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Abstract. A new synchrony index for neural activity is defined in this paper.

The method is able to measure synchrony dynamics in low firing rate scenarios.

It is based on the computation of the time intervals between nearest spikes of
two given spike trains. Generalized additive models are proposed for the syn-

chrony profiles obtained by this method. Two hypothesis tests are proposed

to assess for differences in the level of synchronization in a real data example.
Bootstrap methods are used to calibrate the distribution of the tests. Also, the

expected synchrony due to chance is computed analytically and by simulation

to assess for actual synchronization.

1. Introduction. Neurons carry information through the nervous system by means
of Action Potentials (AP), also called spikes. Action Potentials are electrical pulses
of similar amplitude which last approximately for 1 ms. Spike trains are sequences
of such AP. Current models of brain processing indicate that neuronal information
is mostly coded in the time course of AP, i.e., the firing rates, and in the temporal
associations between spike trains of different neurons. Temporal correlation and
synchrony are therefore key features to understand neuronal coding.

Depending on the state of the brain, the firing rate may change considerably.
Usual studies deal with neuronal data with high activity, as the individuals are
performing tasks. But, high firing rates are not always the case. For example,
during slow-sleep, neurons present a low firing rate, usually grouped in bursts with
a frequency of 1-5 Hz (the so called delta rhythm). On the contrary, in the awake
state, or while the individual is performing a task, firing rates increase and the AP
responses turn to a characteristic tonic mode.

Synchrony in neuronal activity corresponds to the joint activity of neurons, that
is, neurons firing close together in time. Electrophysiological studies commonly use
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synchrony measures to reveal computing properties among neurons under different
conditions, such as different kinds of stimuli. In this work we present a synchrony
measure that can be easily adapted to different firing rate scenarios. The objective
of the experimental work from which we take the data is to study synchrony dynam-
ics under low firing rates and to distinguish differences in synchrony profiles. Hence,
we show the performance of our method measuring synchrony in real data, recorded
in a repose state of spontaneous oscillatory activity which is briefly disrupted by
the experimental activation of two neural pathways. We discuss tests to determine
(1) whether there is a significant change in synchrony due to electrophysiological
stimulation and (2) whether the synchrony observed under the effect of the stim-
ulation differs between experimental conditions. Also, we compare the observed
amount of synchrony with the amount of synchrony expected due to chance when
there is firing activity, to assess whether the observed synchrony is relevant. On the
other hand, there are experimental preparations, such as some electrophysiological
recordings “in vivo”, in which getting many recordings of one group of neurons may
be very difficult and hard to attain. The proposed method can be used to measure
synchrony in both high and low firing rates, and with small numbers of trials (ex-
perimental repetitions). We also examine the performance of the method by means
of a simulation study.

There have been proposed numerous methods devoted to measure synchrony,
many of them are based on cross-correlation analysis. Most cross-correlation in-
dexes can be applied to neuronal spontaneous activity (typically with a low firing
rate), provided that the recording period is long enough to get a minimum amount
of spikes, but those tools are not useful to calculate instantaneous synchronization
dynamics, because of the characteristic low amount of spontaneous spike activ-
ity. For example, the joint peristimulus time histogram (JPSTH) [6] displays the
dynamics of correlation between neurons. Its normalized version is the Pearson
correlation coefficient (computed across trials) of the firing counts of both neurons
at two different time bins. Other methods commonly used to capture synchrony are
those based on ‘unitary events’ [7, 8]. These methods rely on binned trains, where,
for each, bin activity is denoted by a 1 if a spike occurs in the interval or 0 other-
wise. Unitary events refer to the occurrence of coincident spikes, or 1-1 matches,
in the neurons under study. The unitary events analysis estimates the probabilities
of joint-firing under the hypothesis of independence of the two spike trains. These
probabilities are used to compute the expected numbers of joint spikes. The test
for presence of synchrony is defined in terms of the difference between the expected
frequencies and the observed ones. Faes and co-authors, in [5], propose a synchrony
index, the Conditional Synchrony Measure, which is calculated, also, with binned
trains. It is a flexible method, based on estimating the probability of joint-firing
given that one of the neurons fired. However, it is not useful in low firing rate
scenarios. Another method is presented by Quiroga et al. in [13]. This method is
based on relative timings of events in time series. For general spike train analysis
methods and state-of-the-art, including correlation among neurons, see [3] and [10].

2. Data. We illustrate the performance of our method with a real-data example.
These data corresponds to a low firing rate scenario. In the experiments, simulta-
neous neuronal spike activity in the primary visual cortex of anesthetized cats was
recorded. The anesthetized state attained in our experiments is very similar to the
slow-sleep state and therefore neurons present an oscillatory low firing rate. The
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neuronal pattern of activity during sleep mode was artificially disrupted by the use
of micro-electrical stimulation in two different regions of the brain: brainstem (bs)
and basal forebrain (bf ). These two stimulated areas are known to modulate the
sleep-wake cycle and are essential in the ‘waking up’ process affecting the whole
brain, inducing a transition to a neuronal tonic state [1, 11, 14, 15]). Three tri-
als were recorded under each condition. The aim of the experimental study is to
investigate the impact of bs and bf stimulation on the synchronization of neurons
in the primary visual cortex. We will use the simultaneous activity recorded from
two neurons under the just described experimental setting to illustrate our method.
The length of the recordings considered in this study is 150 seconds, the stimulus
onset occurring at 50 s. Although, the actual stimulation lasts for 2 seconds, its
activating effects last longer, for up to 20 s. Figure 1 shows the firing rates of two
trials (one under each condition) of the two neurons that will be used as an exam-
ple. The firing rates, λ(t) were estimated using nonparametric kernel methods. The

kernel estimator, λ̂(t), has the form: λ̂(t) = 1
h

∑n
i=1K( t−tih ), where K is a kernel

function and h is the bandwidth that controls the amount of smoothing [16]. For
illustrative purposes, we used a Gaussian kernel function with an ad hoc choice of
the bandwidth. A study on the effective choice of the bandwidth can be found in
[12]. To correct for boundary bias we have used a mirror method, i.e., the data
close to the boundaries were repeated in reverse order after the endpoint, prior to
applying the smoothing procedure. In the top panel we can observe the firing rates
of the two chosen neurons during a trial in which bs was stimulated (at 50 s). The
bottom panel shows another trial in which bf was stimulated. In these four cases
we can observe rates not higher than 3 Hz.

