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Does the pulvinar-LP complex contribute to motor programming?  

J. Cudeiro, E González, R. Pérez, J.M. Alonso and C. Acuña  

Abstract 

Extracellular unit recording studies in the pulvinar lateral posterior complex (Pui-LP) of behaving monkeys have 

shown a response property not previously reported. In monkeys performing aimed arm reaching movements towards 

frontally located targets some cells showed a change in activity beginning 495 ± 84 ms before the onset of the 

reaching movement. This change in frequency precedes that observed in primary motor and parietal posterior cortex 

for reaching movements. These findings seem to indicate the involvement of the Pul-LP in motor functions and 

suggest its possible contribution to motor programming.  
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In the past few years morphological and physio- logical techniques have been used to understand the 

role of the pulvinar lateral posterior complex (Pul- LP). Although it forms the largest mass in the primate 

thalamus, its function is not yet clear. Pul-LP activity has been related to a number of functions such as 

vision, visuomotor, motor, auditive and attentive functions 1-3,7-9,22,24,25,28.  

The simultaneous phylogenetic development of the association neocortical areas and the Pul-LP 5,14 

and their reciprocal anatomical connections 15 suggest a close functional relationship and it is reasonable 

to assume that the Pul-LP may play some role in higher level integrative associative functions 1,21,23.  

Recent studies in our laboratory have focused on the properties of reaching neurons previously 

described in the Pul-LP 1,2. In the course of these studies we have found that some PuI-LP reaching cells 

increased their firing rate well before the earliest change reported for primary motor (MI) 10,11 and 

posterior parietal cortex (area 5) 16 reaching cells. In what follows a description of these cells is presented.  

The experiments were carried out in 4 behaving Macaca nemestrina monkeys. A detailed description 

of our experimental and data analysis procedures have been published elsewhere 2. Briefly, single unit 

activity was recorded from the Pul-LP by means of Pt-Ir glass-coated metal microelectrodes advanced 

through the intact dura. Monkeys were trained to perform arm reaching movements directed to 4 spatially 

separated targets situated on a frontal panel (Fig. 1). A trial began when the monkey pressed a lever key 

situated at its side; this lever turned on 1 of 4 LEDs in a random fashion. After a short random period the 

LED dimmed and the monkey had to release the key and press with its finger tips a switch below it. An 

attentive visual fixation of the LED was required in order to detect the dimming. The EOG was 

continuously monitored and eye movements were not allowed during the fixation period of the task. 

Recording of unitary extracellular activity was made while the animal was performing the task. 

Additionally, qualitative explorations were made; muscle palpation, brushing the skin, passive limb 

movements, and presentation of small pieces of food which the monkey had to reach for. At the end of the 

experiments the animals were sacrificed with a pentobarbital overdose, and the brains processed for the 

reconstruction of the penetrations.  

The activity of 766 cells were recorded in 109 penetrations (unpublished data, ref. 3). Six cells out of 

these 766 increased their firing rate well before the beginning of the reaching movement, i.e. 495 ± 84 ms 

before the monkey released the key. Fig. 1 shows an example of such cells. These neurons, located in the 

lateral posterior (n = 2) and oral pulvinar (n = 4), have the following additional characteristics: (1) they 

significantly increase their firing rate during reaching movements (P < 0.05, Student's t and Duncan tests) 

but the increase is independent of the starting point, amplitude or direction of the movement: the response 

is related only to the act of reaching itself; (2) they are not driven by passive stimulation of the limb; and 

(3) they show dependence on states of attention or motivation of the animal (a general characteristic of 

Pul-LP cells). The activation shown by these cells seems to be related to the intention to execute a 

reaching movement towards a previously established target. The cells were not driven by neither 

spontaneous nor passive movements, but they significantly changed their activity with intentional 

movements. Qualitatively, we were able to observe that similar responses were elicited when the monkey 
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projected its arm towards small pieces of food or objects that strongly attracted its attention. This 

neuronal population would be activated upon convergence of several sensory and limbic inputs, whereas 

the sensory inputs alone are irrelevant. Connections between the Pul-LP and several sensory 9,27 and 

limbic systems 4,20 and primary motor cortex m have been reported. These cell activity changes cannot be 

related to eye movements because they were not allowed during the fixation period of the task. Visual 

fixation cannot be involved in their responses either, because in those trials with a long visual fixation 

period and no hand projection there was no demonstrated effect on their discharge. On the other hand, cell 

activity changes do not seem to signal the eye position within the orbital cavity because no differences 

were found when the animal performed the task on each of the 4 different targets on the frontal panel.  

 
 

 

Fig. 1. Example of a cell recorded from the oral pulvinar. The 4 histograms show the cell discharge for 4 directions of reaching 

movements (towards each 1 of the 4 switches; about 5 trials each). The 2 lines under the spike histograms show the LED dimming 

(left) and the moment the monkey presses the panel switch (right). Arrows signal key releasing. The central inset shows the monkey 

while performing the task. There is no significant difference among the 4 spike histograms and the discharge starts in all instances 

well before the beginning of the reaching movement (key up).  

Georgopoulos et al. 10,11 found that the MI earliest change in activity takes place 280 ms before the 

beginning of the reaching movement. Kalaska et a1.16, using a similar experimental paradigm, showed 

that the onset of activity in the posterior parietal cortex (area 5) was delayed in relation to MI. In one 

monkey we made recordings in the parietal area 5 while performing the task and the results matched those 

of Kalaska et a1.16 (unpublished results, ref. 3), thus proving the validity of the task to establish 

comparisons. After comparing our Pul-LP results with those from Georgopoulos et al. 10,11 we found that 

6 cells, the object of this report, preceded the ones in MI in their activation. This early Pul-LP activity 

may provide information to MI about an immediate movement before activity in MI starts.  

The typical behavior of these cells, i.e. no relation to the metrics of the movement and early 

activation, suggests that they may inform MI about the immediate execution of an intentional movement 

independently of its metrics. Cortical structures related to the programming of motor acts have been 

described 6,12,13,18,26, but no subcortical structures have previously been associated with motor 

programming in a similar way. In the supplementary motor area (SMA) and in area 6, cells that change 

their activity during preparation for specific movements have been described 12. The cells involved in 

motor programming in SMA are less dependent on visual or other external cues than are neurons in area 6 

(ref. 6). The changes in activity of some of these cells during the preparatory period are dearly related to 

the direction of arm movements required to reach for a visible target 12. This dependency of cell activity 

on the direction of the movement establishes a difference with the Pul-LP cells described here, which are 

independent of the metrics of the movement.  

The fact that the neocortex and the Pul-LP have developed phylogenetically along with the animal's 

ability to perform complex aimed movements and higher level integrative functions, the similarity of 

cellular activity patterns between SMA and premotor cortex, and our data, suggest that the Pul-LP 



complex is a subcortical structure which may be related to the programming of intentional movements. 

The described anatomical connections be- tween those cortical areas and the Pul-LP 15,17 support the idea 

that both structures may be closely related in relation to the role they play in the programming of aimed 

movements towards reachable objects.  
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