48.8% 79.7%

Our tracking with no Background In-

formation

84.5% 48.1% 50.6% 92.0%

Our tracking with no HOG assist 80.7% 64.0% 85.0% 73.9%

Our tracking 84.5% 73.5% 88.2% 82.0%

methodology, consisting in a 3× 3 basket match. The video used in this test have a

640× 368 resolution running at 25 frames per second. Although it is not a heavily

crowded scene, it is a very challenging environment, since multiple situations occur

that usually do not happen under usual scenarios, including collisions, crossings,

sudden orientation changes, jumps or squatting people.

Both Viola-Jones type classifier and the SVM are trained by using the generic

dataset introduced in (M. Li et al., 2008). Head-shoulder detections in the scene

are assumed to have a 32 × 32 size, which is the same size used in the training

dataset. To perform the HOG feature extraction, each sample is divided into 64

cells. Defining 4 adjacent cells as a block, and using a one cell stride, 49 different

blocks are obtained. For each cell, a histogram of 8 different orientation bins is

computed and stored. Each block is also normalized.

In order to evaluate our system in a quantitative way, CLEAR standard eval-

uations tools are used (Stiefelhagen et al., 2007): MOTA (Multiple Object Track-

ing Accuracy), which take into account false positives, missed targets and identity

switches, and MOTP (Multiple Object Tracking Accuracy), which measures the av-

erage distance between true and estimated targets. A predicted bounding box is

considered correct if it overlaps more than 25% with a ground-truth bounding box.

A ground truth data is created, containing more than 10000 annotated heads.

Table 1.2 shows the obtained results. The combination of all the different techniques

used in this approach can increase the accuracy of the tracking system. Although the

number of switch identifications is similar in all different configurations, the recovery

system is able to revert the wrong matches, causing both MOTA and accuracy of

the system to be improved.

Contrary to our previous approach, this technique can only run 6 fps in a regular

machine (Pentium Quad Core running at 2.40GHz with 4 RAM GB). Both back-
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ground subtraction, the Viola-Jones type-classifier and the HOG-based SVM takes

near the 95% of the computational cost. However, these three methods are east to

parallelize by using GPUs, making this algorithm a solid starting point to achieve a

high-level real-time multiple-target tracking system.

1.4.3 Open-world person re-identification by multi-label assignment

Inference

One of the major drawbacks related with the previous approaches presented in this

research relies in how the multiple-target tracking systems can recover a pedestrian

identification after the target is lost during a large amount of time (seconds). This

problem is crucial if you plan to use multiple non-overlapping cameras, where a target

is lost right after leaving one camera and it cannot be recovered until reappearing in

another one. To solve this problem, our next contribution (Cancela, Hospedales, &

Gong, 2014) is focused in the re-identification field, introducing a new field of action

into the issue.

Classic Re-identification problem can be seen as a retrieval problem: given a

predefined ‘gallery’ set of known individuals, systems try to label each new ‘probe’

detection with the identity of the matching gallery individual. This is a good starting

point, but relies on two very strong assumptions: the total number of people in

the scene is known a priori, and it is always assumed that every person that is lost

reappears at some point. These constraints make the classic re-identification problem

to be unsuitable for real-world scenarios. We refer to this unconstrained setting as

the ‘open world’ ReID problem. The open-world problem is more challenging for

two reasons: (i) the total number of unique people in the scene is unknown, and (ii)

each subject may reappear or not in some unknown subset of the cameras.

In this approach we consider for the first time the most general open-world re-

identification problem, where there is no prior information about the number of

people. Our framework can answer qualitatively more general queries than existing

re-identification systems such as: How many people are in the scene?, If a person

leaves a camera, which other cameras did he appear in, or did he simply disappear?.

A new Conditional Random Field (CRF) model is introduced to overcome all the

issues presented in this open-world re-identification task.

Target appearance: To describe each pedestrian, an ensemble of localized fea-

tures (ELF) is selected: each target detection is split into six non-overlapped hor-

izontal stripes. For each stripe, 8 color histograms are computed and normalizes

(RGB, YCbCr and HSV (V is removed)) and 21 texture filters (Gabor, Schmid) de-
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Figure 1.7: CRF illustration. In the first step, only detections within the same camera are

connected. In the second step, a restricted connection between cameras is allowed.

rived from the luminance channel, resulting into a 2784-dimensional low-level color

and texture feature vector.

Re-Identification Procedure: A novel two-step Conditional Random Field is

presented. Fig. 1.7 shows an illustration about how the CRF model works. During

the first step, only connections between detections recorded with the same camera

are allowed. The output is used as input within the second-step, where a limited

number of connections are allowed.

The CRF is a network with N nodes and N different states, being N the number

of detections. The number of states and nodes are the same because it has to be

taken into account the extreme case where there is only one detection per person.

Each detections is defined as combination of five different properties: target ap-

pearance, camera that makes the detection, position within that camera, velocity of

displacement and time where the detection was made. A combination between all

this information is used to estimate whether two different detections belongs to the

same person or not. Two different distance metrics were tested: RankSVM (Prosser

et al., 2010) and KISSME (Kostinger, Hirzer, Wohlhart, Roth, & Bischof, 2012).

Both metrics were normalized into 0 and 1, in order to have a probability that the

two detections belongs to the same person.

Experimental Results: Our methodology is evaluated on the SAIVT-SoftBio

dataset (Bialkowski et al., 2012). 3 different cameras were considered, including

disjoint labeling (a person that appears in one camera may or may not appear in

the others). Fig. 1.3 shows the F1-Score obtained by our methodology, compared

against two different naive methods. Although the baseline methods obtain some-

what better recall, it is based on their non-conservative nature: the number of
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Table 1.3: Re-identification F1-Score among three cameras from SAIVT. The last column

shows the global performance. Other columns show local performance. E.g., C3-C8 shows

the quality of the connections between camera 3 and camera 8 when the whole CRF model

is computed.

C3 C5 C8 C3 - C5 C3 - C8 C5 - C8 Whole model

Naive RankSVM 31.7% 34.1% 27.1% 15.9% 20.1% 24.6% 26.2%

Naive KISS 32.6% 29.4% 34.7% 23.4% 31.0% 29.6% 29.5%

RankSVM+CRF 50.1% 41.1% 73.2% 18.2% 43.4% 32.4% 42.0%

KISS+CRF 57.3% 52.0% 70.0% 30.3% 47.6% 43.7% 48.3%

Table 1.4: Inferring the number of distinct people in the dataset.

Ground truth Naive RankSVM Naive KISS RankSVM+CRF KISS+CRF

48 61± 17.6 57.8± 11.2 65± 13.2 54.1± 7.9

different labels in the output is reduced, resulting in a huge increment in the num-

ber of false positives, resulting in significantly worse precision. Our CRF model is

more robust, as evidenced by its maintenance of high precision values. Moreover, it

improves both of the base methods it is paired with.

Our model it is also capable to successfully infer the number of distinct people

within the dataset. Fig. 1.4 shows how our CRF can overcome the baseline.

1.4.4 On the Use of a Minimal Path Approach for Target Trajec-

tory Analysis

As early mentioned, the tracking system is the base to perform a fully automatic

behavior analysis system. Then, a knowledge layer is added to the tracking system

to analyze the trajectory of each target. State-of-the-art path analysis techniques

were discussed in section 1.3.1. To summarize the drawbacks in these systems:

• Information a priori: A previous training is needed in order to establish what

is a normal behavior.

• Online updating: It is very difficult to adapt the models ‘on the fly’. At some

point, one usual path may be changed due to some problem (for instance, an

accident), causing a new usual path to appear. However, how can the model

realize that the initial path is no longer valid? The two trajectories tend to

coexist at the same time.

• Memory requirement: Related to the previous issue, the addition of new

trajectories causes the memory requirements to grow exponentially.
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• Occlusion impact: It is very difficult to achieve a perfect tracking system.

Consequently, small trajectory frames tend to appear in the model as com-

plete trajectories. Tracking failures highly impact in the quality of the system

response.

• Path length: State-of-the-art techniques require a target trajectory to be

finished in order to establish whether its behavior is normal or not.

Thus, our next contribution to this research is a novel behavior analysis approach

(Cancela, Ortega, Penedo, Novo, & Barreira, 2013) that can solve all the mentioned

problems. Contrary to classic clustering-based techniques, our contribution follows

a different approach. The key point is simple: to try to understand what is a normal

behavior. However, the solution is complicated to solve, because there exists some

degree of subjectivity in the answer. Thus, the definition of a normal behavior has

to be simple, using a minimum number of rules.

Minimal Path: Having this idea in mind, two hypotheses were made to establish

the common normal behavior:

Hypothesis 1 Each person tries to reach a geographic goal.

It is assumed that targets have the intention to reach some goal within or outside

the scene. As a consequence, people that are stopped or start to move erratic are

considered as abnormal movements.

Hypothesis 2 The trajectory used to reach the goal is ruled by the common pedes-

trian behavior.

This is the crucial point of the algorithm. In other words, this means that, when a

pedestrian tries to go to some location, it follows the same path that other people

used to reach the same goal. Note that this definition can also be successfully applied

to describe classic clustering-based techniques.

Thus, the goal of this methodology is to find the most used path that connects

the starting and the ending point of any given pedestrian. Mathematically, it is

equivalent either to solve this problem or its dual, that is, to find the path that

minimizes the inverse of the frequency of the targets. And this is a very interesting

feature, because this dual approach is the classic definition of the minimal path

search.

Instead of using classic graph-search algorithms which suffers from ‘metrication

error’ (Cohen & Kimmel, 1997), our solution is based in the use of geodesic active
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(a) (b) (c)

Figure 1.8: Fast Marching Method example. (a) Potential image. In red, initial point.

In blue, ending point. (b) FMM minimal action surface. (c) Minimal path, as a result of

applying the Heun’s method in the back propagation over the minimal action surface.

contours. Specifically, the Fast Marching Method (FMM) (Sethian, 1996) was used,

achieving a higher accuracy than the graph-search algorithms like A* or F*, while

maintaining the complexity of the algorithm (O(N logN)).

Discussion on the Potential: The FMM requires the definition of a potential

field in order to be used to establish the minimal path between two different points.

As defined in our hypotheses, our potential contribution is the inverse of the pedes-

trian frequency at each point of the image. However, different potential approaches

can be used. For instance, it is possible to introduce prior knowledge about the

scene by restricting some forbidden areas.

Our model is also capable to use multiple potential functions, depending on either

where is the initial point located or which kind of object is tracking (pedestrians,

cars, . . . ). The advantages of this technique is that the potential function is easily

updated: it only needs to take the output of the tracking method in order to update

the frequency of each scene point. Using the same reasoning, it is possible to initialize

the model with no information about the environment. That makes our model to

be used without any previous training step. The memory requirement is stable:

this technique only requires the definition of the potential function. The occlusion

impact is reduced, because even if the tracking system returns multiple fragmented

trajectories, the combination of all of them can be used to predict any possible

combination of these short paths. Finally, this technique do not require a complete

trajectory to analyze its behavior: it only requires an initial and an ending point.

Abnormal Behavior Detection: The FMM output, starting in any given initial

point, is a monotone surface. It only contains one local, hence, global minimum,

which is located at that point. To obtain the usual path between the starting point

and any other given point in the scene, only a back-propagation from the ending
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(a) (b) (c)

Figure 1.9: Matching trajectory methods. (a) Target route. (b) Minimal path route. (f)

Target route fitted into the distance map image. This route is really close to the minimal

path solution.

point is needed. That back-propagation follows the FMM surface maximum gradient

descendant. Fig. 1.8 shows an example about how to obtain an ‘usual path’.

Once the ‘usual path’ is computed, it has to be checked against the real path

performed by the target. In first place, a register technique was proposed to establish

a similarity between the real and the ‘usual’ path (Cancela, Ortega, Fernández, &

Penedo, 2011). However, this technique requires a complete path to evaluate the

target behavior. To avoid this limitation, a distance map is computed, containing

the minimum distance from any given point in the scene to the ‘usual path’. Thus,

two new metrics are introduced, the Distance Map (DM) and the Weighted Distance

Map (WDM), that computes the average distance of the real trajectory against the

‘usual’ one. The difference between both metrics rely in the FMM procedure: in the

second one, the FMM surface is not computed over the positions in the scene that

were not reached for any target.

Experimental Results: There is a huge drawback when testing any behavior

analysis methodology: there is no annotated dataset. Thus, it is very difficult

to compare any methodology against the state-of-the-art. In order to solve this

issue, a new dataset, Behavioral Analysis and Recognition Dataset (BARD) (BARD,

Behavioral Analysis and Recognition Dataset , Date accessed: february, 2015) was

created to test this methodology. This dataset contains human movements over a

crossroad. Usual movements cross the scene along the pavement, while abnormal

movements cross the grass. Different videos were used with a duration between one

and two minutes, resulting in more than 5000 samples. Fig. 1.10 shows the ROC

curve of our new metrics, compared against state-of-the-art vector distance methods.

Our methods clearly outperforms the baseline.
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Figure 1.10: ROC curve for the pedestrian trajectory analysis. Both DM and WDM

outperforms classic vector distance methods.

1.4.5 Path Analysis Using Directional Forces. A Practical Case:

Traffic Scenes

The use of a minimal path approach to detect abnormal behavior can successfully

detect whether a pedestrian trajectory is abnormal or not. However, there still exist

some limitations about where to use the model. One of the most critical issue is

related with the FMM nature: it does not take into account the orientation of the

motion. In other words, when potential is a scalar function, in does not depend

on the direction. That means the cost of reaching any point in the scene is not

influenced by the direction of the FMM wavefront expansion.

Although it is not a huge problem when dealing with people tracking, it is a

huge drawback in other scenarios, like the traffic analysis. The computation of the

minimal path surface has to take into account the orientation of the motion, the

lanes, etc. Thus, a more powerful technique is needed that can cope with the FMM

limitations.

In this approach, the use of the Ordered Upwind Method (OUM) (Sethian &

Vladimirsky, 2003) is proposed. This algorithm can deal with more complex Static

Hamilton-Jacobi equations, where information about the orientation of the motion

is included. In essence, the structure of the algorithm is somehow similar to the

FMM. It differs in two parts: (i) the number of nodes that have to be updated; and

(ii) the updating equation.

Discussion on the Potential: In this approach a two channel potential is

developed, containing the average velocity vector at each point of the scene. The
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Frame 500 Frame 1200

Figure 1.11: Minimal paths obtained in different times. The paths start from the upper-

right roundabout entrance, reaching all the departures. All the routes are updated at every

moment without needing to store all the different paths.

scene properties are also taken into account. Since this algorithm is focused in

tracking vehicles, the propagation technique is only allowed over the asphalt. Once

the surface of minimal action is computed, the ‘usual’ path is obtained by following

the same approach used with the FMM algorithm.

Experimental Results: To test this methodology,he traffic simulator PTV Vis-

sim provided by the PTV group was used. A turnaround scenario was chosen due

to its complexity: there is only one direction where to move within a turnaround,

making this a perfect scenario where to test this new methodology. Fig. 1.11 shows

the main routes obtained, in different times, by using our method. Two conclusions

can be derived from these results: (i) the OUM is able to take into account the

orientation of the movement when computing the minimal path approach; and (ii),

the method can detect changes in the usual behavior, modifying the path of the

usual routes.

1.4.6 Trajectory Similarity Measures Using Minimal Paths

The use of the OUM instead of the FMM increases the quality of the solution.

However, the computational cost is also increases (O(N logN) in the case of FMM

and O(ΥN logN) the OUM). When dealing with pedestrian behavior, the results

do not differ between these two techniques. Thus, FMM is going to be used in the

successive improvement of this pedestrian abnormal behavior approach.

Two huge drawbacks remain in our minimal path behavior algorithm:

• Distance Map computational cost: The computation cost of the Distance Map

mentioned in section 1.4.4 is similar to the FMM (O(N logN)), which is re-

ally high. The FMM surface is computed only once per target, whereas the

Distance Map has to be computed every time a behavior analysis is launched.
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• Isolated obstacles: If, for instance, there is some isolated obstacle in the middle

of a possible ‘usual’ track, the target has to avoid it. However, which side is

going to take to do that? Left or right? Both decisions results in an ‘usual’

path. However, the initial model only returns one option.

In our next research (Cancela, Ortega, Fernández, & Penedo, 2013), a new be-

havioral metric function is defined that can cope, at the same time, with these two

issues. A new technique is developed by using the minimal path algorithm prop-

erties, obtaining a metric without increasing the computational time, solving the

distance map computational disadvantage.

Discussion on the Potential: Two different potential images are used in par-

allel. The first one is the same potential image used in previous approaches. This

potential is used to determine the order in the front propagation procedure. Every

time the FMM surface is update, another surface is also computed using a constant

potential. If a constant potential is used in a FMM approach, a distance map is

obtained. But this distance map is different from the one previously used: instead

of having the distance between any point with respect to the ‘usual’ path, it contains

the distance between any given point to the initial point used to compute the FMM.

How can this property be relevant? A new hypothesis is established in order to

take advantage of this new approach.

Hypothesis 3 Having an ‘usual’ behavior, the difference between the target real

length and the minimal path trajectory length tends to zero.

Having this in mind, different metrics are presented for detecting abnormal be-

havior. All these metrics are based in two different equations. The first one tries to

obtain the relation between the target route and its associated minimal path. It is

called the Minpath Relation (MR), and is defined by

MR(pN ) =

(∑N
i=2 d(pi−1, pi)

D(pN )
− 1

)2

, (1.14)

where p = {p1, . . . , pN} is the real target trajectory and D(pN ) is the distance map

value at the end of the trajectory. The second one tries to detect local variations in

the MR metric. It is called Local Minpath Relation (LMR), and is defined by

LMR(pN ) =

(
d(pN−1, pN )

D(pN )−D(pN−1)
− 1

)2

. (1.15)

In both metrics, values close to 0 mean the path is correct, while higher values

could indicate an abnormal behavior.
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Figure 1.12: ROC curve. Our new metric outperforms the baseline methods, with the

exception of the Weighted Distance Map. However, the computational cost allows our new

method to be more suitable to be used in real-time environments.

Experimental Results: Our Behavioral Analysis and Recognition Dataset (BARD)

(BARD, Behavioral Analysis and Recognition Dataset , Date accessed: february,

2015) was used again to test these new metrics. Fig. 1.12 shows the new results

compared against the results obtained using both state-of-the-art and our previous

metrics. Different comparisons show that the Mean Minpath Relation achieves the

better results of our new metrics. Compared with previous results, it is found that

the Weighted Distance Map developed in our first minimal path approach achieves

the higher results. However, the results are pretty similar. What is more important,

the new metric reduces the computational cost from O(N logN) to O(1), meaning

this new method is more suitable for being used in real-time applications.

1.4.7 Unsupervised Trajectory Modelling using Temporal Informa-

tion via Minimal Paths

All the methodologies presented in this research were focused in detecting trajectory

‘abnormal’ behavior. However, only the shape of the path are taken into account.

There is no information about how the trajectory was performed, that is, the velocity

of the target is not taken into account.

Knowing the distance map from the beginning presented in the previous subsec-

tion results in a good metric to model pedestrian trajectory behavior, it is possible

to use the same approach but introducing extra information about the environment.

In this contribution (Cancela, Iglesias, Ortega, & Penedo, 2014), a temporal surface

is introducing, enabling our minimal path technique to include the velocity into the

pedestrian behavior analysis. Using the same parallelization exposed in the distance
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Figure 1.13: Discretized grid structure. ρ is the number of times a target reaches the point,

whilst f and v are both the number of times a target crosses the path in each direction, and

their most common speed.

map from the beginning technique, the inclusion of this new surface does not affect

the complexity of the algorithm.

Discussion on the Potential: Contrary to our last contribution, a new potential

is provided to introduce orientation information in the front propagation procedure.

In early attempts, each point in the scene only stores the number of people that

reaches it. In this new approach, extra information is added:

• Orientation information: Four different directions are taken into account, as

depicted in Fig. 1.13 (north, south, east, west). The potential includes, for

any given point, the number of people who, after reaching it, follows any of

the four different directions.

• Velocity information: Following the same idea developed in subsection 1.4.5,

for each one of the four predefined directions, the most probable velocity is

stored.

To compute the time surface, the same technique explained in section 1.4.6:

Every time the FMM surface is update, the time surface is also computed by using

the velocity information as potential. Only the velocity stored in the direction of

the motion is used; the others are discarded.

Again, different metrics were performed to establish if a target behavior is ‘usual’

or not. The metrics follows the hypothesis

Hypothesis 4 If a path p = {p1, . . . , pN} have an usual behaviour, then ∀pp ∈
, Tp ≈ tp,
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where tp is the real time trajectory at point p and Tp is the expected one. In other

words, it says that the relation between the real and the expected time is
Tp

Pt(p)
≈ 1.

Having this idea in mind, a new metric called it Time Log-Likelihood (TL) was

created, defined by

TL(pN ) = ‖ log(TpN )− log(tpN − tp0)‖. (1.16)

Values close to 0 mean the path is correct, while higher values could indicate an

abnormal behaviour. As in early attempts, this final point mentioned in this metric

is not necessarily the moment when the target leaves the scene. It is only a moment

when the trajectory is evaluated. This strong advantage allows this method to be

used in real-time systems, since the computational complexity of the metric, once

the surface T is computed, is O(1).

Experimental Results: Intuitively, the idea about using a time surface field

to model human trajectory behavior seems plausible. However, what happens in

crowded scene, when some people may affect the behavior of the others. In order

to have an answer to that question, this methodology was tested in two different

scenes: a parking lot and a train station.

When trying to test any trajectory analysis, the same problem arises: there is

a total absence of ground truth information. It is very hard to define whether a

trajectory is normal or not. In related papers, they use some visual information

to probe its effectiveness (Wang, Ma, Ng, & Grimson, 2008), (Wang et al., 2009),

(Wang et al., 2011), (B. Zhou, Wang, & Tang, 2012). However, a different statistical

approach was used in this contribution. Since all the earlier attempts to model the

human trajectory behaviour have used some learning methods to determine the usual

behaviour, we extract the idea that, having no information about the environment,

every method consider the most usual paths as normal movements, being the outliers

the abnormal ones.

Ideally, we expect an abnormal behaviour measure to have an asymptotic curve,

like 1
x , where the most part of the trajectories are normal, with a few abnormal

movements. That is, the more erratic a trajectory is, the lower frequency it has.

Fig. 1.14 shows how our method, even under crowded scenes, obtains the expected

solution. We can conclude that the effect caused in a target by the rest of the people

is not as huge as one may think. And with this hypothesis, we can pre-compute

the time surface at the beginning without significantly increasing the metric error.

Having this in mind, computing the behaviour at each position can be done in

constant time.
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Figure 1.14: Train Station Dataset statistical results. The results suggest the effect of the

rest of the people in a crowded scene has little impact in a target behaviour.

1.5 Conclusions

In this research, different modules for a fully-automatic pedestrian behavior analysis

system are presented. The combination between these proposals led to a novel

behavioral system based in information about the environment.

Tracking: Two different multiple-target tracking approaches are presented. The

first one introduces the use of a hierarchical structure. A background subtraction

in combination with two different trackers are used to track every possible target

within a scene. A low-level tracker based in a velocity prediction using Adalines is

used to track every isolated object, while the high-level tracker, which stores every

object appearance using a fixed pool of L*a*b-space color histograms, is used to

manage the occlusion and collision events. Experimental results in a public dataset

(CAVIAR) proves both the accuracy and the low computational cost of this model

(it can be used in a regular machine) under non-crowded scenarios.

Additionally, a high-level multiple-target tracking is presented to track people

under uncontrolled scenarios. A combination of two different classifiers, a Viola-

Jones and a SVM, are used to detect every person in the scene because of the

head-shoulder omega-shape feature. A background subtraction technique is used to

restrict the image location in which the classifiers are used, and also to perform a

torso estimation to confirm the positive solutions. Two different trackers are used. A

feature-based particle filter system, in combination with a velocity prediction system

based in linear filters, is used to track the head-shoulder shape along the frames. A

high-level tracker, which stores every people appearance into a fixed pool of L*a*b-

space color histograms, is used to recover identifications which are previously lost.
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show the improvement of this methodology with respect to other similar people

detection techniques. The procedure speed indicates that is possible to obtain a

real-system framework using parallelism techniques. This approach highly improves

processing times of previous approaches to this topic. Since the techniques used

in this methodology are mainly computed pixel per pixel, the inclusion of GPU

programing techniques could derive in a real-time system for tracking people under

crowded scenes.

Behavior Analysis: Contrary to classic state-of-the-art approaches, a novel

methodology to detect abnormal behavior is presented. Based in a set of hypothesis,

a new technique based in information about the environment is provided. Requiring

only the trajectory of each target, a minimal path approach is used to successfully

determine whether a path is abnormal or not. Our system is able to operate with

partial information, that is, multiple fragments can be used to model a complete

path. It requires constant memory, and it can be easily updated with the information

that is constantly provided by the tracking system. Different potential images were

defined to be used in our minimal path algorithm, proving that our system can be

either run with or without any information a priori about the environment.

Although our first approach contains different limitations, it was improved with

successive proposals. Thus, the model was extended to work under directional forces

like traffic analysis, where the orientation of the motion is also important. The com-

plexity of the distance metric was reduced from O(N logN) to O(1) by introducing a

novel distance map that can be computed in parallel with the minimal path surface.

Finally, velocity was also introduced in order to create a temporal surface, enabling

our model to work under crowded scenes.

This thesis demonstrates our new context-based behavioral model introduces

simplicity in the definition of trajectory behavior without reducing its quality results.

The improvements show this model is a fast an easily scalable approach to model

pedestrian behavior.

1.5.1 Future Work

Related to the tracking improvements, we propose to parallelize our high-level

multiple-target algorithm (section 1.4.2) in order to it them useful in real-time sce-

narios. Additionally, we propose to use the most recent deep learning techniques to

create a new target appearance vector for re-identification.

As mentioned in section 1.4.5, the inclusion of directional forces resulted in an in-

crease in the computational cost of the algorithm (fromO(N logN) toO(ΥN logN)).
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Thus, we propose to develop a new one-loop algorithm to solve the Hamilton-Jacobi

equation, while maintaining the FMM complexity.

What is more interesting is what was achieved in the last contribution on this

thesis (section 1.4.7). We conclude that, even in crowded scenes, the model behaves

correctly. What is also important, the model is able to detect failures in the tracking

system. Thus, we propose to change the established state-of-the-art behavior system

structure to an hybrid one. That is, instead of using the tracking information to

model the pedestrian behavior, we propose to use the context-based metrics to

improve the tracking system.

Related to the latter, we also propose to use the minimal path model to build a

long-time prediction system. The new architecture will try to answer the question:

if a target is lost during the tracking procedure, where can it reappear after a certain

number of frames?
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a b s t r a c t

Multiple-target tracking is a challenging field specially when dealing with uncontrolled scenarios. Two
common approaches are often used, one based on low-level techniques to detect each object size, posi-
tion and velocity, and other based on high-level techniques that deal with object appearance. None of
these methods can deal with all possible problems in multiple-target tracking: environment occlusions,
both total and partial, and collisions, such as grouping and splitting events. So one solution is to merge
these techniques to improve their performance. Based on an existing hierarchical architecture, we pres-
ent a novel technique that can deal with all the mentioned problems in multiple tracking targets. Blob
detection, low-level tracking using adaptive filters, high-level tracking based on a fixed pool of histo-
grams and an event management that can detect every collision event and performs occlusion recovery
are used to be able to track every object during the time they appear within the scene. Experimental
results show the performance of this technique under multiple situations, being able to track every object
in the scene without losing their initial identification. The speed processing is higher than 50 frames,
which allows it to be used under real-time scenarios.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, object behavior detection is one of the most promis-
ing techniques in the field of automatic video-surveillance sys-
tems. These techniques have a huge variety of applications like
detecting abnormal movement over crowded scenes, or monitor-
ing isolated objects, within a scene, to study their behavior.

The quality of these techniques largely depends on the tracking
algorithm used. It is crucial to detect every object of interest within
the scene. Target tracking is a problem far from being solved.
Although there are many techniques that are able to detect isolated
objects, when they have to manage multiple objects their perfor-
mance decreases. There are two huge problems which have to be
solved in order to obtain a good multiple target-tracking algo-
rithm: long time occlusions and collisions.

A collision occurs when two or more objects interact within the
scene. The most usual is a trajectory cross, which often causes the
objects to be overlapped. This is a hard problem to be solved, be-
cause tracking systems tend to detect only one object during the
cross. These algorithms have to develop a collision routine in order
to detect every object involved in the event and be able to, after the
collision expires, to successfully identify all of them.

On the other hand, long-time occlusions could happen in multi-
ple situations, such as an object leaving the scene and re-entering
later or a partial occlusion caused by fixed objects between the
camera and the moving object, like a traffic light, for instance. Also
a bad blob detection technique, could cause this problem. The dif-
ficulty of this issue is to identify the same object again after the
occlusion.

There are many different approaches in the literature for object
tracking. They can be classified into two big groups: low-level ap-
proaches and high-level approaches. Low-level approaches track
every object within the scene without taking any appearance prop-
erties. They track the position of each object and match every
tracking object between frames based in prediction techniques.

In Haritaoglu, Harwood, and Davis (1998), the W4 algorithm
employs second order motion models to predict the position of
each tracking object between frames. It is based in the fact that,
during people tracking, the motion of each person is relatively
small with respect to the frame rate, which causes little changes
in the silhouettes between frames. The estimation involves a pre-
vious median filter to avoid the noise. The system can track every
person even under occlusion events, but fails when it has to deal
with collision events. Other similar methods, like Pfinder (Wren,
Azarbayejani, Darrell, & Pentland, 1997) are based on Gaussian dis-
tributions. This representation has multiple limitations when deal-
ing with occlusions and collisions because, during a collision event,
the representation of two different tracking objects are merged,
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making it very difficult to identify each object after the occlusion
using only position properties. In objects with low changes of
movement, like cars,it is possible to obtain a correct identification
using a prediction technique, but this is not feasible when dealing
with objects quickly changing their orientation. One example of
this situation are the human beings.

More complex methods are based on Mixture Models. In Stauf-
fer and Grimson (2000), a technique based in a Gaussian Mixture
Model is used to make a blob subtraction. The advantage of this
method is that it is updated at every time step, so no time to train
is needed. However, this update causes a bad estimation if the
tracking object stops. After a few iterations, the tracking object will
be set as part of the background. These problems also occur in Jep-
son, Fleet, and El-Maraghi (2003), where a recursive update of a
Gaussian Mixture is used to track human faces. It can cope with
partial occlusions, but fails when dealing with both total occlusions
and collisions, since it is implemented to track isolated people.

Techniques based on predicted position are used in this topic
too. Rohr (1994) introduces a bunch of Kalman filters in order to
predict the target position under noise conditions. Huang et al.
(1994) use an optical flow detection technique to detect vehicles
in an automatic surveillance system. These methods fail when
dealing with object collision, and when the tracking object stops,
causing a missing target.

Kernel density estimation can track both occlusions and colli-
sions (Elgammal, Duraiswami, Harwood, & Davis, 2002). However,
it has to make some assumptions and restrictions to obtain good
results. They assume that all the tracking objects are isolated the
first time they appear on the scene, something that does not al-
ways happen in real surveillance systems. Also the high memory
requirements and the computational complexity makes the algo-
rithm useless under real-time tracking. An approximation to this
technique can deal with real-time systems (Han, Comaniciu, Zhu,
& Davis, 2008). However, this particular approach does not take
into account multiple targets.

As we can see, low-level trackers are a good choice to track an
isolated target. They can deal with partial occlusions, but fail when
total occlusions or collision occurs. On the other hand, high-level
approaches try to learn complex templates a priori in order to do
pattern matching. They are mainly focused on target appearance.
Collins, Liu, and Leordeanu (2005) use a pool of ‘best feature’ histo-
grams to identify each tracking object. Each histogram is a linear
combination in the RGB-space color, and the quality is obtained
with a comparison against the near background. This method only
takes into account single targets, and the comparison against the
background makes the pool change quickly under heterogeneous
background, which is an undesirable effect.

In Comaniciu, Ramesh, and Meer (2003), the mean shift is
presented. It is a powerful technique that can locate each target
by performing a gradient-descent search on an image region of
interest. However, this method does not take into account multiple
targets, and the initialization is not automatic. Also the appearance
is never updated. Nummiaro, Koller-Meierb, and Van Gool
(2003)introduce a particle filter based on color-histogram. No
multiple target is considered, and the observation is computed
using the predicted position, which introduces errors in the match-
ing. On the other hand, occlusions are considered and solved under
isolated tracking conditions. In Xing, Ai, and Lao (2009), a particle-
filter is used to track every moving object, while it is stored in a
temporal sliding window. Occlusion problem is solved using a
detection response, which creates a set of potential tracklets. Trac-
klets from the particle-filter are associated with these potential
tracklets by the Hungarian algorithm. Speed algorithm is low to
be used in real-time applications.