Figure 2 shows the JPSTH computed across the three trials from the bs stimu-
lation, using two different choices of bin widths (1 ms: top panel; 100 ms: middle
panel) and the synchrony measure proposed in this paper (bottom panel), which
will be presented in Section 3. In the JPSTH analysis, the most commonly used
bin width is 1 ms. If this is the case, there can only be one spike per bin because of
the refractory period of neurons. Nevertheless, wider bins can be used and multiple
spikes could be reduced to one. In the present example, when 1 ms bins are used,
no information can be drawn from the JPSTH. When wider bins are used, some
features start to be seen, such as larger coincidence rate right after the stimulus.
Due to the small number of spikes and trials, information from wider time periods
should be considered. However, when the JPSTH is the tool, increasing the bin
width results in information loss, because the only important fact to compute the
JPSTH is the presence/absence of spikes. In this context, when low firing rates and
small number of trial induce to the use of larger time bins, the available information
of the number of spikes that fall in each time bin is almost certainly valuable. This
is why a method that takes into account the extra information is needed. Moreover,
we consider that results will be more conclusive with such a method and hypothesis
tests will be more capable of detecting differences in the association profiles.

3. CNSI based synchrony measure, CSM. In neurophysiological studies, two
(or more) neurons are considered to be synchronized if there exists a close relation-
ship between the time-course of their spike activity. Because of the broad range
of neuronal activation, it does not exist a unique measure of synchronization, and
experimental neurophysiologist adjust the acceptable conditions depending on the
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Figure 1. Firing rates of two trials of two simultaneously recorded
neurons. A trial in which the brainstem was stimulated (top panel)
and a trial in which the basal forebrain was stimulated (bottom
panel). Stimulation time is represented by the vertical dotted line
(50 s). The spike times are depicted under each plot. The top row
of spike times corresponds to the solid-line firing rate function and
the bottom one to the dashed-line function

experimental conditions and the hypothesis under study. For example, the synchro-
nization required to demonstrate a direct connection between two cells may require
a time-lag between spikes of no more than 1 ms; but, on the other hand, during sleep
oscillations, neurons are considered to be highly synchronized even with time-lags
of tens of ms. During spontaneous activity, the overall activity in the brain, as can
be observed in an EEG, presents very highly synchronous activity with large am-
plitude and low frequency waves, but, on the other hand, firing rates of individual
neurons in this context are very low. Some statistical tools to measure synchrony
fail in such a context because they are based on 1-1 matches, [5, 7, 8]. This is,
data is discretized into (usually) 1 ms bins, where the value at the i-th bin will be
1 if there is a spike and 0 otherwise. So, there is a 1-1 match between two spike
trains at the i-th bin if there are spikes at that bin from both spike trains. In the
context of low firing rates, the definition of synchrony should be relaxed by using
wider windows than 1 ms.

Let X = {Xi}J1i=1 and Y = {Yj}J2j=1 be the spike times of two simultaneously

recorded spike trains in the time interval [0, T ) and let {NX(t), t ∈ [0, T )} and
{NY (t), t ∈ [0, T )} be the counting processes associated to them. This means,
NX(t) = #{Xi < t, i = 1, 2, . . . J1} and similarly for NY (t). Also, let n = J1 + J2

be the total amount of spikes in the two neurons.
Let us define the Cross Nearest-Spike Interval (CNSI) as the time that elapses

between every spike of one neuron and the closest spike of the other neuron, not
necessarily forward. Formally, let U−1 and U1 be the waiting times from one spike
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Figure 2. Joint peristimulus time histogram computed across
three trials corresponding to the bs stimulus for different bin
widths: 1 ms (top panel) and 100 ms (middle panel). CSM esti-
mated with the same three trials (bottom panel)

of one neuron to the previous or next spike of the other neuron respectively. Then,
Ũ = min{U−1, U1} is the CNSI variable.

As already discussed, when the firing rate of spike trains is very low, we need
a broader definition of synchrony because exact firing matches hardly ever occur
in 1 ms windows, not even in 10 ms windows. Given a pair of spike trains, we
define synchrony as the event of two AP (one of each neuron) occurring within
a time window of width δ. Note that δ is an intrinsic parameter to the measure
and, therefore, needs to be chosen according to the biological problem under study.
Nevertheless, issues about the selection of δ are discussed in simulated examples in
Section 9. Let nδ be the number of CNSIs smaller than or equal to δ and define the
following measure, which will be called CNSI-Synchrony Measure (CSM) and will
be denoted pδ:

pδ =
nδ
n

This is a global measure of synchrony. It is symmetric and does not pick up
causality. In terms of the counting processes, nδ can be expressed as:

nδ =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}+

J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}

where I(A) is the indicator function of the event A.
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In order to define CSM as a function of time, pδ(t), to take into account the non
stationarity of the processes we define nδ(t) as follows:

nδ(t) =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1)}I{Xj = t}+

+

J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}I{Yj = t}

In practice, Xj = t and Yj = t are events of probability zero but, even when
working with binned trains, observing a spike in a given bin is very difficult when
firing rates are low. So, in order to solve this problem, we will work with the
information provided by a neighborhood of t. Let Vt = (t− v, t+ v] be a symmetric
time window of length 2v around t, with v chosen by the researcher depending on
the context. For higher firing rates, smaller windows could be used. Therefore,

nδ(t, v) =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}+

+

J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}I{Yj ∈ (t− v, t+ v]}.

