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Abstract 

We have examined the responses of a population of 77 cells in the dorsal lateral geniculate nucleus (dLGN) of the 

anaesthetized, paralysed cat. Here the synthetic enzyme for the production of nitric oxide, nitric oxide synthase, is 

found only in the presynaptic terminals of the cholinergic input from the brainstem. In our hands, iontophoretic 

application of inhibitors of this enzyme resulted both in significant decreases in visual responses and decreased 

responses to exogenous application of NMDA, effects which were reversed by coapplication of the natural substrate 

for nitric oxide synthase, L-arginine, but not the biologically inactive isomer, D-arginine. Nitroprusside and S-

nitroso-N-acetylpenicillamine (SNAP), nitric oxide donors, but not L-arginine, were able to increase markedly both 

spontaneous activity and the responsiveness to NMDA application. Furthermore, SNAP application facilitated visual 

responses. Responses of cells in animals without retinal, cortical and parabrachial input to the LGN suggest a 

postsynaptic site of action of nitric oxide. This modulation of the gain of visual signals transmitted to the cortex 

suggests a completely novel pathway for nitric oxide regulation of function, as yet described only in primary sensory 

thalamus of the mammalian central nervous system. 
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Introduction 

The dorsal lateral geniculate nucleus (dLGN) of the cat is a major target of output from the retina, and 

in recent years there has been a large amount of work directed towards isolating the functional 

significance of the complex synaptic physiology of this nucleus (Murphy and Sillito, 1987; Funke and 

Eyse11992; Sillito et al., 1993; Lo and Sherman 1994; Sillito et al., 1994). Besides the visually specific 

pathways involving this nucleus, there exist a number of modulatory pathways considered to influence the 

activity of dLGN cells more globally, having putative roles in sleep/wake and arousal states (for reviews 

see Singer, 1977; Steriade and Llinas, 1988; McCormick, 1992). One such pathway is the cholinergic 

pathway from the parabrachial nucleus of the brainstem, activity of which releases acetylcholine (ACh) 

within the dLGN; ACh is known to excite dLGN relay cells directly (Sillito et al., 1983; Eysel et al., 

1986; McConhick and Pape, 1988). Interesting1y, recent evidence has shown that within the feline dLGN 

there is a unique distribution of nitric oxide synthase (NOS), the enzyme responsible for the production of 

nitric oxide. NOS is found exclusively within the ACh-containing fibres arising in the parabrachium 

(Bickford et al., 1993). Since nitric oxide is now considered to be a widely spread CNS neuromodulatory 

substance, which is also a highly diffusible -gaseous compound (for reviews see Garthwaite, 1991; 

Moncada et al., 1991; Snyder and Bredt, 1991; Schuman and Madison, 1994), this represents a novel 

colocalization of neurotransmitter substances. Nitric oxide is produced from L-arginine by the action of 

NOS, and has traditionally been viewed as a retrograde messenger, diffusing from postsynaptic structures 

to act remotely, for example on presynaptic terminals (Garthwaite et al., 1988; Garthwaite, 1991; O'De1l 

et al., 1991; Snyder and Bredt, 1991). It has been suggested that nitric oxide is involved in glutamate 

mediated neurotoxicity, by increasing synaptic release of the excitant (Dawson et al., 1991, 1993), Other 

evidence, however, has favoured the view that nitric oxide may act to reduce NMDA-mediated 

neurotoxicity, by an action directly on NMDA receptor configuration (Lei et al., 1992; Manzoni et al., 

1992; Lipton et al., 1993).  

We have recently presented preliminary evidence using iontophoretic application of putative 

inhibitors of NOS, suggesting that, within the cat dLGN, nitric oxide acts to enhance visual responses, 

specifically and selectively enhancing NMDA-mediated excitation (Cudeiro et al., 1994a,b). Unlike the 
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interaction of cotransmitters such as ACh and vasoactive intestinal peptide in the autonomic nervous 

system, where the colocalized peptide extends the effective range of activity of the classical 

neurotransmitter (Lundberg et al., 1980), in the dLGN nitric oxide seems to facilitate NMDA-mediated 

excitation selectively, without an apparent action on ACh-mediated activity (Cudeiro et al., 1994b). 

Activation of NMDA receptors is known to provide a major component of the retinal input to dLGN 

(Kemp and Sillito, 1982; Hartveit and Heggelund, 1990; Heggelund and Hartveit, 1990; Scharfman et al., 

1990; Sil1ito et al., 1990a,b; Kwon et al., 1991). By these means nitric oxide may potent1y modu1ate 

visual1y driven activity. In this paper we examine further this effect of b1ockade of NOS in the cat 

dLGN, and examine the effect of application of nitric oxide donors.  

