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Abstract

In this thesis we study the efficient representation of multidimensional grids,
presenting new compact data structures to store and query grids in different
application domains. We propose several static and dynamic data structures for the
representation of binary grids and grids of integers, and study applications to the
representation of raster data in Geographic Information Systems, RDF databases,
etc.

We first propose a collection of static data structures for the representation of
binary grids and grids of integers: 1) a new representation of bi-dimensional binary
grids with large clusters of uniform values, with applications to the representation
of binary raster data; 2) a new data structure to represent multidimensional binary
grids; 3) a new data structure to represent grids of integers with support for top-k
range queries. We also propose a new dynamic representation of binary grids, a new
data structure that provides the same functionalities that our static representations
of binary grids but also supports changes in the grid.

Our data structures can be used in several application domains. We propose
specific variants and combinations of our generic proposals to represent temporal
graphs, RDF databases, OLAP databases, binary or general raster data, and
temporal raster data. We also propose a new algorithm to jointly query a raster
dataset (stored using our representations) and a vectorial dataset stored in a classic
data structure, showing that our proposal can be faster and require less space than
the usual alternatives. Our representations provide interesting trade-offs and are
competitive in terms of space and query times with usual representations in the
different domains.
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Resumen

En esta tesis estudiamos la representación eficiente de matrices multidimensionales,
presentando nuevas estructuras de datos compactas para almacenar y procesar
grids en distintos ámbitos de aplicación. Proponemos varias estructuras de datos
estáticas y dinámicas para la representación de matrices binarias o de enteros
y estudiamos aplicaciones a la representación de datos raster en Sistemas de
Información Geográfica, bases de datos RDF, etc.

En primer lugar proponemos una colección de estructuras de datos estáticas para
la representación de matrices binarias y de enteros: 1) una nueva representación
de matrices binarias con grandes grupos de valores uniformes, con aplicaciones
a la representación de datos raster binarios; 2) una nueva estructura de datos
para representar matrices multidimensionales; 3) una nueva estructura de datos
para representar matrices de enteros con soporte para consultas top-k de rango.
También proponemos una nueva representación dinámica de matrices binarias, una
nueva estructura de datos que proporciona las mismas funcionalidades que nuestras
propuestas estáticas pero también soporta cambios en la matriz.

Nuestras estructuras de datos pueden utilizarse en distintos dominios. Pro-
ponemos variantes específicas y combinaciones de nuestras propuestas para rep-
resentar grafos temporales, bases de datos RDF, datos raster binarios o generales y
datos raster temporales. También proponemos un nuevo algoritmo para consultar
conjuntamente un conjuto de datos raster (almacenado usando nuestras propuestas)
y un conjunto de datos vectorial almacenado en una estructura de datos clásica,
mostrando que nuestra propuesta puede ser más rápida y usar menos espacio que
otras alternativas. Nuestras representaciones proporcionan interesantes trade-offs y
son competitivas en espacio y tiempos de consulta con representaciones habituales
en los diferentes dominios.
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Resumo

Nesta tese estudiamos a representación eficiente de matrices multidimensionais,
presentando novas estruturas de datos compactas para almacenar e procesar grids
en distintos ámbitos de aplicación. Propoñemos varias estruturas de datos estáticas
e dinámicas para a representación de matrices binarias ou de enteiros e estudiamos
aplicacións á representación de datos raster en Sistemas de Información Xeográfica,
bases de datos RDF, etc.

En primeiro lugar propoñemos unha colección de estruturas de datos estáticas
para a representación de matrices binarias e de enteiros: 1) unha nova representación
de matrices binarias con grandes grupos de valores uniformes, con aplicacións
á representación de datos raster binarios; 2) unha nova estrutura de datos
para representar matrices multidimensionais; 3) unha nova estrutura de datos
para representar matrices de enteiros con soporte para consultas top-k. Tamén
propoñemos unha nova representación dinámica de matrices binarias, unha nova
estrutura de datos que proporciona as mesmas funcionalidades que as nosas
propostas estáticas pero tamén soporta cambios na matriz.

As nosas estruturas de datos poden utilizarse en distintos dominios. Propoñemos
variantes específicas e combinacións das nosas propostas para representar grafos tem-
porais, bases de datos RDF, datos raster binarios ou xerais e datos raster temporais.
Tamén propoñemos un novo algoritmo para consultar conxuntamente datos raster
(almacenados usando as nosas propostas) con datos vectoriais almacenados nunha
estrutura de datos clásica, amosando que a nosa proposta pode ser máis rápida e
usar menos espazo que outras alternativas. As nosas representacións proporcionan
interesantes trade-offs e son competitivas en espazo e tempos de consulta con
representacións habituais nos diferentes dominios.
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Chapter 1

Introduction

1.1 Motivation

The compressed representation of information has been a basic need almost in every
domain of Computer Science for a long time. Even though the total amount of
storage space is not an important issue nowadays, since external memory (i.e., disk)
can store huge amounts of data and is very cheap, the time required to access the
data is an important bottleneck in many applications. Accesses to external memory
have been traditionally much slower than accesses to main memory, which has led
to the search of new compressed representations of the data that are able to store
the same information in reduced space.

A lot of research effort has been devoted to the creation of compact data
structures for the representation of almost any kind of information: texts,
permutations, trees, graphs, etc. Compressed data structures are usually able to
perform better than classical equivalents thanks to being stored in upper levels of
the memory hierarchy, taking advantage of the speed gap among levels. The goal of
a compact data structure is to allow processing the information over the compressed
form, supporting algorithms that process the information directly from the compact
representation, that will ideally be stored completely in main memory.

In this thesis we focus on the representation of multidimensional data, and
especially on the representation of bi-dimensional data that appears in multiple
domains in the form of grids, graphs or binary relations. Different data structures
exist on the state of the art to efficiently represent and query this kind of data.
The wavelet tree [GGV03] is a data structure that can represent a grid where each
column contains a single element. Another data structure, called K2-tree [Lad11],
is able to represent general binary grids in compact form, taking advantage of the
sparseness and clusterization of 1s in the grid.

Our main goal in this thesis is the development of new and efficient representa-
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tions of spatial data, typically in the form of bi-dimensional or general n-dimensional
grids. Particularly, we focus on different problems where the information is typically
represented using a binary grid (grid of 0s and 1s) or a grid of integer values. We aim
to obtain efficient representations that take advantage of different characteristics
of the grids in order to achieve compression, while efficiently supporting query
operations over the compressed form.

One of the main areas of application of our techniques is the representation
of raster data in Geographic Information Systems (GIS), where data is viewed as
a grid of values with the usual characteristic that close cells tend to have similar
values. This property is very frequent in spatial data and is exploited by typical
representations in this domain. However, general data structures like the K2-tree
do not take advantage of this kind of regularities in spatial data.

1.2 Contributions

In this thesis we present a group of data structures that are designed for the
compact representation of multidimensional data in different domains. Many of our
proposals are based on a compact representation of sparse binary matrices called
K2-tree [Lad11], that was originally designed as a Web graph representation. We
describe each contribution separately, detailing the problem it addresses:

1. Our first contribution is the design, analysis, implementation and experimen-
tal evaluation of data structures for the compact representation of binary
matrices or grids, taking advantage of clusterization of similar values. Our
proposal is based on the K2-tree and is able to compress efficiently binary
grids with large regions of 0s and 1s. We call the conceptual proposal “K2-
tree with compression of ones” or K2-tree1 and introduce several variants or
implementations of the proposal. All of them support access to any region of
the matrix over the compressed representation. We compare our proposal with
alternative representations to show that our variants achieve space competitive
with state-of-the-art compact quadtree representations and efficiently support
multiple query operations, particularly the efficient access to regions of the
grid. A preliminary version of some of the new proposals was published in
the 20th String Processing and Information Retrieval Symposium (SPIRE
2013) [dBAGB+13].

