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Abstract 

A new cross-correlation synchrony index for neural activity is proposed. The index is based on the integration of the 

kernel estimation of the cross-correlation function. It is used to test for the dynamic synchronization levels of 

spontaneous neural activity under two induced brain states: sleep-like and awake-like. Two bootstrap resampling 

plans are proposed to approximate the distribution of the test statistics. The results of the first bootstrap method 

indicate that it is useful to discern significant differences in the synchronization dynamics of brain states 

characterized by a neural activity with low firing rate. The second bootstrap method is useful to unveil subtle 

differences in the synchronization levels of the awake-like state, depending on the activation pathway. 
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1 Introduction 

During deep sleep, neurons are highly synchronized, embedded in slow oscillations (hence the name 

‘slow-wave sleep’). In this period, most neurons of the cerebral cortex display an oscillatory behavior, 

generating bursts of spikes with a dominant rhythm of about 1-5 Hz (1–0.20 s between bursts): the delta 

rhythm. This oscillation is highly synchronized among neurons in the cortex and other brain regions. 

Because of this massive synchronization, the global electrical activity displays a high amplitude 

oscillation that can be easily observed in the electroencephalogram (EEG) as it shows larger amplitude 

and lower frequency waves than in the awake state (Steriade et al. 1993). Under experimental conditions 

this global oscillatory activity can be induced by some anesthetics, giving rise to a sleep-like activity. 

This allows the study of the neuronal properties of the oscillatory phenomena from an 

electrophysiological point of view. During the awake state such global oscillatory synchronized activity 

does not exist, and neuronal spikes are not organized in repetitive bursts of activity, but follow what could 

be seen as a more random response, generating trains of spikes with different patterns and frequencies . 

This mode of operation is referred to as tonic activity, in contrast to the mentioned slow oscillatory 

activity (of course, this tonic activity is not random, and is used to convey all kinds of information). 

The transition between the sleep and awake states is modulated by the so called ‘activating ascending 

pathways’ which originate in neuronal nuclei located in the brain stem (bs) and basal forebrain (bf). Each 

activating pathway uses specific neurotransmitters, delivered through specific neural routes (Steriade 

1994; Bazhenov et al. 2002). The experimental electrical stimulation of these nuclei can change the EEG 

pattern from the typical sleep-like pattern to the one expected in an awake individual. This happens 

because stimulation suppresses the slow oscillatory activity, and promotes a tonic mode of activity, thus 

introducing a tool to study the effects of the mechanisms that underlie the sleep-wake cycle (Hu et al. 

1989; Burlet et al. 2002; Mariño and Cudeiro 2003). To study this process under controlled laboratory 

conditions, animals are anesthetized and the activating nuclei manipulated by means of electrical 

stimulation. Some anesthetics induce a sleep-like state virtually identical to the natural one; under this 

condition, the electrical stimulation of either the bs or the bf promotes a change in the global brain activity 

and, for a period of some seconds after the stimulation (usually from 2 to 20 s), the EEG shows an awake-

like pattern. Thus, it is possible to study the spontaneous synchronization dynamics during those states for 

the same pairs of neurons, and to look for subtle differences in the awake-like state induced by bs and bf, 

but this requires a synchrony measure sensitive enough to deal with low spike activity, together with 

powerful statistical tests. 

During sleep-like oscillatory periods (either natural or induced by anesthesia) the activity is dominated 

by the 1–5 Hz delta rhythm, in which the firing rate is mostly reduced to brief bursts of activity. There 

exists also an increase in alpha activity (8–12 Hz) (Brown et al. 2010). Spontaneous activity is usually 
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characterized by low firing activity. Under this condition, statistical analysis becomes difficult and 

therefore, in order to make inferences, special measures and appropriate statistical testing procedures are 

needed. The aforementioned experimental conditions permit the study of dynamic synchronization 

between pairs of neurons under two types of spontaneous activity: the anesthetic-induced sleep-like 

activity, and the electrically induced awake-like activity. The awake-like type of activity needs an initial 

electrical stimulus to be induced. Afterwards, such mode of activity can last for tens of seconds. Hence, 

we will consider both the sleep-like and the awake-like signals as periods of spontaneous activity. In any 

case, this is only a terminological issue that does not change at all the mathematical and statistical results 

and conclusions. 

Cross-correlation analysis of simultaneously isolated single-neuron activities is a common procedure 

to study the degree of synchronization evoked under certain conditions, like sensory stimulation. Those 

approaches are essential to study the information coding and functional organization of the brain, but the 

spontaneous spike activity can also provide important clues to brain structure and function. 

Correlations between spike trains of neuron pairs can modulate neuronal activity and affect how 

neurons encode information. Furthermore, sensory and cognitive processing relies on the concerted 

activity of large populations of neurons. For instance, in the visual system more information can be 

extracted from the activity of pairs of cells in the lateral geniculate nucleus if correlations between their 

spikes are taken into account (Dan et al. 1998). However correlated neural activity and the correspondent 

pairwise correlation vary with a number of relevant factors such the firing rate (de la Rocha et al. 2007). It 

is well known that correlations in pairs of neurons that fire few spikes per trial are weaker than in pairs 

that respond more strongly (Cohen and Kohn 2011). 

