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Abstract

In this thesis we study the problem of creating compact and efficient representations
of graphs. We propose new data structures to store and query graph data from
diverse domains, paying special attention to the design of efficient solutions for
attributed and RDF graphs.

We have designed a new tool to generate graphs from arbitrary data through
a rule definition system. It is a general-purpose solution that, to the best of our
knowledge, is the first with these characteristics. Another contribution of this work
is a very compact representation for attributed graphs, providing efficient access
to the properties and links of the graph. We also study the problem of graph
distribution on a parallel environment using compact structures, proposing nine
different alternatives that are experimentally compared. We also propose a novel
RDF indexing technique that supports efficient SPARQL solution in compressed
space. Finally, we present a new compact structure to store ternary relationships
whose design is focused on the efficient representation of RDF data.

All of these proposals were experimentally evaluated with widely accepted
datasets, obtaining competitive results when they are compared against other
alternatives of the State of the Art.
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Resumen

En esta tesis estudiamos el problema de la creación de representaciones compactas y
eficientes de grafos. Proponemos nuevas estructuras para persistir y consultar grafos
de diferentes dominios, prestando especial atención al diseño de soluciones eficientes
para grafos generales y grafos RDF.

Hemos diseñado una nueva herramienta para generar grafos a partir de fuentes de
datos heterogéneas mediante un sistema de definición de reglas. Es una herramienta
de propósito general y, hasta nuestro conocimiento, no existe otra herramienta de
estas características en el Estado del Arte. Otra contribución de este trabajo es
una representación compacta de grafos generales, que soporta el acceso eficiente
a los atributos y aristas del grafo. Así mismo, hemos estudiado el problema de
la distribución de grafos en un entorno paralelo, almacenados sobre estructuras
compactas, y hemos propuesto nueve alternativas diferentes que han sido evaluadas
experimentalmente. También hemos propuesto un nuevo índice para RDF que
soporta la resolución básica de SPARQL de forma comprimida. Por último,
presentamos una nueva estructura compacta para almacenar relaciones ternarias
cuyo diseño se enfoca a la representación eficiente de datos RDF.

Todas estas propuestas han sido experimentalmente validadas con conjuntos de
datos ampliamente aceptados, obteniéndose resultados competitivos comparadas con
otras alternativas del Estado del Arte.
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Resumo

Na presente tese estudiamos o problema da creación de representacións compactas e
eficientes de grafos. Para isto propoñemos novas estruturas para persistir e consultar
grafos de diferentes dominios, facendo especial fincapé no deseño de solucións
eficientes nos casos de grafos xerais e grafos RDF.

Deseñamos unha nova ferramenta para a xeración de grafos a partires de fontes
de datos heteroxéneas mediante un sistema de definición de regras. Trátase dunha
ferramenta de propósito xeral e, até onde chega o noso coñecemento, non existe outra
ferramenta semellante no Estado do Arte. Outra das contribucións do traballo é unha
representación compacta de grafos xerais, con soporte para o acceso eficiente aos
atributos e aristas do grafo. Así mesmo, estudiamos o problema da distribución de
grafos nun contorno paralelo, almacenados sobre estruturas compactas, e propoñemos
nove alternativas diferentes que foron avaliadas de xeito experimental. Propoñemos
tamén un novo índice para RDF que soporta a resolución básica de SPARQL de
xeito comprimido. Para rematar, presentamos unha nova estrutura compacta para
almacenar relacións ternarias, cun diseño especialmente enfocado á representación
eficiente de datos RDF.

Todas estas propostas foron validadas experimentalmente con conxuntos de datos
amplamente aceptados, obténdose resultados competitivos comparadas con outras
alternativas do Estado do Arte.
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Chapter 1

Introduction

1.1 Motivation

Graphs are a natural way for modelling data in such domains where the most relevant
information relies on the relationships between the entities. Some representative
examples are the Web graphs or the Social networks. Last years, many research
lines have emerged focusing on the analysis of data showing this graph nature.
Furthermore, in the Big Data Era, huge volumes of data are generated every day.
This information needs to be stored and processed efficiently in terms of space and
time. In this context, the design of new compact graph representations that can be
accessed efficiently has become an important research field. The work presented in
this thesis deals with this new problem, proposing indexing techniques to efficiently
represent graphs from different domains and characteristics, in a single processor
but also in distributed environments.

This thesis presents the results of the research developed in different areas related
to the representation of graphs in an efficient way. A research line has emerged due
to the need of graph generation in many domains that, even though the information
fits very well with a graph structure, the data is available in other common formats
(for instance, in XML). In this context, an automatic tool to generate graphs from
arbitrary data that follows the model specified by the user could improve this
common but currently tedious task.

In many cases, the graph models used to represent the relevant information of
a domain are simple directed graphs. Many compact and efficient proposals have
appeared to represent this kind of graphs. However, in many cases, this model is not
enough, because nodes and edges contain complex information. Last years, Graph

1
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Databases emerged to represent and efficiently query graphs with attributes. This is
an important research line that we explore in this thesis, focused on the compact
representation of attributed graphs.

Many of the domains that can be represented as a graph include information
generated from the activity of the users on the Internet (for instance, graphs
representing the information of a query log), so the number of nodes and edges of
the resulting graphs can be huge. In this context, distributed environments have
been applied in this area to deal with these special requirements. This thesis studies
the problem of the graph distribution using compact structures.

This work also analyzes the problem of the representation of a specific kind of
graphs, RDF, which has become the standard of the Open Linked Data. The design
of solutions for a specific domain requires the implementation of efficient algorithms
to answer the most frequently required queries in this domain.

1.2 Contributions

In this thesis we propose new structures and algorithms to deal with the
representation of different kind of graphs, focusing on the compression of the data
while providing efficient access to the information. Next, we describe each of the
five main contributions of this thesis.

Graph modelling: GraphGen

In real applications, even though the nature of the data fits well with a graph,
this information usually is represented using standard approaches such as XML or
even relational databases. For instance, query logs are usually provided as a list
of structured records, where each record represents an action (a click) of a user in
the search engine. In many cases, the transformation of this data into a graph is
not trivial. Notice that it is usually possible to create very different graphs from
the same source of information. Just to mention some examples, query logs can be
modelled as click graphs, url cover graphs, link graphs, etc. Therefore, users must
define the most useful graph model to represent their data. This very common task
carried out to exploit a new source of information, usually called Graph Modelling,
consists in transforming the data source according to a given graph model. Some
solutions were proposed in the State of the Art to extract a graph from datasources
of a specific domain.

To the best of our knowledge, no general graph generation tools are available
in the State of the Art. Most of these solutions are ad-hoc designed to solve the
transformation of data from a specific domain and format. In this thesis we propose



1.2. Contributions 3

a general purpose tool that aims to fill this gap in the State of the Art. Our tool
GraphGen allows users to generate graphs from arbitrary semistructured input data.

GraphGen was designed as a general purpose application, applicable to any kind
of data. The purpose of GraphGen is to provide a standard mechanism to generate
new information structured like a graph from arbitrary data. We have designed a
rule generation model that gives theoretical support to the practical application we
developed. GraphGen generates labelled directed graphs from any kind of input
datasource (supporting formats like XML or CSV). The way in which the final graph
is generated is defined by the user through a rule definition system, which allows the
user to progressively decompose the original data into simpler contents which will
be represented as nodes. Additional relationships can be defined to relate different
nodes according to the structural properties of the graph that is being generated.

The versatility of GraphGen was proved with its application in three different
use cases: the generation of co-authorship graphs from bibliographic databases,
the transformation of query logs into query graphs and, finally, the creation of
social graphs. The result of this work was published in an international workshop
[ÁGBYB+12] and finally in the Journal of Systems and Software indexed in JCR
[ÁGBYB+14].

Property graphs: AttK2-tree

We have already noted that many data from real contexts can be modelled as a
graph. A simple directed graph is used to model many domains, like Social Networks
or Web graphs. However, this kind of graphs is not enough when additional data has
to be associated to the nodes (and even to the edges) of the graph. These domains
where nodes and edges include a set of attributes (key/value) define a new model of
graphs. They are graphs with attributes, which are usually called attributed graphs
or property graphs.

Last years, Graph Database Models emerged to give a theoretical support to the
Attributed Graphs. These new models are characterized by representing the schema,
the data, the queries and the results as a graph. Built over those theoretical models,
many practical Graph Databases Engines have been proposed. DEX or Neo4J are
two relevant examples.

Given that the amount of information that these graph database engines have to
manage, the design of efficient and compact structures to represent property graphs
improves their management and querying. We propose a compact structure to store
attributed graphs, whose internal representation is based on the K2-tree, a static
structure designed to represent simple directed graphs (binary relationships) in main
memory. Our goal was to study the possibility of extending this compact structure
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to obtain a very compact representation of attributed graphs which supports efficient
access to the attributes of the nodes and edges of the graph.

The result of this study is AttK2-tree, a compact structure to store attributed
graphs based on the representation of binary relations in a very compact way using
the K2-tree structure. We evaluate the performance of this structure and we study
some fields of application for this static but compact attributed graph representation.
We compare our proposal against another attributed graph representations in the
State of the Art, obtaining the best compression results and competitive temporal
results for basic query operations. The results of this work were published in a
national conference [ÁGBLP10a] and an international workshop [ÁGBLP10b].

Graph distribution using K2-trees

Last years, distributed environments have appeared as a solution to manage the huge
amounts of data that are produced every day, where the requirements of processing
exceed the capacity of the mono-processor environments. Parallelism seems to be a
good strategy to deal with these scalability and efficiency issues.

The application of parallel techniques in graph mining opens a new research area,
whose main goal is to obtain a good graph partitioning scheme in terms of efficiency
and load balance. Many algorithms were proposed in the State of the Art aiming to
obtain a good partitioning of the data.

The third contribution of this thesis is the design and implementation of several
partitioning algorithms to distribute a simple graph in multiple processors, supporting
direct and reverse neighbor operations. We store the different partitions using the
K2-tree data structure (and some additional information), in order to obtain a
distributed but compact and efficient graph representation. We initially represent
the graph in an adjacency matrix. Then, we propose different ways of partitioning
this matrix, allocating a set of cells of this matrix for each processor. Therefore, we
do not follow a classic graph partitioning strategy, where nodes of the graph are
distributed. Instead, we propose several edge distributions.

Some of our graph partitioning algorithms are based on classical approaches
originally designed to parallelize the matrix multiplication. We also propose some
adaptive distributions designed to adapt the graph partitioning depending on
the distribution of the edges along the adjacency matrix. A different kind of
algorithms that we propose consists in the partitioning of the K2-tree using vertical
divisions (from the root to the leaves). They are focused on obtaining a good
spatial balance taking into account the structural properties of the K2-tree. Finally,
partitioning algorithms based on the use of the Latin Square mathematical concept
were studied. We analyze and compare the temporal and spatial efficiency of the
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different partitioning algorithms proposed. The results of this work were published
in the 20th International Symposiom (SPIRE 2013) [ÁGBGPM13].

Representing RDF graphs: K2-triples

The Web of Data emerged to deal with the management of the huge amount of
information which is daily generated on the Internet. It supports the principles
of the Semantic Web and it proposes a new data publishing format, available for
machine processing and also supporting the connectivity between heterogeneous
data sources. In this context, the Resource Description Framework (RDF) provides
a common language to describe facts of the world in a structured and linked way. It
provides a description framework that structures and links data as a set of triples
(subject, predicate, object). A RDF dataset can be modelled as a labelled graph,
where the subject and the object are the nodes and the predicate is the labelled
edge that connects them.

Given the increasing importance of RDF, many specific RDF querying engines
appeared in the State of the Art. Hexastore, RDF-3X, Virtuoso or Jena are
representative examples of complete systems to store RDF graphs supporting
SPARQL, the native query language designed specifically to access RDF data.

An important contribution of this thesis consists in a new technique to store
RDF datasets in a very compact way in the main memory, providing at the same
time efficient query algorithms. It follows the vertical partitioning approach, a very
common strategy in the State of the Art about RDF stores. K2-triples represents
an RDF dataset as |P | binary relationships. Each binary relationship represents the
relations between subjects and objects for a different predicate. Those binary relations
are represented using the compact K2-tree data structure. Additionally to those
multiple K2-trees, K2-Triples includes some additional indexes that reduce the main
weakness of the vertical partitioning approaches: a poor efficiency in queries with
unbounded predicate (that is, queries which do not specify a particular predicate). A
basic triple pattern resolution is provided and different join resolution strategies are
implemented. The set of basic query patterns that K2-triples implements efficiently
is expected to be the basis for more complex queries, since an efficient SPARQL
resolution strongly depends on the efficiency of the basic triple patterns. This
structure was evaluated against other representative approaches in the State of the
Art, obtaining very competitive results. We published the results of this investigation
in the Americas Conference on Information Systems (AMCIS 2011) [ÁGBFMP11]
and in Knowledge and Information Systems indexed in JCR [ÁGBF+14]
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Representing ternary relationships: Interleaved K2-tree

An RDF graph can be modelled as a labelled graph, but it can also be considered as
a ternary relationship. Many other domains are ternary relationships. For instance,
raster data stores a value k for each cell (i, j). Several approaches were followed to
represent ternary relations in the State of the Art. Most of them are focused on
solving the characteristics of a specific domain.

In this thesis we propose the InterleavedK2-tree, a compact structure to represent
ternary relations in a very compact and efficient way. This new structure is
an evolution of the K2-tree and it provides indexing capabilities over the three
dimensions. However, it is specially designed for data where the three dimensions
are not equally sized, with one dimension smaller (with a smaller number of different
values) than the others. We design and implement this new structure and some
querying algorithms. We also propose, for such relationships where the third
dimension has a large number of different values, a lazy evaluation which improves
the results in some kind of queries. This work was published in Proceedings of the
2014 Data Compression Conference (DCC 2014) [ÁGBdBN14].

1.3 Structure

This thesis is organized as follows. Chapter 2 describes the previous concepts that
are used along our work. First, we present some bitmap representations. Then,
two compact structures of special interest for our work are explained in detail: the
Directly Addresable Variable-Length Codes and the K2-tree. This chapter ends
with a review of the basic concepts in Graph Theory.

The structures and algorithms we propose in this thesis are organized in three
main parts.

Part one describes two different proposals for general graphs. Chapter 3 proposes
a tool to generate basic multi-partite graphs obtained from associations found in
arbitrary data. This chapter presents the theoretical graph model underlying this
tool. It also describes the tool we have developed, providing implementation details
and showing its behavior with three examples of use cases.

Chapter 4 proposes a compact data structure to store graphs with attributes
(attributed graphs) based on the K2-tree. This chapter includes a review of the
State of the Art in Graph Databases. Then, we propose the structure and a set
of operations, which are evaluated with graph datasets. We compare our results
against other proposals in the State of the Art.
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Part two studies the graph distribution problem using the K2-tree structure.
Chapter 5 describes the graph partitioning problem, reviewing classical partitioning
algorithms in the State of the Art and then, matrix partitioning techniques, which
set the basis of our work.

Chapter 6 proposes several partitioning algorithms to distribute a simple graph
in multiple processors, supporting direct and reverse neighbor operations. Each
partition is stored using a K2-tree data structure.

Chapter 7 studies and compares the graph partitioning proposals in terms of
temporal and spatial results. The overall performance is evaluated, and the spatial
and temporal balance is also studied.

Part three is focused on the representation of RDF graphs. Chapter 8 proposes
K2-triples, a new technique to store RDF datasets in a very compact way in the
main memory, providing at the same time efficient query algorithms. It follows the
vertical partitioning approach, a very common strategy in the State of the Art about
RDF stores. This chapter reviews the State of the Art in RDF stores, explains the
structure we propose and compares it against other relevant proposals.

Chapter 9 proposes a compact structure to store and query ternary relationships.
This new structure is an evolution of the K2-tree and it provides indexing capabilities
over the three dimensions. The performance of this structure is evaluated in different
RDF graphs.
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Chapter 2

Previous concepts

The design of new succinct data structures to support the storage and exploitation
of different kinds of data has been a prolific research line, aiming to provide efficient
access using the least space. In this chapter we review some of these succint structures
of the State of the Art that are specially significant for our work. They are the basis
of many of the structures proposed.

Section 2.1 introduces the most relevant bitmap representations, analyzing their
temporal and spatial cost. The two basic operations over a bitmap, Rank and Select,
are defined and their implementation in the different structures is described. Details
about the practical implementation of bitmaps with rank and select access used
along this thesis are also given.

Section 2.2 describes Directly Addresable Codes, a variable-length encoding
scheme for sequences of integers, which supports direct access to the elements in the
encoded sequence. Some indexes designed to improve the efficiency of our K2-triples
in Chapter 8 are encoded with DAC.

In Section 2.3 we explain the K2-tree structure, a compact representation of
binary relationships, which is the basis of the structures K2-triples and AttK2-tree
presented in this thesis. The distribution of Web and Social graphs using the K2-tree
structure is also a contribution of this thesis. Therefore, given the importance of
this structure for our work, we analyze its implementation details in depth.

Finally, we review some basic concepts of Graph Theory in Section 2.4.

9
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2.1 Bitmap representations

Bitmaps are one of the first structures that appeared in the State of the Art, as
they are the basis of many other succint structures. Many approaches have been
proposed to achieve their efficient access in a compact space, improving the overall
efficiency of the structures built over them. This section reviews the most relevant
bitmap representations. First, the operations that a basic bitmap has to support are
described. Then, the first solutions appeared in the State of the Art are presented.
After that, approaches which are mainly focused on the compression of the data
(with efficient access support) are detailed. Finally, the practical implementation
used in many of the structures proposed in this thesis is given.

2.1.1 Rank and Select operations

A bitmap B is a sequence of n bits. We can define three basic operations over this
structure:

• rankb(B, i) counts the number of times that a bit b (1 or 0) appears in B
between the positions 0 and i (both included). Consider the bitmap B =
0111001110. Then, rank0(B, 4) counts the number of zeros up to the position
4, having as result rank0(B, 4) = 2. On the other hand, rank1(B, 4) = 3, since
three ones appear in the binary subsequence 01110. By default, if no b is
specified, we consider that rank operation counts the number of ones.

• selectb, which is the complementary operation to rank, returns the position
in which the i-th bit of kind b is located. For instance, select0(B, 2) = 4
and select1(B, 3) = 3. Again, if no bit value is specified, the operation select
searches for the i-th 1 by default.

• access checks the value of a given position in the bitmap, returning a 0 or a 1.
Following with the example, access(B, 5) = 0 and access(B, 2) = 1.

Many structures have been designed in order to represent a bitmap in a very
compact way implementing rank, select and access operations efficiently.

2.1.2 First approaches

Rank and select operations were defined by Jacobson [Jac88], who also defined the
first bitmap representation supporting the rank operation in constant time. It is
composed by a two-level directory. The first level stores the result of the computation
of rank1(B, i − 1), for each i multiple of s = blogncblog n

2 c. Figure 2.1 shows an
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Figure 2.1: The two-level directory proposed by Jacobson

example, where the first level counter stores rank1(B, 19) and rank1(B, 31), where
s = 20. A second level stores, for each block of the first level, several local rank results
inside its corresponding block. Specifically, it computes rank1(Si, j − 1), where Si

is the sequence of bits between two counters of the first level and j is a multiple
of b = blog n

2 c. Figure 2.1 shows this second level directory. For instance, the first
value of this sequence is 2, because rank1(S1, 3) = 2, where S1 = 1001001111000111.
Using this directory, we can solve the operation rank1(B, i). First, we compute the
number of bits appearing from the beginning of the sequence to the position of the
nearest multiple of s less than i (that we called p), by using the first level of the
directory. Then, we use the second level to compute the number of ones from the
position p+ 1 to the nearest multiple of b less than i (which we called p′) adding this
count to the previous result. Finally, we use table lookups to compute the number of
ones from position p′ + 1 to i. Those bits are used as an index to access to one table
that stores the number of ones for every combination of bits, which is shown on the
right of the Figure.

The additional space needed to support rank operations in this solution is given
by the directory and the lookup table. In the first level of the directory, the partial
results for n

s superblocks are stored. The cost of storing a counter for each of them
is logn bits, so the total space of the first level is O( n

log n ) bits. In the second
level, n

b blocks are stored, spending log s bits for each one, so the total space of
this second level is O(n log log n

log n ). Finally, the lookup table stores the rank values
for every combination of b bits, costing O(2b · b · log b) = O(

√
n logn log logn) bits.

Considering that partial results, the total space to support rank and select operations
with this approach is o(n).

In this thesis we use the practical implementation of Rodrigo González [GGMN05],
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which is based on this classical solution proposed by Jacobson. Specifically, we use a
solution with one level directory where the extra space can be parametrized (usually
we use the 5% of the bitmap size), providing in this way an interesting space/time
tradeoff.

The initial results obtained by Jacobson were improved by Clark and Munro
[Cla98,Mun96]. They proposed a structure that supports rank and select operations
in constant time in n+ o(n) bits where n bits are used to store the bitmap, while
an additional structure costing o(n) gives rank and select support.

2.1.3 Compressed bitmap representations

Previous approaches built additional structures to support rank and select
operations. In this section, we describe new structures that store the original
bitmap in a very compact way, while they provide efficient implementations of rank,
select and access operations.

Pagh [Pag99] divides the bitmap in blocks of the same size. Each block is
represented by the number of bits with value 1 they contain. It uses a compression
schema that clusters adjacent blocks into intervals of varying length.

Raman et al. [RRR02] proposed a bitmap compression based on a numbering
scheme. As in the previous approach, the sequence is divided into a set of blocks of
the same size. Each block will have two values associated: ci, which is the number
of ones that this block contains, and oi, which identifies the block in a vocabulary
composed by the different combinations of bits. This vocabulary is sorted in the way
that blocks with few ones or few zeros have shorter identifiers. Considering that
the bitmap is divided into blocks with length u, storing each ci costs dlog(u+ 1)e
bits and each oi costs dlog

(
u
ci

)
e bits.

Many other implementations are included in the current State of the Art. For
instance, Okanohara and Sadakane [OS07] proposed a very compressed solution
specially designed to manage sparse bitmaps. Another implementation specially
convenient for sparse bitmaps is the gap encoding strategy, which encodes the gaps
between the sequencies of consecutive bits with value 1 [Sad03,MN07,GHSV06].

2.2 Directly Addressable Variable-Length Codes

Directly Addressable Codes (DAC) is a technique proposed by S. Ladra et al. [Lad11]
[BLN13] to encode sequences of integers by using a variable-length encoding schema.
Its main strength is that it provides direct access to any codeword included in the
sequence, and no sampling techniques are required.
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2.2.1 Encoding schema

DAC technique is based on the VByte codification [WZ99]. The encoding of a given
integer ni with VByte starts from dividing its binary representation in chunks of
b consecutive bits. For instance, the integer 1571, whose binary representation is
11000100011, could be split in three chunks of b = 4 bits, that is, 0110, 0010, 0011
where the most significant chunk is completed with zeros (if it is necessary, in order
to have 4 bits). In addition to that, the VByte representation adds an extra bit to
each chunk. This bit will have value 0 for the most significant block and 1 for the
remaining blocks. For instance, the final code for ni = 1571 will be 001101001010011.
Regarding to an optimal encoding, VByte loses one bit per chunk and, additionally,
at most b bits to complete the last chunk. In exchange of that loss of compression,
the decoding with VByte is very fast, in particular for chunks of 8 bits (which are
called byte codes), taking advantage of the byte alignment.

For the sake of simplicity, the process of construction for DAC codes is given by
using this VByte encoding. However, the practical implementation of DAC uses a
dense coding scheme, variant of the VByte encoding, which was designed for the
text compressor ETDC [BFNP07], and makes use of all the combinations of chunks,
achieving better spatial results.

2.2.2 Building DAC

Based on the encoding technique described in Section 2.2.1, a sequence of integers
X = {x1, x2, . . . , xn} can be encoded providing direct access to any xi ∈ X. The
construction of this index is carried out through the next three steps.

Chunk division (C) First, the binary representation of each integer xi is divided
into chunks of size (b + 1) bits. Figure 2.2 shows an example of a sequence X
composed by 5 integers given b = 3. The vector C ′ shows the binary representation
of these integers, divided into chunks of three bits. Note that the last chunk of
each integer is filled with zeros if necessary. For instance, the second integer of the
sequence in Figure 48, is represented by three chunks {001, 001, 000}.

However, as we described in Section 2.2.1, VByte uses b + 1 bits to represent
each chunk of b bits, where the extra bit is 0 for the most significant chunk, and 1
for the remaining chunks. Vector C in Figure 2.2 shows the chunks of b + 1 bits.
For instance, the integer 48 is represented by {0001, 1001, 1000}, where the extra bit
is 0 only for the most significant chunk.
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Figure 2.2: Encoding of a sequence of integers using Direct Addresable
Codes
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Stream representation (A) The sequence of bits of the vector C built in the
previous step is structured to provide direct access. The chunks of bits are represented
in streams structured by levels. In that way, a vector A1 stores the least significant
chunk for each integer in the sequence. Therefore, the i− th chunk in A1 contains
the b least significant bits of the integer xi. Next vector, A2, contains the second
least significant chunk of b bits, but only for that integers containing a number of
chunks greater or equal to 2 in A2. The chunks are also ordered by the position of
its corresponding integer in the sequence. The process continues until all the chunks
are included in some stream Aj . Note that the number of different streams Aj is
given by the maximum integer represented in the sequence.

Figure 2.2 shows the three streams {A1, A2, A3} needed to represent the sequence
from the example. For instance, the three chunks of x2 = 48 are represented in
the elements A1[2], A2[2], A3[1]. However, the element x3 = 2 is composed by a
single chunk, so it is only represented in the first stream A1, located in the third
position (A1[3]). Note that the stream A1 always contains |X| elements. However,
the numbers of elements in the remaining streams is progressively decreased, in the
way that A1 ≤ A2 ≤ . . . An. This property is due to the fact that if an integer has a
chunk represented in Ai, it also contains a chunk in every Aj , j ≤ i.

Chunk significance representation (B) The extra bit used in VByte to mark
the most significant chunk is represented in a separated bitmap in DAC. We build as
many bitmaps Bi as streams Ai, where the j−th element of bitmap Bi is represented
by a 0 if the j − th element of Ai is the most significant chunk of the integer it
belongs, and 1 otherwise. In other words, the value of this bitmap shows if the
integer represented in that position continues to be represented in the next stream
or not.

For instance, the first integer of the sequence, x1 = 25, is represented in A1 and
A2, since its VByte code is 0011 − 1001. The first chunk, A1[1], has associated a
1 in B1, since it is not the last chunk of x1. However, B2[1] = 1, because it is the
most significant chunk of that integer.

In this way, the VByte encoding of the sequence of integers is finally structured
with DAC through a set of streams Ai representing the chunks and a set of bitmaps
Bi storing the extra bit of each chunk. An additional data structure to provide
rank access is set up on the Bi bitmaps. These rank structures will answer a rank
operation in constant time with O( ni log log N

log N ) bits, being N the number of bits of
the encoded sequence and ni the number of bits the bitmap Bi.
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2.2.3 Accesing DAC

Given the DAC structure whose building was described in Section 2.2.2, the process
of extraction of the i − th integer of the sequence is as follows. First, the least
significant chunk of xi is extracted, which is always located in the position i1 = i of
the first stream. Therefore, it is located in A1[i1] = A1[i]. Then, the element B1[i1]
is checked. If it is a zero, the decoding of xi is A1[i] and the process ends. Otherwise,
if it is a 1, the next chunk has to be extracted and the process is repeated.

In order to obtain the position of the next chunk (in A2), a rank operation is
performed over B1, to count the number of ones from the position 0 to the position
i. This number gives the integers that will be represented in A2 before xi. Therefore,
we set i2 = rank(B1, i1), which is the location of the next chunk of xi in A2. The
second chunk of xi is A2[i2] and B2[i2] shows if the integer has additional chunks
in lower levels. If so, we set i3 = rank(B2, i2) and the same step is repeated. The
process continues until a 1 is located in the Bj [ij ] position.

Figure 2.2 highlights the elements explored to decode the fourth element of the
sequence. The least significant chunk of that integer is located in A1[4] = 111. Then,
B1[4] has to be checked. In this case, it stores a 1, which means that the fourth
element is composed by more than one chunk. So, we compute rank(B1, 4) = 3,
meaning the next chunk of x4 corresponds to the third element of A2. We have
A2[3] = 001, which is the next chunk of xi. Checking the bitmap B2[3] = 0 we note
that this is the last chunk of the element. So, x4 = 0011112 = 15.

2.2.4 Analysis

In the worst case, the number of accesses needed to extract an integer in the sequence
is given by d log M

b e, whereM is the maximum integer of the sequence and b is the size
of the chunks. However, when n consecutive integers are extracted, the process can
be optimized. For each stream, instead of performing n rank operations, only one
rank operation in each level is needed (for the first element of the searched sequence),
while the remaining n− 1 elements are checked by a sequential exploration.

The total size of a DAC representation is
∑L−1

k=1 nk · (b+ 1 +X) +nL · b, where L
is the number of levels, b the number of bits of each chunk, nk the number of chunks
in the level k and X a parameter representing the number of extra bits per bit in
Bi used to represent the rank structure, depending on the choosen implementation.
The parameters b and X can be modified carrying out different space-time tradeoffs.
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Figure 2.3: Example of the K2-tree structure

2.3 K2-tree

In this section we describe a compact structure of special importance for the work
developed along this thesis, as it sets the basis for some of the structures we propose.
It was designed by S. Ladra et al. [Lad11, BLN09]. The K2-tree was originally
designed to store and query the links included in a Web graph in a very efficient
way. It supports the most common operations in this domain, like recovering the
pages pointed by a given page (direct neighbors) or recovering the pages pointing to
a given page (reverse neighbors).

This structure is based on a conceptual representation of a K2-ary tree, whose
features are explained in Section 2.3.1. The structure is finally stored in a very
compact way through two bitmap structures supporting rank access, as it is described
in Section 2.3.2. Some variations and optimizations were also proposed by their
authors, described in Section 2.3.4.

2.3.1 Conceptual representation

2.3.1.1 Building the K2-tree

K2-tree structure is conceptually a K2-ary tree, whose construction starts from the
adjacency matrix of the graph. As it is well known, a binary adjacency matrix of a
simple graph (understanding simple graph as unweighted and directed) of n nodes is
a matrix of size n×n where the cell (i, j) contains a 1 if and only if an edge exists in
the graph starting from the node i and pointing to the node j. Otherwise, this cell
will contain a 0. Figure 2.3 shows a graph of 8 nodes (left) and its corresponding
adjacency matrix (middle). For instance, cell (5, 6) of the adjacency matrix contains
a 1 because an edge starts from 5 and points to 6 in the original graph.



18 Chapter 2. Previous concepts

The process of construction of the conceptual K2-tree starts by dividing the
matrix into K2 squared submatrices of size n2

K2 × n2

K2 , following an MX-Quadtree
strategy [Sam06]. The root node of the tree will represent each one of these matrices
with a bit, following a left to right and top to bottom ordering. In this way, a
submatrix will be represented with a 1 in the tree if it contains at least a 1 in one
of its cells. Otherwise, if it is an empty matrix, it will be represented as a 0 in its
corresponding position of the tree. This root of K2 bits composes the first level
of the K2-tree. Figure 2.3 shows the first subdivision of the adjacency matrix in
4 submatrices (for K = 2) and its corresponding root node (1001). First 1 of the
root means that the top-left submatrix contains at least a 1. On the other hand,
the second bit is a 0, meaning all the cells of the top-right submatrix (rows 0− 4
and columns 4− 7) are zeros.

Each not empty submatrix (represented with a 1 in the tree) will be divided again
in K2 submatrices, following the same process. Therefore, each 1 in the i-th level of
the tree will have K2 children in the i+ 1-th level, representing the K2 submatrices
in which this element is divided. Again, each bit denotes if its corresponding matrix
is an empty matrix or not. For instance, first bit of the root in Figure 2.3 will
have 4 children in the second level. The first child is represented by a 1, meaning
the submatrix between the rows 0− 1 and the columns 0− 1 contains at least an
edge. However, the second bit, which is a 0, means that the submatrix between the
rows 0− 1 and the columns 2− 3 is empty. The process continues recursively, by
subdividing each not empty matrix and representing with one bit in next level each
child, until the leaf level is reached, where each bit corresponds with a cell of the
tree.

Note that in order to make possible the application of this method, the number
of nodes n should be restricted to a power of K. For such adjacency matrices where
n is not a power of K, the matrix will be conceptually filled with rows and columns
of zeros until the next power of K is reached. Since the empty submatrices are
represented with very few bits in the tree (because they are not subdivided and
represented in lower levels) this assumption will have almost no impact in the overall
performance of the solution.

The height of the K2-tree for a graph with n nodes will have h = dlogK ne.
Consequently, lower values of K produce higher trees.

2.3.1.2 Querying the K2-tree

K2-tree was designed to represent and query Web graphs, so in this section we
focus on describing how the basic operations (direct and reverse neighbors) are
implemented over the conceptual K2-tree explained in the previous section.

Obtaining the direct neighbors of a node r is equivalent to recovering the cells
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with a 1 value in its corresponding row r of the adjacency matrix. The operation
consists in a top-down traversal over the tree, starting at the root and moving
down the tree until reaching the leaves (or until no ones are found in the explored
branches). For each node, at most K bits have to be checked, depending on the row
we are exploring.

As an example, we describe how the direct neighbors of the node 5 are recovered
for the graph of the Figure 2.3. In other words, we want to check which cells of
the row 5 are set to 1. We start at the root of the tree (1001), checking the third
and fourth bits, since they correspond to the bottom submatrices of size 4 (which
include the row 5). The third bit is a 0, so it will be not explored in the next levels.
However, the fourth bit is a 1, so we go down the tree to check its children, 0100.
For that level, the row 5 is included in the top submatrices (rows 4 and 5), so we
check the two first bits. The second bit is a 1, so we continue exploring the tree,
reaching the leaf level (0111). The third and the fourth bits represent the cells (5, 6)
and (5, 7), respectively, and they have value 1, so the final result of that operation
will be {(5, 6), (5, 7)}, meaning node 6 and node 7 are direct neighbors of the node 5.

Reverse neighbor operation can be implemented in a symmetric way, as a top-
down traversal over the tree in which we check K bits, at most for each explored
node.

2.3.2 Data structure

The conceptual K2-tree explained in the previous section is represented in a very
compact way by performing a level-wise traversal over the bits of the tree. Specifically,
the full tree is stored using two bitmaps:

• T (tree) stores the bits of the root and the intermediate levels of the tree,
excluding the leaf level. In order to build this bitmap, the bits of the tree are
traversed by levels, from the root to the next to last level, and from left to
right.

• L(leaves) stores the last level of the tree, where each bit corresponds with a
cell of the matrix.

Figure 2.3 shows the bitmaps T and L for the same example. In this case, T
stores in the first K2 = 4 bits the root level, and the remaining bits correspond
with the second level of the tree, from left to right. L represents the 12 bits of the
leaf level. An auxiliary structure is created over the bitmap T in order to enable
rank operations over it. As it will be shown next, query algorithms do not need to
perform rank operations over L, so this is the main reason to store the last level
separately to the rest of the levels.
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Navigation over T and L

Section 2.3.1.2 explained how the conceptual K2-tree is performed by a top-down
traversal over the tree. In this section we show how the same traversal can be
executed over the bitmaps T and L and how the location of the K2 children of an
element can be directly accessed through a rank operation.

In order to obtain the direct neighbors of a node of the graph, the root node
of the conceptual K2-tree has to be explored. It is located in the first K2 bits of
T . In the case of our example (recovering the direct neighbors for the node 5), the
third and fourth bits of the root node are checked. They are T [2] = 0 and T [3] = 1.
The next step consists in obtaining the position of the children of T [3], since it is a
one. The i-th children of any bit x in T can be computed according to the formula
T : L[rank1(T, x)K2 + i], where T : L is the concatenation of the two bitmaps.
Therefore, the first child of the bit 3 is in the position rank1(T, 3)K2 = 8, and, since
all the children of an element are in consecutive position of the bitmap, the children
of the bit 3 are in T : L[8 . . . 11]. The first and second children correspond with the
row 5, so we check T : L[8] = 0 and T : L[9] = 1. Next step explores the children of
the bit 9, through rank1(T, 9)K2 = 20, where the third (T : L[22] = 1) and fourth
(T : L[23]) children are explored.

We already explained how, given a bit, the positions of its children are computed.
However, another calculus has to be specified, consisting in which children of an
element correspond to the row we are checking. Noting that the size of a submatrix
in the level l is Kh−l (where h is the height of the tree), a row rl at a matrix of
level l belongs to the submatrices at row b r

Kh−l−1 c. The relative row inside their
corresponding submatrices in the level l + 1 is rl mod Kh−l−1, where rl is the
relative row in the previous level and r0 = r. Symmetrical formulas are defined for
the columns of the matrix. Using these two formulas, the children that correspond
to the explored row can be obtained.

2.3.3 Analysis

In the worst case (for graphs with their edges very isolated), the total space in bits
of the described structure is K2m(logK2

n2

m +O(1)), where n is the number of nodes
of the graph and m the number of links. The extra space needed to store the cells to
fill the matrix until the next power of K is given by O(K2n). However, for real Web
graphs, the space is much better than the worst case. Web graphs are not uniformly
distributed, usually presenting clustering of ones and zeros that improves the worst
case space by far.

The navigation time in the worst case is O(n). However, in practice, it is much
better. Supposing that the m links are uniformly distributed, the navigation is
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O(
√
m) in the worst case. Furthermore, if the matrix is clustered, the average

performance is even better.

Other interesting operations can be implemented with similar algorithms. For
instance, we can retrieve the cells included inside a rectilinear window over the
adjacency matrix. This operation is specially helpful for Web graphs. If nodes
are located in the matrix following a lexicographical order, it can be used to find
links between domains. The algorithm for this operation is quite similar to a direct
neighbor operation, excepting by the fact that up to K2 children per element could
be explored, depending on the bounds of the given window.

2.3.4 Optimizations of the K2-tree

2.3.4.1 Hybrid approach

The structure was described for a fixed value of K. However, a hybrid approach
to the previous structure was also proposed, which uses a larger K (for instance,
K = 4) for the first levels of the tree and a small K (K = 2) for the lowest levels.
Using a big K in the top levels helps to reduce the height of the tree, improving the
time results of the traversals. On the other hand, using small values for K in the
last levels avoids to store too many bits for each isolated 1 of the adjacency matrix
(which is frequent in the lowest levels of the tree).

2.3.4.2 Leaves compression with DAC

In Section 2.3.1, we observe how the construction of the K2-tree divides each
submatrix recursively until reaching the leaves of the tree, where each bit represents
an individual cell of the adjacency matrix.

An improvement for the spatial cost of this structure consists in stopping this
subdivision in previous levels, in the way that each leaf of the tree represents a
submatrix of size s× s (instead a cell). Each element of the leaf level with value 1
will be a non empty matrix s× s. The sequence of s× s matrices located in this level
(from left to right) will be encoded with a statistical and variable-length encoding
technique. Therefore, a vocabulary with the different existing s × s submatrices
is created, in the way that each one will have a different code. The most frequent
matrices will have the shortest codes in this matrix vocabulary. The codes of the
matrix sequence corresponding to the ones in the last level of the tree, will be stored
using Direct Addresable Codes (explained in Section2.2). In this way, the i-th 1 of
the leaf level will be located in the i-th position of the DAC structure that stores
the code of the corresponding s× s matrix in the matrix vocabulary.
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2.4 Basic concepts of Graph Theory

Graphs are a mathematical construct that have been widely studied [BM76]. Recently,
other scientific areas, like the relational databases or the information systems in
computer science, have paid special attention to the graph theory. This interest
has appeared because graphs are a natural mechanism to represent this kind of
information, emphasizing the relations between the elements of the domain.

For instance, a social network can be represented as a graph in a very natural
way, where the nodes of the graph are the users of the network and the edges are
the relationships between the users. These relationships are the most interesting
information of the network. Therefore, modelling the information as a graph
highlights in a natural way the relationships of the nodes, giving them more
visibility and clarity, and making these relationships more easily to study. The same
information could be represented in more conventional storages, like a relational
database. For instance, the relationships of the users can be stored in a table with
two columns (representing the users which are related). This database would be
representing the same information than the previous graph. However, typical queries
over a social network can be asked more easily using graph mining techniques than
querying a traditional relational database.

Among the contributions from the computer science to the graph theory we can
mention the graph databases, that appeared to represent and query graphs from
many domains [NEO14]. An important effort has been also done to design a standard
format to exchange graphs between different applications, like GraphML [GRA09]
and visualization graph tools [GEP12] that were proposed to represent graphs
provided in that standard formats in a graphical way.

In the same line, many graph mining algorithms have been developed that try to
extract information from the graphs.

2.4.1 Graph definitions

Basic definitions A Graph G(N,E) is a pair of sets where N is the set of vertices
or nodes of the graph and E is the set of edges [BM76]. An edge is an unordered
pair (n1, n2) ∈ N ×N that relates two nodes of the graph. This graph definition
corresponds to an undirected graph. Figure 2.4 (top-left) shows an undirected
graph composed by 4 nodes and 4 edges.

A directed graph is also a graph G(N,E) where each edge of the graph is an
ordered pair (n1, n2), meaning n1 is the origin node and n2 the target node of the
edge. Edges of a directed graph are also called arrows or arcs. Figure 2.4 (top-right)
shows a directed graph composed by 4 nodes and 5 edges.
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A labelled graph is a graph G(N,E) that includes a mapping α : N → A,
where A is the label set of the nodes. Similarly, a mapping for the edges are defined
like β : E → B, where B is the label set of the edges. When A ∈ Z and B ∈ Z, we
called it a weighted graph. Figure 2.4 (center-left) shows an example of this kind
of graphs.

A directed or a labelled graph is also a multigraph when multiple edges can
connect a pair of nodes. Otherwise, if no more than one edge is allowed between a
pair of nodes, it is called simple graph. Figure 2.4 (center-right) shows an example
of multigraph, where two different edges starts from n3 and point to n2.

Nodes and edges can contain more complex data. A property graph is a
graph G(N,E), where each node ni and each edge ei is composed by a set of pairs
key/value, also called attributes. Figure 2.4 (bottom) shows an attributed graph
for a restaurant recommendation site, where nodes n1 and n2 are described with
the keys name and address, since they represent users of the application. Nodes
n3 and n4 are restaurants described by their name and the kind of food they offer.
Users qualify the restaurants, including information of their last check in. Users can
follow other users of the application, which is represented also by an edge, while
each restaurant identifies the most frequent customers.

Graph representations A simple directed graph can be represented in different
ways:

• Adjacency list The graph is represented as a collection of lists, one list for
each different node of the graph. In this way, for a node n1, its adjacency list
L1 is composed by all the nodes that are target of any edge which starts in n1.
For instance, the directed graph shown in the Figure 2.4 (top-right) could be
represented by: {L1 = [2, 4], L2 = [3], L3 = [1, 2], L4 = []}.

• Adjacency matrix The graph is represented as a matrix, where the cell (i, j)
is a one if an edge exists starting from ni and pointing to nj [MM14]. For
instance, the adjacency matrix of the same graph can be represented with the
next adjacency matrix: 

0 1 0 1

0 0 1 0

1 1 0 0

0 0 0 0


Notice that if the simple directed graph is sparse, an adjacency list spends less

space than an adjacency matrix in representing all the graph.
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Properties of a graph Depending on the structural characteristics of a graph,
many properties can be accomplished.

A graph is connected if, for every pair of nodes of the graph (ni, nj), a path
exists starting from ni and ending in nj . This path is defined as a sequence of nodes
with the form ni, ni+1, . . . , nj , which starts from ni and traverses a set of nodes
through existing edges until reaching nj .

A cycle is a path starting and ending in the same node ni. A tree is a connected
graph with no cycles, while a forest is a no connected graph where each independent
connected graph has tree properties.

A graph is complete if, for every pair of nodes (ni, nj), i 6= j, an edge exists
between them. A clique is a complete subgraph of G.

A graph is regular if all the nodes of the graph have the same number of
neighbors. A complete graph is also a regular graph.