2. Our second contribution is the design and implementation of a new compact
data structure for the representation of multidimensional binary matrices,
or n-ary relations. Our proposal, called Kn-tree, is a generalization of the
concepts in the K2-tree to higher dimensionality problems. We compare the
Kn-tree with similar alternatives proposed for the representation of ternary
relations using K2-trees, namely the MK2-tree and the IK2-tree, originally
designed to represent RDF databases [ÁGBF+14]. We compare our proposal
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with these alternatives and study the strengths of each of them and their
applicability to different problems. Finally, as a proof of concept of our
analysis we apply a K3-tree (a Kn-tree specific for 3-dimensional problems) to
the representation of temporal graphs. As part of this experiment we devise
a variant of the IK2-tree, called diff-IK2-tree, that is a contribution in itself
since it saves much space in comparison with the IK2-tree when the ternary
relation has some regularities, providing an interesting space/time tradeoff.
The Kn-tree data structure and its first applications to spatial data were
published in the 20th String Processing and Information Retrieval Symposium
(SPIRE 2013) [dBAGB+13]. The IK2-tree and our variant diff-IK2-tree for
temporal graphs were published in the Data Compression Conference (DCC
2014) [ÁGBdBN14].

3. Our third contribution is the design and implementation of a compact
representation of multidimensional matrices with efficient support for top-k
queries. Our new data structure is called K2-treap and provides an efficient
mechanism to compactly store information in multidimensional databases,
supporting general top-k queries or range-restricted top-k queries. We
experimentally evaluate our representation in comparison with a state-of-the-
art representation based on wavelet trees as well as a simpler representation
based on K2-trees, showing that our data structure is able to overcome
state-of-the-art approaches in most cases. A preliminary version of this
contribution was published in the 21st String Processing and Information
Retrieval Symposium (SPIRE 2014) [BdBKN14].

4. Our fourth contribution, covered in Part II, is the design, implementation
and experimental evaluation of new dynamic data structures for the compact
representation of dynamic binary relations. Our proposal, the dK2-tree or
dynamic K2-tree, is a dynamic version of the K2-tree that supports all
the query algorithms provided by static K2-trees and at the same time
supports update operations over the binary matrix, namely changing the
value of existing cells and adding/removing rows/columns of the matrix. We
experimentally evaluate our proposal to show it has a small space overhead
on top of the static representation. Additionally, we experimentally evaluate
different query algorithms in static and dynamic K2-trees to show that the
time overhead due to the dynamic implementation can be very small in many
real-world queries. Using the dK2-tree as a basis we devise new dynamic
representations of RDF graphs, temporal graphs and raster data and we
experimentally evaluate all of them to show that the overhead required by the
dynamic representation is reasonable in most cases. The new data structure
was presented in a preliminary form in the Data Compression Conference
(DCC 2012) [BdBN12].

5. Our fifth contribution is the design, implementation and experimental



4 Chapter 1. Introduction

evaluation of new representations to solve different problems in GIS related
to the storage and querying of raster data. We can divide this contribution
in three, since we study three different problems:

(a) We design techniques for the compact representation of general raster
data (non-binary raster images) using proposals based on the previous
contributions. From this research two new data structures are created,
the AMK2-tree1 (a variant of the MK2-tree specific for this problem)
and the IK2-tree1 (combination of the IK2-tree and our first contribution
the K2-tree1). We also study the application of other of our proposals,
including a K3-tree. All our representations are compact data structures
that support efficient navigation in compressed form, requiring less space
than state-of-the-art alternatives and being able to work efficiently in
main memory.

(b) We design techniques for the compact representation of temporal raster
data (moving regions) using similar proposals to those in the previous
contribution. We develop specific algorithms to answer spatio-temporal
queries in our proposals, and we experimentally evaluate all of them in
this new context, showing that they are very compact and still able to
efficiently answer relevant queries.

(c) We present new algorithms to simultaneously query (join queries) raster
datasets stored using our compact data structures and vectorial datasets
stored using an R-tree. We study the problem in binary rasters (using the
K2-tree1), showing that our algorithm significantly reduces the number
of accesses required in the R-tree. We also extend our evaluation to
general rasters (using an AMK2-tree1 to represent the raster data),
where our experimental evaluation shows that our representation requires
less space and is faster than simpler algorithms based on sequential
traversals of the raster dataset.

Preliminary versions of some of the proposals for the representation of general
raster data have been published in the 20th String Processing and Information
Retrieval Symposium (SPIRE 2013) [dBAGB+13].

1.3 Structure of the Thesis

First, in Chapter 2, we introduce some basic concepts about data compression and
succinct data structures, along with different well-known universal compression
techniques. Then, in Chapter 3, we introduce several data structures that are
extensively used and referred to throughout this thesis, particularly a compact
representation of grids called K2-tree. After this, in Chapter 4 we introduce
basic concepts in different domains where our representations will be applied: the
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representation of time-evolving or temporal graphs, the representation of RDF
graphs and the representation of spatial and spatio-temporal data in Geographic
Information Systems, focusing mostly in the raster model of representation and
existing proposals for the representation of raster images.

After these introductory chapters, the contributions of the thesis are grouped in
three main parts:

• Part I explains the new data structures developed for the compact represen-
tation of static multidimensional data, including binary and n-ary relations:

– Chapter 5 introduces our proposals for the compact representation of
binary matrices. Several representations are proposed for the compact
representation of binary matrices taking advantage of the clusterization
of regions of 0s and 1s. Our proposals can be seen as an evolution of
the K2-tree, and they are compared with original K2-trees and among
themselves to show their application in different contexts. Considering
the representation of binary raster images as the key application domain,
our proposals are compared also with other existing representations to
show their compression properties and query efficiency.

– Chapter 6 introduces alternative approaches for the representation of
ternary or n-ary relations. We introduce the Kn-tree, a new compact
data structure to represent n-ary relations. We also study existing
alternatives, also based on the K2-tree, called MK2-tree and IK2-
tree. As a proof of concept, we propose approaches for the compact
representation of temporal graphs using a Kn-tree and a new variant of
the IK2-tree proposed in this thesis, to study the differences between
them, and we compare them with existing alternatives to show their
applicability.

– Chapter 7 introduces the K2-treap, a data structure for the compact
representation of multidimensional grids with efficient support of top-k
queries and range-restricted top-k queries (or prioritized range queries).
Several proposals are introduced for the representation of general
multidimensional datasets as well as for taking advantage of regularities
in the data, particularly clusterization of values.

• Part II presents a new data structure called dynamic K2-tree (dK2-tree) that
can compactly represent binary relations while supporting different update
operations:

– Chapter 8 details the dK2-tree data structure and the implementation of
query and update algorithms on top of the dynamic representation and
provides an experimental evaluation of the data structure, comparing its
space and query efficiency with the equivalent static representation and
testing its update capabilities.
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– Chapter 9 presents an experimental evaluation of the dK2-tree in
comparison with the static K2-tree in different domains where the K2-
tree has already been used: RDF databases, raster images and temporal
graphs. The comparison is focused on the space and time overhead
required by the dK2-tree to answer the same queries, and its efficiency
compared with existing alternatives.

• Part III presents the application of our proposals to the representation of
raster data in Geographic Information Systems:

– Chapter 10 introduces new proposals for the compact representation of
general raster images, including direct applications of the different data
structures presented in Part I and new variants of previous contributions
especially designed for this problem. An experimental evaluation of
the proposals is presented, providing a comparison with state-of-the-art
alternatives.

– Chapter 11 presents data structures for the compact representation
of time-evolving region data, or multiple overlapping binary images.
Again, the proposals introduced in this chapter are variants of the
data structures in Part I especially tuned to support the typical queries
over spatio-temporal data. An experimental evaluation of the different
proposals is presented, and a comparison with alternative representations
is provided.