The aim of the present work is to develop statistical tools to study the synchronization strength 

between pairs of neurons during low firing rate conditions and, also, to discern subtle differences in 

synchronization during tonic activity. There exist in the literature diverse methods to measure neural 

synchrony. Harrison et al. (2013) present a review on synchrony identification methods, including cross-

correlation, joint peri-stimulus time histograms, trial-to-trial variability models, inhomogeneous Poisson 

models and generalized regression models for synchronous activity. Other include, the unitary-event 

analysis (Grün 1996; Grün et al. 2002a, 2002b), the conditional synchrony measure, proposed in Faes et 

al. (2008), the event synchronization method, proposed in Quian Quiroga et al. (2002) or the cross-

nearest spike interval based method proposed in González-Montoro et al. (2014). In this occasion, we 

propose a cross-correlation based method referred to as cross-correlation synchrony index (CCSI), in 

which the level of synchronization is measured as the area under the cross-correlation function in a 

neighborhood of zero with a correction for spurious coincidences. In general, synchrony measures are 

based in binned spike trains. When firing rates are low, bins need to be defined large enough in order to 

decrease the number of zeros in the sequence. This procedure derives in the loss of important information, 

the timing of events. The measure we use estimates the distribution of the distances between spikes of 

different neurons in a smooth fashion, making a more efficient use of the information. We also propose 

bootstrap methods for hypothesis testing. Resampling and bootstrap methodology is being widely used to 

assess for statistical significance of spike correlations (Grün 2009) and to conduct hypothesis tests in 

neuroscience in general (Kass et al. 2005). A fundamental approach to synchrony in spike trains is the 

jitter method (Amarasingham et al. 2012). However, the jitter procedure, together with other resampling 

methodology, are thought to assess synchrony against background variability. In the present work, special 

resampling methods are developed in order to imitate the existing associations between spike trains and 

conduct the bootstrap tests and, therefore, be able to test for differences in synchrony strength. 

2 Materials and methods 

2.1 Surgery and recording 

Experiments were carried out in adult anesthetized (isoflurane) and paralyzed (gallamine) cats. The end-

tidal CO2, body temperature and heart rate were continuously monitored and maintained under stable 

conditions. The animals were suspended on a stereotaxic frame and four craniotomies were performed in 

order to insert the recording and stimulating electrodes. All the procedures were performed by the 

researchers of NEUROcom group and according to national and international guidelines. 

Two recording methods were used: 1) in order to assess the global cortical activity, an 

electrocorticogram (ECoG) was obtained through a bipolar concentric electrode located in the primary 

somatosensory cortex; and, 2) an eight-channel multielectrode (FHC Inc.) was introduced into the 

primary visual cortex of the animal in order to make simultaneous extracellular recordings of several 

neurons. A guide-tube was used to arrange the tungsten electrodes in two rows and four columns, 

obtaining a grid of 8 recording points separated 200 microns and with independent vertical movement. 
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Concurrently, two bipolar electrodes (tips separated 500 microns) were introduced for electrical 

stimulation at bs and bf. 

Using the multielectrode we recorded spontaneous sleep-like activity of groups of neurons (1–3 units 

by electrode) for approximately 2 minutes. Next, bs or bf was stimulated for 2–4 s (pulse trains of 2–8 V, 

up to 1.5 mA, and 50 Hz) to induce an awake-like state lasting for up to 20 s, followed by an spontaneous 

and slow return to the sleep-like state. The whole procedure was repeated several times for each 

activating pathway. In the present work each of these recordings is called a trial. The ECoG, spike 

waveforms and time stamps were conveniently filtered, digitized and stored for posterior analysis (Plexon 

Inc, Dallas, TX). Spikes were isolated using a box sorter during the experiment and re-sorted manually 

using the principal components of their waveforms (Offline Sorter, Plexon, Inc). Thus, to define a single 

unit, first and second principal components had to be (visually) well separated from the projections of all 

other waveforms (and noise) recorded on the same electrode. 

2.2 Cross-correlation synchrony index 

Let us consider two simultaneous spike trains, recorded in a v seconds long time window around time t. 

Let us denote these spike trains by 𝒳 = {𝑋𝑖}𝑖=1
𝑚 , \(t-\frac {v}{2}, which we also call train 1, and 𝒴 =

{𝑌𝑗}𝑗=1
𝑛 , \(t-\frac {v}{2}, also referred to as train 2. These processes need not to be Poisson processes. The 

only assumption we make is that the bivariate counting process associated to the simultaneously recorded 

spike trains, X and Y, is stationary in the time period previous to the stimulus. We define λ as the 

probability that, given a spike in train X, there is a synchronous spike in train Y. By synchronous we 

mean that the two spikes occurred at the same time (or approximately the same time, with, at most, a 

difference of δ) due to the synchronous activity between the two neurons and not to chance. Let us 

analogously define μ as the probability that, given a spike of train Y, there is a synchronous spike in train 

X. The synchrony measure we propose is the geometric mean of these two probabilities:  

 

𝒯 = √𝜆𝜇 

 

which is a joint measure of the probability of synchronous firing. Note that, overall, T is a standardized 

measure of the joint firing rate. 