A node ni of the graph is a cut node if G−ni has a greater number of connected
components than G. A subset of edges E′ ⊂ E is a cut set if G(N,E \ E′) is no
connected and G(N,E \ E′′) is connected for every set E′′ ⊂ E′.

A graph is bipartite if the set of nodes N can be divided in two sets N1 and
N2, having N1 ∩N2 = ∅ and N1 ∪N2 = N and every edge (n1, n2) connects a node
in N1 with a node in N2. This definition can be generalized to multiple sets, in the
way that a k-partite graph (called in general, a multipartite graph) is a graph
that can be divided in k independent sets, where every edge connects nodes from
different sets.

Application domains Graphs are used to model data in many different domains.
We give some illustrative graph modelling examples:

• Web graph: it represents the links between the different web pages on the
Internet. In this way, an edge (ni, nj) means that the page represented with
node ni includes a link pointing to nj .

• Social network: it represents the relationships between the different users of
the network.

• Query log: many different graphs can be generated from a query log record,
which stores the queries that users perform over a query search engine and the
web pages they click after each query:

– Click graph: it models the behavior of the users in a search site. Queries
performed by the users and the internet pages are the nodes of the
graph [JLNL13]. Edges start from a query node and connect with an
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Figure 2.4: An example of different kind of graphs
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internet page, representing that a user clicked that page after performing
the corresponding query. It usually is a weighted graph, where the weights
of the edges are the number of times that the page was clicked after that
query. In other words, the weight gives a measure of the relevance of this
page for the query.

– Query graph: it also represents the information of a query log but in
a different way. Nodes of a query graph are queries, and edges relate
similar queries following different criteria: nodes that share some words,
nodes having the same user session, queries after which users click the
same urls (called url cover graph), etc [BBC+08].

• Molecular graph: this model, used in the chemical domain, represents atoms
like nodes, while the chemical bonds are the edges of the graph.

2.5 Summary

This chapter described three basic structures relevant for the works proposed in
this thesis. We reviewed the State of the Art in bitmap representations, specially
focused on the compressed alternatives. Then, we explained the basic behaviour of
the variable-length encoding Sheme DAC, which will be used to design the SP and
OP indexes of the K2-triple structure, the compressed store for RDF we present in
Chapter 8. We studied the implementation details of the K2-tree structure, which
will be the basis of many of our contributions. Finally, we reviewed some basic
definitions of Graph Theory.



Part I

General graphs
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Chapter 3

GraphGen: a tool for graph
generation

In this chapter we present GraphGen, a tool to generate graphs describing
relationships among a collection of complex objects provided as input. GraphGen
is designed to easily process that collection of complex objects when they are
represented in a table, XML or plain format. In this way, GraphGen can be applied
over a wide set of domains.

In Section 3.1, we explain the motivation of this work. To the best of our
knowledge, no other tool for graph generation from any domain exists in the State
of the Art. We review some tools appeared to generate graphs of specific domains.
Section 3.2 outlines the goals we pursue with the design and implementation of
GraphGen.

Section 3.3 describes the model of GraphGen. We explain the kind of graphs
that GraphGen generates, and we define the rules to generate these graphs from the
input data sources.

In Section 3.4 we present GraphGen, providing details about the functions
included in the tool to generate nodes and edges from the collection of complex
objects and other features it provides.

In Section 3.5 the performance of GraphGen is analyzed through its evaluation in
three different use cases. A bibliographic database, a query log and a social network
were transformed into a graph by defining in GraphGen specific load, derivation and
relation rules. Some measures of the temporal and spatial results are provided as a
proof of the scalability of this application.

29
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Finally, Section 3.6 presents some implementation details of GraphGen, describing
the internal architecture of the system. We also provide some details of the graph
generation algorithm and some memory management optimizations.

3.1 Motivation and related Work

We have already explained in Section 2.4 that graph theory has been widely studied
in mathematics. However, in recent years, computer science has also paid attention to
the graph theory, taking advantage of the explicit representation of the relationships
between the nodes, which is one of the main characteristics of the graphs. In
computer science, many efforts have been done to facilitate the work with graphs.
For instance, some standard formats for graph representation (like GraphML) were
proposed, and graph visualization tools were developed [GEP12]. In the same way,
many algorithms for graph mining have been proposed.

However, most of the data collections (extracted from sensors, web actions, digital
libraries, . . . ) that could be represented as graphs, are usually provided in other
formats (like relational databases or XML). Therefore, in order to use the power of
graph visualization, analysis and mining tools, it is necessary first to represent the
data collection into a graph. First, that process requires to define the graph model
suitable to represent this data collection. Then, a set of rules can be specified to
transform the input data into a graph belonging to that model. Generally this task,
which can be called graph modelling, is done with ad-hoc graph modelling tools.

In general, in order to be able to transform a dataset into a graph, we need to
have a predefined graph model beforehand. For example, to model the collection of
web pages in order to study whether a page points to another, we can decide to use
a simple directed graph model.

Network attacks are other domain usually modelled as graphs. An automated
method was proposed [SHJ+02] to generate and exploit network attack graphs
through an algorithm based on model checking. The main problem of this solution
relies on the efficiency issues for medium-size networks. An alternative solution,
based on logic programming, was proposed by [OBM06]. It achieves more efficient
and scalable results on generating this kind of graphs.

Bibliographic databases can also take advantage of their representation as a graph,
in order to represent common relationships (like citation or coauthorship) between
papers and authors, which could be the nodes of the graph. The Computer Science
bibliographic database DBLP [Ley09] is one of the most analysed bibliographic
datasets. Currently, DBLP provides its data in XML format and has parsers available
to generate the corresponding coauthorship graph. BIBEX [GVSMGV+08], built
over the graph database DEX (which will be described in section 4.1.1) is an example
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of a tool that models bibliographic data as a graph. BIBEX provides not only graph
representation from datasets in XML format but also a full querying system that
supports specific bibliographic queries.

The information registered in query logs can also obtain benefit for its
representation as a graph. A query log registers the behaviour of search engine
users, including the queries and pages they click among the suggested by the
searcher engine [BY04] [BY07]. Each click performed by the user is usually logged
as an individual record. The information registered in the query logs can be
transformed into a graph, having different model alternatives depending on their
future exploitation. For instance, the click graph model includes two different kind
of nodes: queries and pages. Each edge of this graph relates a query with a page
that the users click after searching this query. The query log can also be modelled
as a query-flow graph [BBC+08], where nodes are queries and a link between two
queries exists if they are part of the same search session. Some works study the
combination of different graph models from query logs, to detect query transitions
or spam queries [BDBY10].

Similar graph modelling tools appeared in other domains, like source code analysis,
chemistry or biology [AW10]. All of them transform data from a specific domain
into a graph through ad-hoc parsing algorithms.

3.2 GraphGen goals

In this chapter we present GraphGen, a tool we have implemented to transform
arbitrary data collections into graphs. It is currently complete and available to be
used1.

GraphGen was designed to improve the procedure of modelling and creating
graphs to represent collections of complex objects. Usually, objects belonging to
those collections present a similar structure and, therefore, they can be decomposed
in a similar way. The purpose of GraphGen is to avoid the tedious ad-hoc procedure
of graph creation that is used nowadays every time we want to represent data
collection as graphs.

As explained, GraphGen considers that the input datasets are collections of
complex objects which can be recursively divided in simpler elements of information.
For instance, a query log is composed by a collection of records. Each record
is composed by a query, a user identifier and a set of clicked pages. Another
example could be a bibliographic dataset, which is a collection of articles, each of
them composed by a title, a set of authors, the conference or journal where it was
published, etc.

1http://lbd.udc.es/research/graphgen/
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In order to model as a graph a collection of complex data, GraphGen allows the
user to define the graph model he or she wants to use to represent the information.
That is, the user has to specify the node types, the edge types relating the different
node types, and the procedure for the weight computation of the nodes and edges if
they are required. GraphGen also provides a set of extraction functions, which are
used to decompose the input complex objects in their smaller components, generating
the nodes of the graph and the edges (relationships between them).

3.3 Graph Generation Model

The purpose of GraphGen is to implement a general mechanism to generate graphs
that represent the collection of complex objects provided as input. We consider input
data as a collection of complex objects composed by heterogeneous elements. The
GraphGen interface allows the user to specify the kind of nodes that are relevant for
each specific domain. That is, nodes are obtained by the progressively decomposition
of the complex objects, applying simple decomposition rules. Edges are created as
links between a node and the nodes obtained by its decomposition.

3.3.1 GraphGen Model

GraphGen generates labelled multigraphs, composed by a set of nodes and edges.
Nodes of the graph are generated from the decomposition of more complex nodes.
The derivation and decomposition rules are the mechanism to define how the nodes
are progressively decomposed in simpler nodes. An edge relates each complex node
with each simpler node produced by its decomposition. The kind of nodes and the
kind of edges that GraphGen generates are described next.

3.3.1.1 Nodes

Nodes of the graph are units of information. A node n ∈ N in GraphGen has a
content and a type ∈ TN , where TN is the set of types existing in G. The type of a
node gives semantic information about the meaning of its content in the context of
the graph. Besides, this type will play an important role in the generation of the
graph, since the available derivation rules that can be applied over a node, in order
to generate new nodes of the graph, are determined by the type of the node. The
graphs generated by GraphGen include two kinds of nodes: the input nodes, which
are the most complex nodes of the graph; and the derived nodes, resulting of the
decomposition of complex nodes (input or other derived nodes).
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Input nodes The purpose of GraphGen is to generate a graph that represents the
information contained in semi-structured input files, like files in XML, CSV format
or even a relational database. Input nodes are the most complex objects of this
graph, which are progressively decomposed in simpler nodes. Each input node has
associated a type, which gives information about the nature of its content. A graph
can have different types of input nodes.

Let consider a context where the input data is a collection of documents {Di}.
Then, each document Di can be an input node of the graph. Its type is document
and its content is the text that composes that document. That complex information
will be progressively decomposed during the graph generation process.

Another example we can consider is a relational database with the information
of the members of a University. Each row of each table is an input node of the
graph. The type of the input node is given by the table it belongs to. For instance,
a database of the members of a university could have input nodes of different types:
TN = {student, professor, subject, . . .}.

Note that input nodes have complex content, which will be decomposed through
the process of graph generation until obtaining simpler nodes. For instance, each
document described in previous example can be divided in several paragraphs, and
paragraphs can be divided in words. In the example of the University, input nodes of
type student can be decomposed attending to the columns of the table student, in the
way that each column will produce a new node in the graph. Note that in the case
of the paragraphs of a document, the order of the elements matters. Consequently,
a document is divided in a list of paragraphs. However, the different attributes
describing a student in the database are unrelated, so a student is decomposed in a
set of nodes.

Derived nodes A derived node is the result of the decomposition of complex
nodes (input nodes or other derived nodes) in one or several simpler nodes. The
mechanism to define this decomposition is given by the derivation rules which will
be explained in Section 3.3.2. Going back to the previous examples, paragraphs are
derived nodes created from an input node document (Di), with their own associated
type paragraph. In that way, from each input node Di, it is possible to derive an
ordered list of paragraphs [Pj ]. At the same time, each paragraph Pj is decomposed
in simpler nodes of type word: [wk]. In the case of the node student for the example
of the database of a University, the attributes name or telephone of each student
will be nodes derived from each input node of type student.

In this way, the nodes of the graph are progressively decomposed in simpler
nodes until reaching such nodes which are not decomposed in other nodes. The
number of steps until these atomic nodes are reached depends on the domain and
the set of rules defined by the user.
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3.3.1.2 Edges

Edges of the graph represent the relation between the nodes they connect. In
GraphGen, edges are directed (that is, they distinguish between the origin and the
target node). Just as the nodes, they have an associated type ∈ TE, where TE is
the set of edge types in the graph. In addition to this, depending on the kind of the
rule that produces them, they could have a numeric value (or weight) with different
meanings.

Edges relating a complex node with simpler nodes derived from it could use the
weight to represent the order of the derivation. Let consider again the collection of
documents, which are decomposed in paragraphs. For a document with n paragraphs,
n edges will be generated, starting from the input node Di and targeting to the n
paragraph nodes Pj . Each of the n edges will have a different value from 1 . . . n,
representing its position in the full document.

Figure 3.1 shows an example of graph generated in GraphGen. It contains two
input nodes of type document, from which two derived nodes of type paragraph are
derived. Each paragraph is decomposed in several words. Each node of the graph is
related to the complex node that generate it.

3.3.2 Derivation or Decomposition Rules

Decomposition rules are the mechanism that GraphGen provides to define new
nodes and edges in the graph. Each rule specifies a type, named source type, which
restricts the kind of nodes that are decomposed by this derivation rule. All the
nodes generated by applying a rule will belong to the same type, which we called
target type. The set of possible node types TN in a graph model is inferred from the
definition of the decomposition rules.

In addition to the creation of new nodes, derivation rules also create new edges
between nodes of the graph. For this reason, the rules also need to specify an edge
type, so all the new edges created with a decomposition rule have the same edge
type. The set of edge types (TE) is inferred from the derivation rules definition.

Together with the types of the nodes and edges, rules contain the extraction
function that encapsulates the logic of the rule. Its definition strongly depends on the
format in which the source node presents the information. GraphGen implementation
proposes a set of predefined extraction functions for some of the most common
formats to represent data (like XML or CSV). However, GraphGen does not impose
any restriction about the extraction functions, so it provides a flexible mechanism
that can be adapted to the needs of every domain.

A derivation rule could be formulated as:
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Figure 3.1: Example of a graph generated from a collection of documents
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NtargetT ype ← NsourceT ype ◦DRname,extractionF unction

Two additional parameters can be considered in the definition of the derivation
rules:

• Tree/Graph it determines the structure of the graph. When a rule is defined
as a tree rule, the application of the rule over a complex node will produce a set
of new nodes of the graph and a new edge relating the source node with each
target node will be generated. However, when the rule is a graph derivation
rule, a new target node will be created only if no nodes with the same content
and target type exist in the graph. Otherwise, the corresponding edge created
with the rule starts from the source node and targets to the already existing
node with the appropriate content.
Considering only tree derivation rules, the generated graph follows a tree
structure, since each target node has only one edge targeting to it. However,
for graph rules, many edges can exist pointing to the same target node, creating
a graph structure. Figure 3.2 shows a graph generated through a tree rule
(left) in opposition to the same graph generated through a graph rule (right).

• Ordering derivation rule: When a derivation rule is defined with ordering
type, the nodes that are produced from the same source node will be pointed
by edges weighted with correlative integers, representing the order in which
these nodes were produced. Figure 3.1 shows an example of ordering rule.
Edges relating the documents and the paragraphs they contain are weighted
to show the relative position of the paragraph into the document.

3.3.3 Relation rules

An initial version of the graph model previously described was presented in
[BYBLP10]. This model only defined one kind of rules: the derivation rules, which
decompose complex objects to a set of simpler components. In this way, the graphs
that are generated with this model are multipartite graphs, where each partite set
is given by a different node type. Edges of this graph relate each complex object
with the nodes derived from it. However, in some contexts, a different kind of edges
can be needed to link nodes that are not necessary related through a decomposition
process. Therefore, we define the relation rules that, although they can break the
multipartite nature of the graph, are very useful to represent relations in the graph.

Relation rules provide the possibility of defining customized edges. This kind of
rules allow the user to define how new edges will be created among already existing
nodes. Note that this kind of rules do not generate new nodes in the graph. Instead
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Figure 3.2: Example of a word extraction through a tree rule (left) and a
graph rule (right)
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of this, they only define new edges representing relationships between the existing
nodes of the graph.

A relation rule specifies two types of nodes TN1 ∈ TN and TN2 ∈ TN . The
new edges created with the rule will point from a node n1 with type TN1 to a
node n2 with type TN2. All the edges created with this rule will be of the type
TE1 ∈ TE. Finally, the rule specifies a condition that the pair of nodes n1 and n2
has to accomplish to create an edge E12 with type TE1. A relation rule is formulated
as:

Etype ← NsourceT ype1, NsourceT ype2 ◦RRname,condition

The condition that the nodes have to fulfill can vary depending on the domain.
It can be defined in terms of the content of the nodes. For instance, a relation
rule can specify that two nodes of type word will be related if those words have a
Levenshtein distance less than a given boundary.

On the other hand, the condition can be specified on the basis of the topology of
the graph. The most representative function is Common Ancestor, which establishes
that two nodes n1 and n2 will be related through an edge E12 with type TE1 if they
have at least one common ancestor.

In the case of the relation rules, weights of the edges can be used to represent
other information. For instance, if the condition of the rule is being coauthor, the
edges between different authors will be weighted with the number of papers they
wrote together, that is, the number of nodes of type paper they have as common
ancestor.

Figure 3.1 shows one example of relation rule. The Figure includes the relation
rule SameParagraph which relates nodes of type word. Two words will be related if
they are extracted from the same paragraph (that is, they have a common ancestor
of type Paragraph). The weight in this case represents the number of paragraphs
where both words appear. For instance, sameParagraph between word great and
word compression has weight 2 because both of them appear in the paragraph 2
and the paragraph 4. However, book and great only have a paragraph in common
(paragraph 2) so they are related through an edge with weight 1.

Figure 3.3 (bottom) shows other example of relation rule. Relation rule
RRcoauthor produces several edges relating the coauthors of the paper. For instance,
John F. and Peter M. are linked through an edge with weight 2 because both of
them are authors in Paper 1 and Paper 2.
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3.3.4 Graph Model vs Instance Graph

The set of rules that a user defines to generate a graph from some input data can
be represented as a graph that we called model graph. Nodes of that model graph
represent the node types, whose creation will be produced by the derivation rules.
Each edge of this graph model represents a different rule or edge type. The derivation
rules are the structural edges which connect the different node types with their
original source types. The remaining edges represent relation rules.

Figure 3.3 (top) shows an example of a model graph. That model graph represents
a system of rules to extract a graph from a bibliographic database. Nodes of the
graph model with in-degree 0 are the input nodes of the system. In this graph,
the input nodes are of type paper. The model graph also contains three derivation
rules, all of them applied over nodes of type paper, to extract the title, the different
authors of the paper and the keywords. The three derivation rules are represented
as edges in the model graph, starting from the source node type paper, which is
decomposed in the three different kinds of target nodes: title, author and keyword.
An additional rule coauthor is created, that relates nodes of type TNauthor.

At the bottom of the figure, an example of the instance graph generated by that
graph model is shown. It is a result of applying the derivation rule mechanism that
the model graph on the top defines. It contains two paper nodes. The first paper
is written by three different authors, while the second paper is written by two of
them. We can see in the graph the rule DRauthor, which is a graph derivation rule.
Therefore, the authors of the second paper do not produce new nodes of type author
because they were already produced by the first paper. Each paper will also generate
a node of type TNtitle and some nodes of type TNkeyword. This graph generated
following the rules of a model graph is called Instance graph.

3.4 The GraphGen tool

In this section we present our tool, GraphGen, specifically designed to generate graphs
from heterogeneous data sources through a rule definition system. It implements the
data model that was detailed in the previous section. GraphGen includes a graphical
user interface that allows the user to define the rules for the creation of nodes and
edges, to check the generated data and to export a standard graph format.

In order to define the derivation rules of the custom graph, we implemented a
collection of extraction functions to manipulate the most frequent formats used to
structure data of real environments (XML, CSV, HTML, ...). However, the rule
engine is designed to support the integration of new generic extraction functions as
well as domain-specific functions.
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Figure 3.3: Example of a model graph (top) and a instance graph created
with this model graph (bottom)
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The graphs that are generated with GraphGen are internally stored in a relational
database. Therefore, they can be accessed through SQL queries by connecting with
the database server. Data can be also checked through the graphical user interface
of the application. GraphGen incorporates the possibility of exporting the graph
data in the standard language GraphML [GRA09]. In that way, the generated graph
can be easily imported in a graph database (such as Neo4j [NEO14]) or in a graph
visualization tool like Gephi [GEP12].

3.4.1 Load Rules

Load rules are the mechanism that GraphGen provides to generate inputs that
represent the complex objects that compose the data collection. They are the first
rules to be applied and they extract the information from the source files. In this way,
the possible extraction functions for a load rule are quite similar to the extraction
functions described for the derivation rules. However, instead of specifying a type of
node as the source type of the rule, the external file must be provided.

A load rule will be applied over the input file and it will produce several input
nodes as a result. Note that, given that a load rule is not executed over existing
nodes of the graph, no edges are created pointing to the new nodes. Necessarily,
input nodes created by a load rule will not have source edges. That is, they will
have in-degree zero. The remaining nodes of the graph will contain at least one edge
pointing to them.

3.4.2 Predefined extraction functions

GraphGen includes some predefined extraction functions to decompose nodes in
simpler elements, and an additional function, named checkrelation, which is used to
relate existing nodes with new edges. We design these functions to manage data
in some of the most common structured formats, like XML, CSV or plain text.
However, the tool was designed to be easily extended to other input formats and
other extraction functions over the formats currently supported can be implemented.

Next, the pre-defined existing functions are described:

• XMLTag: this function extracts as many derived nodes as occurrences of
a tag appear in the XML which is the content of a node. The tag can
be included in the resulting node or not. For instance, we can apply the
XMLTag over the tag book by excluding the tag in the next XML: <library>
<book>Philadelphia</book> <book>The book thief</book> </library>.
This function will generate two elements: Philadelphia and The book thief.
Otherwise, if the function XMLTag is applied including the tag over the
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same example, the result will be <book>Philadelphia</book> and <book>The
book thief</book>.

• XMLAttribute: given a tag and an attribute, it produces one element for each
time that this tag presents this attribute, and the value of the new node will be
the value of the attribute. For instance, the function XMLAttribute for the
tag book and the attribute title for the XML <book title="Philadelphia"/>
will produce one node with value Philadelphia.

• Label: it is mainly used in such not structured datasets, where some values
are delimited for special characters or words. initLabel and endLabel defines
those limits. For instance, the function Label for the separators ..1 and ..2 for
the text The film was directed by ..1Coppola..2 will extract an element
with value Coppola.

• Table: this function is specifically designed for such datasets in csv format. It
allows to extract a complete row of the input data. On the other hand, it can
also be used to extract a specific column of a row.

GraphGen currently supports one function to create new edges between the
existing nodes of the graph:

• CommonAncestor : this function checks if two nodes have an ancestor of a
given type in common, in order to establish a new edge between them.

3.4.3 Filtering nodes and edges

Some of the rules generate new nodes by decomposition of other nodes of the graph.
These rules also generate an edge between the original node and the new nodes which
are generated. Some of these nodes are usually created as temporal nodes, used
as transitional nodes that are progressively decomposed until reaching the desired
nodes and edges of the final graph. GraphGen allows the user to filter the nodes
and edges of the final graph after the graph generation, which will be exported to
GraphML. This filtering is performed by type. That is, all the nodes or edges of the
specified types will be removed from the final graph in order to obtain the desired
graph.

3.5 Example of use cases

In this section we show how GraphGen is used to create graphs from heterogeneous
input data through three complete examples with real datasets. The three next
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sections describe, for each dataset, the nature of the data and the structure of the
graph we can obtain from this data. After that, the process of rule definition to
obtain this graph is described. Then, some statistically results of the generated
graph are provided. Finally, last section shows a brief analysis of the temporal and
spatial efficiency measured for the three study cases.

3.5.1 Bibliographic dataset DBLP

Bibliographic databases are a common source of data, specially used for research
purposes. There are many application fields for the bibliographic information.
Recommendation systems, community detection or plagiarism detection are some
illustrative examples. For many of these applications, structuring the information
as a graph allows researchers to extract new knowledge by applying mining graph
techniques.

3.5.1.1 Dataset

In this section we propose the transformation of the computer science bibliographic
dataset DBLP [Ley09]2, which gathers information of computer science publications,
including articles in journals, papers in conferences, workshop proceedings, or even
thesis. We use an XML extracted from http://dblp.uni-trier.de/xml/ that contains
a sample of 100,000 journal articles with a size of 43 Mb. Each article includes
information about its authorship, title and information relative to the publication,
like the journal, conference and year of publication.

The purpose of this example is to obtain, from this XML data source, a graph
which connects each author with its coauthors, in the way that the weight of the edge
would represent the number of papers in common (providing a good measure of the
level of collaboration between the two authors). In addition to this co-authorship,
each author will be related with the journals where he/she published, and the weight
of the edges in this case would represent the number of publications in each journal
for each author, suggesting favourite publication sites.

Figure 3.5 shows an example of the kind of graph we aim to obtain from the
XML of DBLP through the definition of load, derivation and relation rules.

3.5.1.2 Graph definition

We detail the rules defined in GraphGen to obtain the graph described in Section
3.5.1.1.

2http://www.informatik.uni-trier.de/ ley/db/
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Figure 3.4: Example of subgraph generated in GraphGen from DBLP data

Load rules The first step extracts from the input XML the information about
the different articles included in the dataset, which are represented by the tag
< article >. Therefore, we define a load rule whose target node type is Article
and an extraction function of type XMLTag for the tag article. Figure 3.5 shows a
screenshot of the form filled in GraphGen to create this load rule. This rule will
produce one node for each tag article included in the input data. The value of
the nodes will be the XML included between the opening and ending tag article,
including all the information about the given article.

3.5.1.2.1 Derivation rules Previous load rule will produce one node for each
different paper included in the XML dataset. We want to extract the authors and
the journals of each article. Consequently, two derivation rules having TNpaper as
source type have to be defined:

• A derivation rule to extract the authors for each article. The authors
are represented in the XML dataset by the tag author, descendant of the
corresponding paper. Therefore, this derivation rule will have an extraction
function of type TagXML. The purpose of the final graph is to represent each
author by an individual node, so this derivation rule will be a graph rule, in
order to all the tags author with the same value be clustered in a single node.
Figure 3.6 shows the process of definition of this rule in GraphGen.

• Analogously, a derivation rule is defined to extract the journals where the
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Figure 3.5: Load rule definition for DBLP dataset

Figure 3.6: Derivation rule to extract the authors of the articles in DBLP
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Figure 3.7: Graph model in GraphGen

articles have been published. The final graph will contain only one node for
each different journal in the dataset, so as in the previous rule, we define this
rule as a graph rule with an extraction function of type XMLTag.

Relation rules With one load rule and two derivation rules we have defined all the
nodes of the final graph. The co-author relationship and the number of publications
of an author in the same journal are defined through two relation rules:

• A relation rule is defined to relate authors which collaborate in the same paper.
It is defined through a check relation function based on sharing at least a
common ancestor, and the value of the edge between two co-authors will have
as value the number of articles where they collaborate (common ancestors).

• A relation rule is defined to connect the authors with the journals where they
usually publish. Similarly to the co-authorship relation rule, it consists in a
common ancestor rule where the common ancestors is of type article. The
value of the edge represents the number of publications of an author in a given
journal.

Figure 3.7 shows a graphical representation of the graph model defined in
GraphGen.
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Type Number of elements

Nodes
Article 100,000

Author 141,203

Journal 176

Total Nodes 241,379

Derivation edges
Rauthor 258,375

Rjournal 99,982

Relation edges
Rjournal−author 175,645

Rcoauthor 585,528

Total Edges 1,119,530

Table 3.1: Statistical information of the generated coautorship graph

3.5.1.3 Graph generation and filtering

After the definition of the rules that extract information from the input data sources,
the environment in GraphGen is ready to generate the instance graph: that is, to
create the set of edges and nodes according with the different rules.

Table 3.1 gives statistical results of the final graph generated for a XML of DBLP
including 100,000 articles. In the final graph, nodes of type Article are not needed,
so it will be filtered using the filter method by node type provided by GraphGen. As
a consequence of this removal, edges starting from article (DRauthor and DRjournal)
will be also deleted. Therefore, the final graph, which can be exported to GraphML,
contains 141,379 nodes and 761,173 edges.

While the process of graph definitions is lightweight, the generation of the graph
requires many temporal and spatial resources. Current implementation produces
around 30 elements of the graph per second, mainly due to the communication with
the relational database. However, we already mentioned that obtaining an efficient
tool is not the purpose of this work. Instead of this, we aim to implement a practical
tool supporting the theoretical model, proving its completeness and flexibility to
create graphs for multiple purposes.
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3.5.2 Query Log Analysis

Query logs gather relevant data about the interaction of the users with a search engine,
including information like the query submitted by the user and the pages the user
click among the results provided by the search engine for that query [BY04,BY07].
The analysis of this user behaviour can help to understand the user requirements and
to improve the search engines, applying in new researcher fields like query expansion
or query recommendation, but can also help to discover interesting relationships
between the different URL pages clicked by the users. A graph obtained from a
query log will allow the application of graph mining algorithms.

3.5.2.1 Dataset

In this section we use an anonymized query log to generate a graph that relates the
queries of the users with the pages they clicked for those queries. In that way, the
value of the edge gives a measure of the level of accuracy of the page for a given
query. We also represent users as nodes of the graph, and we relate them with
queries and clicked URLs. The input data source used in this study case contains
100,000 records, each of them composed by a user identifier, a query submitted by
this user and the first URL the user clicked.

3.5.2.2 Graph definition

3.5.2.2.1 Load rule The query log is provided in CSV format, so in order to
extract information from the collection of records, we will extract each individual
record through a load rule using the extraction function Table, parametrized with
isRow = true to create one node per row in the dataset. The target type is named
Record.

3.5.2.2.2 Derivation rule For each node of type TNrecord generated through
the load rule, the user, the query and the URL will be extracted, in a similar way
by the corresponding derivation rules, all of them using the extraction function
Table and specifying their corresponding position in the record, which is organised
in columns. Therefore, the three derivation rules we need in this case are a rule
to extract the users in the first column, a rule to extract the query in the second
column and a rule to extract the URL in the third column. These rules will generate
the three different kind of nodes in the final graph: users, queries and pages.

3.5.2.2.3 Relation rules Relation rules will create the relationships between
the three different nodes (users, queries, pages), based on their belonging to the
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Figure 3.8: Graph model in GraphGen for the Query Log dataset

same record, through common ancestor functions having as an ancestor a node of
type record. We define three relation rules, relating users with queries created from
the same record, users with pages and queries with pages.

3.5.2.3 Description of the generated graph

Table 3.2 shows the number of nodes and relations created from the query log with
100,000 records.

3.5.3 Social Network Analysis

Last years, social networks have experienced an impressive evolution, involving
millions of people which use them for communication purposes but also to share
contents and experiences. This kind of networks can be represented as a graph in a
natural way, since its relevant information relies mainly on the user relationships.
Many interesting properties about the social behaviour can be extracted from the
analysis of the social networks. Community analysis or recommendation systems
are some of the application fields. Therefore, the transformation of the information
generated in social networks into graphs is needed to apply mining graph techniques
and to infer properties of the network.
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Type Number of elements

Nodes

Record 100,000

User 1,004

Query 36,186

URL 41,209

Total Nodes 178,399

Derivation edges
Ruser 100,000

Rquery 100,000

RURL 100,000

Relation edges
Ruser−query 39,250

Ruser−url 63,214

Rquery−url 71,455

Total Edges 473,919

Table 3.2: Statistical information of the generated query graph
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3.5.3.1 Dataset

As a representative example of a social graph generation using GraphGen we use a
dataset extracted from an online social network in the popular photo-sharing site
Flickr3. We use CoPhIR [BEF+09], which contains data from 106 million images,
including their author, tags, comments and MPEG7 visual descriptors of the image.
We use a sample of this collection, containing the information of 100,000 images
that comprise 260 Mb, where each object is represented by an XML.

We use this dataset as input to generate a graph relating each user with the tags
used in his submitted photos, each user with the location of his photos and finally
each location with the tags more commonly used in photos in that location.

3.5.3.2 Graph definition

Load rules The input dataset is composed by a set of different XML nodes,
one per image (identified by the tag SapirMMObject). Therefore, we define
a load rule to extract each image with an XMLTag extraction function that
creates a node containing the XML between the tags < SapirMMObject > . . . <
SapirMMObject/ >.

Derivation rules We define different rules to decompose the nodes representing
the objects in the previous step into the users, tags and locations of each photo. First
of all, we extract the element photo from the MMObject and then, we extract from
the photo the users, tags and locations. User and location are extracted through
an XMLAttribute extraction function, while the tags are extracted through two
XMLTag extraction functions (because they are descendants of the tag photo which
is descendant of the tag SapirMMobject). Therefore, we define four derivation
rules to model this behaviour.

Relation rules Once the structural model of the graph is defined, we add some
relation rules to create relations between users, tags, and locations produced by
derivation rules. As in the previous examples, the rules will be defined by check
relation functions based on their common ancestors. In this way, each relation will
be weighted by the number of common ancestors they have (photos in this case).
We define these rules to relate users and tags, users and locations and tags with
locations.

3https://www.flickr.com
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Type Number of elements

Nodes

SapirObject 100,000

Photo 100,000

User 5,525

Location 387

TagSet 62,669

Tag 32,299

Total Nodes 300,880

Derivation edges
Rphoto 100,000

Ruser 100,000

Rlocation 2,608

Rtagset 100,000

Rtag 277,883

Relation edges
Ruser−tag 69,643

Rlocation−tag 465

Ruser−location 4,282

Total Edges 654,881

Table 3.3: Statistical information of the generated social graph

3.5.3.3 Description of the generated graph

We test the graph generation processing for the set of 100,000 images according to
the rules defined in Section 3.5.3.2. Table 3.3 shows the number of different elements
obtained.

3.5.4 Spatial and temporal efficiency

In this section we perform an analysis of the spatial requirements and the temporal
efficiency of the graph generation process for the use cases previously presented:
the bibliographic database DBLP, the query log and the social network of Flickr
(COPHIR). GraphGen was designed to prove the Graph Model described in Section
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3.3.1 and obtaining a solution efficient in terms of space and time is not the purpose
of this work. However, we give some temporal and spatial results in order to show
that our tool can generate graphs for real cases containing millions of nodes. We
measure the execution time of the graph generation, since it is the unique process in
the tool that requires long time to be executed.

The experiments were run on a computer with an Intel(R) Core(TM) i5-3337U
1.80 GHz processor, 6GB DDR-3 main memory, and a 256 GB SSD hard drive.
It ran a windows 7 operative system, Java JDK 1.7.051 and MySQL Community
Server version 5.6.15.

In the experiments, we generate the graphs for the three different use cases by
applying the rules defined by the graph model, varying the size of the input from
10,000 to 100,000 input objects. Figure 3.9 shows the number of elements created
from different input sizes in each use case. Figure 3.10 shows the execution times of
each graph generation. These results show that both the size of the graph and the
time needed to generate the graph grow about linearly with the number of objects.

Results also show that the format of the input data clearly affects to the temporal
results. When the input dataset is represented in XML (like in the DBLP and
COPHIR datasets) the relative time per element is more costly, mainly due to the
extra work needed to apply extraction functions based in XML parsing compared
with extraction functions for texts structured in rows and columns. Nevertheless, we
can conclude that, with a mid-range computer, tens of millions of nodes and edges
can be generated per hour with our tool.

3.6 Implementation details of GraphGen

In this section we describe the most relevant implementation details of GraphGen,
explaining the data model and the architecture of the application. We also specify
the extraction functions included in the current version of the tool. Finally, we show
some improvements incorporated to optimize the spatial and temporal efficiency of
the generation process, specially necessary for processing big datasets.

3.6.1 Data Model

The data model of GraphGen is designed to support all the features of the theoretical
model described in Section 3.3. The overall set of entities is composed by objects
that support different generation stages: some of them belong to the rule definition
system, while others are used to store the final graph. Figure 3.11 shows all the
objects involved, which will be described next:
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Figure 3.9: Space analysis in GraphGen
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Figure 3.10: Temporal results for GraphGen



3.6. Implementation details of GraphGen 55

Figure 3.11: Data Model of GraphGen
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• Graph: it is the entity that encompasses the remaining elements of the data
model, giving them a work environment. That is, GraphGen allows the user
to define as many graphs as are needed, but each element that is created with
the tool (such as rules, nodes or edges) belongs to only one graph. The graph
is described by a name provided by the user and by a status generated, which
shows if the rules were already applied and the set of nodes and edges were
created. This status determines the set of operations allowed. For instance,
no more rules can be defined when a graph is already generated.

• Node: nodes of the graph will be generated by applying the Generation Rules
over the input data sources. Each node contains a value and belongs to one
node type, depending on which rule generated it.

• Node Type: nodes of the graph are generated through the different generation
rules of the graph. Those rules, as will be described later, have associated a
node type, identified by a name. All the nodes generated through a generation
rule will have the same node type. Two different kinds of node types are
contemplated in GraphGen. If it is defined as a graph, the set of nodes
belonging to it will have unique values. Otherwise, the node type is composed
by a list of nodes, where two different nodes can contain the same value.

• Edge: the edges of the graph are generated through the application of the
rules defined for that graph. Both relation rules and generation rules can
produce edges that relate two nodes of the graph. Note that relation rules
establish connections between existing nodes, while generation rules create
new nodes, relating the new derived nodes with their origin.

• Edge Type: edges of the graph are clustered in types, each of them is
implicitly created when a rule is defined. An edge type is defined by a name
and the origin and target node types. That is, all the edges belonging to an
edge type start from the node type and point to the node type specified by
the edge type.

• Rule: rules are the mechanism of GraphGen to define the graph generation.
All the rules contain a name, and they can be classified in two big groups:
relation rules and generation rules.

• Generation Rule: it defines how new nodes are generated in the graph. It
can be a derivation rule, where the content of the new nodes are extracted from
the content of an existing node, or a load rule, where the content is directly
extracted from an input data source. For both kind of rules, an extraction
function has to be defined, which will be applied over the input content to
produce one or several new nodes (the value of the node or the content of the
input data source).
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• Derivation rule: a derivation rule produces new nodes from existing nodes.
It is composed by an edge type, determining the nodes over which this rule is
applied (origin of the edge type) and the node type of the generated nodes
(target of the edge type). It defines with a method how the new nodes are
derived. This method, which is called generate, will delegate the processing
of the new contents in the extraction function. The edges created from the
origin node to the new nodes can be labelled by the order in which they were
extracted from the content of the origin node: this behaviour is controlled
through the parameter order.

• Load rule: a load rule produces the input nodes of the graph, whose content
is extracted from an external data source. As in the derivation rule case, it
delegates the processing of the content to an extraction function. Since content
of the nodes is extracted from a data file, they will be source nodes, so no new
edges are created with a load rule.

• Extraction function: extraction function defines a method generate, that
receives a snippet (text) as a parameter and, by applying one extraction
method, outputs a list of values. GraphGen provides some predefined extraction
functions and more functions can be added in a simple way by extending the
Extraction Function abstract class. Section 3.4.2 described those predefined
functions, which are implemented as classes that inherit of the abstract class
ExtractionFunction.

• Relation Rule: both of previous rules (derivation and load) produce new
nodes by decomposition of existing nodes. However, the edges they create
are only hierarchical, limited to relate each new node with the parent which
produced it. Relation rules provide a more powerful mechanism to create edges
between nodes without derivation relationships. A relation rule is defined by
the edge type which all the new edges will belong to. The behaviour of a
relation rule is implemented through a check relation function.

• CheckRelation function: it determines, for a pair of nodes, if a new edge
have to be created between them. For such cases where the relation is created,
it also defines the value of that new edge. Many different functions can be
defined. Section 3.4.2 described the function CommonAncestor, currently
supported in this tool.

3.6.2 Architecture and Design

In this section we describe the overall architecture of GraphGen. Our tool is
implemented in Java, using Swing for the graphical user interface. All the relevant
information is persisted in the relational database MySQL. This architecture is
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presented in Figure 3.12. It is organized in four layers, from the persistence to the
user interface. Next, each layer is detailed:

• Data persistence: all the non-temporary information of the application is
persisted through this layer in a relational database. The database stores the
graph structural information, defined by the user through the rule definition
mechanism, but also the graph data when this graph is generated by the tool
(including the values of the nodes and edges). Although we use a relational
database to persist all the information, any other alternative could be used
instead of modifying the data management layer which will be explained next.
For instance, the graph instance (nodes and edges and its values) is a kind of
data that fits with a key/value store database so they could be managed in
stores like Redis or CoachDB. Although a more efficient implementation could
maintain the full information in main memory, we decide to use a secondary
storage in order to give priority to the scalability of the system, since the
size of the graph, depending on the context, could overflow the capacity of a
standard-size main memory.

• Data management layer: this layer manages the communication between
the application and the database, providing methods to recover, create, modify
and delete the elements of the data model (defined in Section 3.6.1). The
objects of this data model can be classified, according to their role in the
application, in three groups: graph data, including the nodes and edges of
the graph and their values; graph rules, containing the rules defined by the
user for each graph; and finally the graph structure, which includes the
remaining elements needed to define a work environment in the application,
like the types of the elements and the general information of each graph. The
current version of the application implements this layer using a JDBC driver
for MySQL.

• Rules definition and graph management layer: this layer provides
implementations, structured in services, for all the possible actions that the
user can perform in the application. Figure 3.13 shows the internal structure of
this layer and the methods of the Data management layer they invoke. All the
actions are structured in three services. GraphDefinitionService includes
methods to define the input data sources, the rules to transform this data
in the final graph and how nodes and edges are typified in this graph. The
GraphGenerationService implements the process of, given the rules defined
by the user applying them to the input data sources. The algorithm for
this graph generation is detailed in next section. GraphManagementService
includes the actions that work over a generated graph in order to obtain a
sub-graph containing the desired data to be exported. Methods to prune the
nodes and the edges of the generated graph can be done. In this way, such
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Figure 3.12: GraphGen architecture
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node (or edge) types that only represented intermediate states of processing
can be deleted, because they only were needed in the generation process, but
they do not belong to the final graph. After this filtering, the final graph
can be exported through the method export, which transforms the internal
representation of the graph in the relational database to the standard format
GraphML. In order to optimize the implementation of these methods, specially
such of them involving many I/O operations, some cache mechanisms in the
main memory were implemented, which will be detailed in Section 3.6.4.

• User interface: All the interaction with GraphGen is carried out through a
graphical user interface implemented with the Java GUI widget toolkit Swing.
During the process of rule definition, the graph model is dynamically visualized
(implemented with the library Jung, or Java Universal Network/Graph
Framework).

3.6.3 Graph generation

In this section, we give more details about the algorithm we implement to generate
the graph from the input datasets into a graph according to the set of rules defined
by the user. The main challenge is to find an order of execution of the rules that is
complete (all the elements that can be obtained by the application of the rules will
be actually generated) and finite (the process always ends, for every set of rules).
For that purposes, we start by applying all the load rules, which generate the input
nodes of the graph. Then, the derivation rules are applied over every node generated
in the graph, until all the nodes are completely explored and no more new nodes
are generated. Finally, over the created nodes, new edges are created through the
relation rules, in basis on all the nodes and the decomposition edges.

Load Rules are the first rules to be executed. They create the input nodes from
the data collection. If this data collection is composed by complex objects of the same
type, only one load rule will exist. Otherwise, a different load rule will be defined for
each different input node type. The execution of a load rule is independent from the
remaining load rules, so each rule is executed only one time, following the extraction
function defined by the user in the rule. No edges are created in this step. Therefore,
for each load rule, several input nodes can be extracted, whose values are given by
the extraction function.

Derivation Rules Each application of a derivation rule will produce new nodes
in the graph. Therefore, the derivation rule is applied over all the nodes belonging to
the source node type of the rule. Taking into account that different derivation rules



3.6. Implementation details of GraphGen 61

Figure 3.13: Dependencies between the services and Data Access Objects
of GraphGen
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can produce nodes of the same type, the sequential application of the derivation
rules could miss the production of some nodes. One possible solution consists in,
for each new node added to the graph, applying all the applicable derivation rules,
that is, all the rules whose source type is the type of that node. This solution is
complete and finite, since each rule is applied over a node once (and only once).
However, it can be inefficient, because for every node we create, we have to check
what derivation rules exist for that node type.

To summarize, the application of each derivation rule to the current set of
existing source nodes may not produce the complete graph. On the other hand, the
application of every rule over each node is a complete solution. However, it produces
a lot of checks of the rules that are applicable to each node. Instead of this, we
follow a hybrid (and complete) strategy. Our approach consists in applying the rules
over the set of nodes of the same type to reduce the number of checkings for the
applicability of rules. We start by several sets of input nodes.

