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Abstract

The objective of this paper is to derive, from the Navier-Stokes equations in a shallow domain,
a new bidimensional shallow water model able to filter the high frequency oscillations that are
produced, when the Reynolds number is increased, in turbulent flows. With this aim, the non-
dimensional Navier-Stokes equations are time-averaged, and then asymptotic analysis techniques
have been used as in our previous works (Rodŕıguez and Taboada-Vázquez 2005-2012 [17]-[23]). The
small non-dimensional parameter considered, ε, is the quotient between the typical depth of the basin
and the typical horizontal length of the domain; and it is studied what happens when ε becomes
small.

Once the new model has been justified, by the method of asymptotic expansions, we perform
some numerical experiments. The results of these experiments confirm that this new model is able
to approximate analytical solutions of Navier-Stokes equations with more accuracy than classical
shallow water models, when high frequency oscillations appear. To reach a given accuracy, the time
step for the new model can be much larger (even four hundred times larger) than the time step
required for the classical models.

Keywords: Shallow waters, Asymptotic analysis, Reynolds Averaged Navier-Stokes equations (RANS), Large Eddy
Simulation (LES), Modelling, Filtering.
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1 Introduction

As it is well known, the equations governing the behavior of a fluid are the Navier-Stokes equations.
Due to their strong nonlinearity, high frequency oscillations are produced when the Reynolds number is
increased, and the flow becomes unstable and turbulent. It is computationally very expensive to solve
the equations directly, so at the moment, the most common approach in hydraulic engineering practice
is to solve the Reynolds Averaged Navier-Stokes equations, in which the effect of turbulence is modelled
rather than solved.

We approximate Navier-Stokes equations using a shallow water model, but if the flow is turbulent,
a very small time step must be chosen. This paper is focused on the derivation of a new bidimensional
time-averaged shallow water model able to reduce these oscillations, and then able to achieve good results
with larger time steps.

Filtering has given good results when working with turbulent Navier-Stokes equations (see [24]). In
the literature, we can found that the separation between large and small scales is traditionally assumed
to be obtained by applying a spatial filter to the Navier-Stokes equations (see [3, 12]); but time filtering
is also suggested by several authors (see [4, 16]). In this work, we shall use a time filter, thus avoiding
to model the spacial filtered stress tensor (see [3]).

Asymptotic analysis has been applied successfully to derive and justify shallow water models. The new
model, developed from the incompressible Navier-Stokes equations with free surface, has been deduced
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in the spirit of the method proposed in our previous works [17]-[23] and [25]. In order to obtain a shallow
water model, we consider a domain with small depth compared with its other dimensions. We use in the
sequel the thin-layer assumption and introduce a “small” non-dimensional parameter ε = HC/LC where
HC and LC are, respectively, the typical scales for the vertical and the horizontal dimensions of the fluid
domain of interest.

The outline of the paper is as follows. In the next section we introduce and render non-dimensional
the model that serves as our starting point. Then, the time averaging process is described in section 3
and asymptotic analysis is applied following the ideas of [17]-[23] (section 4) to derive our shallow water
model that is presented in section 5. We show, in section 6, that this new model is able to obtain a given
accuracy using time steps larger than the time steps needed by classical shallow water models. Finally,
we make some concluding remarks in section 7.

2 The three-dimensional model equations

In this section we present the three-dimensional incompressible Navier-Stokes model that serves as the
starting point for our subsequent development. The first subsection gives the basic mass and momentum
balance laws for a basin with varying bottom topography and a free top surface, and supplements
them with appropriate boundary conditions. In subsection 2.2 we introduce the shallow water scaling,
define a non-dimensional parameter and non-dimensionalize the three-dimensional model in terms of that
parameter.

2.1 Three-dimensional incompressible flow

Let us start with the Navier-Stokes system [13] for incompressible homogeneous fluids, with gravity and
Coriolis force, evolving in a sub-domain of R3. As the domain, the functions and variables involved
in this problem depend on ε, we indicate this dependence with superscript ε. Therefore, we have the
following general formulation expression:

∂U⃗
ε

∂tε
+
(
U⃗ε · ∇ε

)
U⃗ε = − 1

ρ0
∇εP ε + ν∆εU⃗ε + F⃗ε

e (1)

div U⃗ε = 0 (2)

and we consider this system for

tε ∈ [0, T ], (xε, yε) ∈ D ⊂ R2, Bε(xε, yε) ≤ zε ≤ Sε(tε, xε, yε)

where:

• Sε(tε, xε, yε) represents the free surface elevation (unknown) and Bε the bathymetry (it is not
constant and it is supposed to be known). The water height is Hε = Sε −Bε (see Figure 1)

• U⃗ε = (Uε
1 (t

ε, xε, yε, zε), Uε
2 (t

ε, xε, yε, zε), Uε
3 (t

ε, xε, yε, zε)) is the three-dimensional velocity of the
fluid

• P ε(tε, xε, yε, zε) is the pressure

• ρ0 denotes the density of the fluid

• ν is the kinematic viscosity

• F⃗ε
e = −gk⃗ − 2Φ⃗ × U⃗ε is the volume force per unit mass, where g is the gravitational acceleration

(assumed constant) and −2Φ⃗ × U⃗ε is the Coriolis acceleration (where the angular velocity of

rotation of the Earth is Φ⃗ = Φ
(
sinφk⃗ + cosφȷ⃗

)
with Φ = 7.29 × 10−5 rad/s; ı⃗, ȷ⃗ and k⃗ denote

the unit vectors pointing East, North and vertically upward (respectively); φ, the North latitude,
is considered constant).
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Figure 1: Notations: water height Hε(tε, xε, yε), free surface Sε(tε, xε, yε) and bottom Bε(xε, yε)

The kinematic continuity condition

Uε
3 =

∂Hε

∂tε
+ Uε

1

∂Sε

∂xε
+ Uε

2

∂Sε

∂yε
at zε = Sε(tε, xε, yε) (3)

is rewritten in equivalent form (for incompressible fluids):

∂Hε

∂tε
+

∂

∂xε

∫ Sε

Bε

Uε
1dz

ε +
∂

∂yε

∫ Sε

Bε

Uε
2dz

ε = 0 (4)

Equations (1)-(2) must be supplemented by boundary conditions.

• At the bottom,

– the non-penetration condition is satisfied:

U⃗ε · n⃗ε = 0 at zε = Bε(xε, yε) (5)

where n⃗ε denotes the outward unit normal to the boundary of the domain.

– tangential forces must be equal to the friction force:

(I− n⃗ε ⊗ n⃗ε)Tεn⃗ε = F⃗ε
R at zε = Bε(xε, yε) (6)

Typically, the friction force per unit of surface area is of the form F⃗ε
R = −ρ0C

ε
R|U⃗ε|U⃗ε (Cε

R

is small), see for example [7] or [26].

• On the free top surface we assume that the only external force acting on the fluid is the wind stress.
In particular, we assume that the surface tension and ambient atmospheric pressure variations are
negligible. This leads to the boundary condition

Tεn⃗ε = −P ε
s (t

ε, xε, yε)n⃗ε + F⃗ε
W at zε = Sε(tε, xε, yε) (7)

where F⃗ε
W is the force of the wind and P ε

s is the atmospheric pressure at the surface (supposed
known).

The stress tensor (Tε) is given by:

T ε
ij = −P εδij + µ

(
∂Uε

i

∂xε
j

+
∂Uε

j

∂xε
i

)
i, j = 1, 2, 3 (8)

where xε
1 = xε, xε

2 = yε, xε
3 = zε, µ = ρ0ν is the dynamic viscosity and δij is the Kronecker’s delta.