(1)

and

n(t, v) =

J1∑
j=1

I{Xj ∈ (t− v, t+ v]}+

J2∑
j=1

I{Yj ∈ (t− v, t+ v]}

For each t, we compute the CSM in the time window Vt to obtain pδ(t). Con-
sequently, to measure synchrony at a time point t0, the probabilities P (NY (Xj +
δ)−NY (Xj− δ) ≥ 1) and P (NX(Yj + δ)−NX(Yj− δ) ≥ 1) are considered constant
within Vt0 and estimated from information in the whole interval. In this way, the
local low firing rate is outweighed by neighborhood activity.

Population-wise talking, pδ(t) is an estimator of the probability, πδ(t), of (given
two trains) finding two spikes (one of each neuron) closer than the quantity δ, given
that occurred one spike at time t. In general, πδ can be considered as the proba-
bility of success of a certain Bernoulli trial, where the trial corresponds with one
observation of the U with success probability that U is smaller than δ. Therefore,
nδ becomes the observation of a Binomial variable, ηδ, that counts the number
of successes of the Bernoulli trials, ηδ ∼ Binomial(N, πδ) and consequently, pδ
is an estimator of the probability πδ, pδ = π̂δ. Finally, the same argument can
be used at each time window Vt to obtain pδ(t) as the estimator of πδ(t) where
ηδ(t) ∼ Binomial(N(t), πδ(t)). In the rest of the paper we will drop the subscript δ
except for the quantity nδ, because there is no possibility of confusion as everything
depends on this quantity in the same way.

4. Model formulation. In this Section we present a model for the CSM. As al-
ready discussed, at each time window, the proposed measure is an estimator of
the probability of a Binomial process where success is the event of observing Ũ
smaller than δ and the total number of CNSIs is the number of Bernoulli trials,
η(t) ∼ Binomial(n(t), π(t)). We propose to use Binomial Generalized Additive
Models (GAM) with a logit link to explain the proportion of ‘small’ CNSIs in time.
The convenience of using GAMs lies in the flexibility of non-parametric functions
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as it would be not reasonable to choose parametric response function. Also, the
additive terms of the model allows for an easy interpretation.

In general GAMs can be represented as follows:

g(µ) = S∗iα+ f1(x1) + f2(x2i) + . . .+ fm(xm)

where µ = E(Y ) and Y is a random variable belonging to the Exponential family
of distributions, g is called a link function, S∗i is a row of the model matrix for the
parametric component of the model, α is the corresponding parameter vector and
the fj are smooth functions of the covariates xj [9, 17].

For our problem, we propose the use of binomial GAMs. In this particular case
the canonical link function is used, that is, the logit: logit(µ) = µ

1−µ . Also, it is

important to recall that we have several experimental conditions (stimuli) which
are assumed to have different probabilities of joint firing. The model we propose is
a mean curve plus difference one:

logit(πj(t)) = β0 +

J−1∑
l=1

βlI{j = l}+ f0(t) +

J−1∑
l=1

fl(t)I{j = l}+ εt

where πj(t) stands for the success probability in ηj(t) ∼ Binomial(Nj(t), πj(t))
under the j-th experimental condition. The parametric part is reduced only to
an intercept and f0(t) is a common curve for all the conditions, while fj(t) re-
presents the difference from the curve f0(t) to the one corresponding to condition
j = 1, . . . , J − 1. Finally, the εt are the errors of the model which will be discussed
later on.

In practice, we only have two conditions, J = 2, and we have three repetitions
for each condition. Let nδji(t) be the observed nδ in the time window Vt under the
i-th trial of the j-th condition and nji(t) the total amount of CNSIs in Vt, j = 1, 2

and i = 1, 2, 3, and therefore pji(t) =
nδji(t)
nji(t)

. So, our Model 1 is:

logit(pji(t)) = β0 + β1I{j = 1}+ f0(t) + f1(t)I{j = 1}, (2)

where, after obtaining the estimates, β̂0, β̂1, f̂0 and f̂1 we get the estimate π̂j(t) for
each condition.

We are interested in the time evolution of synchrony and therefore in the differen-
ces that could occur in certain periods of time. Nonetheless, a first overall study
of the synchrony profile is cautious. For this matter, we will fit a simple model, a
single curve model (Model 2), and compare it with Model 1:

logit(pji(t)) = β0 + f0(t). (3)

Model 2 in (3) corresponds to the hypothesis of no differences between experi-
mental conditions over the whole time period. It comprises a single function for
both conditions, while Model 1 in (2) allows the smooth functions to differ. With
the present approach, in a two experimental conditions model, a possible difference
between the two conditions is easier to observe because, if there are no differences

between conditions then f̂1(t) will be essentially flat.
To represent the smooth functions we have used penalized regression splines, with

cubic splines basis. Smoothing parameters are chosen by the Generalized Cross
Validation (GCV) criterion and the number of knots using the Akaike Information
Criterion (AIC) value. The mgcv R package was used for this aim.