Consider each load rule of the graph LRi that produces ni nodes belonging to
the same type. We start the derivation rule application by creating a queue with l
blocks of nodes, one for all the created nodes for each applied load rule. Therefore,
all the elements of the block are of the same type. The next steps are repeated until
the queue of blocks is empty:

• Extracting the next block composed by ni nodes of the same type from the
queue. Then, for their node type (which is the same for all the nodes of the
block), the list of possible derivation rules that can be applied is obtained.

• Each derivation rule is applied over the ni nodes, producing n′i nodes that
belong to the same target type. If the rule is a graph rule, then for each
candidate node that the extraction function produces is only transformed
in a real node if no node exists with the same value and type in the graph.
Additionally, a new edge is created between the new node and the source node
which produced it. Again, if the rule is a graph rule and the candidate node
already existed in the graph, the new edge will relate the current source node
with the existing node.

• Each set of nodes created as a result of the application of a derivation rule
over the current block of nodes composes a new block of unexplored nodes
which is added to the queue.

In this way, we implemented a complete generation algorithm, since all the nodes
are explored one time (and only one) and all the possible rules are applied over each
node. Furthermore, exploring nodes by blocks allows to optimize the process of
computing the rules applied over each node.
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Relation Rules After the application of the derivation rules, all the possible
nodes are already created. Then, the relation rules can be applied. As in the case of
the load rules, the result of a relation rule does not affect to the remaining rules,
since each rule produces a set of independent edges. Then, each relation rule is
applied over the current graph following the same steps:

• The set of existing nodes of type TN1 of the relation rule is obtained.

• In the same way, the set of existing nodes of type TN2 of the relation rule is
obtained.

• For each pair (n,m) ∈ TN1 × TN2 the check relation function is computed.
If the function returns true as result, then a new edge can be created. If an
edge of the same type already existed between the two nodes, then the weight
of the edge is increased, instead of creating a new edge.

3.6.4 Memory management

As a consequence of the in secondary memory storage, some operations involve
a lot of I/O communication affecting to the performance and the scalability of
GraphGen. In order to optimize the most critical operations, some cache structures
were designed. In this section, we describe two optimizations we implemented. First,
we explain how the descendants of an XML tag are efficiently maintained to work
with XML files in GraphGen. After that, the caching of the current working nodes
used to optimize the generation process is described.

3.6.4.1 XML assistance

GraphGen provides some extraction functions specially designed for XML data.
When the input data is an XML file, the elements are divided progressively by
extracting descendant XML tags of the file. The derivation rules specify the name
of the tag delimiting the content of the XML in the same node to be extracted as
content of the target node, which will be obtained from a source node. In order to
facilitate the definition of these rules, we provide to the user the descendant tags
for a given tag in the XML dataset. When no schema (DTD or XSD) is provided,
these suggestions require the full exploration of the text. We optimize this process
by maintaining the descendants of each tag in main memory.

In addition to that, when a huge input XML dataset is progressively divided, the
contents of the complex nodes that are extracted from the input nodes can be very
large. Consider an XML register of a libraries network, where each book information
(tagged with < book >) is a descendant of the library where it is located (tagged with
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< library >). A first decomposition rule could create nodes < library >, whose
value would be the XML text with all the books of this library. If all of this values
were explicitly stored, the needs of space would be very high. Therefore, depending
on the size of the value of a node, we contemplate two alternative approaches: for
small values the value is explicitly stored. However, for huge values, only a pointer
to its initial and final position in the input data source is stored, saving space but
also allowing faster access when this value is loaded to continue its division. This
mechanism was implemented using the facilities that a SAX parser provides.

3.6.4.2 Temporal data in main memory

During the application of a rule, we maintain the set of current nodes whose type is
the source or the target of that rule in main memory. In this way, for the graph rules,
checking the existence of a node with the same type and value is faster. Furthermore,
the storage in the relational database is performed by blocks of nodes. That is, when
a derivation rule is applied over a block of nodes, all the new nodes created as a
result are saved in the database as a block, reducing the I/O communication.

3.7 Summary

In this chapter we designed a model to generate graphs from arbitrary data. This
graph transformation is defined through different kind of rules (load rules, derivation
rules and finally the relation rules), which allows the user to specify how the input
datasources are decomposed in elements (nodes of the final graph) and how they
are connected (edges of the graph). We proposed a tool implementing this model:
GraphGen. GraphGen is a general purpose application, since rule definition is
generic and it does not include any domain-specific transformation. It can be used
to transform data from any domain into a graph through rules that are defined by
the user through a graphical interface.

We have experimentally validated GraphGen by transforming three datasets
from different domains and formats into a standard graph. We create a graph of
reviewer compatibility from a bibliographic database, a graph relating the query
search terms with the most related URLs from a query log and a graph with tagged
photos from a social network.

Although the design of this application does not pursue achieving a good spatial
and temporal efficiency, the results obtained with GraphGen in the use cases show
that GraphGen can be used to generate graphs with tens of millions of elements in
less than an hour.



Chapter 4

Representing Graphs with
attributes using K2-trees

In this chapter we propose a compact data structure to store graphs with attributes
(attributed graphs) based on the K2-tree, a very compact data structure designed to
represent a simple directed graph, which can be also seen as a binary relationship.
The idea we propose can be seen as an extension of the K2-tree to support attributed
graph models. We also provide an implementation of a basic set of operations, which
can be combined to form complex queries over these graphs with attributes. We
evaluate the performance of this system and we study some fields of application for
this static but compact attributed graph representation.

This chapter is structured as follows. Section 4.1 describes the most representative
tools existing in the State of the Art to manage attributed graphs. In Section 4.2 we
present our compact data structure to store such graphs with attributes. This section
focuses on the physical storage. Section 4.3 presents the operations implemented in
AttK2-tree. Finally, Section 4.4 provides an experimental evaluation of the system
using representative cases of study where we compare our proposal against another
attributed graph representations in the State of the Art.

4.1 Systems for Attributed Graphs

Last years, Graph Database Models have been proposed to represent attributed
graphs. They specify the data, the queries, the results and, in many cases, even
the schema as a graph [AG08]. Many theoretical models and their corresponding
query languages were proposed to represent and navigate graphs. Some examples
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are the Hypernode Model [LP90], which main feature is that nodes can be a graphs
by themselves; and GOOD (Graph Oriented Database Model) [GPVdBVG94],
where data manipulation operations (insertions and deletions of nodes and edges
and clustering of nodes depending on some properties) are specified as graph
transformations.

Built over those theoretical models, many practical Graph Databases Engines
have been proposed. In this section we describe some of the most relevant works in
this area, providing their internal data structures.

4.1.1 DEX

DEX [MBÁLMM+12,MBMMGV+07] is a graph database that efficiently stores
and queries labelled and directed attributed multi-graphs. It keeps the graphs in
secondary memory using different bitmaps. The graph model of DEX defines labelled
nodes and directed edges where extra information is associated to each node and
edge, represented as a list of attributes. Therefore a Graph in DEX is defined as
G = (V,E, L, T,H, {A1...An}) where:

• V denotes the set of node keys.

• E defines the set of edge keys.

• L is a key-value list that includes, for each key node (or key edge) its label.

• T and H represent, for each key edge, the keys of its corresponding origin
(tail) and target (head).

• Each {A1...An} represents a different attribute. Nodes and edges of the graph
can take values for some of these attributes.

DEX represents this graph model through a set of maps. Figure 4.1 shows an
example of a graph internal representation in DEX. The figure at the top shows
a graph for a social network where two members (Carrie and Saul) are joined in
different groups (a reading group and a football team). Users can be related through
a follow relationship and users can participate in the groups through two different
relationships (join for a reading group and play for a football team) described by
different attributes. Elements of the graph (nodes and edges) have an object identifier
associated. For instance, the object identifier of the member Carrie is O1.

The Figure at the bottom shows the bitmaps used in DEX to represent this
graph. Labels storage is located on the left. A map (implemented using a B+-tree)
points from each object identifier (node or edge) to its corresponding label value. For
instance, the object identifier 3 (o3) is related to the label group (since it represents
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Figure 4.1: DEX internal representation (bottom) for a labelled attributed
graph (top)
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the Reading group). Each label has associated a compressed bitmap that conceptually
contains as many bits as objects the graph has. For a label value, a one in the
position i means that oi is labelled with that value. However, in practice, bitmaps
are only stored until the position of the last one. In this way, for the non-stored
positions a zero value is inferred for this label. The B+-tree and these compressed
bitmaps compose a double mapping. The purpose of storing this double mapping is
to provide a bidirectional navigation. The first map is used to obtain the label of
each object identifier. On the other hand, the bitmap answers the opposite query:
given a label value (for instance, member), obtaining the objects with that label
is performed by retrieving the ones in the corresponding bitmap. The bitmap for
member is [11000000], meaning that o1 and o2 are objects with the member label.
The remainder information for the graph is managed in a similar way: a double
map is used to represent the tails of the edges, another one represents the heads
and finally one map per attribute is stored.

The main purpose of this internal structure is to provide bidirectional access.
That is, the data for a given node can be recovered using the maps indexed by its
identifier. On the other hand, given a label or an attribute value, finding the nodes
or edges with this label or value is performed by checking its corresponding bitmap
and recovering the positions with a value one. Direct and reverse neighbor nodes
are recovered by using the bitmaps head and tail.

DEX query engine is built over this internal representation. It efficiently
implements a small set of primitives. More complex queries are built on the top of
this core engine.

4.1.2 Neo4J

Neo4j is an open-source Graph Database which supports the storage and query of
labelled directed attributed graphs. A graph in Neo4J can be defined as G = (N,E),
where N is a set of nodes and E is the set of edges. Each node is a pair ni = (Li, Pi).
Li is the set of labels and Pi is the set of properties (or attributes) of the node.
Labels of a node can be seen as tags. They can be used to define constraints over
a group of nodes, to represent temporary states of nodes or, in general, to define
a target group of nodes over which an operation will be performed. A property
pj ∈ Pi is a key-value pair, where the value can be a primitive (the typical primitive
types of any programming language like Boolean, Integer and String are supported)
or a list of elements from one of these primitive types. An edge of a graph in Neo4j
is defined as ei = (nj , nk, ti, Pi), where nj and nk are the nodes related through this
edge, ti is the label of the edge and Pi is the set of properties the edge contains
(equivalent to the properties of the nodes). Neo4j defines its own query and update
language, Cypher, which is a declarative language, where data is obtained by pattern
matching.
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Figure 4.2: An example of hypergraph model including n-ary edges

4.1.3 HyperGraph

Hypergraph DB [Ior10] is a graph database based on the Hypergraph model. It
supports a hypergraph HG = (N,E), where N is the set of nodes and E is the set of
edges. Each edge ei ∈ E relates two or more nodes, that is, ei = {nj ∈ N}, |{nj}| ≥ 2.
The hypergraph defines a more expressive structure that can be useful to model
domains where more than two entities are usually related. For instance, each
conversation of people in an online chat program could be modelled using this
hypergraph model as an edge that relates the participants in the conversation.
Figure 4.2 shows an example of conversations along the time. For instance, the chat
conversation in 01/08/2014 is represented as an edge that involves 3 members.

Hypergraph uses an atom as the basic unit of representation. It contains a typed
value and a target set composed by a set of atoms. When the number of atoms in
the target set is 0, atoms are called nodes. On the other hand, when at least one
atom is associated with it, the atom is a link.

The storage of Hypergraph DB is basically distributed in two layers. The
primitive storage layer includes the information of the links (for each edge identifier
the set of related identifiers is stored) and the data (the RAW value corresponding to
each identifier). Over this primitive layer, the model layer manages the type system,
the querying engine and some optimization facilities like caching and indexing.
Hypergraph DB is physically stored using a key-value store.

The Hypergraph DB query engine provides two different ways of specifying the
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query: an API to define standard graph traversals and a SQL-style language where
a set of constraints over the required atoms are set.

4.1.4 Other systems

Last years, many other graph database systems have emerged. They are focused
on managing large amounts of data in a very efficient way. OrientDB1 is a good
example, which is Document and Graph oriented, implemented in Java and uses SQL
as query language. Finally, many proposals were designed to work in distributed
environments. Titan2, Giraph3 or Pregel [MAB+10] are just some examples.

4.1.5 Blueprints Graph API

As we reviewed in this section, many different Graph Databases solutions were
proposed in the last decades. Each one defines its own graph model. Although, in
general, all of those approaches are designed to support attributed graphs, their
models present small differences regarding to the type and label system and other
features. Furthermore, different graph database systems support different query
languages. Some of them are based on languages from other applications like SQL
or SPARQL. Others define ad-hoc APIs composed by specific primitives. Some of
them define a complete new query language, such as Neo4j.

In this situation, when a new graph application is developed, it has to be
implemented over an specific Graph Database, being platform-dependent. The
Property Graph Model interface named Blueprints4 was proposed to overcome that
problem, providing a common graph API to facilitate the integration between the
applications and the graph stores. In this way, graph databases that implement the
Blueprints API can be used by any Blueprints application. Likewise, a Blueprints
application can use any graph database system that implements the Blueprints API
interface. Nowadays, the most relevant graph databases like Neo4j, OrientDB, DEX
and Titan support this interface.

4.2 Our proposal: AttK2-tree

In this section, we propose our system we called Attributed K2-tree (AttK2-
tree) to efficiently store and manage attributed graphs. The internal representation

1http://www.orientechnologies.com/orientdb/
2http://thinkaurelius.github.io/titan/
3http://giraph.apache.org/
4http://blueprints.tinkerpop.com/
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of the graphs is based on the K2-tree, a static data structure designed to work in
main memory. Therefore, we propose an in-main-memory compact attributed graph
representation designed to be used in contexts where big amounts of static data
need to be intensively queried.

4.2.1 Graph model supported by AttK2-tree

We described several attributed graph stores in Section 4.1. All of them are based
on specific attributed graph models, presenting small differences between them.
Therefore, before describing the internal representation of our structure, we first
consider the features of the attributed graph model that AttK2-tree supports. Figure
4.3 shows an example of graph supported by AttK2-tree. It represents a paper
authorship and review network, where several information about papers and their
corresponding authors is included. Authors and papers are modelled as nodes in
the graph, and the different collaborations between them are reflected as edges (like
thesis direction or collaboration in a research project). Researchers are related to
the papers that they co-authored through edges. Researchers can also be related
with a paper through a review relation. This graph is an example of the data that
could provide support to an application searching for conflicts of interest to assign
the paper reviewers.

The graph model of AttK2-tree presents the following properties:

• Directed graph: Edges of the graph will be directed, meaning they distinguish
between origin and target node. Figure 4.3 shows how edges from the graph
explicitly identify its origin and target nodes. For instance, edge e1 represents
the authorship of a paper, having researcher n3 as origin and the paper n1 as
target of the edge. As usual, an edge of an undirected graph could be also
represented in this model by using two directed edges (in opposed directions)
between the two nodes it relates.

• Attributed graph: Attributes or properties are the most meaningful charac-
teristic of general graphs. Many approaches can be followed to define the
attributes of an element, including complex data types, range domains and
another constraints over each attribute. However, we define a more simplistic
conception of attributes. Each node and each edge of the graph is described
through a set of attribute-value pairs. Values are not restricted to a domain
or a data type. They can take any value which will be managed as plain text.
In Figure 4.3, we can observe that the edge e6 takes the value Medium for the
attribute Expertise.

• Labeled graph: Several definitions can be considered for a labeled graph. As
it was described in Section 4.1, DEX considers that each component of the
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graph (nodes and edges) contains a unique label (or main value) that identifies
the kind of element it belongs to. On the other hand, labels in Neo4J are
considered as tags, supporting the definition of multiple tags for each element.
We consider, in line with DEX, that each element (node or edge) of the graph
has just a label, which we call type. This type determinates the attributes that
an element of that type can contain. In that sense, the label and the list of valid
attributes for each label composes a schema which can be very helpful to work
with domains with structured data. Figure 4.3 shows the label of each node
and edge. In this example, two different labels are contemplated for the nodes.
That is, that graph has only two node types: researcher and paper. The label
determines the attributes that describe each node. Researchers are described
through the attributes name, university (where they work) and position in
that university. On the other hand, papers are described through the title and
the main topic of the paper. Edges of the graph can be labelled with the labels
author, PhDDirector, reviewer and colleague. Colleague relates two researches
which have collaborated in some research projects. To summarize, labels are
used to identify the type of a node or edge.

• Multigraph: AttK2-tree does not constrain the number of edges which connect
two nodes, so many edges with the same origin and the same target can be
defined. This characteristic is useful to represent in a natural way contexts
where several kind of relationships can be established between two nodes. This
multi-edge nature, combined with the labelled and attributed properties, makes
this model very expressive. Therefore AttK2-tree can fit with the structural
properties of many real graphs. Figure 4.3 shows an example of multigraph,
where nodes n4 and n5 are related through two edges (e4 and e5) representing
relationships with different nature (PhDDirector and colleague) between those
nodes

4.2.1.1 Formal definition

A formal definition of a labeled, directed, attributed and multi (LDAM) graph is
represented as a 10-tuple G = (LN , LE , N,E,R,LA, SN , SE , AN , AE) where

• LN is the set of possible labels that the nodes of the graph can take. For
the graph in the Figure 4.3, LN = {Paper,Researcher}. They are the node
types.

• LE is the set of possible labels that the edges of the graph can take. Regarding
to the same example, LE = {Author, Colleague, PhDDirector,Reviewer}.

• N = {ni, lj} is the set of nodes, being ni ∈ 1 . . . |N | a numeric identifier of
the node and lj ∈ LN the label of the node. In the example, the set of nodes
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Figure 4.3: Example of labelled, directed attributed multigraph
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is composed by N={(1,Paper), (2,Paper), (3,Researcher), (4,Researcher),
(5,Researcher)}.

• E = {ei, lj} defines the set of edges where ei ∈ 1 . . . |E| is the identifier of
the edge and lj ∈ LE is its label. The set of edges of the graph in Figure 4.3
is E={(1,Author), (2,Author), (3,Author), (4,Colleague), (5,PhDDirector),
(6,Reviewer), (7,Reviewer)}.

• R contains the relations between the nodes, that is, the origin and target of the
edges. Each element of R is a triple (ei, oi, ti), where ei is the edge identifier,
oi the node identifier which is the origin of the edge and ti the node identifier
playing the role of target in the edge. It is easy to note that, by definition,
|R| = |E|. In the example:

R = {(1, 3, 1), (2, 5, 1), (3, 5, 2), (4, 4, 5), (5, 4, 5), (6, 3, 2), (7, 4, 2)}

• LA = {ai} is the set of the different attribute labels of the graph. In other
words, LA is the union of all different properties that describe the nodes and
the edges of the graph. In the example,

LA = {Title, Topic,Name,University, Position,Expertise}

• SN = {sni} is the set of schemas for the types of the nodes. Each element
of SN defines the set of attributes for a node type. Each element sni of the
schema is represented as a pair (li, {aj}), where the node label li ∈ LN has
associated a set of attributes aj ∈ LA which define that node type. Note that
an attribute is not exclusive of a node type. In other words, several node types
can be defined through the same attribute. Next, the schema of the nodes for
the graph in Figure 4.3 is shown:

Label (li) Attributes({aj})

Paper {Title,Topic}

Researcher {Name,University,Position}

• SE = {sei} is the set of schemas for the types of the edges, in a completely
analogous way to SN . Each element of SE defines a valid schema for and edge
type. Each sei = (li, {aj}) is a pair where li ∈ LE is the corresponding label
and {aj} is the set of valid attributes for each edge type. Next table details
the schema of the edges for the same example:
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Label (li) Attributes ({aj})

Author { }

Colleague {Projects}

PhDDirector { }

Reviewer {Expertise}

• NA = {(ni, aj , vk)} defines the properties of the nodes. It is a set of triples,
where each triple defines the value vk that the node ni ∈ 1 . . . |N | takes for
the attribute aj ∈ LA. Note that a triple (ni, aj , vk) is valid in a data source
if ∃lm|(ni, lm) ∈ N ∧ (lm, {. . . aj . . .}) ∈ SN . That is, a node can only take a
value for an attribute included in this schema, given by this node type. For
instance, the set of triples describing the properties of the node n3 in Figure
4.3 are:

Node Identifier (ni) Attribute (aj) Value (vk)

1 Name P. Garcia

1 University Madrid

1 Position Lecturer

• EA = {(ei, aj , vk)} describes the properties of the edges (analogously to NA).
As an example, the triple describing the edge e6 is provided:

Edge Identifier (ei) Attribute (aj) Value (vk)

6 Expertise Medium

Next, we detail the internal representation of AttK2-tree designed to support
the graph model presented in this section.

4.2.2 Data structure

AttK2-tree stores a directed, attributed and labelled multi-graph by storing binary
relationships with K2-tree structures. It is a compressed solution composed by a
set of K2-trees an some additional structures. The graph is represented by three
sub-systems: the schema of the data, the data included in the nodes and the edges
and, finally, the relations between the elements of the graph topology. Next, we
present the three sub-systems.



76 Chapter 4. Representing Graphs with attributes using K2-trees

4.2.2.1 Schema

The schema manages the labels (types in the model) and the attributes describing
each type. This schema layer works as a simple index to the other subsystems in
AttK2-tree. The elements of the graph model LN , LE , N,E, SN , SE are stored in
this schema layer. Figure 4.4 on the left shows the schema storage for the graph of
the example. It is composed by:

• Nodes Schema: it is stored by a table where each row rj represents the
information of a label li ∈ LN . Rows are ordered lexicographically by the
label. The nodes of the graph will have identifiers according to the order of
the labels in this Schema. That is, the m1 nodes with the first type in the
Schema, will have identifiers from 1 . . .m1. The m2 nodes from the second
node type will have a range of identifiers m1 + 1 . . .m1 +m2 and so on. Each
entry of the nodes schema will store the highest node identifier with this label.
Figure 4.4 shows the nodes schema for the graph of the Figure 4.3. It has two
entries: paper (having 2 as the highest identifier) and researcher (with limit
5). That means that the nodes with identifiers in the range 1 . . . 2 are papers,
while the nodes with identifiers from 3 to 5 are researchers. Each label also
points to its valid attributes in the data subsystem.

• Edges schema: a table describing the characteristics of the different edge
types is implemented in the same way that the Nodes Schema. Therefore,
the edge identifiers will also be ordered by type. In that way, given an edge
identifier, its corresponding type can be computed by performing a binary
search over the entries in the Schema. For instance, to recover the type of the
edge 6 in the Figure 4.4, a binary search over the upper limits is performed,
until reaching the range 6 . . . 7 that includes it, concluding that the node type
of the edge 6 is Reviewer.

The schema layer is the starting point of the internal representation of the graph
in AttK2-tree, providing indexed access to the other two layers. It is used to retrieve
the ranges of identifiers for a label, and to recover the label for a given identifier. It
also stores references to the valid properties for a given label.

4.2.2.2 Data

The Data layer describes the nodes and edges of the graph through their properties.
It stores the values that each element of the graph (node or edge) takes for each valid
attribute according to each type. Each different attribute can be represented in two
different ways depending on the frequency distribution of its value. The first kind
are the Dense Attributes, where many nodes or edges of the graph share the same
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Figure 4.4: Internal representation of Schema and Data subsystems in
AttK2-tree
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value for that attribute. In opposition to the dense attributes, in Sparse Attributes
nodes or edges usually take different values for that attribute. Titles, URLs or
identifiers are common examples of sparse attributes whether age or nationality
are examples of dense attributes. This two kind of attributes will have a different
internal representation in AttK2-tree:

• Sparse attributes: attributes where elements usually take different values
will be stored as a list indexed by element identifier. This list is double-indexed:
in addition to the implicit index by element identifier, there is an additional
index to maintain the entries in lexicographical ordering. This additional index
is used to recover the elements taking a specific value by a binary search. Figure
4.4 (top-right) shows four Sparse Attributes: Title, Topic, Name, University.
For instance, Name is an attribute valid for the type Researcher. The values in
the list are sorted by node identifier. The first element of this list (P. Garcia)
is the value that the first researcher (n3) takes for the attribute name. Given
a node (ni, lj), its value for a sparse value will be in the position i− limit+ 1,
where limit represents the lowest node identifier of the type lj . The additional
index provides support to perform a binary search over the attribute values.
We can see in the example that the first element of this additional index in the
attribute Name points to J. Boy, the first element of the list in a lexicographical
order.

• Dense attributes: All the dense attributes of the graph are stored in just two
K2-trees: a K2-tree for the dense attributes of the nodes and another K2-tree
for the dense attributes of the edges. Next, the construction of the K2-tree for
edge attributes is shown (the K2-tree for the nodes is built in the same way).
Each dense attribute Ai can be seen as a binary relationship between the |E|
edges and the set of different values that the edges take for that attribute.
These relationships can be represented in consecutive columns of the adjacency
matrix. Rows of the adjacency matrix represent the edges of the graph, ordered
by their identifiers. Columns will represent the possible different values of
each attribute. Each group of consecutive columns represents the different
values for an attribute. A 1 in a cell (i, j) of this adjacency matrix means that
the edge with identifier i takes the value j for the attribute located in this
range of columns. This adjacency matrix will be represented by a K2-tree.
An additional structure stores, for each attribute, the block of columns which
correspond to this attribute, and the specific values that represent each column.
Figure 4.4 (bottom-right) shows the representation of the Dense Attributes.
The adjacency matrix for the nodes is on the right, where the 5 rows represent
the 5 nodes of the graph. The adjacency matrix on the left contains a row for
each one of the 7 edges. On the top of this adjacency matrix, the meaning
of each column is specified by several lists. The attribute Expertise contains
three possible values (Low, Medium,High). This attribute includes the index
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one, locating its three columns from the column 1 of the global adjacency
matrix. Then, the cell (6, 2) which contains a one, means that the edge e6
values Medium for the attribute Expertise. On the other hand, the attribute
Projects, which is specified in the Schema as a valid attribute for the edge type
Colleague, contains three possible values which starts from the column 4 of the
global adjacency matrix. In that way, the 1 in cell (4, 5) means that e4 takes
the value 5-10 for the attribute Projects. Note that in some regions of this
matrix, due to the schema constraints, no ones can appear. For instance, the
matrix between the rows 1 . . . 3 and the columns 1 . . . 3 is empty because the
label Author does not have the attribute Expertise, according to the schema.

Note that for some attributes, the choice of representing them as a sparse or dense
attribute could be not obvious. A possible criteria could be based on the number of
different values regarding to the number of elements taking a value for that attribute.
Experimental evaluation in Section 4.4 includes an analysis of behavior of these two
kinds of storage.

4.2.2.3 Relations

The third subsystem of the AttK2-tree stores the Relations, that is, the different
edges that connect the nodes of the graph. We store these relations with a K2-tree,
extended to store the edge identifiers corresponding to each connection.

K2-tree represents, in a very compact way, simple graphs that can be described
through a binary adjacency matrix. A one in a cell (i, j) shows the existence of an
edge from the node i pointing to the node j. However, additional information is
needed to store the relations in AttK2-tree. First of all, each one of the matrix has
to be related to its edge identifier, which is used as pointer to the data layer (for
instance, to recover the attributes of that connection). On the other hand, AttK2-
tree supports multi-graphs. That means that more than one edge can relate a pair of
nodes. So, several edges can be represented in the same cell of the adjacency matrix.
Figure 4.5 shows the relationships of the same example and the corresponding
adjacency matrix containing those edge identifiers. For instance, the cell (4, 5)
contains two edge identifiers because two different edges connect n4 and n5 in the
original graph (e4, e5).

The relationships in AttK2-tree are stored with the original K2-tree and some
additional structures to represent multi-edges and to trace their edge identifiers.
Figure 4.5 shows the structure we call Multi-edge K2-tree, composed by the following
elements:

• K2-tree A K2-tree is built to represent a binary relation among nodes in
which two nodes are related if at least one edge connects them in the original



80 Chapter 4. Representing Graphs with attributes using K2-trees

Figure 4.5: Multi-subsystems in AttK2-tree

graph. Figure 4.5 shows the K2-tree corresponding to the same example. It is
a standard K2-tree except by the fact that in this case, the bitmap of the last
level also needs an additional structure to perform rank and select operations
over them. The relative position of the bits with value 1 in the last level of
the tree will be used as an index to the Multi bitmap (which will be explained
in the next paragraph). So, when a leaf is reached, a rank operation over the
last level of the tree will provide its relative position in the Multi bitmap. For
instance, last level of the tree in Figure 4.5 contains 6 ones. If we perform a
rank operation over the bitmap until the 7-th position, we have that this is
the fourth leaf of the K2-tree.

• Multi Each leaf with a one value in the K2-tree represents one or several
edges. Multi is a bitmap which stores, for each one element of the leaf level,
whether it is a multiple edge (or it is representing only one edge). Therefore,
Multi[i] will have value one if the i-th one of the K2-tree is clustering multiple
edges. In the example, only the fourth position of the bitmap Multi contains a
one value (clustering the edge e4 and e5). This information is used to read
the next array (First).

• First This array stores the first edge identifier of each one of the K2-tree. For
the i-th one of the leaf level, if it is a single edge (that is, if Multi[i] = 0) then
First[i] contains the identifier of that edge. Otherwise, when the i-th one is a
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multiple edge, First[i] represents the position in Next array, where the first
edge is located. In the example of the Figure 4.5, Multi[1] = 0 ∧ First[1] = 1,
so the first edge (corresponding to the cell (3, 1)) has identifier 1. On the other
hand, Multi[4] = 1 ∧ First[4] = 0 so the first edge of the cell (4, 5) will be in
Next[0].

• Next This array contains the identifiers of the multi-edges and it is indexed
by the First and Multi arrays. Figure 4.5 shows the two identifiers for the
only multi-edge of the example: e4 and e5, corresponding with the cell (4, 5).

The three layers Schema, Data and Relationships compose the internal
representation of AttK2-tree, used to store directed, attributed, labelled multi-
graphs. These structures, based on the usage of K2-trees, were designed to provide
a compressed representation of attributed graphs, which could be accessed to
three basic queries. The next section presents the navigation over the internal
representation of AttK2-tree.

4.3 Navigation and operations

We present the query API of AttK2-tree composed by a set of basic operations over
attributed graphs. This API aims to provide a basis for the construction of more
complex queries. Our API contains 11 operations, which can be classified according
to the layer of AttK2-tree that they imply.

4.3.1 Operations over the Schema

Some of the basic operations in AttK2-tree work with the types (or labels) of the
graph.

• Retrieval of labels. The operation Get{Node|Edge}Types returns the
different labels of the nodes (or the edges) of the graph. According to the
internal representation of AttK2-tree, it is trivially implemented by recovering
all entries of the Nodes Schema (or the Edges Schema). In the graph of the
example, GetNodeTypes returns the labels Paper and Researcher. On the
other hand, GetEdgeTypes returns the labels Author, Reviewer, PhDDirector,
Colleague.

• Filter by type. Scan{Node|Edge}(type) recovers the nodes or the edges of a
given type. Taking into account that the identifiers were allocated according
to the type of the elements, this operation becomes quite straightforward.
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For instance, the operation ScanNodes(”Researchers”) is implemented by
performing a binary search over the labels in the Nodes Schema, showed in
the Figure 4.4. When the entry 2 is retrieved, the upper limit of the range of
identifiers with label Researcher is obtained, with value 5. The lower limit of
the range is retrieved from the previous entry (that is, the first entry) with
value 2. Therefore, Researcher nodes range from 3 . . . 5.

• Find by element identifier. Get{Node|Edge}Type(id) gets the type
corresponding with an identifier. GetNodeType starts by performing a binary
search over the upper-limits of the Node Schema, until the correct range is
found. Then the label can be returned. For instance, GetNodeType(4) starts
from a binary search over the nodes schema, until the lowest upper-limit is
found (in this case is the second entry with value 5) and the highest lower limit
(the first entry with value 2). Consequently, the node 4 has type Researcher.
The behaviour of GetEdgeType(id) is totally symmetric to GetNodeType(id)
and it is implemented exactly in the same way.

4.3.2 Operations over the Data

Next two operations involve the Data subsystem. They work over the attribute
values of the nodes and edges of the graph.

• Attribute retrieval. Get{Node|Edge}Attribute(id,att) is the basic operation
that obtains the value that a node (or edge) with identifier id takes for the
attribute with label att. The operation starts by obtaining the type of the
given node, which is solved with the operation GetNodeType(id). Then, the
list of valid attributes of the node is checked looking for the label att. If the
label att is not included in the list of valid attributes for that type, then the
attribute is undefined for that node and no result is returned. For instance,
GetNodeAttribute(3, ”Title”) in the example searches the list of attributes
of the type Researcher, which are Name, University and Position, so Title is
not a valid attribute and no result is returned. Otherwise, the attribute is
checked. If it is a sparse attribute, the procedure is quite simple: the list of
plain values is checked at the position id− limit+ 1, where limit is the lowest
identifier of the type GetNodeType(id). The value of this cell is returned. For
instance, GetNodeAttribute(3, Name) will return the value of the position 2
in the list of values for Name, that is, J. Boy. For dense attributes, a range
operation has to be performed in the K2-tree. The range includes only one row
(corresponding to id) and the columns representing the dense attribute that is
being checked. For instance, for the operation GetEdgeAttribute(Expertise, 6)
the row 6 between the columns 1 . . . 3 is checked. A one appears in the second



4.3. Navigation and operations 83

column, so the second position in the att list, Medium, is finally returned as a
value.

• Filter by attribute value. Select{Nodes|Edges}(type,att,val) returns all
nodes (or edges) belonging to type which takes the value val for the attribute
att. It is a classical filtering by property and type. In the graph of the example,
queries like researchers from Coruña, papers with the topic Graph Compression
or PhD Students are examples of this select operation. The operation starts
by recovering the entry corresponding to the specified type in the same way
Scan(type) does. It obtains the lower and upper limits for the identifiers of
that type, which will be necessary later for this query (inf,sup). Then, the
attribute att is searched in the attribute list of that entry If it is a dense
attribute, the value is searched in the list of labels of that attribute in order to
compute the limits of the needed range search over the K2-tree. For instance,
when SelectNodes(Researcher, Position, Chair) is queried, a range query is
performed between the rows 4 . . . 5 (since these are the lower and upper limits
of the Researcher type) and the column 1 (corresponding to Chair). The rows
taking a one in this range will be returned as a result (in this case, nodes
3 and 4). Since attributes are located in the K2-tree ordered by value, in
addition to the equality, other patterns of comparison could be implemented
efficiently. For sparse queries, the operation is similar (binary search over all
the labels of this attribute list). When the valid values are reached, their
positions determine the node identifiers which have to be returned.

4.3.3 Operations over the Relationships

Last kind of queries involves conditions over the relationships of the graph. Two
basic queries can be the basis of the exploration of the relationships in the graph:

• Find neighbors by node type. Neighbors(type,id) returns all nodes of
the specified type which are neighbors of the node with the identifier id.
The operation starts by retrieving the range of valid identifiers (according
to the given type (low, upper)). Then the multi-edge K2-tree is explored
in the row id and between the columns (low, upper). Consider the query
Neighbors(Researcher, 4), asking for the neighbors of the node 4 (the
researcher J. Boy) which have Researcher type. First of all, the limits of
Researcher are computed (3, 5). Therefore, a range query between the row 4
and the columns (3, 5) is performed. A multi-edge in the cell (4, 5) is recovered
(containing edges e4 and e5) so the node 5 (the researcher S. Gomez) is the
result of that query.

• Find neighbors by edge type. Related (type,id) it returns all nodes related
to the identifier id connected to them through and edge with the given type.
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In this operation, the filtering is in the edge identifier, which is recovered after
performing the query over the K2-tree. So, this filtering has to be processed
after finishing the query. The query is executed as follows. First of all, the
valid range of identifiers of the given edge type is computed. Therefore, the
full row id is queried in the Multi-edge K2-tree. After that, all the results
are processed sequentially, removing from the result the columns that do not
contain any edge in the range of edge identifiers for the given edge type. The
result will be the identifiers of the remaining columns. For instance, the query
Related(Author, 3) starts by computing the valid identifiers for Author, which
are 1 . . . 3. Then, the row 3 is queried in the multi-edge K2-tree, obtaining
two cells with results: (3, 1) and (3, 2). The edge identifier of the cell (3, 1)
(e1) is included in the range of valid identifiers, so n1 is a result of that query
(the paper Compressing graphs). However, the edge identifier in the cell (3, 2)
is not valid (e6 has type Reviewer) so the node n2 is not returned as a result.

The set of operations we implement in AttK2-tree aims to provide a basic but
efficient querying to the attributed graphs. More complex queries can be implemented
on the top of this basic operations as intersections, unions or chains of them. For
instance, the query Papers reviewed by P. Garcia and written by S.Gomez could be
implemented as an intersection of three different operations: Scan(Researcher),
Related(SelectNodes(Reviewer, Researcher, Name, P. Garcia)) and Related(Select-
Nodes(Author, Researcher, Name, S. Gomez)). Experimental evaluation in Section
4.4 gives some experimental results of the spatial requirements and the temporal
efficiency obtained with AttK2-tree. Furthermore, as a proof of concept, it is
evaluated against other proposals in the State of the Art.

4.4 Experimental evaluation

In this section we analyze the spatial and temporal performance of our structure,
which was designed to support basic operations over an attributed graph in a very
compact way. We compare our structure against DEX and Neo4j, two of the most
relevant graph databases in the State of the Art. However, it is important to note
that the results are provided in order to prove that we propose a compact structure
with some basic search capabilities which is competitive in terms of space and time,
but we are not proposing an alternative to DEX and Neo4j, since the purposes of
our structure are different. We designed a compact attributed graph representation
with some queryable capabilities and we implemented some basic operations, but our
structure is not a full graph database. AttK2-tree does not support the algorithms
and operations characteristical in those kind of engines. Furthermore, it is a static
structure designed to work in main memory. So this comparison has to be understood
just as a proof of concept of the structure we proposed.
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4.4.1 Experimental Framework

We run experiments on an Intel(R) CoreTMi5-3470 CPU @ 3.20GHz (4 cores), 8GB
DDR3@1333MHz, running Ubuntu 14.04.

4.4.1.1 Tools

We compare our approach AttK2-tree with two of the most relevant graph databases
engines in the State of the Art: Neo4J and Dex.

• AttK2-tree: is implemented in C, compiled it with the gcc compiler version
4.8.2.

• Neo4j [NEO14]: Neo4J is the commercial graph database described in Section
4.1.2. In order to execute the same operations implemented over AttK2-tree,
the queries are implemented in the Cypher language. Those Cypher queries
are called from a program implemented in Java, which uses the Neo4J Java
driver.

• Dex [MBÁLMM+12]: Dex is a very compact graph database that we described
in Section 4.1.1. We implemented the operations that AttK2-tree supports
through a Java program which invokes the corresponding native functions of
the Dex library.

4.4.1.2 Queries

We measure the performance of our structure through the execution of 10 different
kinds of queries, whose implementation in our structure was described in Section
4.3. They include operations over the relations and the attributes of the graphs.

We design a synthetic query set of 500 queries per each kind of operation:

• Query set 1: GetNodeTypes recovers the labels of the different node types of
the graph.

• Query set 2: GetEdgeTypes recovers the labels of the different edge types.

• Query set 3: GetNodeType obtains the type of a given node.

• Query set 4: GetEdgeType obtains the type of a given edge.

• Query set 5: GetNodeAttribute obtains the value that a given node takes in
a specific attribute.
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• Query set 6: GetEdgeAttribute obtains the value that a given edge takes in
a specific attribute.

• Query set 7: SelectNode obtains the set of nodes that takes a given value for
an attribute.

• Query set 8: SelectEdge obtains the set of edges that takes a given value for
an attribute.

• Query set 9: Neighbors returns the nodes of a given type related to a node.

• Query set 10: Related returns the nodes related to a given type through a
specific edge type.

Note that previously described operations ScanNode and ScanEdge are not
included in this evaluation as they are relevant only for our proposed structure.

These query sets are analyzed in three categories: the operations over the schema
(queries 1 to 4), which are the most simple queries. The times obtained for each
alternative in this operations give a briefly idea of the minimal time of communication
with the database. Queries from 5 to 8 represents operations over the data (properties
and types) of nodes and edges. Finally, the query sets 9 and 10 establish conditions
over the relationships in the graph.

4.4.1.3 Datasets

Movielens 100K The first use case we analyze is a dataset extracted from a
movie recommendation website, Movielens 5, which contains ratings on movies from
different users of the web, including statistical information of the users and tags
of the movies. We use a subset of 100,000 ratings for 1,700 movies from 1,000
users [Gro14].

Figure 4.6 shows the attributed graph representing the small movielens dataset,
that we will represent using DEX, Neo4j and our own structure. The graph model
for this dataset has three kinds of entities: users, movies and genres. Movies and
users contains attributes presenting different value distributions. Regarding to the
representation in our structure, we use a K2-tree to represent the dense attributes
Age, Gender or Occupation, while the remaining sparse attributes are directly stored
through a indexed-plain list.

5http://movielens.umn.edu/
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Figure 4.6: Attributed graph representing Movielens 100K dataset

Figure 4.7: Attributed graph representing Movielens 10M dataset
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Spatial results (MB)

Dataset AttK2-tree Neo4j Dex

MovieLens 100k 6.05 27.00 17.50

MovieLens 10m 230.34 3280.41 1247.81

Table 4.1: Spatial results obtained for Movielens dataset

Movielens 10M We analyze the results of a different dataset which also represent
movie recommendations from Movielens 6. The model, which is shown in Figure
4.7, contains a more reduced set of properties. However, the number of entities
it includes is larger than the previous use case. This dataset contains 10,000,000
ratings for 10,681 movies from 71,567 users [Gro14], where more than 20 million of
properties need to be stored.

Results

We first show the spatial cost to represent both datasets on the three different
approaches. Table 4.1 shows the cost in Megabytes. Note that in the case of
AttK2-tree, the cost is in the main memory, while in Dex and Neo4j the results are
measured as their cost in secondary memory with the graph engine system offline.
Since we present a compact structure with some basic navigation capabilities, our
structure achieves better spatial results, but note that we propose a compact graph
representation, with some basic navigation capabilities, in opposition to the full
graph database engines we analyze in this comparison, Neo4j and DEX. On the
other hand, DEX is a compact graph database engine based on the massive usage of
bitmap structures, so it obtains better results than the Neo4j solution.

Figure 4.8 shows some temporal results of simple and fast operations over the
schema of the graph. The most relevant operations ask for the type of a node
or an edge (queries GetNodeType and GetEdgeType). They are very lightweight
operations in our system, since each type has a range of identifiers, so given a
identifier, we only need to search over the list of node or edge types, which usually
contains very few elements. It is important to mention that in the case of Neo4j,
as we described in Section 4.4.1.1, every query performed in our experimental
evaluation involves the parsing of the query, the connection with the database and
other operations (like the formatting of the results). These factors, many of which
also exist in DEX, explain the difference with the results obtained for our structure,
which does not have any abstraction layer. The figure also compare the results

6http://movielens.umn.edu/
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Figure 4.8: Temporal results obtained for operations over the schema in
Movielens dataset

obtained for both datasets in each system. We can observe that DEX and AttK2-tree
obtain similar results for each operation independently on the size of the dataset.
However, the temporal cost of Neo4j is increased when the number of nodes and
edges grows.

Figure 4.9 shows the results obtained for the operations over the graph data. In
AttK2-tree we can see how obtaining the property value for a given node is faster
than obtaining the list of nodes which have a given value. In the case of DEX and
Neo4, the select operation are also more costly than obtaining property values. The
operation GetNode is faster in AttK2-tree. However, the SelectNode is executed
faster in DEX graph engine for the Movielens 100K dataset. Neo4J is slower in all
the operations. In general, AttK2-tree shows a better scalability than Neo4j and
DEX, in the sense of its increment of the temporal cost is smaller than the other
two systems when the big dataset is analyzed.