We also suppose that the incoming and outcoming flows are known at each instant (other kind of
boundary conditions may be considered). Finally, initial conditions must be imposed too.
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2.2 Non-dimensionalization

The shallow water approximation is characterized by the smallness of a non-dimensional parameter that
we can identify assuming that the typical depth of the basin (HC) is much smaller than the typical
horizontal length (LC), i.e., that

HC

LC
= ε where ε << 1 (9)

This small parameter is an aspect ratio.
We introduce the non-dimensional independent variables t, x, y and z by

t =
tε

TC
, x =

xε

LC
, y =

yε

LC
, z =

zε

εLC
(10)

where TC is a typical time. Recalling (9), the non-dimensional water height and bottom surface are
defined by

h(t, x, y) =
Hε(tε, xε, yε)

εLC
, b(x, y) =

Bε(xε, yε)

εLC
(11)

so the non-dimensional top surface is given by

s(t, x, y) =
Sε(tε, xε, yε)

εLC
(12)

We shall now introduce non-dimensional functions and constants:

uε
i (t, x, y, z) =

TC

LC
Uε
i (t

ε, xε, yε, zε), i = 1, 2, 3 (13)

pε(t, x, y, z) =
T 2
C

ρ0L2
C

P ε(tε, xε, yε, zε), ps(t, x, y) =
T 2
C

ρ0L2
C

P ε
s (t

ε, xε, yε) (14)

G =
T 2
C

LC
g, ϕ = TCΦ (15)

σε
ij(t, x, y, z) =

T 2
C

ρ0L2
C

T ε
ij(t

ε, xε, yε, zε) i, j = 1, 2, 3 (16)

f⃗ε
W =

T 2
C

ρ0L2
C

F⃗ε
W , f⃗ε

R =
T 2
C

ρ0L2
C

F⃗ε
R (17)

where we have assumed that ps does not depend on ε.

2.2.1 The non-dimensional equations

We now express the three-dimensional incompressible Navier-Stokes system (1), (2) and (4) in terms of
the above non-dimensional variables and functions:

∂uε
1

∂t
+ uε

1

∂uε
1

∂x
+ uε

2

∂uε
1

∂y
+

1

ε
uε
3

∂uε
1

∂z
= −∂pε

∂x
+

1

Re

(
∂2uε

1

∂x2
+

∂2uε
1

∂y2
+

1

ε2
∂2uε

1

∂z2

)
+ 2ϕ ((sinφ)uε

2 − (cosφ)uε
3) (18)

∂uε
2

∂t
+ uε

1

∂uε
2

∂x
+ uε

2

∂uε
2

∂yε
+

1

ε
uε
3

∂uε
2

∂z
= −∂pε

∂y
+

1

Re

(
∂2uε

2

∂x2
+

∂2uε
2

∂y2
+

1

ε2
∂2uε

2

∂z2

)
− 2ϕ (sinφ)uε

1 (19)

∂uε
3

∂t
+ uε

1

∂uε
3

∂x
+ uε

2

∂uε
3

∂y
+

1

ε
uε
3

∂uε
3

∂z
= −1

ε

∂pε

∂z
+

1

Re

(
∂2uε

3

∂x2
+

∂2uε
3

∂y2
+

1

ε2
∂2uε

3

∂z2

)
−G+ 2ϕ (cosφ)uε

1 (20)

∂uε
1

∂x
+

∂uε
2

∂y
+

1

ε

∂uε
3

∂z
= 0 (21)

∂h

∂t
+

∂

∂x

∫ s

b

uε
1dz +

∂

∂y

∫ s

b

uε
2dz = 0 (22)
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where ν
TC

L2
C

=
1

Re
. The non-penetration condition (5) yields:

uε
3 = ε

(
uε
1

∂b

∂x
+ uε

2

∂b

∂y

)
at z = b (23)

The non-dimensional stress tensor can be written:

σε
ij = −pεδij +

1

Re

(
∂uε

i

∂xj
+

∂uε
j

∂xi

)
i, j = 1, 2 (24)

σε
i3 =

1

Re

(
1

ε

∂uε
i

∂z
+

∂uε
3

∂xi

)
i = 1, 2 (25)

σε
33 = −pε +

2

Re

1

ε

∂uε
3

∂z
(26)

so boundary conditions (6)-(7) result

ε
∂b

∂x
σε
11 + ε

∂b

∂y
σε
12 − σε

13

ε
∂b

∂x
σε
12 + ε

∂b

∂y
σε
22 − σε

23

ε
∂b

∂x
σε
13 + ε

∂b

∂y
σε
23 − σε

33


+

pε − 1

Re

2

1 +

(
ε
∂b

∂x

)2

+

(
ε
∂b

∂y

)2

[(
ε
∂b

∂x

)2
∂uε

1

∂x

+ ε2
∂b

∂x

∂b

∂y

(
∂uε

1

∂y
+

∂uε
2

∂x

)
− ε

∂b

∂x

(
1

ε

∂uε
1

∂z
+

∂uε
3

∂x

)
+

(
ε
∂b

∂y

)2
∂uε

2

∂y
+

1

ε

∂uε
3

∂z

− ε
∂b

∂y

(
1

ε

∂uε
2

∂z
+

∂uε
3

∂y

)]}


ε
∂b

∂x

ε
∂b

∂y

−1


=

√√√√1 + ε2

[(
∂b

∂x

)2

+

(
∂b

∂y

)2
]fε

R1

fε
R2

fε
R3



at z = b (27)



−ε
∂s

∂x
σε
11 − ε

∂s

∂y
σε
12 + σε

13

−ε
∂s

∂x
σε
12 − ε

∂s

∂y
σε
22 + σε

23

−ε
∂s

∂x
σε
13 − ε

∂s

∂y
σε
23 + σε

33


= −ps



−ε
∂s

∂x

−ε
∂s

∂y

1


+

√
1 +

(
ε
∂s

∂x

)2

+

(
ε
∂s

∂y

)2
fε

W1

fε
W2

fε
W3



at z = s (28)

3 Time averaging process

The formal derivation of our shallow water model has two steps. We first obtain the time-averaged
Navier-Stokes equations and then make the shallow water approximation.

We define:

ūε
i (t, x, y, z; η) =

1

2η

∫ t+η

t−η

uε
i (r, x, y, z)dr i = 1, 2, 3 (29)

and, in the same way, we also define the other averaged functions of the problem.
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If we assume that 0 < η << 1, and we approximate uε
i by its Taylor’s expansion for r ∈ (t− η, t+ η):

uε
i (r, x, y, z) = uε

i (t, x, y, z) +
∂uε

i

∂t
(t, x, y, z)(r − t) +

1

2

∂2uε
i

∂t2
(t, x, y, z)(r − t)2

+
1

3!