Li, Zhang, Huang, and Tan (2009)track every person within a
scene locating the omega-shape as a result of the head and

shoulders pattern. A Viola–Jones system is trained and the system
obtains good results in tracking isolated people. However, it has
problems dealing with occlusions and collisions. In some cases,
the mean-shift algorithm used cannot show differences between
tracking objects. More generally, MacCormick and Blake (1999)
use probabilistic methods to track any shape they want, but do
not take into account collision scenarios.

Wu and Nevatia (2006, 2007) use a body-part scheme to locate
every human in the scene. This method can deal with total and par-
tial occlusions, but the algorithm speed is very low to be used in
real-time scenarios. In Zhang, Li, and Nevatia (2008), a network
flow augmented with an Explicit Occlusion Model is used.
Although the algorithm speed is fast, a frame window is needed,
which demands high memory requirements in real-time scenarios.
In this case, a sliding window is used to obtain good results. A sim-
ilar idea is performed by Song, Jeng, Staudt, and Roy-Chowdhury
(2010).

Both low-level and high-level trackers have advantages and dis-
advantages. There is no method that can deal with all the problems
we mentioned before. So, a proper mixture of these techniques is
one option. Rowe, Reid, González, and Villanueva (2006) intro-
duced a hierarchical architecture to cope with all problems, as in
Huang, Wu, and Nevatia (2008) and Li, Huang, and Nevatia
(2009). A bunch of Kalman filters are used to predict each target
position, while a bunch of histograms model its appearance, using
the method explained in Collins et al. (2005). Both trackers work in
parallel and they are needed to perform a match. An event man-
agement is also used to detect the collisions produced by the tar-
gets. The algorithm can deal with occlusions and collisions in
homogeneous scenarios with the absence of noise, but the id
recovery after a collision event in heterogeneous scenarios per-
forms bad results.

In this work we present a new strategy for multiple-target
tracking that can solve part of the problems presented in previous
hierarchical approaches. In first place, a blob detection is per-
formed. Different background subtraction algorithms were tested,
and their application depends on the scenario conditions. With
the blobs detected, they are modeled using both an ellipse repre-
sentation to perform the position and size, and a pool of histo-
grams to model its appearance. Contrary to the method
explained by Collins et al., we use a fixed pool of histograms to im-
prove the results under non-homogeneous background scenarios.
The use of alternative space color models is needed.

Two different trackers are used, but not in a parallel way. Low-
level tracker is used when dealing with isolated targets, which ob-
tain better results than other techniques. A new prediction tech-
nique based on Adalines is presented, which is more stable than
Kalman filters in occlusion cases. Additionally, the pool of histo-
grams is updated every iteration.

A new collision technique based in the ellipse properties is pre-
sented in order to detect target collisions. During these events, the
high-level tracker is used to cope with target id recovery. Once the
collision finishes, the tracker can recover every id using the target
appearance.

This system is able to detect every tracking object in the scene,
and preserve its identification until it leaves the scenario. Our ap-
proach is particularly appropriate for real-time systems such as
surveillance applications.

This paper is organized as follows: Section 1 shows different ap-
proaches to solve this problem, introducing our solution, whereas
Section 2 describes the method used to detect every tracking object
in the scene; Section 3 explains the trackers used, Section 4 ex-
plains the algorithm used to combine each tracker and to detect
occlusion and collision events; finally, Section 5 shows some
experimental results and Section 6 offers conclusions and future
work.
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2. Blob detection

First, we have to perform a technique to detect every moving
blob within the scene. We need a technique that can enable us to
obtain, for each blob, both spatial values like position and size,
and appearance properties.

Hence, we decided to perform a background subtraction in or-
der to detect all the moving blobs within the scene. We consider
as moving blobs all the objects that are not considered as part of
the background, even if they are stopped. Due to this condition,
we decided to discard optical flow techniques. Different ap-
proaches to background subtraction are presented in the literature.

Horprasert, Hardwood, and Davis (2000) used a method based
on a color background-subtraction. For each pixel, two different
parameters, chromaticity (CD) and brightness (a), are computed
and normalized using linear combinations of RGB color-space sta-
tistical properties. Using four different thresholds, a mask image M
indicates the type of each pixel. Four different categories are pre-
sented: original background, highlighted background, shadow or
moving foreground. A pixel is classified as moving foreground if
the chromaticity is different from the expected or if the brightness
is lower than a threshold salo. Although the other thresholds can be
selected using an automatic method, salo needs to be chosen man-
ually. Unfortunately, this parameter is very dependent on the light-
ing condition, which varies in every scene. Thus, a bad calibration
of this threshold introduces a lot of noise.

Maddalena and Petrosino (2008) use a self-organizing map to
model the background. Each background pixel is represented as a
set of n � n weight vectors, typically n = 3. The method obtains
good results, but the processing time is too high to be used in
real-time systems.

Stauffer and Grimson (1999) store the background as a Mixture
of Gaussians (MoG). A bunch of Gaussians, typically three, are used
to define each background pixel. If a pixel value does not fit into
any of the background distributions, it is considered as foreground
until it is included into a Gaussian with enough evidence. Thus, this
is a dynamic model which is updated at every frame using a
parameter a. In order to maintain stopped objects as part of the
background, a value must be very low. Even the initial model runs
in the RGB-color space, it can be used in others, like L*a*b, obtain-
ing good results under sudden illumination changes. However, a
lot of problems are introduced when dealing with objects whose
colors are similar to the background. It cannot handle them.

Kim, Chalidabhongse, Harwood, and Davis (2005) use a code-
book. Each background pixel consists of one or more codewords.
Not all pixels have the same number of codewords. The brightness,
frequency of occurrence, the longest interval during the training
period in which the codeword has not occurred and the first and
last access time are stored into each codeword. Testing the differ-
ence between the current image and the codebook we can detect
the foreground pixels. This method can be used in a dynamic or
a static way, depending on if we want to update the background
model or not, respectively. In our case, as we explained before,
we choose the static model. Doshi and Trivedi (2006) combine
the codebook model with the shadow suppression in HSV-color
space (Cucchiara, Grana, Piccardi, Prati, & Sirotti, 2001) to improve
the methodology.

Each method has been tested. As we explained before, the self-
organizing map was discarded. The method used by Horprasert
needs to tune manually an extra parameter, which produces poor
results if it is not chosen correctly (Fig. 1(b)). Both MoG and code-
book have good results, as we see in Fig. 1(c) and (d). Since we can
use the codebook in a static way and it is faster than the MoG, we
selected it as our background subtraction method. Contrary to the
Doshi et al. approach, we perform the codebook in the YCbCr-color

space and, after that, we perform the shadow detection performed
by Cucchiara et al. We proceed that way because our tests show
that the background subtraction obtains better results in the
YCbCr-color space rather than the HSV-color space, but the shadow
detection is easily detected in HSV. So, we combine these color
spaces to obtain a better result.

In order to remove noise in the background subtraction, we per-
form the following procedure: first, we remove isolated pixel. Hav-
ing a foreground pixel, we check the neighborhood. If there is no
pixel marked as foreground in the top and in the bottom or in
the left and in the right, we remove it. Basically, we remove every
pixel which is part of a 1-pixel thick object. Second, an opening
morphological operator is used in order to fill the blobs. Finally, a
minimum-area filter is used. Fig. 2 shows the results after applying
noise removal.

3. Tracker pool

As mentioned before, two different trackers are used to cope
with the problems explained in Section 1: a low-level tracker,
which is going to be used to track every isolated object, and a
high-level tracker, which is necessary when dealing with occlusion
or collision events. This section introduces our proposal.

3.1. Low-level tracking

Once the background subtraction is made, we group every pixel
into blobs and we represent it as an ellipse. There are many other
possibilities to define each blob, however, we find this representa-
tion good enough to identify each object. Moreover, the ellipse
properties will be useful when dealing with object collision. Thus,
for every j-observed blob at the time t is represented as

zt
j ¼ xt

j ; y
t
j ; h

t
j ;w

t
j ; h

t
j

� �
; ð1Þ

where xt
j and yt

j are the ellipse centroid coordinates, ht
j and wt

j are
the size of the major and minor axes and ht

j represents the ellipse
orientation.

Having five components identifying each blob, each object can
be tracked around the scene. Our next goal is to identify the same
object between frames. In this scenario the blob detection could
lose a blob under a few frames, due to bad background subtraction
or because the blob does not have the minimum-area required to
be considered. Hence, we propose a model to be able to predict a
blob position, knowing its previous ones, without any information
about the blob appearance, only the position over the frames. One
of the most popular methods for prediction is the linear filters, par-
ticularly the Kalman filter (Kalman, 1960).

The Kalman filter is a recursive algorithm which is able to
predict the position under noise conditions. It uses a target state
and a transition model to obtain the expected position, and it is
updated using the correction between that position and the real
measurement obtained. It works in two steps: first, a prediction
is made and second, the observed measurement is used to correct
the filter. This method is used in many tracking systems. For
instance, in Rowe et al. (2006), the target-state for an ellipse
representation is defined by zt

j ¼ xt
j ; _xt

j ; y
t
j ; _yt

j ;h
t
j ;

_ht
j ;w

t
j ; _wt

j ; h
t
j

� �
,

where _et
j ; e 2 fx; y;h;wg represents the velocity of each compo-

nent. The velocity of ht
j is not computed because it is considered

as noise. Using a transition matrix which adds the velocity of each
component to predict the new position and using both measure
and process diagonal covariance matrices we obtain accurate
results.

Fig. 3(a) shows the prediction in an increasing function with
little noise. As we see after the time 25, the target is lost and the
Kalman filter obtains goods results predicting the position of the
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xj components. However, when dealing with the axes size hj and wj

more problems arise. Usually, the size is always the same between
frames, or it is increasing or decreasing slowly, if the blob moves

toward or away, respectively. The problem is that both the head
and the legs are too thick, which means that they can be erased
during the background subtraction. This means that the size of

Fig. 1. Background subtraction: (a) frame, (b) Horprasert method, (c) MoG method, and (d) codebook method with shadow suppression.

Fig. 2. Background subtraction processing: (a) frame, (b) codebook background detection, (c) 1-pixel thick removing, and (d) opening morphological operator.
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the ellipse could vary between frames, making the prediction
really difficult to achieve. Fig. 3(b) shows an artificial example of
the ellipse size. The average is 60, but the values vary quickly.
When the target is lost, instead of maintaining the values between
the range, it starts to decrease quickly, which is not desirable if we
want to recover the tracking after a few iterations. So, our goal is to
develop a new model to be able to cope with this problem.

Our approach also involves linear filters. However, instead of
using the Kalman filter, we propose the use of adaptive filters
(Adalines). An Adaline is a basic neural network consisting in M
different inlets and only one outlet. Each Adaline has a weight
vector W = {wk}, k = 0 � � � (M � 1) and the output is defined by:

Otþ1 ¼Wt � It ; ð2Þ

where Ot+1 is the output value at time t + 1, Wt is the 1 �M weight
vector and It the M � 1 inlet vector at time t. The output value
corresponds with the predicted position. As the Kalman filter, the
weight vector is updated using the difference between the expected
position and the new measurement. In our case, instead of trying to
predict the position of each component, we only try to predict their
velocities, adding them to the previous position in order to obtain
the prediction. We also make the assumption that the velocity of
the ellipse orientation ht

j is mostly due to noise. This is so because
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Fig. 3. Kalman filter predictions: (a) xt
j component and (b) ht

j component.
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little changes in the blob could cause huge changes in the orienta-
tion. Thus, we are not going to compute it.

Hence, we have four different Adalines, one for each velocity
component. To calculate the vector It we have to store the M + 3
previous positions. Thus, the j-observed inlet velocity vector at
time t is given by:

_et
j ¼

eh
j � eh�3

j

3
; e 2 fx; y;h;wg; h ¼ ðt �M þ 1Þ � � � t; ð3Þ

where e represents each ellipse component except the orientation.
Basically, what we are doing is a simple upwind finite difference
scheme followed by a mean smoothing, which results in this equa-
tion. Then, the predicted position of the j-observed blob is given by

~etþ1
j ¼ et

j þWet
j � _et

j ; e 2 fx; y;h;wg; ð4Þ

and, once we know the new measurement ztþ1
j , the equation to up-

date the weights is

Wetþ1
j ¼Wet

j þ a � etþ1
j � ~etþ1

j

� �
� _et

j ; e 2 fx; y;h;wg: ð5Þ

Using this method we obtain a better approach to our goal than
the Kalman filter. Fig. 4(a) shows that the response to an increasing
function is similar to the Kalman filter. However, in Fig. 4(b) we
can see that the prediction becomes stable after the target is lost,
which will be very useful in the next steps.

Once we develop a method to predict the position of each blob,
we need a metric in order to determine when a blob in a new frame
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Fig. 4. Adaline filter predictions using a window M = 3: (a) xt
j component and (b) ht
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corresponds with an existing object which has been tracked before.
There are different metrics that we can use to solve this question.
For instance, the euclidean distance. In Rowe et al. (2006), they use
a property of the Kalman filters, the innovate covariance matrix Sk,
to perform the matching. In our experiments, all the values of S�1

k

tend to zero quickly. This means that a blob can be matched with
an existing tracking object even if they are not close together.

In our approach we make an assumption, that every object in
the frame moves slowly enough compared to the frame rate. This
means that the blob in the new frame associated with an existing
tracker must be really close to the predicted one. As we calculated
before in Eq. (4), we have a predicted position of the j-observed
blob at time t þ 1; ~ztþ1

j ¼ ~xtþ1
j ; ~ytþ1

j ; ~htþ1
j ; ~wtþ1

j ; ht
j

� �
. As we said, we

consider the velocity of ht
j as noise, so the predicted orientation

is the same as the previous one. With these assumptions, we made
the following hypothesis: it is highly probable that the ellipse cen-
troid of the blob in the new frame associated with the j-observed
blob fits within the predicted ellipse ~ztþ1

j . This is the reason why
we need the predicted size of every blob to remain stable under
occlusion events. If the size of the predicted ellipse grows quickly,
the method would be useless.

Fig. 5 illustrates the case of a positive match. We have a blob
tracked at time t, and we calculate the predicted position at time
t + 1. At time t + 1, the ellipse centroid that matched with the track-
ing object fits within the predicted ellipse.

To determine if a point is within an ellipse we are going to use
the ellipse properties. The ellipse z = (0,0,h,w,0) has the following
equation that satisfies every point in the boundary:

x2

h2 þ
y2

w2 ¼ 1; ðx; yÞ 2 boundary: ð6Þ

Particularly, every point within the ellipse satisfies that

x2

h2 þ
y2

w2 < 1: ð7Þ

So, having an ellipse zt+1 = (xt+1,yt+1,ht+1,wt+1,ht+1), if we want to
determine if it is matched with the j-observed blob, we make the
following transformation:
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where (xz,yz) represents (xt+1,yt+1) under ~ztþ1
j coordinates. If

x2
z

~htþ1
j

� �2 þ y2
z

~wtþ1
j

� �2 6 1, the centroid is within the ellipse.

This method will also be used to detect different object colli-
sions, which will be explained later. Once we have the metric to as-
sign new frames to each tracking object, we are able to start the
low-level tracker to track every object within the scene. To distin-
guish every blob tracked in the scene, a unique color is assigned to
each one, which is also used as the blob id. The method works as
follows: when a new frame arrives, the background subtraction
is made, detecting the foreground blobs in the scene. Then, we
compare each blob with the tracking objects obtained in previous
scenes using both the Adalines to predict the new position and
the ellipse centroid metric to matching. When a match is con-
firmed, the track is updated with the new position, and also the
Adaline weight vectors values.

Weights of every Adaline are initialized to zero. In the first N
step, we consider that the tracking object is not trained, so, to per-
form the match, instead of using the predicted position, we use the
position in the previous frame. If a tracking object is lost during the
training period, it is removed. If the difference between the frames
since the tracking object appeared for the first time and the times
the tracking object appeared in the scene is high, the tracking
object is also erased.

Fig. 6(a) and (b) shows how the method can track object along
the frames. However, this method only works under individual
objects which do not produce collisions, such as splitting or group-
ing events. The background subtraction under a grouping event
merges every object into the group, so we cannot classified each
object individually during that event. Also, when the splitting
event occurs, we have to correctly classify each object which was
involved into the group, giving to them the same id that they have
before the grouping event. So, another tracker must be developed,
containing appearance properties for every object.

3.2. High-level appearance tracker

As mentioned before, we need other kind of tracker to deal with
collision problems. A tracker based only in shape and movement of
an ellipse cannot manage the case of two different objects which
make a group and, after a few iterations, they separate its paths.
The low level tracker cannot distinguish which objects correspond
with the previous ones. Since we perform a background

Fig. 5. A blob in a new frame is related to an early tracking object if its ellipse
centroid fits within the predicted ellipse of the tracking object.

Fig. 6. Low level tracking example using ellipse centroid metric. Each ellipse has a unique color which is used as object id. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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subtraction, we are able to perform an appearance tracker in order
to solve the situation mentioned before.

To deal with the problem mentioned before, Collins et al. (2005)
proposed a method based on a pool of histograms. Using multiple
combinations in the RGB-color space, they collect a pool of 49 dif-
ferent histograms. They choose a region containing the object to
make the pool, and other region which wraps the object to perform
a background histogram pool. Using a log-likelihood metric be-
tween the object and the background histograms, a smaller pool
of best features is selected and compared to determine if the object
corresponds to a previously tracked one. This method works be-
cause the background difference between frames is low enough
to obtain, approximately, the same best histograms. Rowe et al.

use the same system to perform their high-level appearance track-
er. Additionally, a pool of historical ‘best features’ is maintained to
use them in cases of object occlusion recovery.

This method obtains good results under homogeneous back-
grounds with constant brightness. However, in the occlusion case
we want to solve, this method does not work very well if the dura-
tion of a grouping event is high. As mentioned before, the best
features are chosen comparing the object against the background.
As the actual background we have after the splitting could be
totally different than the previous one, the record of previous his-
tograms may result to be useless. Also a sudden background
change, i.e. from the road to the grass, could make a change in
all the histograms in the best feature pool. To solve this, our goal
is to obtain a fixed pool of histograms, which will be invariant to
the background or the illumination. The first step is to define or
validate a set of features enabling this invariance and the compar-
ison between blob descriptors.

3.2.1. Feature selection
Under illumination changes, RGB-color space highly changes all

its values, so we focus on perceptual color spaces which can isolate
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Fig. 7. Car feature selection: (a) object used, (b) a histogram, (c) b histogram, (d) a + b histogram, (e) a � b histogram, and (f) L histogram.

Fig. 8. Execution order.
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the illumination into one component. So, we propose to use L*a*b,
which is a color-opponent space with dimension L for lightness and
a and b for the color-opponent dimensions. So we can isolate the
illumination and work with the other components. Thus, the histo-
grams we use are the following:

h ¼ x1 � Lþx2 � aþx3 � b;

ðx1;x2;x3Þ 2 fð1;0;0Þ; ð0;1; 0Þ; ð0;0;1Þ; ð0;1;1Þ; ð0;1;�1Þg:

We keep only one histogram with the illuminant component as
a backup in caseswhere there is not enough evidence to make a
decision with the other histograms. Features are normalized and
discretized into 64 bins to perform the computation. A smaller
number of bins could produce wrong matching, according to Rowe
et al. (2006).

Fig. 7 shows an example of the histogram pool, specifically a car.
For each ith-feature of the tracking object histogram is given by
pi ¼ pi

k; k¼1; . . . ;64
� �

, and normalization ensures that
P64

k¼1pi
k ¼ 1.

3.2.2. Appearance computation
Although L*a*b space guarantees small changes in the histo-

grams under different illumination changes, every histogram must
be updated in order to improve its quality. Hence, for each one of
the five different histograms, its appearance is recursively com-
puted. The mean appearance histogram of the ith-feature histo-
gram in time t, mi

t , is

mi
t ¼

nimi
t�1 þ pi

t

ni þ 1
; ð9Þ

where ni is the number of times the histogram has been computed.
Then, we need another metric to establish the similarity between
two different frames. In our case, we choose the Hellinger distance,
which, like other f-divergence functions, is used to quantify the sim-

ilarity between two probability distributions. The Hellinger distance
between two different histograms pk and qk is

dH ¼
X64

k¼1

ffiffiffiffiffiffiffiffiffiffi
pkqk
p

; ð10Þ

where a value of dH = 1 indicates the histograms are the same. To
establish an acceptance criteria, a threshold in the distance space
could be established. However, it seems like a bad idea since the
values change when dealing with different colors. Instead, we calcu-
late both mean and variance of the Hellinger distance for each time
step, and we use it as the acceptance criteria.

Fig. 9. Collision detection example. The system can detect grouping events end, once they finished, recover the previous identification of each tracking object.

Fig. 10. A group in a new frame occurs when two or more predicted ellipse
centroids of any tracking objects fit within the same ellipse in the new frame.

Fig. 11. A split in a new frame occurs when two or more ellipse centroid in the new
frame of it within the same predicted ellipse of any tracking object.
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4. Tracker combination for multiple-target tracking

As discussed in previous section, two different trackers are used
in this methodology, both with advantages and disadvantages.
Low-level tracker is the better choice when dealing with individual
tracking objects. Using the ellipse centroid to make the comparison
we obtain good results. However, it cannot deal with the problem
of object collisions and/or occlusions. Moreover, high-level tracker
can distinguish each tracking object due to its appearance. How-
ever, a high threshold value in the appearance computation could
produce a high false negative rate. On the other hand, a low value
will increase the false positive rate.

This makes that the high-level tracker to be a good choice in
dealing with occlusions and/or object collisions. But the low-level
tracker is better than the high-level tracker when dealing with iso-
lated objects. Therefore, a fusion of these two trackers will be used
to improve their individual performances. First, we need to detect
every collision and occlusion over the scene to keep a correct re-
cord of objects in the scene and their locations.

Fig. 8 shows the order of the system execution. First, the colli-
sion detection module tries to find splitting and occlusion events.
Later, the single tracking module finds matches for every single
target with its corresponding object in the new object, only using
the low-level tracker. Finally, the occlusion recovery module uses
the high-level tracker to find the tracking objects which are oc-
cluded in previous frames.

4.1. Collision detection

The basic idea to detect collision events is to perform a collision
map. However, the accuracy of this method is poor since it deals
with a simple grid, decreasing the frame resolution. In our case,
we use the low-level tracker properties to perform our collision
event detector.

Two different cases are considered: grouping and splitting
events. Eq. (7) offers a valid criteria to study the occurrence of
these situations. Fig. 9 shows an example of how this method
works. In the first image four different persons are detected into
the scene. Later, group events occur during the video and, finally,
the system is able to recover the id of each tracking object without
any error. Although splitting detection runs before the grouping
detection, the latter is going to be explained before because the
splitting detection is based in the grouping detection algorithm.

4.1.1. Grouping detection
To avoid different noise conditions, we perform one restriction

before we initiate the grouping detection: tracking objects which
are not trained are ignored. Additionally, tracking objects which
are occluded for a long time will also be ignored, because their
predicted positions could highly vary from the real ones.
Previously, we mentioned that every object moves slowly enough
compared with the frame rate, so we can say that every predicted
ellipse centroid will be within the ellipse that corresponds to each
tracking object. Thus, we can make the same reasoning to say that,
if two or more predicted ellipse centroids fit within a new ellipse in
the scene, a new group is created containing all of the tracking
objects involved. Fig. 10 shows a graphic explaining how this
method works. More formally, if we have a blob in the new frame
defined by the ellipse zt+1 = (xt+1,yt+1,ht+1,wt+1,ht+1), we compute
the grouping factor as

Grztþ1 ¼ ~ztþ1
j 2 Xt

~x2
j

ðhtþ1Þ2
þ

~y2
j

ðwtþ1Þ2

����� 6 1

( )
; ð11Þ

where Xt is a set containing all the tracking objects at time t, except
those we ignored, and ~x2

j and ~y2
j are the position of the ~ztþ1

j predicted
ellipse centroid under the zt+1 coordinates, using Eq. (8). So, if we
have that jGrztþ1 jP 2 a new group is created and instantiated. Note

Fig. 12. Occlusion recovery. In (a), the person identified with the yellow ellipse is tracked. In (b) and (c), this person is occluded behind the traffic light, while in (d) is
recovered again. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that it is possible that one ellipse centroid of a tracking object could
be within more than one different predicted ellipse. In that case, we
only consider the ellipse in which the centroid is closer.

For every tracking object which is part of the group, we also
store its size, which will be useful whenever the splitting event
occurs.

4.1.2. Splitting detection
The behavior of the splitting detection works in the opposite

way to the grouping event. Thus, if two or more new ellipse cen-
troids fit within a tracking object predicted ellipse, a splitting event
occurs. Fig. 11 shows a graphic explaining how this method works.
More formally, if we have a tracking object with its predicted el-
lipse ~ztþ1

j ¼ ~xtþ1
j ; ~ytþ1

j ; ~htþ1
j ; ~wtþ1

j ; ~htþ1
j

� �
defined using Eq. (4), we

compute the splitting factor as

Sp~ztþ1
j
¼ ztþ1 2 X0tþ1 x02

~htþ1
j

� �2 þ
y02

~wtþ1
j

� �2

������� 6 1

8><
>:

9>=
>;; ð12Þ

where X0tþ1 is a set containing all the ellipses in the scene at time
t + 1, and x02j and y02j are the position of the zt+1 ellipse centroid under

the ~ztþ1
j coordinates, using Eq. (8). Again, if we have that Sp~ztþ1

j

��� ��� P 2

a splitting event occurs and must be evaluated. The same case men-
tioned on the grouping detection about centroids that fit within two
or more ellipses has to be considered.

When a splitting event occurs, two different possibilities have
to be considered:if the tracking object involved is a group or not.
If it is not a group, which happens when the group is created before
the objects enter in the scene, a new tracking object is instantiated
for every new ellipse involved in the splitting event. Note that it is
possible that no splitting event occurred and the additional ellipses
were due to noise. To solve this situation, we maintain these new
tracking objects as provisional. If the split situation remains in the
next frame, the split is confirmed.

If the tracking object involved is a group, then we remove it. As
mentioned before, every group has a pool with all the tracking
objects involved in the event. Thus, using the high-level tracker,
we try to match every object in the new frame with the tracking
objects stored in the group. We consider a match if three of the
four color histograms pass the acceptance criteria based on
Hellinger distance discussed in Section 3.2.2 and the size of the

new object is similar to the tracking object size. If more than one
tracking object passes the test, we consider those which have the
best accuracy, including the luminance histogram.

If the size of one of the new objects is higher than the stored
sizes, then we consider that object as a new group containing all
the tracking objects which were impossible to match with the rest
of the objects in the splitting event. On the other hand, if there are
more new ellipses than tracking objects stored in the group, we
create new tracking objects with the unmatched ones. There could
be the case when a group splits in two or more different groups.
While it is impossible using this method to determine in which
group to fit the tracking objects stored in the previous group, we
create the two groups including all the tracking objects. Then, a
tracking object could also be removed if a split occurs in one of
the groups and we could identify it. Thus, that tracking object is re-
moved in both the groups.

4.2. Occlusion recovery

There are two different types of occlusion: total and partial. Par-
tial occlusions are easy to solve since the tracking object quickly
becomes visible again. Thus, using the low-level tracker to predict
the position of the tracking object is enough to recover it. On the
other hand, long-time occlusions make the low-level tracker use-
less, since the position is hard to achieve after a few frames.

However, low-level tracker will be a powerful tool in order to
limit the possibilities. Once we recognize that a tracking object is
occluded (after a few iterations), we use the velocity module to
set a circular area centered in the last position in which the track-
ing object has been detected. This area will grow in time until we
obtain a positive match. Thus, we consider all the blobs in which

Fig. 13. State diagram of a tracking object which is not considered as a group.

Table 1
Test scenario statistics. Accuracy means how the target,
being within the scene, is located. This includes both
isolated tracking and tracking when it become as a part
of a group.

Number of frames 2935 Frames
Number of tracked targets 33 Targets
Number of correct targets 32 Targets
Number of unallocated targets 0 Targets
Accuracy 98.09%
Processing speed 51.122 fps
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the ellipse centroid in the new frame has not been matched with
any of the visible tracking objects. Moreover, we consider all the
blobs which could also be matched with a tracking object which
is not trained yet. If an ellipse centroid of these blobs meets any
of these conditions and fit within the circular area, the high-level
tracker is activated. In this case, we have to reduce the possibilities
of a wrong match, so we accept that the high-level tracker obtains
a match when all the color histograms pass the test using the Hel-
linger distance. Fig. 12 shows an example of a tracking with occlu-
sion recovery. In this sequence, a traffic light eventually hides the
person, making the tracking impossible. Afterward, the tracking
object reappears and the system is able to recover its previous id.

4.3. Object state management

Fig. 13 shows a tracking object state diagram, indicating how
the transitions are made. Seven different states are defined: train-
ing, tracked, grouping, grouped, splitting, split and occluded. When
a tracking object is detected for the first time, its state is set to
training. In this state, the low-level tracker is used to detect the
tracking object in successive frames. If, during this state, the low-
level tracker could not find a positive match, the tracking object
is removed. If the number of consecutive positive matches is higher
than a threshold, the tracking object changes its state to tracked.

When the state of the tracking object is tracked, only the low-le-
vel tracker is used to perform the match. If a grouping or a splitting
event occurs, the state is changed to grouping or splitting, respec-
tively. On the other hand, if it is impossible to match the tracking
object with any ellipse during a few iterations, we mark this track-
ing object as untraceable and we change its state to occluded. If no
collision event occurs and the low-level tracking finds a match, its
state remains the same.

If the state of the tracking object is occluded it means that we
cannot locate it within the scene during a few iterations. Tracking
objects marked as occluded are the last objects of being processed,
because there are less possibilities to find them than the others.
Thus, when all the other tracking objects are processed, we check
the remaining ellipses in the frame which have not been matched.
If the occlusion recovery module obtains a match using the high-
level tracker, the Adalines are reset with the new position and its
state is changed to tracked. If the total time the tracking object ap-
pears in the scene is much lower than the total time since it ap-
peared for the first time, the tracking object is removed.

Both states grouping and splitting are transitory states. If, in the
next frame, grouping or splitting events are confirmed, its state is
changed to grouped or split, respectively. Otherwise, its state is
changed to the state it had before the collision event occurred.

In grouping, the tracking object stores its size with respect to the
group. Nothing happens in this state until another collision event
occurs in the group that contains the tracking object. Two different
possibilities may occur: another grouping event, which increases
the number of members in the group and change every state to
grouping. On the other hand, in a splitting event occurs, its state
is changed to splitting. This could also happen if we find that the
group becomes occluded. After the occlusion, it is impossible to
predict if the group remains immovable, so it is preferable to re-
move it and mark all members as occluded.

Split is another transitory state. In these cases, the high-level
tracker is activated and, if a positive match occurs, the Adaline
weights are reset and its state is changed to tracked. If no positive
match occurs, its state is changed to occluded. Finally, it is possible
that, when the split event takes place, one member could form an-
other group immediately. This is the reason why the splitting
detection module always runs before the grouping detection mod-
ule. If this happens, its state is changed to grouping.

Contrary to Rowe et al. (2006), in our case we do not use both
trackers at same time. Low-level tracker is responsible for tracking
every isolated object in the scene, while the high-level tracker is
only used when the low-level tracker cannot be used, such as
splitting events or occlusions.

5. Experimental results

In our experiments we have used the CANDELA Intersection
Scenarios in order to test the methodology. Over 2900 frames were
used, including occlusions and multiple collisions, such as

Fig. 14. Quick succession of people collision events. The system is able to recover
the previous id of all the four people involved in this collision.
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Fig. 16. Quick succession of car collision events. Every car in the event recover its identification when it become isolated.

Fig. 15. State evolution of the four people showed in Fig. 14. Multiple grouping and splitting events occur around the frame 600. Also the person #1 becomes occluded near
frame 1200, while the system is able to recover it when it appears again in the scene.

1128 B. Cancela et al. / Expert Systems with Applications 40 (2013) 1116–1131



grouping and splitting events, as well as target entering and exiting
the scene. These videos take place outdoors, in an intersection.
Although the light conditions in these videos are good, these
scenarios have a lot of complexity. There are multiple object inter-
actions in a short space of time, which implies the system has to be

robust against collision events. The first 15 frames of each video
were used to train the codebook, which are enough to obtain a
good background subtraction and blob detection.

The sequences used in this algorithm test involves isolated
people, groups and vehicles. Table 1 shows the video statistics.
The accuracy of the algorithm is high, since it is able to locate every
target within the scene and, including total occlusions, the mean
time in which each object is lost is lower than 2%. It is noted than
an incorrect target is detected by the system because of the train-
ing process. In one of the videos there are no frames in which there
are only background elements. So, when the codebook is trained,
there is one position with a moving object. When the codebook
is trained and the moving object leaves that position, a blob is
detected there as part of the foreground. This error does not
happen with enough background frames to train the codebook.

The problem of detecting collisions when two tracking object
are moving in opposite direction can be easily solved, since there
is only one grouping event and one splitting event. The system
solves this situation rapidly. The challenging situation is dealing
with tracking targets that are moving really close together in the
same way. In this case, there is a quick succession of collision
events, which implies that only one fail could ruin all the correct
matching.