2.3 Estimation of T  

Let us denote by f the normalized cross-correlation function for lags up to 
𝑤

2
 seconds. Namely, f is the 

density function of the distances between two spikes, one of each train, provided that that distance is 

smaller, in absolute value, than 
𝑤

2
. We call w/2 the cross-correlation window. To estimate T we propose to 

approximate the area under f in a neighborhood of zero while taking into account the amount of that area 

that is due to chance. Let,  

 

𝐴𝛿(𝜏) = ∫
𝜏+𝛿

𝜏−𝛿

𝑓(𝑥)dx 

 

and, to consider how much of A δ (0) corresponds to chance, we propose to subtract the following 

approximation of the average of A δ (τ), for τ ∈ [
−𝑤

2
 , 

𝑤

2
 ], under no synchronous firing: 

 

1

𝑤
∫

𝑤
2

−
𝑤
2

𝐴𝛿(𝑦)dy =
1

𝑤
∫

𝑤
2

−
𝑤
2

∫
𝑦+𝛿

𝑦−𝛿

𝑓(𝑥)dx dy ≈
2𝛿

𝑤
. 

 

The proof of Eq. (1) can be found in Appendix A. Observe that both δ and w are chosen regarding the 

problem and f can be easily estimated with a normalized cross-correlogram or a kernel-smoothed version 

of it, which we denote by f^. Therefore, A δ can be estimated as the corresponding integral of f^, which we 

denote by 𝐴
~

𝛿. So, to begin with, we can define a synchrony measure as 

 

𝐴
~

𝛿 = 𝑚𝑎𝑥{0, 𝐴
^

𝛿(0) −
2𝛿

𝑤
} 
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However, we aim to estimate √𝜆𝜇. Let us study 𝐴
~

𝛿 in a little bit more detail. 𝐴
~

𝛿 describes the 

probability that, given two spikes, one of each spike train, they are synchronous. This last probability is 

actually the expected proportion of synchronous pairs of spikes among all possible pairs of spikes 

observed in (𝑡 −
𝑣

2
, 𝑡 +

𝑣

2
) that are distant in less than 

𝒘

𝟐
. Let 𝐷 = {𝑑𝑘}𝑘=1

𝑁 = {𝑋𝑖 − 𝑌𝑗: |𝑋𝑖 − 𝑌𝑗| <
𝑤

2
, 𝑖 =

1, … , 𝑚, 𝑗 = 1, … , 𝑛} be the set of all possible differences between the spike times of one train and the 

spike times of the second one, which are, in absolute value, smaller than the cross-correlation window 
𝒘

𝟐
. 

So, as just mentioned, 𝐴
~

𝛿 estimates the expected proportion: 

 
#{𝑑𝑘 ∈ 𝐷: 𝑑𝑘is due to synchrony}

#𝐷
. 

 

Now, for every spike of train 1, the probability of finding a synchronous spike in train 2 was defined 

as λ, therefore, the expected number of synchronous pairs is m λ. On the other hand, for every spike of 

train 2, the probability of finding a synchronous spike in train 1 was defined as μ and, therefore, the 

expected number of synchronous pairs is n μ. These two last mentioned expected values should be equal 

and, consequently, 

 

𝑚𝜆 = 𝑛𝜇 = √𝑚𝜆√𝑛𝜇 = √𝑚𝑛√𝜆𝜇 = √𝑚𝑛𝒯 

 

which is the expected value of the numerator in Eq. (2). 

On the other hand, the denominator in Eq. (2) is the expected total amount of pairs that differ in less 

than 
𝑤

2
. For every spike observed in spike train 1, the expected number of spikes of train 2 that are closer 

than 
𝑤

2
 is (n/v)w as (n/v) is the mean firing rate of train 2 in the window (𝑡 −

𝑣

2
, 𝑡 +

𝑣

2
). Then, in total, 

m(n/v)w is the expected number of pairs of spikes that differ in less than 
𝑤

2
. 

Hence, 𝐴
~

𝛿 is an estimator of 

 

√𝑚𝑛√𝜆𝜇

𝑚(𝑛/𝑣)𝑤
=

√𝜆𝜇

√𝑛𝑚(𝑤/𝑣)
. 

 

This last expression suggest the definition of the estimator Tˆ δ of T, at time t, as some corrected 

version of 𝐴
~

𝛿, that we will refer to as the cross-correlation synchrony index (CCSI): 

 

𝒯
~

𝛿 = 𝐴
~

𝛿√𝑛𝑚(𝑤/𝑣) 

 

As already stated we are interested in the time evolution of synchrony during the spontaneous sleep-

like oscillatory activity and also during the awake-like tonic activity induced after electrical stimulation. 

Therefore, in order to estimate time-varying synchrony we use moving windows of size v and estimate T 

in each window, obtaining 𝒯
~

𝛿(𝑡). 