∂3uε
i

∂t3
(t, x, y, z)(r − t)3 + · · · (30)

then we have:

ūε
i (t, x, y, z; η) = uε

i (t, x, y, z) +
∂2uε

i

∂t2
(t, x, y, z)

η2

3!
+

∂4uε
i

∂t4
(t, x, y, z)

η4

5!
+ · · · (31)

It is easy to demonstrate for regular enough functions fε and gε, and small enough η, that the
following equalities are fulfilled:

∂fε

∂t
(t, x, y, z; η) =

∂f̄ε

∂t
(t, x, y, z; η) (32)

fε(t, x, y, z) = f̄ε(t, x, y, z; η)− ∂2f̄ε

∂t2
(t, x, y, z; η)

η2

6
+O(η4) (33)

fεgε(t, x, y, z; η) = f̄ε(t, x, y, z; η)ḡε(t, x, y, z; η)

+
∂f̄ε

∂t
(t, x, y, z, η)

∂ḡε

∂t
(t, x, y, z, η)

η2

3
+O(η4) (34)

fεgε = f̄εgε +
η2

6

(
2
∂f̄ε

∂t

∂gε

∂t
+ f̄ε ∂

2gε

∂t2

)
+O(η4) (35)

fε(t, x, y, s(t, x, y)) = f̄ε
∣∣
z=s

at z = s (36)

Applying (29), (32) and (34) to equations (18)-(21), they yield:

∂ūε
1

∂t
+ ūε

1

∂ūε
1

∂x
+

(
∂ūε

1

∂t

∂2ūε
1

∂t∂x

)
η2

3
+ ūε

2

∂ūε
1

∂y
+

(
∂ūε

2

∂t

∂2ūε
1

∂t∂y

)
η2

3

+
1

ε

[
ūε
3

∂ūε
1

∂z
+

(
∂ūε

3

∂t

∂2ūε
1

∂t∂z

)
η2

3

]
+O(η4) = −∂p̄ε

∂x

+
1

Re

(
∂2ūε

1

∂x2
+

∂2ūε
1

∂y2
+

1

ε2
∂2ūε

1

∂z2

)
+ 2ϕ ((sinφ) ūε

2 − (cosφ) ūε
3) (37)

∂ūε
2

∂t
+ ūε

1

∂ūε
2

∂x
+

(
∂ūε

1

∂t

∂2ūε
2

∂t∂x

)
η2

3
+ ūε

2

∂ūε
2

∂y
+

(
∂ūε

2

∂t

∂2ūε
2

∂t∂y

)
η2

3

+
1

ε

[
ūε
3

∂ūε
2

∂z
+

(
∂ūε

3

∂t

∂2ūε
2

∂t∂z

)
η2

3

]
+O(η4) = −∂p̄ε

∂y

+
1

Re

(
∂2ūε

2

∂x2
+

∂2ūε
2

∂y2
+

1

ε2
∂2ūε

2

∂z2

)
− 2ϕ (sinφ) ūε

1 (38)

∂ūε
3

∂t
+ ūε

1

∂ūε
3

∂x
+

(
∂ūε

1

∂t

∂2ūε
3

∂t∂x

)
η2

3
+ ūε

2

∂ūε
3

∂y
+

(
∂ūε

2

∂t

∂2ūε
3

∂t∂y

)
η2

3

+
1

ε

[
ūε
3

∂ūε
3

∂z
+

(
∂ūε

3

∂t

∂2ūε
3

∂t∂z

)
η2

3

]
+O(η4) = −1

ε

∂p̄ε

∂z
−G

+
1

Re

(
∂2ūε

3

∂x2
+

∂2ūε
3

∂y2
+

1

ε2
∂2ūε

3

∂z2

)
+ 2ϕ (cosφ) ūε

1 (39)

∂ūε
1

∂x
+

∂ūε
2

∂y
+

1

ε

∂ūε
3

∂z
= 0 (40)

To average equation (22), in first place we write uε
1 and uε

2 using (33) and we get

∂h

∂t
+

∂

∂x

∫ s

b

(
ūε
1 −

∂2ūε
1

∂t2
η2

6

)
dz +

∂

∂y

∫ s

b

(
ūε
2 −

∂2ūε
2

∂t2
η2

6

)
dz +O(η4) = 0 (41)
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This averaging process provides from (23)-(27):

ūε
3 = ε

(
ūε
1

∂b

∂x
+ ūε

2

∂b

∂y

)
at z = b (42)

σ̄ε
ij = −p̄εδij +

1

Re

(
∂ūε

i

∂xj
+

∂ūε
j

∂xi

)
i, j = 1, 2 (43)

σ̄ε
i3 =

1

Re

(
1

ε

∂ūε
i

∂z
+

∂ūε
3

∂xi

)
i = 1, 2 (44)

σ̄ε
33 = −p̄ε +

2

Re

1

ε

∂ūε
3

∂z
(45)


ε ∂b
∂x σ̄

ε
11 + ε ∂b

∂y σ̄
ε
12 − σ̄ε

13

ε ∂b
∂x σ̄

ε
12 + ε ∂b

∂y σ̄
ε
22 − σ̄ε

23

ε ∂b
∂x σ̄

ε
13 + ε ∂b

∂y σ̄
ε
23 − σ̄ε

33

+

p̄ε − 1

Re

2

1 +

(
ε
∂b

∂x

)2

+

(
ε
∂b

∂y

)2

[(
ε
∂b

∂x

)2
∂ūε

1

∂x

+ ε2
∂b

∂x

∂b

∂y

(
∂ūε

1

∂y
+

∂ūε
2

∂x

)
− ε

∂b

∂x

(
1

ε

∂ūε
1

∂z
+

∂ūε
3

∂x

)
+

(
ε
∂b

∂y

)2
∂ūε

2

∂y
− ε

∂b

∂y

(
1

ε

∂ūε
2

∂z

+
∂ūε

3

∂y

)
+

1

ε

∂ūε
3

∂z

]}


ε
∂b

∂x

ε
∂b

∂y

−1


=

√
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2
f̄ε

R1

f̄ε
R2

f̄ε
R3

 at z = b

(46)

Condition (28) is time-averaged too and gives and similar but more complex expression, because s
depends on t and we need to use formula (35).

4 Asymptotic derivation of the shallow water model

After obtaining the time-averaged Navier-Stokes equations, we make the shallow water approximation
by formally expanding solutions of the model in powers of ε.

4.1 Asymptotic expansion

Our shallow water model derive from the assumption that the aspect ratio ε is small. We make the
shallow water approximation by formally expanding solutions of the model in powers of ε. We seek a
formal solution in the form of an asymptotic series:

ūε
i = ū0

i + εū1
i + ε2ū2

i + · · · i = 1, 2, 3

p̄ε = p̄0 + εp̄1 + ε2p̄2 + · · ·

σ̄ε
ij = σ̄0

ij + εσ̄1
ij + ε2σ̄2

ij + · · · i, j = 1, 2, 3

f̄ε
Ri

= εf̄1
Ri

+ ε2f̄2
Ri

+ · · · i = 1, 2

f̄ε
Wi

= εf̄1
Wi

+ ε2f̄2
Wi

+ · · · i = 1, 2

(47)

The developments for f̄ε
Ri
, f̄ε

Wi
(i = 1, 2) may begin in the term of order 1 because of their small order

of magnitude (see [25] for a rigorous justification).
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We substitute now this expansion into the system of equations (37)-(46), and grouping the terms
multiplied by the same power of ε, we arrive at a series of equations that will allow us to determine ū0

i ,
p0, etc. Let us show some particular examples.