Finally, Figure 4.10 shows operations over the relations over the nodes. The
links in AttK2-tree are stored through a K2-tree (and additionally a structure of
bitmaps), so these operations are very fast in our structure, since they do not involve
operations over the attributes. The operation Related is slower than Neighbors in
AttK2-tree because the later one implies an additional filtering of the final list of
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Figure 4.9: Temporal results obtained for operations over the data in
Movielens dataset
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Figure 4.10: Temporal results obtained for operations over the links in
Movielens dataset

candidate edges, which is not necessary in the case of the Neighbor operation. DEX
system improves the results obtained by AttK2-tree for the Related operation for
the Movielens 100K dataset. However, the temporal cost of DEX grows more than
the temporal cost of AttK2-tree for the Movielens 10M dataset regarding to the
results of the small dataset. Again, Neo4J is slower in both operations, and it is
more dependent on the size of the dataset.

4.4.2 Analysis

AttK2-tree is a very compressed representation of attributed graphs that supports
efficient access to the properties and the relationships of the elements of the graph.
The structure we propose is not a full graph database engine, we only support a
set of basic queries. However, the spatial and temporal results obtained in the
experimental evaluation shows that it is a very competitive approach to represent
static graph data in a very compact way and to perform basic graph operations over
the compressed structure.
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4.5 Summary

This chapter presented a new compact representation of attributed graphs that
support efficient access to the nodes, edges and their properties. It is designed as
a static structure to work in main memory. We implemented an extension of the
original K2-tree structure, named multi-edge K2-tree structure, to support multiple
edges between the nodes of the graph. Regarding to the properties of the elements,
in the case of dense attributes (presenting very few different values) were stored
with a K2-tree. On the other hand, the values of the sparse attributes were stored
as plain lists.

We implemented a basic set of operations to query the properties and the
connections of the elements of the graph, which can be the basis of more complex
operations.

We experimentally evaluated the spatial and temporal performance of our system
AttK2-tree in three different datasets. We also store the same data in DEX and
Neo4j in order to provide some spatial and temporal references of other systems.
However, it is important to note that DEX and Neo4j are full attributed graph
engines with many features and possible combinations, in addition to complete query
APIs, so this comparison has to be understood only as a proof of concept of our
structure.
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Graph distribution
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Chapter 5

State of the Art

Graphs are a natural and convenient way to represent many domains like Web
graphs, Social networks or Geographic information. Nowadays, in the Big Data
Era, huge volumes of data are generated every day. This information needs to be
stored and processed efficiently in terms of space and time. In this context, efficient
sequential algorithms may not be sufficient to meet large scale requirements where
parallelism appears as a feasible approach to deal with these scalability and efficiency
issues.

The parallel techniques were applied to process graphs in different domains. In
this new research area, the challenge is to obtain a good graph partitioning scheme
in terms of load balance. Finding the optimal partitioning scheme is an NP-hard
problem [Cha98], but many heuristics have been proposed aiming to obtain a good
partitioning. Some of these approaches are for general purpose problems, while other
are designed for particular kind of graphs in specific domains.

This chapter is structured as follows. Section 5.1 defines the Graph Partitioning
problem. Section 5.2 reviews the State of the Art in classical partitioning algorithms,
describing the different families of algorithms and detailing some of the most relevant
techniques to implement these approaches. Finally, Section 5.3 reviews partitioning
techniques focused on distributing the cells of a matrix instead the nodes of a graph.
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5.1 The Graph Partitioning problem

5.1.1 A brief definition

Consider a graph G = (N,E), where N = {ni|i = 1 . . . n} and E = {ei,j |ni → nj}.
The problem of P−partitioning consists in dividing the nodes in P sets, guaranteeing
that each set contains the same number of nodes while the number of edges between
the P sets is minimized [Els97]. The set of edges that connects nodes from different
partitions is named cut size.

The problem of partitioning a graph can be generalized, reaching different levels
of complexity depending on the kind of graph being partitioned. For instance, if we
consider a weighted graph, the constraints for achieving a good node distribution
change, because each partition would not aim to contain the same number of nodes
but to balance the sum of their weights. In the same way, the edge weights are taken
into account when the cut size is minimized.

5.1.2 Measuring the quality of the partition

The quality of the partitioning is theoretically given by the cut size that is being
minimized, whose definition depends on the kind of the graph. In many cases, the
equal-size partitions constraint is relaxed in order to reduce the cut size [Els97].
Therefore, the cut size gives us a measure of the quality of the graph partitioning.
However, other features of the partition can be also relevant.

First of all, the partition affects the performance of the graph operations executed
in parallel, so some partitioning algorithms could be more convenient for specific
operations or specific graph topologies than others. In this way, some ad-hoc
partitioning algorithms have been proposed to deal with a specific kind of graphs. In
many cases, the more balanced is the work load of the processors, the more efficient
the algorithms will be.

Balance of the size of the subgraphs is another measure of the quality of the
partition. The size is usually given by the number of nodes that each partition
includes (or the summarization of their weights in the case of weighted graphs).

In some kind of partitioning algorithms, the number of nodes are not a good
measure of the size of each partition, since a node does not belong to only one
partition. In the case of a graph represented as a connectivity matrix, the size of the
partition can be determined by the number of cells or even the number of non-zero
elements.

Obtaining a good graph partitioning is a costly operation, so complexity of the
partitioning algorithm is also an important factor [FP10]. In many domains, an
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online partition could be required, where partitioning is performed while the graph
is processed. Streaming graph partitioning approaches [SK12] deal with these needs.
Another new research line aims to parallelize [KK98b] the graph partitioning process.
On the other hand, repartitioning graph algorithms have been also proposed to solve
the partitioning of dynamic graphs. In the following we review the main techniques
for graph partitioning that have been proposed in the literature.

5.2 Graph partitioning strategies

Graph partitioning algorithms have been classified in different ways [Els97,Fja98,
Cha98] attending to the procedure that the algorithm follows and the kind of graph
they divide.

The simplest problem that a partitioning algorithm can solve is the bisection
of the graph, that divides the graph in two subsets. In order to solve the p− way
partitioning, a bisection algorithm can be applied recursively, although proposals
that directly divide the graph in p sets can obtain better cut sizes.

Next, we describe the most relevant algorithms in the State of the Art.

5.2.1 Algorithms based on geometric information

In some domains, nodes of the graph contain additional information about their
location in a space (usually 2D or 3D space). Many times, the spatial proximity
between two nodes is correlated with the shortest path between them. Geometric
partitioning algorithms take advantage of this spatial information to compute the
partition. They split the space in as many partitions as needed (P ). In this way,
nodes that are close in the space, which are expected to share many edges connecting
them, will belong to the same partition.

5.2.1.1 Coordinate bisection

The recursive coordinate bisection is a geometric algorithm [BB87] that divides
the space in P balanced rectangular regions by recursively cutting the regions with
vertical and horizontal lines. It starts by dividing the space with a vertical line in
such a way that the same number of nodes (or the same sum of weights for weighted
graphs) are located on the left and right region that the line delimits. The algorithm
continues recursively dividing, in each step, the biggest region in two subregions of
the same size, alternating horizontal and vertical lines, until obtaining P regions.
Figure 5.1 shows an example of 4-way partitioning using coordinate bisection. The
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Figure 5.1: Recursive coordinate bisection in 4 regions

vertical line is computed in the first step. Each resulting region, is divided with an
horizontal line in the next step.

The main advantage of this algorithm is its simplicity, both to compute the
partition scheme and to store the final regions. Since they are rectangular blocks,
only the coordinates of the square corners of each rectangle have to be stored to
represent the final partitions.

5.2.1.2 Inertial bisection

The inertial bisection is an improvement of the coordinate bisection that does not
restrict the division lines to horizontal and vertical lines. It divides the space in
two regions through a hyperplane which is orthogonal to the axis of the minimal
rotational inertia [Pot97]. This algorithm can be generalized to three dimensions
and it can be applied recursively, in the same way that the coordinate bisection.

5.2.1.3 Geometric bisection

Coordinate and Inertial bisections only consider partitions of the space that are built
using lines (or hyperplanes) of division. Geometric bisection proposed by Miller et
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al. [MTTV98] works with circular and spherical separators, providing more flexible
partitions.

The procedure starts by projecting the vertices of dimension Rd to the surface
of the unit sphere in Rd+1 by setting the d + 1 coordinate to 0 value. Next, the
centerpoint of the projected points is computed. Note that a centerpoint in Rd

means that every hyperplane that crosses them defines two subsets with a weight
ratio less than 1 : d.

Then, the points are moved in such a way that the centerpoint is in the coordinate
origin. Finally, a great circle C is obtained from the intersection of one hyperplane
with d dimensions that crosses the origin and the sphere in Rd+1. This circle is
mapped to Rd by reverting the process, which will determine the partition.

This method usually obtains better partitions that the coordinate and the inertial
bisection. Its main problem is the high cost to compute the centerpoints and to find
the great circle. However, a simplified version improving the partitioning time was
proposed, keeping a good cut size [GMT98].

5.2.2 Structural algorithms

In many contexts, the geometric information can be used to obtain good partitions
of a graph. However, there are many other domains where nodes of the graph do not
have an associated location. Next, we describe partitioning algorithms for that kind
of graphs, based only on the information of the nodes and the connections between
them. They are defined to work with a simple graph, but they can be generalized to
weighted graphs (weighted nodes and edges).

5.2.2.1 Refinement algorithms

The family of the refinement algorithms starts from an existing partitioning, which
will be progressively improved (by minimizing the cut size).

The Kernighan and Lin algorithm [KL70] was one of the first refinement
algorithms that appeared in the State of the Art. Given an initial bisection, it
iteratively exchanges a pair of nodes (one node of each partition) that minimizes
the cut size.

Some previous definitions are needed to describe the KL algorithm. Suppose a
given 2-way partition of a graph composed by two sets A and B. For a node a ∈ A,
we define the reduction cost when it is moved to the set B as Da = Ea − Ia, where
Ea =

∑
x∈B eax is the external cost, that is, the cost sum of the edges starting

from a and pointing to nodes b ∈ B, and Ia =
∑

x∈A eax is the internal cost, that
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Figure 5.2: First iteration of the Kernighan and Lin Algorithm for an
unweighted graph

is, the sum cost of the edges starting from a and pointing to other nodes x ∈ A.
Therefore, for a pair of nodes a ∈ A and b ∈ B, we can compute the reduction in
cost of exchanging them like Da −Db − 2eab.

The algorithm starts with all the nodes set to an unmarked state. In each step,
the pair of unmarked nodes (ai ∈ A, bi ∈ B) with a maximum reduction cost is
exchanged, updating the remaining costs and marking ai and bi as already used.
The algorithm stops when all nodes are marked or when there is no pair whose
exchange reduces the cut size.

Figure 5.2 shows an example of iteration of this algorithm. The figure at the left
shows the current state of the partitioning, where the cut size is 4 (composed by the
light edges in the figure). Figure at the right shows the partitioning after a step of
the algorithm, where the pair of nodes N2 and N8 were exchanged, producing a cut
size with value 2.

Some variations of this method are focused on improving the execution time,
like the implementation of Fiduccia and Mattheyses [FM82], that performs more
efficiently the recalculation of the reduction costs when a pair of nodes is exchanged.

5.2.2.2 Greedy algorithms

Algorithms like Kernighan and Lin require to begin from an initial partition, which
the algorithm will try to optimize. Greedy algorithms start from P empty partitions
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and, through different heuristics, progressively choose nodes to be added to those
partitions until all nodes of the graph have their corresponding partition assigned.
When a node is assigned to its corresponding partition, this assignation is definitive
(in contrast to refinement algorithms). Greedy algorithms usually start by assigning
a node to each partition. Next nodes are usually chosen among the neighbors of the
allocated nodes, by applying different heuristics [CJL94].

Some greedy partitioning algorithms that have been proposed are based on the
Breadth-First Search algorithm. Consider a bisection (that is, a 2-way partitioning)
computed by a greedy algorithm with Breadth-First Search. It would start by
choosing a pair of nodes near to the maximum distance in the graph. Each partition
set is initialized with one of those nodes. Then, among the nodes that are neighbors
of the partition, the node less related to the unmarked nodes is added to the partition.
This process is repeated until the partition contains half of the nodes. Then, the
remaining nodes are assigned to the other partition [Els97].

Other greedy algorithms have been proposed, like the Farhat algorithm [FL93]
or the Greedy Graph Growing algorithm of Karypis and Kumar [KK98a]. This last
algorithm refines the Bread-First Search navigation by choosing, in each step, the
neighbor that produces the biggest reduction of the cut size.

5.2.2.3 Spectral algorithms

Other approaches work over the global graph, attending to its general connectivity
properties. They are opposed to greedy algorithms, that only work with local
information (the neighbors of the current partitioning set) in each step. The Spectral
Bisection [PSL90] is the most representative algorithm working with global heuristics.

Some previous concepts need to be defined before describing the Spectral
Bisection. First of all, note that this algorithm works over a well-known mathematical
representation of the graph, the Laplacian Matrix. Given an undirected graph
G = (N,E), its corresponding Laplacian Matrix L(G) is a |N | × |N | matrix defined
as follows:

L(G)[i][j] =


deg(ni) if i = j

−1 if ei,j ∈ E

0 otherwise

Note that deg(ni) is the number of connections (or edges) starting from ni in the
graph. Spectral bisection is based on the well-known mathematical eigenvector of a
matrix. The eigenvector of the Laplacian Matrix L(G) is any non-zero vector v that
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accomplishes Lv = λv, where λ is the corresponding eigenvalue for the eigenvector
v [NDC11,New13].

The properties of the Laplacian eigenvalues were widely studied [MA91]. Consider
the eigenvalues of the Laplacian Matrix in ascending order λ1, λ2, . . . , λn. Then,
if and only if G is connected, λ1 = 0 and λ2 ≥ 0. λ2 presents some interesting
properties that were studied by Fielder [Fie75]. The eigenvector that corresponds
with λ2 is commonly named Fielder vector (FV) and each element i of this eigenvector
is a good indicator of the distance of ni to other nodes in G. Therefore, given two
nodes ni and nj , FV [i]− FV [j] is inversely proportional to the distance between
those nodes in the graph.

Taking into account the properties that the second eigenvector of the Laplacian
Matrix presents, the Spectral Bisection is formulated as follows. Let m be the
median value of the Fielder vector. This value determines the two sets in which the
graph is partitioned: P1 = {ni ∈ N |FV [i] < m} and P2 = {ni ∈ N |FV [i] > m}.
The set of nodes {ni ∈ N |FV [i] = m} is located in the smallest partition in order
to contribute to the balance.

The algorithm can be easily generalized to work with weighted graphs. It
can also be applied recursively in order to obtain a P -partitioning where P > 2.
The main challenge in order to implement this algorithm is the computation of
the Fielder vector. Many algorithms in the State of the Art solve efficiently this
computation. For instance, Lanczos Algorithm [Lan50] can be used to compute this
second eigenvector.

5.2.2.4 Multilevel algorithms

Many of the previously described algorithms can result inefficient when the size
of the graph is large. Besides, the quality of the partitions generated by those
algorithms can also decrease when the number of nodes grows. Multilevel algorithms
were designed to deal with scalability issues. They iteratively simplify the original
graph, until obtaining a smaller graph that maintains the structural properties
of the original graph. This summarization process is called the coarsening phase.
At this point, the graph is small enough to apply a standard bisection algorithm
(for instance, the Kernighan and Lin algorithm could be applied). Finally, the
partitioning computed over the simplified graph is iteratively propagated to more
complex graphs, reversing the process of the coarsening phase. This process is called
the Uncoarsening phase. This general strategy was successfully combined with
different algorithms from the State of the Art.

The Multilevel Recursive Spectral Bisection is a multilevel algorithm. It
uses the Recursive Spectral bisection (described in Section 5.2.2.3) to partition the
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simplified graph. Next, we describe the coarsening and refinement criteria of this
algorithm.

In each step of the coarsening phase, the maximal independent set of the current
graph is computed. A set N ′ ⊂ N is an independent set of G if and only if
∀ni ∈ N ′, nj ∈ N ′ ⇒ ei,j 6∈ E. An independent set is maximal when any node
nk ∈ N \N ′ makes the set not independent if it is added to N ′.

Therefore, in each step of the coarsening phase, given the graph G′ = (N ′, E′)
obtained from the previous step, a new graph G′′ = (N ′′, E′′) is created. N ′′ is the
maximal independent set of G′, and E′′ is computed as follows:

• A set of domains D is initialized with the nodes of the maximal independent
set. That is, D = {{ni}|ni ∈ N ′′}.

• All the edges of the original graph G’ are checked. For each edge ei,j ∈ E′,
if ni and nj belong to different domains, an edge is created between them.
Otherwise, if ni belongs to a domain but nj does not belong to any domain
yet, nj is added to the domain of ni and no edge is created. If none of them
belong to any domain, the edge will be marked to be re-checked later.

Figure 5.3 shows an example of a step in the coarsening phase. Original graph G′
is shown on the left, where the maximal independent set {n2, n3, n5, n6} is highlighted.
The graph on the right represents a simplified graph resulting of a coarsening step
(G′′). Nodes of G′′ are the maximal independent set of G′ ({n2, n3, n5, n6}). The
coarsening step creates 4 domains: one per node of that set. Then, the edges E′
are checked to add the remaining nodes to the corresponding domain. For instance,
{n6, n7, n8} composes a final domain of that step. An edge is created in G′′ when
two nodes of different domains are related in G′. In the example, an edge between
{n6, n7, n8} and {n5} is created due to the existence of a connection between n5
and n8 in G′.

After the repetition of the coarsening phase a given number of times, the resulting
simplified graph is ready to be partitioned through a Spectral Bisection. In this
point, The Fielder Vector of the coarsened graph is computed with the Lanczos
Algorithm. Then, the Fielder vector is iteratively interpolated following a reverse
process over the graphs computed in the coarsening phase. Suppose the Fielder
vector (FV ′′) of the graph G′′. Then, the corresponding Fielder vector FV ′ of the
graph G′ is computed as follows. For each node ni ∈ G′ belonging to the maximal
independent set (and, as a consequence, also appearing in G′′, as a representant of
a domain) its value for FV ′ is the same as in FV ′′. For the remaining nodes, its
value is interpolated by averaging the values of such neighbors that belong to the
maximal independent set. In each step, the estimated eigenvector computed with
the Lanczos Algorithm is improved using the Rayleigh quotient iteration.
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Figure 5.3: First coarsening (right) of a given graph (left)

5.3 Matrix partitioning strategies

Section 5.2 reviews the State of the Art in graph partitioning from a classical point
of view. Different approaches of this problem were described in previous section.
All of them have in common that they distribute the graph by allocating disjoint
subsets of nodes to the different partitions. The quality of the partition in that kind
of algorithms is usually measured by the cut size (that is, the weights of the edges
between nodes in different partitions). Besides, if the total sum of the weights of
the nodes is the same in all partitions, the partition is balanced. Note that those
measures are based on the idea that the external edges (that is, edges between two
different partitions) are a good measure of the communication needs between the
processors in the distributed context where each partition is managed by a different
processor.

However, when the problem is restricted to simple graphs (that is, unweighted
nodes and edges) we could follow a different approach based on the adjacency matrix
of the graphs. A simple graph can be represented by a binary adjacency matrix,
where a one in a cell (i, j) means that an edge between the node i and the node j
exists in the graph. Otherwise, the cell will have a value 0. According to that, a
graph can be distributed by partitioning the adjacency matrix in such a way that
the edges (instead the nodes) are allocated in the different processors.

With this new perspective, the problem of graph partitioning is reduced to the
matrix partitioning, which has been widely studied in other areas where distributed
environments are required. For example, areas such as matrix multiplication or raster
processing developed matrix partitioning strategies to parallelize the processing
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algorithms.

In matrix partitioning, the quality of the algorithms is not given by the cut
size like in traditional approaches. They also aim to obtain a good balance of the
distribution in terms of space, while the communication between the processors is
minimized. However, that communication strongly depends on how the graph will
be exploited.

As consequence, many measures for the partitioning quality can be defined,
depending on the problem in which the partition is needed. In some cases, the
amount of cells that each partition contains is a good metric of the balance of the
distribution. In other words, the matrix representing the data could be distributed
by allocating the same number of cells in each partition. For instance, in a multi-disk
file system the goal is to distribute the data, allocating in each processor roughly
the same number of data pages. However, in other cases, achieving a good balance
is more related to the processing demands of the data. For instance, different
approaches emerged from the matrix multiplication problem, that usually consider
the number of non-zero elements, because they are the only cells that produce
computation. In this context, the partitioning algorithm proposes to distribute the
same number of non-zero elements as a measure of the balance. Given an adjacency
matrix of a graph, balancing the non zero elements is equivalent to assigning the
same number of edges to each processor.

To summarize, the communication between processors is strongly dependent
on the requirements of the algorithm which will be executed over the matrix (and
therefore the kind of data that the matrix represents). Many proposals emerged
to solve the specific needs of different domains, aiming to find optimal partitioning
matrices. Next, some of the most relevant matrix partitioning proposals are described.
They try to obtain partitions with different characteristics, depending on the domain
they were designed for.

5.3.1 1D partitioning

This family of partitioning algorithms divides the matrix in equally-sized sub-matrices
using horizontal division lines. Suppose the matrix of dimensions |M |× |N | shown in
the Figure 5.4 (top). Uniform Block Distribution [MS96] allocates d |M ||N | e rows
for each processor in the way that each processor i contains a sub-matrix of size
d |M ||N | e × |N | including the full block from the row (i − 1) ∗ d |M ||N | e + 1 to the row
i ∗ d |M ||N | e. Figure 5.4 (top) shows how the matrix is distributed among 4 processors
following an Uniform Block Distribution.

Note that this strategy partitions the matrix independently of the data
distribution, considering only the balance of the number of cells. For instance,
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Figure 5.4: Uniform Block Distribution (top) and row-wise block stripping
(bottom)
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Figure 5.5: Three first steps of the iterative refinement process for a
rectilinear partitioning

consider a matrix multiplication. In that operation, only the non-zeros elements
contribute to the processing times. Consequently, a more balanced 1D partitioning
for matrix multiplication consists in dividing the matrix in |P | blocks such as the
number of non-zero elements (instead the number of cells) is the same in all partitions.
This strategy is known as Row-wise Block Stripping and many implementations
have been proposed [PA97]. An example is shown in the Figure 5.4 (bottom).

5.3.2 Rectilinear partitioning

The same philosophy followed in the 1D partitioning algorithms can be generalized
to consider divisions along the two dimensions, using horizontal and vertical lines.
For a mesh of |P |× |Q| processors we can define a rectilinear partitioning by dividing
the matrix in |P | horizontal blocks and |Q| vertical blocks. In a similar way to the
Row-wise Block Stripping, the horizontal and vertical lines can be located in order
to balance the data according to the requirements of the application.

In order to obtain a well balanced rectilinear partitioning, an iterative refinement
[Nic94,MS96] can be applied. It starts by obtaining the optimal row-wise partitioning
(in the horizontal dimension) for |P | blocks. Next, having fixed this row-wise
partitioning, the optimal division in |P | × |Q| sub-matrices is calculated by moving
the |Q| vertical divisions. Then the vertical divisions are fixed and the optimal |P |
horizontal divisions are refined. The process continues iteratively by fixing one of
the dimensions and finding the optimal partitioning modifying the other dimension,
until no changes are obtained. Figure 5.5 shows an example of three iterations of
a rectilinear partitioning for a mesh of |P | × |Q| processors. First step is shown in
the left. Then, in the second step (middle of the figure), the horizontal lines are
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allocated. Step 3 refines the vertical division from step 1 having fixed the horizontal
lines.

5.3.3 Jagged partitioning

The previous strategy considers only partitions that result from full horizontal and
vertical divisions. Jagged partitioning relaxes this constraint in order to obtain more
fine grained distributions.

The binary recursive decomposition proposed as a geometrical graph partitioning
[BB87] (described in Section 5.2.1.1), which partitions recursively a region of the
space, can be also implemented to divide a matrix. In that way, in each step, each
region is divided in two subregions. After n steps, 2n subregions are obtained. Figure
5.6 (top) shows an example of this recursive decomposition. The main restriction of
this partitioning is that it produces only partitions where the number of parts is a
power of two.

However, this binary recursive decomposition can be generalized for a grid of
|P | × |Q| processors. This method is called Multiple Recursive Distribution [RZ95].
First, we consider the prime factor decomposition of |P | = p1 ∗ p2 ∗ . . . ∗ pn and
|Q| = q1 ∗ q2 ∗ . . . ∗ qm. In a first step, the matrix is vertically partitioned recursively:
first it is partitioned into p1 blocks, then each vertical block is partitioned in p2
partitions through independent vertical lines and so on. At the end, |P | row-
wise partitions are obtained. Note that each one of the resultant sub-matrices is
partitioned first in q1 row-wise partitions, then each one in q2 partitions and so
on. Figure 5.6 (center) shows an example for a mesh of 8× 3 processors. First, we
partition the matrix in 4 parts through the vertical lines marked with a 1 in the
figure. After that, we divide each submatrix in two parts through another vertical
lines (marked with a 2). Finally, each vertical block is partitioned in three parts
through the horizontal lines marked with a 3. The result are 24 partitions, each of
one is assigned to a different processor.

In [PA97] and [MS96] algorithms that efficiently compute a Jagged partitioning
for a grid of |P | × |Q| processors were presented. They start by finding an optimal
P row-wise partitioning. Then, for each row, the Q column-wise partitioning is
computed. This approach obtains |P |× |Q| partitions (as the rectilinear partitioning
of Section 5.3.2 does). Figure 5.6 (bottom) shows an example for a grid of 4 × 3
processors.
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Figure 5.6: Three different jagged partitioning strategies
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5.3.4 Disk allocation methods

Other alternatives emerged from the context in which grid data, like geographic
databases, must be stored in a distributed disk. The purpose of this data partitioning
is uniformly distributing the data pages among the different disk files while the
number of disks needed to answer the queries (typically range queries) is minimized.

In [ZSC94] several approaches were proposed to solve that grid distribution
problem. Considering a two dimensional data, we can represent as a matrix the
N ×N data pages storing the information. Then, the problem of distributing that
data in P disks can be modelled as a matrix partitioning problem. In this context,
the balance is measured in a slightly different way to the previously described
distributions. When a parallel matrix multiplication problem is considered, the goal
is to distribute the same number of non-zero elements to all processors. However, in
disk allocation, the purpose is balancing the number of data pages (that is, elements
of the matrix) while the rows and the columns of this two dimensional data are
distributed along the different processors in order to balance the computation of a
future row or column access to this data. Many distributions that accomplish this
requirement have been proposed, and their behaviour were analysed depending on
the type of the queries being performed. Four distributions proposed in this domain
are:

Latin Square allocation method uses Latin Squares as a way of distributing
the data. A Latin Square is an n × n matrix where each row and each column
contains all the elements from 1 . . . n. The matrix of data pages can be distributed by
applying different Latin square matrices of size |P | × |P | across the two dimensions
of the grid, where |P | is the number of disks. Figure 5.7 (top-left) shows an example
of this allocation method for six disks.

Linear allocation method proposes a round-robin allocation of the data pages
for each row. Each row starts with a disk number which is defined as a shift of the
first element in the previous row. Figure 5.7 (top-right) shows an example for six
processors with a shift of 4.

Lattice allocation method can be viewed as a set of horizontal bricks, where
each brick is homogeneously divided between all the processors. The bricks in
consecutive rows are moved through a defined shift. Figure 5.7 (bottom-left) shows
an example for 6 processors.

Coordinate Modulo Distribution [LSR92] proposes a partitioning scheme
that is generalized to any number of dimensions. Suppose a data grid in two
dimensions and a grid of |P | processors. Defining a level of granularity l, the grid
data is divided in l ∗ |P | × l ∗ |P | regions of equal size. Each region (x, y) is allocated
following the formula (x+ y) mod P . With this simple method, the space allocated
is the same for all processors, while rows and columns are equally distributed among
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Figure 5.7: Latin Square (top left), linear (top right), lattice (bottom left)
and Coordinate Modulo Distribution (bottom right) allocation
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all the processors. It is easy to see how this method can be generalized in order to
support the distribution of k-dimensional data. Figure 5.7 (bottom-right) shows an
example of this allocation.

5.4 Summary

In this chapter we have reviewed some of the most important strategies in the State
of the Art to partition a graph. First, we described the classical graph partitioning
algorithms, which distribute the nodes of the graph into the different partitions
trying to minimize the cut size (that is, the number of edges crossing different
partitions). We provided some examples of partitioning strategies for graphs with
spatial information. Then, we defined different kinds of structural algorithms, where
it is noteworthy to mention the Kernighan and Lin Algorithm as it was one of the
first algorithms proposed for this problem.

The second part of this revision focused on the matrix partitioning algorithms,
which are specially interesting for the work we propose in the next chapter. Instead
of distributing the nodes of the graph, these strategies distribute the cells of a matrix.
Many of these strategies emerged from the parallel matrix multiplication problem,
while other solved the problem of distributing pages in a distributed disk system.
Although they emerged to solve different problems, all of them reduce the problem
of the data distribution into a matrix partitioning. However, the measure of the
quality of the partitioning is clearly dependent of the domain.

Based on these matrix partitioning strategies, we will propose different algorithms
to distribute a graph by partitioning its adjacency matrix. In our case, the purpose
is to achieve spatial and temporal balance to enable efficient performance so we
will experimentally evaluate the behavior of the above strategies with respect to
balance.



Chapter 6

Our proposal

6.1 Graph partitioning with the K2-tree structure

Nowadays, great amounts of information, which can be structured as graphs, are
produced every day, and much valuable information can be inferred from those
graphs by performing the convenient graph mining algorithms.

Consequently, efficient storing and mining of graphs have become a relevant
issue. Many structures have been proposed not only for dealing with efficient query
processing but also for trying to optimize its spatial cost, in order to handle huge
graphs stored in main memory with one processor. However, even using very compact
structures, a single processor could be insufficient when huge datasets have to be
managed. Therefore, a new research line emerges to efficiently distribute graphs on
a set of processors by using compact structures and processing queries in parallel.

K2-tree is a very compact data structure that can store simple graphs (that
is, unweighted and directed graphs) or in general, any binary adjacency matrix.
Algorithms to manage K2-trees efficiently implement basic graph operations like
direct and reverse neighbors. As it was described in Section 2.3, K2-tree builds
a binary tree from the representation of the graph through its adjacency matrix,
subdividing recursively the matrix in smaller sub-matrices.

We propose several partitioning algorithms to distribute a simple graph in multiple
processors, supporting direct and reverse neighbor operations. Each partition is
stored using a K2-tree structure. In this way, we address the graph partitioning
problem as an edge distribution, in contrast with the classic approaches based on
distributing the nodes of the graph.

113



114 Chapter 6. Our proposal

Therefore, we distribute the graph G = (N,E) (where N is the set of nodes of
the graph and E represents the edges connecting nodes) in a set of P = {Pi, i =
1, . . . , |P |} independent processors, each one with its own local main memory. The
resulting partitioned graph is represented as G′ = {Gi, i = 1, . . . |P |}, where each
sub-graph Gi = (Ni, Ei) is stored in the processor i. Taking into account that we
propose edge distributions, we will have

⋃|P |
i=1 Ei = E. Each Ni ⊂ N is composed

by the set of origin and target nodes of Ei. Since this is not a node distribution, it
is not guaranteed that

⋂|P |
i=1 Ni = ∅.

Several graph partitioning strategies are proposed in the following sections. All of
them use K2-tree structures to represent the subgraphs, but they are used in different
ways. Proposals described in Section 6.2 study the behaviour of classic partitioning
of adjacency matrices, where each processor stores an adjacency sub-matrix using
a K2-tree. They are based on the State of the Art strategies for parallel matrix
multiplication. However, the spatial properties of the K2-tree are considered to
design balanced partitioning algorithms based on those general strategies and new
versions of these strategies adapted to our problem are proposed.

Next, in Section 6.3 more specific distributions designed to take advantage of the
structural properties of the K2-tree are presented. They are focused on balancing
the space consumed in the different processors, expecting that a good spatial balance
can produce a good workload balance. Each processor builds a K2-tree representing
its corresponding edges.

Finally, in Section 6.4, another kind of distributions following a different idea is
proposed. They do not divide the graph in |P | sub-graphs, one for each processor.
Instead, m K2-trees (m > |P |) are built, reformulating the distribution problem
as the distribution of these m K2-trees in the |P | processors. This philosophy is
K2-tree independent and it also could be used with different data structures.

We measure the quality of the different graph partitions using different metrics.
First of all, since subgraphs are represented with a K2-tree in main memory, the
spatial balance is an important factor. The bottle neck is given by the processor
which has to manage the larger K2-tree. The more balanced the spatial cost is,
larger datasets could be stored using a fixed number of processors. In addition to
this, the workload balance is essential in order to optimize the overall querying
time. Experimental evaluation in Chapter 7 shows the behaviour of the different
distributions through those metrics.



6.2. Proposals based on the Adjacency Matrix Partitioning 115

6.2 Proposals based on the Adjacency Matrix
Partitioning

In this section we propose several partitionings based on the division of the adjacency
matrix of the graph into n sub-matrices, by using horizontal and vertical lines. Each
submatrix is represented as a K2-tree in a different processor. They are inspired by
the recursive coordinate bisection [BB87] described in Section 5.2.1.1 and by the
rectilinear partitioning in Section 5.3.2.

All the proposals in this section define a function, processorMap(i, j), which
specifies in which processor k ∈ 1 . . . |P | is stored the cell of the adjacency matrix
(i, j). Therefore, each processor k stores a K2-tree representing the set of cells
{(i, j) | processorMap(i, j) = k}. Some of the proposed distributions store, by
definition, the same number of cells in each processor. However, we also propose
adaptive distributions that balance the number of edges allocated in each processor
instead of the number of cells.

We also provide the different mapping functions designed to map a cell of the
global adjacency matrix to the corresponding cell in a local adjacency matrix of one
processor.

6.2.1 Block distribution

An adjacency matrix can be divided in |P | equal-size regions by using |P | parallel cut
lines, following the 1D partitioning described in Section 5.3.1. Horizontal lines define
a horizontal block distribution, while vertical lines would define a vertical block
distribution. A horizontal block distribution will be considered in the rest of the
section, taking into account that vertical distribution has a symmetrical behaviour.
Each processor builds a K2-tree representing its corresponding adjacency matrix,
that is, the horizontal block allocated in this processor.

Consider the global adjacency matrix GA representing the graph G, with
dimensions |N | × |N |. Given a horizontal block |P |-partitioning, the size of the local
adjacency matrix LMi (which the processor i stores) has dimension height× |N |,
where height = d |N ||P | e. That is, each processor (except the |P |-th processor), contains
height full rows of the Global Adjacency Matrix. Figure 6.1 shows an example of
an adjacency matrix representing a graph of 16 nodes connected by 32 edges, which
is partitioned in 4 blocks with a block distribution strategy.

This partitioning can be defined through a map function that specifies, for
each cell (i, j), in which processor is stored. This map function is defined as
bProcessorMap(i, j) = b i

heightc+ 1. That is, in a horizontal |P |-partitioning, any
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Figure 6.1: An example of horizontal block partitioning for 4 processors in
a graph of 16 nodes, including the maps between the global and the local
adjacency matrices
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cell of the row i is stored in the processor b i
heightc+ 1. Since each processor contains

an individual submatrix composed by its corresponding cells, we need additional
map functions to compute the positions of each cell (i, j) to the corresponding cell
(i′, j′) in the local adjacency matrix of the processor processorMap(i, j).

• bRowMap(i) = (i− 1) mod height+ 1

• bColMap(j) = j

With these three map functions, the partition is completely defined. Therefore,
the complete map of a given cell in the global adjacency matrix GM(i, j)
to the distributed graph is given by the following function: bMap(i, j) =
LMbP rocessorMap(i,j)(bRowMap(i), bColMap(j)). In this way, the distribution of
the cells in |P | local adjacency matrices is fully defined.

In a block distribution, a direct neighbor query over the node n (consisting in
checking the 1 values of a row) is executed over a single adjacency matrix, because
block distribution allocates all the cells of the same row in one local adjacency matrix.
For a node n, the row bRowMap(n) of the processor k = bProcessorMap(n, 1) is
checked.

On the other hand, in order to retrieve the reverse neighbors of the node n, the
column bColMap(n) = n has to be checked in all processors. In order to solve these
operation, each processor k individually checks the corresponding row or column
in LMk, obtaining a set of cells as a result: Rk = {(i, j)}. The coordinates of the
results are relative to the local adjacency matrix. To obtain the final results, a
reverse map function translates the local cell coordinates to the absolute cells in the
global adjacency matrix. This mapping is defined by the following formulas:

• revbRowMap(i, k) = i+ (k − 1) ∗ height
• revbColMap(j, k) = j

Therefore, a cell LMk(i, j), that is, a cell (i, j) from the local adjacency
matrix of the processor k, is mapped to the global adjacency matrix GM cell:
revbMap(i, j, k) = GM(revbRowMap(i, k), revbColMap(j, k)).

Note that this distribution has not a symmetric behavior of the basic operations:
direct neighbor operation is only computed in one processor, while reverse neighbor
operation has to be executed in all processors, since all processors contain the same
number of cells of each column. The opposite behaviour appears for the vertical
block partitioning.

Considering that each adjacency matrix is finally represented in each processor
using a K2-tree, a first analysis of the convenience of this partitioning in the proposed
system can be done, which will be extended in the Experimental Evaluation in
Chapter 7.
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Figure 6.2: An example of adaptive block partitioning for 4 processors in a
graph of 16 nodes

The main weakness of this method is its spatial balance, which strongly depends
on the distribution of the edges among the adjacency matrix. For instance, an
adjacency matrix with a higher density of ones in the first rows is expected to
achieve a poor spatial balance, because the size of the K2-tree of the first processors
will be greater than the others.

6.2.1.1 Adaptive block distribution

The previous section proposed a row-wise partitioning whose main problem is the
possible spatial imbalance. The blocks in which the global adjacency matrix is
divided allocate the same number of cells in each processor. However, the number
of edges is a better estimator of the size than the number of cells in the final storage
demanded by the K2-tree. An adaptive block distribution can be defined, trying to
improve the spatial balance by balancing the number of edges of the final partitions.

The purpose of this distribution is partitioning the adjacency matrices in blocks
with a similar number of edges. Therefore, we propose a more adaptive horizontal
block distribution, which divides the adjacency matrix in |P | matrices LMk(Nk, Ek),
where |Ek| = |E|

|P | . Figure 6.2 shows the same adjacency matrix of the Figure 6.1
partitioned in 4 blocks by following an adaptive block distribution.
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The map function described in Section 6.2.1 for the block partitioning is
quite straightforward, since the limits of the blocks are directly computed.
However, in the case of the maps for the adaptive block partitioning, some
previous computing is necessary. Consider a list E′ composed by the set
of edges E ordered by the first coordinate (the row in the matrix), where
E′[i].x is the row and E′[i].y is the column of the i − th cell. That is,
E′[i].x < E′[j].x ∨ (E′[i].x = E′[j].x ∧ E′[i].y < E′[j].y)⇔ i < j. Algorithm 6.1
describes how lower and upper limits of each partition are computed by using
the list E′. It receives the list of edges E′ and the processors P as inputs. This
algorithm outputs the boundaries (lowLimit and uppLimit) that define how the
matrix is partitioned. lowLimit[i] is the first row of the global adjacency matrix
that the processor i stores, while uppLimit[i] stores its corresponding last row. In
adaptive block partitioning, all the cells of a row are stored in the same processor,
just as in the original block partitioning.

In this way, the limits are adapted to the distribution of the global adjacency
matrix, distributing a similar number of edges to the processors. These new limits
change the definition of the function that maps a cell from the global adjacency
matrix to the distributed system 1.

• bProcessorMap′(i, j) = k | lowLimit[k] ≥ i ∧ uppLimit[k] ≤ i.

• bRowMap′(i) = i− lowLimit[bProcMap′(i, 1)] + 1

• bColMap′(j) = j

In a similar way, we can define the reverse mapping between a cell (i, j) of LMk

to a cell in GM :

• revbRowMap′(i, k) = i+ lowLimit[k]− 1

• revbColMap′(j, k) = j

6.2.2 Cyclic distribution

One of the main disadvantages of the horizontal block partitioning is its dependency
on the edges distribution over the global adjacency matrix. Adaptive block
partitioning tries to balance the number of edges, but it unbalances the number of
rows each processor contains. If the number of rows of one processor is high this

1We use the notation bP rocessorMap′ to specify the function processorMap in adaptive block
distribution, where b means that is a block distribution and ′ denotes that is the second strategy
described following a block distribution. All the chapter uses a similar notation for the map
functions.
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processor would have to ask a high number of direct neighbor operations. This
situation could produce the unbalancing of the work load.

An alternative partitioning which tries to balance the number of edges for each
processor, but maintaining, at the same time, the same number of rows, is the
cyclic distribution. It cyclically allocates the rows to the different processors in a
round-robin fashion. In this way, the regions with a high density of edges will be
distributed among all the processors, obtaining a good balance of the space.

As in the case of the block partitioning, we can define a vertical or horizontal
cyclic distribution, but we consider the horizontal alternative for this description.
Figure 6.3 shows an example of this partitioning. The functions that map a cell
(i, j) of the matrix GM to the distributed system are defined as follows:

• cProcessorMap(i, j) = ((i− 1) mod |P |) + 1.

• cRowMap(i, k) = b i
|P |c+ 1

• cColMap(j, k) = j

The reverse map from a cell (i, j) in LMk to GM is given by the following
definitions:

• revcRowMap(i, k) = (i− 1) ∗ |P |+ k

• revcColMap(j, k) = j

The main disadvantage of this distribution, considering that each adjacency
matrix LMk is stored with a K2-tree, is its low compressibility. This distribution
breaks the natural clustering of ones that appears in many domains, and K2-tree
compressibility strongly depends on this clustering to obtain good compression
ratios. With a cyclic distribution, these clusters are distributed along the different
processors, deteriorating the compression.

6.2.2.1 Adaptive cyclic distribution

Cyclic partitioning is proposed as an alternative to improve the spatial balance.
However, the balance it guarantees is not perfect, since it allocates the rows of the
matrix cyclically, but it does not take into account the number of the edges of each
row. Therefore, in the same way that block distribution was designed to divide
the matrix depending on the number of edges of the blocks, an adaptive cyclic
partitioning is proposed.
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Figure 6.3: An example of horizontal cyclic partitioning for 4 processors
in a graph of 16 nodes, including the maps between the global and the local
adjacency matrices
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Adaptive cyclic distribution still distributes rows cyclically into the processors.
However, when a processor already includes a number of edges exceeding |E||P | , this
processor is removed from the rotation, and no more rows are allocated to that
processor.

The Algorithm 6.2 assigns each row to the corresponding processor. The inputs
of the algorithm are the edges E, nodes N and the processors P . It returns as result
the list of allocation cProcessorMap′[i].

After the execution of this algorithm, the processor where the cell (i, j) is located
is cProcessorMap′(i, j) = cProcessorMap′[i]. The column j of the cell (i, j) is also
the column j in the local adjacency matrix (cColMap′(j) = j).

The map of the row r in GM to LMp is computed with the function ComputeRow
in Algorithm 6.3, receiving the number of rows each processor stores (computed with
Algorithm 6.2) as parameter. The basic idea is that the process of mapping follows a
round-robin strategy over the active processors, until one of the processors becomes
inactive (when they exceed a given number of edges). Then, a new section of rows
starts, which are cyclically distributed over a smaller number of active processors.
ComputeRow computes the number of rows for each round-robin block located in
P , using the auxiliary function minimumIndex, that returns the upper limit of the
next block.

The map functions for the adaptive cyclic algorithm are defined as:

• cProcessorMap′(i, j) = cProcessorMap′[i] (computed with Algorithm 6.2)

• cRowMap′(i, k) = computeRow(countRows, P, i) (computed with Algorithm
6.3)

• cColMap′(i, k) = j

The reverse mapping (from a cell of LMk to GM) is performed in a similar way,
by using the vector numberRows in order to compute the different round-robin
blocks.

6.2.3 Basic grid distribution

Previous algorithms, based on rows or columns allocations, have in common that
direct and reverse neighbors are not executed symmetrically: in horizontal partitions
direct neighbor queries are fully executed in a single processor, while reverse neighbor
queries are homogeneously distributed among all the processors.