Materials and methods 

Animal preparation 

Experiments were carried out on adult cats in the weight range 1.8- 3.0 kg. Animals were 

anaesthetized with ha1othane in nitrous oxide (70% ) and oxygen (30% ); the concentration of ha1othane 

was 5% for induction. 1.5-2% for surgery and 0.1-0.5% for maintenance. To prevent eye movements, 

anima1s were paralysed with gal1amine triethiodide (loading dose of 40 mg, maintenance 10 mg/kg/h i.v. 

infusion). End-tidal CO2 levels, ECG waveform. intersystolic interval and the frequency of spindles in the 

EEG were monitored continuously throughout the experiment.  

The rate and depth of artificial respiration were adjusted to maintain end-tidal CO2 at 3.8-4.2%; the 

level of halothane was chosen to achieve a state of light anaesthesia. Once a stable state was reached, any 

variation in the monitored parameters commensurate with a change in the depth of anaesthesia was 

compensated for by alterations in the level of halothane. Wound margins were treated with lignocaine 

hydrochloride with adrenalin administered subcutaneously. Ear bars were coated with lignocaine gel. The 

eyes were treated with atropine methonitrate and phenylephrine hydrochloride, protected with zero power 

contact lenses and brought to focus on a semi-opaque tangent screen 57 cm distant. Visual stimuli were 

viewed monocularly through 3 mm artificial DUDils.  

Recording and iontophoretic application of drugs  

Seven-barrelled micropipettes were used for iontophoresis and pressure ejection of drugs and single-

unit extracellular recording in the A laminae of the cat dLGN. Drug barrels contained a selection of the 

following solutions: NaCI (3 M for recording), L-arginine (L-Arg, 10 mM, pH 6.0), D-arginine (D-Arg, 

10 mM, pH 6.0), NG-nitro-Larginine (L-NOArg, 0.1, I, 10 mM, pH 6.0), NG-methyl-L-arginine (L-

MeArg, 10 mM, pH 6.0), sodium nitroprusside (applied by pressure ejection, 10 mM), S-nitroso-N-

acetyl-DL-penicillamine (SNAP, applied by pressure ejection, 10 mM), NMDA (0.1 M, pH 8.0), y-

aminobutyric acid (GABA, 0.5 M, pH 3.5) or pontamine sky blue (2% wt/vol, in 0.5 M sodium acetate 

solution, for histological reconstruction). Pipette tips were broken back to diameters ranging from 3 to 10 

µm, and each drug barrel was subject to a retention current of 5-25 nA of appropriate polarity.  

Visual stimulation and experimental design  

Cells were classified by a battery of tests into X and y groups of ON and OFF subtypes. Particular 

emphasis was placed on the linearity of spatial summation in the responses to sinusoidal gratings of the 

appropriate spatial frequency. Sinusoidally phase-reversed gratings were presented at a number of spatial 

phase positions in a randomized interleaved sequence, using the highest spatial frequency giving reliable 

responses. Fourier analysis produced first and second harmonic components of these responses which 

were plotted against spatial phase. X cell responses were characterized by a strongly phase- dependent 

first hannonic which exhibited a clear null point, while y cell responses included a second hannonic 

component which was not strongly phase-dependent. Other tests included the duration of the response to 

standing contrast over the receptive field centre, the presence or absence of a shift effect, the strength of 

surround antagonism and size of receptive field centre for a given eccentricity (Enroth-Cugell and 

Robson, 1967; Cleland et al., 1971; Derrington and Fuchs, 1979). Single-unit data were collected and 

visual stimuli were produced under computer control (Visua1 Stimulation System, Cambridge Electronic 

Design, Cambridge, UK). Stimuli routinely consisted of flashed spots of several diameters, moving bars 

of light of several lengths or sinusoidal gratings of different spatia1 frequencies drifted through the 

receptive field. Stimulus contrast [(Lmax - Lmin/ (Lmax + Lmin] was held within a non-saturating range, 

usually 0.36- 0.7, with a mean luminance of 14 cd/m2. For quantitative assessment of receptive field 



parameters the multihistogram technique was used, and all stimuli (e.g. a moving bar of six different 

lengths) were randomly interleaved within each tria1. Our basic experimenta1 paradigm involved 

establishing control responses to a range of visua1 stimuli. This was then repeated during continuous 

iontophoretic application of an inhibitor of nitric oxide synthesis (alone or in combination with D- or L-