– Chapter 12 introduces new algorithms to simultaneously query a raster
dataset represented using our proposals and a vectorial dataset repre-
sented using an R-tree index. We provide an algorithm for binary rasters
and another for general rasters, and we experimentally evaluate both of
them to show the ability of our proposal to reduce the number of accesses
to the R-tree representation and its efficiency in comparison with simpler
algorithms based on uncompressed representations of the raster dataset.

Finally, the thesis is completed in Part IV, that summarizes the contributions of
all our work and gives a general overview on future lines of research. Appendix A
also shows a list of international publications and other research activities related
to this thesis.



Chapter 2

Basic Concepts

In this thesis we propose new compressed data structures for the compact
representation of information in different domains. In order to understand many
concepts used in the thesis we need to introduce some basic concepts about
compression and information retrieval. In addition, the data structures we propose
make use of existing, well-known succinct data structures, hence we also need to
introduce some of these data structures for a better understanding of our proposals.

This chapter presents some of the basic concepts that are needed for a better
understanding of the data structures in this thesis. Sections 2.1 and 2.2 introduce
some concepts related with Information Theory in order to understand the basis of
Data Compression, and some popular compression techniques. Sections 2.3 and 2.4
introduce succinct data structures and describe existing static and dynamic succinct
data structures to solve rank and select operations in binary and general sequences
and binary relations.

2.1 Information Theory and data compression

2.1.1 Basic concepts on Information Theory

Information Theory deals with transmission of information through communication
channels. Shannon’s work [SW49] is considered to be the basis of the field and
provides many interesting concepts that are widely used nowadays. The goal of
Information Theory is to measure the information considering the minimum amount
of space required to encode it.

Given a discrete random variable X with domain dX and probability mass
function P (X), the amount of information or “surprise” associated with an outcome
x ∈ dX is defined by the quantity I(x) = 1

log P (x) . The idea behind this formula
is that outcomes that are more likely to appear contain a smaller amount of

7
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information. For example, if P (x) = 1 no information is obtained from the outcome
because the result was already expected. On the other hand, if P (x) is close to 0,
the outcome is a “surprise” and therefore the amount of information in the outcome
is large.

The entropy of X is a measure of the expected amount of surprise in X . It is
defined as:

H(X) = E[I(X)] =
∑

x∈dX

P (x) log2

1
P (x)

,

where I is the amount of information or information content described above.
Essentially, the entropy H(X) measures the average amount of information that
can be obtained from each outcome of the random variable.

A code C of X is a mapping from elements in dX (source symbols) of X to
sequences in a target alphabet D. Hence, a code determines how each source symbol
is transformed into a sequence of symbols d1 . . . dl, di ∈ D. For each symbol x ∈ dX ,
the codeword C(x) returns the encoding of x according to C. A usual target alphabet
is D = 0, 1, so that codes using this target alphabet encode each symbol as a
sequence of bits. In the general case, the code can yield sequences of symbols in
any alphabet: for example, in many codes the alphabet is D = 1, . . . , 256. The
size of the target alphabet |D| determines the number of bits that are required
to represent each symbol in D: for instance, if the target alphabet is binary each
symbol is represented using a single bit (log2 |D|) and the code is said to be bit-
oriented, while a target alphabet of 256 symbols requires log2 256 = 8 bits (1 byte)
to represent each output symbol, and the code is called a byte-oriented code.

A message is defined as a sequence of source symbols x1x2 . . . xn. The encoding
process of the message consists of applying the code to each symbol in the message
and concatenating all the resulting codewords. The result of the encoding is the
sequence of target symbols C(x1)C(x2) . . . C(xn). The decoding process is the
reverse process, that obtains the source symbol corresponding to each codeword
to rebuild the original message.

A code is called a distinct code if the mapping of two different source symbols
is always different, that is, ∀x1, x2 ∈ dX , x1 6= x2 → C(x1) 6= C(x2). A code is
uniquely decodable if every codeword is identifiable from a sequence of codewords.
A uniquely decodable code is called a prefix code if no codeword is a proper prefix
of any other codeword. Prefix codes are instantaneously decodable, that is, each
time a codeword is found we can know its value without reading further symbols,
hence any encoded message can be decoded without performing any lookahead. An
instantaneously decodable code is an optimal code if, given the source symbols
and their probabilities, the code has the minimum average code length among all
instantaneously decodable codes.
Example 2.1: Consider the source alphabet Γ = {a, b, c} and the following
encodings:
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C1 C2 C3

a↔ 0 a↔ 00 a↔ 0
b↔ 10 b↔ 01 b↔ 10
c↔ 1 c↔ 011 c↔ 11

The code C1 is a distinct code but not uniquely decodable, because the sequence 10
can be decoded as b or as ca. C2 is a uniquely decodable, but it is not instantaneously
decodable, since the sequence 01 can be decoded as b or c depending on the next
bit (we need to perform lookahead). C3 is a prefix code, since no code is prefix of
any other. As a consequence of this, it is also instantaneously decodable: given
any input sequence, we can immediately decode each new symbol as we read the
encoded input.

2.1.1.1 Entropy in Context-dependent Messages

Symbols can be encoded based on their context. In general, the probability of a
symbol can be modeled taking into account the symbols that have appeared before
it. The context of a source symbol x is a fixed-length sequence of source symbols
preceding x. The length m of this sequence, also called length of the context,
determines the order of the model. The entropy can be defined depending on the
order of the model. Considering a source alphabet of size n, formed by symbols
s1, . . . , sn, the kth-order model entropy is denoted Hk and is defined as follows:

• Base-order models consider that all source symbols are independent and
equally like to occur. The entropy for these models is denoted as H−1, results
H−1 = log2 n.

• Zero-order models assume that source symbols are still independent, but with
different number of occurrences. In this case, the zero-order entropy is defined
as H0 = −

∑n
i=1 p(si) log|D| P (x).

• First-order models consider the probability of occurrence of a source symbol
sj conditioned by the symbol si (psj |sy

). The entropy is obtained as H1 =
−

∑n
i=1 p(si)

∑n
j=1 Psj |si

log|D|(Psj |si
).

• Second-order models obtain the probability of occurrence of a source symbol
sk conditioned by the previous occurrence of the sequence sisj (that is,
Psk|sjsi

). Hence, for these models, the entropy is computed as H2 =
−

∑n
i=1 p(si)

∑n
j=1 Psj |si

∑n
k=1 log|D|(Psk|sj ,si

).

• Higher-order models work in a similar way, considering the probability of the
current symbol conditioned by the previous k symbols.
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2.1.2 Data Compression: basic concepts

Data compression is a ubiquitous problem in computer science. Compression tech-
niques are used nearly everywhere to allow the efficient storage and manipulation
of large datasets. The huge amount of data (in the form of text, image, video, etc.)
that has to be processed and transmitted everyday makes clear the necessity of
compression techniques that reduce the size of the data for a more efficient storage
and transmission.

Compression is strongly related with entropy. Given a message, the goal of
compression is to reduce its size while keeping all the information it carries. Entropy
represents the average space required to store a symbol from a given source. Hence,
the goal of compression is to minimize the space required in addition to the entropy
of the source, that represents the theoretical minimum. The difference between the
length of a given code and the entropy of the source is called redundancy. Given a
message and a code C, and let us call l(ci) the length of the codeword ci assigned
to the source symbol si, then the redundancy is described as:

R =
∑

x ∈ dXp(x)l(ci)−H =
n

∑

i=1

p(x)l(ci)−
n

∑

i=1

−p(x) log|D| p(x)

According to this formula, the redundancy of a code for a given source is
minimized reducing the average codeword length. A code is called a minimum
redundancy code if it has the minimum possible average codeword length.