We propose an alternative approach that tries to achieve a symmetrical behaviour
for direct and reverse queries. Each row and each column of the global adjacency
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Algorithm 6.1 Adaptive Block Limits Algorithm
procedure countByRow(N,E)

number ← 0
for i← 1 . . . |N | do

edgesByRow[i]← 0
end for
for i← 1 . . . |E| do

edgesByRow[E[i].x] + +
end for
return number

end procedure
procedure computeMapping(N,E, P )

edgesByRow ← countbyRow(N,E)
edgeBlock ← b |E||P |c
for i← 1 . . . |P | do

numberRows[i]← 0
numberEdges[i]← 0

end for
nextProcesor ← 0
np← 1
for i← 1 . . . |N | do

numberRows[np] + +
numberEdges[np]← numberEdges[np] + edgesByRow[i]
if numberEdges[np] > edgeBlock then

np+ +
end if

end for
sumRows← 0
for i← 1 . . . |P | do

lowLimit[i]← sumRows+ 1
uppLimit[i]← sumRows+ numberRows[i]
sumRows← sumRows+ numberRows[i]

end for
end procedure
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Algorithm 6.2 Adaptive Cyclic Limits Algorithm
procedure Compute Mapping(N,E, P )

edgesByRow ← countByRow(N,E)
for i← 1 . . . |P | do

countRows[i]← 0
countEdges[i]← 0
active[i]← true

end for
edgeBlock ← d |E||P |e
np← 1
for i← 1 . . . N do

countEdges[np]← countEdges[np] + edgesByRow[i]
countRows[i] + +
if countEdges[np] > edgeBlock then

active[np]← false
end if
cProcessorMap′[i]← np
repeat

np← np+ 1
if np > |P | then

np← 1
end if

until active[np]
end for
return cProcessorMap′

end procedure
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Algorithm 6.3 Adaptive Cyclic Mapping Algorithm
procedure minimunIndex(countRows, P )

minimum←∞
for i = 1; i ≤ |P |; i+ + do

if countRows[i] < minimum then
minimum← countRows[i]
pos← i

end if
end for
return pos

end procedure
procedure computeRow(countRows, P, r)

actP ← |P |
localRows← 0
procRows← 0
while procRows ≤ r do

k ← minimumIndex(countRows, P )
block ← (countRows[k]− procRows) ∗ actP
if procRows+ block ≥ r then return b (r−procRows)

actP c+ localRows+ 1
else

localRows← block
actP + localRows

procRows← procRows+ block
actP ← actP − 1

end if
countRows[k]←∞

end while
end procedure
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matrix will be distributed in
√
|P | processors. The global adjacency matrix is

partitioned in |P | squared sub-matrices by using
√
|P | − 1 equally-spaced horizontal

lines and
√
|P | − 1 vertical lines.

Figure 6.4 (top) shows an example of basic grid distribution for 4 processors. Just
as in the block and cyclic distributions, the mapping between the global adjacency
matrix and the distributed system can be computed by simple formulas:

• sizeBlock = d |N |√
|P |
e

• gProcessorMap(i, j) = b i−1
sizeBlock c ∗

√
|P |+ b j−1

sizeBlock c+ 1

• gRowMap(i) = ((i− 1) mod sizeBlock) + 1

• gColMap(j) = ((j − 1) mod sizeBlock) + 1

In a similar way, given a cell (i, j) in the local adjacency matrix of the processor
k (LMk), its corresponding cell in GM is computed as:

• revgRowMap(i, k) = d k√
|P |
e ∗ sizeBlock + i

• revgColMap(j, k) = d(k − 1) mod
√
|P |e ∗ sizeBlock + j

With this distribution, each direct and reverse neighbor query is distributed
among exactly

√
P processors. However, it presents an important restriction: it

is designed for a grid where the number of processors is a power of two. Besides,
depending on the data distribution, it can also result in unbalanced partitions in
terms of space (just as the block partitioning), due to its division of the global
adjacency matrix in big regions.

6.2.4 Multilevel grid distribution

Following the grid philosophy described in previous section, we try to avoid the
strong dependency on the data distribution by dividing the global matrix in smaller
blocks. The basic grid partitioning can be generalized by repeating the process of
subdividing in |P | squared regions recursively L times. That is, L is a parameter
that is used to specify the number of times that the matrix is recursively subdivided.
In this way, each direct and reverse query is also distributed among

√
|P | processors,

just as in the basic grid distribution, but the effect that the distribution of the global
adjacency matrix has over the balance of the space is minimized when L grows.
Figure 6.4 (bottom) shows an example of multilevel grid distribution for L = 2. The
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Figure 6.4: An example of basic grid partitioning (top) partitioning for 4
processors in a graph of 16 nodes and a multiple grid partitioning with L=2
(bottom)
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matrix is firstly divided in 4 submatrices. Since the parameter L is set to 2, each
one of these 4 matrices is divided in other 4 matrices.

The formulas to map the global adjacency matrix to each LMk are a generalization
of the proposals for the basic grid distribution:

• sizeBlock′ = d |N |
L∗
√
|P |
e

• gProcessorMap′(i, j) = (b i−1
sizeBlock′ c) mod

√
|P |) ∗

√
|P | + b j−1

sizeBlock′ c mod√
P + 1

• gRowMap′(i) = b i−1
sizeBlock′|P |c ∗ sizeBlock

′ + (i− 1) mod sizeBlock′ + 1

• gColMap′(j) = b j−1
sizeBlock′|P |c ∗ sizeBlock

′ + (j − 1) mod sizeBlock′ + 1

In the same way, the reverse mapping is defined as follows:

• revgRowMap′(i, k) = (b i−1
sizeBlock′ c − 1) ∗ sizeBlock′ ∗

√
|P | + ((k − 1) mod√

|P |) ∗ sizeBlock′ + (i− 1) mod sizeBlock′ + 1

• revgColMap′(j, k) = (b j−1
sizeBlock′ c − 1) ∗ sizeBlock′ ∗

√
|P | + ( k−1√

|P |
) ∗

sizeBlock′ + (j − 1) mod sizeBlock′ + 1

6.2.4.1 Adaptive multilevel grid distribution

Multilevel grid distribution in previous section tried to reduce the effects that
a bad matrix distribution causes in the spatial balance. However, although the
balance can be optimized, higher values of L can also produce a reduction of the
compression capabilities of theK2-tree due to the breaking of its clustering properties.
Furthermore, the matrix can present some dense areas but also some sparse areas,
presenting a different optimal value for L.

We propose an alternative grid distribution that we called adaptive multilevel
grid distribution, which recursively divides the matrix in regions, until obtaining a
set of submatrices that does not exceed a given number of edges. Each final region
will be represented with a K2-tree. An additional K2-tree will index these lists of
K2-trees.

The data structures we need for this distribution are:
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Figure 6.5: An example of adaptive grid partitioning for 4 processors in a
graph of 16 nodes for a edge cut 6

K2-tree index A K2-tree is built representing the global adjacency matrix.
The matrix is progressively divided in K2 submatrices, where each submatrix
is represented with a bit, just as the classical K2-tree. However, in this case, a zero
in the tree can represent not only the empty matrix but also such matrices with a
number of edges that does not exceed a given limit. Figure 6.5 shows an example
of this K2-tree. Non-empty submatrices are highlighted in the global matrix. The
zeroes of the tree that represent these non-empty submatrices are also hightlighted.
The subdivision continues until all the matrices have a number of edges less than
the limit established.

Bitmap B An additional bitmap B stores the meaning of the bit with value zero
of the original matrix. This bitmap will have as many bits as 0s exist in the K2-tree
index. The i-th bit in B will have value 1 if the i-th zero of T : L represents a
non-empty matrix. Otherwise, the bit is a zero. Figure 6.5 shows this bitmap. For
instance, the 5-th position of the bitmap is a one, because the fifth zero of the tree
(represented as a bitmap in T : L) corresponds with a non-empty matrix. However,
the first bit of B is a one because the first zero of T : L represents the top-right
empty submatrix of the global adjacency matrix. We need rank access over the
bitmap B, since the ones in these bitmaps will give the order of the submatrices
represented with an individual K2-tree. This kind of representation, where each
node of the K2-tree represents three different values, was originally proposed by G.
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de Bernardo et al. [dB14,dBÁGB+13].

K2-trees Each non-empty submatrix represented as a one in the bitmap B, will
be stored by a different K2-tree.

The K2-trees will be cyclically distributed among the different processors,
according to their position in B. For instance, in Figure 6.5 the highlighted submatrix
is stored in processor 2.

Each processor will store the K2-tree index and its corresponding K2-trees
representing the non-empty submatrices. In this way, in order to answer a
direct (or reverse) neighbor operation, the K2-tree index is queried (traversing
the corresponding branches) just as in a traditional K2-tree. When a zero is reached
(suppose it is the i-th zero of T:L), the i-th position in the bitmap B is checked. If it
is a one, a x = rank(B, i) operation is performed. That means that the x-th K2-tree
has to be checked, which is the (b x

|P |c+1) K2-tree of the processor (x−1)mod|P |+1.
The resulting K2-tree will be queried to finally answer the neighbour operation.

6.3 Proposals based on the K2-tree structure

In Section 6.2, some basic distributions are proposed: the partitioning of the
adjacency matrix in blocks, cyclically by rows or columns and finally through a
grid of sub-matrices. Those distributions were also adapted to balance the number
of edges that each processor contains, expecting to improve the balance of space
without deteriorating the compression of the matrix.

This section proposes a different strategy. We propose two new distributions,
also focused on obtaining a good spatial balance. They are designed attending to
the specific properties of the structure that finally stores the graph: that is, the
K2-tree. Therefore, they try to balance the space according to the final space that
each K2-tree needs. Consequently, they are distributions specifically designed for a
K2-tree distributed system.

6.3.1 Edge-Balanced distribution

Consider the global K2-tree, representing the full adjacency matrix. Figure 6.6
shows the K2-tree (bottom) representing an adjacency matrix of 16 nodes (top).
Each one at the bottom level of the tree represents an edge (a one in the adjacency
matrix). It can be observed that the nearer two edges are in this bottom level, the
more common ancestors they can share.
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Figure 6.6: An example of an edge-balanced partition (bottom) for an
adjacency matrix of 16 nodes (top), where z-ordering for first cells is also
shown

The Edge-Balanced partition allocates the same number of edges to all the
processors, trying to minimize the ancestors that have to be replicated in more
than one processor. In this way, each processor stores its local K2-tree, with the
same height than the global one. However, it only contains its corresponding edges.
Note that the common ancestors whose edges are located in different processors
are replicated and near edges in the bottom level of the tree share more common
ancestors. Therefore, we allocate d |E||P |e edges to each processor, following the order
of appearance of the edges in the bottom level of the K2-tree.

The location of the edges in the bottom level follows a Z − ordering over the
adjacency matrix. Figure 6.6 illustrates the Z-ordering of the first edges over the
matrix. So, if we consider the list of edges in Z − order (E′), each processor k stores
{E′[i], i = (k − 1) ∗ d |E

′|
|P | e+ 1, . . . , k ∗ d |E

′|
|P | e}. The botton of the figure shows how

the edges of the K2-tree are distributed over 4 processors. The graph contains 24
edges, so 8 edges are represented in each processor.

In that way, the spatial overhead that produces the replication of the common
ancestors in different processors is minimized. As an example of this replication, we
can observe the edge e8 and the edge e9 in Figure 6.6, that are stored in different
processors (P1 and P2). They produce a replication of their common ancestors
(n1,n2 and n3) which have to be stored in both processors. However, note that
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the maximum spatial overhead between two consecutive processors Pi and Pi+1,
which is produced when the last edge of Pi and the first edge of Pi+1 belongs to
the same node in the last level, is only dK2logK |N |e bits. As consequence, the
maximum spatial overhead (in bits) regarding to the global adjacency matrix in this
distribution, for a network of |P | processors, is |P | ∗ dK2logK |N |e.

6.3.2 Perfect Spatial Balanced distribution

Edge-Balanced distribution equally allocates the same number of edges in each
processor. It also minimizes the spatial overhead by distributing the edges following
the appearance order in the bottom level of the global K2-tree, that is, following
a Z − ordering over the adjacency matrix. However, it is easy to see that this
distribution does not guarantee a spatial balance.

First of all, the cost of representing an edge in the K2-tree is given by the
nodes that represent it in all levels (that is, the cost of representing the different
sub-matrices of sizes Ki ×Ki, i = 0 . . . dlogK |N |e − 1). Each of those sub-matrices
is represented in a level of the tree with K2 bits. Accordingly to that, the cost of ei

is defined as C(ei) = K2logK |N | bits. For instance, the cost of e1 in the Figure 6.6
is 16 bits, since n1,n2,n3 and n4 are representing that edge, using K2 bits for each
one.

However, when the global K2-tree is considered, not all the edges cost the same.
Consider two edges ei and ei+1 that are located in the same node. They share
common ancestors (nodes of the intermediate levels). If those two edges are finally
located in the same processor, the final cost of storing the two edges is less than
C(ei) + C(ei+1), since the shared bits are stored only once. So, in order to obtain
a more fine-grain cost measure, we need to define a relative cost for each edge ei

denoted as C ′(ei).

For that purpose, we first define the spatial cost of a graph G = (N,E′), denoted
as SC(G), as the number of bits that the K2-tree structure spends in order to
represent G. Then, the relative cost of an edge ei is C ′(ei) = SC(G′) − SC(G′′),
where G′ = (N, {e1, . . . , ei}) and G′′ = (N, {e1, . . . , ei−1}). The intuition under this
definition is that the cost of storing ei is the number of bits that costs to add the
edge ei to the K2-tree when all the previous edges (following a Z-ordering) are
represented. That is, it is given by the additional bits that ei needs to be represented
in this tree. Those additional bits are such that ei does not share with ei−1. In that
way, the cost of each intermediate node of the K2-tree is only computed for the first
edge (always considering the Z-ordering or E′[i]) that needs it to be represented.

Given that SC(G) = Σ|E
′|

i=1C
′(ei), the proposal for achieving a perfect spatial

balanced partition consists in distributing the edges of the graph by storing in each
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Algorithm 6.4 Perfect Spatial Balanced Algorithm
procedure assign(C ′, P, SC(G))

cost← 0
processor ← 1
for i = 1 . . . |C ′| do

if cost ≥ processor ∗ dSC(G)
|P | e then

mapProc[i]← processor
cost← cost+ C ′[i]

end if
end for
return mapProc

end procedure

processor a K2-tree containing consecutive edges em, . . . , en, where Σn
i=mC

′(ei) '
SC(G)
|P | . The process that maps each edge ei (that is, the i-th edge of the tree

considering a Z − ordering) to the corresponding processor is shown in Algorithm
6.4. The algorithm receives as input the list C ′ representing in C ′[i] the relative
cost of the i-th edge (following a Z-order), the set of processors P and the total
cost of storing the full K2-tree (SC(G)) previously computed. It outputs the vector
mapProc, where mapProc[i] contains the processor in which the i-th edge is stored.

Figure 6.7 shows the partitions obtained by following a Perfect Spatial Balanced
strategy for the example in Figure 6.6. Note that both edges e8 and e9, which
belonged to different processors in the Figure 6.6, belong to P1 in this case. When
edges are closer, sharing more common ancestors, the relative cost of each edge is
reduced and more edges can be stored in the same processor. In the example, the
processor P1 stores 9 edges, while processor P2 only store 5 edges, since the relative
costs of those edges is greater than the costs of the edges of the processor P1.

6.3.3 Querying the Spatial Balanced partitions

For the basic partitioning algorithms described in Section 6.2 (excluding some of the
adaptive approaches), each row and column could be mapped to 1 . . . |P | processors.
Given a direct or reverse neighbor query, the processors and the location of the
queried row or column in that processors can be computed through a simple formula.

But in this new family of distributions, this process cannot be performed in the
same way. Since the edges are distributed following a Z − ordering, they are not
distributed by their row and column location in the matrix. Therefore, given a direct
or reverse neighbor, the processors that are involved in the operation are not easily
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Figure 6.7: An example of a perfect spatial balanced distribution (bottom)
for an adjacency matrix of 16 nodes (top), where relative cost C ′ for each
edge is shown
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computed. All processors will be checked for every query over the graph.

In return for not having a direct mapping, since each processor stores the original
K2-tree (although pruning some branches), no mapping process has to be done to
perform the query neither to transform the local results in global results. That is,
an edge (i, j) of the global graph GM corresponds with the cell (i, j) in all LMk,
although at most one of the processors will have this cell set to one. The remaining
processors will output 0 when this cell is queried.

Checking all processors for every query seems too costly. However, many of these
operations are solved by an early prune in the first levels of the tree, resulting in a
minimal overhead regarding to the execution in only the processors that can produce
results.

6.4 Latin-Square partition

Basic distributions described in Section 6.2 propose partitions where the mapping of
each cell to the processors only depends on the position of the cell in the adjacency
matrix. Adaptive proposals use the information of the matrix to adapt a partition
to a given input data but the queries are not homogeneously distributed among
the processors. Spatial-balanced partitions described in Section 6.3 attend to the
adjacency matrix properties. However, since the order of the map follows a Z curve
is not guaranteed that each row or column will be homogeneously distributed over
all processors.

The purpose of this new distribution is to homogeneously distribute the rows
and columns over all processors, in the way that each query implies checking the
same number of cells in all processors.

In order to obtain a distribution where all rows and columns have the same
number of cells in each processor, an initial partition over the global adjacency
matrix GA is performed. It consists in dividing the adjacency matrix in |P | × |P |
squared regions, exactly as in a basic grid distribution for |P |2 processors. Each
squared region will be represented through an individual K2-tree. We denote as
T [i][j] the K2-tree representing the adjacency matrix located in the row i and column
j of the |P | × |P | sized grid over the adjacency matrix. Each T [i][j] has an spatial
cost of C[i][j] bits. The basic purpose of this partition consists in finding a way to
distribute the grid of K2-trees by allocating to each processor one and only one of
the K2-trees of each row and each column of the grid, while it tries to maintain a
good spatial balance.
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6.4.1 Latin Squares

To achieve the main constraint of this distribution, that is, to assign a grid |P | × |P |
in the way that one cell of each row and each column is mapped to one processor, the
mathematical Latin Square concept can provide support as an allocation template.

As briefly explain in Section 5.3.4, a Latin Square (LS) is a matrix of size n× n
where each cell LS[i][j] contains a value between 1 . . . n and each value appears
once in each row and column. Any Latin Square can be modified by permuting its
rows and its columns and it still is a Latin Square. Many other operations over
a Latin Square produce other Latin Square. In particular, a Latin Square can be
transformed to a normalized form accomplishing that LS[1][j] < LS[1][j′]⇔ j < j′

and LS[i][1] < LS[i′][1]⇔ i < i′.

6.4.2 Algorithm of distribution

We propose the distribution of a grid of |P | × |P | K2-trees by using a Latin Square
LS of size |P | × |P | as a template. Using an allocation based on a Latin Square, we
have the initial constraint of this distribution. That is, each row and each column of
the grid is homogeneously distributed over all processors. A random Latin Square
could be used in order to obtain a valid partition.

However, we are also interested in balancing the space, so we will use the special
properties of Latin Squares to obtain more balanced distributions by permuting the
rows and the columns of the used Latin Square.

We start from an initial Latin Square, that we use as a template of assignation
for the |P | × |P | K2-trees. Then, we permute the rows of the Latin Square template,
trying to balance the spatial cost of the different processors, while the initial
constraint of this distribution is maintained. Algorithm 6.5 illustrates the process.
First, the initial Latin Square template is set. Note that, although any other Latin
Square could be used, we use as an example the normalized Latin Square shown in
the top-right of the Figure 6.8. The total spatial cost for the row i (composed by
|P | K2-trees) of the grid is stored in RC[i]. Figure 6.8 (middle) shows the spatial
cost for each K2-tree (C) and for the K2-trees of each row (RC). For instance, the
K2-tree representing the top-left adjacency matrix costs 12 bits, and the top row of
4 K2-trees costs 28 bits.

In the first step, the most costly row is allocated by using an available row (not
used yet) of the Latin Square template. In the example, the third row with cost 40
is chosen, and it is assigned to the row 1 of the Latin Square template (LS). The
process continues by selecting the most costly row in each step (cRow). cRow will
be assigned to the available row of LS which most balances the current spatial costs
by processors (bRow). In the example of the Figure, the second step assigns the
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Algorithm 6.6 Data distribution for the Latin-Square approach
procedure assign(C,P )

. Latin Square Template
for i← 1 . . . |P | do

RC[i]←
∑|P |

j=1 Ci,j

PC[i]← 0;
for j ← 1 . . . |P | do

LS(i, j)← (i+ j − 2 mod |P |) + 1
end for

end for
for i = 1→ |P | do

cRow ← k|RC(k) = max
|P |
j=1RC(j)

maxBalance← 0
. Obtaining the best balance

for j = 1← 1 . . . |LS| do
for k ← 1 . . . |P | do

PC ′[LS[j][k]]← PC[LS[j][k]] + C[cRow][k]
end for
if balance(PC ′) > maxBalance then

bRow ← j;
maxBalance← balance(PC ′)

end if
end for

. Allocating the best option
for j ← 1 . . . |P | do

mapProc[cRow][j]← LS[bRow][j]
PC[LS[bRow][j]]← PC[LS[bRow][j]] + C[cRow][j]

end for
remove(LS[bRow])
RC[cRow]← 0

end for
return mapProc

end procedure
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Figure 6.8: An example of a Latin Square partition showing the final
assignation grid (bottom-left) for an adjacency matrix of 16 nodes (top-left),
using a Latin Square template (top-right)
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row 1 (which cost 28) of the grid to the row 3 of the Latin Square template. The
current spatial costs in each processor are PC[1] = 16, PC[2] = 16, PC[3] = 24 and
PC[4] = 12. The current spatial cost of each processor i is stored in PC[i]. The
balance of each possible combination in each step is computed given by P C

max
|P |
i=1P C[i]

.
The row of the Latin Square which most balance the distribution is allocated to
the corresponding row of the grid of K2-tree. Then, this row of the Latin Square
is disabled, since it cannot be used any more. This process is repeated |P | times,
until each T [i][j] has its corresponding processor stored in mapProc[i][j]. The final
grid assignation of the example can be seen in the Figure 6.8. For instance, we can
see that the tree T[3,3] with a spatial cost 12 will be stored in the processor 3. The
final spatial costs by processor, that this algorithm tries to balance, is also shown in
the figure (PC).

6.5 Execution Cycle

The previous sections describe different proposals to partition the graph in |P |
processors. The final purpose of this partitioning is to develop a full system, composed
by |P | processors, that receives queries and returns the answer, independently of
the internal distribution of the data. With that purpose, we design a query system
following the message passing paradigm and using synchronization barriers, in the
way that a barrier at the end of each step synchronizes all the processors, where the
messages that were sent during this step are received in the corresponding addressed
processor.

All the processors execute the same algorithm, in the way that each processor
is the responsible of sending the proper messages to other processors and it also
receives the answers in order to solve the queries that it manages.

Therefore, the algorithm is composed of a set of steps, that ends with a sync
barrier. In each superstep i of this algorithm, all processors execute three tasks:

• Read n queries. Each processor process its own pull of queries. For the sake of
the simplicity, we assume this queue is never empty and all processors receive n
requests in each step. In that way, we ensure that the observed load imbalance
is not due to a imbalanced number of received queries. Each query will be sent
to the corresponding processors, according to the rules of each partition. Some
of the partitions, like multi-level grid distribution, need to map the global row
or column to the corresponding local row or column through the explained
formula. Other distributions, like the spatial-balanced partitions, need to send
each query to all the processors, but no mapping is necessary, since each cell
(i, j) corresponds with the cell (i, j) in all processors. For each step, all the
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Figure 6.9: An example of three steps in the execution cycle for two
processors and the external communication involved between the two
processors needed to complete the queries received in the step i)

queries from a processor to another one are packed in the same message. So,
in each step, depending on the distribution, each processor can receive up to
|P −1| ∗n external queries (in |P −1| messages), which have to been computed
and answered.

• Query execution. The external queries received from the other processors and
the internal queries read in the previous superstep i− 1 are executed over the
local data in this phase. New messages are created in order to answer the
queries to the corresponding processor (that is, the processor which made the
request).

• Output n queries. The n queries that the processor read in the superstep i− 2
were executed by the corresponding processors in the superstep i − 1, so in
this superstep all the answers have been received and the processor is ready
to output the answer, resulting of the union of the answers of all involved
processors in that query. Depending on the distribution, this operation can
involve the reverse mapping of the local results to the coordinates of the global
matrix.

.

Figure 6.9 shows the phases along three supersteps for a system with two
processors, and the communication involved to answer the queries read in the step i.
The messages between different processors are highlighted.
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6.6 Summary

This chapter presented the graph partitioning strategies we designed to distribute
graphs by using the compact K2-tree structure. The first proposals are based on
partitioning the adjacency matrix. In this way, we defined the basic, cyclic and grid
distributions, which divide the matrix in P submatrices, each of one is represented
with a K2-tree in a different processor.

These distributions do not take into account the distribution of edges into the
adjacency matrix, so adaptive versions of these strategies were implemented. It is
worth mentioning the adaptive multigrid distribution that, using another K2-tree as
index, builds a set of K2-trees that are distributed over the processors.

A different kind of strategies was also proposed, specially focused on the structural
characteristics of the K2-tree structure. The edge-balanced distribution allocates
the same number of edges in all the processors, by performing a vertical partitioning
over the conceptual K2-tree. Perfect spatial balanced distribution improved this
strategy by considering the relative cost of storing each edge in order to achieve a
perfect spatial balance.

In the Latin-Square partitioning we proposed a different approach to the problem,
where the matrix is stored through a set of K2-trees, and the partitioning algorithm
tries to distribute this set among the different processors by balancing the space as
much as possible.

Finally, Section 6.5 describes the cycle of execution that follows all the
distributions in order to solve the direct and reverse neighbor operations.

Next chapter experimentally evaluates all of these strategies by using Web and
Social graphs, analysing its spatial and temporal balance and efficiency to expose
use cases of each strategy.
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Chapter 7

Experimental evaluation

In this chapter we present an experimental evaluation of the different partitioning
algorithms described in Chapter 6 to distribute a graph using K2-trees as internal
representation.

The purpose of this experimentation is to compare the spatial and temporal
efficiency of the different partitioning strategies. The spatial balance is a good
measure of the scalability of the distribution. All the distributions store the final
graph in the main memory, so the more balanced the space is among the different
processors, the bigger graphs can be managed by the same set of processors. However,
some of the proposed distributions can break the compressibility of the data, so the
total space used to store the distributed graph is also considered.

On the other hand, the temporal balance is measured, in order to analyze how
the work load is distributed in the processors. The purpose is to minimize the time
in which each processor is idle in each superstep of the querying cycle, waiting for the
remaining processors in the synchronization barrier. However, the most important
temporal measure is given by the Speed-up obtained for each distribution.

The chapter is structured as follows. First, the execution environment and the
datasets that are used in the experimentation are presented. Then, the total space
and the spatial balance for each distribution are compared. After that, the temporal
results are described comparing the different distribution approaches. Finally, a
global analysis of the results is presented.

143
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7.1 Experimental Setup

7.1.1 Execution environment

We execute all the experiments of this section on a cluster composed by 67 processing
nodes. Each node is equipped with two quad-core Intel Xeon E5555 processors
running at 2.67GHz, and 24GB RAM. The cluster uses an Infiniband network to
communicate the nodes for calculations and I/O purposes, that reaches a peak
bandwidth of 40Gb/s per port and a latency of 100 nsec. The computing processors
use a message passing communication library (MPI) to communicate. In the
experiments, we ensure that each process is located in a different processor in the
cluster, in order to obtain a fair measure of the communication costs between the
different processors.

Datasets

We analyze the performance of all our implementations using well known graphs
for experimentation from two different contexts: web graphs and social networks.
The main purpose is to compare the different behavior of the partitioning proposals
depending on the nature and the distribution of the dataset. Next, we describe the
main characteristics of the datasets:

• Epinions 1 is a small social graph from the SNAP collection [Les] representing
the trust relationship between the members of the network. It is a tiny graph
which is included in the evaluation to analyse the behavior of the distributions
in small graphs.

• Live Journal is a social graph, also obtained from the SNAP collection [Les]
that represents the relationships between the users of this community.

• EU is a small Web crawl from the Web Graph project [BV04] [BRSV] [BCSV]
that represents links between pages of the .eu domain.

• UK is a large Web crawl form the Web Graph project representing links
between pages of the .uk domain from 2002.

Table 7.1 shows the number of nodes and edges of the graphs. It also shows
the size (in Megabytes) which costs storing them in an individual K2-tree (using
K = 2). Last column shows the number of bits per edge for each different dataset,
giving a reference of the compressibility of the graphs with a K2-tree.

1http://www.epinions.com/
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Graph Domain # Nodes # Edges Size (MB) BPE

Epinions Social 75.888 508.837 0.89 14.67

LiveJournal Social 4.847.571 68.993.773 167.29 20.34

EU Web 862.664 19.235.140 11.86 5.18

UK-2002 Web 18.520.486 298.113.762 149.78 4.21

Table 7.1: Web and social graphs used in this experimentation

Queries

Each processor will execute 10.000 direct or reverse neighbor queries (depending on
the experiment) in each superstep, that is, the querying system processes 10.000∗ |P |
queries per superstep. The performance is evaluated from the average time of
10 supersteps. We run experiments with 1 (sequential version), 4, 9, 16 and 25
processors.

7.2 Spatial evaluation

In this section the spatial cost of the different partitioning strategies is evaluated.
First, the total spatial cost of storing the graph in the distributed environment is
measured. After that, the balance of this spatial cost among the different processors
is also evaluated.

7.2.1 Total spatial cost

Figure 7.1 shows the total space of the different graph partitioning strategies for
Social Networks, while Figure 7.2 shows the total space achieved in the Web graphs.
Each line of the Figure shows a different strategy implemented over a network with 4,
9, 16 and 25 processors. The total cost is the sum of the costs of the local K2-trees
and the additional structures needed to map the cells from the global matrix to the
cells in each local processor. In general, the cost of the additional structures are
residual, with the only exception of the Adaptive MultiGrid distribution, where an
additional K2-tree (used as index of the remaining K2-tree structures) is replicated
in all processors.

The results show that all the distributions achieve a similar compression regarding
to the sequential version. The only exception are the distributions based on cyclical
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allocation, that is, the Cyclic distribution and the Adaptive Cyclic distribution.
They reduce the compression of the K2-tree, because the locality of the data is lost,
getting worse as the number of processors grows. For instance, we can observe that
Cyclic distribution for the LiveJournal dataset with 25 processors has a 25% of extra
cost regarding to the sequential version. Latin Square distribution also presents an
interesting feature. When the number of processors grows, the number of K2-trees
generated also grows, reducing the height of the resulting K2-trees. For instance, in
the case of |P | = 25, a grid of 625 K2-trees is generated. This first partition of the
data can produce an spatial saving that is specially meaningfull in tiny datasets like
Epinions.

This behavior is repeated in the four analysed datasets, so we can conclude that
Cyclic distribution and Adaptive Cyclic distributions are the only distributions that
affect the total spatial cost of the graph, and this spatial cost grows with the number
of processors.

7.2.2 Spatial efficiency

We analyze how the spatial cost is distributed among the different processors. The
more balanced the spatial cost is, the bigger datasets will fit in the main-memory of
each individually processor, so this is a relevant measure of the scalability of the
graph partitioning strategy. Spatial efficiency is computed as avgSpace/maxSpace

where avgSpace =
∑|P |

i=1
SC(LAi)
|P | is the average spatial cost of the local subgraphs

stored in each processor and maxSpace = max|P |i=1 SC(LAi) is the maximum space
of all processors.

Figure 7.3 shows the spatial balance achieved for all the distributions. First,
we can observe the behavior of the 1D-partitioning strategies. Block distribution
achieves a poor balance of the space, because it is a distribution that strongly
depends on the original data distribution. This effect is specially noted in the case
of the evaluated social graphs, where the upper-left region of the adjacency matrix
presents bigger edge density. Therefore, the first processor has to represent a great
percentage of the edges of the total graph, producing the bad results observed in the
figure. Furthermore, this effect degenerates when the number of processors grows,
because the first processor still gathers most of the edges and the network is greater,
causing a worse balance. However, the results obtained for the Adaptive Block
Partitioning strategy clearly improves the balance of the previous distribution.

Distributions based on the K2-tree structure, that is, the Edge Balanced and
the Perfect Spatial Balanced distributions achieve very good spatial results. Edge
Balanced distribution balance is around 0.8, which is improved with the more
fine-grain balance of Perfect Balanced distribution which achieves almost a perfect
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balance (1).

Grid distributions with lower levels of granularity (L = 1, 2, 4) achieve bad spatial
balance (in many cases, under 0.5), because they are very dependent on the graph
distribution. However, a level of granularity L = 8 improves this efficiency, obtaining
values around 0.9. Adaptive Multiple Grid distribution does not obtain a good
spatial balance, and it is one of the distributions that get worst when the number of
processor grows. Finally, Latin Squares also obtain a bad spatial balance, although
in the case of Livejournal the balance is improved when the number of processors
grows, because a bigger grid template produces a great number of K2-trees, which
can be distributed better.

Figure 7.4 shows the spatial balance achieved in the Web graphs EU and UK.
The results are quite similar to the obtained for the Social Graphs. However, in this
case, the Multiple Grid distribution with parameter L = 8 does not obtain good
results. Another difference is that the Block distribution works better in these Web
graphs, because the distribution of the edges in the adjacency matrices of these Web
graphs does not present most edges in the top-left of the matrix, as in the case of
the studied social graphs.

Therefore, we can extract two main conclusions. First, the optimal parameter
value for L depends on the graph, so the behavior of the grid distributions depends
on the distribution of the edges in the adjacency matrix. On the other hand, the
block distribution also obtain a good balance for some kinds of adjacency matrices,
but it produces imbalanced distributions if a region of the matrix clusters most of
the edges of the matrix.

7.3 Temporal evaluation

We also analyze the running time performance of the different distributions.

7.3.1 Temporal efficiency

We first study the temporal efficiency of each distribution, which is computed as

avgTemp/maxTemp where avgTemp =
∑|P |

i=1
T C(LAi)
|P | is the average running time

of processors per superstep and maxTemp = max|P |i=1 TC(LAi) is the maximum
running time in any processor. The temporal efficiency is measured using the user
time. It gives a measure of the time that processors are idle in each superstep,
waiting for the remaining processors. A distribution that balances the work load,
where all processors have a similar work load in each superstep, will achieve temporal
efficiency with value 1. Figures 7.5 and 7.6 show the results for direct neighbor
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Figure 7.5: Epinions and Livejournal temporal efficiency for direct neighbors
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Figure 7.7: Epinions and Livejournal temporal efficiency for reverse
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Figure 7.8: EU and UK spatial temporal efficiency for reverse neighbors
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queries, while Figures 7.7 and 7.8 shows the results for reverse neighbor queries.
Direct and reverse operations obtain quite similar results for each dataset. Grid
distributions with a high level of L(L = 8) obtain a good temporal efficiency and
cyclic (basic and adaptive) and Latin Square distributions also obtain good results.
However, cyclic distributions obtain a good temporal efficiency in return of extra
spatial requirements, as it was shown in the spatial evaluation. Grid distributions
with low levels of L obtain poor temporal efficiency, produced by a bad spatial
distribution.

7.3.2 Speed-up

Finally, we show the speed-up, which measures the real querying capacity of the
system. The speed-up is defined as Ts

Tp
where Ts is the running time of a sequential

algorithm for the problem and Tp the running time of a parallel algorithm. We use
the real time of the processing in order to measure the total cost (including the
processing and the message communication between the different processors).

Figures 7.9 and 7.11 show the speed-up obtained for the social datasets in
direct and reverse neighbor operations. For the Epinions dataset, Latin Square
and Multigrid (L = 8) are the best distributions, while Multigrid with lower levels
obtains poor speed-ups (L = 1, 2). Note that for the Livejournal dataset, in addition
to Multigrid distribution with L = 8, cyclic distribution also obtains a very good
speed-up.

Figures 7.10 and 7.12 show the speed-up for the two Web graphs. Grid with L = 8,
just as in the social graphs, obtains good results. However, in this case, adaptive
block distribution also obtains a good speed-up. Note that block distributions are
very dependent on the location of the edges in the adjacency matrix and they achieve
a good spatial efficiency in these two datasets. Finally, Latin Square also obtains
good results.

Therefore, grid distributions with high values of L obtain a good speed-up. Latin
Squares are also a good choice. However, another distributions, like the Adaptive
Block, have a behavior completely dependent of the graph nature.

7.3.3 Analysis

We reviewed the temporal and spatial results for the different distributions we
proposed. In this section we analyze the strength points and the weakness of each
distribution, according to the results observed in the four datasets we evaluated.

• Block distribution: the main strength of this distribution is its simplicity for
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Figure 7.9: Epinions and Livejournal speed-up for direct neighbors
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Figure 7.10: EU and UK speed-up for direct neighbors
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Figure 7.11: Epinions and Livejournal speed-up for reverse neighbors
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Figure 7.12: EU and UK spatial speed-up for reverse neighbors
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computing the partitions. On the other hand, its strongly dependence on the
original edge distribution can produce a poor spatial balance, specially in such
datasets where edges are not equally distributed over the adjacency matrix, as
we observed in the social network datasets evaluated like livejournal.

• Adaptive block distribution: this distribution still is a very lightweight
partitioning algorithm that improves the spatial balance obtained with the
previous distribution. However, for datasets where some regions of the
adjacency matrix present a high concentration of edges, the rows with more
edges will be stored in the same processor (although this processor will store
less rows). Therefore, the processors storing dense areas will have more costly
neighbor operations, producing in some cases a temporal imbalance.

• Cylic distribution: although this distribution usually achieves a good spatial
balance, independent to the distribution of the original matrix, it breaks the
compressibility of the matrix, producing a meaningful spatial overhead. The
work load balance is very good in this distribution, possibly due to the good
spatial balance achieved. However, it obtains a moderate good speed-up, which
can be caused by this lack of compressibility that produces the costs of the
direct and reverse neighbor operations be more costly.

• Adaptive cyclic distribution: although this distribution was proposed to ensure
the spatial balance of a cyclic distribution, the good results obtained by the
cyclic distribution in terms of spatial balance makes the behavior of this new
distribution quite identical to the non-adaptive version. Therefore, the main
weakness still is the spatial overhead, that produces moderate speed-up values
for this distribution.

• Grid distribution: this distribution was analyzed for different values of L, that
determines the number of divisions of the global adjacency matrix in order to
distribute it among the different processors. The results show that, in general,
the higher the parameter L is, the more spatial balance the distribution will
achieve. However, very high levels of L can break the compressibility of this
distribution. Furthermore, the speed-up results are in general improved for
higher L parameters, but the results show that it is very dependent on the
dataset. As a consequence, the main weakness of this distribution is that there
is no an optimal configuration of the distribution for every dataset.

• Adaptive grid distribution: this distribution presents the worst results, specially
in terms of speed up, obtaining a very discrete increasing with the number of
processors. However, in order to study the possibilities of this distribution is
required a depth study of the parameter limit, that determines the minimum
number of edges for a submatrix produce a newK2-tree allocated in a processor.
Furthermore, in many cases, the problem is that many of the K2-trees created
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are very small (containing only a few edges), so an alternative representation
of this tiny trees could be studied. As conclusion, although the results of this
distribution are not competitive with the current configuration, more studies
could be performed in order to improve the results of the adaptive multiple
grid distribution.

• Spatial balanced distributions: we proposed two alternatives that tries to
balance the spatial balance taking into account the internal structure of the
K2-tree. Perfect Spatial balanced distribution is an optimization of the edge
balance distribution, so we only consider the optimized version in this analysis.
It guarantees almost a perfect spatial balance, independently to the graph
distribution. Furthermore, the spatial overhead is insignificant. Therefore,
the spatial balanced distribution is the optimal distribution in terms of the
spatial efficiency. However, the fact that each query has to be performed in
every processor affects to the speed up of this distribution, specially for such
datasets (like livejournal in our experimentation) where the edges are not
homogeneously balanced.

• Latin Square presents the best results of this experimentation, since it is a
commitment between the spatial and the temporal efficiency. The algorithm
that permutes the rows of the Latin Square template obtains a reasonable good
spatial balance, specially good in social graphs. On the other hand, it obtains
the best speed-up values for web graphs and one of the best results in social
graphs. Therefore, we can conclude that this distribution is the best choice
among the implemented distributions to parallelize a graph using K2-trees.

7.4 Summary

In this chapter an experimental evaluation of the distributions designed in the
previous chapter was presented. In general, the total cost of storing the distributed
graph is near to the total cost of storing a graph as an individual K2-tree. Cyclic
and Adaptive Cyclic distributions are the exception, because they break the
compressibility of the graph and deteriorate the compression.

Edge balanced and Perfect Spatial balanced distributions achieve the best results
in spatial efficiency. Cyclic distributions also obtain efficiency good results, but they
need extra space. Grid distribution behavior depends on the graph distribution and
the value of L.

In general, Grid (with L = 8), Cyclic and Latin Square distributions achieve
the best temporal efficiency. However, when the speed up is analyzed, the Cyclic
distribution is not a good solution. On the other hand, the Grid (L = 8) and Latin
Square distributions achieve the best results.
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To summarize, cyclic distribution achieves very good spatial and temporal
efficiency but, when the speed-up and the total cost are analyzed, it does not obtain
good results. The Grid distribution obtains good results in all measures. However,
it is a parametrized distribution (with the value L) and the optimal value strongly
depends on the graph distribution. As conclusion, the good results obtained for
Latin Square distribution and the fact that this behavior is quite independent on the
distribution, makes this distribution a good choice that balances as a commitment
between the good spatial and temporal results.
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Chapter 8

Representing RDF graphs
with the K2-tree: K2-Triples

This chapter proposes K2-Triples, a new technique to store RDF datasets in a
very compact way in main memory, providing at the same time efficient query
algorithms. It is based on performing a vertical partitioning over the data, which
is a very common strategy in the State of the Art about RDF stores. K2-triples
splits an RDF dataset into |P | binary relationships. Each binary relationship stores
the relations between subjects and objects for a different predicate. Those binary
relations are represented using the compact K2-tree data structure.

K2-Triples includes some additional indexes to reduce the main weakness of the
vertical partitioning strategy: a poor efficiency in queries with unbounded predicate
(that is, queries that do not specify a given predicate). A basic triple pattern
resolution is provided and different join resolution strategies are implemented. The
set of basic query patterns that K2-triples implements efficiently aims to set the basis
for more complex queries, since an efficient SPARQL resolution strongly depends on
the efficiency in these basic triple patterns.

The structure of this chapter is as follows. Section 8.1 gives a brief introduction
to the RDF model and its standard query language SPARQL. Section 8.2 reviews
the different RDF stores proposed in the State of the Art to manage RDF data.
Next three Sections describe our proposal. Section 8.3 presents the internal storage
of the K2-triples system. Section 8.4 describes the triple pattern resolution while
Section 8.5 details the different join resolution strategies implemented for K2-triples.
Finally, an exhaustive experimental evaluation is provided in Section 8.6.
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8.1 RDF graphs

In this section we focus on describing the graphs used in a specific domain: RDF
(Resource Description Framework). RDF models data in the form of triples which
can be represented as a labeled graph, named RDF graph.

This section starts with a brief motivation that states the importance of RDF
in the current conception of the Semantic Web. Next, the main features of the
language representation (RDF) are described. This section ends with an overview of
the SPARQL fundamentals, which have become the standard query language for
RDF data.

8.1.1 The Web of Data

Nowadays, in the Big Data Era, big amounts of data are generated every day. They
are usually published in a non-machine-readable way, because the web content is
not well structured. Traditionally, information is mixed with style specifications for
its visual representation, which is no suitable for an automatic processing. However,
many of this information, which ranges from scientific data to more general knowledge
like geographic information, is a very valuable source of information, which would
have to be manually managed every day. Therefore, the automatic processing of
this information will open many chances for its exploitation. In addition to the
difficulties for an automatic processing, a new problem emerges when data sources
from different providers have to be integrated. For instance, a publisher and a
historic researcher can provide different information about the same city (a historic
researcher provides events and a GIS publisher provides their location), which could
be integrated. The detection of which information references the same entities in
unstructured data is also an open research area.