An important issue to note is that no dependency between time points is taken
into account with these proposed models. Nevertheless, we are aware of the high
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dependency that exists between consecutive time points. The dependence will be
taken into consideration when building confidence bands using the estimators and
when developing the hypothesis tests. For this aim, we consider that the dependence
is gathered in the errors and we propose an autoregressive model of order one, AR(1)
for them:

εt = γεt−1 + at with at ∼ N(0, σ2).

We can estimate γ by ordinary least squares. The estimated errors are ε̂ji(t) =
pji(t)− π̂j(t) and let γ̂ be the minimizer of the sum of squares:

2∑
j=1

3∑
i=1

T∑
t=2

(ε̂ji(t)− γ̂ε̂ji(t− 1))2,

which results in:

γ̂ =

∑2
j=1

∑3
i=1

∑T
t=2 ε̂ji(t)ε̂ji(t− 1)∑2

j=1

∑3
i=1

∑T
t=2 ε̂

2
ji(t− 1)

and also we can estimate σ2 by σ̂2, the variance of the values âji(t) = ε̂ji(t) −
γ̂ε̂ji(t− 1).

5. Hypothesis testing. There are relevant questions about the synchrony be-
tween neurons to be asked. In most experiments, the different conditions refer to
the application of a stimulus, the beginning of a task, or other kinds of event that
have a starting point in time, which does not necessarily correspond to the begin-
ning of the recording. If this is the case, it is of interest to investigate if synchrony
is altered by the apparition of the aforementioned event. A second question to be
asked is the possible differential effect of each condition on synchrony. Therefore,
considering two experimental conditions, 1 and 2, the two main null hypotheses to
test are

- H1
0 : π1(t) = πpre for every t after the condition onset. Here, πpre repre-

sents the baseline synchrony before the stimulus. A similar hypothesis can be
formulated for condition 2.

- H2
0 : π1(t) = π2(t). With this test we aim to detect differences in the syn-

chrony profile induced by different experimental conditions.

To test these hypotheses we will use the CSM as the test statistic and bootstrap
critical bands to find out whether there are significant differences. The bootstrap
procedure will be discussed in Section 7.

6. Synchrony due to firing rate. Another important aspect to investigate is
whether the observed synchrony is different from the one that would be expected
just by chance. Even in the case of two independent spike trains, CSM would not
be zero, and its value could be large due to random close firing. It seems reasonable
that this synchrony obtained by chance will increase with increasing firing rates.
In the way the CSM is built, it could be affected by the firing rate and by its
changes in time. To study this aspect we will compare the observed CSM with the
one expected only by chance, due to the firing rate. For this purpose we need to
calculate what CSM values are expected for the observed activity if the two trains
were independent. These values will be approximated in this section in two different
ways: 1) approximating numerically the theoretical expected synchrony by chance
and 2) by simulating independent trains and modeling their synchrony.
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Let us start with the theoretical expression for the CSM. Let Ai(t, ν) = {s ∈
(t− ν, t+ ν]/Ni(s) > N i(s)]} where N i(s) = lim

τ→s−
Ni(τ) and i ∈ {X,Y }. Observe

that Ni(t + ν)−Ni(t− ν) ≥ 1 if and only if Ai(t, ν) 6= ∅. Therefore, we can think

of the quantity
∑J1
j=1 I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]} in (1)

as an estimator of the expected value of:

#{s ∈ AX(t, v)/AY (s, δ) 6= ∅} =
∑

s∈AX(t,v)

I{AY (s, δ) 6= ∅}.

Taking expectations and using the property E(A) = E(E(A|B)) we have:

E

 ∑
s∈AX(t,v)

I{AY (s, δ) 6= ∅}

 = E

E
 ∑
s∈AX(t,v)

I{AY (s, δ) 6= ∅}

∣∣∣∣∣NX
 =

= E

 ∑
s∈AX(t,v)

E

(
I{AY (s, δ) 6= ∅}

∣∣∣∣∣NX
) ,

which, under the assumption of independence, becomes:

E

 ∑
s∈AX(t,v)

E (I{AY (s, δ) 6= ∅})

 = E

 ∑
s∈AX(t,v)

ρδY (s)

 ,

where ρδY (s) = E(I{AY (t, δ) 6= ∅}) which is the expected value for the indicator
that there is a ‘jump’ in process NY in (s−δ, s+δ]. As we are using the information
of the whole interval (t − v, t + v] to compute nδ, we can assume the process is
stationary in this interval, so, ρδY (s) ≡ ρδY constant in (t − v, t + v]. If this is
not the case, but v is sufficiently small, then, ρδY (s) can be approximated by a
constant value, for example, the value of ρδY (s) at the middle point of the interval:
ρδY (s) ≈ ρδY (t).

From the previous paragraph we have,

E

 ∑
s∈AX(t,v)

I{AY (s, δ) 6= ∅}

 ≈ ρδY (t)E

 ∑
s∈AX(t,v) 6=∅

1

 = ρδY (t)rX(t, v),

where rX(t, v) = E(NX(t+ v)−NX(t− v)).
The previous discussion also holds for the quantity

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}

in (1), so finally we get that, under independence,

E(nδ) ≈ ρδY rX(t, v) + ρδXrY (t, v)

where, ρδX = E(I{AX(t, δ) 6= ∅}) and rY (t, v) = E(NY (t+ v)−NY (t− v)).
Finally, we estimate ρδi, i ∈ {X,Y } by,

ρ̂δi =
1

2v

∫ t+v

t−v
I{Ni(s+ δ)−Ni(s− δ) ≥ 1}ds

and ri(t, v), i ∈ {X,Y } by,

r̂i(t, v) = Ni(t+ v)−Ni(t− v).
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On the other hand, we have that the total number of CNSIs, n, in the time
window (t− v, t+ v] is n = rX(t, v) + rY (t, v) and therefore,

nδ(t, v)

n(t, v)
≈ ρδY rX(t, v) + ρδXrY (t, v)

rX(t, v) + rY (t, v)
(4)

is an approximation to the CSM under the independence hypothesis.
Note that the expected random synchrony under independence, given the firing

rates of the two spike trains, can also be approximated using simulation. For this,
we assume there exists an underlying function, g, of synchrony, dependent on the
firing rates of the two spike trains, r1 and r2, i.e.,

g(r1, r2) = E (synchrony between trains Xand Y under independence|r1, r2) .