Arg). To examine the nature of the suppressive activity of NOS inhibitors on excitatory responses evoked 

by exogenously applied NMDA (Cudeiro et al., 1994b), we used pulsatile iontophoretic application of 

NMDA with different ejection currents before and during continuous application of either L-NOArg or L-

MeArg (again alone or in combination with D- or L-Arg). Typically, responses were averaged over five 

to seven trials and were assessed from the accumulated count in the binned peristimulus time histograms 

(PSTHs). Pressure application of the nitric oxide donors sodium nitroprusside or SNAP, a1one or in 

combination with NMDA, was also quantitatively exarnined in the same manner. Magnitude of the drug 

iontophoretic application current was selected on the basis of initial qua1itative observations. 

Deafferented anímals  

In order to minimize excitatory afferent synaptic input to the dLGN and remove presynaptic activity, 

four anima1s were decerebrated at the intercollicular level, the visua1 cortex (areas 17 and 18) was 

removed by aspiration, and the eye ipsilatera1 to the recording electrode surgica11y removed. Bipolar 

stimulating electrodes were first placed over the optic nerve ipsilateral to the hemisphere to be lesioned, 

and single monophasic pulses (0.1 ms duration, up to 1 mA) used to activate the dLGN orthodromica11y. 

Control responses to electrica1 activation were obtained prior to enucleation. Single-unit recording from 

these animals was begun only after a waiting period of up to 48 h after surgery, when release of 

neurotransmitter from retinal terminals was completely absent, as judged by the lack of response to 

stimulation of the optic nerve, even when stimulus current was increased to three times that which had 

been effective prior to enucleation. Clear visua11y elicited activity in the dLGN layer dominated by the 

intact eye was present at this time (inset in Fig. 6).  

To control for possible anaesthetic influences, pentobarbitone was used in one animal (1-4 mg/kg/h 

i.v.), respired on room air; the effect of application of NOS inhibitors was unaffected. At the termination 

of each experiment, the animal was killed by an overdose of anaesthetic and the brain was removed and 

prepared for histologica1 reconstruction.  

Results  

Effect of application of NOS inhibitors on visual responses  

For this study the effects of iontophoretic application of inhibitors of NOS have been tested on a 

population of 77 cells (X = 35, Y= 38, unclassified = 4) recorded in the A laminae of the dLGN. All cells 

had receptive fields within 12° of the area centralis. A typical example of the effect of such application is 

shown in Figure 1. Here, the responses of an ON centre X cell to a flashed spot of light of optimum 

diameter centred on and restricted to the centre of the receptive field are shown. In the upper row, the 

control response to visual stimulation alone are compared to those elicited during continuous 

iontophoretic ejection of L-NOArg, showing the temporal progression of the effect of NOS blockade. The 

visual response clearly declined by some 47% after 3 min of application, and remained at this level during 

the subsequent test period. The initial transient response and the sustained component were equal1y 

affected, and spontaneous activity was reduced. In the middle row, this cell was again tested with the 

same visual stimulus, after a recovery period of 12 min, and the effect of concornitantly ejecting both L-

NOArg and L-Arg during visual stimulation is illustrated. In this case, despite an equivalent application 

of the NOS inhibitor, neither visual response nor spontaneous activity were altered. Finally, after a 

repeated recovery period, L-NOArg was applied together with the biologically inactive isomer, D-Arg. 

Here, despite an equivalent application of a compound equal to L-Arg in all but stereochernistry, L-

NOarg again produced a marked inhibition of the visual response, reducing it by 50%, producing an 

effect equivalent to application of L-NOArg alone. Another example is shown in Figure 2. In this case we 

show the responses of an ON y cell to flashed spots of light of different diameters, before during and after 

application of L-NOArg. As is typical of LGN cells, the control visual responses showed clear response 

summation followed by attenuation as diameter of the stimulus centred on the centre of the receptive field 

was increased. During application of the NOS inhibitor, L-NOArg, there were marked decrements in the 

visual responses (Fig. 2A, p < 0.000, Wilcoxon test at optimum response), which were reversible and not 

stimulus-selective, completely in accord with our previous findings (Cudeiro et al., 1994a). Applied with 

L-NOArg, L-Arg (Fig. 2B, dotted line) entirely suppressed the effect of the NOS inhibitor, allowing  



 
 

 

FIG. 1. Peristimulus time histograms (PSTHs) documenting the responses of an ON centre X cell to a spot of light flashed over the 

receptive field centre. The region of the field stimulated is indicated diagrammatically above the records. Spot diameter 1.25°. 