The Web of Data appeared to deal with the management of this amount of data
that is generated every day from very different information sources, supporting the
principles of the Semantic Web [BLHL01]. It proposes a new publishing data format,
which supports the connectivity between those heterogeneous data sources.

In this context, the Resource Description Framework (RDF) provides us with
a common language to describe facts of the world in a structured and linked way.
It enables data for its automatically processing and prepares it to be integrated in
different data sources [MMM04]. The proposed model is quite simple: the data is
structured as a set of triples (subject, predicate, object), which are identified with a
Universal Resource Identifier (URI). The representation of the data by using URIs is
fundamental in order to preserve the uniqueness of each data and, as a consequence,
it makes possible to connect multiple data sources.
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Figure 8.1: Web of Data in September of 2011

Internet, due to its own nature, is a context of distributed knowledge where
multiple data sources publish data related to different aspects of shared entities (as
in the given example of the cities). Although entities are represented in RDF as
URIs, it is common to find the same entity identified with different URIs if it is used
in different domains. For this reason, links that establish an identity relationship
are needed. Those links can be also represented with RDF and they are called RDF
links. They connect equal entities in different domains, creating a global data graph
that integrates information from different sources [BHBL09].

RDF includes an important mechanism to describe new properties through the
definition of new vocabularies. They can be defined using RDF syntax by the RDF
vocabulary definition language RDF Schema (RDFS) or with the Web Ontology
Language (OWL). Using those languages, each data provider can define its own
vocabulary and, through RDF links, specify its equivalence with other vocabularies.

Linking Open Data Project has widely contributed to this integration of RDF
data from multiple and heterogeneous data sources [CJ11]. Figure 8.2 shows the
diagram of the different data sources and the relation between them, including data
from media, geography, publications or even from government in 2011.
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8.1.2 RDF as a data representation language

RDF is the standard language recommended by the W3C to describe and query
semantic data. It provides a description framework that structures and links data
as a set of triples (subject, predicate, object). A triple can be seen as a labeled edge
in a graph, where the subject and the object are nodes and the predicate is the
labeled edge that connects them. In this way, the set of triples that compose a
dataset is called RDF Graph. The RDF graph describes resources (subjects of the
triples) through properties (predicates or edges of the graph) set to a given value
(objects of the triples). RDF uses Uniform Resource Identifiers to represent each
resource, property and value. Objects (the values that a given resource takes for a
given property) can also be literals. URIs can take part of different triples playing
different roles: a URI that is the object of a triple can be described by other triples
at the same time (acting in this case as subject).

Figure 8.2 (top) shows an example of an RDF graph that includes some of the
information related to Madrid contained in the DBpedia dataset [LIJ+14], which is
composed by structured information fromWikipedia. The graph contains three nodes
representing Madrid, Spain and Euro; their URIs and one literal value (3265038).
The entity Madrid is described by the property country with value Spain, forming a
RDF triple. At the same time, Spain plays the role of subject in two triples: one
describing the official currency in Spain (Euro) and another one showing the capital
of Spain (Madrid). Finally, one triple is used to describe the total population of
Madrid showing more than 3 millions of people.

We already explained how RDF datasets can be represented as a graph. However,
another representation is possible. Figure 8.2 (in the middle) shows the same RDF
graph in N-triples, a simple format where each triple is described in an individual
line by its subject, predicate and object, represented by its URIs or literal values and
followed by a dot at the end of the line. W3C recommends an RDF/XML syntax to
encode the RDF graphs, which is shown in the bottom of the Figure.

The description of data in RDF is supported by the RDF Schema [BG04], used
to define new concepts forming a vocabulary. The vocabulary is described using also
RDF syntax. RDF Schema is a semantic extension of RDF that provides a set of
classes and properties used to create new classes and properties. A fully review of
the mechanisms of extension that RDF Schema provides is out of the scope of this
introduction. However, some examples of the elements that it defines are given to
illustrate the underlying idea under RDFS:

• Classes Resources are grouped in classes, which are also a special kind of
resources. The belonging of a resource to a given class can be expressed with
an RDF triple by using the property rdf:type. Continuing with the example of
the Figure 8.2, the next triple specifies that Madrid belongs to the class Place:
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Figure 8.2: Web of Data in September of 2011
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http://dbpedia.org/Page/Madrid rdf:type http://dbpedia.org/ontology/Place .

Resources that are classes, like http://dbpedia.org/ontology/Place are instances
of rdfs:Class. It will be written with RDF syntax as:

http://dbpedia.org/ontology/Place rdf:type rdfs:Class

RDF Schema supports class inheritance, in the way that for an element which
is an instance of a class C, having C a subclass of C ′, then that element is
also an instance of C ′. The property rdfs:subClassOf is used to describe the
subclass relationship between classes.

• Properties Properties are used to describe the subjects of the dataset (they
are the predicates of the RDF triples). RDF Schema defines some properties
with special characteristics. RDF Schema supports property inheritance, which
can be specified through the special property rdf:subPropertyOf. With the
triple P rdf:subPropertyOf P ′ we define that the property P is a subproperty
of P ′, meaning that for every triple (SPO), SP ′O can be inferred. That is, two
elements which are related to the property P will also be related through the
property P ′. Another special property included in RDF Schema is rdf:range.
It is used to describe the classes of the values of a property. That is, given the
triple P rdf:range C, we can infer that every object value O for the property P
(that is, every O for which a triple SPO exists), is an instance of the class C.

Through these simple mechanisms, new properties and new classes can be inferred,
although they would not be explicitly represented in the RDF datasets. The ontology
languages, like RDF Schema and OWL are the basis of the inference engines. They
provide a rule definition mechanism to generate new knowledge which is not explicited
in the RDF dataset.

8.1.3 SPARQL as a query language

SPARQL [PS08] is the W3C recommendation for querying RDF. It defines the
queries by graph pattern matching, specifying the restrictions that the resulting
RDF subgraphs have to accomplish. In this section we give a brief review of the
most relevant aspects of SPARQL for the work developed in this thesis.

The most basic query we can define in SPARQL, that we called Basic Graph
Pattern, is composed by a set of triple patterns. This set of triples is specified in
Turtle format [BBLPC14], an extension of N-triples which additionally includes
abbreviation techniques (like its support to factor common prefixes). Each element
of each triple can be fixed (or bounded) to a value (URI or literal) or it can be
variable (unbounded), which is marked with the special symbol ? followed by a
name. That means that eigth different triple patterns are possible in SPARQL:
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• (S, P,O) asks for the existence of a specific triple.

• (S, P, ?) retrieves the objects that describe a subject S through the predicate
P .

• (S, ?, ?) retrieves all the triple patterns containing the given subject.

• (S, ?, O) asks for the predicates that relate a given subject S to the object O.

• (?, P,O) asks for subjects that are related to the predicate P and the object
O.

• (?, ?, O) searches all the triple patterns where the object O participates.

• (?, P, ?) retrieves all the triples of a given predicate.

• (?, ?, ?) obtains all the triples of the dataset.

Next example defines a simple SPARQL query composed by a Basic Graph
Pattern of two triples:

SELECT ?place
WHERE {
?place http://dbpedia.org/ontology/country ?country .
?country http://dbpedia.org/ontology/currency http://dbpedia.org/resource/Euro .
}

This basic graph pattern (located after the special word WHERE) is composed
by two triples: the predicate of the first triple is fixed, but no specific values are
given for the subject and the object. On the other hand, the second triple fixes the
predicate and the object, but the subject is variable (country), which at the same
time played the role of object in the first triple. These two triples composes a pattern
that the results of the query will have to accomplish. The special word SELECT
defines how the results will be output. In this case, only the values that each result
takes for the place variable are returned. Therefore, we can see that the previous
query searches for the places that are located in a country whose official currency is
the Euro. The query will be computed in the RDF dataset by pattern-matching,
returning all the values that satisfied the conditions.

Basic Graph Patterns are the most simple queries that SPARQL defines, but
another graph patterns are contemplated in the standard.

A more complex example is the Optional Graph Pattern, which allows us to
specify optional conditions about new variables. If an optional condition is satisfied,
the variables that compose that optional pattern are bounded and returned as a
result. However, even if a result candidate does not satisfy an optional condition,
this graph could still be a valid result (with the variables of the optional pattern
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unbounded). The behaviour of an optional graph pattern can be observed in this
example:

SELECT ?place ?population
WHERE {
?place http://dbpedia.org/ontology/country ?country .
?country http://dbpedia.org/ontology/currency http://dbpedia.org/resource/Euro .
OPTIONAL ?place http://dbpedia.org/ontology/population ?population .
}

In this query, an optional pattern about the population of a place is
specified. Consider a place (for instance, Madrid) which contains its popula-
tion in the RDF dataset (that is, a triple http://dbpedia.org/resource/Madrid
http://dbpedia.org/ontology/population 3265038 exists). Then, a result for that
query is http://dbpedia.org/resource/Madrid, 3265038. We now consider another
place, like Vigo, whose population is not specified in our current RDF dataset.
Then, since this pattern is optional, Vigo will be a result of that query, but with an
unbounded population.

We defined the basic graph patterns, as a set of patterns that every resulting
graph has to satisfy. SPARQL queries can also be composed by a combination
of different graph patterns, through the use of different clauses. Clause UNION
specifies that the final resulting graphs have to match with at least one of the
alternative graph patterns. FILTER NOT EXIST is another interesting clause
included in the SPARQL standard, used to specify conditions that resulting graphs
must not match.

SPARQL standard also includes aggregation functions (like COUNT, SUM or
MIN ), grouping the results through the GROUPBY clause. Finally, SPARQL
also supports complex restrictions over specific variables (like regular expressions)
through the FILTER clause.

In conclusion, SPARQL language is a powerful language based on triple patterns,
which can be joined to form more complex queries. As a consequence, the design of
a SPARQL engine has necessarily to be built on top of an efficient triple pattern
resolution and join implementation. Another aspects of the query resolution are
query planners (which optimize the order of execution in a query) and additional
features like the optional or union clauses. They are higher layers of SPARQL engines
built over the basic core engine composed by a triple pattern and join resolution.
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8.2 RDF stores

Given the increasing importance that RDF as data model and SPARQL as its
query language is having in the Web of Data world, many specific RDF stores were
proposed. Some of them adapt solutions from other fields of research, as is the case
of the RDF engines based on relational solutions. Many other stores were natively
designed to store RDF structured data and provide SPARQL language support.
This section explains the two different philosophies followed in the State of the Art
in RDF management and it describes the most successful RDF stores. Therefore,
the descriptions of each RDF store are focused on their internal representation.

8.2.1 Relational Solutions

This section describes different proposals to store RDF data using a traditional
relational scheme. Each method proposes different partitions of data, where the
RDF triples are stored in one or many relational tables. Depending on this data
distribution, querying will involve different operations over the relational scheme.

8.2.1.1 Single three-column table

This approach is the most straightforward way of storing RDF data over a relational
physical storage. RDF triples are represented using a single table with as many rows
as the number of RDF triples that the dataset contains. Subjects, predicates and
objects are represented in three different columns of this table and each row stores
the values of one triple. The main weakness of this solution is that the resolution of
Basic Graph Patterns requires multiple joins over this huge table.

3-store [HG03] is one of the systems that implements this model. It uses MySQL as
database engine and it defines a single table where the RDF triples are represented
through their identifiers. An additional hash table maps the identifiers to its
corresponding literal or URI value. Its query interface supports RDQL, a SQL-like
query language for RDF. This system delegates the problem of designing a good
query plan to the relational database, since it is the final physical implementation.
With that purpose, it transforms the RDQL query into its equivalent SQL query.
This step is quite straightforward due to the similarities between RDQL and SQL
languages.



176 Chapter 8. Representing RDF graphs with the K2-tree: K2-Triples

8.2.1.1.1 Virtuoso 1 is a more evolved and modern RDF store that also
implements this model. It includes support to load data in different formats (N3,
Turtle and RDF/XML). Datasets can be queried using the standard SPARQL query
language.

8.2.1.2 Property tables

Storing a RDF dataset in a huge three-column table presents the problem of the
intensive usage of self-joins. This problem appears even in simple queries like patterns
asking for a subject general description. Property tables groups the properties
describing similar subjects in the same table, creating a kind of relational-like
property tables for representing RDF data. In each table, a list of similar subjects
are represented, where similar subjects means that they are from the same nature
and they share most of the predicates. Each property table contains a column
representing the subjects and several columns representing all the predicates that
are related to those subjects, one for each predicate. Each row represents a subject,
including the value (if known) it takes for each predicate represented in this property
table. When subject is not described with some predicate, a NULL value is set in
the corresponding column. In that way, each row represents as many RDF triples as
columns containing not NULL values.

The main advantage of this model when compared to the single-three column
table is that it is specially convenient for queries focused on describing resources with
all their properties. However, the cost of the general query resolution remains high.
An important issue of property tables is the management of NULL values. It affects
the spatial storage cost, because no existing triples have to be explicitly stored. This
problem is increased when the dataset is not well structured. Another important
drawback is the management of multi-valued attributes, which are very common
in semantic datasets. A multi-valued attribute entails the existence of several
triples in the dataset related to the same subject and the same predicate. A simple
example of multi-valued attribute could be two triples representing the different
telephone numbers that a given user has. Finally, Property tables behaviour strongly
depends on a good clustering algorithm which groups the subjects in property tables
minimizing the NULL values. Clustering algorithm also needs to group the properties
usually queried together in order to minimize the number of joins needed to solve
the query.

Jena is a property table implementation proposed for the Semantic Web Framework
[WW06]. Jena defines a property table schema over a relational database. It
addresses the problem of the multi-valued attributes by storing them in special

1http://www.openlinksw.com
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property tables. Predicates that are specified by the user as multi-valued, are stored
in two-column tables (representing the subject and the object). In this special kind
of tables, as opposition to the property tables, each subject can appear in several
rows, one for each different value that the subject takes for that predicate. Jena
does not propose a clustering algorithm, which has to be defined by the user.

Sesame [BKVH02] implements property tables over the DBMS PostgreSQL, taking
advance of its power of expression, specially of its inheritance table support. Sesame
is specially suitable for well structured datasets which includes metadata defined in
RDF Schema. Sesame uses that RDF Schema to structure data in property tables.
In that way, each class defined in the RDF Schema defines a new property table in
the relational physical storage. A Subclass in the schema would be represented with
new property tables which would be sub-tables of the table representing the parent
class. Finally, each subject instance of a given class is stored in the property table
that represents this class.

8.2.1.3 Vertical partitioning

The vertical partitioning scheme was proposed as an alternative to the property
tables model [AMMH07], which maintains a similar philosophy (tables describing
subjects). It aims to solve the main drawbacks of the property tables, like the NULL
values and the multi-valued attributes. Vertical partitioning stores each predicate in
a different table. Each row of a predicate table represents a pair subject− object
related through that predicate.

Vertical partitioning model solves several of the main weakness identified for
property tables. First of all, no NULL values are stored. Since each table only
includes two columns (subject and object), and only the existing pairs for the
corresponding predicate are stored as a row in the table, the subjects no related to
a given predicate are not stored in that table. Vertical partitioning also addresses
the multi-valued attributes issue. A multi-valued attribute is represented in this
model by as many rows as different values the subject contains for a given predicate.
Another important advantage when compared to the property table model is its
simple design. Vertical partitioning does not depend on a clustering algorithm to
design an efficient storage for each dataset.

Predicate tables in vertical partitioning are ordered by the subject column, to
provide fast access to specific subjects. Although many joins are required in this
approach to answer queries involving different predicates, fast merge joins can be
used thanks to the subject column ordering.

Vertical partitioning suffers from an important lack of efficiency to solve queries
with unbounded predicate. An example of that kind of queries are the ones in which
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some entities (subjects) are asked for a general description. In this case, all tables
must be queried, searching which properties describe each subject. Then, partial
results must be merged to obtain the final result. The problem is increased when the
number of different predicates of the dataset is high. Therefore, vertical partitioning
is not a good choice for representing datasets with many predicates. Nevertheless,
this lack of efficiency can be partially solved by using additional indexes.

Physical implementation of this data model fits better with the column-oriented
databases principles, due to some of its characteristic features, like optimized merge
joins or specific data compression by attribute. Consequently, column-oriented
databases obtain better querying performance implementing vertical partitioning
models that the proposals that are stored over traditional row-oriented databases.
Results shows a difference of one order of magnitude between the two alternatives
[AMMH07].

SW-store [AMMH09] is one of the most representative RDF stores implementing
a vertical partitioning model. It is physically represented over a column-oriented
database, C−store, which stores each column of each table independently. SW-store
uses a dictionary to encode the URIs and literals. Integer identifiers are stored in the
columns of the tables. After performing the query, the resulting keys are decoded
using index joins over the dictionary table. Since tables are indexed by subjects,
SW-store has efficiency problems to perform queries that requires subject-object
joins, intensively used in path expressions. The solution that SW-store proposes is
to materialize the most common path expressions, pre-calculating the subject-object
joins. As a result, this materialization increments the cost of updating. SW-store
also provides a single column alternative which can be more convenient for some
predicate distributions. This approach uses one single-column table in which each
row represents the value of a subject to this predicate. Values are ordered by subject
identifier. The subjects for which this property is not defined are represented by
NULL values. SW-store proposes different approaches to compress those NULL
values depending on their density and distribution. A first approach consists in
representing ranges of consecutive identifiers with NULL values. An alternative
implementation stores bitmaps where i position takes value one if identifier i is
described by this predicate (that is, it is not a NULL value). Figure 8.3 shows
an example of dataset stored in SW-store. Two column tables are represented on
the left. For instance, capital predicates contains two rows, representing identifier
1 (Spain) takes value Madrid and identifier 2 Italy takes the value Rome. Same
predicate can be represented as a one column table (bottom of the Figure). No
NULL values (Madrid and Rome) are represented ordered by subject. An additional
bitmap represents which subject is represented (position 1 and 2 of the bitmap have
a one, so identifier 1 and identifier 2 are represented in that table).

Another stores were implemented in the context of the vertical partitioning
philosophy. For instance, an in-memory storage based in MonetDB is proposed. It
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Figure 8.3: Vertical partitioning proposed by SW-store engine (top) and
its alternative implementation in single column (bottom)
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reduces the need of merge joins [SGK+08].

8.2.2 Native Solutions

Many stores are specifically designed to store and query RDF data addressing its
own peculiarities. Some works [BHS03,HG04,AG05] proposed different graph-based
models, although the most successful approaches are based in multi-indexes. This
section briefly reviews some of the most relevant stores whose internal storage was
designed to deal with the nature of RDF data.

Hexastore [WKB08] is an in-memory solution which stores RDF data using a
set of six indexes. It is designed following the vertical partitioning model, which
implicitly supports indexed access to the predicate.

In general, vertical partitioning is convenient to solve queries where the predicate
is bounded (that is, a predicate is specified in the query). Furthermore, vertical
partitioning solutions usually have each property table indexed by subject (however,
searching by object becomes inefficient). To sum up, the main problem of the
vertical partitioning comes from not treating the three dimensions in the same way.
It prioritizes the access of the RDF triple in a given order (predicate, subject, object).
Many SPARQL queries need a different access to the data, resulting in inefficient
implementations over a vertical partitioning approach.

Hexastore aims to provide an equitable access to all the possible ways of asking
for a triple, including any combination of bounded-unbounded variables in a triple
pattern ((s, p, o), (?, p, ?), (?, p, o), . . .). For that purpose, Hexastore builds six indices
that include all the possible access orderings: SPO, SOP, PSO, POS, OSP and
OPS. The six-index structure is a conceptual evolution of the original proposal of
Harth and Decker [HD05], but it goes one step beyond by providing efficient complex
query resolution. Figure 8.4 represents this schema. Index SPO includes a first
vector with all the subjects of the dataset. Each subject Si has an associated vector
that includes all the predicates describing this subject in the dataset, named Pj(Si).
Finally, each one of those predicates contains object lists that are the value of the
property Pj for the subject Sj , named Ok(SiPj). Remaining five indexes are built
in a similar way. Note that the object lists of SPO, located in the third level of the
Figure 8.4, can be shared between the index SPO and the index PSO (the same
happens for the pairs of indexes SOP −OSP and POS −OPS).

The main advantages of this approach are an efficient treatment of multi-
attributed values (every object list of the third level containing more than one
element is a multi-attributed value) and an efficient implementation of the object-
subject joins needed to perform the path expressions queries (through merge joins,
since all lists of the indexes are sorted). In this way, Hexastore overcomes one of the
weakness of the vertical partitioning model. The main problem of Hexastore is its
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Figure 8.4: Internal representation of the six indices in Hexastore. List of
objects shared by SPO and PSO indexes are shown

scalability, because of its high spatial requirements (5 times the space used to index
the full dataset in a single three-column table), combined with the fact that it is
stored in main-memory.

RDF-3X is a disk-based structure that continues with the philosophy of storing
6 indexes, including all the possible orderings of an RDF triple. It is focused on
obtaining competitive query times while reducing the spatial needs for the index
structures. The physical storage of an RDF dataset in the RDF-3X system is
composed of three main components.

First of all, the triples are stored in a single big triples table. The implementation
of this table is specifically designed for RDF-3X. It does not delegate its physical
storage to any RDBMS (unlike the relational solutions). That triples are
lexicographically sorted and encoded using a mapping dictionary.

A compressed B+-tree stores this ordered set of triples represented with identifiers.
Over the triples table, the six possible orderings of the elements of the triple are
represented with individual indexes, just as in Hexastore. But in this case, the
indexes are compressed in a way that its total size does not exceed the size of the
original data. Each index is individually compressed.

The construction of the six indexes will be illustrated through the OPS index,
the other five indexes are built in the same way. Firstly, triples are ordered
lexicographically according to OPS ordering and they are directly stored in the leafs
of a B+-tree. Near triples according to this order have many chances to share the
values for the object and the predicate (and even more chances to share at least
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the object), so the triples are represented using a differential compression regarding
to the previous element using a byte-level compression scheme, where differential
values are represented with the minimum needed number of bytes. This byte-wise
compression ensures a fast decompression for the querying process.

Additionally, aggregated index includes the number of triples that contains each
one of the possible pairs of elements in an RDF triple (that is, SP ,PS,SO,OS,PO,OP ),
which are also stored in B+-trees. They provide fast access for queries that do not
include all the elements in the variable selection. For instance, the aggregate index
PS could be used to solve the query SELECT ?S ?P WHERE { ?S ?P ?O}. Object
specific values are not returned as a result. However, each pair (subject, object) has to
appear in the result as many times as triples in the datasource uses them. Therefore,
the aggregated index PS can be used to count that number of occurrences. Another
three aggregated indexes are included to count the occurrences of each subject, object
and predicate in the dataset, for the same reason.

RDF-3X query processor relies on the intensive usage of merge joins over the
sorted indexes. It includes a query optimizer mostly focused on join ordering for the
generation of execution plans. It obtains very efficient results, outperforming the
described SW-Store. The spatial requirements, although clearly overcoming other
multi-index solutions like Hexastore, remain very high. This problem is increased
for big datasets because large amounts of data need to be transferred from disk to
memory, reducing the querying efficiency [SHK+08,?].

Bitmat [ACZH10] establishes another alternative based on compressed indexes.
It starts from modelling an RDF dataset as a three dimensional cube, where the
dimensions represent subjects, predicates and objects. Each triple is conceptually
represented in this cube by a 1 in its corresponding position. Remaining positions
are represented by a 0. This 3D bit cube can be sliced in three different ways, one per
dimension. For instance, if the cube is sliced along the dimension of the predicate, as
many adjacency matrices as predicates are generated. Each adjacency matrix stores
the binary relation between subjects and objects through the predicate it represents.
In that way, BitMat considers the adjacency matrices for the pairs SO (through
each predicate), the matrices PO (through each subject) and the matrices PS (one
per object). Additionally, the inverted matrices OS are also considered due to its
frequency of usage in the typical queries. BitMat stores all the adjacency matrices
generated by the 4 slicing process (SO,PO,PS,OS) in a compressed way taking
advantage of the sparsity of that matrices. Each individual matrix is compressed
following a row-wise traversal, encoding the alternating run lengths of bits 0 and
1. Figure 8.5 shows an example of RDF dataset stored in BitMat. The top of the
Figure describes the 3D Cube over its three axis (predicate, subject, object). The
represented dataset is described with three predicates (country, capital, population)
that defines three slices SO. That is, three adjacency matrix have to be compressed
for that partitioning, represented in the bottom of the Figure. The same process
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would be repeated for OS, PO and PS (its corresponding adjacency matrix are
omitted in the Figure in favour of the simplicity). Figure also shows the run-lengths
that finally will be stored representing that adjacency matrix. For instance, the
predicate country is stored like the sequence [0]-1 1 8 1 1, where [0] means that
the first run length is a zero, and the subsequent values represent the number of
consecutive equal elements that the matrix contains, alternating zeros and ones.
For instance, the third value 8 corresponds with the 8 zeros from the third position
of the first row to the second position of the third row. Common operations like
joins and filters are directly defined in terms of the compressed bit-arrays without
needing to decompress the data, obtaining bit-arrays for the basic triple patterns
and performing operations like unions or intersections in order to obtain the final
result. This structure resides in main-memory and it only overcomes the State of
the Art for low selectivity queries.

Many other full in-memory stores [JK05] emerged in this scenario, motivated
by the fact that, if the entire dataset fits in the main memory, the queries can
be performed orders of magnitude faster. Just to mention another example,
SpiderStore is an in-memory RDF store that defines a pointer structure to store the
RDF triples. Each subject, object and predicate is represented by an individual node
in SpiderStore, containing information about all the edges in which it participates
(whether playing the subject, predicate or object role). The information of each
triple inside a node is composed by two pointers to the nodes representing the other
members of the triple. This pointer representation is used to traverse the RDF graph
in any direction (starting by subjects but also by objects or even predicates), specially
convenient to solve path queries in a depth-first manner. SpiderStore determines
the execution order depending on the selectivity of the nodes that participate in the
query. This selectivity information is extracted from the amount of pointers that
the node contains.

The main problem of full main-memory approaches is their lack of scalability,
specially when data structures are not compressed, resulting in a high demand of
memory. Because of that, the current results are limited to small or medium-size
datasets. Some hybrid memory/disk stores were proposed in order to avoid this
limitation, addressing the problem from different perspectives. G-SPARQL [SEH12]
engine stores the entire graph in a relational database, maintaining an in-memory
graph topology to speed up the traversal over the graph. On the other hand,
Bypher [VMR+11] is another interesting store that proposed two different physical
storages (one purely in-memory and another one disk-based), building a query engine
that works over any of two physical representations.

New opportunities arise for in-memory stores thanks to the advances in distributed
computing. This class of solutions, recently studied [HAR11b,UMB10] on the Map
Reduce framework, allows arbitrarily large RDF data to be handled in main memory
because more nodes can be added to a cluster when they are needed. The design
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Figure 8.5: 3D cube model proposed in BitMat (top) and an extract of its
physical representation with run-lengths (right-bottom)
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of efficient RDF exchanging tools [FMPG+13,Bin11] is another important research
line that complements those distributed RDF stores.

8.3 K2-triples structure

This section describes the internal representation of our proposal, named K2-Triples.
This system performs a vertical partitioning over the RDF data and it relies on the
massive usage of theK2-tree structure to represent the resulting binary relations. K2-
triples manages an RDF dataset as a set of triples of numeric identifiers (id1, id2, id3).
With that purpose, the first step in order to manage an RDF dataset by using the
K2-triples system consists in performing a dictionary encoding that converts each
triple of the dataset composed by URIs and literals to a triple composed of three
identifiers where id1 represents the subject of the triple, id2 identifies the predicate
and id3 corresponds to the object. This encoding simplifies the vertical partitioning
represented through multiple K2-tree because, in this way, we can identify each row
and each column of the adjacency matrix with a subject or an object of the dataset.
The management of the dictionary (that maps the identifier to the corresponding
URI or literal) is out of the K2-triples system purposes. Several State of the Art
purposes specifically designed to manage RDF dictionaries could be used [MPFC12].

In Section 8.3.1 we introduce the Dictionary Encoding technique, that processes
the dataset in order to make data suitable of being stored in K2-triples. Section 8.3.2
describes how vertical partitioning will be applied over the data. Finally, additional
indexes that improve the performance of queries with unbounded predicates are
presented in Section 8.3.3.

8.3.1 Dictionary encoding

Dictionary encoding consists in mapping the URI identifiers and the literals
that compose each triple to correlative numeric identifiers. This encoding starts
with extracting the different terms that appeared in the dataset, assigning a
different numeric value for each element. Then each triple is transformed using its
corresponding numeric identifiers. The main advantage of this simple technique is
that it allows to save space, because each different long term (as URIs usually are) is
stored only once in the dictionary, and it is referenced through its numeric identifier
in the several triples it belongs. Furthermore, in the particular case of the K2-tree,
this encoding technique will be very useful to perform the assignation of rows and
columns with the different elements (just as the original K2-tree does to store web
graphs).

In order to encode the RDF dataset preparing it to the K2-triples system, we
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propose a dictionary divided in four categories, where for each category, terms are
ordered in lexicographic order [MPFC12,ACZH10]:

• Common subjects and objects (SO) includes the terms that play both
subject and object roles in the dataset. They are mapped to the range [1, |SO|]

• Subjects (S) includes the remaining subjects that are not included in the
SO category, because they do not play the role of object in any triple of the
dataset. They range from [|SO|+ 1, |SO|+ |S|].

• Objects (O) contains the objects that are not subjects in any triple, so they
do not belong to the SO category. They are mapped to consecutive identifiers
from |SO|+ 1 to |SO|+ |O|.

• Predicates (P) includes the elements that represent predicates of the dataset.
They have numeric identifiers in the range [1, |P |].

Note that each different term (literal or URI) included in the RDF dataset can
belong to one or two categories depending on the different roles it plays in the
triples. For instance, an element that is the subject in a triple and the predicate
in another triple is stored in both Subjects and Predicates. However, if a term
is subject and object in different triples, it is only stored once (because it is stored
in Common subjects and objects). Therefore, the redundant information is
minimal (|P | elements at most, that is expected to be small because predicates is
usually a dimension with few elements). In exchange for a minimal redundancy, this
classification in four dictionary categories will be very convenient to perform the
vertical partitioning of the data used in the K2-triple system. First of all, it can
improve the performance of the subject-object joins because all the possible results
are mapped, by definition, in the range of identifiers [1, |SO|]. Consequently, the
join resolution can be concentrated on the area of SO in order to avoid querying
the remaining subjects and objects.

Figure 8.6 shows an example of dictionary encoding for a dataset of 10 triples.
The full URI has been replaced by a shorter term in favor of the clarity of the
example. Four dictionaries are built with the different elements of the dataset.
SO dictionary contains 4 elements in the interval of identifiers [1, 4], so S and O
dictionaries start from the identifier 5. Finally, P follows a different numeration
starting from 1 to 5, since the dataset is composed by 5 different predicates. The
final dataset that will be stored in the K2-triples system is shown on the right of
the Figure. For instance, the triple (5, 2, 1) is representing the triple (Carcassone,
Country, France), because the subject 6 is located in the S category, 2 represents
the predicate Country and the object 1 is located in the SO category corresponding
to France (it is a term that appears as subject and as object in the dataset).
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Figure 8.6: Example of the simple dictionary encoding for a RDF dataset

The management of the dictionary and how the mapping between terms and
identifiers is implemented is out of the purpose of K2-triples system. Any technique
within the State of the Art could be used as an independent module of the RDF
system. However, it is important to note that RDF dictionaries usually take up to 3
times more space than the triples structure [MPFC12] so the usage of compressed
and efficient dictionary indexes is crucial to the global performance of a RDF store.
From this point, only the triples represented with their numeric identifiers will be
considered.

8.3.2 Vertical partitioning

K2-triples follows a vertical partitioning strategy to model the RDF datasets. The
set of triples (s, p, o) is divided in |P | sets, one for each predicate. In this way, for
each predicate, a binary relation composed by the pairs (s, o) related through this
predicate can be represented. Therefore, each triple (s, p, o) of the original dataset
belongs to the binary relation induced by its p value. The RDF dataset is fully
represented by storing the |P | binary relations.

Each binary relation associated to a predicate value, which is composed by a set
of pairs (s, o) can be represented through an adjacency matrix where the rows in
the interval [1, |SO| + |S|] represent the subjects of the dataset and the columns
included in [1, |SO|+ |O|] represent the objects. Each adjacency matrix associated
to a predicate value is then stored through a single K2-tree in a very compact way.

At this point, note that the lexicographic order of the dictionaries implies that
consecutive terms in the dictionary have consecutive rows or columns in the adjacency
matrix, so the compression of theK2-tree strongly depends on the correlation between
the lexicographic order of the terms and its relation distribution for a given predicate.
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Figure 8.7: Internal representation of K2-triples system using K2-trees
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Figure 8.7 shows an example of a dataset represented in K2-triples. In the
top-right of the Figure, the triples are partitioned in 5 sets, one for each different
predicate value, inducing 5 binary relations. For instance, the binary relation of the
predicate 1 is composed by the pair (4, 7), meaning that triple (4, 1, 7) belongs to
the dataset. Each binary relation can be represented as a 8× 8 adjacency matrix
(shown in the middle-right of the Figure), where the rows represent the subjects
and the columns represent the objects. For instance, adjacency matrix of predicate
4 contains a 1 in the cell (4, 6) meaning the triple (4, 4, 6) is in the dataset. The
individual K2-tree built for each adjacency matrix is shown in the bottom of the
Figure. Those five K2-trees compose the internal representation of the dataset in
K2-triples.

8.3.3 Indexing predicates

It is well known that the main weakness of an RDF store that partitions the data
by predicate is the performance of queries with the predicate unbounded. This
kind of queries usually involves, in the vertical partitioning approaches, checking
all the individual structures stored for each predicate. In the case of K2-triples, a
query with unbounded predicate needs all the K2-trees to be traversed, reducing
meaningfully the efficiency of the query when the number of different predicates is
large. In this section, we propose additional indexes to improve the efficiency of that
queries, that reduce the search space by limiting the number of K2-trees that have
to be checked depending on the information provided in the query (the subject or
the object that the query specifies, or even both).

Consider the simple triple patterns with unbounded predicates: (?S, ?P, ?O),
(?S, ?P,O), (S, ?P, ?O), (S, ?P,O). The first pattern, (?S, ?P, ?O), asks for all the
triples of the dataset, so the traversal over all the K2-tree is compulsory in order to
return the results. However, in the pattern (?S, ?P,O) only the predicates related
to a given object can produce results, so the other K2-trees could be avoided. The
same happens with the pattern (S, ?P, ?O), where the given subject can be used to
limit the searched K2-trees. This optimization is carried out by the construction of
two additional indexes:

• SP(subject-predicate) index contains the list of predicates related to each
subject of the dataset.

• OP(object-predicate) index contains the list of predicates related to each
object of the dataset.

Empirical results [FMPG+13] show that the average size of these lists of predicates
for each different subject and object are an order of magnitude less than the number
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of total predicates used in real-world datasets. This fact is crucial to obtain good
results by using that indexes due to several reasons. Firstly, by using those indexes,
the final number of the traversed K2-trees will be meaningfully smaller, improving
the efficiency of the unbounded predicate queries. Furthermore, this fact also implies
that those index SP and OP can be stored in a limited size. In that way, K2-triples
can include those indexes that improve the querying efficiency while the structure
continues being very compressed.

We propose a compact representation of that indexes. Note that both SP and
OP indexes are representing a predicate list for each subject and each object. For
instance, in the case of the SP index, many subjects will have the same predicate list
(the same happens with the predicate lists of the objects). Our proposal tries to take
advantage of that common predicate lists, through the construction of a predicate
list vocabulary, where predicate lists are sorted by its number of occurrences, in
the way that smallest codewords are assigned to the most common predicate lists.
A different vocabulary is built for the predicate lists of the subjects (Vsp) and the
predicate lists of the objects (Vop).

Figure 8.8 shows an example of how the predicate lists are computed for the
dataset described in Figures 8.7 and 8.6. The predicate lists for all the subjects
and the objects are shown in the center of the figure. For instance, subject 4 is
related to the predicates 1, 2 and 4 in several triples, so its predicate list is {1, 2, 4}.
A dictionary of the different predicate lists of the subjects is built and ordered by
frequency (that is, by the number of subjects represented by this predicate list).

The different predicate lists are represented in two succinct vocabularies Vsp

and Vop that can be implemented through an array of integers where predicate
lists are located consecutively and ordered by its frequency. An additional
index array Vocabulary (IVsp and IVop) locates where the first predicate of
each predicate list is, in order to provide indexed access to the Vocabulary. In
that way, the i-th most frequent predicate list of the subjects is composed by
Vsp[IVsp[i]], Vsp[IVsp[i] + 1], . . . , Vsp[IVsp[i+ 1]− 1].

Figure 8.8 shows the Vocabulary and the Index Vocabulary for the predicate lists
of the subjects and the objects. For instance, the 4− th predicate list of the subjects
(that is, {1, 2, 4}, is located from the 4− th to the 6− th position in VSP , because
V ISP [4] = 4 and V ISP [5] = 7. The most frequent predicate list of the objects {2} is
located in the first position of VOP .

This basic predicate list vocabulary can be implemented in many different ways.
An alternative way of storing the vocabulary index is using a bitmap B with the
same length of the vocabulary array, where the position i of the bitmap has a 1
if the element V [i] is the first predicate of a predicate list. Otherwise, if it is an
intermediate element of a predicate list, it has a zero. In that way, the p − th
predicate list can be located through two select operations over this bitmap: the
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Figure 8.8: SP and OP indexes for K2-triples
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values of the i-th predicate list are stored between the positions select1(B, i) and
select1(B, i+ 1)− 1 of the VSP array.

With the dictionary explained above, the different predicate lists are stored so
they can be accessed in a fast way. The identifiers of the predicate list assigned to
each subject and object are encoded with DAC by assigning shorter codes to the
most frequent predicate lists. In that way, DAC represents the encoded sequence of
predicate list identifiers ordered by subject identifier.

Figure 8.8 shows the predicate lists sequences encoded with DAC, named PLSP

for the subjects and PLOP for the objects. For instance, PLSP [4] = 4, meaning that
the subject 4 has assigned the 4-th predicate list in the vocabulary. The components
of the predicate list 4 start in VSP [IVSP [4]] = VSP [4] and finishes with the element
VSP [IVSP [5]− 1] = VSP [6], obtaining the predicate list {1, 2, 4}. That means that
all the triples with subject 4 have as a predicate value 1, 2, or 4. Then, for the query
(4, ?, ?), is guaranteed that the check of only the K2-trees {1, 2, 4} obtains the full
result. Therefore, we can avoid the check of all the remaining K2-trees because they
will not contain any valid triple. Similar process can be followed for queries that
specify a given object, by using the index OP .

The indexes SP and OP improve the performance of many queries with
unbounded predicate. They can be applied in many triple patterns but also in
join patterns as an early filter of the query space. Specific details of the query
implementations are given in next sections, where the usage of that indexes is also
described.

8.4 Triple pattern resolution in K2-triples

This section describes the triple pattern resolution in the K2-triples system. Triple
patterns are the most simple queries that can be solved in a RDF store, and their
importance relies on the fact that more complex queries are implemented over the
basis of this triple pattern resolution. These triple patterns can be natively solved
in K2-triples as a combination of basic queries over a K2-tree, like checking a cell, a
row or a range in the K2-tree. They are efficient operations because the original
K2-tree structure was specifically designed to solve that kind of queries.

Next, the implementation of the triple patterns in K2-triples is explained. For
queries with unbounded predicates, the possible usage of the indexes SP and OP is
also introduced:

• (S, P,O) The cell (S,O) of the K2-tree that corresponds to the predicate
P is queried. The result of this query is the triple (S, P,O) when it exists.
Otherwise, no results are returned. Query 1 in Figure 8.9 shows an example
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Figure 8.9: Simple pattern resolution
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of resolution of a triple pattern included in this category. The pattern (4, 2, 3)
is solved by checking the value of the cell (4, 3) in predicate 2, that produces
{(4, 2, 3)} as result.

• (S, P, ?) In this pattern the predicate is bounded, so the operation is solved by
querying a single K2-tree, where the full row for the subject S will be queried.
Query 2 in Figure 8.9 shows the resolution of (4, 2, ?) that checks the row 4
of the K2-tree for the predicate 2. The cell (4, 3) has value 1, therefore, the
result to the query (4, 2, ?) is a set that contains one triple {(4, 2, 3)}.

• (S, ?, ?) It is a pattern with an unbounded predicate, therefore a row operation
has to been performed over all the K2-trees of the dataset. The performance
of this operation can be improved by using the index SP in order to limit
the number of K2-trees queried. The index SP provides the predicates which
subject S is related so only the predicates in the predicate list of S are queried.
Query 3 shows an example of this pattern where the index SP is used. Instead
of querying the row 4 in all the K2-trees, only the predicates 1, 2 and 4 are
checked. They will contain, by definition, at least one result of this triple
pattern. The result of the pattern (4, ?, ?) is the set {(4, 2, 3), (4, 4, 6), (4, 1, 7)}.

• (S, ?, O) The basic implementation of this pattern checks the cell (S,O) in all
the K2-trees of the dataset. However, this implementation can be improved by
using both indexes SP and OP to limit the query space. Given the predicate
lists PLSP [S] and PLOP [O] of the subject S and the object O respectively,
only the predicates PLSP [S] ∩ PLOP [O] can return results to the simple
pattern. Query 4 of the Figure 8.7 shows an example of this operation using
the indexes SP and OP . The predicate list of the subject 4 is {1, 2, 4} while
the predicate list of the object 7 is {4}. Therefore, given that {1, 2, 4} ∩ {4},
only the cell (4, 6) of the predicate 4 is checked. It is a 1, so the query result
is {4, 4, 6}.

• (?, P,O) It is solved similarly to the (S, P, ?) operation.

• (?, ?, O) First of all, the index OP is checked, in order to limit the number of
K2-trees queried. Then, for each predicate in the predicate list of the object
O the column O is queried and each value 1 composes a new triple included in
the final result.

• (?, P, ?) That pattern is solved by checking all the cells of the given K2-tree
that stores P . Query 5 in Figure 8.9 shows how the pattern (?, 2, ?) is solved,
producing three results: {(4, 2, 3), (5, 2, 1), (6, 2, 2)}

• (?, ?, ?) It is solved by checking all the K2-trees of the dataset.
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8.5 Join Resolution in K2-triples

The previous section describes how the simple triple patterns are implemented in
K2-triples. They are the most basic operations that can be queried in SPARQL.
In general, complex queries in SPARQL are composed by a conjunction of Basic
Graph Patterns (BGP), which join triple patterns by sharing variables. K2-triples
supports the joins composed by a pair of triple patterns in an efficiently-native way.
This pair join resolution is implemented with the purpose of setting the basis over
which more complex SPARQL queries could be implemented. However, providing
a full support of SPARQL is out of the scope of this work. We aim to support an
API of simple operations (triple patterns and pair joins) in order to allow external
SPARQL libraries to be implemented over it.

We define a pair join query in K2-triples as two triple patterns where one variable
is shared between the two triple patterns, which can be placed in the subject or the
object of the triple patterns (it is not allowed in the predicate position). We called
this variable join variable. The remaining elements of the pair join can be given
(specified with an identifier) or be unbounded. Depending on the position of the
join variable, the join is named subject-subject, subject-object or object-object. For
instance, the pair join (S, ?, ?X) ./ (?X, ?, ?) is a subject-object join.

Subject − object join resolution is one of the main weakness of the vertical-
partitioning approaches, because they usually support only subject-subject joins and
they need additional indexes to perform joins over the object variables. However,
K2-triples overcomes this problem and it solves object− object and subject− object
joins in a native way because of two main factors. First of all, object indexation
is guaranteed in the system thanks to the structural properties of the K2-tree,
that provides both row and column indexation capabilities. Secondly, the rules of
encoding used to assign the identifiers to the subjects, objects and predicates enclose
the range of valid identifiers for the subject-object joins. The range of valid values for
a join variable of a subject-object join is 1 . . . |SO|. Therefore, the search space can
be limited to the rows 1 . . . |SO| and columns 1 . . . |SO|. Therefore, cross-joins are
natively supported in K2-triples, which are the basis of the common path expression
queries, traditionally considered in the vertical-partitioning approaches as inefficient
and expensive operations [AMMH07].