2.1.2.1 Classification of compression techniques

Compression requires two different steps: an “encoding” step transforms a message
into a “compressed” version, and a “decoding” step allows us to retrieve the original
message (or an approximate version of the original message) from the compressed
version. We distinguish two main categories of compression methods according to
the result of compression/decompression:

• Lossy compression applies a transformation to the original message that
is not reversible. Using lossy compression it is impossible to recover the
original message from the compressed version, and a “similar” message may
be obtained instead. Lossy compression is widely used for the compression
of audio, images and video, since a similar version of the original suffices
in many cases for the receiver of the data. Examples of lossy compression
techniques are JPEG1, the basis of the JPG file format, and the MPEG family
of standards2 used in audio (.mp3) and video (.mpg) files.

• Lossless compression is completely invertible: from the encoded message
we can recover the original message. This is the usual approach in text

1http://www.jpeg.org/jpeg
2http://mpeg.chiariglione.org/
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compression. We will focus in this section in lossless compression techniques
usually applied to text compression.

We can categorize compression techniques according to the model used for
compression or according to how the encoding process is realized. According to
the model used we distinguish 3 categories of techniques:

• Static or non-adaptive models. In these models source symbols are assigned
predefined codes, that are completely independent of the message. Although
these codes can be obtained from a previous study of probability distribution
for similar messages, there is no guarantee that the predefined frequency
distribution will fit the current message. These techniques are simple to
implement, but the compression obtained is usually poor. The Morse code is
an example of static model.

• Semi-static models. In these models the encoding is adapted to the frequency
distribution of the source. Usually in these models encoding is performed in
two steps (two-pass techniques): in a first step, the message is scanned and
the frequency distribution of the symbols in the source alphabet is computed.
Then, codewords are assigned to each symbol in the source alphabet attending
to the frequency distribution. In a second pass, the message is processed again,
replacing each source symbol with the corresponding codeword. The encoded
message must contain, in addition to the sequence of codewords, the mapping
between source symbols and codewords. Semi-static techniques can obtain
much better compression than static models. As a counterpart, semi-static
techniques need to know and process the complete message before compression
can start, so they are not suitable for the compression of data streams. Some
representative semi-static compression techniques are Huffman codes [Huf52]
or End-Tagged Dense Code (ETDC) and (s, c)-Dense Code, from the family
of Dense Codes [BFNP05].

• Dynamic of adaptive models. These methods, also known as one-pass
techniques, encode the message in a single pass over the text without
preprocessing it. To do this, dynamic methods usually start with an empty
vocabulary, or empty matching between symbols and codewords, and update
their vocabulary as they process new symbols in the message. Each time
new symbols appear, they are added to the vocabulary, and the frequency
distribution of the previously found symbols can be updated with each new
symbol, adapting the encoding process to the content of the message. In
these techniques the compressor and decompressor must define strategies for
updating the vocabulary that allow the decoder to rebuild the vocabulary used
by the encoder from the encoded sequence. To do this, the encoder and the
decoder usually share the same representation of the vocabulary and the same
update algorithms. In addition, new symbols or changes in the vocabulary
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can be added to the encoded sequence so that the decoder can update its
representation. Examples of dynamic or adaptive models are the Lempel-Ziv
family [ZL77, ZL78, Wel84], Prediction by Partial Matching [CW84] (PPM)
and arithmetic coding [Abr63, WNC87, MNW98]. The Dynamic ETDC and
Dynamic (s, c)-Dense Code, from the family of Dense Codes [BFNP05], also
use adaptive models.

According to how the encoding process is performed, we distinguish two main
families of techniques:

• Statistical techniques: these methods assign a codeword to each source
symbol whose length depends on its probability. Compression is achieved
by assigning shorter codewords to more frequent symbols. Well-known
statistical compressors are Hufmman codes [Huf52], Dense Codes [BFNP05],
and arithmetic codes [Abr63, WNC87, MNW98].

• Dictionary techniques: these techniques use a dictionary of substrings that is
built during compression. Sequences of source symbols are then replaced (en-
coded) by small fixed-length pointers to an entry in the dictionary. Therefore,
compression is obtained as long as large sequences are substituted by pointers
with less space requirements. The Lempel-Ziv family of compressors are the
main example in this category [ZL77, ZL78, Wel84].

2.2 Popular compression techniques

In this section we describe some compression techniques that are widely used, either
alone or in combination with other methods. These compression techniques are
frequently used as the building block of many compact representations. All the
compression techniques introduced in this chapter are lossless techniques.

2.2.1 Run-Length Encoding

Run-Length encoding (RLE) is a classic and simple compression technique. A
message is encoded representing sequences of equal symbols with a representation
of the symbol and the number of repetitions of the symbol. For example, given
a message aaabbbbbaaaccccbbbb, a run-length encoding of the message would be
3a5b3a4c4b (3 a’s, 5 b’s, 3 a’s, and so on).

Even though RLE is an extremely simple encoding that only takes advantage
of repetitions of identical symbols (also known as runs), it is widely used for
compression in different domains due to its simplicity. It is particularly useful
to compress binary data where long runs of 1s and 0s are expected. Because of
this, RLE is used as a simple compression technique for bitstrings in the field of
compressed data structures, and for the compression of black and white images
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Figure 2.1: Example of Huffman tree.

in multiple standards for binary image compression in fax machines, usually in
combination with other techniques.

2.2.2 Huffman

The classic Huffman encoding [Huf52] is one of the best-known compressors, with
many applications to compression of text, images, etc. It is a statistical semi-static
compressor. An important characteristic of Huffman encoding is that Huffman
codes are optimal prefix codes for any source. The process to generate the codewords
for a set of source symbols, given their frequency distribution, is based on the
construction of a binary tree. Each node in this tree, known as Huffman tree, will
have either 0 or 2 children. The Huffman tree is built from the leaves to the root
as follows: first, a node is created for each source symbol, and the frequency of the
source symbol becomes the weight of the node. Then, the two nodes with lower
weight are selected and a new internal node is added to the tree containing those
nodes as children. The weight of the new node will be the sum of its children’s
weights. In the next iterations the nodes already merged will not be considered:
instead we will consider the new created node. The process continues merging the
two nodes with smaller weight until all nodes are merged and the Huffman tree is
complete. Once the tree is created, codewords are assigned to source symbols (leaf
nodes) according to their path in the tree (a left branch is a 0, a right branch is a
1). Because nodes with smaller weight (less frequency) are merged first, they will
belong to lower levels of the tree, and therefore have longer codewords.

Figure 2.1 shows an example of Huffman tree built for an alphabet {a, b, c, d, e}.
In the first step, nodes e and d are combined. The new node has weight 0.2. In
the second step, nodes b and c have the smallest weight, so they are combined to
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create another internal node with weight 0.3. Then, the two newly-created internal
nodes are merged, and finally node a is merged with the rest of the tree. The final
Huffman codes would be a ↔ 0, b ↔ 100, c ↔ 101, etc. Notice that when several
nodes have the same weight we can choose different methods for generating the
Huffman tree, what would lead to different codes.

A Huffman-encoded message must include, in addition to the sequence of
codewords, the shape of the Huffman tree created from the source symbols. Using
this information, the decompressor is able to decode the symbol from the codeword:
each time it reads a bit, it advances on the huffman tree (left if the bit was 0, right
otherwise). When a leaf is reached, the codeword is translated into the symbol
associated to the leaf, and the decoder moves back to the root of the Huffman tree.

2.2.3 The Lempel-Ziv family

The Lempel-Ziv compressors are probably the best-known and more used dictionary-
based and adaptive compressors. LZ77 [ZL77] and LZ78 [ZL78] are the basis of
widely used compressors such as gzip3 and p7zip4. LZW [Wel84] is a variant of
LZ78 that is used in Unix’s compress and the GIF image format among others.
This family of compressors does not achieve in general the best compression values,
being worse that other adaptive techniques like arithmetic encoding. Their main
advantage is their compression and decompression speed, and particularly their
fast decompression speed is one of the reasons of their wide use in general-use
compressors and file formats.