Fig. 14 shows an example of four people walking in the same
way. The blob subtraction algorithm often merges two or more
tracking objects. In Fig. 15 we can see the state of each person.
Around frame 600 we clearly see that person #2, person #3 and
person #4 quickly change their states to become isolated and as
part of a group. Six grouping events and five splitting events occur
in less than 100 frames, without counting the uncommitted
changes. In frame 623 we can see a group that involves three
different people. In the next image, at frame 947, one person leaves
the group, and the system is able to detect which person abandons

Fig. 17. Occlusion example after a grouping event. The person identified with the red ellipse becomes part of a group with a car. Before the group dissolves, the person is
hidden. The algorithm dissolves the group and, after a few iterations, can recover the person identification. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2
Test scenario event statistics. The system can detect and process every grouping
event. Splitting events are detected and processed in a correct way expect when the
tracking objects are on the point of leaving the scene. The occlusion recovery system
has the same problem.

Total Correct %

Grouping events 17 17 100
Splitting events 19 18 94.74
Occlusion recovery events 5 4 80

Table 3
CAVIAR dataset results. Every paper uses corridor camera to obtain the results.
However, no frames without persons exist, so it is impossible to train the background
subtraction algorithm. Instead, front camera is used. Good results are achieved,
having in mind our system can be used in real-time scenarios.

GT MT (%) PT (%) ML (%) IDS FRAG

Wu and Nevatia (2006) 144 72.22 23.61 4.15 13 42
Wu and Nevatia (2007) 189 74.07 21.69 4.24 19 40
Zhang et al. (2008) 140 85.71 10.71 3.58 15 20
Huang et al. (2008) 143 78.30 14.70 7.00 12 54
Xing et al. (2009) 140 84.28 12.14 3.58 14 24
Li, Huang, et al. (2009) 143 84.60 14.00 1.40 11 17
Song et al. (2010) 75 84.00 12.00 4.00 8 6
Oursa 110 90.00 7.26 2.74 8 16

a Front camera is used instead of corridor camera.
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it. Also, the algorithm is able to detect the other blob as a new
group that involves the rest of the people in the previous one. Also,
in Fig. 14, the last image shows that the algorithm is able to detect
every collision event in this group, so finally it can recover every
previous target identification.

The occlusion case also occurs in that scene. As we can see in
Fig. 15, around the frame 1200 the person #1 becomes occluded.
The reason is that a traffic light interferes between the person
and the camera. After the person reappears, the high-level tracking
obtains a match between the tracking object and the new blob,
restoring the previous identification.

Fig. 16 also shows a similar example involving cars. This time
the collisions are easy to solve because the bigger a tracking object
is, the harder to lose it during the blob detection. Also, when a
splitting event occurs, it is easier to detect if one of the new blobs
corresponds to another group, since the difference between the
group size with respect to each car involved is high. In frame 307
we can see an example of the algorithm accuracy in these cases.
After all the collision events occur, in frame 311, all the previous
ids were recovered.

Another different case is shown in Fig. 17. In frame 378 a group
is created, which involves a person, identified by a red ellipse, and
a car identified by a blue ellipse. Before the splitting event occurs,
the person becomes occluded behind a streetlight. Then, in frame

388 the car leaves the scene. So, our method removes the group
and, in frame 410, is able to recover the previous identification
for that person.

To summarize the whole set of events processed by the multi-
ple-target tracking algorithm, Table 2 shows some statistics. All
the grouping events are well detected and processed. With the
splitting events the system makes one mistake. This mistake
occurs when a splitting event over two persons happens just before
these persons leave the scene. Since at least half of each person is
out of the scenario, the high-level tracker has less information
about their appearance, and the matching process fails. A similar
case occurs in the occlusion recovery events. Two persons that
are involved in a group leave the scene. So, the algorithm dissolves
the group and, later, the two persons enter in the scene again as a
group. As the group is dissolved, the system cannot recover the
identification.

Despite these situations, Table 2 shows promising results in
multiple-tracking detection. Since there are few papers focused
in collision detection, it is difficult to make a comparison against
our method. In the case of the Rowe et al. algorithm, there are no
tables showing the results obtained. Moreover, their algorithms
were tested over less than 200 frames, which is a much more lim-
ited test about its performance. Despite this, their system has more
difficulties to track isolated objects, obtaining an accuracy lower

Fig. 18. CAVIAR dataset example. The system can detect both grouping and splitting events, and also long-time occlusions.
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than that presented by our method, according to the graphics.
Other jobs that involve multiple tracking object do not show re-
sults about the collision detection, since they are mainly focused
in tracking multiple objects without interaction.

We decided to make a comparison against other recent method-
ologies that address the same topic. We chose a common used
dataset called CAVIAR. This dataset contains 26 different videos
using two different cameras. Although every paper uses the corri-
dor camera to test their algorithms, there is no frame without mov-
ing objects in the scene, so the background subtraction algorithm
cannot be trained. Instead, the front camera is used. Table 3 shows
the obtained results. Only moving objects higher than 25 pixels are
considered. We also consider an object to be well tracked if it is
within a group. Note that only our method, Huang et al. (2008)
method and, lesser extent, Zhang et al. (2008) method can operate
in real-time systems. Good results are obtained, enabling this algo-
rithm to be used in real-time scenarios. Fig. 18 shows an example
of this methodology under the CAVIAR dataset. Both grouping and
splitting events are solved, and also long-time occlusion events.

This methodology was tested in a Pentium Quad Core running
at 2.40 GHz with 4 RAM GB in a Linux Operative System. The vid-
eos used in this test had a 352 � 288 resolution. The results in Ta-
ble 1 show that the system can process more than 50 images/s,
guaranteeing that the system is able to operate in real-time
environments.

6. Conclusions

We describe a hierarchical architecture for multiple-target
tracking under uncontrolled scenarios. This representation is
advantageous since it is able to cope with many of the problems
this issue has, including occlusion recovery and collision event
detection, such as splitting and grouping events. Two different
trackers are used that are activated depending on the tracking ob-
ject state. A low-level tracker based on a velocity prediction using
Adalines is used to track every isolated object, while the high-level
tracker, which stores every object appearance using a fixed pool of
L*a*b-space color histograms, is used to manage the occlusion and
collision events. This method was tested in over 30 video scenes
and multiple examples show the performance of this technique.
The system can detect every tracking object within the scene and
recover its identification after collision event which involve in it.
Moreover, the frames per second the system can analyze allow it
to work under real-time scenarios.

This architecture is a robust and efficient framework for multi-
ple target tracking, enabling the future possibility of analyzing
higher-level behavior and interactions of these objects in a scene.
Particularly, detection of abnormal trajectories or forming of
groups can be addressed.
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Abstract Tracking multiple objects into a scene is one of
the most active research topics in computer vision. The art
of identifying each target within the scene along a video
sequence has multiple issues to be solved, being collision and
occlusion events among the most challenging ones. Because
of this, when dealing with human detection, it is often very
difficult to obtain a full body image, which introduces com-
plexity in the process. The task becomes even more difficult
when dealing with unpredictable trajectories, like in sport
environments. Thus, head-shoulder omega shape becomes a
powerful tool to perform the human detection. Most of the
contributions to this field involve a detection technique fol-
lowed by a tracking system based on the omega-shape fea-
tures. Based on these works, we present a novel methodology
for providing a full tracking system. Different techniques are
combined to both detect, track and recover target identifica-
tions under unpredictable trajectories, such as sport events.
Experimental results into challenging sport scenes show the
performance and accuracy of this technique. Also, the system
speed opens the door for obtaining a real-time system using
GPU programing in standard desktop machines, being able
to be used in higher-level human behavioral systems, with
multiple applications.
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1 Introduction

The aim of automatic detection and tracking of human beings
is a challenging issue, specially when dealing with surveil-
lance systems. These procedures have to isolate every person
in the scene to study his behavior. There are multiple solu-
tions to this topic, from generic algorithms, which can track
every moving object in the scene, to architectures specially
developed to deal with persons.

All these systems, when dealing with unpredictable trajec-
tories, have the same bottleneck: target tracking. A lot of chal-
lenges arise in the aim of tracking every single object around
the scene. Two are the most important issues: occlusions and
collisions. An occlusion occurs when a person escapes from
the camera control. This can occur if a target goes outside the
camera range, or when is totally or partially hidden by any
element of the scenario. The algorithm must have the abil-
ity to detect the occlusion and, if the target reenters again in
the scene, to recover the previous identification. On the other
hand, a collision occurs when two or more people cross in
front of the camera, occluding part of the targets. The issue
is similar with the occlusion, but it is more tricky. First, the
system must detect which targets are occluded and which are
not. So, when this problem is solved, the rest can be processed
as occluded targets. In the collision case, if the system does
not perform well, then it could derive into a switch identifi-
cation problem. This issue must be avoided, since it is very
difficult to recover the correct solution when it happens.

There are many different approaches in the literature for
target tracking. We can find two big groups: low-level and
high-level methods. Low-level techniques, like optical-flow
[21] or the Kalman filter [14] are simple and fast but they are
too soft to work in complicated scenarios, since they have
no possibility to recover a target when an occlusion event
occurs. We focus on tracking of human beings in unstructured
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Fig. 1 Associated-based
tracking issue. When dealing
with sudden orientation changes,
associated-based tracking swap
the identifications. a Real
trajectories, b associated-based
tracking output

(a) Real trajectories (b) Associated based tracking output

scenes, so we need to use high-level approaches to deal with
the problems mentioned before.

The main idea into the high-level systems is to add infor-
mation a priori about the objects of interest. In particular,
when dealing with people, information about the human
shape is used. In first attempts, Haritaoglu et al. [12] used
different cardboard models to represent the human body and
located it using dynamic template matching. More recently,
Dalai et al. [9] introduced the histograms of oriented gradi-
ents (HOGs), which are used to train a SVM for each part
of the body. This technique was also used by Felzenszwalb
et al. [11] to train any object in the scene. However, these
methods try to detect every part in the body, many of which
are occluded in crowded scenes.

To solve this, Li et al. [16,17] simplified the method, try-
ing to locate only the omega shape created by the head and
the shoulders. A HOG feature-based SVM is used to con-
firm every target previously located using a Viola–Jones type
classifier [25], which improves the speed of the algorithm. A
particle filter (PF) is used to track every detecting object in
the scene. Based on [10] and using the omega-shape detec-
tion, Rodriguez et al. [20] improved the detection in crowded
scenes including a density estimation parameter. However,
the density information computation forces the algorithm
to compute the HOG descriptor in every pixel image, mak-
ing the system slower. Other different techniques focused in
crowd analysis can be found in [28].

More recently, associated-based tracking systems were
used. In [23], Starder et al. introduced geometric and long-
term temporal constraints to increase the accuracy algorithm.
Also they use trajectory filters to increase target identifi-
cations. Benfold et al. [4] combined a body and a head
HOG detectors with simultaneous KLT tracking and Markov-
Chain Monte-Carlo Data Association to estimate the most
probable trajectories. Andriyenko et al. [1,2] used a simi-
lar scheme. They infer the most usual path for every target,
performing the matching by minimizing the energy related
to each trajectory. Information about the interaction between
subjects is included in [15] to increase the identification accu-
racy. A condition random field was also used by [26,27] to
produce discriminate descriptors, which are used to a better
tracking dealing with partial occlusions and collisions.

The problem with associated-based tracking techniques
arises when targets operate with no usual behavior, for
instance, a sport event, like football or basketball. When an
offense player makes a crossover, or a fake movement, and
the defender falls into the trap, an associated-based tracking
would swap the identifications, as Fig. 1 shows. Associated-
based tracking techniques assume targets motions are stable,
i.e., linear and constant speed in a short period, causing inca-
pable of dealing with big and unpredictable movements like
that in sports. It is very difficult to anticipate that kind of
movements. So, a different technique must be used.

To perform the tracking, techniques like particle filters
[3] (PFs) or the Lucas–Kanade algorithm [22] are used,
which are good methods to track isolated people. However,
these algorithms tend to accumulate an error along successive
detections, which often results in the loss of the target detec-
tion. Moreover, there are problems with occlusions and colli-
sions in multiple-tracking scenarios, which rarely are solved
using these methods. For instance, a target lost while walk-
ing towards the camera cannot be recovered using these tech-
niques if it reappears walking in other direction. Hence, an
ensemble of multiple techniques are required to solve these
complicated situations.

In this work, we present a strategy for human track-
ing under unpredictable trajectories, able to solve many of
the problems mentioned before. Based on a previous work
[6], this strategy is based on the omega-shaped descriptor.
Some improvements to the Viola–Jones detection are made
to increase the speed. A particle filter system, in combina-
tion with a linear filter to predict the next position, is used
to perform the tracking. The detection procedure using The
Viola–Jones and the HOG feature-based SVM are also used
in the tracking system to reduce the error produced by the
particle filter along the successive frames.

A hierarchical architecture is created to deal with the
problems associated with multiple-target tracking scenarios.
Since the particle filter is used to track every person in the
scene, it is disabled when either a collision or an occlusion
event is detected. An ellipse representation is used to define
the areas in which the lost target could be. Once a new tar-
get appears in one of these areas, it is compared against the
lost target using a color-histogram representation. The use
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Fig. 2 Multiple-target tracking
framework. The system is
divided in two different
modules: the detection system,
which searches for every head
included within the scene, and
the tracking system, which
follows each detection along
frames

of this technique is mainly focused in camera locations far
from the scene to analyze. The algorithm speed is highly
increased when, regardless of the position in which the tar-
get is, there are only few differences between the size of his
head.

As Fig. 2 shows, two different modules are included in
our methodology. First, a detection system tries to seek and
obtain every person in the scene. Later, the tracking system
matches every detection with the targets previously created,
adding new observations if necessary.

This paper is organized as follows: Sect. 2 describes the
method used to detect every human being in the scene;
Sect. 3 describes the techniques used to perform the track-
ing, in combination with the collision and occlusion solvers;
Sect. 4 introduces some tests and evaluations of the frame-
work, showing the obtained results; finally, Sect. 5 offers
conclusions and future work.

2 Human detection

In the first step of the algorithm, the system is going to detect
every person in the scene. Our initial approach is similar
to the original idea exposed in [17]: a Viola–Jones detec-
tor is combined with a HOG featured-based SVM to obtain
a good agreement between accuracy and speed. Since the
HOG descriptor process is quite expensive in terms of speed,
the idea is to relax this step by restricting the positions in
which we have to compute it. So, a Haar-like method, the
Viola–Jones type classifier, is used to detect head-shoulders
omega-shape feature. This method can work very fast, but
the classification performance is poor. So, for every detec-
tion, the HOG descriptor is computed and evaluated in the
SVM.

In this initial approach, human detection system is reduced
only to the position in the image for which they know a person
could enter into the camera range, to increase the system
speed. As mentioned before, we are going to use this system

both in detection and tracking procedures, so we create a
different approach. In Fig. 2, we show the steps to perform
people detection. We consider that a target should be tracked
if it moves along the scene in some moment. Static targets
are not considered until they move. Once this happens, the
algorithm begins to track the target, even if it stops again.
First, a background subtraction technique is used to detect
the moving objects. Later, a Viola–Jones type classifier is
applied in the regions where we detect movement. Finally, the
HOG feature-based histogram is responsible for evaluating
the Viola–Jones positive detections.

2.1 Background subtraction

A quick method for detecting motion was selected. Although
optical flow is the commonly used technique in this case,
we are only interested in the positions where a movement
occurs, without taking into account neither orientation nor
magnitude of the movement. Hence, knowing optical flow
has a higher computational cost, we propose to use a back-
ground subtraction technique. Our idea is to use an algorithm
able to be updated every frame. So, we choose the Mixture
of Gaussians (MoG) algorithm described in [29]. We intro-
duce a short window history (over 100 frames), to quickly
consider as background-stopped targets. Figure 3 shows an
example of the results of this technique.

2.2 Bounding box selection

Once we have detected all the moving pixels in the scene, we
select the regions in which the Viola–Jones type classifier is
going to be used. So, we split the foreground into different
boxes. First, we remove the noise into the foreground regions.
To do that, both open and close morphological operators are
used, along with a minimum-area filter. Later, we perform
a blob detection technique, with a simple four-connectivity
algorithm. Finally, a bounding box is obtained for each blob.
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Fig. 3 Background subtraction using MoG algorithm

Fig. 4 Bounding box selection using foreground pixels. a Foreground pixels after preprocessing techniques. b Bounding boxes obtained

Each bounding box marks the regions in which the Viola–
Jones type classifier is used.

Due to the nature of background subtraction techniques, it
is difficult to locate all moving pixels in the image, specially
those which are in the person contour. Having this situation
in mind, the size of each bounding box is increased to cope
with this issue. The margin is related with the expected head
size at the contour of the box. Furthermore, no margin is con-
sidered at the bottom, because of the nature of human move-
ment. No positive head-shoulder shapes can be observed at
the bottom of a bounding box, unless it matches with the bot-
tom of the scene. Furthermore, if the overlap between two
or more bounding boxes is high, we merge them to avoid
recalculations. Figure 4 shows an example of this technique.

2.3 Viola–Jones type classifier

After the bounding boxes are located, the Viola–Jones type
classifier is executed. In many implementations, the process
consists in the classification of Haar features within the
image. Multiple window sizes are used along the image.
The patches which do not pass all the cascade classifiers
are excluded as obvious non-head-shoulder image patches.

We can improve the performance of this technique know-
ing the estimated head size in every pixel in the scene.
According to [13], the object height in an image hi follows
the equation

hi = yi

yc
(vi − v0), (1)

being yi the 3D object size, yc the camera height, vi the posi-
tion in the image we are considering and v0 the horizon point.
Knowing the average person head size (22.6 cm [18]), we
decide to set the 3D head-shoulder size to 30 cm. The other
parameters, v0 and yc can be estimated using ground truth
positions and heights of two detections in the image [20].
Using this idea, we can improve the system in two different
ways: increasing the speed and reducing the false positive
errors, avoiding patches with wrong sizes.

As mentioned before, we also introduce knowledge about
the human movement. We assume that, when a head move-
ment occurs, it is also followed by the torso. Having this
idea in mind, we choose a small rectangle at the bottom of
each patch detected by the Viola–Jones cascade classifier. Its
height is related with the height of the patch. If the number of
pixels marked as foreground in that rectangle is low (over 10
times the head size), we discard that patch. Figure 5b shows
an example. Some results can be discarded without taking
into account the HOG feature. Also good patches are deleted
because of the absence of movement in the target, causing
his torso to be marked as background. An example of this
issue can be viewed at the bottom right of the figure. This
is a problem not taken into account, because it is assumed
we can find it and track it in previous frames, when in
movement.
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Fig. 5 Viola–Jones cascade classifier example. a Foreground pixels after preprocessing techniques. b Viola–Jones classification. In green, the
rectangle used to check the torso. In blue, patches returned by the Viola–Jones which passed the torso check. In red, the discarded patches (color
figure online)

2.4 HOG feature-based histogram

Once we have obtained the Viola–Jones positive patches, a
HOG feature-based histogram is used into a SVM to confirm
the detection. We perform a classic HOG technique. First, we
divide the patch into cells. Adjacent cells form a block, and a
normalized histogram within the block for each cell included
in it. Each histogram includes eight different orientation bins
from 0 to 360 ◦. HOG feature extraction details can be seen
in [9].

As we can see, the HOG feature-based histogram creation
has a lot of redundant operations. Hence, Porikli et al. [19]
introduced the integral histogram, which highly increases the
speed of the algorithm. Combining both Viola–Jones cascade
classifier and HOG feature-based histogram, we can obtain
a good balance between speed and accuracy. Although we
considered the idea of computing the integral histogram only
in the bounding boxes explained in Sect. 2.2, we decided to
discard it because we also need the histogram to perform the
tracking, as it will be explained later. The integral histogram
is computed along the whole scene. Examples of accepted
and rejected patches can be seen in Fig. 6.

The combination of the HOG descriptor along with the
Viola–Jones type classifier often results in many patches
related with the same target. Thus, when we add new tar-
gets to the tracking system, we have to penalize overlapping
detections.

3 Tracking system

Once we have detected persons in the scene, we do not instan-
tiate new targets directly. First, we perform the tracking sys-
tem to avoid the persons detected which are already tracked.
As previously depicted in Fig. 2, three different steps are
performed into the tracking system: first, a distance match-
ing is used between the targets previously tracked and the
new positions detected by the Viola–Jones in combination
with the HOG feature-based histogram; second, a particle
filter is launched for every target which has not been tracked
using the previous step; finally, the remaining individuals in
the new frame are considered to become new targets. Further-
more, two more steps are included to detect both collision and
occlusion events, providing a target recovery identification
system.

First, we develop an algorithm to predict the position of
each target along the following frames. Although the Kalman
Filter is a common technique used in this context, we pro-
pose the use of a linear filter, since it is a more efficient tech-
nique and shows a good performance under noisy images.
A bunch of adalines is used to predict the velocity of each
target position component. Examples of the performance of
this technique can be seen in [5].

Although every Viola–Jones patch could have both differ-
ent position and size, we will only take into account the para-
meters related with their position, since, as seen in Sect. 2.3,

Fig. 6 HOG feature-based histogram example. In green, the patches accepted by the SVM. In red, the denied patches (color figure online)
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Fig. 7 Particle filter error. Along the successive frames, purple target is losing the quality of the detection

Fig. 8 Tracking using person detection system. In circles, new patches detected by the Viola–Jones type classifier. In rectangles, predicted position
for each target previously tracked

once we have the target predicted position, we can determine
its size using the Eq. 1. Thus, we can reduce the computa-
tional cost.

3.1 Using human detection technique

To track each target into the scene, we propose the use of a
particle system. However, the particle system can accumulate
an error along the frames, which can often be very difficult
to recover from it. In Fig. 7d, we can see how purple tar-
get its losing the head-shoulder position, resulting in a bad
performance. Hence, it is interesting to add another solution
that can correct, as far as possible, that accumulated error.
Our solution proposes the inclusion of the people detection
technique within the tracking system.

With every patch detected, we create a group with all the
possible targets that could fit in the new detection. More
formally, if we have a patch in the new frame defined by
pt+1

i = (xt+1
i , yt+1

i ), where xt+1
i and yt+1

i are the coordi-
nates of the patch center, we compute the target factor as

Tpt+1
i

=
{

z̃t+1
j ∈ Ω t

⏐⏐⏐⏐d
(

pt+1
i , z̃t+1

j

)
≤ τ

}
, (2)

where Ω t is a set containing all the tracking objects detected
(and not occluded) at time t, z̃t+1

j is the predicted position of

the centroid of the target z j and d(pt+1
i , z̃t+1

j ) is the euclidean
distance between the center of the two patches. Setting an
small value τ we can obtain good results. Using this equation,
if we obtain that |Tpt+1

i
| = 1, we assign the new patch to the

target contained into the set. On the other hand, if |Tpt+1
i

| > 1
a collision occurs. Handling of these events is discussed in
Sect. 3.4 in more detail. Finally, if no targets are contained
into the set, pt+1

i is set as candidate to be a new target. Targets
that are not associated with any patch detected by the Viola–
Jones type classifier are tracked using the next step.

In Fig. 8, we can see an example of how this technique
is useful. However, we have to be very careful with the τ

parameter. In Fig. 8b, we have a new patch related to the
person with the orange shirt. As it has not been tracked yet,
using a high value of τ could change the identification of the
person behind him, which has been already tracked, leading
to a wrong situation. For this reason, a lower τ value must
be used (τ = 5 in our experiments).

3.2 Particle filter system

As mentioned before, also using the person detection system
for tracking guarantees a good quality in the head-shoulder
detection. However, our detection system idea is focused in
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locating the persons in the scene avoiding, as much as pos-
sible, false positive patches. As a result, the false negative
rate is also high, causing the algorithm not to find everyone
in the scene at all frames. To avoid the loss of targets, we
propose a particle-based system. As object representation,
given a patch pt+1

i , we use the extracted local HOG fea-
tures, using it to model its appearance (Ot+1

i ). For distance
measurement we use the Bhattacharyya coefficient, which is
proved as a good method for tracking non-rigid objects [8].
This coefficient is used to determine the similarity between
two different observations. So, given a new observation Ot+1

and an object representation Ôt , corresponding to the target
z at time t , the similarity between the two vectors is

S(Ot+1, Ôt ) =
m∑

u=1

√
Ot+1

m Ôt
m, (3)

being m the vector dimension. Higher values indicate better
similarities between the observations.

As in the tracking using the people detection technique, we
will use the predicted position of each target to perform the
tracking. As mentioned before, we use a linear filter to predict
the position of the target in the new frame. However, due
to unpredictable target movements, the new target position
often differs a few pixels from the prediction. So, having a
target z j previously tracked, we can assume the new target
position to be described as

zt+1
j = z̃t+1

j + ω, (4)

being z̃t+1
j the predicted position of the target z j at time t +1

and ω ∼ N (0, �) is a Gaussian noise. In our approach, we
add the Gaussian noise to the predicted position, generating
a bunch of different particles. For each particle, we extract its
HOG feature in the patch defined by the new position and the
size computed using Eq. 1, and compute the Bhattacharyya
coefficient between that particle and the target model. We
choose as the new position zt+1

j as the particle which obtain
the highest coefficient.

Finally, we have to change the target model. To adapt the
model to the changes along the frame, the object must be
updated. Also, because of the possibility of a bad chosen par-
ticle, the model should maintain information about previous
features. Hence, having a target model Ôt and a new model
Ot+1, corresponding with the HOG feature of the winning
particle, the target model is updated following

Ôt+1 = αÔt + (1 − α)Ot+1, (5)

where α is the learning parameter. In Fig. 9, we can see an
example about the particle dispersion.

Four different states are defined: training, tracked, occlud-
ed and removed, as Fig. 10 shows. First, when a new target

Fig. 9 Particle filter example. In red, target predicted position. In blue,
particles thrown (color figure online)

Fig. 10 State diagram of a tracking object

is instantiated, its state is initialized as training. A target in
this state means that a person is detected in the scene, but
there is not enough evidences to confirm the detection yet.
While a target remains in this state, each new position has
to be confirmed using the SVM, even if the tracking is done
by the particle filter system. If the SVM cannot confirm the
detection, the target changes its state to removed and it is
erased.

If the number of times the target is confirmed by the SVM
reaches a threshold (τT ), it changes its state to tracked. In
this state, no SVM evaluation is needed using the particle
filter system. So, a different way is needed to detect when
the target is lost. Three different possibilities could cause the
system to loss a target: particle filter system bad accuracy,
collisions and occlusions. Both collisions and occlusions will
be explained later.

To deal with the particle filter bad accuracy, we decided
to set two different thresholds, γS and τS , and an occlusion
counter ρS . The Bhattacharyya coefficient explained in Eq. 3
is used to measure the tracking quality. Every time the coef-
ficient becomes higher than γS , or when the target is detected
using the person detection tracking, we set ρS = 0. On the
contrary, if S(Ot+1, Ôt ) < γS , we increase the ρS counter.
If, after successive results below γS , we have that ρS > τS ,
we change its state to occluded.
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This indicates that we cannot be sure about the position of
the target. However, despite the fact that the tracker have lost
the person, we continue to update the target position using the
particle filter technique. Although the target position is not
known, the tracker position typically remains close to the per-
son being tracked. So, if the human detection system detects
a person near the tracker position, and there are no other
targets nearby, the target recovers its state from occluded to
tracked.

Although in early stages we need to confirm the detection
using the SVM to avoid possible false positive detection, a
technique is needed to detect and remove it when appears.
False positive detections are mostly related with background
detections. Because of that, a false detection is a steady target
which does not move along frames. Thus, the Bhattacharyya
coefficient obtains really high values. So, another coefficient
is included, τH . If the Bhattacharyya coefficient exceeds this
coefficient, the target is considered as a false positive, and
it is removed. Although this threshold can remove correct
detections, like steady targets, in the experiments we found
that small movements in the targets causes the particles to
never reach τH .

3.3 Adding new targets

Once we have successfully tracked all the targets we had
detected in the previous frames, we initiate the process of
adding new targets to the tracker pool. An energy equation
must be defined. Assuming we have a confidence score s(z)
for each new location into the scene, our goal is to identify
new targets, excluding those which are already tracked. We
encode every target in the tracker pool, in combination with
all the new detections into a single N-vector x ∈ {0, 1}N ,
being N the vector size. Our energy minimization function
is defined as

min
x∈{0,1}N

−sT x︸ ︷︷ ︸
Es

+ xt Wx︸ ︷︷ ︸
E p

, (6)

where xi = 1 confirms the detection of the tracker zi into
the scene, and xi = 0 if it is a false detection. We choose as
confidence score s(z) the distance between the HOG feature,
related to the target z, with respect to the SVM hyperplane,
and W is the overlapping matrix.

Minimizing the first term of the Eq. 6, Es , means that
the targets with high confidence detection rate (far from the
SVM hyperplane) are considered as detected persons. More-
over, the second term, E p, ensures valid configurations when
non-overlapping detections are selected. This is done by set-
ting Wi j = 0 when there are no significant overlap between
the targets zi and z j (in our experiments, <25 % overlap
between the bounding boxes detection area), and Wi j = ∞
otherwise. The reason for penalizing overlapping detections
is related to the SVM. Confirmed detections with this amount

of overlapping are most often associated to the same target.
Using this threshold we ensure only one detection per target.

3.3.1 Initialization and optimization

Since the optimization of Eq. 6 is, in general, a NP-hard
problem [20], we follow a greedy search procedure, similar
to [10]. However, our initialization differs from that. Instead
of initializing x = 0, that is, not having any confirmed object
in the scene, we put every k target detected with the tracking
system explained before with value xk = 1, value which
will be blocked. Each possible new target is initialized as
xk = 0. Furthermore, since the targets previously tracked
are blocked, we can put their confidence score s(p) = 0, and
the values Wi j = 0, being zi and z j two blocked trackers.
This is done to avoid the interference of the blocked targets
in the value of the equation. They are only used to avoid
overlapping with the new possible targets.

Iteratively, we update x by turning from 0 to 1 the target zi

which decreases the value of the Eq. 6 by the largest amount.
The iterations will stop when the cost of the function cannot
be decreased anymore.

3.4 Collision detection

A collision event occurs when two or more targets cross into
the scene, causing the total or partial occlusion to many of the
people. Dealing with a head-shoulder technique to track peo-
ple, two different collision possibilities may occur: a head-
to-head collision or a head-to-body collision. In the first case,
the situation is easy to detect. We only need to see the overlap
between the last position detected by the two targets. Having
two different targets locations zt

i and zt
j , if they have a sig-

nificant overlap ratio, a collision occurs. In Fig. 11a, we can
see an example of a head-to-head collision.

Only one target remains as tracked after a head-to-head
collision. The decision of which target is in the forefront
is also based on the Bhattacharyya coefficient. The target
involved in the collision which have the higher S(Ot+1, Ôt )

is the person considered into the front. The remaining targets
will change their states from tracked to occluded.

On the other hand, a head-to-body collision occurs when
a head is occluded by a body of another person (Fig. 11b).
To solve this situation, we make an assumption: the average
body height is two times the head-shoulder patch height. So,
we create a rectangle at the bottom of each target detection
simulating the body. If the overlap ratio between the body
rectangle with any target position is significant, a collision
may occur. It is possible not to be a collision if the position of
that head if between the camera and the body of the other tar-
get (Fig. 11c). To determine whether a collision event occurs
or not, we use the SVM to confirm the detection of the target
which is possibly occluded by the body. If the detection is not

123



Multiple human tracking system 519

Fig. 11 Collision example.
Two possibilities may occur:
head-to-head collision (a) or
head-to-body collision (b, c)

confirmed, we increase the occlusion counter ρS explained
before.

3.5 Occlusion recovery

Previously, we have mentioned one method to recover a tar-
get when it becomes occluded, consisting in following the
particle filter tracking until the person detection is able to
re-detect the target. This method often works if the occlu-
sion is produced by a bad particle filter estimation. However,
when dealing with collisions, this system is useless, empha-
sizing the need for another occlusion recovery system. To
solve this problem, a new tracker based on feature selection is
used.

RGB channels have been previously proposed for identi-
fication [7]. In this work, instead of using raw R, B and G
channels, we propose to use another space-color system, iso-
lating illumination from color information, to avoid external
effects such as lighting conditions. So, a fixed pool of his-
tograms is defined as follows:

h = ω1a + ω2b, w1,2 ∈ {−1.0, 1}, (7)

where a and b are the color-opponent dimensions in L*a*b-
color space. Removing all possible linear combinations, we
reduce it to four different histograms. In addition, L com-
ponent is included in another histogram. This component is
only used when the other histograms are not enough to dis-

tinguish between two different targets. All these histograms
are inserted into one unique vector.

Once we have defined the feature selection, we need a
technique to decide, having any given target, which pix-
els belongs to it in the image. As mentioned before, the
methodology is required to work under partial or total
occlusions. Usually, the camera has no total vision on the
whole target. Two different techniques are used to obtain
the target features: background subtraction and body esti-
mation. We take advantage about the fact that background
subtraction is loaded when the people detection technique
is used, as seen in Sect. 2.1, so no more computation is
needed.