Upper records show the control responses of the cell and responses in the presence of L-NOArg continuously ejected (50 nA from a 

10 mM solution). In each case the response is the average of ten trials. Middle records show the responses of the same cell after a 

recovery period of 12 min, to the same visual stimulus alone or during simultaneous ejection of L-NOArg and L-Arg (50 nA). The 

same paradigm is illustrated in the lowest records, but in this case D-Arg (50 nA) was ejected with L-NOArg. Horizontal bars under 

the PSTHs indicate flash duration, 0.5 s. Bin size 25 ms.  

complete expression of the normal visual responses, with unchanged visual specificity. Again this action 

was not seen when D-Arg was co-applied in place of L-Arg (Fig. 2B, broken line). We have seen such 

selective suppressive effects of application of NOS inhibitors regardless of the type of the visual 

stimulation used (and therefore of the synaptic mechanisms involved), and the effect was similar on all 

subpopulations of LGN cell types. On average, visual responses of the 46 cells tested were reduced by 49 

± 4% (SEM), (P < 0.000, Mann-Whitney U test), and these data are given in Table I. We found no 

significant differences between groups. Routinely, responses to drug application were seen within 2-5 min 

after ejection was commenced and lasted 7-15 rnin after cessation. In all cases tested L-Arg reversed the 

effect of L-NOArg or L-MeArg, while D-Arg was consistently ineffective.  



 
 

 

FIG. 2. Diameter-response curves for an ON y cell in the cat dLGN, stimulated with flashed spots of light of different diameters (in 

degrees of visual space) centred on its receptive field (RF). Visual stimuli were randomly interleaved within each trial. Response to 

stimulation with static spots of light is essentially unchanged in the absence of corticofugal input (Murphy and Sillito, 1987), 

suggesting that these responses are purely retinally driven, via NMDA and non-NMDA ionotropic, not metabotropic, receptors 

(McCormick and Von Krosigk, 1992). (A) Control tuning curve (solid line), and, overlying, tuning curve obtained during 

continuous iontophoretic application of L-NOArg (broken line). (B) Repeated control curve and responses during continuous 

application of L-NOArg concomitantly with D-Arg (broken line) and L-Arg (dotted line). The inhibitory effect of L-NOArg was 

completely blocked during L-Arg application but was unaffected by the inactive isomer D-Arg. Responses are averaged over seven 

trials. Small vertical bars, mean ± SEM.  

Effect of application of NOS inhibitors on NMDA-evoked responses  

We have previously shown that application of an inhibitor of NOS decreased the responses of cells to 

exogenous application of NMDA (Cudeiro et al., 1994b). We have now examined in more detail this 

suppressive activity of NOS inhibitors, and this is illustrated in Figure 3. The control responses (Fig. 3A) 

illustrate a dose-response curve for application of NMDA using different application currents, from zero 

(spontaneous activity) to a maximum response at around 110-130 nA of applied NMDA. Co-application 

of L-NOArg from solutions of 0.1, 1 or 10 mM effectively suppressed the NMDA mediated excitation in 

a dose-dependent manner, the dose-response curves showing no lateral shift on the X axis, and resulted in 

nearly complete suppression of NMDA-induced excitation when using the highest concentration. These 

applications also induced a decrease in spontaneous activity. Figure 3B shows that, like the visual 

responses, the suppressive effect of iontophoretic application of the most potent L-NOArg solution (10 

mM) was almost completely reversed by coapplication of L-Arg, but unaffected by co-application of D-

Arg. It should be noted that application of L-Arg alone was unable to increase the excitatory responses to 

NMDA at any point in the NMDA dose-response curve, instead merely restoring the control level of 

responsiveness. In Figure 3C, the effects of a second inhibitor of NOS are illustrated. In this case, L-

MeArg (lo mM) also markedly suppressed the NMDA induced excitations. The lack of effect of D-Arg, 

and effect of L-Arg in restoring but not enhancing the activity of NMDA are again shown, reinforcing the 

view that the suppressive effects of these compounds are specific, and are the result of competitive 

inhibition of NOS. On average, NMDA-evoked responses were reduced by 72 ± 8% (SEM) (P < 0.000, 

Mann-Whitney test). No significant differences between groups were found. This paradigm was tested on 

a population of 22 cells, and in each case application of D-Arg was unable to reverse the effect of NOS 

blockade.   