Even though the complete family of compressors is widely used, we will describe
only the LZW that will be referred to later in this thesis. LZ77 and LZ78 are similar
in the basics but they differ in the way the dictionary is built and how the output
is created.

LZW is a widely used variant of LZ78. It uses a dictionary containing substrings
of the source message previously encoded. First, the dictionary is initialized to
contain all the symbols in the source alphabet. Because all the symbols are initially
in the dictionary, LZW output will consist entirely of pointers to dictionary entries
(that is, it does not need to output symbols). Compression is performed reading the
source message from left to right. At each compression step, LZW reads the source
message while there is a matching sequence in the vocabulary. When a non-matching
symbol is found, LZW outputs the entry in the dictionary that corresponds to the
longest matching sequence, and adds to the dictionary the result of concatenating
the next symbol to the matching sequence. The next processing step will start at
the non-matching symbol.

3http://www.gzip.org
4http://www.7-zip.org
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Input Next symbol Output Dictionary

entry0 = a

entry1 = b

entry2 = c

a b 0 entry3 = ab

b a 1 entry4 = ba

ab a 3 entry5 = aba

ab b 3 entry6 = abb

b b 1 entry7 = bb

b c 1 entry8 = bc

c a 2 entry9 = ca

ab c 3 entry10 = abc

c ∅ 2 –

Table 2.1: Compression of the message abababbbcabc using LZW.

Table 2.1 shows the compression steps in LZW and the evolution of the
dictionary entries for the message abababbbcabc. Notice that the dictionary is
initialized to store all the symbols in our source alphabet Σ = {a, b, c}. In the first
processing step, we read the input message until we find a non-matching sequence.
Since our vocabulary consists only of symbols, the longest matching sequence will be
“a”, located at entry0 in the vocabulary, and the non-matching symbol (next symbol)
will be b. Hence we output 0, the position of the sequence a in the vocabulary, and
add to the vocabulary the entry ab, resulting from concatenating entry0 with the
next symbol b. The next processing step would start from the symbol read in the
previous step, the b symbol at the second position. Table 2.1 shows the complete
process for the message, that repeats the basic step until until the complete message
has been processed.

The maximum size of the dictionary and the strategy used to add/replace
substrings to it is a key element in LZW. Once the maximum dictionary size is
reached, we can choose between multiple alternatives: not allowing new entries and
continue compression with the current one, using a least recently used (LRU) policy
to determine which entries of the dictionary may be removed to add the new ones,
dropping the current dictionary and building a new (empty) one, etc.

2.2.4 End-Tagged Dense Code and (s,c)-Dense Code

End-Tagged Dense Code (ETDC) [BINP03, BFNP07] is a semi-static statistical
byte-oriented encoder/decoder. It is a simple encoding method that achieves very
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good compression and decompression times while keeping similar compression ratios
to those obtained by Plain Huffman [SdMNZBY00], the byte-oriented version of
Huffman that obtains optimum byte-oriented prefix codes.

Consider a sequence of symbols S = s1 . . . sn. In a first pass ETDC computes the
frequency of each different symbol in the sequence, and creates a vocabulary where
the symbols are placed according to their overall frequency in descending order.
ETDC assigns to each entry of the vocabulary a variable-length code, that will be
shorter for the first entries of the vocabulary (more frequent symbols). Then, each
symbol of the original sequence is replaced by the corresponding variable-length
code.

The key idea in ETDC is to mark the end of each codeword (variable-length
code): the first bit of each byte will be a flag, set to 1 if the current byte is the
last byte of a codeword or 0 otherwise. The remaining 7 bits in the byte are used
to assign the different values sequentially, which makes the codeword assignment
extremely simple in ETDC. Consider the symbols of the vocabulary, that are stored
in descending order by frequency: the first 128 (27) symbols will be assigned 1-byte
codewords, the next 1282 symbols will be assigned 2-byte codewords, and so on.
The codewords are assigned depending only on the position of the symbol in the
sorted vocabulary: the most frequent symbol will have code 10000000, the next
one 10000001, and so on, until 11111111 (that is, sequential numbers using the
rightmost 7 bits in the byte, while the first bit is a flag to mark that this codeword
only contains a single byte). After them will come the 2-byte codewords, starting
with 00000000 10000000, 00000000 10000001 and so on (notice the flag is set to
0 in the first byte to mark that the codeword continues). Table 2.2 shows the
complete code assignment for each symbol depending on its position.

The simplicity of the code assignment is the basis for the fast compression
and decompression times of ETDC. In addition, its ability to use all the possible
combinations of 7 bits to assign codewords makes it very efficient in space. Notice
also that ETDC can work with a different chunk size for the codewords: in general,
we can use any chunk of size b, using 1 bit as flag and the remaining b − 1 bits
to assign codes, hence having 2b−1 codewords of 1 chunk, 22(b−1) codewords of 2
chunks and so on. Nevertheless, bytes are used as the basic chunk size (b = 8) in
most cases for efficiency.

Example 2.2: Consider the sequence afadabaccaadaabbbbabae, and consider for
simplicity that we use a “chunk size” of 3 bits (i.e. b = 3). To represent the sequence
using ETDC we sort the symbols according to their frequency a(10) > b(6) > c(2) >
d(2) > e(1) > f(1) (the order of symbols with the same frequency is not important).
The most frequent symbols would be assigned sequential 1-chunk codes: a ↔ 100,
b ↔ 101, c ↔ 110, d↔ 111. The less frequent symbols would be assigned 2-chunk
codes: e↔ 000100, f ↔ 000101.
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Position Codeword length

0 10000000 1

27

1 10000001 1
2 10000010 1

. . . . . . . . .
127 (27 − 1) 11111111 1

128 (27) 00000000 10000000 2

27 × 27

129 00000000 10000001 2
. . . . . . . . .
255 00000000 11111111 2
256 00000000 10000000 2
257 00000000 10000001 2
. . . . . . . . .

65511 00000000 10000001 2

65512 00000000 00000000 10000000 3

(27)3

65512 00000000 00000000 10000001 3
. . . . . . . . .

Table 2.2: ETDC codeword assignment.

(s, c)-Dense Code. The flag used in ETDC to mark the end of a codeword
means that ETDC uses 128 (2b−1) values (from 0 to 127) to represent symbols
that do not end a codeword, called continuers (c), and other 128 values (from 128
to 255) for symbols that end a codeword, called stoppers (s). An enhancement
(or generalization) of ETDC has been proposed where the number of stoppers and
continuers can be any value as long as s + c = 2b. This proposal, called (s,c)-Dense
Code or (s,c)-DC [BFNP07] considers that all the bytes with values between 0 and
s are stoppers, while the remaining bytes are continuers. The codeword assignment
is very similar to ETDC: the first s words are given one-byte codewords, words in
positions s to s + sc− 1 are given two-byte codewords, etc.

2.2.4.1 Dynamic End-Tagged Dense Code

Dynamic End-Tagged Dense Code (DETDC [BFNP05]) is an adaptive (one-pass)
version of ETDC that is also generalized to a Dynamic (s, c)-DC. As an adaptive
mechanism, it does not require to preprocess and sort all the symbols in the sequence
before compression. Instead, it maintains a vocabulary of symbols that is modified
according to the new symbols received by the compressor.

The solution of DETDC for maintaining an adaptive vocabulary is to keep the
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vocabulary of symbols always sorted by frequency. This means that new symbols
are always appended at the end of the vocabulary (with frequency 1), and existing
symbols may change their position in the vocabulary when their frequency changes
during compression.