2.4 Nonparametric smoothing of T˜δ  

The number of spikes at each time window, V t , is very variable and when this number is small T˜δ(t) 

becomes less reliable. To make the CCSI more robust, in order to be able to highlight characteristics of 

these curves and find patterns due to experimental conditions, we use a kernel smoother of the form:  

 

𝒯
^

𝛿(𝑡) = ∑

𝑀

𝑗=1

Ψ𝑗(𝑡)𝒯
~

𝛿(𝑡) 

 

for some weight functions Ψ j . The most common kernel estimator is the Nadaraya-Watson estimator 

(Nadaraya 1964; Watson 1964), which is constructed using the weights 

 

Ψ𝑗(𝑡) =
\textsl𝐾ℎ(𝑡𝑗 − 𝑡)

∑𝑟 \textsl𝐾ℎ(𝑡𝑟 − 𝑡)
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with \textsl𝐾ℎ(𝑢) =
1

ℎ
K(

𝑢

ℎ
) and K a suitable kernel function. For our data, we used the uniform kernel 

function K(u)=0.5 if |u|<1 and 0 otherwise and the smoothing parameter h=5. 

2.5 Testing for synchrony differences 

To check whether there are differences between the CCSI during the awake-like period and the CCSI 

during sleep-like spontaneous activity, a hypothesis test is implemented. As a result of the assumption 

that the bivariate process is stationary before the stimulus onset, the synchrony is constant during that 

time period, i.e., T(t)=T0 for every t∈[0,t s t ), where t s t denotes the time point where stimulation was 

applied. However, the synchrony needs not to be constant after the appearance of the stimulus. Therefore, 

we aim to test whether the synchrony at two given points, t 0∈[0,t s t ) and t 1∈(t s t ,T], is equal, or, 

equivalently, whether at time t 1∈(t s t ,T] (awake-like activity, after the stimulus) the synchrony index has 

recovered its stationary sleep-like value. In this context, the null (H 0) and alternative (H 1) hypotheses 

can be stated as follows. For some fixed t∈(t s t ,T]:  

 

𝐻0: 𝒯(𝑡) = 𝒯0 

𝐻1: 𝒯(𝑡) < 𝒯0 

 

The stationarity of the bivariate counting process in [0,t s t ] implies that the sampling distribution 

(before the stimulus) of the joint trains (X,Y) does not depend on t. As a consequence, T(t), and the 

sampling distribution of Tˆδ(t) do not depend on t in the period previous to the stimulus. An important 

issue is, therefore, to approximate the probability distribution of the test statistic Tˆδ(t) under the null 

hypothesis. We propose an extension of the stationary bootstrap (Politis and Romano 1994) to imitate the 

synchronous activity in the sleep-like time interval. Politis and Romano’s stationary bootstrap is a 

resampling mechanism that mimics the underlying distribution of the stochastic process and also 

preserves stationarity. These two properties are preserved by our extension to a bivariate setting. Since, 

stationarity implies constant synchrony, using the stationary bootstrap guarantees that the resampling 

distribution of Tˆ∗δ(t), mimics the sampling distribution of Tˆδ(t) under the null hypothesis, this is 

T(t)=T0. The proposed procedure produces two synchronous bootstrap spike trains, which are then used 

to calculate bootstrap versions of Tˆδ(t) under H 0. The procedure can be described as follows:  

 

1. Merge the two trains into one but take note of which spike belonged to which original train, this 

is, label them. 

2. Compute the Inter Spike Intervals (ISI) of this joint train. Let us call this sequence of values S. 

3. Build S 1 and S 2 the sets of ISI that start in a spike of neuron 1 and 2 respectively. 

4. Choose at random one ISI from S. 

5. Choose the following value in S with probability 1−p b o o t . With probability p b o o t choose an ISI 

from the corresponding S i . This is, if the last spike came from spike train 1 then the next ISI 

needs to be chosen from S 1 and from S 2 in the other case. 

6. Repeat Step 5 until obtaining enough resamples time to imitate the true sampling time. 

7. Use the labels on the ISI to separate the obtained train into two bootstrap trains. 

8. Compute the CCSI for the bootstrap pair of spike trains. 

9. Repeat Steps 4–8 B times to obtain B bootstrap replicates of the CCSI. 

 

This algorithm simulates the joint distribution of the bivariate counting process under the null 

hypothesis and therefore reproduces the distribution of Tˆδ(t) under the null. To facilitate the reading we 

delay a more technical description of the algorithm to Appendix B. 

We seek for significant reductions in synchronization during the awake-like period with respect to the 

sleep-like period, so we computed a significance threshold as follows. For each b=1,⋯ ,B and each time t, 

𝒯
^

𝛿
∗𝑏(𝑡) is a bootstrap analogue of Tˆδ(t) under H 0. We assume constant synchrony in the period 

preceding the stimulus onset. Therefore, the α-quantile of the set of all values of the bootstrap curves is a 

plausible choice for a critical value. We denote this value by 𝒯
^

𝛼
∗. The null hypothesis is rejected at each 

time point 𝒯
^

𝛿(𝑡) < 𝒯
^

𝛼
∗. Observe that these choice of the critical value takes into account multiple testing. 
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2.6 Testing for the difference between the two activating pathways 

Apart from differences in synchrony profiles before (sleep-like) and after (awake-like) the stimulus onset, 

we aim to develop a method to study differences in synchronization dynamics during the awake-like 

period induced by the activation of the two different pathways. In this context the relevant hypotheses are:  

 

𝐻0: 𝒯bs(𝑡) = 𝒯bf(𝑡) 

𝐻1: 𝒯bs(𝑡) ≠ 𝒯bf(𝑡) 

 

where Tbs(t) and Tbf(t) are T under bs or bf stimulation respectively. We develop a test that enables to 

detect in which time periods there are differences, if any, between the awake-like activity induced by each 

pathway. The test statistic we use is 

 

𝑇𝐶𝐶𝑆𝐼(𝑡) = 𝒯
^

𝛿
bs(𝑡) − 𝒯

^

𝛿
bf(𝑡). 