Given the instant probability of firing, p1 and p2, we simulate independent spike
trains with the corresponding firing rates and compute the CSM for the simulated
trains. This procedure is repeated for every pair (p1, p2) in a two dimensional grid,
P , spanning from 1 Hz to 100 Hz. We take steps of size 1 Hz for firing rates between
every 2 Hz from 12 to 60 and every 5 Hz from 65 to 100 Hz. This function is then
smoothed with a two-dimensional spline, and denoted by g(p1, p2).

To simulate a spike train with a global firing rate of p1, 500 s time intervals
are divided into 1 ms bins. In each bin, a Bernoulli trial with success probability
p1 (spiking) is drawn. Let {bi}Mi=1 be the indices of the bins in which spikes are
randomly assigned. Then, the spike times (in ms) for the simulated train are X∗j =
0.001bj j = 1, . . . ,M . The same procedure is used to simulate trains with global
firing rate equal to p2. Using the two simulated spike trains with firing probabilities
p1 and p2, the CSM is calculated and an average over the 500 s is considered as the
approximation of g at (p1, p2). Notice that this simulation scheme is not independent
of δ and v and therefore it needs to be carried out for each choice of these two
parameters.

Finally, the smoothed trend is used to calculate the expected synchrony, under
the assumption of independence, for the real pair of neurons. At each time point,
the instant firing rate of each real train is estimated and those values evaluated in
g(r1, r2) to obtain the expected value.

7. Bootstrap confidence bands and testing for differences. A bootstrap pro-
cedure is carried out to build confidence bands for the predictions of the selected
model. It is also used to build critical regions for the predictors under the null
hypotheses described in Section 5, to assess for differences in synchrony. The boot-
strap procedure is now described to build confidence bands for the estimators and
later the procedure is slightly changed for hypotheses testing. The procedure for I
trials is the following:

1. Fit the penalized regression model to the response data, pji(t), and obtain
the fitted probabilities, π̂j(t), for each condition j.
2. Compute the errors for each trial i: ε̂ji(t) = pji(t)− π̂j(t), i = 1, . . . , I.
3. Estimate γ and σ2 in the AR(1) model for the errors: εj(t) = γεj(t−1)+at
(as described in Section 4).

4. Build bootstrap errors ε∗ji(t) = γ̂ε∗ji(t−1)+zt, with ε∗ji(1) = π̂j(1)− Yj
Nji(1) +

z1, Yj ∼ Binomial(N1, π̂j(1)) and zt ∼ N(0, σ̂2).
5. Compute the bootstrap data by adding the bootstrapped errors to the
fitted model: p∗ji(t) = π̂j(t) + ε∗ji(t)
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6. Fit the regression model from Step 1 to the bootstrap data to obtain the
bootstrap synchrony curve π∗j (t).
7. Repeat Steps 4–6 M times to obtain M bootstrap curves for each condition:
π∗1j (t), . . . , π∗Mj (t).

To build the confidence bands for the estimators, the only step left is to compute
the α/2 and 1 − α/2 quantiles at each time point t to obtain (1 − α)% confidence
bands at each condition j = 1, 2.

For the hypothesis tests, the procedure changes slightly mainly because the model
to be fitted has to be the one under the null hypothesis. It is worth to note that the
errors used to fit the AR model that will be used to build the bootstrap samples
are the ones obtained by fitting the general model (2). Therefore, the procedure for
I trials is the following:

To fit the AR(1) for the errors:
1. Fit the general penalized regression model (as before) to the response data,
pji(t), and obtain the fitted probabilities, π̂gj (t), for each condition j.

2. Compute the errors for each trial i: ε̂ji(t) = pji(t)− π̂gj (t), i = 1, . . . , I.

3. Estimate γ and σ2 of the AR(1) model for the errors: εj(t) = γεj(t−1)+at
(as described in Section 4).
Build the bootstrap samples under the null:
4. Fit the penalized general regression model under the null hypothesis to
the response data, pji(t), and obtain the fitted probabilities, π̂0

j (t), for each
condition j.

5. Build bootstrap errors ε∗ji(t) = γ̂ε∗ji(t−1)+zt, with ε∗ji(1) = π̂j(1)− Yj
Nji(1) +

z1, Yj ∼ Binomial(N1, π̂gj(1)) and zt ∼ N(0, σ̂2).
6. Compute the bootstrap data by adding the bootstrapped errors to the null
model: p∗ji(t) = π̂0

j (t) + ε∗ji(t).
7. Fit the regression model from Step 1 to the bootstrap data to obtain the
bootstrap synchrony curve π∗j (t).
8. Repeat Steps 5–7, M times to obtain M averaged bootstrap curves for
each condition: π∗1j (t), . . . , π∗Mj (t).