The process for encoding a message starts reading the message sequentially.
Each symbol read is looked up in the vocabulary, and processed depending on
whether it is found or not:

• If the symbol is not found in the vocabulary it is a new symbol, therefore it is
appended at the end of the vocabulary with frequency 1. The encoder writes
the new codeword to the output, followed by the symbol itself. The decoder
can identify a new symbol because its codeword is larger than the decoder’s
vocabulary size, and add the new symbol to its own vocabulary.

• If the symbol is found in the vocabulary, the encoder simply writes its
codeword to the output. After writing to the output, the encoder updates
the frequency of the symbol (increasing it by 1) and reorders the vocabulary
if necessary. Since the symbol frequency has changed from f to f + 1, it is
moved to the region where symbols with frequency f + 1 are stored in the
vocabulary. This reordering process is performed swapping elements in the
vocabulary. The key of DETDC is that the encoder and the decoder share
the same model for the vocabulary and update their vocabulary in the same
way, so changes in the vocabulary during compression can be automatically
performed by the decoder using the same algorithms without transmitting
additional information.

ETDC stores a hash table H that contains all the symbols in the vocabulary.
For each symbol, its value, current frequency and position in the vocabulary are
stored in a node of the hash table. In addition, an array posInH contains an entry
for each symbol in the vocabulary, sorted in descending order by frequency. Each
entry in posInH is a pointer to the entry of the hash table that contains the symbol.
Finally, another array top is used: top[i] contains the position in the vocabulary of
the first symbol with frequency i.

Let n be the current size of the vocabulary (initially n = 0). To encode a symbol,
the encoder first looks up the symbol in H . If it does not exist, it is inserted in
H with frequency f = 1, posInH [n] is updated to point to the new entry and n is
increased by 1. If the symbol already existed in H , let f be its previous frequency
and p its position: the encoder first encodes the symbol and then increases its
frequency to f + 1 in H . Then the positions p and top[f ] are swapped in posInH
(that is, we swap the current symbol with the first element of the vocabulary with
frequency f), and the value of top[f ] is increased by 1. In this way, the new top
value still points to the first element with frequency f , and the symbol encoded is
now in the region of symbols with frequency f + 1 (it is actually the last symbol in
that region).
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DETDC and its variants are able to obtain very good results to compress natural
language texts, obtaining compression very close to original ETDC without the first
pass required by the semi-static approach.

2.3 Succinct data structures

Succinct data structures aim at representing data in space close to the information-
theoretic lower bound while still being able to efficiently solve the required
operations over the data. The reduced space achieved by succinct data structures
allows them to work in faster levels of the memory hierarchy. Even though
algorithms to access succinct data structures are usually more complex, their
reduced space allows them to provide efficient access times, even surpassing the
results of simpler compressed or uncompressed representations. A lot of work has
been devoted to obtain succinct representations of trees [Jac89, MR97, FM11],
texts [GGV03, FM05], strings [GGV03, GMR06, HM10], graphs [Jac89, MR97,
FM08], etc.

2.3.1 Rank and select over bitmaps

One of the first presented succinct data structures consisted of bit vectors
(often referred to as bitmaps, bit strings, etc.) supporting rank and select
operations [Jac89]. These basic operations constitute the basis of many other
succinct data structures.

Let be B[1, n] a binary sequence of size n. Then rank and select are defined as:

• rankb(B, p) = i if the number of occurrences of the bit b from the beginning
of B up to position p is i.

• selectb(B, i) = p if the i − th occurrence of the bit b in the sequence B is at
position p.

Given the importance of these two operations in the performance of other
succinct data structures, like full-text indexes [NM07], many strategies have been
developed to efficiently implement rank and select.

Jacobson [Jac89] proposed an implementation for this problem able to compute
rank in constant time. It is based on a two-level directory structure. The first-
level directory stores rankb(B, p) for every p multiple of s = ⌊log n⌋ ⌊log n/2⌋. The
second-level directory holds, for every p multiple of b = ⌊log n/2⌋, the relative rank
value from the previous multiple of s. Following this approach, rank1(B, p) can
be computed in constant time adding values from both directories: the first-level
directory returns the rank value until the previous multiple of s. The second-level
directory returns the number of ones until the previous multiple of b. Finally, the
number of ones from the previous multiple of b until p is computed sequentially
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over the bit vector. This computation can be performed in constant time using a
precomputed table that stores the rank values for all possible block of size b. As a
result, rank can be computed in constant time. The select operation can be solved
using binary searches in O(log log n) time. The sizes s and b are carefully chosen
so that the overall space required by the auxiliary dictionary structures is o(n):
O(n/ log n) for the first-level directory, O(n log log n/ log n) for the second-level
directory and O(log n log log n) for the lookup table. Later works by Clark [Cla96]
and Munro [Mun96] obtained constant time complexity also for the select operation,
using additional o(n) space. For instance, Clark proposed a new three-level directory
structure that solved select1, and could be duplicated to also answer select0.

The previous proposals solve the problem, at least in theory, of adding rank and
select support over a bit vector using o(n) additional bits. However, further work
was devoted to obtain even more compressed representations, taking into account
the actual properties of the binary sequence [Pag99, RRR02, OS07]. Pagh [Pag99]
splits the binary sequence into compressed blocks of the same size, each of which
is represented by the number of 1 bits it stores, and the number corresponding to
that particular subsequence.

Raman et al. [RRR02] represent the compressed binary sequence as a collection
of blocks of size u = log n

2 . Each block is encoded as a pair (ci, oi), where ci

indicates the number of 1 bits it contains (the class of the block), and oi, represents
the offset of that block inside the sorted list of blocks with ci 1s. In this way, blocks
with few (or many) 1s require shorter identifiers and the representations achieves
the zero-order entropy of the binary sequence. This approach supports rank and
select in constant time for both 0 and 1 bits, but is more complex than previous
representations.

Okanohara and Sadakane [OS07] propose several practical alternatives. Each
of their variants has different advantages and drawbacks and may be applied in
different cases.

Another alternative study, called gap encoding, aims to compress the binary
sequences when the number of 1 bits is small. It is based on encoding the distances
between consecutive 1 bits. Several developments following this approach have been
presented [Sad03, GGV04, BB04, GHSV06, MN07].

2.3.2 Rank and Select over Arbitrary Sequences

The operations rank and select have been extended to sequences of symbols. Given
a sequence S = s1s2 . . . sn of symbols from an alphabet Σ, rank and select can be
described as:

• ranks(S, p) is the number of appearance of symbol s in S until position p.

• selects(S, i) is the position of the i-th occurrence of symbol s in S.
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The sampling solutions proposed for bitmaps are difficult to use here, so the
typical solution to provide rank and select in sequences over general alphabets is
to reduce the problem to rank and select on bitmaps. A trivial solution would
be to build a bit vector for each s ∈ Σ, thus being able to solve ranks(S, p) and
selects(S, i) in constant time using any of the solutions for bitmaps. However, this
solution is unfeasible for general sequences as it would require n × |Σ| bits, much
more than the size of the sequence.

2.3.2.1 Wavelet Trees.

The wavelet tree [GGV03] is a data structure that allows us to compute rank and
select over arbitrary sequences of symbols. A wavelet tree is simply a balanced
binary tree that stores a bit vector Bv in each node v. The root of the tree contains a
bitmap Broot of length n, where n is the length of the sequence. Broot[i] will be set to
0 if the symbol at position i in the sequence belongs to the first half of the alphabet,
and 1 otherwise. Now the left child of the root will process the symbols of the first
half of the alphabet, and the right child will contain the others. The same process
is applied recursively in both children, halving the alphabet at each step. The
decomposition ends when the alphabet cannot be subdivided. Figure 2.2 shows the
wavelet tree representation for an example sequence (notice that only the bitmaps
shown for nodes N1, N2 and N3 will be actually stored, the sequences of symbols at
each node are shown only for a better understanding of the decomposition process).