 

In this case, due to the expected lack of stationarity induced by the stimulation, the bootstrap setup 

used in the previous section is not valid. As the test is to be applied in the time interval after stimulation, 

we make use of the different trials for resampling. Roughly speaking, the method consists in shuffling the 

trials but taking into account the temporal dependence. This is, blocks of random lengths are chosen from 

randomly chosen trials but the order (in time) of the blocks is respected:  

 

1. Merge each trial of the pair of neurons into one train. This is, obtain one merged train for each 

recorded trial and keep the information of what original train each spike corresponds to. 

2. Choose one trial at random and choose the first spike of that merged trial. 

3. Given an already chosen spike time, x∗i=xj, choose the next spike as 𝑥𝑖
∗ = 𝑥𝑗 from the same trial 

with probability 1−p b o o t . With probability p b o o t , choose another trial, say k, and define 𝑥𝑖+1
∗  

(the next spike time for the bootstrap merged train) as the next spike time in trial k. 

4. Repeat this procedure to obtain as many resampled trials as in the real data scenario. 

5. Separate the resampled trials into the corresponding bootstrap trains. 

6. Compute the bootstrap CCSI for each stimulus using the bootstrap trials. 

7. Repeat Steps 4–6 B times to obtain B replicates of the CCSI for each stimulus and compute the 

difference between the two. 

8. Compute the desired quantiles to reject the null hypothesis if the observed difference is outside 

the interval defined by them. 

 

If H 0 holds, the trials for both stimuli are generated by the same process. The proposed bootstrap 

mimics that process using the pooled information in Steps 1–4 above. As before, a detailed description of 

the algorithm can be found in Appendix B. 

3 Results 

The performance of the method and bootstrap tests was examined in real data from the experiment 

described in Section 2.1. We used three simultaneously recorded neurons: A, B and C grouped in two 

pairs: A-B and A-C. 

As the data come from spontaneous activity recordings, the firing rates are very low for each neuron 

and, as expected, it is very hard to find spikes occurring at exactly the same instant. The top panel of 

Fig. 1 shows five seconds of the simultaneous recording of two neurons during sleep-like spontaneous 

activity. Spikes of neuron A are represented by circles and spikes of neuron B by triangles. The low 

frequency of exact matches can be observed. However, it is clear that neuron spikes are not independent 

and that there exists synchrony up to some extent. The low firing rate present in all the recording time can 

be easily observed in the bottom panel of Fig. 1 (the instant of stimulation is indicated at time 110 s). The 

firing rates were estimated using kernel smoothers with a Gaussian kernel function and a bandwidth 

selected ad hoc for illustrative purposes.   
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Fig. 1 Top panel: Raster plots of 5 seconds of simultaneous recordings of spikes of neuron A (circles) and B (triangles). Bottom 

panel: Firing rates of neurons A (solid line) and B (dashed line) averaged over three trials for each neuron 

Under these experimental conditions, we considered synchrony as the event of two neurons firing 

together up to a time lag of δ=0.025 s. A cross-correlation window of 2ν=2 s was also used. Also, α=0.05 

has been considered for all the analyses. To estimate CCSI at time t we used the activity in a 

neighborhood of 10 s around t. 

To test for stimuli effects on synchrony over time, the bootstrap procedure described in Section 2.5 

was used with parameter p b o o t =0.01. The choice of the bootstrap parameter was made on an attempt to 

reach a balance between imitating the dependence in the data and the variability the method pursues. 

Having in mind that our curves are sampled in 460 points and noting that the lengths of the resampled 

data blocks follow a geometric distribution, this choice of p b o o t results in resampling, in the mean, 5 

blocks of length 92. Figure 2 shows the results for the existing synchrony between neurons A and B and 

Fig. 3 shows the same results for the pair A and C. In these examples we can detect subtle changes in the 

synchronization dynamics for both pairs under the bs stimulation. In this case, a significant decrease of 

synchrony immediately after stimulation can be observed. Figure 4 shows the results obtained when 

testing for the effect of stimulation in the difference between the Tˆδ obtained under each stimulus. 

Different Tˆδ curves are shown together with 95 % confidence bands obtained using the bootstrap 

procedure described in Section 2.6. The difference curves for both pairs are shown as solid black lines. 