For the first hypothesis test, the model fitted in Step 4 is the one that corresponds
to the null hypothesis of constant synchrony before stimulation, the baseline model:

logit(πpre(t)) = β0

and it is fitted using only the data from the period previous to stimulation. Once
the bootstrap curves are obtained, compute the appropriate percentiles to build
either a poitwise or a uniform critical region around the baseline model for each
condition.

For the second hypothesis test we need a further step. The null hypothesis H2
0

states that π1(t) = π2(t) or, equivalently, that π1(t)−π2(t) = 0. So, in this case, we
want to build critical bands for the difference of the synchrony curves. First of all,
in Step 4, we need to fit the model which represents this hypothesis, this is Model
(3) described in Section 4. Then, we will subtract the bootstrap curves to obtain:

π∗mdif (t) = π∗m1 (t)− π∗m2 (t), m = 1, . . . ,M

After this additional step we will compute the appropriate percentiles to build
the critical region (pointwise or uniform) around zero (difference under the null
hypothesis) and observe where the estimated difference curve π̂dif (t) = π̂1(t)− π̂2(t)
falls inside that region, in case of searching pointwise testing.
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7.1. Pointwise and uniform critical regions. In order to assess whether at a
given time point the observed CSM is different from the one observed at baseline
at a level α, pointwise critical intervals can be built. To this aim, at each time
point, we can choose the (1 − α/2) and α/2 percentiles of the bootstrap values:
π∗1j (t), . . . , π∗Mj (t). These marginal critical intervals have approximately a (1 −
α) coverage probability at each time point separately. However, when considered
as a uniform critical band, they do not provide an α-critical band for the null
hypothesis: the curve is different from baseline over a whole period of time after
stimulation because of the multiple range testing problem. This problem arises from
the fact that, although at each time point the interval defined by the (1−α/2) and
α/2 percentiles include approximately the (1− α)% of the bootstrap curves, when
considered as a whole, the actual coverage will be considerably smaller. That is,
the probability that the whole CSM curve is included in the band formed by the
individual intervals is smaller than (1 − α). A posible approach would be to use a
Bonferroni correction [2] which proposes to build the marginal intervals with a new
significance level given by α/s, where s is the total number of tests to compute.
Nevertheless, this approach is known to be very conservative. To get more accurate
uniform critical bands we use an iterative procedure proposed by [4]. The method
consists on starting with the critical regions given by the (1−α) marginal intervals
and the conservative critical band given by the Bonferroni method and iterate until
finding an approximate (1 − α)% coverage critical band up to an approximating
error given by τ (for example τ = α/10). The algorithm to find this critical band,
as presented in [4], is:

1. Fix α
(0)
low = α

s and α
(0)
high = α. Fix the iteration number, k = 0.

2. Compute α
(k)
mean =

α
(k)
low+α

(k)
high

2
3. Use the bootstrap resamples to build the marginal critical intervals with

α
(k)
low, α

(k)
high and α

(k)
mean significance levels.

4. Compute the proportion of simulated curves included in each of the critical

bands: ρ
(k)
low ≥ ρ

(k)
mean ≥ ρ(k)

high. These proportions satisfy: ρlow ≥ 1−α ≥ ρ(k)
high

and ρ
(k)
low > ρ

(k)
high.

5. If ρ
(k)
mean ≥ 1−α, define α

(k+1)
low = α

(k)
mean and α

(k+1)
high = α

(k)
high. Otherwise define

α
(k+1)
low = α

(k)
low and α

(k+1)
high = α

(k)
mean.

6. Stop at step k if |ρ(k)
mean − (1− α)| < τ . Otherwise increase k by one unit and

repeat Steps 2–5.

8. Results. When the firing rate is high, or a large amount of trials are available,
both parameters v and δ can be specified small. On the other hand, if there are
only a few trials or the firing rates are very low, wider windows need to be chosen
to ensure that spikes are present in the intervals. How to choose the quantities v
and δ is a matter of discussion and the effect of these selections will be exemplified
in Section 9. We will see that the selection of v is not really relevant if working
with GAMs. For our particular example, we use the smallest values that will allow
computations of the CSM. Figure 3 shows an example carried out with the real
data. In this figure, we observe the amount of zeros (no presence of CNSIs smaller
than δ) encountered while computing the CSM on a 150 seconds trial of a real
neuron. We have repeated computations for 45 pairs (v,δ): v = 3, 4, 4.5, 5, 5.5
seconds and δ = 0.005, 0.01, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.1 seconds. Each
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line corresponds to one value of v. We see that the amount of zeros for small
windows together with small δ is large. In what remains, we will use v = 5 s and
δ = 0.05 s.
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Figure 3. Number of zeros obtained in the calculation of CSM
when using different δ (x-axis) and different v for the time windows
((t − v, t + v]): v = 3 s (black), v = 4 s (red), v = 4.5 s (green),
v = 5 s (blue) and v = 5.5 s (cyan)

In our example, the main interest of studying synchrony between neurons lies
in its time evolution. In this section we present an example in which synchrony is
aimed to be observed to find differences between experimental conditions. Neurons
are under spontaneous activity and therefore their firing rate is very low. As the
stimuli are applied in a specific time point and the rest of the recordings correspond
to spontaneous activity, our intention is to determine in what periods of time the
CSM profiles differ.