Figure 2.2: Wavelet tree of the sequence abcbcaacda.

In a wavelet tree the rank and select operations over the original sequence are
solved efficiently in top-down or bottom-up traversals of the tree. Assume we want
to find, in the wavelet tree of Figure 2.2, the number of occurrences of symbol b

in the sequence until position 8 (rankb(S, 8)). We know that b belongs to the first
half of the vocabulary, so that occurrence should be a 0 in the bitmap of N1. We
compute rank0(BN1, 8) = 5, which gives us the number of elements in the left half
of the alphabet until position 8. Hence, since the left child of N1 contains only
the symbols of the left half, we move to N2 and our new position will be 5. In
N2 we repeat the binary rank operation. In this case b is in the right half of the
vocabulary of the node, so we perform rank1(BN2, 5) = 2. Since N2 is a leaf node
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we return immediately the result 2. If we want to compute selectc(S, 2) we perform
the inverse operation, a bottom-up traversal of the tree. From the position of c in
the alphabet we can know its position in the leaves of the wavelet tree. In this case,
our symbol is represented using 0s in node N3. We compute select0(BN3, 2) = 2,
which gives us the position we need to check in the upper level. When we move to
N1, we know we come from its right child, so the operation we need to compute is
select1(BN1, 2) = 5. Since we have reached the root, we have obtained the position
of the second c in S.

Many variants of the wavelet tree have been proposed to obtain better space
results. The wavelet tree can achieve the zero-order entropy of the sequence
abandoning the balanced tree representation and using instead the shape of the
Huffman tree of the sequence, or using the compressed bitmap representation of
Raman et al. in each node [GGV03, NM07]. Other representations based on the
wavelet tree have also been developed to reduce the space requirements of the tree
or improve queries [CNO15]. The wavelet tree has also been generalized to use a
a tree of arity ρ, where each node contains a sequence over a vocabulary of size ρ,
instead of the usual binary tree with bit vectors in its node. This variant, usually
called generalized wavelet tree or multi-ary wavelet tree, reduces the height of the
tree and also the query time, based on constant-time rank and select support in the
sequences of each node.

2.3.3 Compact binary relations

The compact representation of general binary relations, even in a static context,
has not received much attention until recent years. However, specific applications
of binary relations have been extensively studied. In particular, several approaches
for the representation of binary relations have been proposed using wavelet
trees [GMR06], taking advantage of the flexibility and theoretical guarantees of
this data structure.

One of the most studied methods for the compact representation of general
binary relations is the reduction of the problem to the representation of sequences.
Consider a binary relation R between a set of n objects and σ labels that contains
t pairs. Let us represent the binary relation as a binary matrix M , of size σ × n,
whose columns are the n objects and the rows the σ labels. In this matrix, a cell will
have value 1 only if the object is related with the corresponding label. Therefore,
the number of ones in M will be equal to t, the number of pairs in R. The matrix
can be represented using a bitmap B of length n + t and a string S of length t over
alphabet Σ. The bitmap B stores the number of elements in each row of the matrix
in unary. Figure 2.3 shows an example of this transformation.

Barbay et al. [BGMR07] first showed how to solve rank and select operations
on the objects and labels of the binary relation represented in this way, given that
S and B support rank and select operations themselves. Therefore, their solution
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Figure 2.3: Reduction of binary relation to strings.

provides support for a relevant set of operations in a binary relation relying on the
existing implementations of bit vectors and sequences.

The reduction of basic operations over the binary relations to operations
on S and B is quite straightforward. For instance, to retrieve all the labels
related with object 5 in the example of Figure 2.3, we simply need to access
S[select1(B, 5), select1(B, 6) − 1]. To retrieve only the second label related with
object 5 we would access directly the second element counting from select1(B, 5).
To find the number of occurrences of the label c up to position 7 we can simply
compute the number of occurrences of that symbol in S before the start of column 7:
rankc(S, select1(B, 7)− 1). More complex operations, involving for example ranges
of objects and labels, can also be performed using specific algorithms supported by
wavelet trees.

2.3.4 Maximum and top-k queries

2.3.4.1 Range minimum queries

Given a sequence of values S[1, n], range minimum (maximum) queries (RMQ) ask
for the minimum (maximum) value in a subsequence [si, se] of S. The problem
of efficiently locating the minimum/maximum for any arbitrary subsequence has
been extensively studied since it has multiple applications in more elaborate
queries. Several data structures have been proposed to compute the range
minimum/maximum in constant time using as few additional space as possible.
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Currently the best solutions to answer range minimum(maximum) queries is
able to answer queries in constant time using only 2n + o(n) bits [Fis10]. The
representation is based on a succinct tree of n nodes, that is queried to locate the
position of the minimum for any range in constant time. An important fact of this
and other RMQ data structures is that they point to the position of minimum, so
they must be stored together with the sequence if we are interested in the value of
the maximum. However, if we are interested only in the location of the maximum
we can discard the sequence and store only the RMQ data structure.

2.3.4.2 Top-k queries on sequences and grids

Top-k queries, in general, are concerned with locating the most relevant items from
a collection. Given any comparable value that estimates the relevance of an item,
a top-k query asks for the k items with higher relevance value in the collection, or
the k maximum values.

In a sequence of values, top-k queries can be answered easily using an RMQ data
structure over the sequence. The process outputs elements one by one, as follows:
first, the maximum in the range is found using the RMQ data structure and added
to a priority queue, together with the interval of which it was the maximum. Then,
elements are extracted iteratively from the priority queue. Each time an element is
extracted from the priority queue, it is emitted as a new result, and its associated
range is divided in two sub-ranges to its left and its right, computing the top
elements for each of them and adding them to to the priority queue. The process
finishes after k iterations or when the priority queue is empty.

Consider now a [m ×m] grid where each column can contain a single 1. This
grid can be represented using a wavelet tree exactly like a sequence, but in this grid
we want to answer 2-dimensional top-k queries. The top-k problem is reduced to
locating the position in the leaves of the wavelet tree where the maximum values
occur. Assume that we add RMQ data structures to all the nodes of the wavelet
tree, that will allow us to locate the position in each node where the maximum value
of the corresponding subsequence occurs. This suffices to answer 2-dimensional top-
k queries on a wavelet tree for any arbitrary range [NNR13]. First we locate all
the nodes of the wavelet tree that intersect the query range R = [x1, x2] × [y1, y2],
and the corresponding intervals in those nodes that fall within the range. Starting
at the root of the wavelet tree with the interval [x1, x2], we recursively add the
children of each tested node, keeping track of the corresponding interval in each
node that intersects with [x1, x2] and stopping traversal when this interval becomes
empty. Each leaf of the wavelet tree reached will only be considered if it intersects
the interval [y1, y2]. Once this collection of nodes is found, the process to answer
top-k queries is simple: the top element in each node is found, and the maximum
among all the nodes is selected as the first result. To compute this, the top elements
for each node are added to a priority queue, and the maximum is then extracted.
Each time an element is extracted from the priority queue, the interval where it
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was found is divided into two sub-intervals to its left and its right, and the top
elements for each of these sub-intervals is added to the priority queue. For each
result, its x and y coordinates can always be found traversing the wavelet tree up
or down in O(log m) time. It can be proved that the number of wavelet tree nodes
intersecting a range will be O(log m), so the wavelet tree is able to answer top-k
queries in O((k + log m)(log km)) time.

2.4 Succinct dynamic data structures

Many proposals exist for the succinct representation of static bit vectors, sequences,
etc. However, the development of practical and efficient dynamic versions of the
same data structures is still an open problem. In this section we will introduce
some succinct dynamic data structures proposed for the representation of dynamic
bit vectors or sequences. Some of these data structures are able to obtain in theory
optimal space and query times. Nevertheless, most of these dynamic representations
are not very practical, so practical implementations of dynamic data structures need
to build upon simpler solutions that work well in practice but do not fulfill the
theoretical optimal bounds.