 
 

 

FIG. 3. Dose-response curve for NMDA iontophoretically applied to two dLGN cells. (A) Control responses to application of 

NMDA, using different ejection currents (nA), (splid line. drug pulse duration 5 s) and repeated in the presence of a continuous 80 

nA ejection OfL-NOArg at three concentrations (0.1 mM, broken line, 1 mM. chained line. lO mM, dotted line). L-NOArg blocked 

the response to NMDA in a dose-dependent fashion. (B) Responses of the same cell when subsequently retested with NMDA (solid 

line). and again to NMDA combined with L-NOArg (broken line). Now. however, when NMDA was ejected together with both L-

NOArg and L-Arg (dotted line), the inhibitory effect of L-NOArg was blocked. The physiologically inactive isomer D-Arg was 

without effect (chained line). L-Arg alone produced no change in the NMDA-evoked responses (discontinuous fine line). Between 

curves there were recovery periods of -10-15 min. (C) App1ication of a second inhibitor of NOS. L-MeArg. to a second ce11 

produced similar effects.  

Application of NO donors  

The histogram in Figure 4A illustrates the effect of pressure application of the nitric oxide donor 

sodium nitroprusside. Perhaps surprising in view of the action of L-Arg, in this population of nine cells 

(Fig. 4A, filled column, right side) co-application of nitroprusside with NMDA significantly increased 

firing rates by 30 ± 9% (P < 0.05, Mann- Whitney test), in contrast to the mere reversa1 of the effect of 

NOS inhibition by L-Arg. Spontaneous activity (reduced by NOS inhibition) was a1so significantly 

elevated, by 76 ± 9% (Fig. 4A, filled column, left side). A similar paradigm using the chemically 

unrelated nitric oxide donor SNAP (Fig. 4B, hatched columns, N = 7) also demonstrates an excitatory 

effect, both on NMDA-mediated responses, increased by 37 ± 10% (P < 0.05, Mann-Whitney test, right 

side), and on spontaneous activity, increased by 92 ± 17% (left side). In three of these seven cells, visual 

responses were also tested during SNAP application. Figure 4C illustrates the effect of SNAP application 

on the visual responses of an ON X cell to a bar of light moved through the receptive field. Control 

responses are shown on the left, and responses during SNAP application on the right. As with al1 cells 

tested, there is a clear enhancement of both the visual and the spontaneous activity.  



 
 

 

FIG. 4. (A) Application of the nitric oxide donor nitroprusside. The block histogram shows (left) the facilitatory effect of 

application of nitroprusside (filled column) on spontaneous activity (open column), and (right) NMDA alone (open column) and 

NMDA + nitroprusside (filled column), increasing the response by some 30% (P < 0.05, Mann-Whitney test). (B) The effect of the 

nitric oxide donor SNAP. Details as for Figure 4A. SNAP enhanced NMDA-mediated excitation by 37% (P < 0.05, Mann-Whitney 

test) (C) Application of the nitric oxide donor SNAP during visual stimulation. The visual stimulus was a bar of light moved 

through the receptive field (diagram above the records). The control response to a drifting bar of light is shown on the left, and the 

SNAP-augmented response on the right. On average visual responses were enhanced by 51% and spontaneous activity by 56%.  

 

 

 



Comparison with GABA application  

Although we have previously demonstrated that the interaction between nitric oxide and NMDA is 

specific to NMDA, with little or no interaction between nitric oxide and other amino acid and nonamino 

acid excitants in the dLGN (Cudeiro et al., 1994b), the possibility remains .tha.t such specific effects of 

NOS inhibitors are the resul.t of simple membrane hyperpolarization, lowering the membrane po.tentia1 

below the effective range for voltage-dependent NMDA receptors (Mayer et al., 1984; Nowak et al., 

1984). To control for this, in eigh.t cells we compared .the responses .to NMDA application before and 

during application of L-NOArg with .those obtained in .the presence of continuous application of GABA 

at levels a1so effectively reducing spontaneous activity. We suggest. that such lowering of firing activity 

is likely .to be the result of GABAA-mediated hyperpolarization. These data are exemplified by the 

responses of the cell shown in Figure 5 .to pulsatile application of NMDA (hatched columns). A clear 

reduction in spontaneous activity was seen during L-NOArg (open columns) or GABA application (solid 

columns). However, NMDA responses were essentially absent only during L-NOArg application; 

significant excitatory responses to application of NMDA during GABA application remained. 

 
 

 

FiG. 5. Peristimulus time histograms (PSTHs) documenting the comparative effect of L-NOArg and GABA on NMDA-evoked 

activity. Responses to a pulse of NMDA alone (90 nA. hatched columns; ejection period marked below the X axis) in the presence 

of continuous L-NOArg application (open columns) or GABA (solid columns). Note that application of L-NOArg and GABA 

resulted in a similar decrease in spontaneous activity. Although reduced in magnitude. a clear NMDA-evoked response remained 

during GABA application. Bin size 1 s.  