The value of ū0
3 can be found from the incompressibility condition (40) written at the leading order

O(ε−1):
∂ū0

3

∂z
= 0 ⇒ ū0

3 = ū0
3(t, x, y) (48)

We now consider the boundary condition (42); to the leading order it becomes:

ū0
3 = 0 for z = b (49)

so

ū0
3 = 0 (50)

In the same way, upon inserting the above expansion into (44), to order O(ε−1), one finds that

∂ū0
i

∂z
= 0 i = 1, 2 (51)

Now, incompressibility equation (40), to the leading order O(1), gives

ū1
3 = −

∫ z

b

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
dz′ + ū1

3(t, x, y, b) (52)

and the boundary condition (42), together with the fact that ū0
1 and ū0

2 do not depend on z ((51)), allows
us to write:

ū1
3 = (b− z)

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+ ū0

1

∂b

∂x
+ ū0

2

∂b

∂y
(53)

Equation (39), to order O(ε−1), together with above expression for ū1
3, leads us to conclude that p̄0 is

constant with respect to the vertical variable:

∂p̄0

∂z
=

1

Re

∂2ū1
3

∂z2
= 0 (54)

and with the information that we obtain from boundary conditions we have:

p̄0 = p̄s −
2

Re

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
(55)

Equation (41), to the leading order O(1), together with (51) becomes

∂h

∂t
+

∂

∂x

[
h

(
ū0
1 −

η2

6

∂2ū0
1

∂t2

)]
+

∂

∂y

[
h

(
ū0
2 −

η2

6

∂2ū0
2

∂t2

)]
= O(η4) (56)

In summary, we are able to derive the following first terms and equations:

ū0
3 = 0 (57)

ūk
3 = (b− z)

(
∂ūk−1

1

∂x
+

∂ūk−1
2

∂y

)
+ ūk−1

1

∂b

∂x
+ ūk−1

2

∂b

∂y
, k = 1, 2 (58)

p̄0 = p̄s −
2

Re

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
(59)

p̄1 = (s− z)(G− 2ϕ(cosφ)ū0
1)−

2

Re

(
∂ū1

1

∂x
+

∂ū1
2

∂y

)
(60)

σ̄0
13 = σ̄0

23 = 0 (61)

∂ūk
1

∂z
=

∂ūk
2

∂z
= 0 k = 0, 1 (62)
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∂ū0
1

∂t
+ ū0

1

∂ū0
1

∂x
+

η2

3

∂ū0
1

∂t

∂2ū0
1

∂t∂x
+ ū0

2

∂ū0
1

∂y
+

η2

3

∂ū0
2

∂t

∂2ū0
1

∂t∂y
+O(η4)

= −∂p̄0

∂x
+

1

Re

(
∂2ū0

1

∂x2
+

∂2ū0
1

∂y2
+

∂2ū2
1

∂z2

)
+ 2ϕ (sinφ) ū0

2 (63)

∂ū1
1

∂t
+ ū0

1

∂ū1
1

∂x
+ ū1

1

∂ū0
1

∂x
+

η2

3

(
∂ū0

1

∂t

∂2ū1
1

∂t∂x
+

∂ū1
1

∂t

∂2ū0
1

∂t∂x

)
+ ū0

2

∂ū1
1

∂y
+ ū1

2

∂ū0
1

∂y

+
η2

3

(
∂ū0

2

∂t

∂2ū1
1

∂t∂y
+

∂ū1
2

∂t

∂2ū0
1

∂t∂y

)
+ ū1

3

∂ū1
1

∂z
+

η2

3

∂ū1
3

∂t

∂2ū1
1

∂t∂z
+O(η4)

= −∂p̄1

∂x
+

1

Re

(
∂2ū1

1

∂x2
+

∂2ū1
1

∂y2
+

∂2ū3
1

∂z2

)
+ 2ϕ

[
(sinφ) ū1

2 − (cosφ) ū1
3

]
(64)

∂ū0
2

∂t
+ ū0

1

∂ū0
2

∂x
+

η2

3

∂ū0
1

∂t

∂2ū0
2

∂t∂x
+ ū0

2

∂ū0
2

∂y
+

η2

3

∂ū0
2

∂t

∂2ū0
2

∂t∂y
+O(η4)

= −∂p̄0

∂y
+

1

Re

(
∂2ū0

2

∂x2
+

∂2ū0
2

∂y2
+

∂2ū2
2

∂z2

)
− 2ϕ (sinφ) ū0

1 (65)

∂ū1
2

∂t
+ ū0

1

∂ū1
2

∂x
+ ū1

1

∂ū0
2

∂x
+

η2

3

(
∂ū0

1

∂t

∂2ū1
2

∂t∂x
+

∂ū1
1

∂t

∂2ū0
2

∂t∂x

)
+ ū0

2

∂ū1
2

∂y
+ ū1

2

∂ū0
2

∂y

+
η2

3

(
∂ū0

2

∂t

∂2ū1
2

∂t∂y
+

∂ū1
2

∂t

∂2ū0
2

∂t∂y

)
+ ū1

3

∂ū1
2

∂z
+

η2

3

∂ū1
3

∂t

∂2ū1
2

∂t∂z
+O(η4)

= −∂p̄1

∂y
+

1

Re

(
∂2ū1

2

∂x2
+

∂2ū1
2

∂y2
+

∂2ū3
2

∂z2

)
− 2ϕ (sinφ) ū1

1 (66)

∂h

∂t
+

∂(hū0
1)

∂x
+

∂(hū0
2)

∂y
− η2

6

[
∂

∂x

(
h
∂2ū0

1

∂t2

)
+

∂

∂y

(
h
∂2ū0

2

∂t2

)]
= O(η4) (67)

∂(hū1
1)

∂x
+

∂(hū1
2)

∂y
− η2

6

[
∂

∂x

(
h
∂2ū1

1

∂t2

)
+

∂

∂y

(
h
∂2ū1

2

∂t2

)]
= O(η4) (68)

σ̄k
ij = −p̄kδij +

1

Re

(
∂ūk

i

∂xj
+

∂ūk
j

∂xi

)
i, j = 1, 2, k = 0, 1, · · · (69)

σ̄k
i3 =

1

Re

(
∂ūk+1

i

∂z
+

∂ūk
3

∂xi

)
i = 1, 2, k = 1, 2, · · · (70)

σ̄k
33 = −p̄k +

2

Re

1

ε

∂ūk+1
3

∂z
k = 0, 1, · · · (71)

σ̄1
13 =

2

Re

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂b

∂x
+

1

Re

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂b

∂y
− f̄1

R1
at z = b (72)

σ̄1
23 =

1

Re

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂b

∂x
+

2

Re

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂b

∂y
− f̄1

R2
at z = b (73)

σ̄1
13 =

2

Re

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂s

∂x
+

1

Re

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂s

∂y

+
η2

6Re

[
4
∂

∂t

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂2h

∂t∂x
+ 2

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂3h

∂t2∂x

+ 2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂y
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂y

]
+O(η4) + f̄1

W1
at z = s (74)
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σ̄1
23 =

1

Re

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂s

∂x
+

2

Re

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂s

∂y

+
η2

6Re

[
2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂x
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂x

+ 4
∂

∂t

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂2h

∂t∂y
+ 2

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂3h

∂t2∂y

]
+O(η4) + f̄1

W2
at z = s (75)

f̄0
W1

= f̄0
W2

= f̄0
W3

= f̄1
W3

= 0 at z = s (76)

4.2 First Order Approximation

We can now consider a first order approximation:

ũε
i = ū0

i + εū1
i (i = 1, 2), ũε

3 = ū0
3 + εū1

3 + ε2ū2
3, p̃ε = p̄0 + εp̄1 (77)

The terms ūk
3 (k = 0, 1, 2), p̄k (k = 0, 1) and σ̄0

i3 (i = 1, 2) are known (see (57)-(61)), so the approximations
of the vertical velocity and the pressure are:

ũε
3 = εū1

3 + ε2ū2
3 = ε

[
(b− z)

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+ ū0

1

∂b

∂x
+ ū0

2

∂b

∂y

]
+ ε2

[
(b− z)

(
∂ū1

1

∂x
+

∂ū1
2

∂y

)
+ ū1

1

∂b

∂x
+ ū1

2

∂b

∂y

]
= ε

[
(b− z)

(
∂ũε

1

∂x
+

∂ũε
2

∂y

)
+ ũε

1

∂b

∂x
+ ũε

2

∂b

∂y

]
(78)

p̃ε = p̄s −
2

Re

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+ ε

[
(s− z)(G− 2ϕ(cosφ)ū0

1)−
2

Re

(
∂ū1

1

∂x
+

∂ū1
2

∂y

)]
= p̄s + ε(s− z)(G− 2ϕ(cosφ)ū0

1)−
2

Re

(
∂ũε

1

∂x
+

∂ũε
2

∂y

)
(79)