The body estimation was also mentioned before, when
dealing with head-to-body collision detection techniques. A
rectangle in the bottom of the head-shoulder detection is used
to perform it. Hence, as we can see in Fig. 12, combining
these two ideas we obtain the pixels that belongs to each
target. However, in some cases, there are foreground pixels
shared by two or more targets (Fig. 12c). That pixels are
discarded for every target involved.

However, this method also presents some difficulties. The
most important is related with the background subtraction
technique. It is very difficult to capture thin elements, such
as arms and legs. The presence or absence of these body
parts could highly vary the target feature based on his-
tograms. Also, this histogram achieves similar values with

Fig. 12 Feature selection technique example. Using the background subtraction and the body estimation, we detect the pixels that belongs to each
target (c). Pixels shared by two or more estimations are ignored (red pixels in c) (color figure online)
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Fig. 13 Feature split diagram.
Each body estimation is divided
into different block regions (a),
each one with an associated pool
of histograms. For instance, we
can divide each target body into
two different regions (b)

similar clothes combinations. For instance, blue shirt and
white trouser target has a similar histogram to a white shirt
and blue trouser person. So, as we can see in Fig. 13a, we
decide to split the body estimation into different regions sepa-
rated by hollow bands which are not taken into account when
we compute the histograms. Each block has its own pool of
histograms. Figure 13b shows an example of a two region
split.

Because of the background subtraction issue explained
before, it is possible that some block regions has not enough
foreground pixels to perform a relevant histogram. Thus,
we introduce another threshold, τF , which is compared
against the ratio of foreground pixels within the block. If
the ratio is low, the pool of histograms is not created for that
block.

Each histogram is normalized and discretized into N bins.
Having the histogram pi = {pi

k; k = 1 : N }, corresponding
to the i th feature of the tracking object, the probability of
each feature is calculated as

pi
k = Ci

M∑

a=1

δ(b(xa) − k), (8)

where Ci is a normalization factor which ensures that∑N
k=1 pi

k = 1, δ is the Kronecker delta, M are the num-
ber of pixels belonging to the target, xa is the pixel position
and b(xa) is the function that associates each pixel value to
its corresponding bin.

3.5.1 Occluded target search

Once a target is lost, we do not assume that the target can
appear in any position in the scene. We consider two differ-
ent restrictions to help the recovery system to increase the
accuracy. First, we compute the average speed of the target.
So, the target position along successive frames is limited by
a circumference with the latest known position as center and
the maximum distance traveled as the radius. Hence, we can
limit the target available positions.

However, this idea is not enough as it does not take into
account neither movements nor target groupings. So, a sec-
ond restriction is used to partially locate the target position.
We start from the bounding box idea explained in Sect. 2.2.
We perform a blob detection using the background subtrac-
tion. Thus, we obtain the position of both isolated and group-
ing targets. Instead of using a box, we represent each blob as
an ellipse. Every j-observed blob at the time t is represented
as

et
j = (xt

j , yt
j , ht

j , w
t
j , θ

t
j ), (9)

where (xt
j , yt

j ) is the position of the ellipse centroid, ht
j and

wt
j are the size of the maximum and minimum axes, respec-

tively, and θ t
j is the orientation.

Each time we obtain a target matching in the scene, we
store the information about the blob in which it is included.
Consequently, when the target is lost, we have the informa-

Fig. 14 Occluded target search
example. When the blue target is
lost because of bad accuracy (b),
the algorithm detects the blob
in which the target could reap-
pear (c) (color figure online)
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Fig. 15 A split in a new frame
occurs when two or more ellipse
centroid fit within the previous
ellipse of any tracking object

tion about a limiting contour where the target can be located.
Figure 14 contains an example of how this method works.
However, blobs do not remain invariant along successive
frames. Both grouping and splitting events could occur, and
have to be considered.

A splitting event occurs when a blob is divided into two or
more (Fig. 15). We can use the ellipse properties to detect this
issue. More formally, if we have a lost target limited by the
ellipse et

j = (xt
j , yt

j , ht
j , w

t
j , θ

t
j ), we compute the splitting

set as

Spet
j

{
et+1 ∈ Ω ′t+1

⏐⏐⏐⏐ x ′2
(ht

j )
2 + y′2

(wt
j )

2 ≤ 1

}
, (10)

where Ω ′t+1 is a set containing all the blobs in the scene at
time t + 1, and x ′ and y′ are the positions of the et+1 ellipse
centroid under et

j coordinates

x ′ cosθ t
j − sin θ t

j 0 1 0 −xt
j x t+1

y′ = sin θ t
j cos θ t

j 0 0 1 −yt
j yt+1

1 0 0 1 0 0 1 1
. (11)

The Spet
j

set is cropped erasing all the blobs which have

no area within the maximum advance circumference. The
remaining blobs are used to search new targets that could be
the target lost before.

3.5.2 Tracking object matching

The average appearance histogram mt
j of each target is

updated with every confirmed observation. A recursively
process is used to compute it:

mt
j = n j m

t−1
j + pt

j

n j + 1
, (12)

where n j is the number of the target confirmed observations.
As mentioned before, once a new target is instantiated and
trained, its state is changed to tracked. When this occurs, we
evaluate the feature selection. If we have enough values in
the histogram pool to perform a comparison, we compare the
new target against all the occluded targets that could appear
in the blob that has the new target within. A modified Bhat-
tacharyya coefficient is used, taking only into account the
histograms which have enough information about the target.
If the value exceeds a threshold τA, the target is recovered.
Figure 16 shows an example of this technique. When the

Fig. 16 Target recovery. The blue target is instantiated (a) and, later,
lost (b). A new target is instantiated within the region in which the lost
target could reappear (c) and, after the comparison is made, the target
is recovered (d) (color figure online)

comparison is made, two different targets are lost, and the
system is able to distinguish between them and assign the
correct identification.

4 Experimental results

In our experiments we use a full video sequence of a sport
event, consisting in a 3 × 3 basket match. The video used in
this test have a 640×368 resolution running at 25 frames per
second. Although it is not a heavily crowded scene, it is a very
challenging environment, since multiple situations occur that
usually do not happen under usual scenarios, including colli-
sions, crossings, sudden orientation changes, jumps or squat-
ting people. The main idea is to test the tracking system under
a scenario of such difficulty. More than 15,000 frames were
recorded.

The sequences used to test this algorithm involve iso-
lated people, grouping and splitting events, and occlusions
behind a crowd. As mentioned in previous sections, this
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Table 1 Quantitative results on
the basket sequence for our
tracking system

Different configurations are
shown, depending on the
modules enabled

Method MT PT ML FM IDS

Our tracking with no collision/recovery system 2 10 1 23 8

Our tracking with no background information 2 11 0 18 10

Our tracking with no HOG assist 3 9 1 31 10

Our tracking 8 4 1 24 8

Table 2 Tracking performance
on the basket sequence for our
tracking system

Different configurations are
shown, depending on the
modules enabled

Method MOTP (%) MOTA (%) Prec (%) Rec (%)

HOG head detections 75.6 27.5 55.3

Our tracking with no collision/recovery system 77.5 43.4 48.8 79.7

Our tracking with no background information 84.5 48.1 50.6 92.0

Our tracking with no HOG assist 80.7 64.0 85.0 73.9

Our tracking 84.5 73.5 88.2 82.0

algorithm performs at a better speed when the distance
between the targets and the camera is high, as occurs in this
videos. Therefore, we can assume that the head-shoulder
size is approximately the same at every position in the
scene.

To train both Viola–Jones type classifier and SVM, we use
the generic dataset introduced in [16]. We assume the head-
shoulder detections in the scene has 32×32 size, which is the
same size used in the training dataset. To perform the HOG
feature extraction, we divide each sample into 64 cells. Then,
four adjacent cells form a block. Using a one cell stride, we
obtain 49 different blocks. For each cell, a histogram of eight
different orientation bins is computed and stored. Each block
is also normalized.

We set the threshold values τ = 5.0 for the tracking using
the people detection technique, α = 0.05 for the HOG fea-
ture learning factor, γS = 0.8 for the particle filter quality
threshold, τS = 2 for the particle filter limit for successive
bad estimations and τA = 0.85 as the occlusion recovery
value. In addition, 50 different particles are thrown into the
particle filter system.

To evaluate our system in a quantitative way, we have per-
formed a test using standard evaluations tools. We calculate
the CLEAR-metrics introduced by [24]: MOTA (multiple
object tracking accuracy), which take into account false pos-
itives, missed targets and identity switches, and MOTP (mul-
tiple object tracking precision), which measures the aver-
age distance between true and estimated targets. A predicted
bounding box is considered correct if it overlaps more than
25 % with a ground-truth bounding box. We also provide
system precision and recall metrics.

A ground truth data is created, containing more than
10,000 annotated heads. As we mentioned before, both
Viola–Jones type classifier and SVM are trained using the
generic dataset introduced in [16]. This means that no specific

information about the camera pose are included. In Table 2,
we can show this type of training causes the HOG classifier to
obtain a poor precision. However, we decided not to modify
these trainings to show how our method is able to improve
the tracking performance under bad HOG detections. Also
we test different system configurations, disabling some of
its features. As Tables 1 and 2 clearly show, both the Colli-
sion/Recovery and Background systems reduce the number
of false positives, obtaining low MOTA values when they are
disabled. Furthermore, the inclusion of the HOG detections
in the tracking system clearly improves the system behavior
(close to 10 %). Although the number of switch identifica-
tions is similar in the different configurations we have tested,
the recovery system is able to detect the switch and revert the
situation, improving both MOTA and accuracy of the system.
There is only one mostly lost target, that is difficult to detect
because it appears behind the goal, causing the net to interfere
in the correct detection.

We also show qualitative results of different aspects
related to the proposed algorithm. First, we are going to
describe the performance of the detection system. A sequence
with multiple targets is used to identify the number of people
the system can recover under different configurations. In first
place, we use an approach which does not take into account
neither background subtraction nor torso information, used
to discard some detections, as explained in Sect. 2.3. We
include three different measurements: the number of patches
passing both Viola–Jones and SVM classifiers, the number
of patches corresponding to a person and the ground truth,
which includes all the targets within the scene, no matter if
they are occluded or not. The system is able to recover almost
all the people in the scene. Most of the non-detection prob-
lems are related to occlusion events. However, multiple false
positives are introduced, adding several noise to the people
detection.
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(a) Frame 114 (b) Frame 199 (c) Frame 244

(d) Frame 114 (e) Frame 199 (f) Frame 244

(g) Frame 114 (h) Frame 199 (i) Frame 244

Fig. 17 People detection examples. Without background information (a–c). With background information (d–f). Hybrid approach (g–i). a Frame
114, b frame 199, c frame 244, d frame 114, e frame 199, f frame 244, g frame 114, h frame 199, i frame 244

Although, when introducing the background subtraction
technique, along with the torso estimation, the number of
false positives is avoided. Every detection in the scene
matches with a correct person detection. However, the num-
ber of persons detected in the scene is reduced. Since we
do not have any frame in the sequences without people, the
system cannot recover stopped people. So, to obtain a better
representation we introduce an hybrid simulation. We avoid
the background information along the first frames, enabling
it later. Thus, we can detect stopped people. The results
show that the number of people detected within the scene
even exceeds the results obtained when no information about
the background is included. Plus, the number of false posi-
tives is very low. Examples of those results can be seen in
Fig. 17.

No isolated people tracking tests were conducted, since
the particle filter-based visual tracking was tested in other
application [17], obtaining good results. However, note that
the velocity prediction using linear filters (Adalines) obtain
a better estimation, while successfully coping with the noise
introduced in the position measure along frames [5]. So,
we focus in two different situations: partial occlusions in

crowded scenes and identification recovery using the ellipse
representation in combination with the fixed pool of his-
tograms.

The challenging situation in crowded scenes is to deal
with partial occlusions. Since people heads are really close
together, it is very difficult to use body-color information
to solve this task. So, the tracking procedure must be car-
ried on by the particle filter system along with the tracking
using the people detection system. Figure 18 shows an exam-
ple of four people moving close together. As we can see in
frame 693, there exists an overlap between multiple target
detections. In less than 100 frames (4 s), all the four targets
are grouped and split several times, having not a single total
head-shoulder occlusion. Along the successive situations, the
system is able to maintain every target identification, even in
high overlapping situations, like in frame 753, where the yel-
low and the white target are really close together. Also, the
detection quality remains good enough to continue the track-
ing after the splitting event.

We also check the occlusion recovery procedure. As
mentioned before, particle filter system has no possibility
to recover a previous identification when a total occlusion
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Fig. 18 People detection in
crowded scenes. Partial
occlusions are solved without
using color information. Particle
filter system is robust under
these situations

Frame 679 Frame 693 Frame 703

Frame 713 Frame 723 Frame 733

Frame 743 Frame 753 Frame 763

event occurs. This issue usually involves a collision between
two or more targets. Three different examples are shown
in Fig. 19. The system is able to detect the collision and
assign the correct identification to the people which are
nearest to the camera. Once the occluded target is tracked
and trained again, the pool of histograms, in combina-
tion with the ellipse estimation, are able to re-detect the
person.

This methodology was tested in a Pentium Quad Core
running at 2.40 GHz with 4 RAM GB in a Linux Operating
System. The videos used in this test have above 11 differ-
ent targets in the image. As Table 3 shows, the system can
process over 6 frames per second, without any parallelism,
including the tracking system, in combination with the occlu-
sion recovery methodology, that can process every frame in
only 20 ms, without taking into account the time needed to
process the integral information, which is computed in the
detection step. Furthermore, the inclusion of different tech-
niques like the background subtraction and the torso estima-

tion not only improve the accuracy of the system but also the
speed.

5 Conclusions

In this work, an architecture for fast multiple people track-
ing under uncontrolled scenarios is presented. A combina-
tion of two different classifiers, a Viola–Jones and a SVM,
are used to detect every person in the scene because of the
head-shoulder omega-shape feature. A background subtrac-
tion technique is used to restrict the image location in which
the classifiers are used, and also to perform a torso estimation
to confirm the positive solutions.

Two different trackers are used. A feature-based particle
filter system, in combination with a velocity prediction sys-
tem based on linear filters, is used to track the head-shoulder
shape along the frames. A high-level tracker, which stores
every people’s appearance into a fixed pool of L*a*b-space
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Fig. 19 People recovery before
collision events. The system is
able to recover the previous
identification after the event
occurs

Table 3 Time consuming by the
detection system on a 640 × 368
image by the Viola–Jones type
classifier in combination with
the HOG feature-based SVM

Detector type Time per frame (ms)

Without head-size estimation No background subtraction (dense scan) 990

Background subtraction 305

Background subtraction + torso estimation 278

With head-size estimation No background subtraction (dense scan) 223

Background subtraction 157

Background subtraction + torso estimation 156

color histograms, is used to recover identifications which are
previously lost, usually because of occlusions of bad particle
filter estimations. Controlling both trackers, a system man-
agement is responsible for identifying each target state, and
deciding which tracker must be launched depending on the
situation. It also has the ability to remove bad detections and
to recover the previous target identification during occlusion
events. An ellipse representation is used to estimate the posi-
tion of the occluded targets, which considerably reduces the
regions in which the target could reappear.

This method was tested over a 10-min sport video
sequence, which has multiple challenging situations, such as

sudden orientation changes, occlusions behind other player,
jumps, squatting movements, and more. Multiple examples
indicate the performance of this technique, while some stats
show the improvement of this methodology with respect to
other similar people detection techniques. Furthermore, the
histogram-based tracker included in the methodology, along
with the ellipse estimation results in a powerful technique to
recover occluded target identifications.

The results also show that the system can reduce, com-
pared to other similar techniques, the false positives in the
detection procedure, because of the background subtraction
information included. Also, collision detection and target
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identification recovery under occlusion events are included,
which are issue that have not been addressed before in sys-
tems like this one. The procedure speed indicates that is pos-
sible to obtain a real-system framework using parallelism
techniques.

This approach highly improves processing times of pre-
vious approaches to this topic. Since the techniques used in
this methodology are mainly computed pixel per pixel, the
inclusion of GPU programing techniques could derive in a
real-time system for tracking people.

As limitations, the use of a background subtraction tech-
nique to reduce the space to perform the detection system
causes the system not to locate the stopped targets in the
scene, so a background training period is needed to obtain
a better performance. Furthermore, highly crowded scenes
could cause the system to operate similar to a system with-
out background information, increasing the processing time.
Sudden illumination changes must also be controlled to
obtain a good foreground representation. This is a general
methodology for tracking people. Those results could be
improved by using local information about the scene to train
the classifiers, instead of using a generic head-shoulder fea-
ture dataset. Furthermore, it could be also modified to track
any other feature in the scene. These properties enable the
system to be used as an information source in a higher-level
behavior analyzer, such as human interactions or detection
of abnormal trajectories.
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Abstract

Person re-identification methods have recently made tremendous progress on max-
imizing re-identification accuracy between camera pairs. However, this line of work
mostly shares an critical limitation - it assumes re-identification in a ‘closed world’. That
is, between a known set of people who all appear in both views of a single pair of cam-
eras. This is clearly far from a realistic application scenario. In this study, we take a
significant step toward a more realistic ‘open world’ scenario. We consider associating
persons observed in more than two cameras where: multiple within-camera detections
are possible; different people can transit between different cameras – so that there is
only partial and unknown overlap of identity between people observed by each camera;
and the total number of unique people among all cameras is itself unknown. To address
this significantly more challenging open world scenario, we propose a novel framework
based on online Conditional Random Field (CRF) inference. Experiments demonstrate
the robustness of our approach in contrast to the limitations of conventional approaches
in the open world context.

1 Introduction
The task of re-identification (ReID) is often defined as the recognition of the same individual
at different times and locations, which may involve different cameras, views, poses and
lighting. This challenge is now widely studied by the computer vision community, due to
its fundamentally challenging nature, and important practical role underpinning many visual
surveillance functionalities including person search and tracking across disjoint cameras.

Re-identification studies generally frame the task as a closed set matching problem.
Given a predefined ‘gallery’ set of known individuals, systems try to label each new ‘probe’
detection with the identity of the matching gallery individual. Studies have investigated good
feature representations [4] and discriminative models [9] to maximise the chance of correct
matching. They considered the contexts of single-shot [4, 9] (one image per person per
camera) as well as multi-shot [12] (a series of images per person per camera, obtained from
tracking) scenarios. However, most studies share two very strong assumptions: the total
number of people in the scene is known a priori, and there exists a total overlap of identity

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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between a camera pair, that is, every person appears in both camera views. Although this
constrained framing of the ReID problem is a good starting point, it is unrealistic for real-
world re-identification scenarios, when there is no prior information about the same people
reappearing in the scene at different views. We refer to this unconstrained setting as the ‘open
world’ ReID problem. The open-world problem is more challenging for two reasons: (i) the
total number of unique people within each camera and the scene as a whole (cross-cameras)
are both unknown, and (ii) each subject may appear in some unknown subset of the cameras.

The closed-world problem is significantly simpler, because it can be divided into a series
of independent tasks: “For each probe person, find the top most similar in the gallery”. In the
unconstrained variant, if there are two cameras people may only be seen by one; or if there
are more than two, then people may appear in any subset of the cameras. This means there
are more possible outcomes (no match), and every unknown identity problem is no longer
independent, they become strongly inter-related. For example, consider intuitively the task
of trying to match a person with a red-shirt against a gallery in the conventional closed
world context. The match is simply the one whose shirt most clearly red. In the open world
scenario, these could be completely separate people if two distinct red-shirt people were
observed independently in each camera and not in the other. Moreover, if there are two red-
shirt probes: in a closed world context, these would be given as distinct. In an open-world
context there is additional ambiguity: Are they distinct people, or due to a broken track? The
classical approaches clearly make too strong assumptions for this type of scenario.

In this paper we consider for the first time the most general open-world re-identification
problem, where there is no prior information about the number of people or their overlap
of identity across cameras. To address this, we introduce a new Conditional Random Field
(CRF) model, overcoming the entailed challenges of effective graph construction, local op-
tima and efficient inference. Our framework can answer qualitatively more general queries
than existing re-identification systems such as: “How many people are in the scene?", “If a
person leaves a camera, which other cameras did he appear in, or did he simply disappear?".

1.1 Related Work
Closed World Re-Identification: There has now been extensive work on closed-world re-
identification (ReID). Studies have generally addressed good feature representations [4, 15,
16, 20] and/or learning matching models discriminatively [7, 9, 15, 16]. Most works have
considered the ‘single-shot’ scenario of exactly one image per person using datasets like
VIPeR [7]; while others considered ‘multi-shot’ – how to constructively aggregate informa-
tion from multiple detections/shots of each person that might be obtained from tracking –
using datasets like ETHZ [3]. Further review is beyond scope of this work, so we point the
reader to a recent book [6] and survey [18] that summarise the main issues [5].
Towards Open World ReID: Going beyond closed world ReID discussed above, a few
recent studies have begun to consider some open-world aspects of ReID. For instance, [12]
introduced a CRF model to address multi-shot re-identification when the shots are not as-
sumed to be correctly pre-grouped within each camera: Corresponding to realistic input
with track association errors and split detections. Temporal information from each shot is
used to restrict the connections between the nodes of the CRF. The system is only tested
with the ETHZ dataset, which is recorded using a moving camera. However, pose and il-
lumination variation is not high, and the more constrained assumption of full overlapping
person sets is made. Recently, [11] introduces a probabilistic graphical model to associate
within-camera trajectories across disjoint cameras. This model reasons generatively about
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the appearance of each person, lighting change between cameras and the association between
trajectories. Efficient Gibbs sampling is used to find the best solution. However, it still re-
quires prior-knowledge of the number of people in the scene, and unlike [12], it assumes that
within camera association is already performed perfectly. No existing work has considered
the fully unconstrained open-world problem addressed in this work where within-camera re-
identification is not assumed a-priori, person identities only partially overlap across two or
more cameras, i.e. no guarantee of all people reappearing in every camera view, and the total
number of persons is unknown. In [21], a transfer learning framework is defined to verify a
probe person against a set of targets against a large amount of unlabeled data. However, this
assumes the target and background people are split a-priori, it reasons about a single probe
person at a time instead of jointly about all probes, and it only applies within two cameras.
Set Association: Although the open world scenario has not been addressed before, some
existing algorithms are related to this challenge. The Hungarian Method (HM) [14] performs
a set-match and can find the best pairwise correspondence between two sets of detections. It
is a good solution for the closed world single-shot problem. However it will find an associ-
ation even if the two sets are partially overlapped or totally disjoint (i.e. none reappearing).
Thus even if every person in camera A does not appear in camera B, HM obtains a complete
set of matches. Moreover, it cannot deal with multi-shot as it only makes 1:1 connections.
We will exploit the HM to define a subset of credible matches for a global CRF to reason
about. A classical CRF model [2] could also be used, with pairwise similarity measures
to weight links between detections. However, several problems arise: (i) how to define the
graph structure and label space, and (ii) CRFs tend to minimise the number of distinct labels
used, thus tending to assign every detection to one identity. In this work, we develop a novel
CRF model that incrementally constructs an appropriate graph to address these issues.
Our Framework: Contrary to classical ReID, the challenge in an ‘open world’ scenario
also includes within-camera association, i.e. encompassing within-camera ambiguity due to
tracking errors. An open world model not only has to distinguish when two detections belong
to the same person, as in classical ReID, but also has to recognise when a new person enters
in the scene, as in a classical tracking system. We build on CRFs, as they are state-of-the-
art solvers for closely-related topics of re-identification [12] and tracking [19]. However, we
relax the conventional constraint on requiring a priori set of known labels, and address issues
in efficiency and convergence. Specifically, we introduce a novel two-step CRF model, that
exploits spatio-temporal information where available. The first step matches within camera
detections that belong to the same person. The second step considers both within and across-
camera matching, using inter-camera information to revise initial within-camera estimates.

The proposed model makes three important contributions: (1) No label information is
needed a priori, allowing the system to detect when a new person enters the camera network;
(2) An ‘open world’ solver, that is, the model does not assume that a person will (re)appear
in every camera; and (3) Producing a person count as a byproduct. Our approach enables
the flexibility lacking in existing state of the art closed world ReID solutions. Finally we
also discuss some different evaluation criteria, as the classic Cumulative Matching Criteria
(CMC) that assumes known number of people in a ReID scenario is no longer suitable.

2 A Framework for Open World Re-Identification
In this section we first formalise the task and our model representation. In this model, dif-
ferent candidates of people with unknown id labels are represented as nodes in a CRF. The
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objective of the CRF is to infer the most likely correct assignment of multiple id labels
simultaneously to all the nodes in the CRF (see Figure 1). We assume as input a set of N ob-
servationsX = {xi}N

i=1 across different camera views. Each observation xi = {ci, ti,pi,vi,ai}
consists of: A camera ci making the detection; the time of detection ti (we assume cameras
are synchronized); the image position pi and velocity vi where the person was detected; and
an appearance feature ai from the detection bounding box. The re-identification task is to
correctly assign identity labels L= {li}N

i=1, l ∈ 1 . . .L to all detections..
To address this task we propose a CRF G = {V,E}, with the following structure. Each

node corresponds to a person detection (observation) V = {vi = xi}. Each edge corresponds
to a similarity between nodes/persons E = {ei j = (vi,v j)}, and the label of each node corre-
sponds to the identity of that person/detection. Our aim is to find the set of labels L that best
fits all the observations X ,

L∗ = argmin
L

(
∑

i
U(li|X )+∑

i j
B(li, l j|X )

)
(1)

Here U(li|X ) and B(li, l j|X ) denote unary and pairwise energy functions, respectively. U is
an L×N matrix defining the cost of assigning any label li to any observation xi. Importantly,
in the open world context, we do not know the total number of people in the network, so
L = N to account for the limiting case where every single detection is a unique person.
B is also an N ×N matrix, defining the cost of assigning li and l j to a particular pair of
observations. We decompose B into two matrices, B(i, j) = W (i, j)C(L(i),L( j)), where
W (i, j) is the weight of the similarity between the two nodes xi and x j and C(L(i),L( j)) is
the cost of assigning the labels L(i) and L( j) to their respective nodes. We shall define W
later, whilst C is a N×N matrix defined as

C(li, l j) =

{
0 if i = j
1 otherwise (2)

As mentioned before, U is an N×N matrix. Thus, assuming that we have as many labels
as person detections (observations), the cost of assigning any label l j to any observation xi
is also a pairwise similarity measure between the observations xi and x j. B(i, j) = 0 means
there is no direct connection between the two detections. Non-zero values will depend on
the appearance features, and spatio-temporal information (if available). The accuracy of
pairwise correspondences is higher within the same camera than between cameras, due to
less appearance change and stronger continuity. For this reason, our algorithm proceeds in
two steps, as illustrated in Fig. 1. First, we solve the CRF allowing connections only between
detections within the same camera. Second, we use that solution as an initial condition to
build the connections between different cameras, creating the final CRF model. The structure
and parameterisation of CRF at each stage is the same, but additional information is included.

2.1 Label Assignment as Within-Camera Tracking

A characteristic of CRF models is that they try to reduce the number of labels in the out-
put. For that reason, while creating a fully-connected CRF for solving the open-world re-
identification problem is elegant, it is very hard to tune. Small variations in the pairwise
potential causes every connected detection to be grouped with the same label, even if the
similarity is low. Thus, we restrict the number of direct links between detections.
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(a) Step 1
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(b) Step 2
Figure 1: CRF illustration. In the first step, only detections within the same camera are
connected. In the second step, a restricted connection between cameras is allowed.

First, all the detections included in the observation set are sorted according to the time
they were detected. Then, we establish the similarity between detections by creating the
unary potential Ũ , defined as

Ũ(i, j) =





0 if i = j
1−δ c

i, j if |ti− t j|< τc and ci = c j

1 otherwise
(3)

where δ c
i, j ∈ [0,1] is the probability of assigning label li to the detection x j in camera c.

Similarly, the pairwise weight W̃ is defined as

W̃ (i, j) =





(
1− |ti− t j|

τc

)
αc

i, j if |ti− t j|< τc and ci = c j

0 otherwise
(4)

where ti and t j are the times that detections xi and x j were recorded, respectively; αc
i, j ∈ [0,1]

is the appearance similarity between detections i and j in camera c; and τc a time threshold.
Note that the strength between two detections decreases with the time gap similarly to [12].

As explained before, the number of connections between the nodes, using these matri-
ces, is too high. A fully-connected CRF tends to use fewer labels, which is an undesirable
property for our model. Thus, we reduce the number of direct connections to two at most for
each detection based on higher W̃ (i, j) values. First, we define W̃w and Ũw as

W̃w(i, j) =
{

W̃ (i, j) if |P|< 2, where P = {x ∈ N−{i},W̃ (i,x)> W̃ (i, j) }
0 otherwise

(5)

Ũw(i, j) =
{

Ũ(i, j) if |P|< 2, where P = {x ∈ N−{i},W̃ (i,x)> W̃ (i, j) }
0 otherwise

(6)

Two links per node is a good balance. This value can be modified, but we found this is a
good connection density (higher values highly increase the false positive rate, whilst a lower
value increase the false negative rate). To enforce symmetry, we define Ww and Uw as

Ww = W̃w +W̃ T
w Uw = Ũw +ŨT

w (7)

Uw, Wv and C define our CRF, which can be solved efficiently using the alpha-expansion
algorithm [2]. At this point, we have connections between nodes (associated person detec-
tions) in the same camera, which are denoted by G. Next, we establish links across cameras.
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Input: Uw,Ww,{H}
Output: U,W
begin

U =Uw,W =Ww,T = /0.
foreach c1,c2 ∈ |c|,c1 6= c2 do

[p,q] = Hungarian(Hc1 ,c2 ).
for i = 1..|p| do

if Hc1,c2 (pi,qi)> αc1 ,c2
t then

W (pi,qi) =W (qi, pi) =
f c1 ,c2

max({ f ci ,c j }) .

T ∪ (pi,qi,
f c1 ,c2

max({ f ci ,c j )} ).

end
end

end
for i = 1..|T | do

Without taking into account (pi,qi) connection:
Select Si(p)|∀ j ∈ Si(p), if exists a path between pi and j using W
Select Si(q)|∀ j ∈ Si(q), if exists a path between qi and j using W
Update the states U(Si(q),Si(p)) and U(Si(p),Si(q)).

end
end

Algorithm 1: Constructing unary and binary CRF potentials.

2.2 Cross-Camera Association
To simplify association across cameras, we only take into account direct connections be-
tween the first and the last appearance of a person in each camera. Let Lv be the labels
associated with each node after using the local CRF model. Given the sorted detections, we
create two sets B and E enclosing the first and the last label appearances, as follows:

∀p ∈ [1..N] p ∈ B if ∀q ∈ [1..(p−1)],G(q) 6= G(p) (8)

∀p ∈ [1..N] p ∈ E if ∀q ∈ [(p+1)..N],G(q) 6= G(p) (9)

Once we have these sets, we need to select which are the correct matches between the de-
tections. With the same reasoning as before, we want to reduce the number of connections
between detections. Assuming the labels obtained in the first step are correct, we can con-
clude that the final detection of each person in each camera occurs when the subject leaves
the camera field of view. The same also happens with the initial detections. Based on this
reasoning, we can conclude that every final detection in one camera is related with, at most,
one detection in another camera. Thus, for each pair of cameras c1 and c2, we create the
matrix Hc1,c2 , which stores the affinity between detections i and j, as

Hc1,c2
i, j =

{
β c1,c2

i, j if ci = c1∧ c j = c2∧ ((i ∈ B∧ j ∈ E)∨ (i ∈ E ∧ j ∈ B))
∞ otherwise

(10)

where β c1,c2 is a cross-camera pairwise person-affinity measure based on appearance and
spatio-temporal cues. The lower the β value, the stronger connection. Using the Hungarian
Method [14], we search for the most plausible assignment of correct labels. In other words,
the Hungarian method is used to find a small subset of plausible links between detections in
different cameras. The detected links are included in the CRF as explained in Algorithm 1.
In the first loop, we compute the Hungarian Method to obtain the connections between nodes
in different cameras. Then, for each pair of connected nodes, we remove that connection and
we look for all the connections each node has. So, we obtain all the different states each
node can have, without taking into account the new connection. Finally, we enable the
connection and we update the unary potential of all the connected nodes, updating the new
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Input: Detections X
Output: Associations between detections L
begin

Compute within camera weights W and U (Eq. 7),
Solve the CRF Eq (1) with Alpha-expansion [2]
Solve Initial Hungarian to obtain H (Eq. 10),
Compute across camera weights W and U (Alg. 1)
Solve the CRF Eq (1) with Alpha-expansion [2])

end
Algorithm 2: Overview of CRF algorithm for open-world ReID.

states the nodes can reach with this new connection. The weight of this connection is further
adapted by the expected quality/reliability of affinities computed between these two cameras
according to the estimated F1 score f c1,c2 across cameras:

W (i, j) =





W̃ (i, j) if ci = c j
f c1 ,c2

max({ f ci ,c j }) if ci 6= c j and xi and x j are linked
0 otherwise

(11)

This is done because we want to rely more on connections between camera pairs that can
match reliably, and less on unreliable pairs. Finally, we create the CRF using the matrices
U , W and C. To solve this CRF, we use the alpha-expansion algorithm again. An overview
of our two-step CRF algorithm is described in Algorithm 2.