Although they deviate from zero, none of them result significant. It can be observed that the bootstrap 

confidence bands result very wide, this is probably a consequence of the small number of trials that are 

available (needed for the resampling) and the high trial to trial variability.   
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Fig. 2 Estimated CCSIs (solid lines) averaged over the three trials of the pair A-B and significance threshold (horizontal dotted line) 

for differences in synchrony estimated with the bootstrap procedure described in Section 2.5. The period of stimulation is indicated 

by the vertical dashed lines on the x-axis. Top panel: bs. Bottom panel: bf  

 
 

 

Fig. 3 Estimated CCSIs (solid lines) averaged over the three trials of the pair A-C and significance threshold (horizontal dotted 

lines) for differences in synchrony estimated with the bootstrap procedure described in Section 2.5. The period of stimulation is 

indicated by the vertical dashed lines on the x-axis. Top panel: bs. Bottom panel: bf  
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Fig. 4 Differences of CCSI (solid black lines) with confidence bands (dashed black lines) built with 1000 bootstrap replications 

(grey lines). The stimulus is shown for time [0,2] using vertical lines on the horizontal axis. Top panel: pair A-B. Bottom panel: pair 

A-C 

4 Simulation study 

4.1 Power of the test 

A simulation study was carried out to show the performance of the method. For this aim, we simulated 

pairs of spike trains controlling their association. We used an underlying Poisson process with rate λ(t), 

say M 0(t). To generate two spike trains from this underlying process, we assumed to have a realization of 

M 0(t) with events at 𝑋1
0, … , 𝑋𝑁

0  and two vectors of random errors 𝜇1 = (𝜇1
1, … , 𝜇𝑁

1 ) and 𝜇2 = (𝜇1
2, … , 𝜇𝑁

2 ) 

with 𝜇𝑖
𝑗
 sampled from a uniform distribution chosen accordingly to the firing rate as explained below. Let 

M 1(t) and M 2(t) be the pair of spike trains induced by M 0(t) as follows:  

 

𝑃(𝑀𝑗(𝑡) − 𝑀𝑗(𝑡−) = 1) = {
𝑝𝑗(𝑡) if𝑡 = 𝑋𝑖

0 + 𝜇𝑖
𝑗

for some𝑖 = 1, . . . , 𝑁
0 otherwise

 

 

for j=1,2 and p j (t) a certain probability function defined for each train. 

In order to introduce changes in synchrony, we considered a time point, t 0, as the time where the 

association between the trains change. So, the probabilities are set constant before t 0 and also constant 

(although with a different value) after t 0. Also, for simplicity, we used the same probabilities for both 

trains. This is:  

 

 



On the other hand, we defined the firing rate of the trains as constant throughout the trial, say λ 0. 

Therefore, the firing rate of the process M 0(t) is defined as 

 

 
 

In practice, we drew random numbers 𝜌𝑖
𝑗

∈ [0,1] and then selected 𝑋𝑖
0 + 𝜇𝑖

𝑗
 as a spike for train j if 

𝜌𝑖
𝑗

≤ 𝑝𝑖
𝑗
 (which occurs with probability 𝑝𝑖

𝑗
). 

Finally, for the simulation study, 220 s spike trains with constant rate of λ 0=4 Hz were generated: 110 

s were simulated with probability p 1 of acquiring the spikes from the underlying process and another 110 

s with probability p 2. We used 𝜇𝑖
𝑗

∼ U(−1/(20𝜆0),1/(20𝜆0)) for all i=1,…,N and j=1,2, in order to have 

a controlled error which shifts the spikes in a small amount but so that it is not likely that one spike would 

be shifted so much that would get very close to another spike. The choices for the parameters p 1 and p 2 

were p 1=0.7 with p 2=0.1,0.3,0.5 and 0.65 on the other. We simulated 500 pairs of trains and estimated 

the CCSI function from them using the same parameters as for the real data (δ ν=0.025 ms, v=10 s.). Then 

we performed the bootstrap test described in Section 2.5 with B=500 and p b o o t =0.01 the same as for the 

real data. 

Figure 5 shows eight CCSI curves from eight pairs of simulated spike trains with p 1=0.7 and p 2=0.65 

in the top panel, whereas in the bottom panel the average of 500 of these curves are shown for different 

choices of p 2. Figure 6 shows the rejection percentage of the null hypothesis using the bootstrap test 

presented in Section 2.5 with p 1=0.7 and different values for p 2. As it can be observed the test can easily 

detect the changes in synchrony. Of course the use of sliding windows provokes the existence of a period 

of time where the rejection percentage grows slowly. This is one of the prices we have to pay because of 

the low firing rates.  

 
 

 

Fig. 5 CCSI curves for eight simulated pairs of neurons using p 1=0.7 and p 2=0.65 (top panel) and average of 500 CCSI curves for p 

1=0.7 and p 2=0.1 (solid line), 0.3 (dashed line), 0.5 (dotted line) and 0.65 (dashed-dotted line) (bottom panel). The stimulus is 

simulated at t=40 (vertical red dotted line) 
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Fig. 6 Rejection proportion of the bootstrap test for changes in synchrony using p 1=0.7 and p 2=0.1,0.3,0.5 and 0.65. The stimulus is 

simulated at t=40 

The rejection percentage before stimulation in Fig. 6, is the percentage of rejection under the null 

hypothesis, this is, the level of the test. Although the values do not reach the nominal level (0.05) the 

results are acceptable, given the difficulty of the problem due to the low firing rates. In average, over all 

windows of all simulations, the level is 0.065. Also, in simulations with higher firing rates (10H z) we 

reached a level of 0.053. 