= p̄s + ε(s− z)(G− 2ϕ(cosφ)ũε
1)−

2

Re

(
∂ũε

1

∂x
+

∂ũε
2

∂y

)
+O(ε2) (80)

To obtain closed equations for ū0
1 and ū0

2 we have to get rid of the terms ū2
1 and ū2

2 in equations (63)
and (65). We can accomplish this with the following procedure. First integrate those equations in the
vertical variable z from b to s:

∂ū0
1

∂t
+ ū0

1

∂ū0
1

∂x
+ ū0

2

∂ū0
1

∂y
+

∂p̄s
∂x

− 1

Re

(
3
∂2ū0

1

∂x2
+

∂2ū0
1

∂y2
+ 2

∂2ū0
2

∂x∂y

)
− 2ϕ (sinφ) ū0

2

− 1

hRe

(
∂ū2

1

∂z

∣∣∣∣
z=s

− ∂ū2
1

∂z

∣∣∣∣
z=b

)
+

η2

3

(
∂ū0

1

∂t

∂2ū0
1

∂t∂x
+

∂ū0
2

∂t

∂2ū0
1

∂t∂y

)
= O(η4) (81)

∂ū0
2

∂t
+ ū0

1

∂ū0
2

∂x
+ ū0

2

∂ū0
2

∂y
+

∂p̄s
∂y

− 1

Re

(
∂2ū0

2

∂x2
+ 3

∂2ū0
2

∂y2
+ 2

∂2ū0
1

∂y∂x

)
+ 2ϕ (sinφ) ū0

1

− 1

hRe

(
∂2ū2

2

∂z2

∣∣∣∣
z=s

− ∂2ū2
2

∂z2

∣∣∣∣
z=b

)
+

η2

3

(
∂ū0

1

∂t

∂2ū0
2

∂t∂x
+

∂ū0
2

∂t

∂2ū0
2

∂t∂y

)
= O(η4) (82)

Then, we can find the value of
∂ū2

i

∂z
at the top surface and at the bottom. Using (70) and (58), we write:

∂ū2
i

∂z
= Re σ̄1

i3 −
∂

∂xi

[
(b− z)

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+ ū0

1

∂b

∂x
+ ū0

2

∂b

∂y

]
i = 1, 2 (83)

Next, substituting z by s and b, we have:

∂ū2
i

∂z

∣∣∣∣
z=s

− ∂ū2
i

∂z

∣∣∣∣
z=b

= Re
(
σ̄1
i3

∣∣
z=s

− σ̄1
i3

∣∣
z=b

)
+ h

∂

∂xi

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
i = 1, 2 (84)
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To obtain the value of σ̄1
i3 at the top surface and at the bottom, boundary conditions (72), (73), (74)

and (75) are used

∂ū2
1

∂z

∣∣∣∣
z=s

− ∂ū2
1

∂z

∣∣∣∣
z=b

= 2

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂h

∂x
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂h

∂y

+
η2

6

[
4
∂

∂t

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂2h

∂t∂x
+ 2

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂3h

∂t2∂x

+ 2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂y
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂y

]
+Re

(
f̄1
W1

+ f̄1
R1

)
+ h

∂

∂x

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+O(η4) (85)

∂ū2
2

∂z

∣∣∣∣
z=s

− ∂ū2
2

∂z

∣∣∣∣
z=b

= 2

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂h

∂y
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂h

∂x

+
η2

6

[
4
∂

∂t

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂2h

∂t∂y
+ 2

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂3h

∂t2∂y

+ 2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂x
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂x

]
+Re

(
f̄1
W2

+ f̄1
R2

)
+ h

∂

∂y

(
∂ū0

1

∂x
+

∂ū0
2

∂y

)
+O(η4) (86)

When we substitute expressions (85)-(86) into (81)-(82), we obtain

∂ū0
1

∂t
+ ū0

1

∂ū0
1

∂x
+ ū0

2

∂ū0
1

∂y
+

η2

3

(
∂ū0

1

∂t

∂2ū0
1

∂t∂x
+

∂ū0
2

∂t

∂2ū0
1

∂t∂y

)
= −∂p̄s

∂x
+

1

Re

(
4
∂2ū0

1

∂x2
+

∂2ū0
1

∂y2
+ 3

∂2ū0
2

∂x∂y

)
+ 2ϕ (sinφ) ū0

2

+
1

hRe

{
2

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂h

∂x
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂h

∂y

+
η2

6

[
4
∂

∂t

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂2h

∂t∂x
+ 2

(
2
∂ū0

1

∂x
+

∂ū0
2

∂y

)
∂3h

∂t2∂x

+ 2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂y
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂y

]}
+

1

h

(
f̄1
W1

+ f̄1
R1

)
+O(η4) (87)

∂ū0
2

∂t
+ ū0

1

∂ū0
2

∂x
+ ū0

2

∂ū0
2

∂y
+

η2

3

(
∂ū0

1

∂t

∂2ū0
2

∂t∂x
+

∂ū0
2

∂t

∂2ū0
2

∂t∂y

)
= −∂p̄s

∂y
+

1

Re

(
∂2ū0

2

∂x2
+ 4

∂2ū0
2

∂y2
+ 3

∂2ū0
1

∂y∂x

)
− 2ϕ (sinφ) ū0

1

+
1

hRe

{(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂h

∂x
+ 2

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂h

∂y

+
η2

6

[
2
∂

∂t

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂2h

∂t∂x
+

(
∂ū0

1

∂y
+

∂ū0
2

∂x

)
∂3h

∂t2∂x

+ 4
∂

∂t

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂2h

∂t∂y
+ 2

(
∂ū0

1

∂x
+ 2

∂ū0
2

∂y

)
∂3h

∂t2∂y

]}
+

1

h

(
f̄1
W2

+ f̄1
R2

)
+O(η4) (88)

We repeat the process from equations (64) and (66) to obtain closed equations for ū1
i (i = 1, 2). We

11



yield:

∂ū1
1

∂t
+ ū0

1

∂ū1
1

∂x
+ ū1

1

∂ū0
1

∂x
+ ū0

2

∂ū1
1

∂y
+ ū1

2

∂ū0
1

∂y

+
η2

3

(
∂ū0

1

∂t

∂2ū1
1

∂t∂x
+

∂ū1
1

∂t

∂2ū0
1

∂t∂x
+

∂ū0
2

∂t

∂2ū1
1

∂t∂y
+

∂ū1
2

∂t

∂2ū0
1

∂t∂y

)
= − ∂s

∂x
G+ 2ϕ (sinφ) ū1

2 + 2ϕ(cosφ)

(
∂h

∂x
ū0
1 + h

∂ū0
1

∂x
+

h

2

∂ū0
2

∂y
− ū0

2

∂b

∂y

)
+

1

Re

(
4
∂2ū1

1

∂x2
+

∂2ū1
1

∂y2
+ 3

∂2ū1
2

∂x∂y

)
+

2

hRe

(
2
∂ū1

1

∂x
+

∂ū1
2

∂y

)
∂h

∂x

+
1

hRe

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂h

∂y
+

η2

6h

[
2
∂h

∂t
(2ϕ(cosφ)ū0

1 −G)
∂2h

∂t∂x

+
4

Re

∂

∂t

(
2
∂ū1

1

∂x
+

∂ū1
2

∂y

)
∂2h

∂t∂x
+

2

Re

(
2
∂ū1

1

∂x
+

∂ū1
2

∂y

)
∂3h

∂t2∂x

+
2

Re

∂

∂t

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂2h

∂t∂y
+

1

Re

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂3h

∂t2∂y

]
+

1

h

(
f̄2
W1

+ f̄2
R1

)
+O(η4) (89)