Presynaptic versus postsynaptic locus of action  

Extracellular recordings in vivo cannot directly address the issue of a presynaptic versus a 

postsynaptic locus of action for nitric oxide-mediated modulation of NMDA-induced activity. 

Nevertheless, we can indirectly investigate this problem. In four animals ail main afferent inputs to the 

dLGN were removed (retina, visual cortical areas 17 and 18 and brainstem; see Materials and methods), 

and after a waiting period of up to 48 h recordings were obtained from cells ipsilateral to the removed 

eye. After this waiting period, evoked activity following optic nerve stimulation within the deprived 

lamina disappeared, while significant visual activity remained in the non-visually deprived lamina (inset 

in Fig. 6). Thus we believe transmitter release from the deafferented axonal terminals within lamina Al 

was completely disrupted. NMDA, L-NOArg and nitroprusside were tested in layer Al on a population of 

ten cells, whose responses are summarized in the histogram in Figure 6B. In such deafferented animals L-

NOArg was essentially ineffective in reducing NMDA mediated excitation (open column NMDA, 



hatched column NMDA + L-NOArg, not significantly different, Mann-Whitney test), aithough the 

NMDA-mediated responses were also reduced in comparison to control responses in non-deafferented 

animals (data not shown) and spontaneous activity was aiso reduced. However, when nitroprusside was 

applied, NMDA-induced excitatory responses were strikingly increased (filled column, from 41 ± 4.7 to 

129 ± 23.5 spikes/s, p < 0.000, Mann-Whitney test).  

 
 

 

FIG 6. (A) The average of 32 single sweeps, each sweep representing the field potential elicited by a single electrical shock to the 

optic nerve (0.1 ms, up to 1 mA) recorded in lamina Al of animals just prior to deafferentation (see Materials and methods). The 

lower trace documents the record obtained when the electrode was within lamina Al, normally receiving input from the deafferented 

eye, after the waiting period (48 h after deafferentation). The stimulus artefact is marked (asterisk). The inset illustrates the response 

obtained from an ON y cell driven by the intact eye after the deafferentation period. The stimulus was a spot of light of optimum 

diameter flashed over the receptive field. Small vertical bar, 10 spikesls; horizontal bar shows the light-on period, 0.5 s; 7 trials. (B) 

Responses to NMDA and NMDA + LNOArg in deafferented animals (ten cells). While L-NOArg was unable to reduce the 

remaining NMDA-mediated excitation, application of nitroprusside markedly increased responses to NMDA.  

 

 

 

 

 

 

  



Discussion  

The data we have presented above attempt to address a number of issues related to our earlier 

observations regarding nitric oxide in the cat dLGN. Previously we have shown that iontophoretic 

application of the putative inhibitors of the enzyme NOS markedly depressed visually elicited responses. 

This depression was shown to be specific, such that activity mediated via NMDA receptors, known to 

contribute heavily to visual responses (Kemp and Sillito, 1982; Hartveit and Heggelund, 1990; Heggelund 

and Hartveit, 1990; Scharfman et al., 1990; Sillito et al., 1990a, b; Kwon et al., 1991) were selectively 

depressed, whereas responses to other excitants, including ACh, were almost unaffected (Cudeiro et al., 

1994b). A direct action of nitric oxide inhibitors themselves on NMDA receptors is unlikely as it has been 

convincingly demonstrated that L-NOArg has no effect on NMDA-induced membrane currents, and does 

not affect [3H]MK- 801 binding to NMDA receptors (Dawson et al., 1991). The finding above, that the 

effects of L-NOArg and L-MeArg are reversed by coapplication of L- but not D-arginine, argues for a 

stereo-specific lifting of the block of the enzyme, a block which seems competitive in view of the dose-

response curves illustrated in Figure 3. Furthermore, the use of GABA to inhibit the firing of the dLGN 

cells argues that this action of the NOS inhibitors is not the result ofnon-specific inhibition. It has 

previously been well documented that GABA inhibits the firing of cat dLGN cells in an in vivo 

preparation similar to ours by an action reversible by co-application of bicucu1line (Si1lito and Kemp, 

1983; Vidyasagar, 1984; Pape and Eysel, 1986), suggesting a GABAA receptor-mediated 

hyperpolarization due to increased Cl- conductance (Eccles et al., 1977). We therefore suggest that this 

action of nitric oxide is the result of a specific interation with the NMDA mediated response.  