2.3 Pairwise Affinity Measures
The model depends on pairwise within and across-camera similarity measures δ c (Eq. 3), αc

(Eq. 4) and β c1,c2 (Eq. 10). These are all learned in the training step.
Within-camera: Various techniques can be used to compute similarities: δ c,αc ∈ [0,1].
For simplicity, we assume δ c = αc. To obtain these, we train a pairwise appearance-based
person-similarity model dc(·, ·) per camera. Let λ+ be the set containing all the match-
ing pairs, whereas λ− the opposite; and dc(ai,a j) some pairwise distance metric (KISS or
distance to the hyperplane in the RankSVM model). To normalise the distances for compa-
rability across cameras, δ c and αc are then defined as

αc
i, j = δ c

i, j =
|(al ,am) ∈ λ+,dc(al ,am)≤ dc(ai,a j)|

|(al ,am) ∈ λ+,dc(al ,am)≤ dc(ai,a j)|+ |(an,ap) ∈ λ−,dc(al ,am)≤ dc(ai,a j)|
(12)

Across-camera: To obtain the across-camera measure for cameras c1 and c2 with respec-
tive detections xi and x j, we compute KISS or RankSVM similarity measures: one for ap-
pearance (dc1,c2(ai,a j)), and another one for the combination of both position and velocity
(ρc1,c2(pi;vi,p j;v j)). We combine the two distances to obtain the similarity measure

β c1,c2
i, j = γc1,c2 dc1,c2(ai,a j)+(1− γc1,c2)ρc1,c2(pi;vi,p j;v j) γc1,c2 ∈ [0,1] (13)

3 Experiments
Dataset: To evaluate our contribution, we need a dataset that reflects the open-world chal-
lenge. Many classic ReID datasets, such as VIPER or ETHZ assume total overlap of persons
across cameras. PrID dataset [8] has a multiple-shot version with partial overlap, but it con-
tains only two different cameras. Thus, we decide to focus on the challenging SAIVT-Softbio
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Figure 2: SAIVT-SoftBio dataset. The dataset contains 150 people recorded over an eight
camera network. It includes several angle orientations and sudden illumination changes.

database [1] (see Fig. 2), that includes 150 people recorded using 8 different cameras. To
our knowledge, it is the only dataset that simultaneously meets all the requirements for a full
open-world task: Multi-shot data and multiple cameras with camera-transition uncertainty.
Experimental Settings: Our contribution is agnostic to the appearance feature, and the
base pairwise matching model used. To evaluate the system, we divide the dataset into
3 disjoint subsets. The first third (train set), is used to train all pairwise within and across-
camera matching models, giving d and ρ in Eqs. (13)-(16). We consider the ELF [17] feature
with RankSVM [10, 17] and KISS1 [13] pairwise models. The second portion (calibration
set) is used to calibrate all thresholds, αc, δ c, and β c1,c2 measures; and γc1,c2 values. The
best combination of these parameters is obtained by looking for the best F-score, denoted by
f c or f c1,c2 , depending if its within or between cameras. The final third is used to evaluate
the performance. We average performance over 10 random splits.
Baselines: As we address the open world problem with no prior information about the
number of people or their camera overlap, no existing models directly apply. For base-
lines, we therefore define a more conventional ‘engineering’ generalisation to open world of
RankSVM [10, 17] and KISS [13]. We train both on the training set, and then use the calibra-
tion set to optimise the threshold for the pairwise affinity. Pairs with affinity over threshold
are declared as sharing the same label. We denote these NaiveRankSVM and NaiveKISS.
Evaluation Metrics: To evaluate the performance of open-world problems the conven-
tional CMC metric is insufficient, due to partial overlap of a variable number of labels and
> 2 cameras. We therefore apply statistical analysis: Given the final and ground truth labels,
L∗ and Lgt , we analyse all pairs. If two nodes have the same label in Lgt and in L∗, it is a true
positive. The same label in L∗ and different in Lgt , a false positive, and so on. As the num-
ber of negative pairs is very large, accuracy and specificity have high values (≈ 1). Precision
(percentage of pair matches that are correct), recall (percentage of correct pair matches that
are detected) and their combination, the F-score, are better measures to use.

3.1 Results
Open World Re-identification: We evaluate on SAIVT, using five images per person per
camera. We consider three cameras (Cam 3, 5 and 8, that are challenging according to [1]),
where a person that appears in one camera may or may not appear in the others. Table 1
shows results obtained from analyzing every possible pair (within and between cameras).
We present variants of our framework using both RankSVM and KISS as the base pairwise
models. The CRF results are based on global inference across all three cameras, however
columns break down association performance as evaluated within individual cameras (first
three), across each pair of cameras (middle three), and across all three cameras ("whole
model"). The baseline methods obtain somewhat better recall, due to their non-conservative
nature. However on the other hand, the low number of false negatives causes a huge incre-

1For KISS, we reduce the dimension of ELF to 100 with PCA, as it is not robust to high dimensional data
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Table 1: Re-identification among three cameras from SAIVT. The last column shows the
global performance. Other columns show local performance. E.g., C3-C8 shows the quality
of the connections between camera 3 and camera 8 when the whole CRF model is computed.

F1-Score C3 C5 C8 C3 - C5 C3 - C8 C5 - C8 Whole model
Naive RankSVM 31.7% 34.1% 27.1% 15.9% 20.1% 24.6% 26.2%

Naive KISS 32.6% 29.4% 34.7% 23.4% 31.0% 29.6% 29.5%
RankSVM+CRF 50.1% 41.1% 73.2% 18.2% 43.4% 32.4% 42.0%

KISS+CRF 57.3% 52.0% 70.0% 30.3% 47.6% 43.7% 48.3%
Precision C3 C5 C8 C3 - C5 C3 - C8 C5 - C8 Whole model

Naive RankSVM 30,2% 22,2% 36,7% 14,9% 27,7% 25,7% 22,0%
Naive KISS 22.0% 20.0% 22.0% 15.9% 20.7% 19.9% 19.7%

RankSVM+CRF 63.8% 61.4% 62.3% 37.2% 55.4% 45.2% 53.7%
KISS+CRF 56.4% 59.2% 58.5% 38.0% 48.4% 47.1% 50.3%

Recall C3 C5 C8 C3 - C5 C3 - C8 C5 - C8 Whole model
Naive RankSVM 50,6% 87,6% 44,2% 24,7% 29,4% 43,4% 42,1%

Naive KISS 70.1% 63.3% 91.7% 50.3% 70.1% 65.4% 66.1%
RankSVM+CRF 47.4% 38.8% 94.0% 15.5% 43.1% 30.8% 39.4%

KISS+CRF 62.8% 50.1% 91.1% 28.5% 51.1% 44.7% 49.8%

Table 2: Inferring the number of distinct people in the dataset.
Ground truth Naive RankSVM Naive KISS RankSVM+CRF KISS+CRF

48 61±17.6 57.8±11.2 65±13.2 54.1±7.9

ment in the number of false positives, resulting in significantly worse precision. Our CRF
model is more robust, as evidenced by its maintenance of high precision values. Moreover,
it improves both of the base methods it is paired with. Because of the dichotomy between
obtaining high recall and precision, we conclude that the F-Score is the best overall metric
to validate an open-world ReID algorithm.
Estimating the number of people: An important general question of interest to camera
network operators is how many unique people are observed by the camera network in a
given time period? This is implicit in the open world ReID task. Inference in our CRF
model computes this as a byproduct2, so we can answer this question directly. Table 2 shows
the estimated number of unique people among the approximately 600 detections across all
three cameras. The estimated number of people along with the standard deviation of the
estimate over multiple runs are given. In each case our framework improves on the baseline
result, with KISS+CRF obtaining the best and most stable estimate.

4 Conclusion
We have proposed the first method to address the most practical ‘open world’ variant of
the re-identification problem. That is, when no information is provided a priori about the
number or distribution of people. We develop a two-step CRF model using both appearance,
temporal and spatial information that can be solved by fast energy minimization techniques
using graph cuts. Evaluation on a challenging public dataset with three cameras demonstrates
that the model improves on engineered baselines built on either of two classic pairwise ReID
techniques. Moreover, important metadata such as person counts can be generated as a by-
product of inference in our model. In our future work, we would like to test our algorithm
with more cameras and build explicit person and camera lighting models.

2One assumption is made in this point: since we assume we are going to have more than 1 detection per person
and per camera, labels with only one associated detection are treated as noise, and removed.
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a b s t r a c t

Vision-based action recognition has multiple applications, mainly focused in video surveillance

systems. The art of labeling each target behavior in crowded scenarios is a complicated field since

usually we do not have visual confirmation of the parts of a target to infer its behavior. Thus, trajectory

analysis becomes a good choice to try to infer knowledge about target movements. Most of the

contributions to this field involve a training period in which we obtain information a priori about the

environment, storing a dataset with all the possible usual routes. Based in the minimal path theory

using geodesic active contours, we present a novel architecture where no initial information about the

scene is needed, while it is possible to include it if necessary to specify constraints. Experimental results

in two different application domains show the performance and flexibility of this method, being able to

be used in multiple trajectory analysis problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, target behavior analysis becomes an important
field of study when dealing with security environments. The idea
of an automatic framework that can deal with abnormal move-
ments is one of the most active research fields. There are multiple
solutions to this topic, like detecting abnormal movement over
crowded scenes [1,2], monitoring traffic in highways [3,4] or
evaluating animal behavior [5].

Despite the fact of the multiple techniques that exist in target
behavior analysis, all of them have a problem in common: target
tracking. The quality of these techniques largely depends on the
tracking algorithm used. Over crowded scenes, these algorithms
have to be able to track every object of interest without mistaking
them. There are multiple challenges that have to be solved, like
total and partial occlusions due to static objects between the
target and the camera, or target collisions, which includes group-
ing and splitting events. The latter occur when some tracking
objects are so close that the system can only recognize one target.
The system must recover the correct identification of each target
after the collision event occurs.

Among the multiple target behavior techniques used, trajec-
tory analysis is a powerful tool to find abnormal behavior into the
scene or detect most common trajectories, which is a good
information to be used in multiple fields, like obtaining the best

place to sell a product or in road analysis to detect possible
traffic jams.

Johnson and Hogg [6] proposed a method for learning behavior
models using a vector quantization method to learn typical routes
taken by pedestrians from representative trajectories. However,
no high-level semantic information is derived and their method
requires the knowledge of entry/exit areas of the scene, which are
defined manually.

There are many different approaches in the literature for trajec-
tory analysis. One of the first approaches uses a vector quantization
method to learn typical routes [6]. However, this method requires to
manually set the entry areas in the scene. Clustering techniques
based on a flow vector are also used to detect abnormal movements
[7–9]. Using a classification technique algorithm (K-means or like-
lihood functions), they classify future sequences as familiar or novel.
In [10], a self-organizing map also classifies each route as usual or
novel converting routes in a fixed trajectory vector. It can also work
with partial routes, but is highly dependent of the quality of the
training set, which requires a previous evaluation of the scene. The
same problem appears in Rao et al. [11], where a probabilistic
density model to define each target route is used, while a log-
likelihood function is used to classify each event, and in Mecocci
et al. [12], where the Altruistic Vector Quantization algorithm is
modified to be able to compare different length routes. In both cases
no multiple-target tracking is used.

A statistical approach is also used by Porikli et al. [13], using
Hidden Markov Models (HMMs) to obtain representations of
object features, like speed, size or orientation. Thus, combined
with affinity matrices, they apply an eigenvector decomposition
to detect usual and unusual behavior. No a priori information is
needed, since they detect as usual the high occurrence of events
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using an unsupervised training set. Calderara et al. [14] use the
same type of training set, creating a mixture of Von Misses
distributions. The abnormal movement is detected calculating
the probability of the trajectory according to the distributions.
This probability is easily updated online. Vaswani et al. [15] also
use HMMs to encode target routes. Abnormal activity detection is
formulated as a change-detection problem. Again, the full trajec-
tory is needed to detect the behavior. A similar idea is used in
[16], also introducing the orientation into the system. In this case
multiple targets are tracked, but target collisions, like the
explained before, are ignored.

The main problem in the algorithms based on trajectory
analysis is that they usually need a complete route to compute
the results. This issue is critical when dealing with online
applications such as surveillance systems. Online analysis is
needed in order to operate in those environments. Hu et al. [17]
try to solve this problem introducing motion segments. Other
techniques need to build a training set to obtain an initial
information which is used to compare each new input
[6,10,8,9]. However, there could be scenes in which we do not
have any information a priori about the environment. Further-
more, a little change in the scene after the training period could
result in important changes in target behavior, making the
training useless.

In this work we present a new strategy for trajectory analysis
under multiple-target scenarios. This strategy is based on the
minimal path algorithm using geodesic active contours [18]. One
of the advantages of this method is that we do not need to compute
and store the usual routes, since storing the routes of each target
into a potential image is enough to obtain the best track between
the initial and the final target position. This final position could be
any frame in which we want to evaluate that target, enabling this
methodology for online processing. Also, due to the nature of the
minimal path algorithm, orientation is implicitly introduced. This
system is able to deal with path changes along time.

A multiple-target tracking algorithm is used in order to obtain
each target track. Using a hierarchical structure, including two
different trackers, this method can deal with many of the problems
explained before, like total occlusions and target collisions. A further
explanation of the tracking methodology can be found in [19].

The use of this minimal path technique in order to develop a
trajectory analysis becomes a powerful tool that can be used in
many applications depending on the potential image we want to
use. This potential image enables us to introduce information a
priori about the environment or, on the contrary, eliciting the
information about every target behavior in the scene using an
online equation.

This paper is organized as follows: Section 2 introduces the
minimal path method using geodesic active contours, explaining
the modifications introduced in our methodology; Section 3

makes a brief introduction about different techniques to obtain
the correct potential image associated to the routes; Section 4
discusses two different applications that can be implemented
using the methodology described, showing the obtained results;
finally, Section 5 offers a discussion about the improvement of
this system against classical clustering techniques, and also
includes conclusions and future work.

2. Minimal paths

There are many approaches in the literature to solve the
minimal path problem. The most used techniques are based in
graphs, like Dijkstra, Fn, An and other variants. Some of these
algorithms are used in images, like road detection [20] or distance
maps computation [21]. The basic idea is to use each image pixel
as vertex in a graph. The advantages of these techniques are the
speed and the complexity. However, when dealing with images,
these algorithms suffer from ‘metrication errors’ [18]. When
considering an image like a graph, where all pixels are nodes
with 4 (or 8) connectivity, it is clear to see that the length of a
shortest path between two pixel could highly differ from the
continuous solution. In fact, if we increase the resolution of the
image, the ‘metrication error’ will not decrease, which is the main
problem of using these methods in images. Fig. 1(a) shows an
example of this problem when dealing with images. A simple
potential is used, allowing the solution to be a simple straight line
between starting and ending point. However, graph search
algorithms can obtain this desirable solution.

Thus, we need a technique to deal with the continuous
problem as far as possible. The ‘metrication error’ has to decrease
while we increase the image resolution. So, our approach is based
on the minimal path approach presented by Cohen and Kimmel
[18]. This method is based on the idea of finding the minimal path
between two points using a potential image. This potential image
P takes lower values near the features of interest.

The basic idea is a reformulation of the classical snake
equation [22]. This is a ‘parametric’ equation containing two
different forces, one that controls the strength and flexibility of
the snake and another force, called potential, which attracts the
snake to the features of interest. Later, geometric active contours
[23] intrinsically include the snake parametrization into the
external potential. However, geometric active contours do not
arise from the minimization of an energy, like the classical
parametric snakes. To solve this situation, Caselles et al. [24]
introduced the geodesic active contours. These contours are based
in the Fermat’s principle of light propagation, which says that the
path taken between two points by a ray of monochrome light is
the path that can be crossed in least time. This is the reason why

Fig. 1. Metrication error. Using classical graph-search algorithms (a) over images results in a solution that is not consistent with the continuous solution, since the error

remains in spite of increasing image resolution. However, this can be solved using the minimal path approach (b) presented by Cohen et al., using a second-order numerical

approach for the back-propagation (in this case, Heun’s method is used).
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this technique is useful to obtain the minimal path between two
points.

The aim of the minimal path approach between two points p0

and p1 using geodesic active contours is to obtain a curve C(s) that
minimizes the functional

EðCÞ ¼

Z
O

EintðCðsÞÞþEextðCðsÞÞ ds¼

Z
O
o @C

@s
ðsÞ

����
����

2

þPðCðsÞÞ ds, ð1Þ

where O¼ ½0,L�, L is the length of C(s), o is the regularization
term, s is the arc-length parameter and P is the image potential.
The internal energy is the partial derivative of the curve with
respect to s and controls the regularity in the contour. The
external energy term is the potential and represents the desired
image features. Since we have defined the end points, the curve
is restricted by two boundary conditions: Cð0Þ ¼ p0 and
CðLÞ ¼ p1.

As mentioned before, s is the arc-length parameter, meaning
that J@C=@sðsÞJ¼ 1. Thus, the energy of the model can be written
as

EðCÞ ¼

Z
O
oþPðCðsÞÞ ds¼

Z
O
o ~PðCðsÞÞ ds: ð2Þ

The regularization term satisfies that o40. This parameter
allows us to control the smoothness of the curve. So, assuming
that the image potential P has positive values, we conclude that
~P 40. With this minimization problem, we first search for the
surface of minimal action U0 which starts in p0 ¼ Cð0Þ. This surface
is defined as the minimal energy integrated along the starting
point p0 and any given point p

U0ðpÞ ¼ inf
Ap0 ,p

Z
O
oþPðCðsÞÞ ds¼ inf

CðLÞ ¼ p

Z
C

~Pds

� �
, ð3Þ

where Ap0 ,p is the space of all curves that connect p0 and p over
the image potential P. In order to compute U0, a front propagation
is defined, in which we obtain a set of equal energy contours L in
‘time’, where t is, in fact the value of the energy. So, in the
evolution equation, t represents the height of the level set of U0

@Lðv,tÞ

@t
¼

1
~P

n
!
ðv,tÞ, ð4Þ

where n
!
ðv,tÞ is the normal to the closed curve Lð�,tÞ. This

equation starts at a small circle centered in p0 and evolves until
reaches all the points in the image. The value of U0ðpÞ is the time t

when the front passes over p.
There are many numerical approaches to compute this mini-

mal action surface. Like Cohen et al., we apply the Sethian Fast
Marching Method [25], which is the best solution for real-time
systems. This solution is consistent with the continuous propaga-
tion rule, which means that the more you refine the grid, the
better the solution converges to the true one. Given the potential
value ~Pi,j ¼

~PðiDx,jDyÞ in a grid, with Dx¼Dy¼ 1, the method
approximates Ui,j solving the equation

ðmaxfu�Ui�1,j,uþUiþ1,j,0gÞ
2
þðmaxfu�Ui,j�1,uþUi,jþ1,0gÞ2 ¼ ~P

2

i,j,

ð5Þ

selecting for Ui,j the largest u that satisfies the equation. Using
this algorithm, when a pixel p is reached by a front propagation
started in p0 and computed, it is possible to obtain the minimal
path between these two points without computing the rest of the
image, which is a very interesting advantage. This is particularly
useful when dealing with only one end point, improving the
speed of the algorithm.

The minimal action surface U has a convex like share, which
means that U0 has only one local minimum that is the starting
point p0. So, for any point p in the image, we only need to follow
the gradient descendant direction, which always converge at p0.

Thus, using a simple steepest gradient descent algorithm we can
find the minimal path. Starting at the final point p, we select the
connected pixel with the lowest value U as the next point in the
path. This method guarantees the convergence to a solution, but
also causes the ‘metrication error’ mentioned before in the graph
search algorithms. So, more complex methods, such as second-
order Runge–Kutta, like Heun method, are used to solve this
problem, making this approach consistent with the continuous
solution. Fig. 1(b) shows an example of the solution of this
method. Contrary to the graph-search methods, this is consistent
with the continuous solution.

Algorithm 1. Modified Fast Marching method.

Definitions:

� Alive set: points of the grid for which U has been computed and
it will not be modified.
� Trial set: next points in the grid to be examined (4-connectivity)

for which a estimation of U is computed using the points in
alive set.
� Far set: the remaining points of the grid for which there is not

an estimate for U.

Initialization:

� For each point in the grid, let Ui,j ¼1 (large positive value).
Put all points in the far set.
� Set the start point ði,jÞ ¼ p0 to be zero:

Up0
¼ 0, and put it in the trial set.

Marching loop:

� Select p¼ ðimin,jminÞ from trial with the lowest value of U.
� If p is equal to p1 being p1 the final point then we finish.
� Else put p in alive and remove it from the trial set.
� If ~Pðimin,jminÞot, for each of the 4 neighboring grid points (k, l)

of ðimin,jminÞ:

J If (k, l) belongs to far set, then put (k,l) in trial set.
J If (k, l) is not in alive set, then set Uk,l with Eq. (5).

In our case, we have to do some modifications to Sethian Fast
Marching method. There will be regions in the scene for which no
targets passed along time. We have to restrict the minimal path
possibilities not to pass for those regions, despite of the regular-
ization parameter o chosen. To solve this situation, we assign to
the pixels in those regions a high value. So, in the Fast Marching
algorithm, if we reach a point with a value higher than a chosen
threshold t, we do not allow the propagation over this point.
Algorithm 1 shows the necessary steps to make this Modified Fast
Marching method. Since reached points are chosen in order, we
only need one pass in the image to compute the minimal action
surface U. Fig. 2 shows an example of applying this method to
obtain the minimal path for a person that walks from the bottom
to the top of the image. In this case, having only one end point,
according to Cohen et al., we can optimize the Fast Marching
Method. Basically, we make a front propagation starting both in
the initial and the final point. So, when both fronts reach the same
point, we make a back-propagation from that point to both
starting points, obtaining the minimal path. This solution explores
less points in the image than the usual. We can see the result is
close to the real movement of the person.
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3. Discussion on the potential

Dealing with the minimal path approach defined by Cohen
et al. one of the crucial points is how to design an ideal potential
that can be used to obtain a correct minimal path. In the case of a
tracked object, there are a lot of different potentials that can be
used depending on the type of knowledge we want to insert into
the methodology. Since we are able to track every moving object
in the scene using the multiple-target tracking explained in the
previous section, it is easy to create a potential image marking the
positions for which they have been traveled. So, you do not need
any a priori information about the scene, since it is possible to
build the potential image online. The potential image provides a
huge flexibility to this methodology. We introduce a discussion
on different potentials that can be used to obtain the minimal
path. Each potential allows us to model different possible
scenarios.

3.1. Fixed potential

Although the main purpose to this contribution is to produce a
system that can obtain a minimal between two points in a scene
without any information from the environment, it is also possible
to include information a priori about the scene, like the regions
that are not allowed to pass any target, i.e., people walking down
a runway or accessing a forbidden area. This type of potential is
particularly useful under surveillance scenarios, since it is easy to
perform an initial mask with all the regions in the scene that can
be reachable for any target. For instance, in Fig. 3 a binary image
is used to show which parts of the environment are accessed.
Hence, minimal path behavior is restricted to these conditions.

The problem of using this type of potential is the abnormal
movement, since it is impossible to obtain a minimal path between
any given points not marked as accessible. One solution is to remove
the threshold t condition in Algorithm 1, but the result produce bad

estimations trying to stay as much as it possible under pixels
marked as allowed. Other solution is to include the target trajectory
in the potential with a high value in the points marked as forbidden.
With this solution it is possible to obtain a more accurate minimal
path, but does not take into account the path of other possible
targets with abnormal movement.

3.2. Online potential

If we have no information a priori about the scene, we can use
the moving objects to create the potential image. Storing the
object positions along the time, we can draw its path around the
scene. So, starting in a potential P¼0, we increase the value over
the path positions. Fig. 4 shows an example of this technique.
Different persons walking over the sidewalk and cars driving
along the road are defining the potential image, in which we
clearly see the paths that are most used (darker paths).

As mentioned before, the minimal path algorithm needs a
potential image ~P 40, which takes lower values near the features
of interest. So, a first idea is to use the potential image

~P ¼ 255�Pþo,

with Pi,j the number of objects that travel over the pixel image
Iði,jÞ, limited to 255. This equation satisfies the condition
explained before. Intuitively, this method will obtain good results,
but it can produce an undesirable effect. If the number of objects
in the scene is low, P values will also be low. According to [18],
given a potential ~P 40, the curvature magnitude 9k9¼ J@2C=@s2J,
where s is the arclength parameter, is bounded by

9k9r sup
O

Jr ~PJ
~P

( )
: ð6Þ

According to this, and assuming that ~P values are close to 255
and Jr ~PJ� 0, we conclude that 9k9� 0, which means the minimal

Fig. 3. Fixed potential example. (a) Input image. (b) Potential image. This example allows human movements over the passages, while is not able to locate a minimal path

when the person moves through the grass.

Fig. 2. Restricted Fast Marching method example. (a) Potential image. In white, forbidden pixels. (b) Minimal Action surface U obtained using the Restricted Fast Marching

method. (c) Minimal path, as a result of applying the Heun’s method in the back propagation over the U surface.
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paths are, essentially, straight lines. This is a bad situation
because we cannot control the curvature magnitude using the
regularization parameter o, as its value is irrelevant in that
scenario. Our solution to this problem is to use the potential

~P ¼ sup
D
fPg�Pþo, ð7Þ

with D an image domain in which we define the potential. Using
this equation we can guarantee that

inf
D

sup
D
fPg�P

� �
¼ 0: ð8Þ

This condition allows us to establish a new curvature thresh-
old, which is bounded by

9k9r sup
O

Jr ~PJ

o

( )
: ð9Þ

An explanation of this result can be found in [18]. Thus, the
curvature magnitude 9k9 depends on the regularization para-
meter o, which can be set manually depending on the expected
behavior. Also, in this case we consider the threshold for

Algorithm 1 as t¼ sup Df
~Pg, that are the pixels in the image with

value P¼0.

3.2.1. Dynamic potential

Online potential enhances the most used paths against the
others. However, it is possible that targets show an abnormal
behavior, in the sense of erratic movements around the scene.
Since we do not have any information a priori about the scene, we
cannot distinguish if it is an usual movement or not. Thus,
without information about the environment, we need a way to
isolate the unusual movements and remove them from the
potential. Also it is possible that the target routes from a fixed
starting and ending point change along time. There are many
possibilities that can explain that behavior (an obstacle in the
previous trajectory, another route that is not considered before by
the other targets, etc.). So it is important to adapt the potential in
order to avoid possible bad minimal path estimations.

It is necessary to create a dynamic potential that can deal with
these situations. Our approach is the inclusion of an extra
parameter a, which decreases P values. Hence, the new potential

Fig. 5. Dynamic potential example using a¼ 0:995 and g¼ 0:5. Between frames 500 and 1500 we can see some routes that disappears from the potential, like the one that

runs from the bottom-left to the top of the potential. (a) Background image. (b) Frame 500. (c) Frame 1000. (d) Frame 1500.

Fig. 4. Online potential example. (a, b) For each target detected, its path is added to the potential image (c). In black, most visited pixels. In white, forbidden positions.
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at any given time t is

~Pt ¼ sup
D
fPtg�Ptþo, ð10Þ

with

Pt ¼ aPt�1þTt , ð11Þ

where Tt are the new pixels traveled by all targets between time
t¼ ½t�1,t� and 0oar1. If a¼ 1 we obtain the potential described
in Eq. (7). Note that the potential upper limit can change between
iterations, making it able to deal with every training scheme.
So, changing the threshold explained in Algorithm 1 to
t¼ supDf

~Pg�g, we can mark as forbidden regions those pixels
which values are Prg. Fig. 5 shows an example of the evolution
of this kind of potential. Some trajectories, like the one that crosses
from the bottom-left to the top of the image, are used only one time,
so, after a few iterations, they are removed from the potential. The
value a must be close to one, since it is possible to cause failures in
the detection of the minimal path due to the propagation restriction
inserted in Algorithm 1.

3.3. Pool of potential images

The problem of detecting minimal paths in multiple-target
tracking is that you have multiple different starting and ending
points, so the use of the potential images explained before can
lead to bad estimation. For example, in Fig. 6(a) and (b), the
minimal path between the bottom and the top of the image,
which is a route which has been used by a person, is highly
influenced by the cars that cross the scene from left to right. This
behavior is not desirable since the result obtained is clearly wrong
when talking about a human behavior. Our idea is to include a
pool of different potentials that are activated depending of some
high-level knowledge. Two proposals are discussed next. Again,
there are lots of different approaches that can deal with these
issues as a result of system flexibility.

3.3.1. Starting position potential pool

The basic idea is to divide the scene into a N � N grid, creating
a pool of N2 different histograms. Hence, each target uses the
potential associated with the node that contains the point in
which that target has been tracked for the first time. In practice,
targets that activate nodes are in the boundaries, so we consider
to use only one potential image associated to all the inner nodes,
reducing the number of histograms to 4ðN�1Þþ1.

Thus, a potential is updated, using Eq. (11), every time a target
associated with the corresponding node is moving within the
scene. Also the potentials linked with the neighbor nodes are
updated. Fig. 7 shows an example of this technique. Each region
has its own potential image, which is not influenced by objects
which starts in positions far from that part of the scene. Note that
this is not a ‘trajectory cluster’ approach, since we are only
restricting the potential effect over different regions.
Fig. 6(c) shows how this solution improves the one obtained
using only one potential image.

3.3.2. Target classifier pool

Another way to introduce a pool of potentials is to classify
each target into different groups in order to improve the minimal
path approach. This is so because the expected behavior of a
target also depends on their inner condition. For example, the
expected behavior for a car is different from a person, since it is
not possible to do sudden direction changes.

For example, using a video stored in the CANDELA data set [26],
and with a simple ellipse area threshold, we can separate cars from
persons or bikes. Each target only updates its potential, having no
influence about the minimal paths calculated for the remaining types
of targets. Fig. 8 shows an example about the potential obtained using
this technique. It is also possible to use more high-level reasoning in
order to classify the targets, and, for example, merge the two different
pools explained. Fig. 6(d) shows that this method obtains a better
accuracy than using only one potential image.

Fig. 6. Minimal path obtained with different potential images. (a) Original path. (b) Single potential image. (c) Starting position potential pool. (d) Target classifier pool.

The single potential image obtains a poor result, since it is influenced by all the cars that cross the scene. The potential pool techniques can solve this situation.
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It is difficult to establish which of the pools mentioned before
obtains a better result, since its performance could be highly
dependent on the problem which has to be solved. Also, other
different techniques could be added instead of these potential images
that we have described. Contrary to the initial thought, the inclusion
of multiple potentials do not have influence in a possible computa-
tional cost. The reason is that, even we increase the memory inserting
new images, the cost of the algorithm is determined by the Fast
Marching Method. Thus, having multiple potential pools each one of
them smaller than using only one causes the Marching Method to
have less possible accessed pixels, increasing the algorithm speed.

4. Examples and results

When dealing with multiple-target tracking systems we cannot
predict all the routes that are going to be used by any target in the
scene. Thus, the main purpose of the minimal path algorithms, i.e.

search the minimal path between the initial to the final point in
order to be used by the target, is not feasible. Instead, we
demonstrate this algorithm proves useful in common scenarios of
the tracking problem. We have used several real video environ-
ments. Depending on the case of use, a different potential will be
used among the previously exposed ones. As we mentioned before,
the multiple-target tracking system used to test this methodology is
explained in [19].

4.1. Online abnormal target movement detection

In the first example, we are interested in detection of abnormal
movements. An abnormal movement is a change in the system
model whose parameters are unknown, according to [15]. This
change could be slow or drastic, and, in case of abnormal trajec-
tories, could be an abnormal behavior with erratic movements,
sudden changes in speed or direction or even when an object stops a
long time [7]. Our abnormal detection algorithm is based in the idea
that, knowing all the possible trajectories within any given scene, a
target always tries to use the route that involves less energy demand
to do, which is equivalent of finding the minimal path using
Algorithm 1 explained before. One of the advantages of our system
is that it is able to evaluate the movement at every time we want,
having the initial point fixed as the position in which the target is
found in the first time, and the final point as the present target
position in the moment of computing the minimal path. Several
checking can be done during a target’s path.

We are focused in two different points in this topic given the
information we have about the environment: when we have
information a priori and when we have not. Depending on the
situation there are different possibilities of classifying each route.
When dealing with restricted scenarios, like airports or police
stations, it is very helpful to introduce information about the
environment. Two different abnormal movements are detected in
this case: access to forbidden regions and erratic movements over
the granted space. Due to these premises, a combination of two of
the potentials mentioned before was used. First, a fixed potential
is implemented in order to introduce all the forbidden regions,
activating an alert of abnormal movement whenever any tracking
object entered in them.

However, having only one fixed potential can introduce
problems, since the minimal path into a constant potential is an
straight line, which is not necessary the best choice in cases
where multiple objects are moving in the scene, such as multiple
queues. Having this issue in mind, we have to introduce an online
potential, as described in Eq. (7), only applied in the granted
points described in the fixed potential.

On the contrary, there are situations where we cannot obtain
any information about the environment, having only the behavior
of the tracking objects to model all the granted areas. In this case
the use of a fixed potential is useless. An online potential, like
Eq. (7), has also problems since an abnormal movement that
introduces a new route remains in the potential image. Hence, a
dynamic potential has to be introduced in order to deal with all
the problems mentioned before. Eq. (11) is chosen in this
scenario.