The models described in Section 4 were fitted and the results are presented here.
In this context, we have 2 experimental conditions which stand for stimulation in
bs and bf. In Table 1 the AIC values for each model can be observed and, based on
them, we can say that Model 1 is a better one. On the other hand, the intercept

for stimulus 1, β̂1, is not significant.
In Figure 4, we can observe that the curve that accounts for the difference between

experimental conditions in the GAM, f1(t), is different from zero. This means that
there are differences between the conditions and different smooth terms are needed
for each stimulus. This hypothesis is tested statistically using the bootstrap proce-
dure discussed in Section 7 and the results will be discussed shortly. Before that, in
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Table 1. AIC values for the two models

Model 1 Model 2
AIC 145134 163071.8

Figure 5 we observe the bootstrap confidence bands built for each of the estimators
using M = 500 bootstrap replicates.
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Figure 4. Smooth terms for the GAM (solid lines) for CSM with
confidence intervals (dashed lines). Mean curve for both experi-
mental conditions f0(t) (upper panel) and smooth curve that ac-
counts for the difference between experimental conditions, f1(t),
(bottom panel)
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Figure 5. CSM profile for two stimuli with bootstrap confidence
bands, averaged over three trials. bs trials are represented in black
and bf trials in red

Figure 6 shows the results for the first hypothesis test using M = 500 bootstrap
replicates. The CSM at baseline is represented as the horizontal dotted line. It is
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very clear how the CSM for both stimuli departs from this baseline value showing
a difference in synchrony before and after stimulation.
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Figure 6. CSM profile (thick solid lines) for two stimuli averaged
over three trials: bs (upper panel) and bf (bottom panel). Baseline
CSM estimated from the pre-stimuli time period (dotted lines) with
bootstrap critical bands (thin solid lines)

Figure 7 shows the results for the second hypothesis test, using M = 500 boot-
strap replicates, and although the critical band for zero (expected synchrony dif-
ference under the null hypothesis) is quite wide, we can still find a time period
where the observed difference lies outside the band, meaning that the differences in
synchrony observed between stimuli are significant.
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Figure 7. Difference of CSM profile (thick solid line) for two stim-
uli averaged over three trials and bootstrap confidence bands (thin
solid lines) for the null hypothesis of difference equal to zero (dotted
line)
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Finally, Figure 8 shows the uniform 95%-acceptance bands for a period of time
after stimulation where the hypothesis of difference is relevant. The uniform accep-
tance band was constructed, using the procedure described in Section 7.1 for each of
the hypotheses, as described in Section 5. A total of 10,000 bootstrap curves were
resampled to construct each band. The final levels used to get the approximate
95% coverage of the bootstrap curves for the baseline tests were: 0.0074 for bs and
0.0073 for bf, achieving 95.04% and 95.16% final coverage, respectively. For the
hypothesis test regarding the possible difference between the effect of the stimuli,
the final level used was 0.0075, achieving a coverage of 94.91%. In the case of bs we
can confirm that, overall, the synchrony curve after the stimulus onset is different
from baseline synchrony, although we cannot assess this for the bf stimulus. We
can also assess that the difference between synchrony curves after stimulation is
significantly different from zero.
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Figure 8. CSM profiles (solid lines) in an interval after stimu-
lation with uniform 95%-acceptance bands (dashed lines) for the
null hypotheses of no difference from baseline after bs stimulation
(upper panel) and after bf stimulation (middle panel). Also, for
the null hypothesis of no differential effect of the stimuli (bottom
panel)

Next, we show the results for the comparison of the observed synchrony to the
expected one by chance. Figures 9 and 10 show these results for the real data. The
first one shows the calculations from the analytical expression in 4 and the second
one the results of the simulations. In both cases we can observe that the expected
synchrony under independence is smaller than the observed one. There are short
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periods of time where the synchrony observed by chance gets close to the observed
one, for example in both figures for the bs stimulus right after the stimulation has
taken place. This uprise in the expected synchrony is due to the increase of the firing
rates so the real synchrony might not have increased but actually have decreased.
According to our working hypothesis we would expect the synchrony to decrease
when the stimulus is applied.
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Figure 9. CSM profile (black solid lines) for bs stimulation (up-
per panel) and bf stimulation (bottom panel) compared with the
theoretical expected synchrony (red solid lines). The moment of
stimulation is indicated with vertical dotted lines. Also, the confi-
dence bands for the CSM estimator are shown in this figure (dashed
lines)

9. Simulation study. In this section we study the performance of CSM to capture
neural synchrony on simulated data. We describe the effect of the tuning parame-
ters, v and δ, on the measure. Also, we present a simulation study to evaluate the
performance of the bootstrap test.

The data used for this aim was simulated using Poisson processes with controlled
association. To generate a pair of simultaneous spike trains with a given firing rate
λ, we first generated a master Poisson sequence of spike times with firing rate λM .
Then, the first of the two desired spike trains was constructed as follows. Given a
real number q ∈ [0, 1], for each spike time of the master process, a random number,
q̂, was drawn with uniform probability from [0, 1] and compared to q. If q̂ < q, the
spike time was inherited by the spike train. The spike times were then jittered by
adding a small amount of noise drawn from a uniform distribution in ( −1

10λ ,
1

10λ ).
The whole process was repeated to construct the second spike train. Note that the
probability of both trains inheriting the same spike is q2. Thus, the association of
the two trains is controlled by the probability q.
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Figure 10. CSM profile (black solid lines) for bs stimulation (up-
per panel) and bf stimulation (bottom panel) compared with the
simulated expected synchrony (red lines). The moment of stimu-
lation is indicated with vertical dotted lines. Also, the confidence
bands for the CSM estimator are shown in this figure (dashed lines)

The final firing rate of the generated spike trains is also of interest. The firing rate
λ is directly associated with the firing rate of the master process: λ = λMq. There-
fore, we chose λM = λ

q so that the simultaneous spike trains have approximately

the desired firing rate.