∂ū1
2

∂t
+ ū0

1

∂ū1
2

∂x
+ ū1

1

∂ū0
2

∂x
+ ū0

2

∂ū1
2

∂y
+ ū1

2

∂ū0
2

∂y

+
η2

3

(
∂ū0

1

∂t

∂2ū1
2

∂t∂x
+

∂ū1
1

∂t

∂2ū0
2

∂t∂x
+

∂ū0
2

∂t

∂2ū1
2

∂t∂y
+

∂ū1
2

∂t

∂2ū0
2

∂t∂y

)
= −∂s

∂y
G− 2ϕ (sinφ) ū1

1 + 2ϕ(cosφ)

(
∂s

∂y
ū0
1 +

h

2

∂ū0
1

∂y

)
+

1

Re

(
∂2ū1

2

∂x2
+ 4

∂2ū1
2

∂y2
+ 3

∂2ū1
1

∂x∂y

)
+

2

hRe

(
∂ū1

1

∂x
+ 2

∂ū1
2

∂y

)
∂h

∂y

+
1

hRe

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂h

∂x
+

η2

6h

[
2
∂h

∂t
(2ϕ(cosφ)ū0

1 −G)
∂2h

∂t∂y

+
4

Re

∂

∂t

(
∂ū1

1

∂x
+ 2

∂ū1
2

∂y

)
∂2h

∂t∂y
+

2

Re

(
∂ū1

1

∂x
+ 2

∂ū1
2

∂y

)
∂3h

∂t2∂y

+
2

Re

∂

∂t

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂2h

∂t∂x
+

1

Re

(
∂ū1

1

∂y
+

∂ū1
2

∂x

)
∂3h

∂t2∂x

]
+

1

h

(
f̄2
W2

+ f̄2
R2

)
+O(η4) (90)

Equations (87)-(90) are used to obtain the following equations for ũε
i (see (77)):

∂ũε
1

∂t
+ ũε

1

∂ũε
1

∂x
+ ũε

2

∂ũε
1

∂y
+

η2

3

(
∂ũε

1

∂t

∂2ũε
1

∂t∂x
+

∂ũε
2

∂t

∂2ũε
1

∂t∂y

)
= −∂p̄s

∂x
− ε

∂s

∂x
G+ 2ϕ (sinφ) ũε

2 +
1

Re

(
4
∂2ũε

1

∂x2
+

∂2ũε
1

∂y2
+ 3

∂2ũε
2

∂x∂y

)
+

1

hRe

{
2

(
2
∂ũε

1

∂x
+

∂ũε
2

∂y

)
∂h

∂x
+

(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂h

∂y

+
η2

6

[
4
∂

∂t

(
2
∂ũε

1

∂x
+

∂ũε
2

∂y

)
∂2h

∂t∂x
+ 2

(
2
∂ũε

1

∂x
+

∂ũε
2

∂y

)
∂3h

∂t2∂x

+ 2
∂

∂t

(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂2h

∂t∂y
+

(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂3h

∂t2∂y

]}
+ (2ϕ(cosφ)ũε

1 −G)ε
η2

3h

∂h

∂t

∂2h

∂t∂x
+ 2ϕ(cosφ)ε

[
∂h

∂x
ũε
1 + h

∂ũε
1

∂x
+

h

2

∂ũε
2

∂y
− ũε

2

∂b

∂y

]
+

1

εh

(
f̃ε
W1

+ f̃ε
R1

)
+O(η4) +O(ε2) (91)
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∂ũε
2

∂t
+ ũε

1

∂ũε
2

∂x
+ ũε

2

∂ũε
2

∂y
+

η2

3

(
∂ũε

1

∂t

∂2ũε
2

∂t∂x
+

∂ũε
2

∂t

∂2ũε
2

∂t∂y

)
= −∂p̄s

∂y
− ε

∂s

∂y
G− 2ϕ (sinφ) ũε

1 +
1

Re

(
∂2ũε

2

∂x2
+ 4

∂2ũε
2

∂y2
+ 3

∂2ũε
1

∂y∂x

)
+

1

hRe

{(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂h

∂x
+ 2

(
∂ũε

1

∂x
+ 2

∂ũε
2

∂y

)
∂h

∂y

+
η2

6

[
2
∂

∂t

(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂2h

∂t∂x
+

(
∂ũε

1

∂y
+

∂ũε
2

∂x

)
∂3h

∂t2∂x

+ 4
∂

∂t

(
∂ũε

1

∂x
+ 2

∂ũε
2

∂y

)
∂2h

∂t∂y
+ 2

(
∂ũε

1

∂x
+ 2

∂ũε
2

∂y

)
∂3h

∂t2∂y

]}
+ (2ϕ(cosφ)ũε

1 −G)ε
η2

3h

∂h

∂t

∂2h

∂t∂y
+ 2ϕ(cosφ)ε

(
∂s

∂y
ũε
1 +

∂ũε
1

∂y

h

2

)
+

1

εh

(
f̃ε
W2

+ f̃ε
R2

)
+O(ε2) +O(η4) (92)

The system of equations for ũi(i = 1, 2) ((91)-(92)) is coupled with the following equation for the
water depth deduced from (67)-(68):

∂h

∂t
+

∂(hũε
1)

∂x
+

∂(hũε
2)

∂y
− η2

6

[
∂

∂x

(
h
∂2ũε

1

∂t2

)
+

∂

∂y

(
h
∂2ũε

2

∂t2

)]
= O(η4) (93)

Therefore, if equations (91)-(93) are solved, we obtain the horizontal velocity and the free surface eleva-
tion.

5 Proposed Shallow Water Model

In this section, we go back the original variables:

Hε(tε, xε, yε) = εLCh(t, x, y), Bε(xε, yε) = εLCb(x, y), (94)

ũε
i (t, x, y) =

TC

LC
Ũε
i (t

ε, xε, yε), i = 1, 2, 3, (95)

p̃ε(t, x, y, z) =
T 2
C

ρ0L2
C

P̃ ε(tε, xε, yε, zε), p̄s(t, x, y) =
T 2
C

ρ0L2
C

P̄ ε
s (t

ε, xε, yε) (96)

⃗̃
fεW =

T 2
C

ρ0L2
C

⃗̃Fε
W ,

⃗̃
fεR =

T 2
C

ρ0L2
C

⃗̃Fε
R (97)

and we present the model that we have derived. We begin summarizing the results that we have achieved
in this theorem:

Theorem 1 Let us suppose that there exists asymptotic expansion (47). Then approximated solution
(94)-(96) verifies

∂Hε

∂tε
+∇ε ·

[
Hε

(
⃗̃Uε − η2T 2

C

6

∂2 ⃗̃Uε

∂(tε)2

)]
=

εLC

TC
O(η4) (98)
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∂ ⃗̃Uε

∂tε
+∇ ⃗̃Uε · ⃗̃Uε +

η2T 2
C

3
∇

(
∂ ⃗̃Uε

∂tε

)
· ∂

⃗̃Uε

∂tε
= − 1

ρ0
∇P̄ ε

s + ν∆ ⃗̃Uε + 3ν∇
(
∇ · ⃗̃Uε

)
+

ν

Hε

{
R̃ε · ∇Hε +

η2T 2
C

6

[
2
∂R̃ε

∂tε
· ∇
(
∂Hε

∂tε

)
+ R̃ε · ∇

(
∂2Hε

∂(tε)2

)]}

+ 2Φ (sinφ)