Note that due to the vertical-partitioning nature of K2-triples system, pair joins
over predicate variable are not natively supported. However, it is worth noting that
the operations involving predicates as join variables are not frequent in real contexts.

This section is structured as follows. First, a classification of the different pair-
joins supported in K2-triples is given. Then, the join strategies that are implemented
are discussed. Finally, the convenience of applying the strategies for each kind of
join is analysed in the last section.
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Figure 8.10

8.5.1 Join classification

Figure 8.10 shows the different kinds of pair joins classified by two criteria: the
number of bounded/unbounded variables (columns of the table) and the number
of bounded/unbounded predicates (rows of the table). This figure shows the join
pattern in its subject-object form representing each join class, but for each pattern,
symmetrical subject-subject and object-object joins are included in the same class.
Join variable is denoted as ?X.

Therefore, the joins can be classified according to the specified values for the
predicates in three rows:

• Row with no variable predicates: it involves the classes A, B and C representing
join patterns where a predicate value is specified in both patterns of the join.

• Row with one variable predicate: it includes the classes D,E and H, where
one pattern of the pair join has unbounded predicate and the other pattern
asks for an specific predicate value.

• Row with two variable predicates: it includes the classes G and F , where both
patterns have unbounded predicates.
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Each one of these rows determines the number of K2-trees involved in the query.
First row is a join between regions included in two K2-trees (one per pattern). In
the second row, a specific K2-tree is joined with the |P | K2-trees of the second
pattern (although this number can be reduced in some cases using the indexes SP
and OP ). Finally, the third row is a join of |P | K2-trees in both sides of the join
(again, it can be reduced using additional indexes).

Columns divide the joins according to the subject and object values that are not
the join variable. They determine the query space for the K2-trees involved in the
query:

• Column with bounded subject/object values (classes A, D and G). It reduces
the query space to rows or columns for each involved K2-triple.

• Column with one unbounded subject/object (classes B, E and H). It involves
full K2-trees in one side of the join and rows or columns in the other pattern
of the join.

• Column with two unbounded subject/object (classes C and F ). Full K2-trees
are explored in both sides of the join.

Two additional comments can be done about the join classification explained
above. First, in the case of the class E, which contain one unbounded predicate
and one unbounded subject/object, two configurations are possible, E.1 where
the predicate and the subject/object variable is in the same side, and E.2, where
each pattern contains one unbounded variable. Finally, the figure does not include
the theoretical class I, (?, ?, ?X) ./ (?X, ?, ?) where all the non-join variables are
unbounded, which is clearly impractical and therefore is not studied.

8.5.2 Join algorithms

Join algorithms have been widely studied in the relational database world [RG00] and
they have been also studied from a perspective of semantic Web databases [Gro11].
Inspired in this experience, we design three different join strategies for K2-triples:

• Chain evaluation This algorithm follows the philosophy of the traditional
index join. In a first step, the first pattern of the join is solved (considering the
join variable as a classical unbounded variable). Then, for each different value
for the join variable obtained as result, the second pattern is inflated with
this join variable and it is executed as a simple triple pattern. Therefore, the
execution of a join in a chain evaluation strategy consists of executing a simple
pattern, obtaining the different values for the join variable (it can also need
an additional ordering of the resulting triples, depending on the query) and a



198 Chapter 8. Representing RDF graphs with the K2-tree: K2-Triples

Figure 8.11: Classification of the different pair joins
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simple triple pattern for each different value for the join variable. Figure 8.11
shows an example of chain evaluation for the join query (8, 5, ?X) ./ (?X, 2, ?).
First, the left pattern is executed as a row operation in the predicate 5. Then,
for each different object obtained (in this case, the object 5), the second pattern
is completed and executed (in that case, the (4,2,?) query). In this example,
the final result set is composed by only one element {(8, 5, 4)(4, 2, 3)}.

• Independent evaluation This algorithm is based on the merge join concept.
It consists in executing individually the two simple patterns and the results
are joined by its join variable. Again, depending on the query, an additional
ordering of the results for each pattern can be necessary to the execution of
the posterior merge. Figure 8.11 (middle) shows how the query of the previous
example (8, 5, ?X) ./ (?X, 2, ?) is executed with an independent evaluation
philosophy. A row operation is executed for the left pattern and a range
operation is executed for (?,2,?). The results of each query are ordered by the
join variable and then are joined in order to obtain the final result set.

• Interactive evaluation This algorithm is strongly inspired on the Sideways
Information Passing (SIP) mechanism proposed by Neumann and Weikum
[NW09], where information is passed between the operands involved in the
query to provide a mutual feedback. In interactive evaluation, the K2-trees
involved in both patterns of the join are executed progressively by levels.
As usual, K2-trees involved in a query are navigated top-down selecting the
explored branches depending on the specified values in the query. But, when
the first levels of all the trees are executed, we check what branches remain
active, in order to prune such branches that can not take part of the final result
because the values for the join variable that they range were eliminated from
the other pattern of the query. That is, all the sub-interval of identifiers which
are pruned in one pattern of the join will not continue being explored in the
second pattern. This checking is performed after the execution of each level,
providing additional information to prune more branches of the tree. Figure
8.11 shows an example of the process step by step. At the first level of the
tree, sub matrices of size 4x4 are explored. Two ranges for the join variable
are defined: 1− 4 and 5− 8. Note that the join is a subject-object join, so the
join variable is located in the columns of Tl and in the rows of Tr. Tl is a row
operation, so only two submatrices are explored. However, Tr has unbounded
object, so the four submatrices are checked. When the first level of the tree is
explored, we observe that the range of values 5 − 8 for the join variable, Tl

has not contain any result. Therefore, although the bottom-left matrix in Tr

contain results, it will not be explored because it belongs to a invalid range
of values for Tl (5 − 8). Tl contains valid values for the range 1 − 4, so the
submatrices of Tr with one values continues in that range its execution (in
this case, the top-left matrix). The second level of the tree manages smaller
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submatrices, so the ranges 1 − 2 and 3 − 4 are inspected. In the case of Tl,
only the second interval is represented by a one value, so the submatrices of
Tr located in that rows (that is, the top submatrices) are discarded. The next
step only explores the active submatrices for the region of values 3− 4. Final
result is obtained for that join variables with cells in both patterns (in that
case, (8, 5, 4)(4, 2, 3) is the only result).

8.5.3 Join implementation

In this section we detail how the different join classes can be implemented using
the join strategies explained in the previous section. We will refer to Tr and Tl

as the first and second patterns of the join. In general, the three strategies can
be applied in all the join classes, although in some cases some of them will be
impractical. The best strategy in terms of temporal efficiency but also in spatial
efficiency (intermediate results that need to be generated for performing the query)
depends on the join class, but it also depends on the features of the dataset. However,
as a general heuristic, chain evaluation usually performs better than the independent
evaluation when the query space of one of the triple patterns is smaller than the
corresponding to the other one. Interactive evaluation usually is a good choice but,
for joins with a great query space (that is, with many unbounded variables), it can
produce an spatial overflow due to the produced intermediate results. Note that
the indexes SP and OP are used in the three strategies whenever the predicate
is variable and the independent subject/object is specified. Next, details about
the possible implementations in each join class are given. We explain them using
the subject-object class. However, the implementation is completely analogous for
subject-subject and object-object joins.

8.5.3.0.1 Joins with no variable predicates These first joins specify the
predicate values, so indexes SP and OP are not need and each pattern Tl and Tr

involves one K2-tree. They are located in the first row of the Figure 8.11. Interactive
evaluation works over two K2-trees, pruning branches when no results are obtained
for one of the trees in a sub-interval of values. Next, we describe how the chain and
independent approaches are implemented:

• Join A (S, P1, ?X) ./ (?X,P2, O) It is the simplest pattern, where all the
values are provided (except the join variable). Independent evaluation involves
two row/column operations and a merge of the results, while chain evaluation
first executes a row/column operation and then a cell operation is executed for
each result of Tl. Independent evaluation can perform better when the rows
involved in the operation contain many ones.
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• Join B (?, P1, ?X)(?X,P2, O) contains an unbounded variable in Tl. Chain
evaluation starts by Tr, executing a column operation. Then, for each result,
a column operation is performed over P1. Independent evaluation involves a
range operation for Tl and a column operation for Tr. After that the results
of both sides are merged by the join variable. The column operation already
provides the results ordered by the join variable. However, the results for Tl

are ordered in z − order, so a previous ordering by the join variable has to
been performed to prepare the result data to the merge operation.

• Join C (?, P1, ?X)(?X,P2, ?O). Chain evaluation starts by performing a
range query operation, which can produce several results for each different
join variable value. Then, an ordering of the results is performed to extract
the different values to fill and execute Tr as a row operation. Independent
evaluation in this case execute two range operations, order the results and
performs the merge join over the ordered results.

8.5.3.0.2 Joins with one variable predicate Next class joins contain one of
the patterns with the unbounded predicate. As a consequence, that pattern involves
several K2-trees which number, in most cases, can be reduced by using the index
SP or OP . In the case of the interactive evaluation, several K2-trees are involved
in the operation, but the process works in the same way: a sub-interval for a join
variable is discarded when any of the K2-tree of one of the patterns contain results.
Chain and independent strategies can be also applied:

• Join D (S, P1, ?)(?, ?, O) Chain evaluation starts by solving the Tl pattern as
a row operation. Then, each result produces |P | cell operations in Tr, which
can be limited using the indexes SP and OP . Independent evaluation consists
in a row operation for Tl and |P | column operations in Tr (which can be also
reduced using index OP ). Tr produces many lists of the results with the
independent evaluation (one for each checked predicate), so a previous ordering
of the lists is need to the merge join operation.

• Join E.1 (?, P1, ?)(?X, ?, O) Chain operation starts with Tr, performing several
column operations whose results are ordered by adaptive sorting and next, each
different result produces a column operation in the second pattern. Independent
evaluation intersects a range operation with the multiple column operations,
where additional orderings are need, as usual, previously to the merge join.

• Join E.2 (?, ?, ?)(?X,P,O) Chain evaluation starts with Tr (column opera-
tion), where each result produces |P | column operations for Tl. In that case,
independent operation is impractical because Tl is all unbounded, implying
the retrieval of the full database.
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• Join F (?, P, ?X)(?X, ?, ?) Again, independent evaluation is not possible,
while chain evaluation starts with Tl, implemented as a range operation, whose
results have to be ordered by the join variable. Each different value for the
join variable produces |P | row operations in Tl (they can be reduced using the
information provided by the index SP ).

8.5.3.0.3 Joins with two variable predicates Both sides of the join have the
predicates unbounded, so several K2-tree are involved in each pattern. This means
that interactive evaluation manages several K2-trees for both patterns. Chain and
independent evaluation can proceed as follows:

• Join G (S, ?, ?X)(?X, ?, O) Independent evaluation consists in performing
|P | row/column operations for each pattern (reduced when indexes SP and
OP are used). Resulting lists for each pattern are ordered and then a merge
join is performed over the two ordered lists of results. Chain evaluation is
implemented starting with Tr, composed by |P | column operations. When the
resulting lists are ordered, each different result is used to fill Tl, performing
several cell operations to obtain the final result.

• Join H (?, ?, ?X)(?X, ?, O) Independent evaluation is obviously impractical
for that case, while chain evaluation starts with Tr, performing several column
operations in Tl for each different value for the join variable in Tr.

Table 8.1 summarizes the described implementations for each class of join. The
first and second column described each join class. The third column shows the
order of pattern execution following the chain evaluation strategy, denoting with
a ∗ when the results of a pattern have to be ordered. The next column is checked
when independent evaluation is a practical solution of that join class (denoting again
with a ∗ the additional orderings). Last columns show the initial region of space
that is explored in the interactive evaluation (for pattern Tl and Tr respectively.
Finally, note that although the explanation of the join implementation is provided for
subject-object joins, the subject-subject and the object-object joins are implemented
exactly in the same way.

8.6 Experimentation

In this section we analyze the performance of K2-triples measuring this efficiency in
real RDF datasets that represent very different areas of knowledge. We measure the
spatial requirements to store those real datasets and the temporal efficiency to query
them through simple triple patterns and joins between pairs of triples. We compare
our results against some relevant implementations proposed in the State of the Art.



8.6. Experimentation 203

Table 8.1: Summary of joins resolution in k2-triples (∗ means that removing
duplicates is required for join resolution)

Join
Example Chain

Inde- Interactive
Class pendent Tl Tr

A (S,P1,?X)(?X,P2,O)
Tl → Tr √

Direct Reverse
Tr → Tl

B (?S,P1,?X)(?X,P2,O) Tr → Tl
√∗ Range Reverse

C (?S,P1,?X)(?X,P2,?O)
T∗l → Tr √∗ Range Range
T∗r → Tl

D (S,P1,?X)(?X,?P2,O) Tl → Tr
√∗ Direct Reverse (×preds)

E.1 (?S,P1,?X)(?X,?P2,O)
T∗l → Tr √∗ Range Reverse (×preds)
T∗r → Tl

E.2 (?S,?P1,?X)(?X,P2,O) Tr → Tl Range (×preds) Reverse

F (?S,P1,?X)(?X,?P2,?O) T∗l →Tr Range Range (×preds)

G (S,?P1,?X)(?X,?P2,O)
T∗l → Tr √∗ Direct (×preds) Reverse (×preds)
T∗r → Tl

H (?S,?P1,?X)(?X,?P2,O) T∗r → Tl Range (×preds) Reverse (×preds)

8.6.1 Experimental Setup

We run all the experiments on an AMD-PhenomTM-II X4 955@3.2 GHz, quad-core
(4 cores - 4 siblings: 1 thread per core), 8GB DDR2@800MHz, running Ubuntu
9.10. All the implementations were developed in C and we compile them using gcc
(version 4.4.1) parametrized with the optimization −o9. We show the results of our
proposal for the two different alternatives described in previous sections:

• K2-triples, our vertical partitioning approach that uses one K2-tree structure
for each different predicate included in the dataset.

• K2-triples+ that, starting from the same vertical partitioning strategy, it
includes additional indexes SP and OP used to improve the temporal efficiency
of such queries with unbounded predicates.

8.6.1.0.4 Datasets We choose a collection of datasets from different domains
with the purpose of testing our proposal in RDF data following different distributions.
We are interested on studying the scalability of our solution, so our experimental
framework includes datasets from different sizes, from 1 million of triples to 232
millions. Our proposal consists in a vertical partitioning of the data, so a high
number of predicates could be one of the most important issues in our proposals,
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Table 8.2: Statistical dataset description

Dataset Size (MB) # Triples # Predicates # Subjects # Objects

jamendo 144.18 1,049,639 28 335,926 440,604

dblp 7,580.99 46,597,620 27 2,840,639 19,639,731

geonames 12,347.70 112,235,492 26 8,147,136 41,111,569

dbpedia 33,912.71 232,542,405 39,672 18,425,128 65,200,769

specially in K2-triples version (which does not include the indexes SP and OP).
Therefore, although we study datasets with a reduced number of predicates (over
20 predicates), we will pay special attention to such cases with a large number of
predicates (almost 40,000), which allow us to analyze the impact of the improvement
achieved with the indexes SP and OP. We choose the following datasets:

• jamendo2 is a large repository of Creative Commons licensed music, that
includes information about artists and their records, tracks and performances.
It is a dataset from a very specific domain, so the triples are described by
using very few different predicates.

• dblp3 provides information on Computer Science journals and proceedings and
it was also used as use case for GraphGen on Chapter 3.

• geonames4 is a geographical database covering all countries and containing
a large number of places, with predicates that describe characteristics of the
places like its location or population as well as relationships between the places
(like a belonging relation). It is a dataset very used to enhance the information
of datasets from very different domains, which connect with them by using
geonames resources as objects in such triples that specify a place.

• dbpedia5 is the semantic evolution of Wikipedia, an encyclopedic dataset.
dbpedia is considered the “nucleus for a Web of Data” [ABK+07] and it is
linked from many different datasets. It contains a large number of predicates
due to the fact that it includes very general knowledge, using very different
descriptors to represent all of this information.

Table 8.2 shows the main information of these datasets. We processed all the
datasets as a previous step to transform them to the K2-triples representation.

2http://dbtune.org/jamendo/
3http://dblp.l3s.de/dblp++.php
4http://download.geonames.org/all-geonames-rdf.zip
5http://wiki.dbpedia.org/Downloads351



8.6. Experimentation 205

First, we represent all the datasets in N-Triples [GB04] format, where each
triple is represented in a different line. We use Any23 tool6 to transform the
datasets published in a different format to N-triples. Finally, the dataset file is
lexicographically sorted and duplicated triples are discarded. Table 8.2 shows the
size in N-Triples and the number of triples, different predicates, subjects and objects
of each dataset.

We include datasets of different sizes in this evaluation. We include jamendo
in order to observe the behavior of K2-triples in a small dataset. Additionally, it
allow us to compare it with other solutions indexing uncompressed data in memory.
On the other hand, we choose large datasets to show the scalability of the proposal,
managing from 46 Million triples in dblp up to more than 232 Million triples in
dbpedia.

K2-triples represents subjects and objects as rows and columns of the adjacency
matrices. The number of different subjects and objects is shown in the last columns
of Table 8.2. The number of different subjects is significantly lower than the number
of objects. It is due to the fact that subjects describe the resources in RDF (usually
appearing in multiple triples) whereas objects represent the values of the descriptions,
which are used in many cases in an unique triple for all the dataset (e.g., a concrete
timestamp, a textual description, an ID field, etc.).

Table 8.2 also shows that the number of predicates is usually low, including three
datasets with 26, 27 and 28 different predicates. The only exception is the dbpedia
dataset, an extreme case in which the number of predicates grows to the order of
thousands due to the variability of the represented information. It allows us to
analyze the performance of K2-triples when the number of predicates increases. This
is the worst case for queries with unbounded predicate, which is the main weakness
of the vertical partitioning approaches.

8.6.1.0.5 RDF Stores We compare our results with three representative
techniques in the State of the Art.

• A vertical partitioning solution following the vertical partitioning approach
of [AMMH07] which was described in Section 8.2.1.3. We implement it over
MonetDB (MonetDB Database Server v1.6, Jul2012-SP2) because it achieves
better performance than the original C-Store based solution [SGK+08].

• Hexastore7, a memory-based system that was described in Section 8.2.2

6http://any23.apache.org/ (version: any23-0.6.1)
7Hexastore has been kindly provided by its authors.
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• RDF3X8, a highly-efficient store, described in Section 8.2.2 that was recently
reported as the fastest RDF store [HAR11a].

All these techniques had been tested following the configurations and parameter-
ization provided in their original sources.

8.6.1.0.6 Queries We design experiments focused on demonstrating the effi-
ciency of all RDF stores included in this experimental evaluation. We run triple
pattern and join experiments in order to predict the core performance for basic
graph pattern solution in SPARQL.

Our experiment set is composed by randomly generated queries 9 that covers all
the possible kind of triple patterns and pair joins. For each dataset, we consider 500
random triple patterns of each type. Note that in all datasets, except for dbpedia,
the triple pattern (?S,P,?O) is limited by the number of different predicates.

Join tests are generated by following the classification described in Figure 8.10.
For each different kind of join we consider Subject-Object (SO), Subject-Subject (SS),
and Object-Object (OO) joins. We generate 500 random queries of each join and
perform a big-small classification according to the number of intermediate results:
for each join we take the product of the number of results for the first triple pattern
and the results of the second triple pattern in the join. According to this value we
classify the queries, randomly choosing 25 queries with a number of intermediate
results over the mean (joins big) and other 25 queries with fewer results than the
mean (joins small).

We design two evaluation scenarios to analyze how I/O transactions penalize
on-disk RDF stores included in our setup. The warm evaluation is designed to cause
that the query results be available in main memory before the query execution. It
was implemented taking the mean solution time of six consecutive repetitions of each
query. On the other hand, the cold evaluation simulates a real scenario in which
queries are independently performed.

8.6.2 Compression Results

In this section we compare the results achieved by K2-triples against the other
approaches. This comparison involves on-disk based representations, MonetDB and
RDF3X, and memory-based ones, Hexastore and our twoK2-triples based approaches.
In these cases, we consider the space required for operating the representations in
main memory. Table 8.3 summarizes the results for all stores and all datasets.

8http://code.google.com/p/rdf3x/
9The full testbed is available at http://dataweb.infor.uva.es/queries-k2triples.tgz
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Table 8.3: Space requirements (all sizes are expressed in MB)

On-disk Memory-based

MonetDB RDF-3X Hexastore K2-triples K2-triples+

jamendo 8.76 37.73 1,371.25 0.74 1.28

dblp 358.44 1,643.31 × 82.48 99.24

geonames 859.66 3,584.80 × 152.20 188.63

dbpedia 1,811.74 9,757.58 × 931.44 1178.38

We observe that MonetDB is more compressed than RDF3X and Hexastore.
This is an expected result according to the compressibility of column-oriented
representations [AMF06]. MonetDB uses up to 5.4 times less space than RDF3X.
On the other hand, Hexastore reports the worst results for jamendo and cannot
index the other datasets in our configuration.

Nevertheless, K2-triples requires much less space on all the datasets, taking
advantage of its compact data structures. This result can be analyzed from three
complementary perspectives:

• K2-triples achieves better results than column-oriented compression for
vertically partitioned representations. The comparison between our approach
and MonetDB shows that K2-triples requires several times less space than
the column-oriented database. The space used by MonetDB for the largest
datasets is 2–5.5 times larger than K2-triples and 1.5–4.5 times larger than
K2-triples+.

• K2-triples allows many more triples to be managed in main memory. If we
divide the number of triples in jamendo (1,049,644) by the space required for
their memory-based representation in Hexastore (1,371.25 MB), we obtain that
it represents roughly 765 triples/MB. This same analysis, in our approaches,
reports that K2-triples manages almost 1.5 million triples/MB, and K2-
triples+ represents more than 800,000 triples/MB. Although this rate strongly
depends on the dataset, its lowest values (reported for dbpedia) are ≈ 200,000
triples/MB. This means that K2-triples increases by more than two orders of
magnitude the number of triples that can be managed in main memory on
Hexastore because of its compression ability.

• K2-triples provides full RDF indexing in a space significantly smaller than that
used for systems based on sextuple indexing. This difference also depends on
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the dataset; for instance, RDF3X uses roughly 8–10 times the space required
by our techniques for representing dbpedia.

K2-triples achieves compression ratios between 10 and 40 bits per triple (bpt)
in the datasets analyzed in this experiment (excluding the tiny dataset jamendo,
where a ratio of 5 bpt is obtained). However, meaningful differences are observed
depending on the features of the dataset. In dbpedia we need almost 34 bpt, as
opposed to the 12–15 bpt in geonames and dblp. The main reason for this difference
seems to be the high number of predicates used in dbpedia (39,672) in contrast
to the other datasets. Many of these K2-trees are very sparse (about 57% of the
predicates contain less than 10 edges, and roughly 81% less than 100 edges). These
K2-trees get worse the overall compression, due to the overhead of storing a full
K2-tree for only a few edges.

We can also see in the table the additional space required by the indexes SP and
OP (K2-triples+) over the original K2-triples representation. The extra cost ranges
from ≈ 20% for dblp to ≈ 26.5% for dbpedia. The only exception is the jamendo
dataset, where indexes SP and OP almost double the original space. Therefore, the
use of the additional SP and OP indexes produces an acceptable space overhead
considering that our representation remains the most compressed one even adding
these new indexes. The spatial cost of the indexes SP and OP depends on two
factors. First of all, it depends on the different number of subjects and objects
of the dataset. An individual entry representing its corresponding predicate list
is maintained for each subject and object, so the cost of storing the indexes SP
and OP is expected to be high for datasets where each element appears in a few
triples. Another factor is the predicate distribution. A dataset with many different
predicates will probably have a number of different predicate lists high. As a result,
the size of the predicate list vocabulary is incremented, resulting in a higher space
overhead. This factor can be observed in the indexes SP and OP for dbpedia, where
the cost per element (subject or object) is about 24 bits, in contrast to the other
datasets where the cost is about 6 bits per element. However, we have to take into
account that the SP and OP indexes are specially useful for such datasets with a
large number of predicates.

8.6.3 Query Performance

This section evaluates the query time performance, showing the results for triple
patterns and for the pair joins.

8.6.3.0.7 Triple patterns These experiments measure the capabilities of all
stores for RDF retrieval through triple pattern solution. These are the atomic
SPARQL queries, and are massively used in practice [AFMP11].
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Table 8.4: Solution time (in milliseconds) for the patten (?,P,?) on dbpedia
(warm scenario)

K2-triples+ RDF3X MonetDB

small 0.09 2.53 3.77

big 24.57 14.88 6.14

Figure 8.12 compares these times for jamendo (top) and dbpedia (bottom) in
the warm scenario, which is the most favorable for on-disk systems. It shows the
average query times for all the possible triple patterns 10 in miliseconds.

The comparison for jamendo includes the system Hexastore. As can be seen,
this is never the best choice and it only outperforms MonetDB in patterns with
unbounded predicate. According to these results, we discard it because of its lack
competitivity in the current setup. K2-triples+ is the most efficient choice, and only
MonetDB slightly outperforms it for (?,P,?) in all collections but dbpedia.

Figures from 8.13 to 8.16 summarize the complete triple pattern experiments
for all the datasets in our setup. We provide the figures for cold (left column) and
warm (right column) scenarios.

In general, our approach reports the best overall performance for RDF retrieval.
This can be analyzed in more detail:

• Our approach overcomes the main vertical partitioning drawback and provides
high performance for solving patterns with unbounded predicate. This is studied
on dbpedia because in these queries scalability is more seriously compromised
due to the large number of predicates. K2-triples+ obtains the best results,
although RDF3X is close for (S,?,?). As expected, a larger improvement is
achieved by K2-triples+ with respect to the original K2-triples (between 1 and
3 orders of magnitude).

• MonetDB excels above the other systems in solving the pattern (?,P,?). The
only exception is in dbpedia, due to the fact that in dbpedia some predicates
are overused and the remaining ones are scarcely used. Thus, the performance
of the query (?, P, ?) depends on the predicate evaluated. Table 8.4 summarizes
solution times for predicates returning small and big result sets. As can be seen,
K2-triples+ is better for less used predicates, whereas MonetDB is better when

10The pattern (?,?,?), which returns all triples in the dataset, is excluded because it is rarely
used in practice.
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Figure 8.12: Solution time (in milliseconds) for triple patterns in jamendo
and dbpedia (warm scenario).
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more results are retrieved. Thus, the optimized column-oriented representation
provides the fastest solution when the predicate is used in numerous triples,
whereas K2-triples+ outperforms it for more restrictive predicates.

Finally, it is worth noting that K2-triples+ obtains a competitive advantage over
the original K2-triples for datasets involving many predicates. For instance, in the
case of dbpedia (containing a high number of predicates), the performance of the
query pattern (S,?,?) is improved by 2 orders of magnitude. This difference owes
to the fact that, in K2-triples, 39, 672 row queries have to be performed in order
to answer that pattern. However, considering that the average number of different
predicates describing a subject (that is, its predicate list size) is about 6 in this
dataset, the number of K2-trees that have to be queried is significantly reduced in
K2-triples+. However, in the other datasets, the maximum number of predicates
that are checked in K2-triples is already less than 30. As a result, the improvement
in those datasets is lower and both techniques achieve comparable performance, yet
K2-triples uses slightly less space. Nevertheless, we will use K2-triples+ in all the
remaining experiments.

8.6.3.0.8 Joins After studying triple pattern performance, the next stage focuses
on join solution. We analyze the results obtained for the three evaluation algorithms
we implemented: chain, independent and interactive, comparing them with respect
to RDF3X and MonetDB. All these experiments are performed in the warm scenario
in order to avoid penalizing on-disk solutions.

Figures 8.17 and 8.18 summarize join results for dbpedia. Figure 8.17 includes
the joins from A to E2, while Figure 8.18 shows the joins F,G and H, according
to the classification described in Figure 8.10. Each plot comprises three subsets of
joins: Subject-Object (SO), Subject-Subject (SS), and Object-Object (OO). The left
group considers joins generating a small amount of intermediate results, whereas
the right group gives equivalent results for joins involving big intermediate result
sets. Solution times are reported in milliseconds. Times over 107 milliseconds are
discarded in all the experiments.

• K2-triples+ is the fastest technique for solving joins in which the value of the
two not joined nodes (subjects and objects) are provided (classes A, D and G).
This is mainly because all these classes are solved using, exclusively, direct and
reverse neighbors queries, which are very efficient in practice. Both chain and
interactive evaluation algorithms are the bost choices for the simplest join, the
Join A. They report, at least, one order of magnitude of improvement with
respect to RDF3X and MonetDB. Chain evaluation is slightly faster in Join
D, improving upon RDF3X by more than one order of magnitude (except for
OO big). Note that, in this case, MonetDB is no longer competitive since
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Figure 8.13: Solution time (in milliseconds) for triple patterns in jamendo.
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Figure 8.14: Solution time (in milliseconds) for triple patterns in dblp.
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Figure 8.15: Solution time (in milliseconds) for triple patterns in geonames.
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Figure 8.16: Solution time (in milliseconds) for triple patterns in dbpedia.
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Figure 8.17: Solution time (in milliseconds) for joins A-E2 in dbpedia
(warm scenario).
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Figure 8.18: Solution time (in milliseconds) for joins F-H in dbpedia (warm
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it pays the penalty of solving a pattern with unbounded predicate. Finally,
interactive is the fastest choice for Join G, although chain overcomes it for OO
joins. While K2-triples+ is always faster than RDF3X in all cases, it is worth
noting that differences are reduced due to the need of solving two patterns
with unbounded predicate. The performance of the vertical partitioning in
MonetDB collapses (no times are drawn in this class).

• The joins B, E1 and E2 have a not joined node (subject or object) unbounded.
K2-triples+ and RDF3X share the lead in these experiments, whereas MonetDB
remains competitive only in Join B, although it is never the best choice. For
Join B and E1 K2-triples+ is the best choice for joins generating small
intermediate result sets: chain is fastest for OO, and interactive for SO and SS.
RDF3X overcomes K2-triples+ when big intermediate result sets are obtained,
although our chain evaluation obtains the best performance for OO joins. On
the other hand, Join E2 and H give similar conclusions. RDF3X always
achieves the best times, except for OO joins, in which chain evaluation is
the most efficient choice again. In this case, interactive evaluation is less
competitive because it performs multiple range queries.

• Finally, joins C and F represent queries with two unbounded nodes. In Join
C, RDF3X is the best choice for SO and OO joins, whereas MonetDB wins
for SS. Note that our approach remains competitive for SS and SO, but its
performance is significantly degraded for OO. In Join F, our chain evaluation
competes with RDF3X for the best times, overcoming it for SS small. However,
this turns out to be the most costly query; note that no technique finishes on
OO joins involving big intermediate results.

Summarizing, K2-triples+ excels when triple patterns provide values for the
non-joined nodes, an it is clearly scalable when predicates are provided as variables.
Thus, in general terms, a query optimizer using K2-triples+ must favor firstly joins
A, D or G; then joins B, E, and H; and finally joins C and F. In any case, joins
involving small intermediate result sets are always preferable over those generating
big intermediate results.

These findings also apply, in general form, for the remaining datasets in our
setup. We show the join performance figures for the remaining datasets in our
setup: jamendo in Figures 8.19 and Figure 8.20 (that discards all times over 100,000
milliseconds), dblp in Figure 8.21 and Figure 8.22 (discarding all times over 106

milliseconds) and geonames in Figures 8.23 and Figure 8.24 (that discards all times
over 106 milliseconds). All these numbers are obtained in warm state because
solution times for RDF3X and MonetDB are less competitive in cold scenarios.

It is worth noting that K2-triples+ overcomes the other techniques for the
smallest dataset (jamendo), dominating the comparison in most cases, and coming
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very close to RDF3X in Joins C and F. Another interesting aspect is that MonetDB
is the one profiting most from the reduced number of predicates; it reports the best
performance in some particular cases.

8.7 Summary

In this chapter we presented a new indexing technique for RDF datasets, that we
called K2-triples. It follows a vertical partitioning approach, a very common strategy
used in other RDF stores in the State of the Art. We represent the triples of each
predicate with a K2-tree (a data structure that stores binary relationships in a very
compact way). We also present some additional indexes to improve the efficiency of
the queries with unbounded predicate, which are the main weakness of the vertical
partitioning approaches.

We first review the State of the Art in RDF stores. Then, we presented our
structureK2-triples and the additional index SP and OP. We implemented algorithms
to solve simple triple patterns and pair joins in an efficient way. We experimentally
evaluated the spatial and temporal results of our system compared with relevant
RDF stores in the State of the Art. The results show that our proposal is the best
compressed approach and it obtains very competitive results in triple and join query
operations.
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Figure 8.19: Solution time (in milliseconds) for joins A-E2 in jamendo
(warm scenario).
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Figure 8.20: Solution time (in milliseconds) for joins F-H in jamendo (warm
scenario).



8.7. Summary 219

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join A (warm scenario)

chain

independent

interactive

RDF3X

MonetDB

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join B (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join C (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join D (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join E1 (warm scenario)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

SO SS OO SO SS OO

T
im

e 
(m

il
is

ec
o
n
d
s)

  ============ Small ============    ============= Big =============

Querying time for Join E2 (warm scenario)

Figure 8.21: Solution time (in milliseconds) for joins A-E2 in dblp (warm
scenario).
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Figure 8.22: Solution time (in milliseconds) for joins in dblp (warm
scenario).
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Figure 8.23: Solution time (in milliseconds) for joins A-E2 in geonames
(warm scenario).
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Figure 8.24: Solution time (in milliseconds) for joins F-H in geonames
(warm scenario).



Chapter 9

Interleaved K2-tree

In this chapter we propose a compact structure to store and query ternary
relationships. This new structure is an evolution of the K2-tree that provides
indexing capabilities over the three dimensions. It is specially designed to represent
and manage data where the three dimensions are not equally sized, being one of
them smaller (with a lower number of different values) than the others.

Many contexts can be modelled as a ternary relation. For instance, the
representation of the temporal evolution of a simple graph can be seen as a ternary
relation N ./ N ./ T , where a triple (ni, nj , tk) represents that an edge starting in
the node ni and pointing to the node nj exists in the temporal instant tk. Raster
data that represents a matrix where each cell (x, y) has associated a value, can
also be modelled as a ternary relation. They are commonly used in Geographic
Information Systems to store different attributes of a region, like the elevation of the
land or the atmospheric pressure. Therefore, a raster is a ternary relation X×Y ×Z
where dimensions X and Y are the coordinates of the region and dimension Z
corresponds to the attribute that the raster data describes. The standard RDF
is also a good example of ternary relation, where data is structured in triples
(s, p, o) ∈ Subject ./ Predicate ./ Object representing that the subject s takes value
o for the predicate p.

Previous examples are ternary relations that present an asymmetric distribution
along the spatial domain (X ×Y ×Z) defined by the three dimensions. For instance,
in raster data, each coordinate (x, y) is only related to a single value in the Z
dimension (by definition). However, given an x ∈ X and z ∈ Z values, many y ∈ Y
can be related to those two values. In addition to that, due to the different nature
of the dimensions taking part in the ternary relation, their size (number of different
values) are seemly different. In Raster Data, the number of different values that
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the attribute describing the region can take (Z) is expected to be smaller than the
coordinates of the space (X and Y dimensions). Furthermore, the access pattern to
the data of a ternary relation will be different in the three dimensions. For instance,
queries asking for values inside a squared subregion of the space are more common
than queries asking for which y ∈ Y values take the attribute z in the row x.

The solution proposed in this chapter is specially designed to store such
asymmetric ternary relations, where one of the dimensions has a small number
of different values.

We designed this compact structure to store RDF data sets, which usually contain
a reduced number of predicates regarding to the subjects and the objects that the
collection describes. However, the design of the structure and the generic navigation
over the three dimensions of the relation makes this structure a useful tool in other
applications where data can be also modelled as an asymmetric ternary relation
with one of the dimensions smaller than the other two.

Several approaches were followed to represent ternary relations in the State of
the Art. Most of them are focused on solving the characteristics of a specific domain.
That is the case of RDF graphs, which we reviewed in Section 8.2. Many RDF stores
follow a vertical partitioning approach, like SW-store described in Section 8.2.1.3.
In that kind of approaches, the problem of storing a ternary relation is reduced to
storing several binary relations, one for each value of the partitioning variable.

In this chapter we propose the Interleaved K2-tree, a compact structure that,
starting from a vertical partitioning of the data, considers the representation of
each binary relation in a single K2-tree. However, instead of storing those K2-trees
independently, it gathers the three dimensions in a single tree which improves the
indexation of the partitioning variable, keeping the indexation over the other two
dimensions of the data.

9.1 Our proposal

Interleaved K2-tree (IK2-tree) represents a ternary relation defined as a set of triples
{(xi, yj , zk)} ⊆ X × Y × Z. This structure is designed for ternary relations where
one of the dimensions is smaller than the other two, understanding the size of a
dimension as the number of different values that a triple can take for that dimension
(also named variable).

Considering Y is the smaller variable, the Interleaved K2-tree starts from the
representation of the ternary relation in |Y | binary relations, one for each different
value yj ∈ Y . This is the same vertical partitioning that was performed forK2-triples,
explained in Chapter 8. Rows of that adjacency matrix will represent the values of
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Figure 9.1: Vertical partitioning over a labelled multigraph

the variable X, while columns represent the values of the variable Z. A one in a
cell (xi, zk) of the adjacency matrix yj implies the existence of the triple (xi, yj , zk).
Figure 9.1 (top) shows an example of weighted multi-graph, which produces three
different binary relationships, one for each different value of Y .

Each adjacency matrix could be stored through an independent K2-tree in order
to compose a complete system containing the full ternary relation. However, instead
of building those multiple K2-trees, we propose a new structure. It is an evolution
of the K2-tree that, also following the vertical partitioning philosophy, divides the
ternary relation in several binary relations. However, it gathers all of them in a
unique tree, providing indexing capabilities in the three dimensions.

9.1.1 Data structure

Interleaved K2-tree starts from the |Y | adjacency matrices that represent a ternary
relation. However, instead of storing each adjacency matrix in a different K2-tree,
this structure will gather the full ternary relationship in just one tree. Interleaved
K2-tree will be a K2-ary tree, where each node of this new tree will contain one bit
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Figure 9.2: A ternary relation represented with the Interleaved K2-tree

for each different value of the partitioning variable.

The K2 nodes of the first level contain |Y | bits, one per each different value
yj ∈ Y . Inside a node, the i-th bit will be a 1 if the submatrix which represents that
node has at least a 1 for the yi value. Otherwise, this position will contain a 0.

Each node ni will have K2 children nodes, and the number of bits of each children
is given by the number of bits with value 1 of its parent. So, for a node Ni with m
ones, each one of their K2 children nodes contains m bits, one per value yj that has
at least a one in the matrix corresponding to Ni.

Figure 9.2 shows an example of the IK2-tree structure representing the graph
shown in the Figure 4.3. The partitioning variable Y takes three different values, so
three adjacency matrices represent the binary relations that each different value of
variable Y produces. Bottom of the figure shows the IK2-tree structure. A value
K = 2 was chosen for that example, so 4 root nodes appear in the first level of the
tree. Each node is composed by three bits, one per value of Y . For instance, the
first bit of the first root node (N0) contains a 0, meaning the top-left submatrix of
the relation y0 does not contain any one. However, the second bit of N0 is a one
because the top-left submatrix of y1 contains at least a one (actually in the cell
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(2, 2)). The other three root nodes also contain three bits with the same meaning
regarding to the other three submatrices of that division.

It was shown how the first level of the tree is computed. Next, given a node of
this tree, we describe how its children are built. Suppose a root node of size |Y | with
m bits with one value. Their K2 children nodes will be created as a result of the
matrix division, but each children will contain only m bits, that is, the number of
active values of the parent, since the remaining |Y | −m elements are empty matrices
that are not represented in lower levels. If all values of a node are zero, then that
node will not produce any child. Otherwise, the process continues with a recursive
division of the matrix (as in the original K2-tree), building the tree in a top-down
process until the leaves are reached. In that way, any non empty node produces K2

children nodes with as many bits as ones the parent contains. Since the elements in a
node are always ordered by its corresponding value for the variable Y , by performing
a top-down traversal will be easy to know which value of Y is representing each bit
of a node.

Figure 9.2 shows that the children of node N0 contain 2 bits each, since only
the values y1 and y2 are ones in N0. Thus, the first bit of N1 represents the value
y1, which is a zero, showing that this sub-matrix does not contain any value for y1.
However, the second bit is a one, representing the sub-matrix corresponding to y2
contains at least a one in the node, which is in the cell (0, 0). Consequently, each
children of N1 (like N2) only contains one bit for the y2 value. Just as in the original
K2-tree, the coordinates that represent each bit can be inferred by its position in
the topology of the tree (which provides information about X and Z variables).

The resulting tree is stored exactly in the same way as the original K2-tree. The
last level will be stored as a bitmap L and the rest of the levels are stored in a
bitmap T following a level-wise traversal over the tree. An additional structure to
perform rank operations is built over T . As in the K2-tree, we store the tree in two
different bitmaps: rank operation supports is only needed to the intermediate levels,
since rank operation is used to search the children of a node.

The original K2-tree structure has the interesting property that the position
of the first children of a node can be computed directly. Since each one of the
tree produces K2 children, and the elements are stored in the bitmap ordered by
levels, the first child of a node in the position i in the bitmap is in the position
rank1(T, i− 1) ∗K2 of the bitmap T : L.

The IK2-tree also presents this direct access to the children of a node. Although
nodes in IK2-tree have a variable size (depending on the active values in the parent),
the navigation over the tree is quite similar. Observe that a one in a node is still
producing K2 bits in the lower level, although those bits can be not consecutive
(because each bit is placed in a different node and nodes can have several bits). As
a result, given a node, the position of their children in the bitmap can be computed
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through a simple formula. Consider a node starting at position i with m > 0 one bits.
Then, its first child node of size m starts in the position rank1(T, i−1)∗K2 +adjust.
Starting at this position, the next K2 ∗m bits are representing the children of that
node (K2 nodes of size m). Note that the formula is exactly the same as in the
original structure, except for the value adjust = |Y | ∗K2 which is a correction factor
needed as a consequence of having a first level of size |Y | ∗K2 instead of K2 as in
the original structure.

9.1.1.1 Leaves compression with DAC

Original K2-tree structure proposes an interesting improvement to represent last
levels of the tree in a very compact way. An arbitrary number of last levels can
be collapsed and statistically compressed using a submatrix vocabulary, as Section
2.3.4.2 describes.

This improvement also be also applied in the Interleaved K2-tree structure.
Note that in Interleaved K2-tree structure each node has an arbitrary number of
bits and each one of that node produces K2 elements in next level. Therefore,
it is not possible to encode the submatrix vocabulary of complete nodes, since a
node in the third level (starting from the bottom of the tree) collapses a cube of
dimensions K2×K2×m where m is the number of ones of that node. The suitable
way of having a vocabulary of equally-sized submatrices is encoding the K2 ×K2

submatrix that each one of a node would individually produce. In that way, the
considered submatrices are a subregion of an individual adjacency matrix. All of
these submatrices are used to compute a global submatrix vocabulary. They are
represented with DAC.

Note that, taking into account that each individual submatrix corresponds to a
specific value of the variable Y , those submatrices could be encoded using a different
vocabulary for each yi. However, in order to avoid storing |Y | vocabularies, all the
matrices are encoded with the same vocabulary.

9.1.2 Navigation

The previous section describes the internal representation of the IK2-tree structure
through the bitmaps T and L (with rank access to the bitmap T ). Next, the
implementation of the basic navigation operations over this structure is described.

Basic operations are denoted by a triple pattern (x, y, z). We use the same
notation used to describe the simple triple patterns of the K2-triples structure in
Chapter 8. If x ∈ X, a triple will be a result of that pattern only if it takes the
value x for the variable X. On the other hand, if x =?, the pattern does not restrict
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the valid values of X (is unbounded). Then, any value for X is a valid solution for
that query pattern. The same constraints can be specified in Y and Z.