On the other hand, Fig. 6 shows very good results for the power of the test (except in the case where p 

2=0.65). As expected, it decreases with the shortening of the difference in amount of synchrony between 

the pre and post-stimulus intervals. In all simulations, the probability of joint-firing in the pre-stimulus 

part is 0.7. When the probability of joint-firing in the post part is small (p 2=0.1) the power is 1. When we 

increase the post joint-firing probability to 0.3 the power decreases to 0.998. If we consider the post joint-

firing probability to be 0.5, the power is 0.83. Finally, if the joint-firing probability in the post part is 

considered to be 0.065 (almost no difference with the pre-stimulus part) the power decreases to 0.26. This 

values are averages over the time window [120,200]. 

4.2 Firing rate effect 

With the same simulation procedure, we performed a simulation study to evaluate how the firing rate 

affects the performance of the index. For several firing rate values we simulated 1000 twenty seconds 

long spike trains and computed the CCSI for each one. Figure 7 shows the average of the 1000 obtained 

values for each firing rate value. The fluctuation of CCSI is extremely low for moderate or large firing 

rates (8–30 Hz). For small firing rates (1–8 Hz) the fluctuation of CCSI is moderate (0.6–0.75). As a 

consequence, having in mind the firing rates in Fig. 1, the practical influence of the firing rate in CCSI is 

low.  
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Fig. 7 Average of 1000 CCSI values obtained at different firing rate values 

5 Discussion 

We have used a cross-correlation based synchrony index to study pairwise synchrony between cortical 

neurons under spontaneous activity. The method is based on kernel estimation of the cross-correlation 

function and its integration in a neighborhood around zero. It is a flexible method because it permits the 

tuning of its parameters to better fit the problem. Two hypothesis tests have been proposed to test for 

differences in synchrony profiles. Resampling methods are very useful and powerful tools when no 

parametric model can be assumed for the data, as often occurs with spike activity. The first proposed 

resampling procedure takes into account the dependence between simultaneous spike trains by resampling 

from the intervals of time that elapses between spikes of a joint spike train built by merging the spike 

trains. The second one, takes into account the dependence by shuffling trials but respecting the timing of 

spikes. The methods have been used in real data to test for synchrony dynamics between neurons under 

two different induced states (sleep-like and awake-like) and after the activation of two ascending 

pathways (brainstem and basal forebrain). The results show that the proposed method works efficiently 

under conditions of low neural activity. It is also shown that the method is useful to discriminate between 

subtle changes in synchronization dynamics. The good performance of the first bootstrap test has been 

assessed by a simulation study. Although the methods were thought for a particular problem, we believe 

they can be used in many other contexts, especially when low firing rates are an issue but not only then. 
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Appendix A 

Approximation to the average of A δ (τ) in Eq. (1): 
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Appendix B 

The bootstrap procedure in Section 2.5 is detailed here.  

 

1. Merge the two observed trains, X1 and X2, into one, ordering all the spiking times together in a joint 

train. Let the pooled train be  

 

𝒳𝑝 = {(𝑋1
𝑐 , 𝛾1

𝑝
), … , (𝑋𝑁

𝑝
, 𝛾𝑁

𝑝
)}where 

𝛾𝑖
𝑝

= {
1 if𝑋𝑖

𝑝
∈ 𝒳1

2 if𝑋𝑖
𝑝

∈ 𝒳2

 

 

2. Next, compute the interspike intervals (ISI) of this new train: 𝑆1
𝑝

= 𝑋1
𝑝
 and 

 

𝑆𝑖+1
𝑝

= 𝑋𝑖+1
𝑝

− 𝑋𝑖
𝑝

, 𝑖 = 1, … , 𝑁 − 1 

 

3. Build the sets 𝐒1 = {(𝑆𝑖
𝑝

, 𝛾𝑖
𝑝

): 𝛾𝑖−1
𝑝

= 1; 𝑖 = 1, … , 𝑁} and 𝐒2 = {(𝑆𝑖
𝑝

, 𝛾𝑖
𝑝

): 𝛾𝑖−1
𝑝

= 2; 𝑖 = 1, … , 𝑁}. This 

is, S 1 (and respectively S 2) contains the elapsed times from a spike of neuron 1 (respectively 2) to the 

following spike in the joint train, and their corresponding neuron indicators. 

 

4. Randomly choose (𝑆1
𝑝∗

, 𝛾1
𝑝∗

) from S p, i.e. 𝑃∗((𝑆1
𝑝∗

, 𝛾1
𝑝∗

) = (𝑆𝑖
𝑝

, 𝛾𝑖
𝑝

)) =
1

𝑁
 

 

5. If 𝑆𝑖
𝑝∗

= 𝑆𝑗
𝑝
 choose (𝑆𝑖+1

𝑝∗
, 𝛾𝑖+1

𝑝∗
) = (𝑆𝑗+1

𝑝
, 𝛾𝑗+1

𝑝
) [in the case j=N (𝑆𝑖+1

𝑝∗
, 𝛾𝑖+1

𝑝∗
) = (𝑆1

𝑝
, 𝛾1

𝑝
)] with 

probability 1−p b o o t and choose it at random from 𝐒
𝛾𝑗

𝑝

 with probability p b o o t . 