(
Ũε
2

−Ũε
1

)
+
(
2Φ(cosφ)Ũε

1 − g
)[

∇Sε +
η2T 2

C

3Hε

∂Hε

∂tε
∇
(
∂Hε

∂tε

)]

+ 2Φ(cosφ)

[
1

2
Hε∇(Ũε

1 ) +

(
− ⃗̃Uε · ∇Bε +

1

2
Hε∇ · ⃗̃Uε

0

)]

+
1

ρ0Hε

(
⃗̃Fε
W + ⃗̃Fε

R

)
+

LC

T 2
C

O(η4) +
LC

T 2
C

O(ε2) (99)

P̃ ε = P̄s + ρ0 (S
ε − zε)

(
g − 2Φ(cosφ)Ũε

1

)
− 2µ∇ε · ⃗̃Uε +O(ε2)

ρ0L
2
C

T 2
C

(100)

Ũε
3 = (Bε − zε)∇ε · ⃗̃Uε + ⃗̃Uε · ∇Bε (101)

where ⃗̃Uε = (Ũε
1 , Ũ

ε
2 ) is the time-averaged horizontal velocity approximation, P̄s is the time-averaged

atmospheric pressure at the surface, ⃗̃Fε
W , ⃗̃Fε

R are the wind and friction forces and

R̃ε =


4
∂Ũε

1

∂xε
+ 2

∂Ũε
2

∂yε
∂Ũε

1

∂yε
+

∂Ũε
2

∂xε

∂Ũε
1

∂yε
+

∂Ũε
2

∂xε
2
∂Ũε

1

∂xε
+ 4

∂Ũε
2

∂yε


We, finally, propose the following model that we have derived neglecting the O(ε2) and O(η4) terms

in the above equations. For notational convenience, we henceforth drop the .̃

∂Hε

∂tε
+∇ε ·

[
Hε

(
⃗̄Uε − η2T 2

C

6

∂2 ⃗̄Uε

∂(tε)2

)]
= 0 (102)

∂ ⃗̄Uε

∂tε
+∇ ⃗̄Uε · ⃗̄Uε +

η2T 2
C

3
∇

(
∂ ⃗̄Uε

∂tε

)
· ∂

⃗̄Uε

∂tε
= − 1

ρ0
∇P̄ ε

s + ν∆ ⃗̄Uε + 3ν∇
(
∇ · ⃗̄Uε

)
+

ν

Hε

{
R̄ε · ∇Hε +

η2T 2
C

6

[
2
∂R̄ε

∂tε
· ∇
(
∂Hε

∂tε

)
+ R̄ε · ∇

(
∂2Hε

∂(tε)2

)]}
+ 2Φ (sinφ)

(
Ūε
2

−Ūε
1

)
+
(
2Φ(cosφ)Ūε

1 − g
) [

∇Sε +
η2T 2

C

3Hε

∂Hε

∂tε
∇
(
∂Hε

∂tε

)]
+ 2Φ(cosφ)

[
1

2
Hε∇(Ūε

1 ) +

(
− ⃗̄Uε · ∇Bε +

1

2
Hε∇ · ⃗̄Uε

0

)]
+

1

ρ0Hε

(
⃗̄Fε
W + ⃗̄Fε

R

)
(103)

P̄ ε = P̄s + ρ0 (S
ε − zε)

(
g − 2Φ(cosφ)Ūε

1

)
− 2µ∇ε · ⃗̄Uε (104)

Ūε
3 = (Bε − zε)∇ε · ⃗̄Uε + ⃗̄Uε · ∇Bε (105)

Remark 1 In practice, we neglect the term in η2 in equation (102), because it does not provide signifi-
cant improvements in the accuracy of the numerical solutions that we present in section 6, but it causes
some problems of stability. Therefore, in what follows, we replace (102) by

∂Hε

∂tε
+∇ε ·

(
Hε ⃗̄Uε

)
= 0 (106)

6 Numerical experiments

In this section we shall compare model (103)-(106) (we shall refer to it as NM) with other shallow water
model, not averaged in time, obtained in [17] using the same asymptotic techniques. We shall refer to it
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as SW, and it can be written as in [18]:

∂Hε

∂tε
+∇ε ·

(
HεU⃗ε

)
= 0

∂U⃗ε

∂tε
+∇U⃗ε · U⃗ε = − 1

ρ0
∇P ε

s + ν{∆U⃗ε +
1

Hε
[∇U⃗εT +∇U⃗ε]∇Hε

+
1

(Hε)2
∇[(Hε)2(∇ · U⃗ε)]} − g∇Sε +

1

ρ0Hε

(
F⃗ε

W + F⃗ε
R

)
+ 2Φ

{
(sinφ)

(
Uε
2

−Uε
1

)
+ (cosφ)

[
U1∇Sε +

1

2
Hε∇(Uε

1 ) +

(
−U⃗ε · ∇Bε +

1

2
Hε∇ · U⃗ε

0

)]}
(107)

where the horizontal velocity U⃗ε is not averaged in time.
In order to compare models (103)-(106) and (107), we shall consider some analytical solutions of

Navier-Stokes equations ((1)-(8)) whose velocity rapidly oscillates in time. Then we solve numerically
the equations (103)-(106) and (107) for the data provided by the analytical solutions of Navier-Stokes
equations, and finally we compute the errors committed by each of the models.

To perform the numerical simulations, we have opted to use MacCormack scheme (see [14]) due to
its good stability properties, its easy implementation, and to the fact that has been applied successfully
to the resolution of similar problems.

Let us introduce now the first family of exact solutions to Navier-Stokes equations that we shall use
to compare models SW and NM. Horizontal and vertical velocity oscillate in time, but the horizontal
velocity depends on variable xε while the vertical velocity depends on variable zε:

Uε
1 = (A1 +A2x

ε) sin

(
2πn1

Tp
tε
)
+ (B1 +B2x

ε) cos

(
2πn1

Tp
tε
)

+ (C1 + C2x
ε) sin

(
2πn2

Tp
tε
)
+ (D1 +D2x

ε) cos

(
2πn2

Tp
tε
)

Uε
2 = 0

Uε
3 = −zε

[
A2 sin

(
2πn1

Tp
tε
)
+B2 cos

(
2πn1

Tp
tε
)
+ C2 sin

(
2πn2

Tp
tε
)

+ D2 cos

(
2πn2

Tp
tε
)]

Bε = 0

Hε = Ee

Tp

2π

A2

n1
cos

(
2πn1

Tp
tε

)
−
B2

n1
sin

(
2πn1

Tp
tε

)
+
C2

n2
cos

(
2πn2

Tp
tε

)
−
D2

n2
sin

(
2πn2

Tp
tε

)
P ε
s = P ε(zε = Hε)− 2µ

∂Uε
3

∂zε
+ F ε

W3

F ε
W1

= F ε
W2

= 0

F⃗ ε
R = 0⃗ (108)

where Ai, Bi, Ci, Di, ni(i = 1, 2) and Tp are any real value. We are able to calculate an analytical
expression for P ε from equation (1), but it is too long and we have decided not to include it here.

We consider that D is a rectangular basin of length 10 meters and width 2 meters with a 100 × 20
points grid (that is, the discretization step used is ∆xε = ∆yε = 0.1). We choose the values of the
parameters so the maximum depth is always smaller than 1 meter, and thus the aspect ratio is always
smaller than 10−1. We solve in temporal interval [0, 10] with different time steps.