Using this query pattern notation, 9 different query patterns are defined based
on whether a variable is bounded or unbounded. The query pattern groups range
from the query that searches for one triple (xi, yj , zk) to the totally unbounded
query (?, ?, ?) that returns all the triples contained in the dataset. Given the
nature of our structure, the value taken for the partitioning variable Y strongly
determines the pattern resolution. Therefore, two big families of query patterns
will be considered: query patterns with bounded partitioning variable (that is,
queries asking for a specific value of the partitioning variable) and query patterns
with unbounded partitioning variable (searching for triples with any value for the
partitioning variable). The next sections provide implementation details of these
two kinds of operations.

9.1.2.1 Query patterns with bounded partitioning variable

This query pattern family includes queries that specify a fixed value for the
partitioning variable. The query patterns that belong to this group are (xi, yj , zk),
(?, yj , zk), (xi, yj , ?) and (?, yj , ?). First of all, the implementation of the query
(xi, yj , zk) will be illustrated. After that, details about how this algorithm is
extended to the remaining query patterns will be provided.

The pattern (xi, yj , zk) searches for an individual triple of the dataset so, as in
the original K2-tree, a single branch is explored in each level of the tree. In the
corresponding node for each level of the tree, the bit corresponding to the yj value
is checked. If it is a one, the process continues going down the tree. Otherwise, the
operation is finished and no results are returned. In order to know the position that
the bit of the variable yj occupies in each node, additional data has to be managed.
In this way, in the first level of the tree the yj value is in the j position of the node.
In its children, the location of the bit yj depends on the number of ones in the
parent. Suppose that the root contains m bits between the first position and the
position of the element yj (that is, the one of yj is the m one in the parent node).
Then, the m-th position of its children correspond with yj . The operation continues
in the same way traversing down the tree, so in each level a count of the previous
ones to the element yj in the node has to be computed in order to know the position
of yj in the next level.

Figure 9.2 shows the nodes involved to solve the query (x6, y1, z0). In the root,
the node N5 is explored (because it corresponds to (x6, z0)) and the second bit
(corresponding to y1) is checked. It is a one and it is the first one of the node, so in
its children the position for y1 is the first one. The corresponding node for (x6, z0)
is N6 and the first bit is checked. The process continues until the leaves, where
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the only bit of N7 is checked and it is a one, so the triple (x6, y1, z0) exists in the
dataset.

This is the basic mechanism of the query patterns with bounded partitioning
variable. It can be generalized to the other query patterns in this group. The
query pattern (?, yj , zk) searches for the reverse neighbors of zk in the relation
of yj . It is solved similarly to the (xi, yj , zk) pattern. The only modification is
that two branches have to be checked for each explored node with a one in the
value corresponding to yj . This change is due to the X variable (which usually
prunes some of the branches) is unbounded. The query pattern (xi, yj , ?) is totally
symmetrical: two branches are also explored for each valid node since one of the
variables used to prune the branches is also unbounded. Finally, the query pattern
(?, yj , ?) is executed following the same philosophy but, since the variables X and Z
are unbounded, the K2 children are explored for any valid node, only discarding
branches when the bit corresponding to yj is zero in a specific node.

9.1.2.2 Query patterns with unbounded partitioning variable

The second kind of query patterns presents the variable Y unbounded, so it does not
restrict the value that the partitioning variable Y has to take. The patterns included
in this group are (xi, ?, zk),(?, ?, zk),(xi, ?, ?) and (?, ?, ?). The common characteristic
of that group is that, since no value is given for the partitioning variable, all values
for each explored node have to be checked, maintaining the list of active Y values in
each step. As in the previous explanation of the bounded partitioning variable query
patterns, the algorithm of the most restricted query is given first and the remaining
query patterns will be described as an extension of the same mechanism.

The query pattern (xi, ?, zk) searches for the values of Y that relate the pair of
elements (xi, zk). That is, it asks for the binary relations that relate those elements.
Given that specific values for variables X and Z are provided, the process starts
from the top of the tree descending for one branch in each step, which is the child
that the given values xi and zk fit with. The process continues down the tree until
we reach the leaves unless no ones appear in the node explored for a previous level
of the tree. Note that in each level, the size of the node can be reduced, because
only the values for the variable Y with a one value in the parent are represented
in the children. So, in order to know the remaining active values for Y when the
leaves are reached, a list of the active values has to be managed and updated in
each level. We name Aj the list of active values in the node Nj . So, for a root node
Nj , its list Aj always has |Y | elements, where Aj [i] = yi for each i ∈ 1 . . . |Y |. The
list of active values Ak of a child of the node Nj , Nk, contains m elements where m
is the number of ones in the node Nj . In that way the list of active values is built
as Ak[i] = Aj [rank(Nj , i)]. It means that the i-th position of the children active list
contains the value corresponding to the i-th one in the parent node. It is easy to see
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that, given the active list of the parent (Aj) and the node Nj the list of the active
values for the children of the nodes can be computed by a sequential checking over
the bits of the node.

For instance, returning to the example of the Figure 9.2, the query (x2, ?, z2) starts
by checking the first node of the tree, N0, with a list of active values A0 = {0, 1, 2},
because it is a root node (so it initially contains all the different values for the
variable Y ). The values for the variables X and Z determine that the explored child
is N3. Since in N0 only the second and third bit have value one, the list of active
values for N3 is A3 = {1, 2}, which determines that the first bit of N3 (which is
a one) corresponds with y1 and the second bit (a zero) corresponds to y2. As N3
continues having at least a one value, the process continues traversing down the
tree until the leaves level, where node N4 is explored. The list of active values of
the node N4 is computed from the bitmap of N3 and the list of active values A3. In
that way, only the first bit of N3 is a one, so A4 = {A3[1]} = {1}. Then, the bit
one located in N4 corresponds to y1 and the final result of the query (x2, ?, z2) is
{(z2, y1, z1)}.

The remaining query patterns in this group follow the same philosophy of
maintaining the list of active values of each explored node. Query pattern (?, ?, zk)
recovers the reverse neighbors of the node zk for any value of the partitioning variable.
It is performed as a top-down traversal where two children are explored for each
valid node of the tree. Since the partitioning variable is unbounded, a checked node
is valid to continue the exploration when at least a bit is set to one in that node.
The query pattern (xi, ?, ?) follows the same idea, exploring always two children
of each valid node. Finally, the query (?, ?, ?) consists in exploring all the dataset,
checking all the nodes and descending for all the branches of the tree, taking count
of the list of active values for each node of the tree.

9.1.3 Analysis

Several details can be given about the properties of this new structure. First of all,
Interleaved K2-tree is an aggregation and reorganization of the same bits used in a
multipleK2-tree representation where an individualK2-tree represents the adjacency
matrix of each different value of Y . Thus, the spatial cost of both structures is exactly
the same. However, the way in which this structure aggregates in a same node the
same submatrix for all the different values of Y will have important consequences
in the efficiency of some operations. An analysis will be given in the Experimental
Evaluation, but the intuitive idea comes from taking advantage of the fact that |Y |
submatrices for a range of X and Z values are consecutively joined in the node
that represents that matrix. Therefore, in opposition to the |Y | rank operations for
obtaining the children of those nodes in a vertical partitioning environment, a single
access in the tree is performed to obtain all the values for that submatrix. However,
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as a return, some additional operations are needed in this structure to manage the
variable size of the nodes.

Note that although the three dimensions are represented in the tree, the
indexation capabilities are different in the three variables. X and Z dimensions
directly support the navigation over the tree, because the queried values for those
variables determine the branches of the tree that have to be consulted, easily pruning
the tree (branches that are out of the scope of the query are discarded). Therefore,
X and Z have an efficient indexation. Considering the dimension Y , we can observe
that pruning the tree by the Y variable is not straightforward, because the different
values of Y are distributed over all the nodes so no branches can be filtered only by
the Y values. Instead, the specific values of each node of the tree have to be checked
in order to know if a branch is valid for the queried value. Furthermore, since the
nodes have a variable size, the active values for the ancestor nodes have to be taken
into account to know the bit which corresponds to the queried Y value. Therefore,
the indexation of that dimension is not as efficient as in the case of X and Z. This
concept is important to decide the role of the variables of a ternary relation in the
Interleaved K2-tree. In general, the most convenient partitioning variable will be
the smallest one, but this criterion can change depending on the needs of the domain
and the priority and frequency of usage of each kind of query in that context.

9.2 Experimental evaluation

In this section we analyze the spatial and temporal results achieved with the data
structure we proposed (Interleaved K2-tree). We test this data structure with the
four RDF dataset used in Chapter 8: Jamendo1, Dblp2, Geonames3 and DBpedia4.
We implement the 7 simple triple patterns: (S, P,O), (S, P, ?), (?, P,O), (?, P, ?),
(S, ?, O), (S, ?, ?), (?, ?, O). Our machine is an AMD-PhenomTM-II X4 955@3.2
GHz, quad-core, 8GBDDR2, running Ubuntu 9.10. The code was developed in C,
and compiled using gcc (version 4.4.1) with optimization -O9.

Table 9.1 shows the size of the different RDF datasets and the compression
results obtained by the IK2-tree. We compare our structure against our proposal
for RDF described in chapter 8 K2-triples and K2-triples+ and RDF-3X. First
columns show the number of triples and the number of predicates that each dataset
contains. It determines the maximum number of bits of the nodes in the IK2-tree
and the number of individual K2-trees that have to be created for the K2-triples
and K2-triples+.

1http://dbtune.org/jamendo
2http://dblp.l3s.de/dblp++.php
3download.geonames.org/all-geonames-rdf.zip
4wiki.dbpedia.org/Downloads351
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Dataset |T riples| |P redicates| K2-triples K2-triples+ IK2-tree RDF-3X

Jamendo 1,049,639 28 0.74 1.28 0.74 37.73

Dblp 46,597,620 27 82.48 99.24 84.04 1,643.31

Geonames 112,235,492 26 152.20 188.63 156.01 3,584.80

DBpedia 232,542,405 39,672 931.44 1178.38 788.19 9,757.58

Table 9.1: Space comparison for different RDF datasets (in MB)

We can observe that K2-triples is the most compressed structure for Jamendo,
DBLP and Geonames; while for the DBpedia dataset the IK2-tree achieves the
best compression. Since the IK2-tree contains just a reordering of the bits of the
individual K2-tree, their space differences are due to the multiple K2-tree compresses
the last levels of each tree independently, and IK2-tree uses a global vocabulary,
as explained. In DBpedia, the unique vocabulary saves some redundancy, but in
the smaller datasets the specific vocabularies obtain better compression. On the
other hand, K2-triples+ achieves worse compression than K2-triples and IK2-tree,
because it includes the index SP and OP additionally. The three representations
based on K2-trees are much more compressed than RDF-3X.

Regarding to the query efficiency, we test all the basic triple patterns. Table 9.2
shows the results for Geonames (as a representative domain with few predicates)
and for DBpedia (as an example with many predicates). For each simple pattern,
we show the average time per query (500 queries were executed for each pattern).

Results show that, for bounded predicates, K2-triples is the fastest, and the
IK2-tree is about twice as slow. This is expected, because the navigation in the
IK2-tree is slightly more costly: it must execute additional rank operations to
compute the number of active bits in each child. In general, RDF-3X is slower.

For patterns with unbounded predicates, instead, the IK2-tree obtains better
results than K2-triples, especially for datasets with many predicates like DBpedia,
because it partially solves the problem of the vertical partitioning. However, K2-
triples+ obtains the best results, specially in DBpedia, due to the optimization
carried out by the indexes SP and OP, but in return of an additional spatial cost.
RDF-3X is far less efficient.

9.3 A lazy evaluation

Section 9.1.2 showed how the different basic query patterns are executed depending
on the partitioning variable (it can be unbounded when it can take any value or
bounded when a specific binary relation for a given partitioning variable value is
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Geonames

Category Pattern K2-triples K2-triples+ IK2-tree RDF-3X

(S,P,O) 1.8 1.8 3.9 2,346.5

(S,P,?) 64.9 64.9 110.4 4,882.3

(?,P,O) 0.1 0.1 0.3 0.6
Bounded
Predicate

(?,P,?) 0.4 0.4 0.5 0.7

(S,?,O) 5.3 3.6 4.4 6,118.6

(S,?,?) 95.0 70.0 69.7 229.7
Unbounded
Predicate

(?,?,O) 240.0 125.2 187.0 2,473.1

DBpedia

Category Pattern K2-triples K2-triples+ IK2-tree RDF-3X

(S,P,O) 3.2 3.2 6.2 2,532.4

(S,P,?) 358.7 358.7 608.5 4,117.3

(?,P,O) 0.6 0.6 1.6 143.9
Bounded
Predicate

(?,P,?) 0.7 0.7 1.6 0.9

(S,?,O) 7,186.1 4.7 155.2 6,330.6

(S,?,?) 3,925.2 161.6 911.2 272.3
Unbounded
Predicate

(?,?,O) 10,918.1 186.0 1,444.6 1,377.9

Table 9.2: Time evaluation of simple patterns for RDF, in µs per result
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given). The main difference of implementation between the two kind of queries is
that the queries with unbounded partitioning variable check all the bits of each
explored node (maintaining the list of active values of each explored node, which is
used to compute the list of active values of its children). In that way, when the level
of the leaves is reached, each leaf node (which can be composed by one or more bits
set to one in a node) is translated by using its associated list of values in order to
know which values of Y relate the element (xi, zk) that is represented in that leaf.
Therefore, some list of active values are used to compute the value of Y suitable for
each resulting triple.

There are datasets that contain many different values for the partitioning variable.
In that case, experimental evaluation proves that this process can be very expensive,
because it involves a sequential check over the nodes to compute their corresponding
list of active values. Furthermore, this costly operation may be finally not useful
many times, because the branch that is being explored would be finally discarded in
lower levels of the tree. Therefore, all this greedy process of computing, for each
level, which value of Y corresponds with each bit of the current nodes, could be
avoided for such branches that finally do not produce any result.

In this section, we propose a Lazy Evaluation, which consists in postponing the
computation of the corresponding value for the variable Y until making sure that
this calculus is necessary for some result of the query. This navigation strategy
is designed as an alternative to the greedy evaluation of the query patterns with
unbounded partitioning variable for datasets with a large |Y |.

In the lazy approach a top-down traversal is performed, as usual, navigating over
the branches determined by the values of the variables X and Z. The difference
will be that the list of active values is not computed for each node. In order to
continue the navigation over the children nodes, only the number of bits set to one
in the parent is necessary (but no its correspondence to Y values). This count of
the number of ones in a node Ni can be performed by a sequential check of the bits
or through two rank operations rank1(Nj) = rank1(T, init+ |N |)− rank1(T, init)
where init is the position of the first bit of Ni in the tree (T ). Then, the top-down
traversal only takes count of how many values of Y remain actives in each node, but
no which values are.

Once the leaves are reached, the real needed branches for the result are known.
Then, the specific values for the variable Y are computed but only for the branches
involved in the result. The process of mapping the Y values starts from the bottom
of the tree, computing the list of relative values within that node. In that way, a bit
one in the position m of a leaf node has initially associated the value ym, which will
be transformed in a bottom-up traversal until its real value. Given an intermediate
node with a list of relative values, they are transformed by checking the bitmap of
the parent node. In that way, a relative value yj in a children is mapped to the
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position of the j-th one in the bitmap of the parent node. The process continues by
recursively updating the lists of relative values, mapping each value with its position
in the parent, until the root is reached. At this moment, the current relative values
are the real values for the variable Y corresponding to each result.

An optimization of this process can be performed for such queries where
dimensions X, Z or both are unbounded. In those query patterns, several branches
are explored, so many results could have common ancestor nodes, which have to
be explored many times (once for the mapping of relative values of each result). In
order to avoid this replication of computation, in each level of the tree where the
relative values for results in nodes share the same parent, a previous merge sort is
performed, obtaining a single list of relative values which is mapped by recovering
once the bitmap of the parent. In that way, in each step several lists of results sorted
by their Y value are maintained, which are progressively merged when they belong
to the same parent node. As a consequence, redundant mappings for the same node
are avoided.

We show an example of lazy evaluation for a dataset with three different values
for the variable Y through a set of figures. Figure 9.3 shows the initial top-down
traversal performed over the tree. For each node, only the number of active values
are stored (in order to know the size of the children). In this way, node N0 contains
2 bits with one value so its children has 2 bits each one. N1 contains one bit with
one value so its leaves only contain one bit. On the other hand, the two bits with
value one of N2 produce leaves with two bits each one. At the end of this process,
four results are obtained, which are highlighted in the figure. Their values for the
variables X and Z are given by the branch of the tree which they are located. Their
values for the Y variable are unknown and a relative value is computed as their
position in the leaf node they belong. For instance, the leaf (X2, Y1, Z2) is related
to the second value of Y because is located in the second position of the leaf node.
In this point the down-top traversal starts, shown in Figure 9.4. First, a merge sort
is performed to join the lists of results which belong to the same parent node. The
element (x0, y0, z0) is in an independent branch. However, the other three results
{(x2, y1, z2), (x2, y0, z3), (x2, y1, z3)} are merged in the same list: y0 has one result
associated (x2, z3) and y1 contains two results (x2, z2), (x2, z3). Next step consists of
transforming the current relative values in basis to the parent nodes. Then, as the
Figure 9.5 shows, the list y0 with the element (x0, z0) is transformed to y1 since the
first bit one in the parent N1 is in the second position. However. the list y0 : (x2, z3)
continues associated to the y0 value since the first one in the parent N2 is in the first
position. The same happens with y1 : (x2, z2) which is transformed to y1 because
the second one of the parent node N2 is in the second position. The three lists of
this level share the same parent node so they are merged by Y value. Finally, in
Figure 9.6, the lists are transformed with the information of N0. The first one of
N0 is in the second position and the second one is in the third position, so the final
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Figure 9.3: First step of the top-down traversal of the lazy evaluation

Simple pattern K2-triples K2-triples+ IK2-tree Lazy IK2-tree RDF-3X

(S,?,?) 3,925.2 161.6 911.2 232.7 272.3

(?,?,O) 10,918.1 186.0 1,444.6 430.8 1,377.9

Table 9.3: Time, in µs per result, of basic and lazy evaluation in patterns
with unbounded predicate on DBpedia

results will be (x2, y1, z3), (x0, y2, z0), (x2, y2, z2), (x2, y2, z3).

We analyzed the overall improvement obtained with the Lazy evaluation strategy.
Table 9.2 shows the results obtained for triple patterns with unbounded predicate in
DBpedia. Lazy evaluation improves significantly the results for those queries, being
up to 5 times faster than the eager algorithm. However, the lazy implementation
still is slower than the K2-triples+.

9.4 Summary

In this chapter we present a new compact data structure to represent ternary
relationships, specially designed to such relationships where one of the variables has
a smaller number of different values than the other two variables of the relation.
This data structure follows a vertical partitioning of the data, transforming a ternary
relationship in multiple relationships. Each resulting binary relationship can be
represented with a K2-tree, just as in the K2-triples system described in Chapter 8.
However, in this case, all these trees are gathered in a unique tree structure, which
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Figure 9.4: Reaching the leaf level of the lazy evaluation

Figure 9.5: Starting the bottom-up traversal of the lazy evaluation
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Figure 9.6: Reaching the root in lazy evaluation

we called Interleaved K2-tree.

Since Interleaved K2-tree is a reordering of the bits of the multiple K2-tree
solution, it obtains exactly the same spatial cost. Furthermore, it maintains most
of the navigation characteristics of the K2-tree. On the other hand, it allows to
explore different values of the partitioning variable with one traversal over the
tree. Consequently, the structure improves the results obtained for a representation
with multiple K2-trees in such triple patterns where the partitioning variable is
unbounded. A lazy evaluation is also proposed, specially designed to solve this kind
of queries for datasets with a large number of different values for the partitioning
variable. It improves the results obtained by the eager evaluation.

We study the behavior of this structure in RDF datasets, comparing it against our
structures for RDF K2-triples and K2-triples+ proposed in Chapter 8. The results
obtained for this structure improve the results of K2-triples for the queries with the
partitioning variable unbounded, specially using the lazy evaluation. However, the
alternative K2-triples+, which includes the use of indexes SP and OP, outperforms
the results obtained with the Interleaved K2-tree, although in return of a higher
spatial cost.

To summarize, Interleaved K2-tree is a very compact structure to efficiently
store and query any kind of ternary relation, which is specially designed to represent
relations where one of the variables has a reduced number of different values. It
improves the results obtained by the multiple K2-tree alternative for queries with
the partitioning variable unbounded, where a lazy evaluation was implemented
improving the results of the classic eager evaluation.
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Chapter 10

Conclusions and Future work

10.1 Summary of contributions

Graphs have become an interesting way of representing data where the relationships
among the different entities are as relevant as the entities themselves. Specially,
some kind of graphs, which are called simple directed graphs, have become extremely
popular because of their ability for representing binary relationships, due to the fact
that these binary relationships have emerged everywhere in the new applications for
the Big Data Era. Web graphs, social networks or RDF are good examples of the
proliferation of data with an underlying graph nature.

However, although a lot of methods, strategies and tools have been developed
to represent, visualize, analyze and mine graphs, two main problems that need to
be faced in order to work efficiently with graphs still remain. The first problem
consists in the need of designing tools that automatically transform collections of
complex data into a graph, following a specific graph model according to the needs
of the exploitation of the domain. On the other hand, given the huge amount
of information that usually composes those generated graphs, the design of very
compact graph representations using self-indexed and compressed data structures is
crucial in order to manage those huge graphs in main memory in an efficient way.

Two of the contributions of this thesis aim to advance in both scenarios. We
presented GraphGen, a completely developed tool available to the community
for automatic transformation of any collection of data (using CSV, plain, HTML
or XML format) into a specific graph previously defined by the user through the
intuitive user interface that GraphGen provides. As explained, GraphGen also offers
capabilities for the visualization of the defined graph model and for the exportation
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of the built graph to GraphML, the standard language for graph representation. In
this way, graphs generated using the GraphGen application can be used for the graph
management tools supporting this format, such as the visualization tool Gephi.

On the other hand, we adapted a well-known compressed and self-indexed data
structure, the K2-tree, to represent labelled and directed attributed graphs, showing
how graphs management can take advantage of compressed representations.

This thesis also studied the possibilities for parallel processing of graphs
represented with theK2-tree data structure. In this way, different distributions of the
K2-tree cells over a cluster of processors were designed, studied and experimentally
compared in terms of space and time.

Finally, we devote a complete section of the thesis to the compact representation
of huge collections of RDF data using different variants of the K2-tree specifically
designed for this purpose. We designed the K2-triples and the Interleaved K2-
tree. In both cases we experimentally checked not only the required space but also
the answer time of the systems for basic queries (triples queries) over the RDF
representation. But, in order to have a more complete idea of the potential of
our proposal consisting in an in-memory, compact and self-indexed representation
of the RDF data, we developed over K2-triples the algorithms required, not only
to answer basic queries but also Join queries. We compared our proposal with
the most well-known and representative Data Base Management Systems for RDF
management, such as RDF3x or MonetDB, showing the benefits of our approach.

Although more work needs to be done to transform graphs into a common tool
as general and universally used as relational databases, this thesis advances ideas,
tools, strategies, data structures and algorithms to use and process graphs in an
efficient way, taking advantage of compression technology and distributed processing
strategies.

10.2 Future work lines

This section describes the future work lines we expect to address in order to continue
the work that has been developed in this thesis. We describe, for each contribution,
the most relevant possibilities:

• In this thesis we proposed GraphGen, a tool to generate graphs from arbitrary
data. The tool currently exports generated graphs into the standard GraphML
format. In this way, the graph can be used in other applications that support
this input format. An interesting extension for GraphGen could be the
functionality of exporting the final graph in a K2-tree format. In this way, if
labels and weights of the final graph are relevant to the domain, the graph can
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be firstly exported to be imported afterwards in AttK2-tree, which supports
the mining of attributed and labelled graphs. On the other hand, if the graph
generated by the user has not included relevant information in the weights
and types of nodes and edges, the graph could be exported as a simple graph
to be exploited with a simple K2-tree. GraphGen could be also expanded to
generate ternary relationships that could be managed with the Interleaved
K2-tree. In other words, a future work line consists in the integration of
GraphGen with the graph structures proposed in this thesis. In that way,
GraphGen would prepare any kind of arbitrary data to be processed with
the AttK2-tree, Interleaved K2-tree or even the K2-triples, depending on the
needs of each application domain.

• In this thesis we study the possibility of representing labelled and weighted
graphs in a very compact way, and we provide a basic set of operations to
query the data structure we designed. Given that the results obtained with
our structure for these basic operations are competitive, a possible extension
would be to offer extended operations, in order to provide high level graph
mining algorithms for AttK2-tree. In addition to that, the storage of the
sparse attributes can be optimized using more sophisticated representations of
variable-length strings existing in the State of the Art.

• The proposed algorithms to partition a graph using the K2-tree structure still
have unexplored work lines. First of all, the adaptive multigrid distribution
proposed is a very configurable algorithm, whose behavior can strongly
depend on the chosen configuration. Further study of the possibilities of
this distribution could be carried out, exploring also other variants for the
index of this structure (currently implemented by anotherK2-tree). In addition
to that, a different problem that is not studied in this thesis could be explored:
the distribution of multiple K2-trees in order to parallelize the RDF querying
system K2-triples. The challenge of this new research would be to find the
most balanced and efficient way of distributing a set of K2-trees, taking into
account the effect of the distribution in the different join implementations
(specially for the interactive join evaluation).

• An important contribution of this thesis is the new technique to store RDF
datasets, which we called K2-triples (and its variant K2-triples+). We
implement the simple triple patterns and the different pair joins, which compose
a basis over which more complex queries could be implemented. Therefore, the
next step to obtain a complete RDF query engine would consist of supporting
queries composed by a combination of joins. In order to implement these joins
composed by more than two triple patterns, a study of the appropriate metrics
to design the order of execution of the pair joins for each query and the kind
of strategy used in each case is needed.
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• In this thesis we also proposed a new structure to represent ternary relationships.
The simple triple patterns were implemented over this structure. The different
join algorithms designed for the K2-triples could be adapted to work with this
new structure, extending its current functionality. In addition to that, the
possibility of using the indexes SP and OP designed for the K2-triples+ in
combination with this new structure deserves to be studied.
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Appendix B

Descripción del Trabajo
Realizado

El trabajo desarrollado a lo largo de esta tesis se centra en el diseño e implementación
de representaciones compactas y eficientes de grafos. Los grafos son una forma
natural de modelar conjuntos de datos de diversos dominios en los que la información
de interés reside principalmente en las relaciones entre las entidades. La teoría de
grafos ha sido ampliamente estudiada desde una perspectiva matemática. En la
actualidad, y especialmente desde la aparición de Internet, donde multitud de datos
de diferente naturaleza son generados diariamente, esta estructura se ha utilizado
como forma de representación de grandes volúmenes de datos.

La web es un ejemplo de información que habitualmente se representa mediante
grafos, donde las diferentes páginas son representadas como nodos, y las aristas
relacionan cada página Web con todas aquellas páginas que son enlazadas desde ella.
Otro ejemplo muy representativo son los grafos sociales, en los que los nodos son los
usuarios del grafo, mientras que las aristas representan en este caso relaciones de
amistad.

En este contexto, y teniendo en cuenta el gran volumen de estos datos, el diseño
de estructuras de datos para representar grafos que puedan ser consultados de forma
eficiente se vuelve fundamental para el tratamiento de los mismos. Por este motivo,
se ha convertido en los últimos años en un importante campo de investigación, en el
que se han realizado numerosas aportaciones.

En esta tesis estudiamos diferentes aproximaciones a este problema, diseñando e
implementando estructuras para la representación de grafos de diferente naturaleza.
Estas estructuras han sido diseñadas con el objetivo de representar de forma compacta

249



250 Appendix B. Descripción del Trabajo Realizado

y eficiente grafos de multitud de dominios. Además, se ha estudiado el problema
no sólo desde una perspectiva monoprocesador, sino que se ha abordado el diseño
de una representación de grafos en entornos distribuidos. Esta nueva perspectiva
permite la escalabilidad de los sistemas, permitiendo aplicar las mismas técnicas a
conjuntos de datos de un mayor volumen.

Las estructuras y algoritmos que se presentan en esta tesis pueden ser agrupados
en cinco grandes apartados. Los dos primeros abordan la representación y generación
de grafos con atributos, en los que los nodos incluyen información detallada a lo largo
de una serie de propiedades. El tercer apartado de esta tesis se centra en el estudio
de representaciones de grafos comprimidas y distribuidas, utilizando para ello como
base el K2-tree, una estructura compacta diseñada originalmente para grafos Web.
Los dos últimos apartados se centran en la representación compacta de grafos RDF,
un tipo especial de grafo en el que los nodos origen (sujetos) se relacionan con los
nodos destino (objetos) a través de aristas etiquetadas (predicados). RDF se ha
convertido en un estándar de facto para la descripción de metadatos que permita el
intercambio de información entre fuentes heterogéneas. Dos estructuras compactas y
eficientes se han propuesto en esta tesis para el manejo de fuentes de datos RDF: la
primera de ellas enfocada exclusivamente en este problema, mientras que la segunda
ha sido diseñada para representar relaciones ternarias en multitud de dominios,
aunque su evaluación se ha centrado exclusivamente en el dominio RDF.

A continuación, se detallarán cada uno de estos cinco grandes apartados que
constituyen las principales aportaciones de esta tesis, indicándose los objetivos
perseguidos, así como los resultados obtenidos con el trabajo realizado.

B.1 Modelado de grafos con GraphGen

Como ya se ha descrito, son numerosos los dominios en los que representar la
información mediante un grafo nos permite destacar las relaciones entre los diferentes
elementos y consultarlos de forma eficiente. Algunos de los casos citados (como es
el caso de los grafos Web o las redes sociales) y otros muchos como los grafos de
consultas de usuario (al interactuar con un motor de búsqueda) pueden resultar muy
útiles para poder explotar la información que contienen.

Sin embargo, la mayoría de los datos de entrada que producirían estos grafos están
habitualmente disponibles en otros formatos estándar como XML, CSV o incluso
en bases de datos relacionales. De esta forma, todo investigador o investigadora
que requiera representar esta información mediante un grafo, deberá realizar la
tediosa tarea de implementar un algoritmos de transformación manual del formato
de entrada a la estructuración mediante un grafo. Aunque existen en el estado del
arte algunas propuestas para realizar este tipo de transformaciones, la mayoría han
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sido diseñadas ad-hoc para un dominio específico.

En esta tesis proponemos GraphGen, una herramienta que permite al usuario
automatizar esta transformación de fuentes de datos arbitrarias a grafos estándar,
para que posteriormente puedan ser gestionados con cualquier herramienta de
visualización o de consulta de grafos.

En primer lugar, proponemos un modelo teórico que da soporte a la posterior
herramienta que hemos desarrollado. En GraphGen, cada nodo representará una
cantidad de información, que podrá descomponerse en diferentes nodos más simples,
a través de reglas de transformación que serán definidas por el usuario. Las aristas
relacionarán los nodos con aquellos nuevos elementos en los que se descompone
progresivamente.

GraphGen proporciona un conjunto de reglas de extracción predefinidas,
concebidas para la generación de grafos a partir de los formatos más comunes
de entrada, como es el caso del XML. Además de reglas de descomposición, que
permiten la creación de nuevos nodos y aristas (que asocian el nodo original con
todos aquellos que hayan sido extraídos desde él), se han definido reglas de relación,
que permiten establecer relaciones entre diferentes nodos del árbol en base a la
existencia de una relación topológica entre ellos, u otro tipo de criterios que podrán
ser definidos por el usuario.

Hemos evaluado la versatilidad de GraphGen a lo largo de 3 escenarios diferentes:
grafos extraídos a partir de bases de datos bibliográficas, la transformación de query
logs en formato CSV y la creación de grafos sociales a partir de fuentes de datos en
XML. Los resultados obtenidos muestran que GraphGen permite definir reglas que
se adecúan a multitud de dominios y que genera grafos con millones de elementos en
minutos. Los resultados de este trabajo han sido publicados en la revista indexada
JCR Journal of Systems and Software y en un workshop internacional.

B.2 Grafos con atributos

En multitud de ocasiones, los grafos que se necesitan para representar la información
de un dominio son grafos simples dirigidos, cuyas aristas pueden incluir una etiqueta
o un peso. Ejemplos de este tipo de grafos pueden ser los grafos Web o los grafos
sociales. Sin embargo, en muchos otros casos, este modelo de grafos no es suficiente
para representar toda la información del dominio, ya que los nodos y las aristas
contienen datos adicionales. Estos dominios en los que nodos y aristas están descritos
por una serie de atributos (clave/valor) definen un nuevo modelo de grafos, que se
denominan grafos con atributos.

En los últimos años, han surgido numerosos modelos teóricos para representar
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este nuevo tipo de grafos con atributos. Soportados por estos nuevos modelos, han
surgido en el estado del arte multitud de propuestas para almacenar y consultar de
forma eficiente grafos con atributos. Estos nuevos sistemas se denominan Bases de
Datos orientadas a grafos, y entre las más reconocidas podemos destacar DEX y
Neo4J.

Estos grafos con atributos representan generalmente dominios en los que el
volumen de datos suele ser muy elevado, por lo que la eficiencia, tanto espacial como
temporal, se vuelve un aspecto de vital importancia a la hora de diseñar un sistema
de estas características.

En esta tesis presentamos AttK2-tree, una representación compacta en memoria
principal para grafos con atributos, que está basada en la estructura compacta para
grafos simples K2-tree.

Nuestro objetivo al desarrollar este trabajo ha consistido en extender esta
estructura compacta K2-tree, que puede ser utilizada para relaciones binarias,
para representar los grafos con atributos.

La idea principal de AttK2-tree consiste en representar los atributos densos
(que son aquellos en los que numerosos nodos o aristas comparten el mismo valor)
como la nacionalidad de las personas, mediante relaciones binarias que pueden ser
representadas cono el K2-tree. Los atributos esparsos (como el DNI de una persona
o el título de un libro) serán representados mediante listas doblemente indexadas
(por identificador de nodo y por orden lexicográfico).

Las aristas entre los diferentes nodos también se representarán mediante un K2-
tree, para el que se ha propuesto una extensión que permite representar multiaristas
(es decir, la existencia de más de una arista por cada nodo), además de almacenar
los identificadores de cada una de estas aristas, que servirán como referencia para
posteriormente poder recuperar su restante información adicional (es decir, los
atributos que contiene).

Se han propuesto una serie de operaciones básicas para consultar el sistema
propuesto, que incluyen la consulta del valor de un atributo para un nodo, los nodos
que cumplan una determinada condición o los nodos que se relacionan con otros
nodos del grafo. El objetivo perseguido con el diseño de este conjunto de operaciones
básicas es el de obtener una base sobre la que se puedan implementar operaciones
más complejas.

La eficiencia temporal y espacial de esta estructura se ha evaluado en
diferentes conjuntos de prueba, comparando los resultados obtenidos con dos de las
aproximaciones más relevantes en el estado del arte: DEX y Neo4J. Los resultados
obtenidos prueban que AttK2-tree obtiene muy buenos resultados de eficiencia
espacial y que obtiene tiempos competitivos a la hora de implementar las operaciones
básicas que soporta en la actualidad. Los resultados obtenidos con este trabajo han



B.3. Representación de grafos distribuidos 253

sido publicados en un Workshop internacional.

B.3 Representación de grafos distribuidos

En la actualidad, la cantidad de datos que se genera diariamente es tan elevada que
dificulta su procesamiento con los sistemas de procesamiento tradicionales. En los
últimos años, se han propuesto en multitud de campos alternativas distribuidas a las
tradicionales estructuras y algoritmos mono-procesador, que presentan limitaciones
para tratar con grandes volúmenes de datos. En este contexto, el paralelismo supone
una buena alternativa a los problemas de escalabilidad de los sistemas de explotación
de datos, y surge un nuevo campo de investigación, que tiene como objetivo diseñar
nuevas estructuras paralelas que proporcionen escalabilidad a la explotación de datos
de gran volumen.

En este apartado de la tesis se propone el diseño e implementación de diferentes
algoritmos de particionamiento para distribuir grafos simples dirigidos, utilizando
como base la estructura K2-tree, que permite la representación compacta de grafos
simples dirigidos.

En este apartado se comienza realizando una revisión exhaustiva del estado del
arte en algoritmos de particionamiento para grafos. En un primer lugar, se revisan las
estrategias tradicionales, en las que cada procesador representa un conjunto de nodos
disjunto del grafo. Entre estas técnicas destacan los algoritmos de particionamiento
geométricos, que utilizan la información topográfica de los nodos o los algoritmos
estructurales, o el algoritmo clásico de Kernighan and Lin. Posteriormente, se realiza
una descripción de las principales técnicas de particionamiento de matrices, que
tiene una gran relación con nuestro problema de estudio, puesto que el K2-tree, que
es la estructura que hemos utilizado de base para nuestra estructura, parte de una
representación del grafo en forma de matriz de adyacencia. Entre los algoritmos para
particionamiento de grafos destacan los particionamientos rectilíneos o los métodos
de particionamiento utilizados para distribuir páginas de disco.

Tras revisar las principales técnicas del estado del arte, se han propuesto nuevas
técnicas de particionamiento de grafos basados en la utilización de la estructura
K2-tree. En primer lugar, se han aplicado técnicas de división de la matriz de
adyacencia básicas, como el particionamiento en bloques, el particionamiento cíclico
o el particionamiento en rejilla simple y recursivo. Pero además, se han diseñado
versiones adaptativas de estos algoritmos que tienen en cuenta la distribución del
grafo a lo largo de la matriz de adyacencia, para distribuir en mayor medida aquellas
regiones con una gran concentración de aristas.

Además de estas propuestas, se han diseñado algunas estrategias de parti-
cionamiento que logran alcanzar un balance espacial perfecto, utilizando para ello las



254 Appendix B. Descripción del Trabajo Realizado

características propias del árbol K2-tree que será distribuido finalmente. Finalmente,
se propone una alternativa diferente basada en cuadrados latinos, inspirada en los
particionamientos habituales en la distribución de páginas de disco.

Se ha realizado una evaluación exhaustiva de la eficiencia espacial y temporal de
cada una de estas distribuciones, a la hora de representar y consultar grafos Web
y grafos sociales. Además, se ha prestado especial atención al balance espacial y
de carga obtenido por cada una de ellas, así como la evaluación de la aceleración
conforme aumenta el número de procesadores utilizados. Algunas de las distribuciones
propuestas han obtenido resultados de eficiencia muy competitivos, que demuestran
que la distribución de grafos utilizando una estructura tan compacta como el K2-tree
proporciona la escalabilidad necesaria a esta estructura, que trabaja en memoria
principal, para poder gestionar grafos con un mayor volumen de nodos y aristas.

Los resultados obtenidos en este campo se han publicado en la conferencia SPIRE
en el año 2013.

B.4 Representación de grafos RDF: K2-triples

En este apartado hemos estudiado la representación de un tipo de grafo muy específico:
el grafo RDF (Resource Description Framework), sobre el que se construyen los
principios de la Web semántica y consiste en un nuevo formato de publicación que
pretende servir de lenguaje automático de intercambio de información en la llamada
Web de datos. RDF proporciona un lenguaje común para definir hechos del mundo
de forma estructurada. Un conjunto de datos RDF está formado por un conjunto
de tripletas (sujeto, predicado, objeto), que indican que el sujeto toma el valor
del objeto en un determinado predicado. Un conjunto de datos RDF puede ser
modelado como un grafo etiquetado, donde el sujeto y el objeto son nodos del grafo
y el predicado son aristas del mismo.

En los últimos años, con la aparición de la denominada Web de datos, el
formato RDF ha ido creciendo en importancia, por lo que multitud de sistemas de
almacenamiento y consulta de datos RDF han aparecido en el estado del arte. En
este apartado de la tesis hemos realizado una revisión exhaustiva de las diferentes
aproximaciones que se han seguido al abordar la gestión de datos RDF.

Una de las principales contribuciones de esta tesis es una nueva técnica que hemos
diseñado para almacenar conjuntos de datos RDF de una forma muy compacta
en memoria principal, implementando diferentes algoritmos de búsqueda eficientes.
Nuestra estructura sigue un particionamiento vertical, en el que se utilizará un
K2-tree para representar los datos de cada uno de los predicados.

El principal problema del particionamiento vertical es la eficiencia a la hora de
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realizar consultas en las que se desconoce el predicado, puesto que se vuelve necesario
consultar los diferentes elementos que representan cada uno de los predicados. Para
resolver este problema, hemos propuesto unos índices compactos sobre los sujetos y
los predicados (que han sido implementados con DAC), y que mejoran la eficiencia
de este tipo de consultas mediante la minimización del número de predicados a
consultar.

Hemos diseñado la implementación de los patrones de consulta básicos, así como
el desarrollo de algoritmos de joins. En este último apartado, hemos propuesto tres
estrategias alternativas para resolver cada uno de los posibles joins existentes, cuyos
resultados se han comparado en la evaluación experimental.

Los resultados espaciales y temporales obtenidos con esta nueva estructura que
proponemos han sido evaluados contra las principales alternativas del estado del
arte, obteniendo resultados muy competitivos tanto en tiempo como en espacio.

Los resultados de este trabajo han sido publicados en la conferencia internacional
AMCIS (2011) y en la revista indexada JCR Knowledge and Information Systems
(por aparecer).

B.5 Representación de relaciones ternarias

Los grafos RDF que hemos descrito en el apartado previo pueden ser considerados
como un grafo etiquetado; pero también pueden ser interpretados como una relación
ternaria. Existen multitud de relaciones ternarias en otros dominios, como es el
caso de los rasters espaciales. A lo largo de los años han surgido algunas estrategias
para almacenar y consultar estas relaciones ternarias, pero la mayoría de estas
aproximaciones están enfocadas al almacenamiento y consulta de un conjunto de
datos específico.

En esta tesis proponemos el Interleaved K2-tree, una estructura compacta para
representar relaciones ternarias de una forma muy compacta y eficiente. Esta
nueva estructura es una evolución del K2-tree, que representa en un solo árbol
una relación binaria etiquetada, proporcionando capacidades de indexación sobre
las tres dimensiones que representa. De esta forma, intenta resolver el problema
del particionamiento vertical, agrupando todas las relaciones en un único árbol, y
manteniendo muchas de las propiedades de acceso que contenía el K2-tree.

Esta estructura está especialmente diseñada para la representación de relaciones
ternarias donde una dimensión tiene un número de valores diferentes muy inferior al
de las otras dos dimensiones. Sobre esta estructura, hemos propuesto una serie de
operaciones básicas que han sido implementadas de forma eficiente. Para aquellos
casos en los que la tercera dimensión tiene un gran número de valores y en las
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operaciones en las que esa tercera dimensión no está ligada (cualquier valor es válido
como resultado), hemos propuesto una estrategia de evaluación lazy, que mejora los
resultados obtenidos para estas operaciones.

Esta estructura ha sido evaluada para grafos RDF como alternativa a la estructura
K2-triples desarrollada en el apartado anterior, que mejora los resultados obtenidos
para la misma en este tipo de operaciones que incluyen la tercera dimensión libre.

Los resultados obtenidos con este trabajo han sido publicados en la conferencia
internacional DCC (2014).

Para concluir, cabe destacar que los trabajos realizados a lo largo de estos cinco
apartados pretender proporcionar nuevas soluciones al problema de la representación
eficiente de grafos de gran volumen en diferentes dominios. Por una parte, se ha
propuesto una herramienta que facilita el modelado de grafos a partir de fuentes de
datos hetetogéneas. Además, se ha propuesto una nueva estructura para gestionar
grafos con atributos. Para entornos distribuidos, se han propuesto diferentes
estrategias para particionar grafos y representarlos con estructuras compactas y
eficientes. Finalmente, los dos últimos apartados de la tesis se centran en grafos para
dominios más concretos. En primer lugar, se propone un sistema de almacenamiento
y consulta para grafos RDF y finalmente, se propone una estructura para almacenar
relaciones ternarias asimétricas que puede ser también utilizada para representar
grafos RDF. Todas las contribuciones de esta tesis han sido publicadas en conferencias
o revistas indexadas.
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