Unlike the environments which we have information about
them, in this case it is impossible to make any assumption about
the inlets, the outlets or the target behavior. Thus, the use of a
pool of potentials is needed in order to obtain a better accuracy.
Despite the fact we do not know any information about the
environment, it is possible to predict the type of all different
targets that can appeared in the scene. If that is possible, the
target classifier pool explained in Section 3.3.2 is the best choice.
Otherwise, the starting position pool explained in Section 3.3.1 is
a good solution.

Fig. 8. Target classifier pool example. Using a simple ellipse size threshold, and

avoiding ellipse groups, it is possible to separate each target into three different

groups: persons, bikes and cars, each with its own potential.

Fig. 7. Starting position potential pool example. The image border is divided into

4ðN�1Þ regions, each of one has its own potential image. As we can see in the

examples, since we update every potential only if the object tracking starts into its

region or in the neighbors, there are potentials which have different values.
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4.1.1. Validation metrics

Multiple choices exist in the literature to compare different
tracks. Euclidean distance was used in the first attempts. Having a
list of positions along time, each point is compared against
another. This method is sensible to shift error [27]. Two similar
tracks but shifted are not similar. To solve this situation, other
techniques are developed, including Dynamic Time Warping
(DTW) [28], the Longest Common Subsequence (LCSS) [29] or
the metric performed by Piciarelli and Foresti (PF) [27], which are
able to compare vectors with different lengths.

However, these methods fails to detect local abnormal move-
ments. In Fig. 9 we can see some examples. Local abnormal
movements cannot be detected by these algorithms, since the
results they provide are computed as an average. When a target
choose a path, and then it decides to go back, reaching again the
same position, the algorithms mentioned before ignore the path
used between these two times, causing the system to probably
recognize the path as usual. This problem arises because of the
idea of comparing two vector with different lengths, which is
introduced in these methods. Finally, erratic movements, like a
car constantly changing its line, cannot be detected as abnormal
too. Thus, we decide to explore other methodologies that could be
capable of dealing with these problems. We take advantage of the
FMM method to perform new metrics.

Once we obtain the minimal path associated to each target, we
need a metric to compare that trajectory against the target route,
so we can establish it if it can be considered as the same way.
In this case, we also consider two different approaches, one using
register techniques and another one using a variant of the Fast
Marching Method proposed by Sethian.

Registration techniques are methods commonly used where
an image is compared to a template in order to determine their
similarity. The main idea is to compare two templates, one is used
as reference and another that can be modified using geometric
transformations in order to increase the similarity by aligning the
templates. In order to find the similarity between two aligned
images, we use the normalized cross-correlation

Rðx,yÞ ¼

P
x0 ,y0 ðTðx

0,y0Þ � Iðxþx0,yþy0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x0 ,y0Tðx

0,y0Þ2 �
P

x0 ,y0 Iðxþx0,yþy0Þ2
q , ð12Þ

where T is the reference template and I the one which can be
modified. Values of Rðx,yÞ close to 1 indicate the trajectories are

similar, while values near to 0 show they are totally different. This
metric has been successfully used in similar scenarios where the
images to compare contained lines on a scene, in particular, blood
vessels [30,31]. In our case, since we compare two templates with
the same size, the possible transformations are limited. So, these
are restricted into a set of small translations. Also, as we are in a
fixed camera scenario, the rotations are limited to small angles.
Finally, in order to improve the positive results and also speed up
the algorithm, we reduce the size of the image by a correction
factor. The acceptance criteria is set using a threshold.
Fig. 10(c) and (d) shows an example of the type of images this
method use, this is, the target route template and the minimal
path template, respectively.

On the other hand, it is possible to modify the Fast Marching
Method defined by Sethian to obtain a distance map (DM). The
main idea is, having the minimal path between the initial and the
last point reached by the target, to create a distance map that
calculate de minimum distance from each point to the minimal
path. One easy way to do that is changing the initialization of
Algorithm 1, setting all minimal path p points with value Up¼0
and all their pn neighbors which are not part of the path with
value Upn

¼ ~PðpnÞ, being ~P ¼ 1. Again, we apply a downsize of the
image resolution. For this case, we downsize if by a factor of 8.
Fig. 10(e) and (f) shows the distance map image and how the
target route fits in into it, respectively.

Another modification is performed in the DM method in order
to obtain another metric. The idea is based in the fact that the
minimum distance between a point and a given minimal path is
also influenced by the environment. For instance, consider we
have a highway, with the two opposite lines separated by a
barrier. The minimum distance between two points which are in
opposite lines should be greater than the typical euclidean
distance. Thus, we introduce the weighted distance map
(WDM). The idea is similar to the DM, changing the potential
~P ¼ 1 for the potential used to obtain the minimal path. This idea
can be used in this system, because we are performing a
propagation front to obtain the distance. Unfortunately, in
point-based metrics this idea cannot be considered.

4.1.2. Metrics results

In our experiments, we empirically choose the values a¼
0:999 and o¼minðsupDfrPtg=10,1Þ. The inclusion of a potential

Fig. 9. Abnormal movement examples. The metrics that exist in the literature, like DTW, LCSS or PF, have problems to detect some kinds of abnormal behavior, like

(a) abnormal local movements, (b) reaching the same position in two different times and (c), erratic movements along the minimal path. In blue, the real path. In green, the

minimal path. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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pool depends on the initial analysis of the environment, i.e., the
number of different tracking object classes or the number of inlets
and outlets. Is not always necessary to use it in every case. Two
different scenarios were tested: a cross-roads included in the
CANDELA dataset and another experiment using an own dataset,
BARD [32]. This dataset contains human movements over a
crossroad. Contrary to CANDELA dataset, usual entry/exit regions
are clearly bounded. Usual movements cross the scene along the
pavement, while abnormal movements cross the grass. Different
videos were used with a duration between 1 and 2 min, resulting
in more than 5000 samples.

In the first case, using the BARD dataset, we perform a fixed
potential with no updates, since we clearly have five different
entry/exit regions. As we know that only persons will appear in
this environment, we only use an unique potential image.
Fig. 11(c) shows the potential image used, with o¼ 1. In the
second case. that is, using the CANDELA dataset, a target classifier
pool is used, since it is easy to distinguish between persons, cars
and bikes, using only a bunch of thresholds that check the target
size. An online algorithm is used to update each potential.

In Fig. 12 we can see an example of how the system works in
the BARD dataset, using a fixed potential. One person walks over
the grass, so the minimal path cannot be computed. The meth-
odology marks this target as abnormal behavior (Fig. 12(b, c)).
On the contrary, when a person walks over the pavement, the
system is able to obtain the minimal path (Fig. 11(a) and (b).

In Fig. 13 we can see an example of the second scenario, that is,
using a target classifier pool of dynamic potentials. In this
example, two persons cross the scene by the sidewalk, but, after
a few seconds, they start to run over the road to the other side of
the image, which is clearly a wrong behavior. Fig. 13(a) and (b)
shows the complete trajectory that these persons are following,
while Fig. 13 (c, d) show their minimal paths, respectively. As we
can see, the paths highly differ. Note that we are using an online
potential image, which means that we do not have any informa-
tion a priori about the scene. Thus, these paths could have been
considered as usual movements if no targets updated the poten-
tial image before.

At the same time, it is possible the abnormal path could be
caused because of a physical obstruction. However, since an

Fig. 10. Matching trajectory methods. (a) Target route. (b) Minimal path route. (c) Target route template for registration technique. (The image size is reduced by 8, in

order to speed up the algorithm while the number of positive matches increases.) (d) Minimal path route template for registration technique (the image size is also

reduced). (e) Distance map image (in white, values close to the minimal path). (f) Target route fix into distance map image. This route is really close to the minimal path

solution.
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abnormal movement is detected in the first steps, the new path
will be marked as usual after a few steps, using a dynamic
potential approach. Inaccessible regions due to a possible obstruc-
tion will reduce their potential quickly, while the new regions
used will increase their potential values.

So, the different trajectory comparison techniques mentioned
before were tested using these dataset. To compute the minimal
path we reduce the image size by 8. Furthermore, in the case of
the cross-correlation technique, we only allow rotations from
�101 to 101 and 1-pixel translations. Table 1 shows the false

positive (FP) and false negative (FN) ratio depending on the
chosen threshold. As we can see, the cross-correlation technique
obtains poor results. On the contrary, using the distance map, no
matter if we use the mean or the variance, it is possible to clearly
establish a threshold. Also, this method needs less computing
demand than the cross-correlation technique, which needs to
compute multiple translations and rotations. Although the mean
and the variance obtain better results, the variance can handle all
the abnormal movements showed in Fig. 9, so we decide to
choose it as the better metric.

Fig. 11. Fixed Potential examples. Each target performs a route along the predefined ways (a, b). (c) Fixed potential image.

Fig. 12. Abnormal behavior example. Using a fixed potential image, the system detects as abnormal behavior every target that appeared into forbidden regions.

Fig. 13. Abnormal behavior examples. Two different persons make an unusual movement, causing the minimal path between the initial and final position highly differ.
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Finally, we decided to compare the DM and the WDM, using
the deviation metric, against three different vector distance
metrics: DTW, LCSS and PF. We decide to use these three methods
because of the results obtained by Morris and Trivedi [33], which
show these three methods obtain the better performance. We use
an own dataset containing 610 different routes, where 50 of them
are abnormal movements. Each route has stored 27 positions,
resulting in 15 860 path comparisons.

Both DTW, LCSS and PF were calibrated, tuning their parameters
in order to obtain the best performance in this dataset. The idea is to
see how the methods are capable of detecting abnormal move-
ments. We use a fixed potential to obtain the minimal paths, which
is showed in Fig. 3(b). This potential is also used in the WDM
measure. Fig. 14 shows the obtained results. Clearly, DM and WDM
outperform the classical vector distance methods, since they are
capable of dealing with local abnormal movements. The reason
WDM obtains the better results is because the value obtained highly
increases when a target appeared into a forbidden region. In Fig. 15
we show some abnormal movements that can only be detected by
the WDM method.

4.2. Main trajectories detection

As mentioned before, sometimes we cannot infer any information
about the environment a priori. So, it is also interesting to obtain an
approach about the main trajectories used in the scene. This is an
useful information in multiple fields of action, i.e., improving a traffic

light timing, since we know the usual behavior of all the objects
involved, or to improve the product placements into a market
checking the main routes used by the customers, which enables us
to put any product we want to sell in a strategical situation.

So, we propose a second experiment with the idea to show the
versatility of the presented methodology in the situation of
determining dynamic trajectories without any information a
priori. To do that, we use the CANDELA dataset, which contains
a camera position far enough to obtain a good number of different
trajectories. For this experiment we focus in cars. Although it is
not the scope of this paper, automatic discrimination between
cars and humans is achieved by a simple area threshold over the
target ellipse representations.

The idea consists on determining all the trajectories associated to
the cars within the scene, showing the importance of each one based
in the frequency of mobile objects on it. This method updates the
potential image iteratively every frame. We need all the information
about the routes involved in the scene. Thus, we use the online
potential explained in Eq. (7) instead of dynamic potential.

When a target is detected for the first time, its position is
stored. We do not need to store all the target route, since we are
only focused in their initial and final point. We consider a
trajectory when the target tracking stops. Other trajectories can
be considered, such as when the target stops or when a sudden
orientation change occurs, for example. This is only one example
of the multiple solutions this methodology can provide.

Once we have the trajectory defined, we check the trajectory
pool to see if there exists any route created before that have
similar boundary points. Is we find it, we increase the weight of
that route. We are only focused into the beginning and into the
end, using the euclidean distance to perform the matching. If we
cannot find a similar route, we create another one.

After the online potential is updated, the main trajectories are
obtained by performing the minimal path approach over all the
trajectories included into the trajectory pool mentioned before.
Each trajectory has its own weight, according to the number of
targets transiting it.

In Fig. 16 we can see an example of the application of this
technique. Initially, we suppose not to have any information a priori
about the environment. So, we use a target classifier pool that
isolates cars into one potential. In this case, we only divide the
image size by 4, in order to obtain a best path accuracy. Finally, we
obtain the minimal paths showed in the image. Also it is easy to
indicate the percentage of use of each trajectory, as we can see in
the figure. Note that the path that crosses the scene from the left to
the right is the most used. Additionally, when two different tracks
are merged at some segment, their weights are added, increasing its
percentage of use, as we can see into the right part of the image.

5. Discussion and conclusions

In this paper, we describe a novel methodology for trajectory
analysis based on the minimal path theory using geodesic active
contours, which is more accurate than classical graph search
techniques when dealing with images. This technique allows to
determine the ‘action’ or ‘potential’ image that is going to be used
to find the minimal path, which is often hard to obtain. Since we
obtain the route of each target that appears in the image, it is easy
to create that potential image.

Different potential images were introduced in order to find the
best accuracy in the system depending on the approach we want
to solve. No information a priori is needed to run this system,
although it is also possible to include it in order to enrich the
environment by adding some constraints. Applying the proposed
methodology to different problems using one public dataset,

Table 1
Abnormal path detection statistics. Using the distance map we can obtain a very

good performance, according to the tests we made. Cross-correlation technique

obtains a poor result.

Measures Threshold Specificity (%) Sensibility (%)

Cross-correlation 0.6 86.36 56.69

Mean (distance map) 3.5 100 100

Variance (distance map) 6 100 100
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Fig. 14. ROC curve for the pedestrian trajectory analysis. Both DM and WDM

outperforms classical vector distance methods.
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which is referenced in the literature, and our own dataset, which
is included in order to increase the number of different situations
that can happen. Two different experiments are proposed to show
the flexibility of this methodology. A system for detecting
abnormal behavior is presented, including some quantitative
results which do no exists in the literature. A system for obtain
the main trajectories into a scene with no information a priori is
also presented.

Previous approaches to trajectory analysis need to store a set
of different clusters, each one having information of an unique
path. Multiple clustering techniques can be used, being the most
recent used direct [34], divisive [35], graph based [36] and
spectral [37]. In Table 2 we illustrate the problems these methods
have. First, you always need a set of clusters, so a previous
training is needed. This is a problem when the target behavior
changes along time, making the training useless. On the contrary,
our method can work both with and without any information a
priori about the environment.

Since a training procedure is needed, you need to merge
different similar paths to perform a cluster. Although, as we see
before, there exists metrics that can work with vectors with
different sizes, a fixed length is needed in order to store the
cluster. This is a huge problem, since a small vector length could
cause the system to lose information. For instance, if we have a
car which is constantly changing between different lines, making
a cosine-like trajectory, we can lose a huge part of the information
if the points stored always coincides with the same road, turning
an abnormal movement into an usual one. Furthermore, a fixed
length causes the system to have problems with partial trajec-
tories. If we lose a target in the middle of its trajectory, and it is
never recovered, causes the path to be useless to incorporate in its

respective cluster, making the system fair to deal with online
updating. We have to discard the path or to create a new cluster,
causing the system memory to highly increases. Storing all this
information in a simple potential image, we can solve all these
problems, while keeping stable the memory requirements.

Finally, the clustering techniques need a vector distance
measure to work. On the contrary, our method can use both that
techniques and distance maps also. This helps the system to be
more accurate with a continuous solution, that means, the
rotation of the scene does not interferes in the solution. This
makes the system more robust than clustering techniques.
Furthermore, as we can see in the WDM, information about the
environment can be implicitly included within the distance
function, which allows the abnormal movement detection proce-
dure to be more accurate.

We obtain promising results about its performance, showing the
flexibility of this methodology for being used in many different
applications. For instance, a fixed potential could be used in
surveillance scenarios, since we have information a priori about
the forbidden regions. On the contrary, an online potential is a good
choice when we want to find the usual trajectories along the scene.

In a future research a minimal path system which uses an oriented
potential image would be interesting to add, to avoid undesired
scenarios, mainly focused in vehicle situations. For example, using
this system over a car that make a U-turn in a roundabout will obtain
a bad estimation, since the minimal path without orientation does
not need to circle the roundabout, despite the fact the trajectory
obtained is an illegal path according to circulation laws. Another
problem concerns to different level crosses, that is, a bridge over a
road. We obtain the same bad estimation explained before.

Moreover, despite the fact the speed is computed and stored
using a multiple-target tracking framework, it was not taken into
account for this study. A study that relate the speed with the
regularization term o would be interesting. Also an analysis
about the stopped target would be useful in behavior detection.
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Fig. 15. Using a fixed potential image, we define as abnormal behavior every target that appeared into forbidden regions, even if it is for a short space of time. Only WDM

method can detect these abnormal movements.

Fig. 16. Car main routes. Using a simple online potential which is only updated

with the cars in the scene we can obtain the trajectories used, which clearly fit

with the roads in the scene. The percentage of use of each route is also marked.

Table 2
Comparison between clustering techniques against minimal path technique.

Properties Clustering methods Minimal path method

Information a priori Needed No needed

Path length Fixed Variable

Memory requirement Incremental Constant

Online updating Restricted Yes

Environment information Explicit Implicit

Occlusion impact High Low

Vector distance metrics Yes Yes

Distance map techniques No Yes
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authentication using digital retinal images, Pattern Analysis and Applications
9 (2006) 21–33.

[31] C. Mariño, M. Ortega, N. Barreira, M.G. Penedo, M.J. Carreira, F. González,
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Abstract. This paper presents a new solution for path analysis using minimal
path techniques with external directional forces. Previously techniques presented
in the literature need to store every different path that exists in the scene. This is
a problem in terms of memory. They also need the complete route to perform the
computation, being unable to be used detecting uncommon events, like accidents,
in real time. We introduce a path planning technique that, using only a velocity
field, is able to cope with these problems. The technique can be used with no
information a priori about the environment, while it is possible to include or even
modified it. A case of study based on traffic analysis is presented to show the per-
formance of the methodology. A complex turnaround scene along with highway
real data tested our methodology, showing promising results.

Keywords: traffic analysis, minimal path, oriented upwind scheme.

1 Introduction

Path analysis is an important field of study, specially dealing with security environ-
ments. A framework that can help human users to detect and prevent from dangerous
situations could highly increase human efficiency. Depending on the scene in which we
want to use it, i.e. crowded scenes or traffic monitoring, there exists different solutions
in the literature to solve this topic.

The use of path analysis is a powerful tool to be used in behavioral systems, such as
detecting abnormal behavior in targets with erratic movements, road analysis detecting
traffic jams and possible escape routes, or simply detecting zones of interest, where
people tends to stay longer than usual.

Several approaches exist in the literature to deal with this topic. In early attempts,
Johnson and Hogg [6] modeled a system that learns typical routes taken by pedestrians
using a vector quantization method. Unfortunately, this method needs to define a priori
the people entrances and exits in the scene. Abnormal movements were also detected
using flow vector based clustering techniques [7][9]. Each route is classified as familiar
or novel using a classification algorithm (K-means or likelihood functions).

Porikli et al. [12] use Hidden Markov Models (HMM) to obtain representations of
object features, like size, orientation or speed. Combining the features with affine ma-
trices, an eigenvector decomposition is applied in order to detect usual and unusual

J.M. Sanches, L. Micó, and J.S. Cardoso (Eds.): IbPRIA 2013, LNCS 7887, pp. 366–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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behavior. The system uses an unsupervised training set to define the usual routes. Com-
bining this idea with a mixture of Von Misses distribution, Calderara et al. [2] detect
abnormal movements calculating the probability of the trajectory according to the dis-
tributions.

These first approaches use a training set that can infer initial information about the
environment [6][7][9]. The problem in this systems arises when a change in the envi-
ronment occurs, i.e. a car accident, forcing the targets to change their usual behavior,
making the target useless. Thus, an algorithm that is able to update the usual routes
online is a good feature to incorporate.

A general issue with all these previous path analysis algorithms is that a complete
path to perform the comparison is needed. In online security systems this issue is criti-
cal, since the system would not foresee a possible dangerous situation until it has hap-
pened. So, an algorithm that can detect abnormal situations at the moment they are
happening is also interesting to include. The main idea consist in being able to evaluate
each path at every moment.

In this work we present a new strategy for path analysis that can solve many of the
problems explained before. This approach is based in the idea of that a target tends
to choose the path that takes less time to reach its goal, avoiding unnecessary huge
deviations. Thus, this system can be modeled as a minimal path approach [4]. In our
case, directional forces are also included, in the sense of adding speed information in
the model. In the methodology, no a priori information about the environment is needed.
Only a potential image and a velocity field is needed to compute the usual routes. The
algorithm exposed here can compute a minimal path between an initial and a final point.
The initial position is the first time the target is tracked, while the final position could
be its position at any frame, enabling it to detect unusual movement at the moment they
occur.

This paper is organized as follows: section 2 introduces the minimal path algorithm
we are going to use; section 3 introduces the domain in which we are going to test
the methodology, describing how to obtain both the potential image and the velocity
field, and showing some results; section 4 shows a discussion about the suitability of
the method; finally, section 5 offers conclusions and future work.

2 Path Estimation Techniques

As mentioned before, the targets tend to reach their desired goal using the minimum
amount of time required. Of course, this trajectory has to take into account the scene
constraints. For instance, a car must keep their path within the asphalt, or a boat, which
always has to stay over the water. This constraint does not limit our system, since it can
be used without it, but the solutions provided with this feature are more accurate.

So, having this in mind, we can conclude that we are dealing with a minimum path
problem. There are many approaches in path planning that deals with this issue. In
discrete spaces, methods like A*, F* or Dijkstra-like algorithms [15] are used to obtain
the better route. However, these methods suffer from ’metric error’, that is, their solution
is not consistent with the continuous case. To address this problem, Cohen et al. [4]
uses geodesic active contours, finding a path of minimal length in a Riemannian metric,
being consistent with the continuous case.
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(a)

velocity field

(b)

Fig. 1. Minimal paths over a roundabout. (a) Velocity orientation. (b) Oriented Upwind Method
[5] with different velocity intensity.

2.1 Ordered Upwind Method

The Ordered Upwind Method (OUM) [14] was created in order to include that direc-
tional forces into the path planning problem. However, the computational complexity is
increased from O(NlogN) in the isotropic case (FMM), to O(ΥNlogN) in the OUM
approach, being Υ the relation between the upper and the lower values on the directional
forces.

We have to build a surface of minimal action U . Four sets of point are considered,
far, trial, alive and Accepted Front. The latter is defined as the set of alive points that are
adjacent to at least one member of the set of trial points. Let AF the set of line segments
xjxk where xj and xk are points included in the Accepted Front set, and exists a trial
point adjacent to both points. Additionally, for each trial point xi, its near front NF is
defined as

NF (xi) =

{
(xj , xk) ∈ AF

∣∣∣∣∃x on (xj , xk) s.t. ‖x− xi‖ ≤ h
F2

F1

}
, (1)

where h is the grid size, and F1 and F2 are the lower and upper bounds of the ex-
ternal forces. As in the FMM case, we initialize all the grid points labeled as far and
U = ∞. In the starting point p, it is labeled as trial and Vp = 0, where Vp represents
a tentative value of U(xi), and let Vxj ,xk

(xi) be a consistent upwinding approxima-
tion for U from a virtual simplex xjxixk. So, the tentative value Vxi is defined as
V (xi) = min(xj ,xk)∈NF (xi) Vxj ,xk

(xi). To compute de Vxi value we have to define
how to calculate the Vxj ,xk

(xi) value.

3 Case of Study: Traffic Analysis

The technique mentioned in the previous section is general, since it can be used in
several fields of study. In our case, we are going to adapt the algorithm into a traffic
analysis domain. As mentioned before, we take advantage of the fact that a vehicle tries
to use the path that cost less time to reach the desired goal, avoiding unnecessary devi-
ations. To compute de temptative value Vxj ,xk

(xi) in the OUM algorithm, we decided
to modify its computation of in order to be more accurate. Our solution is:

Vxj ,xk
(xi) = min

ζ∈[0,1]
(τ(x̃, xi) + ζU(xj) + (1− ζ)U(xk)), (2)
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Fig. 2. Bilinear interpolation example in a discretized quadratic grid

where x̃ = ζxj + (1 − ζ)xk and τ(x̃, xi) is the value of the penalty function when
moving from x̃ to xi:

τij =

√
Δ− (Wx· dx +Wy· dy)

V 2
a − V 2

w

, (3)

being Δ = V 2
a · (d2x + d2y) − (Wx· dy − Wy· dx)2, (dx, dy) are the space difference

between the position xi and xj , Va the target velocity, and Vw , Wx and Wy the field
speed and its components. To compute the velocity field in the position x̃ we perform a
bilinear interpolation:

Vw(x̃) =(1−Δy)(1−Δx)Vw(A) +Δy(1−Δx)Vw(D)

+ΔyΔxVw(C) + (1−Δy)ΔxVw(B), (4)

as it can be seen in Fig. 2. The solution of the Eq. 2 is done by using the “golden section
search”. In Fig. 1-(b) we can see this algorithm provides a smoother result.

3.1 Velocity Field

First, we have to define the velocity field Vw that is going to be included in the algo-
rithm. We are going to perform a microscopic way of the targets, that is, every target
is going to be detected and processed separately. This technique is more precise than
macroscopic approaches that evaluate the density flow [10], but requires more compu-
tational time.

A multiple-target tracking approach is needed. The performing of this technique is
not the main goal of this paper. In our experiments, a simple optic-flow method is used
[1], but any other more complex technique could be needed in more complex scenarios.
The algorithms explained before only need the position of the target. Shape is not con-
sidered. In our case, the blob centroid that encapsulates every target is used to store its
location.

Two different structures are used to create the velocity field. First, a counter image T
is used. The path positions reached by a target are increased in this counter image. Also,
the counter image is decreased every frame following the equation T t+1 = βT t, β ∈
(0, 1]. This guarantees the recent tracks have more weight, making the system suitable
for dealing with environmental changes that may occur in the scene. As a rule, β should



370 B. Cancela, M. Ortega, and M.G. Penedo

take values close to 1. Finally, having a target t that we know both its path and its
velocity at every point in the scene (Vp), the velocity field is defined as:

Vw(C) =
T (C)Vw(C) + Vp

T (C) + 1
, (5)

being C the target path.

3.2 Scene Properties

As we mentioned earlier, we have to take into account the scene properties. In this case,
we forbid the algorithm to scape from the asphalt. Thus, in the neighbour updating
step, we avoid to update the point in which there are no asphalt, Since we do not have
any information a priori about the environment, we use the information provided by the
tracking system. So, we use a threshold, τ , in the counter image T to determine whether
a pixel is part of the asphalt or not. Fig. 3 shows an example of the construction of this
image.

Fig. 3. Potential created after 2000 frames in a turnaround traffic scene

3.3 Experimental Results

To test this methodology we use the traffic simulator PTV Vissim provided by the PTV
group. As mentioned before, one of the most challenging situations dealing with traffic
analysis is the turnaround. Thus, we decide to use a turnaround scene1, introducing a
tram priority in order to increase the complexity. Using the velocity field defined in
section 3.1, we clearly obtain low velocities near the rail because of the traffic lights.
We reduce the velocity field image size, in order to increase the system efficiency.

Testing different possibilities, we achieve that reducing the original video resolution by
an 8 factor obtains the best results.

A target identification is also needed in order to avoid the tram in the potential image,
which could cause the system to obtain poor results, since the cars cannot drive over the
rails. In this case, a simple threshold size is enough to identify the train.

In the Fig. 4 we can see how the OUM method is updating the velocity field at
every frame, causing the minimal paths to be modified. In the frame 500, the path that

1 http://www.youtube.com/watch?v=RtxEZINCpCw
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Frame 500 Frame 1200

Fig. 4. Minimal paths obtained in different times. The paths start from the upper-right roundabout
entrance, reaching all the departures. All the routes are updated at every moment without needing
to store all the different paths.

takes less time to reach the top-left departure, starting from the top-right of the image,
involves the lane running off the turnaround. However, in frame 1200 the path changes,
running within the turnaround lanes. Despite the fact that the examples showed involve
the end of their respective paths in the scene, this system is able to compute the minimal
path at every moment the target is detected, having only to take its current position as
final position. We also test the methodology using real data provided by the NGSIM

Frame 5000

Frame 20000

0 %

40 %

Fig. 5. Main paths information over a highway. At right, information of the most used trajectories,
depending on the starting lane chosen. Vehicles tend to use the upper lanes to make room for the
vehicles that enter using the bottom approaching lane.

dataset2. We use information about traffic movement over a highway, with more than
30 minutes recording information. In Fig. 5 we can see some of the obtained results. We
show the minimal paths of the main trajectories the vehicles are following, depending
on the starting lane chosen. We can see how the vehicles tend to use the upper lanes,
which are faster than the others. Also, it use them to make room for the vehicles that
use the approaching line, before entering the highway. These results confirm the idea
that the vehicles try to use the path that involves the minimum time to reach the goal.

2 http://ngsim-community.org
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It is important to note that in this particular work no quantitative comparisons can
be provided as the discussion is focused in assessing the use of a new paradigm for
modeling of usual behavior which possesses a qualitative nature by itself. Future uses
for this paradigm would include particular domains such as, for example, abnormal
behavior detection which is not the point in this introduction.

4 Discussion

As we show in the examples explained before, the OUM algorithm is able to, using the
information provided by the environment, determines the usual routes a target follows
in order to reach its target. One of the most interesting fields of study in which our idea
can be useful is the detection of abnormal behavior. Since we can detect the usual route
of any target (we only need its initial position and its last known position as final point),
it is possible to perform an abnormal detection system, in order to prevent accidents
before they occur.

As mentioned before, techniques found in the literature needs the complete route
to perform a comparison [16], which is useless in this topic. However, there exists
techniques that can deal with partial routes, like Dynamic Time Warping [8]. However,
this technique requires high computational cost and is more sensitive to noise in the
tracking system. More recent techniques can predict the usual paths given any position
in the scene [13], but have no information about past events.

The techniques found in the literature are mainly focused in clustering or probabilis-
tic models. This means that, for performing a path computation, we have to compare
every path stored against every new path we have. Using our methodology, we can re-
duce this complexity, since we only have to compare the new path against one usual
route, that is, the result obtained with the method proposed in previous sections. Once
we have the usual route, we can compare it against the new path using any trajectory
distance measure [11], or even clustering techniques [3].

5 Conclusion

In this paper, a new vision for path analysis using directional forces is provided. The
idea is to avoid the need of storing every possible path in the image. A technique based
in the minimal path idea is provided and tested. A potential image and a velocity field
are the information the method requires to compute the usual paths.

Although it is possible to include information a priori about the environment in this
system, this one is able to work without it. To do that, a tracking system is needed to
define the velocity field, which is updated at every frame, making this system robust
against changes over the time, showing the flexibility of this methodology. Experimen-
tal results over a traffic analysis case of study show promising results.

In a future research a high-level reasoning about the results provided by these meth-
ods would be interesting to add, enabling the system to provide better information for
the user. For example, a method that can show the frequency of the main routes used
by the targets. Also, an online technique for detecting abnormal behavior, used to pre-
vent possible accidents. An approximation of the OUM technique, which can reduce its
computational time, is necessary to reach an real-time system.



Path Analysis Using Directional Forces 373

References

1. Bouguet, J.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation,
Microprocessor Research Labs (2000)

2. Calderara, S., Cucchiara, R., Prati, A.: Detection of abnormal behaviors using a mixture of
von mises distributions. In: IEEE Conference on Advanced Video and Signal Based Surveil-
lance, AVSS 2007, pp. 141–146 (September 2007)

3. Cancela, B., Ortega, M., Fernández, A., Penedo, M.G.: Path Analysis in Multiple-Target
Video Sequences. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part II. LNCS, vol. 6979,
pp. 50–59. Springer, Heidelberg (2011)

4. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path ap-
proach. International Journal of Computer Vision 24, 57–78 (1997)

5. Elston, J., Stachura, M., Frew, E., Herzfeld, U.: Toward model free atmospheric sensing by
aerial robot networks in strong wind fields. In: IEEE International Conference on Robotics
and Automation, ICRA 2009, pp. 369–374 (May 2009)

6. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition.
Image and Vision Computing 14(8), 609–615 (1996)

7. Junejo, I., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Pro-
ceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp.
716–719 (August 2004)

8. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications.
In: Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining, pp. 285–289 (2000)

9. Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual
surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 35(3), 397–408 (2005)

10. Moore, B.E., Ali, S., Mehran, R., Shah, M.: Visual crowd surveillance through a hydrody-
namics lens. Commun. ACM 54(12), 64–73 (2011)

11. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: Experimental studies and
comparative evaluation. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 312–319 (2009)

12. Porikli, F., Haga, T.: Event detection by eigenvector decomposition using object and frame
features. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW
2004., p. 114 (June 2004)

13. Saleemi, I., Shafique, K., Shah, M.: Probabilistic modeling of scene dynamics for applica-
tions in visual surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1472–1485 (2009)

14. Sethian, J.A., Vladimirsky, A.: Ordered Upwind Methods for Static Hamilton–Jacobi Equa-
tions: Theory and Algorithms. SIAM Journal on Numerical Analysis 41(1), 325–363 (2003)

15. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on
Automatic Control 40, 1528–1538 (1995)

16. Wang, X., Ma, K., Ng, G.-W., Grimson, W.: Trajectory analysis and semantic region mod-
eling using nonparametric hierarchical bayesian models. International Journal of Computer
Vision 95, 287–312 (2011)



3.3. Conference Paper: Trajectory Similarity Measures Using Minimal Paths 119

3.3 Conference Paper: Trajectory Similarity Measures

Using Minimal Paths

Author #1: Brais Cancela Barizo

Affiliation: Universidade da Coruña, Spain

Co-author #2: Marcos Ortega Hortas

Affiliation: Universidade da Coruña, Spain

Co-author #3: Manuel Francisco González Penedo
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Abstract. Dealing with surveillance systems, large amount of distance measures
are presented in order to classify both normal and abnormal behavior. Typically,
techniques based in point-to-point distances are used. However, these techniques
do not take into account information about the environment, like pits or restricted
areas, for instance. Using a minimal path algorithm to model the usual paths, we
develop new trajectory distance measures that are able to introduce information
about the scene. The results obtained show promising results.