 

6. Repeat Step 5 until obtaining the first (𝑆𝑀
𝑝∗

, 𝛾𝑀
𝑝∗

) for wich ∑𝑀
𝑖=1 𝑆𝑖

𝑝∗
≥ 𝑡𝑠𝑡 

 

7. Build the ISIs for the first bootstrap train, X1∗. Let 𝐿1 = 𝑚𝑖𝑛
𝑙

{𝛾𝑙
𝑝∗

= 1} 

 

8. Build the first bootstrap train 𝒳1
∗ as 𝑋1𝑖

∗ = ∑𝑖
𝑘=1 𝑆𝑘

1∗ 

 

9. Build the second bootstrap train 𝒳2
∗ in a similar way. This consists in repeating Steps 7–8 but with the 

condition 𝛾𝑙
𝑝∗

= 2 

 

10. Based on 𝒳1
∗ and 𝒳2

∗ compute 𝒯
^

𝛿
∗(𝑡) as in Sections 2.3 and 2.4. 

 

11. Repeat Steps 4–9 B times to calculate 𝒯
^

𝛿
∗𝑏(𝑡), b=1,…,B, for these bootstrap trains. 

Steps 1–3 in the algorithm are used to build the joint train. Bootstrap resamples for the ISIs of this joint 

train are obtained in Steps 4–6. Finally Steps 7–9 separate the joint train to obtain two ‘simultaneously 

recorded’ bootstrap trains. 

 

Now we present the detailed algorithm for the bootstrap procedure introduced in Section 2.6.  

 

1. Build a joint train for each recorded trial 𝒳𝑘
𝑝

= {(𝑋𝑘1
𝑝

, 𝛾𝑘1
𝑝

), … , (𝑋𝑘𝑁𝑘

𝑝
, 𝛾𝑘𝑁𝑘

𝑝
)} where, as above, 

 

𝛾𝑘𝑖
𝑝

= {
1 if𝑋𝑘𝑖

𝑝
∈ 𝒳1

2 if𝑋𝑘𝑖
𝑝

∈ 𝒳2

 

 

2. Choose a trial, k 1, at random with equal probability from {1,…,K} and define 𝑋1
𝑝∗

= 𝑋𝑘11
𝑝

 and 

𝛾1
𝑝∗

= 𝛾𝑘11
𝑝

 

 

3. If (𝑋𝑖
𝑝∗

, 𝛾𝑖
𝑝∗

) = (𝑋𝑘𝑖𝑗
𝑝

, 𝛾𝑘𝑖𝑗
𝑝

) then, with probability 1−p b o o t set k i+1=k I 𝑋𝑖+1
𝑝∗

= 𝑋𝑘𝑖+1(𝑗+1)
𝑝

  and 𝛾𝑖+1
𝑝∗

=

𝛾𝑘𝑖+1(𝑗+1)
𝑝

. With probability p b o o t , draw k i+1 at random with equal probabilities from {1,…,K}, set 

𝑋𝑖+1
𝑝∗

= 𝑋𝑘𝑖+1𝑚
𝑝

 so that 𝑋𝑘𝑖+1𝑚
𝑝

= 𝑚𝑖𝑛
𝑙

{𝑋𝑘𝑖+1𝑙
𝑝

> 𝑋𝑖
𝑝∗

}.  

http://link.springer.com/article/10.1007/s10827-015-0557-5/fulltext.html#Sec7
http://link.springer.com/article/10.1007/s10827-015-0557-5/fulltext.html#Sec8


4. Increase the index i by one unit and repeat Steps 2–3 while possible, i.e., while there exists some index 

l, such that 𝑋𝑘𝑖+1𝑙
𝑝

> 𝑋𝑖
𝑝∗

. 

 

5. For each trial, k, and each stimulus, j=1,2, repeat Steps 2–4 above to obtain the bootstrap train 𝒳𝑗𝑘
∗  

 

6. For each trial, k, separate the two spike trains using the information gathered by γ p to get 𝑋1𝑘
∗  and 𝑋2𝑘

∗  

 

7. Compute the bootstrap 𝒯
^

𝛿
𝑠∗(𝑡)  for each stimulus, s∈{bs,bf} and 𝑇𝐶𝐶𝑆𝐼

∗ (𝑡) = 𝒯
^

𝛿
bs∗(𝑡) − 𝒯

^

𝛿
bf∗(𝑡) 

 

8. Repeat Steps 5 and 6 B times to obtain 𝑇𝐶𝐶𝑆𝐼
∗1 (𝑡), … , 𝑇𝐶𝐶𝑆𝐼

∗𝐵 (𝑡). 

 

9. Calculate the α and (1−α) quantiles, 𝑇𝐶𝐶𝑆𝐼,𝛼
∗ (𝑡) and 𝑇𝐶𝐶𝑆𝐼,(1−𝛼)

∗ (𝑡), , at each t. Reject H 0 at time t if 

\(T_{CCSI}(t) or 𝑇𝐶𝐶𝑆𝐼(𝑡) > 𝑇𝐶𝐶𝑆𝐼,(1−𝛼)
∗ (𝑡) 
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