We introduce these two sets of values for the constants:

A1 = B1 = 2, C1 = D1 = 0.5, A2 = B2 = C2 = D2 = 0, E = 1 (109)

A1 = B1 = 1, C1 = D1 = 0.5, A2 = B2 = 0.5, C2 = D2 = 0, E = 0.75 (110)

With election (109) Uε
1 does not depend on xε, but with election (110) it does. We present in Tables 1

and 3 the infinity-norm errors obtained when we approximate solution (108) using models (103)-(106)
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and (107) with these choices of constants. For both examples we take: Φ = 0, g = 9.8, ρ = 998.2,
ν = 1.02× 10−6, Tp = 1, n1 = 0.1, n2 = 100.

We remark that in model (103)-(106) we must choose η and TC , where TC is the characteristic time
and 2η is the length of the averaging interval for the non dimensional time variable; but the relevant
choice here is the value of the product ηTC because 2ηTC is the length of the averaging interval for the
dimensional time variable.

∆t Error bound Error bound Error bound Error bound
for H SW for H NM for U1 SW for Ū1 NM

0.01 0 0 3.1e3 9.7e− 3
0.005 0 0 2.6e0 4.8e− 3
0.001 0 0 4.0e− 1 9.7e− 4
0.0001 0 0 3.8e− 2 9.7e− 5
0.000025 0 0 9.5e− 3 2.4e− 5

Table 1: Error bounds for example (108) with data (109) and ηTC = 2.5

In Table 1 we show the error bounds when comparing the computed solution of SW with the Navier-
Stokes solution (108), and when comparing the computed solution of NM with the averaged version
of (108). We can see that, to obtain the same order of accuracy than the new model (103)-(106) with
∆t = 10−2, model (107) has to be solved taking ∆t = 2.5 × 10−5, that is, the time step must be 400
times smaller. In this example, the depth is computed exactly by both models because it just depends
on time.

The times (in seconds) required to solve models SW andNM for the example of Table 1 are presented
in Table 2. We have used for these computations a personal computer with an Intel(R) Core(TM) i5 2.80
GHz processor (6 Gb RAM). We can see in this Table 2 that execution time for the new model increased
compared with model SW for the same time step, but we can observe that it is shorter if we want to
obtain the same accuracy. For example in this case, using the new model, in 8.4 seconds we have a more
accurate approximation of the solution than the one obtained with model SW in 268 seconds. We see
that the time needed to achieve the same accuracy with (107) is 1073 seconds.

∆t = 10−2 ∆t = 5× 10−3 ∆t = 10−3 ∆t = 10−4 ∆t = 2.5× 10−5

SW 2.9 5.4 27.0 268.5 1073.0
NM 8.4 16.4 81.5 812.6 3284.9

Table 2: Execution times (in seconds) of the example of table 1

In Table 3 we observe that, when velocity depends on the spatial variable xε, the results achieved
with the new model are quite better too. When we introduce data (110), we need to introduce a small
value for η (ηTC = 5 × 10−3) to guarantee the convergence of the scheme for ∆t = 10−4. For larger
values of ∆t, it is possible to choose larger values of η.

∆t Error bound Error bound Error bound Error bound
for H SW for H NM for U1 SW for Ū1 NM

0.005 9.8e− 3 9.8e− 3 3.1e0 1.4e− 2
0.001 1.9e− 3 1.9e− 3 4.7e− 1 2.7e− 3
0.0001 1.9e− 4 1.9e− 4 4.4e− 2 2.7e− 4

Table 3: Error bounds for example (108) with data (110) and ηTC = 5× 10−3

In figure 2 we show the error bounds of table 3. It can be well appreciated that the numerical scheme
is first order accurate as it corresponds to MacCormack scheme.
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Figure 2: First order accuracy of the numerical scheme

Let us consider now the following solution to Navier-Stokes equations where water depth depends on
xε:

Uε
1 = Axε

[
sin

(
2πn1

Tp
tε
)
+ cos

(
2πn1

Tp
tε
)
+ sin

(
2πn2

Tp
tε
)
+ cos

(
2πn2

Tp
tε
)]

Uε
2 = 0

Uε
3 = −Azε

[
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(
2πn1

Tp
tε
)
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(
2πn1

Tp
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)
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Tp
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Bε = 0

Hε = B(xε)me

ATp(m+1)

2π

 cos

(
2πn1
Tp

tε
)
−sin

(
2πn1
Tp

tε
)

n1
+

cos

(
2πn2
Tp

tε
)
−sin( 2πn2

Tc
tε)

n2



P ε
s = P ε(zε = Hε)− 2µ

∂Uε
3

∂zε
+ F ε

W3

F ε
W1

= F ε
W2

= 0

F⃗ ε
R = 0⃗ (111)

with m ∈ N, A, B, ni(i = 1, 2) and Tp any real value.
For the following values of the constants

A = 0.03, B = 0.1, n1 = 0.1, n2 = 100, Tp = 1,m = 1 (112)

time step must be very small (∆t = 10−4) to achieve the convergence of model SW while the new model
gives reasonable results with ∆t = 10−3 as we show in Table 4.

∆t Error bound Error bound Error bound Error bound
for H SW for H NM for U1 SW for Ū1 NM

0.001 — 1.2e− 2 — 2.1e− 1
0.0001 7.2e− 2 2.9e− 3 3.6e− 1 5.1e− 2

Table 4: Error bounds for example (111) with data (112) and ηTC = 1.3034× 10−2

We can observe from Tables 3 and 4 that, when the solution depends on xε, we need to take small
values of ηTC . This is due to the fact that approximation (31) (and, as consequence, all formula (32)-
(36)) is only valid for small values of η (specially when the approximated function is rapidly oscillating),
but then, averaged solution is almost equal to exact solution, and we shall also need a very small time
step for model (103)-(106). Nevertheless, we see in Table 4 that model (103)-(106) achieves better results
than the model (107) even in the worst case.
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Figure 3: Comparison between U1 SW and Ū1 NM

Finally, we present a more realistic numerical experiment which does not give a precise solution of
the Navier-Stokes equations. Zero-Dirichlet boundary conditions are imposed for horizontal velocity. At
the initial time, horizontal velocity is set to be zero and the the water depth is:

Hε
0(x, y) =

 1 + 0.1 sin(2πx) if x ∈ [0, 3) ∪ (7, 10]

1.9 + 0.1 sin(2πx) if [3, 7]
(113)

In this case, as we have already commented for the previous example, time step must be quite small
(∆t = 5× 10−4) to achieve the convergence of model SW while the new model gives reasonable results
even with ∆t = 10−2. We have plotted together, in figure 3, the approximations of the U1 component
of the horizontal velocity that both models provide. We observe that the new model reduces the high
frequency oscillations that appear using the shallow water model. If we compare the execution times,
we have that the time required to solve model SW with this data is 45 seconds while model NM runs
in just 7 seconds.

7 Conclusions

We have used asymptotic analysis to obtain from the time-averaged non-dimensional Navier-Stokes
equations a new shallow water model. The new model is able to filter (in some representative cases) the
high frequency oscillations and this allows us to choose a much larger time step.

We have made some numerical comparisons between the new model and the shallow water model
proposed in [17]. Numerical experiments confirm that this new model is able to obtain a given accuracy
using larger time steps than the time step needed by the other shallow water model (see Tables 1, 3-4 and
figure 3). In some cases, the time step can be even four hundred times larger. This enhancement leads
to much shorter execution times compared with the execution times required by the classical shallow
water model to obtain the same precision (see Table 2).

Although the numerical results achieved improve those of the model without time filtering, we have
observed not so good results in some cases. We think that it can be caused by the absence of spacial
filtering, and it would be convenient to use a combination of spacial and time filters, as suggested in [4],
because the use of spacial “projective” filters or modelling of subgride-scale stress tensor is necessary to
reduce the number of degrees of freedom of the problem.
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