One of the most interesting facets of these data is the finding that, at any application current, L-Arg 

itself, while antagonizing the block of nitric oxide production, produces no further increase in firing, 

regardless of the level of stimulation using exogenously applied NMDA. Since application of a nitric 

oxide donor (sodium nitroprusside or SNAP) significantly enhanced responses to this excitant under 

similar circumstances, we propose that in normal function, at least in the anaesthetized cat, available NOS 

(the enzyme producing nitric oxide) is fully active, being a rate-limiting step in the control of NMDA-

mediated excitation. A1though we have no direct evidence, given the Ca2+ -dependence of NOS (Bredt 

and Snyder, 1990), it is also tempting to specu1ate that avai1ability of the active form of the enzyme, and 

hence the leve1 of nitric oxide, is in fact modu1ated by activity levels of the parabrachial input, with 

increased spiking activity resu1ting in increased intracellular leve1s of Ca2+ within terminals. Such a 

mechanism is in contrast to many of the previously held views regarding the functional ro1e of nitric 

oxide. In the current literature, two main routes of activity have been proposed for nitric oxide within the 

CNS. Firstly, nitric oxide may be produced in postsynaptic structures in response to incoming excitatory 

inputs, probably mediated by excitatory amino acids. Such postsynaptic production leads to rapid 

diffusion to nearby structures and emphasis has been p1aced on a presynaptic locus of action, resulting in 

modulation of subsequent transmitter release. This is the route favoured for the induction of 

hippocampal1ong term potentiation by NO (Bohme et al., 1991; O'Dell et al., 1991; Schuman and 

Madison, 1991; Haley et al., 1992; Izumi et al., 1992). Similar mechanisms have been proposed for 

induction of cerebellar long-term depression (Ito and Karachot, 1990; Shibuki and Okada, 1991). It is 

c1ear from the known anatomical location of NOS within the dLGN that such an action is unlikely, at 

least in the form suggested. A second model of nitric oxide function, in the main based upon work in the 

peripheral nervous system, has suggested a more traditional role for nitric oxide, as a neurotransmitter 

released from peripheral nerves innervating such structures as blood vessels and smooth muscle (Bu1t et 

al., 1990; Desai et al., 1991; see a1so Moncada et al., 1991). Such a mode1 is more 1ike1y in the case 

ofthe dLGN, given the exclusive1y presynaptic location of NOS (Bickford et al., 1993). In anima1s 

largely deprived of afferent input, NOS inhibitors were much less effective, indicating remova1 of 

functiona1 NOS by transection of the brainstem cholinergic input. The effectiveness of nitroprusside in 

markedly boosting responses to NMDA in these animals suggests that the action of nitric oxide is 

postsynaptic. Furthermore, while transection of the brainstem removed normal NOS activity, it a1so 

rendered NMDA application less effective, suggesting the requirement of NOS activity for full expression 

of NMDA-mediated excitation. Further work is in hand to examine this result in more detail.  

Our findings initial1y seem puzzling since nitric oxide produces an effect opposite to that which has 

been reported by several groups working with isolated cel1s, i.e. that nitric oxide directly inhibits NMDA 

channels (Manzoni et al., 1992; Lei et al., 1992). This inhibitory action may be explained by observations 

that nitric oxide can nitrosylate the NMDA receptor, thus blocking glutamate neurotransrnission and as a 

result producing neuroprotection (Lei et al., 1992; Lipton et al., 1993). Even using methods which do not 

allow us to interpret our results at the receptor level, it seems clear that nitric oxide facilitates excitation 

evoked by NMDA, not the opposite. How can this discrepancy be exp1ained? One possib1e explanation 

is that nitric oxide can exist in distinct oxidation-reduction states which have different biological actions 

(Lipton et al., 1993). Thus, reaction of NO· (the reduced form) with superoxide can lead to neurotoxicity 



through the formation of peroxynitrite, whereas nitric oxide alone does not. On the other hand, reaction of 

NO+ (the oxidized form) with thiol groups on the NMDA receptor can lead to neuroprotection by 

inhibiting Ca2+ influx (Lipton et al., 1993; Lipton and Stamler, 1994). Thus a nitric oxide donor, e.g. 

nitroprusside, may have either neuroprotective or neurotoxic effects depending on the local redox milieu 

of the biological system (Lipton et al., 1993; Lipton and Stamler, 1994). However, this problem is much 

more complicated than was first thought, as it has been recently shown using slices of rat cerebellum and 

hippocampus that nitric oxide mediates neither acute glutamate neurotoxicity nor neuroprotection 