9.1. Performance of the method. Figure 11 shows the performance of CSM for
different values of q. A constant firing rate of 4 Hz was used to simulate the spike
trains and three choices of q were used. Spike activity was simulated for 300 seconds,
100 seconds for each value of q. The CSM was computed for two different choices
of δ and v. The top left panel shows the CSM of one pair of simulated data. The
effect of the change in the association parameter is very clear. In this case, we
observe that δ and v have a very differential effect on the measure. Larger values of
v give a smoother curve than smaller values of v, while the effect of δ is of another
nature. As expected, larger values of δ values increase the value of CSM, as the
proportion of CNSIs smaller than δ over the whole amount of CNSIs is larger. The
top right panel shows the CSM averaged over 200 pairs of simulated spike trains.
The effect of the change in the association parameter is even clearer in this figure.
The effect of δ can still be observed while the effect of v is clearly diminished when
averaging. The bottom panels show the fitted GAM for the CSM for one pair
(bottom left) and averaged over 200 pairs (bottom right). It is very clear in this
case that the choice of v does not influence the outcome. As a matter of fact, the
curves corresponding to the same δ value but different v value (green-black, red-
blue) are completely confounded. Nevertheless, δ still does influence the measure
considerably. Therefore, the choice of δ is very relevant and it needs to be done
carefully, taking into account the firing rates of the spike trains and, most of all,
the type of study that one wants to carry out. An important issue is to note that
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even when q is very small (q = 0.0001 in this figure) the CSM still takes positive
values. This issue was discussed in Section 6.
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Figure 11. CSM for spike trains simulated under three choices
of association parameter: q = 0.99 (0–100 s), q = 0.5 (100–200 s)
and q = 0.0001 (200–300 s) and computed using different choices
of (δ, v): (0.005, 5) (black), (0.05, 5) (red), (0.005, 2.5) (green) and
(0.05, 2.5) (blue). Different panels show: CSM computed for a
single pair of simultaneous spike trains (top left) and CSM averaged
over 200 pairs (top right), fitted GAM for CSM computed for a
single pair (bottom left) and fitted GAM for CSM averaged over
200 pairs (bottom right)

Figure 12 shows similar analyses but for different choices of firing rates. Here,
the v value is fixed at v = 5 and δ takes values δ = 0.05 s and 0.005 s for each choice
of firing rate (4 Hz, 12 Hz and 50 Hz).

9.2. Performance of the hypothesis test. To evaluate the performance of the
bootstrap test in detecting significant differences in neural synchrony we performed
the following simulation study. One hundred seconds long simultaneous spike trains
were generated using the method described above. Two different values of the
association parameter, q, were used: one for the first 50 s of recording and another
one for the last 50 s.

For each pair of spike trains, the test described in Section 7 was applied. That
is, using the bootstrap procedure, a critical region was built for the null hypothesis:

- H1
0 : π1(t) = πpre for every t after the condition onset. The time of stimulation

was considered as the time point where q changed, i.e. 50 s.



46 GONZÁLEZ, CAO, FAES, MOLENBERGHS, ESPINOSA, CUDEIRO AND MARIÑO
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Figure 12. Generalized additive model for CSM computed with
different values of δ (0.05 s and 0.005 s) for pairs of spike trains si-
mulated with different constant (4 Hz, 12 Hz and 50 Hz) firing rates
and step-wise decreasing association parameter q (q = 0.99, 0.5 and
0.0001).

The procedure was repeated 1000 times and the proportion of rejections of the
null was computed for each time point. Results are shown in Figure 13. It can be
observed that, when the difference in the association parameter, q, is large, the test
performance is really good. On the left hand side of each graph the proportion of
rejections is almost zero, while in the right half, the proportion grows to one. In
a time interval around 50 s the proportion continuously grows from zero to one as
expected due to the use of sliding windows. When the association parameter used in
both halves of each panel is small, the performance is not as good. The proportion
of false positives increases as well as the proportion of false negatives diminishes.

10. Discussion. A method to measure neural synchrony dynamics, specially under
low firing rates scenarios, has been proposed in this work. The method is based
on the computation of times between nearest spikes of two spike trains. This is a
flexible method as it allows the researcher to decide how close two spikes have to be,
to be considered synchronous. The method uses the information of time windows to
estimate synchrony at a given time point. Although temporal resolution is lost with
the use of this kernel-like method, it allows to study synchrony even with very few
-or even only one- trials. Generalized additive models are proposed for the curves,
giving flexibility to their shape by the use of nonparametric functions. Nevertheless,
the dependency between consecutive time points is taken into account by modeling
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Figure 13. At each panel the proportion of rejections over 1000
repetitions of the bootstrap test is shown. At each panel, 50 s
of synchrononous spike trains were simulated using the specified
association parameter.

the error term with an autoregressive model. The objective is to study differences
in the synchrony profiles.

The synchrony expected by chance has been computed showing that the CSM
is able to distinguish true synchrony from the one that arises just due to the firing
rate. Two hypothesis tests have been proposed and bootstrap procedures have
been developed to calibrate the distribution of the test statistics. Both, marginal
and uniform critical regions are built with the bootstrap procedures. The results
show that there are time points after stimulation where differences from baseline are
significant when looking at the marginal regions. On the other hand, synchrony after
bs stimulation can be assessed to be different from baseline in a whole time interval
while there is no enough evidence to make the same statement for the bf stimulation.
Also, the differential stimulations have different effects on the synchrony profile, an
outcome that verifies the hypothesis under study.

Overall, we can state that our method is a useful tool to measure synchrony in
low firing rate scenarios. This method might also be useful to study certain areas
in the brain where spontaneous (and even evoked) activity tend to be low.
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