1 Introduction

Detecting human activities and behavior is a huge field of study in computer vision.
One of the most active topics is related with the study of human behavior and their
group relationships. This field has a special interest in surveillance systems. The idea of
being able to detect abnormal behavior has being widely study. For instance, a strange
movement could result in an abnormal behavior which has to be detected in order to
throw an alarm.

The classical path classification methodologies are based in clustering techniques.
Different configurations were used: direct [15], using techniques like k-means or fuzzy c
means; agglomerative [5], where we merge clusters until we obtain the desired number;
divisive [4], the top-down dual to agglomerative clustering; Hybrid [11], Graph-based
[14] or Spectral [10]. All the techniques mentioned above are limited, since they require
routes with the same number of samples to compute the clusters, and they are not easy
to update along time. Suppose, for example, that an usual target is interrupted because
of an object placed in the track. A new cluster is created with the new routes, but the
previous cluster still remains in the system. A target which decides to jump that object,
which clearly is an abnormal movement, will be declared as normal behavior because of
the existing cluster. More recent techniques include the use of nonparametric Bayesian
models [20], [19] or use models to predict the motion behavior [8].

To overcome the clustering issue, we developed a new system that can be easily up-
dated [6]. We use a minimal path algorithm to model the abnormal behavior. In normal
situations, a target tends to choose the route that costs the least time to reach its de-
sired destination. Thus, trajectories that highly differ from this “ideal” route are marked
as abnormal. A new metric were presented, based in a distance map algorithm, which
requires a high computational time.

A. Petrosino (Ed.): ICIAP 2013, Part I, LNCS 8156, pp. 400–409, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this work we present a new trajectory distance measure that can be used in surveil-
lance systems to detect abnormal behavior. This technique uses the properties of the
minimal path algorithm to obtain a metric without increasing the computational time,
solving the distance map technique disadvantage. This paper is organized as follows:
section 2 shows different trajectory measure algorithms; section 3 describes our method;
section 4 shows some experimental results and section 5 offers conclusions and future
work.

2 State of the Art

We define a trajectory as a collection of the positions a target reach along its way. So, we
have a collection of N positions defining a target route. To compare it, there exist in the
literature different approaches for trajectory distance metrics. Methods based in classi-
cal measure techniques were used, like euclidean distance [10] or principal component
analysis (PCA) [3]. However, these methods obtain poor results, requiring trajectories
with the same size to be compared. Other attempts, like the modified Hausdorff distance
[2], does not take into account the order into the trajectory points.

Thus, distance measure techniques have to be able to compare unequal length trajec-
tories, while taking into account the route orientation. In [12], Keogh et al. presented
the Dynamic Time Warping (DTW) technique. Basically, this method tries to find a
time warping that minimizes the distance between two different trajectories. It can be
used with trajectories with different sizes. Buzan et al. [5] introduced a similar idea, the
Longest Common Subsequence (LCSS). It can also be used with unequal length data,
becoming more robust to noise. The reason is that not all the trajectory points need to be
matched. Similar to these methods, Piciarelli and Foresti (PF) [17] uses a dynamic time
warping window, which is increased along time, that is, the maximum error allowed is
low at the starting trajectory point, becoming larger while we are reaching the end. The
performance of these metrics were tested in [16].

Although these methods can deal with the problems mentioned before, they all
present a major issue for real domains: they do not take into account information about
the environment. For instance, in Fig. 1, we can see two examples of situations these
techniques cannot correctly address. In the left, two parallel trajectories are defined.
Using the similarity measure it is easy to conclude that both trajectories are similar.
However, the red route is produced by a counterclockwise car, which clearly is an ab-
normal behavior. On the right image, both the red and the green route are similar to the
blue one, but the red one crosses the central reservation.

To solve situations like the previously illustrated one, we develop a methodology that
is able to introduce information about the environment [6], based in the geodesic active
contours [7] and the level set theory [13]. A modification of the minimal path approach
using geodesic active contours performed by Cohen and Kimmel [9] is provided. In
this work, starting at any given point p0, a minimal path map over an image is obtained,
with a O(N logN) complexity, beingN the number of pixels in the image. To do that, a
potential image P is created, which includes information about the environment. Later,
the potential used in the algorithm is defined as

P̃ (p) = ω + P (p), (1)
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(a) (b)

Fig. 1. These trajectories are defined as similar using classical distance measure techniques, while
including the scene information the red routes are clearly abnormal

being ω the regularization term. This potential has to be defined so P̃ > 0 and P ≥ 0,
meaning that ω > 0. Values close to 0 implies pixels that are easy to reach, while higher
values means the opposite.

Having this potential, the surface of minimal action U can be created. This surface
assigns a value to each pixel in the image, which corresponds with the least cost that
takes to reach that pixel, starting at the initial point p0. To create that surface, the Fast
Marching Method (FMM) proposed by Sethian is used [18]. An ordered upwind scheme
is used, updating the cost of a given pixel Ui,j = u following the equation

(max{u−Ui−1,j, u+Ui+1,j, 0})2+(max{u−Ui,j−1, u+Ui,j+1, 0})2 = P̃ 2
i,j . (2)

Once the minimal path between the initial and the final point is obtained, we can
evaluate the real path against this minimal cost approach. Note that the final point men-
tioned before is not necessarily the point where we stop to track a target. The minimal
path can be computed each frame a target is detected, using the last position detected as
final path. This is an advantage with respect to other methodologies, since the abnormal
behavior can be detected as soon as it occurs.

So, in order to evaluate the real path against the minimal path approach, a distance
map image is created. Having this minimal path algorithm in mind, it is easy to see that,
if using as initial points all the points in a given trajectory C(s) instead of the point
p0 in the original algorithm, the surface of minimal action U we obtain is a distance
map, where the value Ui,j of each pixel is the minimum cost that takes to reach that
point, starting at any point that belongs to the trajectory C(s). Note that, the distance
between two consecutive pixels is defined by the potential P̃ . In [6], a discussion about
the potential image is provided.

The problem of this method is the computational cost needed to create the distance
image. Since the algorithm is, in essence, equivalent to the minimal path approach,
the cost to obtain the map is O(N logN). Thus, our goal is to create a new trajectory
distance measure that is able to include information about the environment, taking into
account the properties of the minimal path approach, but avoiding unnecessary extra
computations.



Minimal Path Measure 403

3 Minimal Path Metrics

Our goal is to use the properties of the Fast Marching Method used to create the minimal
action surface U to detect if a trajectory is abnormal. That surface of minimal action
has a convex like behavior, in the sense that, starting at any given point p, and following
the gradient descent direction in U , we always converge to the initial point p0. This
means that the minimal action surface U has one local minimum, which is U(p0) = 0.
Furthermore, this geodesic active contour-based technique is consistent with the con-
tinuous problem, in the sense that the solution provided by the FMM becomes closer to
the exact solution while reducing the grid. This property allows this algorithm to avoid
the ’metrication error’, which appears in the classical graph search algorithms, like A*
or F*.

This property is crucial to present our methodology. If, for instance, we introduce the
potential image P̃ = τ > 0, and we compute the minimal action surface U , starting at
any given point within the grid p0, we obtain a distance map, as the value at any point
p, U0, is the distance between this point with respect to the initial one p0. And, contrary
to the graph search algorithms, since the FMM is consistent with the continuous case,
the solution we obtain is close enough to the euclidean distance. Note that this system
is isotropic, having no information about directional forces. The cost to reach a point is
always the same. no matter which direction the front-propagation come by.

However, using a potential like the mentioned before causes the system to lose the
information about the environment, since this potential is constant all over the space.
Fortunately, it is possible to compute the distance map regardless the type of potential
used. We have to define another minimal action surface D, which is going to be updated
using the equation

D(p)=

⎧
⎨
⎩

D(pa)+D(pb)+
√
2τ2−(D(pb)−D(pa))2

2
if P̃ (p)>(U(pb)−U(pa))

D(pa)+τ otherwise
,

(3)
where pa and pb are the neighbors used in the Eq. 2 to update the surface of minimal
action U(p). satisfying that U(pa) ≤ U(pb), and τ is the distance between two neighbor
pixels. Typically, τ = 1.

Thus, while computing the minimal action surface U we can compute the distance
map D without any substantial cost increment. In algorithm 1 a pseudocode of our
FMM implementation is presented.

Once we have the distance map related to a trajectory, we are able to perform a
similarity measure that can detect abnormal behavior. For notation, we have a trajectory

Tr = {p0, p1, . . . , pM}, (4)

where each point represents positions that are reached for the target. Note that this is an
ordered sequence of events, where the position pi is reached before the position pi+1.
These trajectories can be obtained using tracking techniques, being p0 the first time a
target is tracked. Since, as we demonstrate in [6], a target usually tends to follow the
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Algorithm 1. Distance Surface Method
Definitions:

– Alive set: points of the grid for which U has been computed and it will not be modified.
– Trial set: next points in the grid to be examined (4-connectivity) for which an estimation of

U is computed using the points in alive set.
– Far set: the remaining points of the grid for which there is not an estimate for U .

Initialization:

– For each point in the grid, let Ui,j = ∞ (large positive value).
Put all points in the far set.

– Set the initial point p0 to be zero:
Up0 = 0, Dp0 = 0, and put it in the trial set.

Marching loop:

– Select p = (imin, jmin) from trial with the lowest value of U .
– If p is equal to p1 being p1 the final point then we finish.
– Else put p in alive and remove it from the trial set.
– If P̃ (imin, jmin) < τ , for each of the 4 neighboring grid points (k, l) of (imin, jmin):

• If (k, l) belongs to far set, then put (k, l) in trial set.
• If (k, l) is not in alive set, then set Uk,l with Equation 2
• and set Dk,l with Equation 3.

path that cost less effort to reach the goal, we can conclude the relation between the
minimal path distance with respect to a normal trajectory behavior is close to 1, that is,

∑M
i=2 d(pi−1, pi)

D(pM )
≈ 1, (5)

where d(pi−1, pi) is the distance between two consecutive points in the trajectory. To
compute this distance it is also possible to use the minimal path approach, starting in
pi−1 instead of p1. However, the points contained in the route are usually close together,
meaning the euclidean distance often results in a good approach.

Having this in mind, different metrics are presented for detecting abnormal behavior.
All these metrics are based in two different equations. The first one tries to obtain the
relation between the target route and its associated minimal path. We called it Minpath
Relation (MR), and is defined by

MR(pN) =

(∑N
i=2 d(pi−1, pi)

D(pN )
− 1

)2

, (6)

where 1 < N ≤ M . The second one tries to detect local variations in the MR metric.
We called it Local Minpath Relation (LMR), and is defined by

LMR(pN) =

(
d(pN−1, pN)

D(pN )−D(pN−1)
− 1

)2

. (7)
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In both metrics, values close to 0 mean the path is correct, while higher values could
indicate an abnormal behavior.

4 Experimental Results

In our experiments we have used a dataset publicly available, BARD [1], in order to
test the methodology. Several trajectories are developed over an intersection scene, re-
sulting in more than 15000 trajectory points. In the experiments we decided to use a
fixed potential image, that can be shown in Fig. 2-(a). We consider the grass areas as
forbidden areas, using high values in the potential to model them.

(a) (b)

(c) (d)

Fig. 2. Path trajectory examples. (a) Potential image used to computed the minimal path. (b, c,
d) Abnormal behavior examples.

In first place, we decided to test different approaches of the metrics explained before.
We decided to test, according to the MR equation, both MR, the Mean MR

MMR(pN) =

∑N
i=2 MR(pi)

N
, (8)
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its variance

VMR(pN ) =

∑N
i=2 MR(pi)

2

N
−MMR(pN)2 (9)

and its top value
TMR(pN) = max

i∈[2..N ]
pN . (10)

When dealing with the LMR equation, the mean (MLMR), the variance (VLMR) and
the maximum (TLMR) are used. As mentioned earlier, values close to 0 mean there is
no abnormal behavior in the route. Thus, we can detect abnormal situations by simply
introducing a threshold. In Table 1 we show the results obtained using these metric over
the BARD dataset. Looking at the ROC Area Under the Curve values obtained, we can
conclude the metrics exposed obtain good results, especially MMR and TMR measures.
Most of the errors achieved by these metrics are related with the difficulty of annotate
the correct moment where a normal route starts being erratic. As a result, it is possible
that some errors may occur because of bad manually annotations.

Table 1. Minpath Metric Results. Using the ROC Area Under the Curve metric, we found that all
the techniques achieve good results.

Metric ROC AUC

MR 0.9417
MMR 0.9691
VMR 0.9578
TMR 0.9673
MLMR 0.9535
VLMR 0.9448
TLMR 0.9512

Having these results, we conclude the MMR technique achieve the better results.
However, this comparison is made by using a potential image with the same size of
the video frame, in this case, (576 × 720). Although the computation of these metrics
is equivalent to the computation of the minimal path method, O(N logN), the time
needed is too high to be used in real-time systems. This is not a problem when dealing
with a fixed potential, where the potential cannot be updated along frames, because we
only need to compute the minimal path one time per each target. Storing the minimal
action surface U , we can obtain the MMR metric with a O(1) complexity.

However, in more complex scenarios, we need to use a potential that is going to be
modified along time. In this case, we need to compute the minimal action surface U
every time we want to obtain the MMR metric. Thus, we need to reduce the potential
image size in order to reduce the computational time. In Fig. 2 we can see the results
obtained by reducing the image. As we can see, similar results are obtained if we reduce
the potential image to (72× 90), allowing our method to speed up the response without
decreasing significantly the performance of the metric.

In order to compare the results of the metrics mentioned before against the baseline
techniques, we use the ROC curve. In Fig. 3 we compare our metrics with the baseline
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Table 2. Minpath Metric Results. Using the ROC Area Under the Curve metric, we found that all
the techniques achieve good results.

Decreasing ROC AUC
factor MR MMR VMR TMR LMR VLMR TLMR

f = 1 (576× 720) 0.9417 0.9691 0.9578 0.9673 0.9535 0.9448 0.9512
f = 2 (288× 360) 0.9488 0.9646 0.9519 0.9619 0.9493 0.9411 0.9471
f = 4 (144× 180) 0.9574 0.9581 0.9424 0.9545 0.9453 0.9379 0.9438
f = 8 (72× 90) 0.9528 0.9480 0.9224 0.9395 0.9308 0.9267 0.9326
f = 16 (36× 45) 0.8965 0.9124 0.8678 0.8909 0.8646 0.8695 0.8712
f = 32 (18× 22) 0.7912 0.8598 0.8179 0.8371 0.7214 0.7290 0.7327

methods. Since our method clearly outperforms methods that need samples with the
same size to perform the computation, we decide to compare our method against more
powerful techniques, like the previously mentioned PF, LCSS and DTW. Moreover, we
introduce our previous distance map based techniques. We can conclude that the MMR
metric clearly outperforms the baseline methods, except the Weighted Distance Map.
However, the MMR can obtain similar results while avoiding the computation of the
distance map image, which has a O(N logN) complexity, meaning our new method is
more suitable for being used in real-time applications.
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Fig. 3. ROC curve. Our new metric outperforms the baseline methods, with the exception of the
Weighted Distance Map. However, the computational cost allows our new method to be more
suitable to be used in real-time environments.
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5 Conclusions

In this paper we present new metrics to detect abnormal behavior using target trajecto-
ries. Using minimal path techniques, which are proven to be useful detecting abnormal
behavior, we develop new metrics that make use of the surface of minimal action prop-
erties, without increasing significantly the computation of such minimal paths. A com-
parison between different new metrics is performed, where the MMR obtains the better
results. The results also show the potential image can be substantially reduced, having
no significantly yield loss. Another comparison against baseline methods demonstrates
our methods outperform classical abnormal behavior metrics, while obtains similar re-
sults to the recent Weighted Distance Map metric, which is proven to be computation-
ally expensive.

In future works, we plan to introduce both direction and speed in our minimal path
algorithm, allowing our system to have more information, in order to detect abnormal
behavior that is not provided in our recent algorithm, like sudden speed changes or
movements in the opposite direction of the usual routes.
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Abstract

This paper presents a novel methodology for modelling
pedestrian trajectories over a scene, based in the hypothe-
sis that, when people try to reach a destination, they use the
path that takes less time, taking into account environmen-
tal information like the type of terrain or what other people
did before. Thus, a minimal path approach can be used to
model human trajectory behaviour. We develop a modified
Fast Marching Method that allows us to include both ve-
locity and orientation in the Front Propagation Approach,
without increasing its computational complexity. Combin-
ing all the information, we create a time surface that shows
the time a target need to reach any given position in the
scene. We also create different metrics in order to compare
the time surface against the real behaviour. Experimental
results over a public dataset prove the initial hypothesis’
correctness.

1. Introduction

Modelling human behaviour is a huge field of study
in computer vision. One of the most active topics is re-
lated with the trajectory analysis, that is, how is the people
usual behaviour, having a special interest in areas like video
surveillance. However, a lot of questions remain unsolved.
For instance, what information makes people decide which
path they should use to reach their goal?. Or what makes
a movement abnormal? The answer for the questions are
crucial in order to obtain a good trajectory modelling.

There exist two different approaches in the literature to
model human trajectory behaviour. On one hand there are
the Computer Vision techniques. They are mainly focused
in classifying all the trajectories in the scene, mostly using
clustering techniques, like Hybrid [12], agglomerative [3],
where we merge clusters until we obtain the desired num-
ber; divisive [1], Graph-based [14], Spectral [11] or direct
[17], using techniques such as k-means or fuzzy c means.

These techniques require every path to have the same num-
ber of detections to update the patterns, making the updating
procedure very difficult. More recently, new techniques are
used, like the use of non-parametric Bayesian models [27],
[26], [13] or using models to predict the motion behaviour
[6].

On the other hand there are the techniques based in so-
cial force models [10]. They are based in the idea that some
stimuli, like the scene properties and other people interac-
tions, affect the pedestrian trajectory [9], [2]. This approach
is often used in computer graphic schemes, developing a set
of different forces that are added to infer the new movement
[23], [20], [24]. The main drawback of these techniques is
that although they are good approaches to model the usual
human behaviour, there exist infinite solutions to model a
normal behaviour. Thus, how can we use these kind of sys-
tems to decide whether a trajectory is abnormal or not?

More recently, techniques that try to merge computer vi-
sion techniques with social models are arising. For instance,
some works introduce the social force model to detect ab-
normal behaviour [15], [19]. Flow models were also in-
cluded to predict crowd behaviour [16]. More recently, the
use of minimal paths were introduced to model the usual be-
haviour [5], [4]. However, this approach does not take into
account velocity patterns or orientation in the propagation
procedure.

Based on the latter, we propose a new methodology
to model pedestrian trajectory behaviour. Our solution is
based in the hypothesis that, typically, when people try to
reach a destination, they use the path that takes less time.
We take into account both the velocity and the orientation of
the usual motion to create a time surface, where each node
shows the time needed to reach it if the person behaviour is
usual. We create a modified Fast Marching Method (FMM)
[22] which includes the mentioned extra information with-
out increasing the computational cost. Using this technique,
only a potential and a velocity surfaces are needed in order
to establish the so-called time surface. We also present dif-
ferent metrics to test a path’s “degree of abnormality”, in
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order to experimentally prove that our initial hypothesis is
correct. Due to the lack of datasets providing some ground
truth, we provide a theoretic statistical probe of correctness,
along with some visual confirmation, as other approaches
do. No quantitative results against other techniques are pro-
vided, since no abnormal detection results were provided in
any other paper, which focus in clustering techniques our
algorithm do not need.

This paper is organized as follows: section 2 describes
our modified FMM and the metrics created to model the
pedestrian behaviour; section 3 shows implementation de-
tails about our algorithm; section 4 shows some experimen-
tal results and section 5 offers conclusions and future work.

2. The Governing Equations
In this section we develop our model for pedestrian tra-

jectory modelling. We begin to set the hypothesis that are
used to establish our methodology. We subsequently intro-
duce our modified FMM that allows us to create the time
surface. Finally, we introduce some metrics in order to test
the pedestrian behaviour. We defer the implementation of
these techniques to section 3. For coherence with previous
approaches, we are going to follow the notation introduced
in [7].

Hypothesis 1 Each person tries to reach a geographic
goal.

Since this model tries to model pedestrian trajectories, it is
needed that targets have the intention to reach some goal
within or outside the scene. As a consequence, people that
are stopped or moving erratically are considered as abnor-
mal movements.

Hypothesis 2 The trajectory used to reach the goal is ruled
by the common pedestrian behaviour.

This is a crucial point in this algorithm. In [5], the minimal
path is ruled by a potential image that contains, for every
node, the number of people that reach it. However, in our
algorithm, we also include the velocity of the targets. De-
spite this, our model will also be driven by the people count
estimation.

Hypothesis 3 People move at the maximum speed possible.

That is, the speed of every person is defined by a velocity
field.

Having this hypothesis in mind, we can conclude that the
usual path can be modelled as a minimal path approach. We
propose a modified FMM in order to create a time surface,
which is created taking into account the information about
both the people frequency and their velocity. In algorithm 1
the method is explained. In essence, the structure is similar
to the FMM. It only differs in the updating procedure, since

Algorithm 1 Time Surface Fast Marching method

Definitions:

• p0: the initial point, the first time a target is tracked.

• U : surface of minimal action, driven by the people fre-
quency.

• T : time surface: every node contains the time needed to
reach it starting in the initial point.

• Alive set: points of the grid for which U has been computed
and it will not be modified.

• Trial set: next points in the grid to be examined (4-
connectivity) for which a estimation of U is computed using
the points in alive set.

• Far set: the remaining points of the grid for which there is
not an estimate for U .

Initialization:

• For each point in the grid, let Ui,j = ∞, Ti,j = ∞ (large
positive value).
Put all points in the far set.

• Set the start point (i, j) = p0 to be zero:
Up0 = 0, Tp0 = 0, and put it in the trial set.

Marching loop:

• Select p = (imin, jmin) from trial with the lowest value of
U .

• Put p in alive and remove it from the trial set.

• For each of the p’s neighbours (k, l) of (imin, jmin):

– If (k, l) belongs to far set, then put (k, l) in trial set.

– If (k, l) is not in alive set, then set Uk,l with Equation
3, and Tk,l with Equation 4.

now we have two different output maps: U , the classical
minimal path surface; and T , the time surface, where the
time needed to reach every point is stored. T surface is
driven by the U surface. That means we use the classical
minpath updating procedure in order to update the surface.
Thus, we need the best horizontal and vertical neighbours to
do that. So, having the point pN = (i, j) to be updated we
define the points pH = p ∈ {(i+1, j), (i−1, j)}|minU(p)
and pV = p ∈ {(i, j + 1), (i, j − 1)}|minU(p). Then, we
have the points

pa = p ∈ {pH , pV }|minU(p) (1)
pb = p ∈ {pH , pV }|maxU(p), (2)

which are the two points used to perform the updating pro-
cedure. Hence, to update the minimal action surface U we
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use the following equation

UpN =

⎧
⎨
⎩

Upa + Upb +
√
Δ1

2
if P̃pN > (Upb − Upa)

Upa + P̃pN otherwise
,

(3)
being P̃ (pN ) the potential surface, which satisfies that P̃ >
0; and Δ1 = 2P̃ 2

pN
− (Upb

− Upa)
2 the discriminant. To

update the time surface, we use the same points pa and pb
defined in the minimal action surface procedure. The equa-
tion is similar to the previous equation, that is,

TpN =

⎧
⎨
⎩

Tpa + Tpb +
√
Δ2

2
if P̃pN > (Upb − Upa)

Tpa + υpN otherwise
,

(4)
being υpN

= 1
VpN

the velocity inverse; and Δ2 = 2υ2
pN
−

(Tpb
− Tpa)

2 the discriminant. Note the condition P̃pN >
(Upb

− Upa) refers to the first equation, which guarantees
that Δ1 > 0. However, in the second equation we cannot
guarantee this situation in the discriminant. To solve that,
we introduce a restriction in the procedure that allows the
time surface to change the minimal action surface U . If
we found that Δ2 < 0, we update both the minimal action
surface U and the time surface T with the default condi-
tion. The computational complexity of the algorithm re-
mains equal to the FMM, that is, O(M logM), being M
the numbers of nodes in the potential surface P̃ .

2.1. Behavioural Metrics

Once we have computed the surface T , we have to estab-
lish whether a trajectory is abnormal or not. We can define a
path as P = {p0, p1, . . . , pM}, where each point represents
positions that are reached for the target, and its associated
time as

Pt = {tp0 , tp1 , . . . , tpM
}. (5)

Intuitively, without any information about the environ-
ment, the human brain detect as abnormal behaviour erratic
movements, such as sudden orientation changes or zigzag
movements. However, taking into account the scene prop-
erties, it may be the only way to reach the target, causing
the path to be usual. An example of this behaviour could be
a mountain road, climbing to the top like a snake. However,
in our assumption, we only take into account the initial and
final point of the trajectory. According with our assump-
tions, the average time required to reach a goal in the scene,
starting at any given position, is stored in the surface T .
Thus, a new hypothesis is established, that is,

Hypothesis 4 If a path P have an usual behaviour, then
∀p ∈ P, Tp ≈ Pt(p),

that is, the relation between the real and the expected time
is Tp

Pt(p)
≈ 1. Note that this idea is similar to the distance

�

�

�

��

�

�����	
���

Figure 1. Discretized grid structure. ρ is the number of times
a target reaches the node, whilst f and v are both the number of
times a target crosses the path in each direction, and their most
common speed.

hypothesis performed in [4]. However, we think that the
metrics used are not well suited, since the division between
the two factors could obtain lower results when the numer-
ator is too small compared with the denominator. Having
this in mind, we develop a metric that allows us to measure
a path’s “abnormality”. We called it Time Log-Likelihood
(TL), and is defined by

TL(pN ) = ‖ log(TpN
)− log(tpN

− tp0)‖, (6)

where 1 < N ≤ M . Values close to 0 mean the path is
correct, while higher values could indicate an abnormal be-
haviour. Note that this final point mentioned in this met-
ric is not necessarily the moment when the target leaves the
scene. It is only a moment when we decide to evaluate a tra-
jectory. This strong advantage allows this method to be used
in real-time systems, since the computational complexity of
the metric, once the surface T is computed, is O(1).

3. Implementation
The model described in the previous section needs an

implementation of the different structures that are used in
the algorithm. Specifically, the potential P̃ and the velocity
V surfaces. To compute these surfaces, we follow a sim-
ilar approach that can be found in [23]. Since this method
uses digital images, we discretized space into a regular grid.
For each node/pixel, we store a set of properties, according
to the schema shown in Fig. 1, into a 2D array we call
P , being ρ the number of people that reach the node. We
store anisotropic fields with four floats per cell correspond-
ing to the east, north, west and south faces of each pixel
(θ = {0, 90, 180, 270}). fM→{E,N,W,S} are the number
of people that crosses each one of the pixel faces, while
vM→{E,N,W,S} are their most common speed. With this
information, we are able to create P̃ and V surfaces.

To select the most common speed velocity, we use a Ker-
nel Density Estimator [18]. To estimate the bandwidth, we
use the Rule of Thumb method [8], [21]. Once we have the
probability density function, we select the most common
speed as the value with higher probability.
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3.1. Potential Surface P̃

To model the potential surface we use the ρ parameter.
Thus, having a point p, its potential value is defined by

P̃ (p) =
1

ρp
+ ω, (7)

being ω the regularization parameter, typically ω = 0. We
also have to define the p neighbourhood. The FMM uses
a 4-connectivity procedure. However, in our case, we re-
strict the front-propagation technique to the directions that
are commonly used, that is, being M = {pE , pN , pW , pS}
the usual p 4-connectivity neighbours,

∀m ∈M,m is p’s neighbour ⇔ fp→m > α, (8)

being α a manual threshold. Note that this sentence does
not imply the opposite. For instance, pS can be a neighbour
of p but p could not be a neighbour of pS . With this re-
striction we can include orientation in the front-propagation
procedure.

3.2. Velocity Surface V

As defined in Eq. 4, having any given point p to be up-
dated, we have to find the value υp = 1

Vp
in order to update

the time surface front. When the default condition is used,
that is, only the point pa is used to update the front it is easy
to obtain the velocity, since it is Vp = vpa→p.

However, when dealing with the first condition, we have
two different velocities that have to be combined, vpa→p

and vpb→p. In order to establish an accurate solution to this
problem, we define another surface D to be computed. This
surface stores, for any given node p, the distance needed to
reach it starting in p0 and following the front-propagation
method defined in Algorithm 1. This surface can be com-
puted at the same time the surface of minimal action U is
computed, as the time surface T does. To update the dis-
tance surface we follow the equation

DpN =

⎧
⎨
⎩

Dpa +Dpb +
√
Δ3

2
if P̃pN > (Upb − Upa)

Dpa + 1 otherwise
,

(9)
being Δ3 = 2 − (Dpb

− Dpa)
2 the discriminant, and pa

and pb the best neighbours defined in the minimal action
surface procedure. To obtain the value Vp we make use of
the gradient descendant in D, that is,

Vp =
∇Dpavpa→p +∇Dpb

vpb→p

∇Dpa +∇Dpb

, (10)

where ∇Dp{a,b} = ‖Dp −Dp{a,b}‖.

4. Experimental Results
When trying to test any trajectory analysis, the same

problem arises: there is a total absence of ground truth in-
formation, except in the BARD dataset [5]. However, this
dataset is too small (only over 600 trajectories) and does
not have any time information included. Thus, we decided
to use a dataset that included a high number of trajecto-
ries, the single camera MIT trajectory dataset [25]. It con-
tains 40, 453 different trajectories obtained from a parking
lot scene within five days. We use half the trajectories as
training, and the other half as testing.

Having all of this information, it is very hard to define
whether a trajectory is normal or not. In related papers,
they use some visual information to probe its effectiveness
[25], [27], [26], [28]. In our approach, we also focus the so-
lution as a statistical problem. Since all the earlier attempts
to model the human trajectory behaviour have used some
learning methods to determine the usual behaviour, we ex-
tract the idea that, having no information about the environ-
ment, every method consider the most usual paths as normal
movements, being the outliers the abnormal ones.

Ideally, we expect an abnormal behaviour measure to
have an asymptotic curve, like 1

x , where the most part of the
trajectories are normal, with a few abnormal movements.
That is, the more erratic a trajectory is, the lower frequency
it has. Thus, we can establish an inverse correlation between
this two properties. In the top density function in Fig. 2-(a)
we can see our metric has this behaviour. However, we have
to check that, as we assume, lower values correspond to nor-
mal trajectories, while higher values means the opposite. To
that end, we length-normalize every trajectory and perform
a Fuzzy C means clustering into a large number of clusters.
When we visualize the results, we saw that some trajecto-
ries detected as normal has some erratic movements in the
middle. So, we decided to include two additional metrics:
the Mean TL (MTL), which plots the mean of all the TL
measures within the same trajectory, and the Maximum TL
(MaxTL), which indicates its higher value. In Fig. 2-(a)
we can see the density function of these metrics. We found
that these two metrics perform really bad compared with the
TL metrics, especially the MaxTL. Additionally, Fig. 2-(b)
shows that the number of results near to ∞ is higher in the
new metrics. This is really interesting, because when plot-
ting the results of the clusters, according with the MaxTL
value, we see some pattern (Fig. 3). The bad accuracy of
the MaxTL metric is related to failures in the tracking sys-
tem. That is, when due to a tracking failure a bad match is
provoked, the system can detect it. This is an outstanding
property, as it can be used to increase tracking performance.

4.1. Crowded Scenes

We demonstrate how this method can detect and classify
every trajectory. However, at this point it can be argued
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Figure 2. MIT Trajectory Dataset statistical results. (a) TL density function. (b) Mean TL density function. (c) Maximum TL density
function. (d) Cumulative density function of each metric. Although the TL metric obtains good results, both its mean and its max value
has poor quality. This seems to infer the trajectories are not accurate.
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Figure 5. Train Station Dataset statistical results. The results
suggest the effect of the rest of the people in a crowded scene has
little impact in a target behaviour.

that the method could not work in crowded scenes, where
the rest of the targets can affect a target’s behaviour, mak-
ing that usual direction may not be chosen. To that end, we
select the Train Station Dataset [28], where 42, 821 trajec-
tories were recorded in only 33 minutes. Performing the
same experiments as in the previous dataset we obtain sim-
ilar results (Fig. 5). That is really interesting, because we
can conclude that the effect caused in a target by the rest
of the people is not as huge as one may think. And with
this hypothesis, we can pre-compute the time surface at the
beginning without significantly increasing the metric error.
Having this in mind, computing the behaviour at each posi-
tion can be done in constant time.