(Garthwaite and Garthwaite, 1994). It is clear that our in vivo paradigm differs greatly from those used in 

the studies related to above and this may, at least in part, contribute to the differences in our data. Other 

studies, more closely related to our own in vivo work, offer further insight. Do et al. (1994) have 

described release of arginine in the ventrobasal thalamus of adult rats in vivo following physiological 

stimulation of sensory afferents. While such release alone should not augment the production of nitric 

oxide, as judged by the action of L-Arg we have outlined above, if coupled with a Ca2+ -mediated enzyme 

activation it would markedly increase nitric oxide production. It remains possible that nitric oxide has 

multiple functions within sensory thalamus. Pape and Mager (1992), in the cat LGN in vitro, found that 

release of nitric oxide on thalamocortical neurons had a direct postsynaptic effect which caused 

depolarization from the membrane resting potential associated with a decrease in input resistance, but 

which appeared only at membrane potentials negative to -65 mV. These small depolarizations appeared to 

act via the cGMP secondary messenger system, and be related to control of oscillatory firing patterns. 

This cGMP-mediated action of nitric oxide may be invo1ved in the control of different patterns of 

electrogenic activity during various states of the sleep/wake cycle (Pape and Mager, 1992). However, we 

have previously shown that the effects of NOS blockade outlined above do not operate via control of the 

cGMP cascade, since the soluble cGMP analogue 8-bromo-cGMP [the compound used by Pape and 

Mager (1992) did not affect NMDA-mediated excitation (Cudeiro et al., 1994b) or, as we have now 

shown above, mimic the effect of sodium nitroprusside or SNAP.  

In summary, the most parsimonious view of our data suggests that within the cat dLGN, where NOS 

is located only within the terminals of parabrachial input (Bickford et al., 1993), one action of NO is to 

enhance or permit full expression of NMDA-mediated activity. At the level of the dLGN there are three 

possible sites for the nitric oxide action: cells within the nucleus, presynaptic terminals impinging on 

these cells, or both. Within the cerebral cortex it has been suggested that nitric oxide affects 

neurotransmitter release subsequent to NMDA receptor activation, in a study confirming a facilitatory 

action of nitric oxide on NMDA function, at this level enhancing presynaptic NMDA control of 

transmitter release (Montague et al., 1994). Direct effects on the regulation of neurotransmitter release 

have been reported from a number of brain areas, including the striatum (Black et al., 1994), the 

hippocampus (Lonart et al., 1992) and the medial preoptic area (Lorrain and Hull, 1993). However, our 

data using deafferented animals clearly suggest a straightforward postsynaptic action of nitric oxide, as 

seen from the action of sodium nitroprusside. We have illustrated this diagrammatically in Figure 7. 

Clearly, the highly diffusible gas nitric oxide may act in the proximity of the synaptic area of the 

parabrachial terminals, diffusing to act on retinogeniculate or other synapses utilizing NMDA receptors, 

perhaps also on neighbouring cells. Thus, release of nitric oxide may facilitate visual transmission in the 

tha1amus affecting simultaneously the functional activity of a neurona1 population in an extended 

volume of tissue. It has been predicted from a theoretica1 model that the sphere of influence of a single 

point source of nitric oxide has a diameter of ~200 µm, corresponding to a volume of brain enclosing 2 

000 000 synapses (Wood and Garthwaite, 1994). This system of control must be of a more global nature 

than normal synaptic transmission, but may act in concert with the more discrete spiking activity of the 

cholinergic input. The potency of this mechanism can clearly be seen from the extremely effective 

reduction of visual responses during blockade of NOS. Thus, in conclusion, we suggest that this pathway 

is of critical importance to the normal transfer of visual information from the retina through the dLGN to 

the cortex, utilizing nitric oxide to control this 'gateway' for vision.  
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Abbreviations 

ACh acetylcholine 

EEG electroencephalograrn 

ECG electrocardiograrn 

cGMP cyclic guanosine-3',5'-mono-phosphate 



CNS central nervous system 

dLGN dorsallateral geniculate nucleus 

GABA Ƴ-aminobutyric acid 

D-Arg D-arginine 

L-Arg L-arginine 

L-MeArg NG-methyl-L-arginine 

L-NOArg NG-nitro-L-arginine 

NMDA N-methyl-D-aspartate 

NOS nitric oxide synthase 

PSTH peristimulus time histograrn 

SNAP S-nitroso-N-acetylpenicillamine 
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