In Fig. 4 we can see some trajectories the system detect
as normal behaviour. As we can see, some movements were
caused because of other people interaction, but the system
remains robust against it. In a similar way, in Fig. 6 we
can see some abnormal trajectories, and also when the sys-
tem is changing its decision. This images show how our
method can detect the degree of ’normality’ at every mo-
ment a target is detected, providing a very powerful tech-
nique for surveillance scenarios.

The results obtained both in normal and high dense scene
are better than expected. The fact that the number of peo-
ple in the scene does not have a high impact in the target’s
behaviour makes this system very useful in very different
situations. Previous methods group the scene in different

regions with same behaviour [21] or cluster the trajectories
in different patterns [25]. In our case, we cluster every ’time
surface’ taking into account each target’s initial position.
This idea is very promising, since in the most part of scenes
the number of entrances is low. Thus, in future research
it would be interesting to create only the surfaces related
with these regions, causing the system to detect abnormal
behaviours in constant time. To our knowledge, this is the
first method that can be able to obtain it, since we do not
have to compare the new trajectory against all the different
pattern stored in the system, like the other methods do.

5. Conclusions

We proposed a novel idea to classify human trajectories,
based in the idea that a person uses the path that takes less
time to reach its target. Using the information about previ-
ous targets, we define a new potential field that is used to
create a ’time surface’ where, starting at any given point in
the image, can predict the average time needed to reach any
other position, assuming the target has an usual behaviour.
Having this information, we introduce a new temporal met-
ric to decide whether a trajectory is abnormal or not. Se-
lecting two complicated scenarios, we prove that our ini-
tial hypothesis is correct, having an important contribution
to establish a new way to define trajectory behaviour. The
lack of datasets providing ground truth make impossible the
task of evaluating our algorithm against other state of the art
techniques. However, our method offers many advantages
against techniques based in clustering or bayesian models,
since it is able to compute the degree of ’normality’ at ev-
ery trajectory instant, and it is robust against the influence
of other targets. Furthermore, it can detect tracking errors,
making it suitable to improve any tracking system that can
be integrated with our system. In future work we aim to
further refine this method, using statistical techniques to
model both velocity and time, instead of only using the most
usual speed for every position. We also aim to expand this
methodology to multiple camera frameworks.
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Appendix B

Resumen

Durante los últimos años, el análisis de comportamiento humano es un área en

constante expansión. La proliferación de cámaras en la sociedad aumentan expo-

nencialmente las posibilidades de uso de este tipo de técnicas. Por poner el ejemplo

más paradigmático, facilitan las tareas de seguridad. No obstante, el aumento de la

información que se le proporciona a un operario de seguridad también conlleva una

mayor dificultad a la hora de localizar comportamientos que puedan ser catalogados

como sospechosos. Por tanto, se necesita de la creación de herramientas automáticas

que sirvan de apoyo al operario para facilitar su labor.

Uno de estos sistemas de ayuda es la detección automática de comportamiento

en secuencias de v́ıdeo. Por seguir con el mismo ejemplo de la vigilancia, el sistema

se encargaŕıa de reducir toda la información de v́ıdeo que recibe el operario a un

pequeño número de movimientos sospechosos. No obstante, queda pendiente definir

qué se considera como un movimiento sospechoso. Para una persona, esto se reduce

a la detección de ciertos comportamientos que se salen de la norma, aquellos que

son poco usuales.

Podŕıamos concluir que una persona, ante el comportamiento que realiza otro

sujeto, es capaz de identificar rápidamente si se trata de un comportamiento normal

o, por el contrario, si es un comportamiento sospechoso. No obstante, ¿qué pasaŕıa

si, en lugar de una persona, estamos presenciando una multitud? ¿Cómo distinguir,

de entre todas las personas que estamos viendo, cuales son aquellas que realizan un

comportamiento extraño? Hay que tener en cuenta que, en una escena concurrida,

es muy dif́ıcil visualizar el cuerpo completo de una persona sin que existan otros

sujetos que interfieran, colocándose entre la cámara y el susodicho. Por tanto, la

tarea de identificación se tiene que realizar en un nivel más abstracto, como por

ejemplo, el análisis de las trayectorias realizadas por las personas.
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B.1 Análisis Automático de Comportamiento de Per-

sonas

Todo sistema automático de análisis de comportamiento de personas puede, de una

manera ideal, ser dividido en tres módulos:

• Detección: Usando una secuencia de v́ıdeo como entrada, el módulo de de-

tección se encargaŕıa de detectar a toda persona que aparezca durante todo el

tiempo que aparezca.

• Seguimiento: Partiendo de la información proporcionada por el módulo de

detección, el módulo de seguimiento se encarga de distinguir uńıvocamente a

todas las personas que aparezcan en el v́ıdeo. Esto significa agrupar todas las

detecciones que pertenezcan a la misma persona bajo un único identificador.

• Análisis de comportamiento de alto nivel: Este módulo utiliza la información

obtenida por los dos módulos anteriores para catalogar el comportamiento de

cada sujeto.

Detección: Es un campo que lleva muchos años ofreciendo múltiples soluciones.

Sin embargo, aún persiste un grave problema: la relación entre la calidad de la

detección y el coste computacional. Como modelo más básico nos encontramos con

la sustracción de fondo. La idea es simple: se realiza una estimación de cómo es

el fondo de la escena (objetos inamovibles) y luego se compara con el frame del

v́ıdeo que se esté evaluando. Los ṕıxeles que no se asemejen a lo esperado son

considerados como parte de un objeto de interés. Finalmente, se agrupan dichos

ṕıxeles resaltados, dando a lugar a las detecciones.

Como se puede observar, se trata de un método muy rápido. Sólo requiere de una

pasada sobre todos los ṕıxeles de la imagen, para posteriormente agrupar todos los

ṕıxeles que no forman parte del fondo. No obstante, contiene muchas limitaciones.

La más importante, cuando hablamos de entornos concurridos, es que no es capaz de

distinguir entre dos personas si estas están solapadas. Las cataloga como un único

ente indivisible. Por tanto, se requiere de técnicas de más alto nivel para poder

hacer esta distinción.

Otra técnica muy utilizada es el flujo óptico. Partiendo de un frame del v́ıdeo

dado, se trata de localizar distintos patrones caracteŕısticos, que trataŕıan de ser

localizados en el frame siguiente. Dichos patrones puede ser desde niveles de gris

de un ṕıxel a texturas complejas. Lo más utilizado son los detectores de bordes o

esquinas, puestos que son simples, rápidos de ejecución y obtienen buenos resultados.
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Esta técnica introduce una ventaja con respecto a la substracción de fondo:

nos indica la dirección del movimiento. Por tanto, el sistema es capaz de discernir

personas que se solapan, pero que se mueven en direcciones contrarias. Sin embargo,

en el caso que su movimiento sea en la misma dirección, nos encontramos con el

mismo problema. Por tanto, aún se debe subir un peldaño más en el nivel de las

técnicas.

Lo más fiable para detecciones de personas es la búsqueda de texturas comunes

a todas ellas. En el caso de entornos concurridos, esto se reduce a la detección de

cabezas, o, en su defecto, la detección del patrón creado por la cabeza y los hombros

de una persona. Para este cometido se utilizan técnicas como el Histograma de Gra-

dientes (HoG) en combinación con un clasificador tal como la máquina de vectores

soporte (SVM) o el clasificador de Viola-Jones. No obstante, el coste computacional

se incrementa hasta tal punto que para estas técnicas no resulta rentable ejecutarlas

sobre toda la imagen. Se necesitan técnicas adicionales que restrinjan las regiones

de uso, para aśı poder usarlas en sistemas de tiempo real.

Seguimiento: Para la realización del seguimiento se necesita de una métrica

que mida cuan similares son dos detecciones en dos instantes de tiempo diferentes.

La complicación viene en qué es lo que se debe medir. Una idea inicial podŕıa ser

cuánto se parecen las dos detecciones en términos de apariencia: color, textura,

etc. Sin embargo, no siempre puede ser utilizada. Volviendo al ejemplo anterior de

los entornos concurridos, la mayoŕıa de las personas se suele detectar parcialmente

ocluida, haciendo muy complicada una comparación sobre la apariencia.

Por tanto, se requiere el uso de modelos más básicos, centrados en caracteŕısticas

espaciales. Por ejemplo, la distancia entre dos detecciones. Sin embargo, ¿qué pasa

si lo que intentas comparar son dos detecciones en dos instantes de tiempo separados

en varios frames? La posición del sujeto puede haber cambiado significativamente,

y el cálculo de la distancia puede inducir a error.

Para paliar esta deficiencia se desarrollaron los métodos de predicción. Su

cometido es el siguiente: sabiendo la posición y velocidad de una persona en un

instante de tiempo, ¿puedo predecir en dónde se va a encontrar dicha persona pos-

teriormente? El método más utilizado para la predicción de objetos es el filtro de

Kalman. Se trata de un estimador linear cuadrático que es capaz de realizar predic-

ciones robustas ante información con ruido. Sin embargo, presenta un contratiempo:

sólo devuelve una predicción, un lugar concreto, con lo que presenta muchos fallos

ante oclusiones, esto es, cuando dejamos de localizar a una persona durante un largo

tiempo.
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Haciendo uso de filtros lineales tipo Kalman, se pueden extender lanzando una

serie de predicciones a las que se le introduce ruido aleatorio, dando como resultado

unas muestras que llamaremos part́ıculas. Dichas muestras seŕıan evaluadas con el

objetivo de buscar cuál es el lugar más probable en dónde se encuentra el sujeto.

Esta generalización es lo que se conoce como filtros de part́ıculas. Su inconveniente,

otra vez, es el coste computacional: usar pocas part́ıculas hace que el sistema tenga

los mismos inconvenientes que el filtro lineal, mientras que usar muchas aumenta so-

bremanera el tiempo de ejecución del sistema, haciéndolo inviable para su utilización

en entornos donde se requieren sistemas de tiempo real.

Análisis de comportamiento: Centrándonos en trayectorias, el análisis del

comportamiento se centra en la detección de caminos y en su catalogación en usuales

o erráticos. Con esto como base, la mayoŕıa de las aproximaciones que tratan de

resolver este problema se centran en el clustering : el agrupamiento de trayectorias

similares para formar un conjunto finito de las denominadas ‘trayectorias usuales’.

Cualquier trayectoria que no sea similar a alguna de las incluidas en este conjunto

será catalogada como errática.

Se consideran tres maneras distintas para la definición de los caminos usuales.

En primer lugar, basada en centroides. Para ello, se agrupan todas las trayectorias

similares en una única trayectoria, entendiendo como tal una sucesión de puntos

conexos linealmente. Este método se extendió para dar lugar a las técnicas de

envoltura. En ellas, se substituye la trayectoria única por una región espacial por

la que pasan, en mayor o menor medida, todos las trayectorias contenidas en ese

agrupamiento. Para ello se utilizan desde conjuntos de Gaussianas hasta regiones de

interés. Finalmente, también existen las técnicas basadas en tramos. Dado que varios

conjuntos de trayectorias pueden compartir algunas secciones de sus caminos, se

dividen todas las trayectorias en pequeñas tramas y se conectan entre ellas mediante

grafos, formando de esta manera las trayectorias completas.

Recientemente está emergiendo una nueva vertiente para el análisis de compor-

tamiento en entornos concurridos. Son lo que se ha dado en llamar los modelos de

fuerza social. Se centran en revisar el comportamiento de las personas en base a

cómo interacciona con el entorno y con el resto de personas. Dichos sistemas intro-

ducen una serie de ecuaciones, una serie de fuerzas, que, en su conjunto, tratan de

determinar el comportamiento general en la escena.
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B.2 Tesis

El objetivo de esta introducción es el desarrollo de un novedoso sistema totalmente

automático para el análisis de comportamiento en escenas concurridas. No existe

ninguna técnica en la literatura existente que pueda, simultáneamente, responder a

todos los problemas de este tipo de sistemas. Los objetivos espećıficos de esta tesis

son:

1. Introducción de nuevas metodoloǵıas para el seguimiento de multitudes que

pueda solucionar, total o parcialmente, el mayor problema que acecha a estos

sistemas: la relación entre la precisión y el coste computacional.

2. Definir una serie de hipótesis fijas que expliquen, de una manera sencilla, el

significado de trayectorias ‘usuales’.

3. Definición, en base a las hipótesis previamente definidas, de un sistema nove-

doso para el análisis de trayectorias humanas. Su cometido será catalogar si

una persona está realizando un comportamiento usual o errático. Para ello, se

hará uso de información de la escena.

4. Introducir mejoras en el sistema para que pueda ser utilizado para catalogar

el comportamiento de cualquier tipo de objeto.

5. Mejorar el coste computacional lo máximo posible, con objeto de que pueda

ser utilizado en entornos concurridos.

Dado que se trata de una tesis defendida por compendio de publicaciones, a

continuación se resumirán, paper por paper, las aportaciones introducidas en este

trabajo.

Hierarchical framework for robust and fast multiple-target tracking in

surveillance scenarios: En este trabajo se propone la creación de un sistema

automático de seguimiento de objetos, con objeto de hacerlo lo más rápido posible,

esto es, que pueda ser ejecutado en tiempo real en un ordenador estándar. Para ello

se hace uso de una estructura jerárquica, contando con dos módulos independientes

que realizan la tarea de seguimiento, uno de bajo nivel para las detecciones entre

frames consecutivos o próximos entre si, y otro de más alto nivel para la recuperación

de la identificación de un sujeto si se pierde su localización durante un tiempo

relativamente largo.

Con objeto de acelerar todo el proceso, se usaron técnicas de poco consumo de

procesador: sustracción de fondo para la detección de objetos, filtros adaptativos
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(Adalines) en lugar de filtros de Kalman para labores de predicción, representación

del objetos mediantes elipses para el módulo de bajo nivel y con histogramas para

el de alto nivel. La representación de elipses se utiliza, a mayores, para la detección

de colisiones entre distintos objetos, creado la figura de agrupamientos y divisiones,

que el sistema se encarga de resolver.

Está metodoloǵıa se probó en dos bases de datos públicas (CAVIAR y CAN-

DELA) obteniendo resultados muy prometedores. El sistema es capaz de funcionar

en tiempo real en una máquina cualquiera, manteniendo una precisión muy alta en

el seguimiento de objetos. No obstante, el uso de la sustracción de fondo limita el

uso de esta metodoloǵıa a entornos poco concurridos.

Multiple Human Tracking System for Unpredictable Trajectories: Con

el objetivo de eliminar el problema principal de la aproximación anterior, se desar-

rolló una segunda metodoloǵıa, esta vez ya centrada en el dominio del seguimiento de

personas. Para ello, se combinaron dos técnicas de alto nivel, el clasificador de Viola-

Jones y un SVM entrenado para histogramas de gradiente centrados en el patrón de

omega que genera la figura de la cabeza y los hombros. La sustracción de fondo con-

tinúa siendo utilizada, pero únicamente para restringir los lugares en donde aplicar

estos dos clasificadores. Los resultados experimentales muestran que su uso mejora

tanto la calidad de la salida proporcionada como su uso de CPU, incrementando el

número de frames por segundo que puede procesar esta metodoloǵıa.

Asimismo, se diseñó un nuevo sistema para la re-identificación de personas, te-

niendo en cuenta las oclusiones que se producen en entornos muy concurridos. Para

evaluar la metodoloǵıa, se grabó un v́ıdeo de un evento deportivo, en el que las

trayectorias de las personas son totalmente impredecibles. Los resultados muestran

que nuestro método es capaz de seguir a múltiples personas en entornos concurri-

dos e impredecibles. Sin embargo, su coste computacional hace que no pueda ser

ejecutada en tiempo real en un ordenador cualquiera.

Open-world person re-identification by multi-label assignment Inference:

Uno de los problemas más graves de los sistemas de seguimiento es su incapacidad

de recuperar la identificación de un objeto ante largas oclusiones. Es lo que se llama

el problema de ‘re-identificación’. Las técnicas clásicas basadas en este problema

se modulan como un problema de recuperación: se parte de un conjunto de detec-

ciones conocidas; ante una nueva detección, se busca cuál es la detección que más se

asemeja. Desafortunadamente, esto no es lo que ocurre en sistemas reales, donde no

hay información a priori sobre todas las personas que pueden aparecer en el v́ıdeo.

Por tanto, en este trabajo se propuso, por primera vez, el uso de técnicas de re-
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identificación en mundo abierto, donde no se contiene de antemano información de

todos los sujetos que pueden aparecer en las distintas cámaras que pueda tener el

entorno a evaluar.

Para ello, se ha hecho uso de un campo condicional aleatorio (CRF) ejecutado

en dos pasos. En el primero, sólo se comparan detecciones que ocurren en la misma

cámara. Posteriormente, la salida del CRF se toma como entrada del segundo

paso, donde se permiten conexiones entre distintas cámaras, pero de una manera

restringida. Esto se debe a que los cambios de iluminación y de orientación entre

cámaras dificultan la detección. De esta manera se refuerzan las conexiones entre

detenciones tomadas con la misma cámara en detrimento del resto. Los resultados

obtenidos en una base de datos pública (SoftBIO) muestran que el uso del CRF

incrementa sustancialmente el desempeño del sistema.

On the Use of a Minimal Path Approach for Target Trajectory Analy-

sis: Una vez acometido el problema del seguimiento de personas, nos centramos

en el análisis de comportamiento. Para ello, centrándonos en el análisis de trayec-

torias, nuestro cometido fue el de obtener un método que reuniera unas ciertas

caracteŕısticas: (i) poder ser usado sin ningún tipo de entrenamiento previo; (ii) que

pudiera ser actualizado conforme le va llegando más información; (iii) que limitase

el consumo de memoria del sistema; (iv) que fuera capaz de funcionar aún cuando el

sistema de seguimiento no proporciona una información precisa; y (v) que pudiera

evaluar el comportamiento en cualquier momento, sin necesidad de esperar a que la

trayectoria de la persona se complete.

Para ello, buscamos una aproximación que pudiera ser lo más simple posible.

Para ello, establecimos una serie de hipótesis para explicar lo que se entiende como

‘comportamiento usual’. La primera es que asumimos que toda persona que aparece

en la escena tiene intención de llegar a un lugar determinado, esté dentro o fuera de

la escena. Por tanto, un comportamiento tal como el de deambular es considerado

como anómalo. La segunda hipótesis nos dice que el camino que toma una persona

para llegar a dicho lugar es el que suele tomar el resto de gente.

Con estas premisas, desarrollamos un método para la detección del camino usual

mediante la utilización de caminos mı́nimos. Mediante un campo de frecuencias de

paso de la gente, se crea una superficie que nos permite extraer el camino mı́nimo

desde cualquier punto de la escena a un punto inicial, que normalmente será tomada

como la primera detección tomada de dicha persona. Una vez obtenido el camino

usual, se compara con la trayectoria real tomada por la persona para evaluar su

comportamiento. Dicha trayectoria puede ser evaluada en cualquier momento, no

hay que esperar a que el objeto deje la escena para obtener una estimación de su
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comportamiento.

El campo de frecuencias puede ser iniciado a cero, con lo que el sistema es

capaz de funcionar sin entrenamiento. Aún aśı, éste se le puede añadir si se desea.

Asimismo, se pueden utilizar distintos potenciales, dependiendo, por ejemplo, de

dónde empiece la trayectoria del objeto a evaluar, o de su tipo. La memoria utilizada

se mantiene constante, puesto que el sistema únicamente necesita mantener el campo

de frecuencias. Puede funcionar con fragmentos de trayectorias, puesto que el campo

de densidades solo almacena información local de cada punto, y ninguna sobre cómo

se conecta con otros lugares. Es el algoritmo de caminos mı́nimos el que se encarga

de usar información local para convertirla en un análisis global.

Para evaluar las dos trayectorias, la usual y la real, se construyó un mapa de

distancias para ver cuán lejos está la trayectoria real de la esperada. Se evaluó esta

técnica en una base de datos creada para la ocasión, puesto que no existe ninguna

base de datos anotada con comportamiento anómalo. Se comparó nuestra métrica

contra las existentes en la literatura, probando que nuestro método es mucho más

eficaz.

Path Analysis Using Directional Forces. A Practical Case: Traffic Scenes:

Una vez probado que nuestro método es capaz de catalogar correctamente el com-

portamiento humano, nos propusimos extenderlo a cualquier tipo de objeto a seguir.

El comportamiento de casi todos los objetos sigue las mismas reglas que las personas,

con algunas excepciones. Dichas excepciones tienen que ver con comportamientos

en los cuáles la dirección del movimiento es importante. El ejemplo más ilustrativo

es el del tráfico. No es lo mismo ir por un carril en una dirección u en otra, el

comportamiento cambia sustancialmente.

El método de caminos mı́nimos desarrollado no tiene en cuenta la dirección,

haciéndolo inviable para ser usado en este tipo de entornos. Para subsanar esto, uti-

lizamos un algoritmo más complejo para la obtención del camino mı́nimo. Este

algoritmo (Ordered Upwind Method (OUM)) tiene en cuenta la orientación del

movimiento. Para comprobar su rendimiento, se probó en una situación compleja:

una rotonda. Si no se tiene en cuenta la dirección del carril no seŕıa necesario dar

una vuelta a la rotonda para coger la salida de la izquierda, sólo habŕıa que tomar la

rotonda en sentido hacia la izquierda. El nuevo algoritmo es capaz de sobreponerse

a esta casúıstica, obteniendo el resultado esperado para una trayectoria usual.

Trajectory Similarity Measures Using Minimal Paths: Uno de los prob-

lemas con los que se encontraba nuestra metodoloǵıa era el coste computacional

del cálculo de la métrica (O(N logN), siendo N el numero de nodos del mapa de
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densidades). Aśı que nos propusimos mejorar este punto.

En lugar de crear un mapa de distancias desde el camino usual, lo creamos desde

el punto inicial de la trayectoria. La diferencia es que este cálculo se puede realizar

al mismo tiempo que para la obtención del camino mı́nimo. Para una trayectoria

usual, la distancia real recorrida es similar a la distancia estimada. A tal efecto,

se crearon diferentes técnicas para explotar esta nueva información. Los resultados

mostraron que la métrica se comportaba de una manera similar (algo inferior) al

mapa de distancias definido previamente. No obstante, la complejidad pasó de

O(N logN) a O(1), haciendo que esta métrica sea más útil para su utilización en

entornos concurridos.

Unsupervised Trajectory Modelling using Temporal Information via Min-

imal Paths: Por último, nos propusimos evaluar la metodoloǵıa en un entorno

concurrido. Para ello, además del análisis de trayectorias basado en componentes

espaciales, incluimos a mayores la velocidad. De la misma manera que el mapa de

distancia creado en la aproximación anterior, ahora creamos a mayores un mapa de

tiempos. Básicamente, nos devuelve una superficie que nos indica el tiempo nece-

sario que le llevaŕıa a una persona alcanzar cualquier punto de la escena, siempre y

cuando su comportamiento sea usual. A mayores, introducimos direccionalidad en

el campo de densidades definiendo cuatro direcciones (los cuatro puntos cardinales).

A la hora de comprobar el comportamiento de la metodoloǵıa, nos encontramos

con el mismo problema mencionado anteriormente: no existe una base de datos que

contenga información de comportamientos anómalos. Por tanto, recurrimos a un

análisis estad́ıstico. Asumiendo que definimos como comportamiento usual aquel

que es realizado por la mayoŕıa de las personas, la métrica que utilicemos tendrá

que indicar que la mayoŕıa de la gente realiza un comportamiento correcto. Cuanto

menos usual sea el comportamiento, más dif́ıcil es que éste aparezca. Al evaluar la

métrica en dos bases de datos públicas (un parking y una estación de metro) nos

encontramos que la métrica se comportaba de la manera esperada. Lo que indica

que nuestra métrica no se ve influenciada por las interacciones que se producen entre

personas en entornos altamente concurridos.

B.3 Conclusiones

En esta tesis se ha abordado la creación de un sistema automático de análisis de com-

portamiento humano. Para tal efecto, se han propuesto dos modelos de seguimiento

de personas, con objeto de mejorar el delicado balance entre la precisión de dicho

seguimiento y su coste computacional. Los resultados muestran la eficacia de dichos
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métodos en entornos no controlados. Asimismo, se introdujo por primera vez el con-

cepto de re-identificación en mundo abierto, proveyendo una primera aproximación

a su resolución mediante la utilización de un campo aleatorio condicional.

Con respecto al análisis del comportamiento humano, se ha desarrollado una tec-

noloǵıa completamente novedosa basada en el análisis de caminos mı́nimos. Parte

de la premisa de que toda persona intenta alcanzar un objetivo concreto de la es-

cena, utilizando para ello el camino más comúnmente utilizado. Dicha aproximación

fue extendida para poder ser utilizada con cualquier tipo de análisis de objetos

(tráfico incluido). Posteriormente, se redujo la complejidad del algoritmo mientras

se manteńıa una calidad de la solución similar, para finalmente probar cómo esta

metodoloǵıa es capaz de analizar el comportamiento humano incluso en entornos

concurridos, tales como una estación de metro.

Como trabajo futuro se plantea la implementación de los algoritmos de seguimiento

mediante GPUs, con objeto de hacer posible que funcionen en tiempo real. Asimismo,

se propone de la creación de un nuevo método para la obtención del camino mı́nimo

con información direccional, que reduzca la complejidad de los métodos ya existentes.

Finalmente, se plantea la cuestión del seguimiento basado en comportamiento,

esto es, realimentar los modelos de seguimiento con la información de compor-

tamiento, con objeto de mejorar su precisión. Asimismo, se propone la creación

de un método de predicción a larga distancia. Dicho de otro modo, un sistema de

alto nivel que sustituya a los filtros lineales tipo Kalman.
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Hirzer, M., Roth, P. M., Köstinger, M., & Bischof, H. (2012). Relaxed pairwise

learned metric for person re-identification. In Computer vision–eccv 2012 (pp.

780–793). Springer.

Hlinka, O., Sluciak, O., Hlawatsch, F., Djuric, P. M., & Rupp, M. (2012).

Likelihood consensus and its application to distributed particle filtering. Signal

Processing, IEEE Transactions on, 60 (8), 4334–4349.

Horprasert, T., Hardwood, D., & Davis, L. S. (2000). A robust background

substraction and shadow detection. In 4th accv, taipei, taiwan (Vol. 1, p. 34-

41).

Hu, W., Xiao, X., Xie, D., Tan, T., & Maybank, S. (2004). Traffic acci-

dent prediction using 3-d model-based vehicle tracking. Vehicular Technology,

IEEE Transactions on, 53 (3), 677–694.

Hu, W., Xie, D., Fu, Z., Zeng, W., & Maybank, S. (2007). Semantic-based

surveillance video retrieval. Image Processing, IEEE Transactions on, 16 (4),

1168–1181.

Huang, C., Wu, B., & Nevatia, R. (2008). Robust object tracking by hierar-

chical association of detection responses. In Proceedings of the 10th european

conference on computer vision: Part ii (pp. 788–801). Berlin, Heidelberg:

Springer-Verlag.



160 Bibliography

Iwase, S., & Saito, H. (2004). Parallel tracking of all soccer players by

integrating detected positions in multiple view images. In Pattern recognition,

2004. icpr 2004. proceedings of the 17th international conference on (Vol. 4,

pp. 751–754).

Jepson, A., Fleet, D., & El-Maraghi, T. (2003, October). Robust online

appearance models for visual tracking. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 25 (10), 1296-1311.

Kalman, R. E. (1960). A new approach to linear filtering and prediction

problems. Journal of Fluids Engineering , 82 (1), 35–45.

Karaman, S., & Bagdanov, A. D. (2012). Identity inference: generalizing

person re-identification scenarios. In Computer vision–eccv 2012. workshops

and demonstrations (pp. 443–452).

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: Hierarchical

clustering using dynamic modeling. Computer , 32 (8), 68–75.

Keogh, E., & Pazzani, M. (2000). Scaling up dynamic time warping for

datamining applications. In Proceedings of the sixth acm sigkdd international

conference on knowledge discovery and data mining (pp. 285–289).

Kim, K., Chalidabhongse, T. H., Harwood, D., & Davis, L. (2005). Real-

time foreground-background segmentation using codebook model. Real-Time

Imaging , 11 (3), 172 - 185. (Special Issue on Video Object Processing)

Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., & Bischof, H. (2012).

Large scale metric learning from equivalence constraints. In Computer vision

and pattern recognition (cvpr), 2012 ieee conference on (pp. 2288–2295).

Kuhn, H. W. (1955). The hungarian method for the assignment problem.

Naval research logistics quarterly , 2 (1-2), 83–97.

Li, M., Zhang, Z., Huang, K., & Tan, T. (2008, dec.). Estimating the

number of people in crowded scenes by mid based foreground segmentation

and head-shoulder detection. In Pattern recognition, 2008. icpr 2008. 19th

international conference on (p. 1 -4).

Li, M., Zhang, Z., Huang, K., & Tan, T. (2009). Rapid and robust human de-

tection and tracking based on omega-shape features. In 16th ieee international

conference on image processing (icip) (p. 2545 - 2548).



161

Li, X., Hu, W., & Hu, W. (2006). A coarse-to-fine strategy for vehicle

motion trajectory clustering. In Pattern recognition, 2006. icpr 2006. 18th

international conference on (Vol. 1, p. 591 -594).

Li, Y., Huang, C., & Nevatia, R. (2009, june). Learning to associate: Hy-

bridboosted multi-target tracker for crowded scene. In Computer vision and

pattern recognition, 2009. cvpr 2009. ieee conference on (p. 2953 -2960).

Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration

technique with an application to stereo vision. In Ijcai (Vol. 81, pp. 674–

679).

Luo, W., Zhao, X., & Kim, T.-K. (2014). Multiple object tracking: A review.

ArXiv e-prints.

Maddalena, L., & Petrosino, A. (2008). A self-organizing approach to back-

ground subtraction for visual surveillance applications. Image Processing,

IEEE Transactions on, 17 (7), 1168 -1177.

Magee, D. R. (2004). Tracking multiple vehicles using foreground, background

and motion models. Image and vision Computing , 22 (2), 143–155.

Makris, D., & Ellis, T. (2005). Learning semantic scene models from observ-

ing activity in visual surveillance. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 35 (3), 397–408.

Mehran, R., Oyama, A., & Shah, M. (2009). Abnormal crowd behavior

detection using social force model. In Computer vision and pattern recognition,

2009. cvpr 2009. ieee conference on (pp. 935–942).

Min, C., & Medioni, G. (2008). Inferring segmented dense motion layers

using 5d tensor voting. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 30 (9), 1589–1602.

Mittal, A., & Davis, L. S. (2003). M2tracker: A multi-view approach to

segmenting and tracking people in a cluttered scene. International Journal of

Computer Vision, 51 (3), 189–203.

Moore, B. E., Ali, S., Mehran, R., & Shah, M. (2011). Visual crowd surveil-

lance through a hydrodynamics lens. Communications of the ACM , 54 (12),

64–73.



162 Bibliography

Morris, B., & Trivedi, M. M. (2008). An adaptive scene description for activity

analysis in surveillance video. In Icpr (p. 1-4). IEEE.

Morris, B., & Trivedi, M. M. (2009). Learning trajectory patterns by cluster-

ing: Experimental studies and comparative evaluation. In Cvpr (p. 312-319).

IEEE.

Morris, B. T., & Trivedi, M. M. (2008). Learning, modeling, and classification

of vehicle track patterns from live video. Intelligent Transportation Systems,

IEEE Transactions on, 9 (3), 425–437.

Morris, B. T., & Trivedi, M. M. (2011). Trajectory learning for activity

understanding: Unsupervised, multilevel, and long-term adaptive approach.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33 (11),

2287–2301.

Naftel, A., & Khalid, S. (2006). Motion trajectory learning in the dft-

coefficient feature space. In Computer vision systems, 2006 icvs’06. ieee

international conference on (pp. 47–47).

Pellegrini, S., Ess, A., Schindler, K., & Van Gool, L. (2009). You’ll never

walk alone: Modeling social behavior for multi-target tracking. In Computer

vision, 2009 ieee 12th international conference on (pp. 261–268).

Piciarelli, C., & Foresti, G. L. (2006). On-line trajectory clustering for anoma-

lous events detection. Pattern Recognition Letters, 27 (15), 1835–1842.

Popoola, O. P., & Wang, K. (2012). Video-based abnormal human behavior

recognition–a review. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 42 (6), 865–878.

Poppe, R. (2010). A survey on vision-based human action recognition. Image

and vision computing , 28 (6), 976–990.

Prosser, B., Zheng, W.-S., Gong, S., Xiang, T., & Mary, Q. (2010). Person

re-identification by support vector ranking. In Bmvc (Vol. 2, p. 6).
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