2.4.1 Dynamic bit vector representations

The representation of a fully dynamic bit vector, or dynamic bit vector with indels
problem, consists of storing a bit vector B of length n, supporting the basic
operations rank, select, access as well as the following update operations:

• flip(i): change the value of the bit at position i.

• insert(i, b): insert a new bit at position i, with value b.

• delete(i): delete the bit at position i.

This problem and its simplified variants have been studied many times in the
past. The subset rank problem, that only considers rank and flip operations, was
studied in early works. A lower bound of Ω(log n/ log log n) amortized time per
operation was proved for the subset rank problem was proved in the cell probe
model of computation [FS89] and can be extended to the RAM model and the
dynamic bit vector with indels problem.

Dietz presented a first solution for the subset rank problem [Die89] as a special
case of the partial sum problem. The partial sum problem involves storing a
sequence A of length l, storing k-bit integers and supporting two operations:
sum(i), that returns

∑i
p=1 A[p], and update(p,δ), that sets A[p] = A[p] + δ for
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δ = O(logO(1) n). The subset rank problem is equivalent to the partial sum problem
with k = 1.

The main idea in Dietz’s approach is to solve the problem for “short” lists and
then build a complete solution over this. For the short lists (of size l = O(logǫ n),
where log n is the word size and 0 < ǫ < 1), the partial sums are represented using
two arrays: B stores an “old” version of the partial sums, and C stores the differences
at each position. The sum(i) operation is computed as B[j] +

∑i
p=1 C[j]. Updates

are executed in C, and the complete structure is rebuilt after l updates. The size of
the list allows C to be represented in O(logǫ n log log n) bits, so updates and sums
can be performed in constant time using table lookups with some precomputation.
For the representation of general sequences of length n, a tree with branching factor
b = Θ(logǫ n) is built and the sequence is stored in its leaves, from left to right. The
weight of a node v is defined as the sum of all the leaves in the subtree rooted at v.
At each internal node in the tree its weight is stored together with the partial sums
of the weights of its children (using the data structure for short sequences). The
height of the tree is O(log n/ log log n), and operations at each internal node can be
computed in constant time.

Raman, Raman and Rao [RRR01] propose later a solution similar to Dietz’s
but supporting also select operations. Again, they use a solution based on a
proposal for “short” lists and a b-ary tree that stores the previous structure at
each internal node to provide constant-time operations in internal nodes. Building
a tree with branching factor b = O(logǫ n) they provide support for all operations
in O(log n/ log log n) time.

Hon, Sadakane and Sun [HSS03] add insert and delete operations to those
supported by Raman et al., thus supporting the complete set of operations involved
in the dynamic bit vector. They propose a modified weight-balanced B-tree [Die89],
a tree that stores a sequence in its leaves and whose internal nodes are required to
be balanced in weight (the total number of 1s in the descendants of the node): each
internal node of the tree stores the number of 1s (LW -value) and the number of bits
(LN -value) under all its left siblings. Their proposal relies on properties of weight-
balanced B-trees to ensure succinct space and efficient query times, but this requires
the utilization of additional data structures to support constant-time rank and select
operations in the nodes of the tree. For the dynamic bit vector problem they obtain
n + o(n) bits and provide the following tradeoff: for any b = Ω(log n/ log log n)2,
they can answer rank and select in O(logb n) time, while updates require O(b) time.

Chan, Hon, Lan, Sadakane: Chan et al. [CHLS07, Section 3.1] proposed a
data structure based on a binary tree to represent a dynamic bit vector with rank
support as part of a solution for managing a dynamic collection of texts. Their
data structure is based on a binary search tree. The bit vector is partitioned into
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segments of size log n to 2 log n. The nodes of the tree will store the segments,
so that the segments read in an inorder traversal of the tree yield the original bit
vector. To support the required operations, each node of the tree stores the following
information:

• A segment of bits.

• Two integers size and sum that contain the number of bits and 1s in the
subtree.

In this tree, query operations can be performed using the size and sum counters
during traversal to locate the node for a given position and count the number of
1s to its left. The sum in each node is used to locate the node that contains a
position p, and the sum counters are used to determine the number of 1s to the
left of any node. Update operations require a search, updating a constant number
of segments and also updating the counters in the tree branch. All operations
involve at most O(log n) nodes of the tree, and using universal tables operations
in each node are constant-time. This proposal requires O(n) for the structure and
solves all operations in O(log n). Even though its space requirements are high, this
representation is used as a simple building block for more elaborate solutions (for
instance, the next proposal by Mäkinen and Navarro).

Mäkinen and Navarro enhanced Chan’s proposal to obtain a a succinct
dynamic bit vector [MN08]. They build upon a balanced binary tree storing size
and sum counters in its nodes, but propose a representation that only requires
n + o(n) bits of space using a tree with leaves of size ω(log n). This requires a
careful partition of the bit vector and additional data structures to answer queries
efficiently. The authors also propose a gap-encoded version, which allows them to
achieve the zero-order entropy of the binary sequence nH0 + o(n).

2.4.2 Dynamic sequence representations

The representation of dynamic sequences is a very studied problem because it
appears frequently in different domains, such as text compression, where the need
to efficiently process large datasets is combined with the desire to manage dynamic
datasets. In Section 2.3.2 we described how the problem of the static representation
of sequences supporting rank and select was usually based on an efficient solution
of the same problem for binary sequences (bitmaps). Something similar occurs in
the dynamic version, where the representation of dynamic sequences is also very
related with the problem of dynamic bit vectors. Several of the solutions presented
for dynamic bit vectors can be extended to handle general sequences.

The proposal of Mäkinen and Navarro [MN08] for bit vectors can be generalized
for small alphabets. To handle a general sequence, they simply reduce the problem
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to the previous one: given a sequence over a large alphabet, they build a generalized
wavelet tree where each node contains a sequence of symbols over a small alphabet
using their previous solution. Hence, the solution is essentially identical to the
process followed in static data structures: a wavelet tree is built and all operations
in the sequence are translated into a series of operations at the different levels of
the wavelet tree.

Another representation of dynamic sequences is due to Navarro and
Nekrich [NN13]. Their proposal is based on a different interpretation of the
well-known wavelet tree. They abandon the idea of performing a rank operation
per level. Instead, they track the positions that need to be accessed at each level,
thus providing a way to navigate the wavelet tree top-down or bottom-up without
actually known the rank and select values at each level. Their idea is based on
a different representation of the wavelet tree nodes. Each node is partitioned in
fixed-size blocks, and each block is represented using a special data structure that
does not actually store the bitmap. The key in their representation is that block
operations are constant-time, and they are able to compute from any block and
offset the corresponding positions in the parent/child node. Their proposal achieves
the theoretical lower bounds for access and update operations in the sequence.

2.4.3 Compact dynamic binary relations

The proposals based on wavelet trees can be made dynamic using a dynamic wavelet
tree representation to support changes in the labels/objects of the binary relation.
If B is replaced with a dynamic bit vector representation and S is represented with
a dynamic wavelet tree, we can insert easily a new pair in R. The new element
(a, b) in R will be a new entry en S, therefore the insertion of the pair requires to
insert the new label in the appropriate position in S and to increase the length of
the corresponding column in the binary matrix (insert a bit in B). New objects can
also be added very efficiently, as we only need to add a new bit to B to represent
the new column with no pairs.
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Previous work

Most of the representations proposed in this thesis are based on an existing data
structure, the K2-tree, that was originally proposed as a compact representation of
sparse graphs. The K2-tree itself and several other data structures used later in the
thesis also make use of a technique to provide direct access to sequences of variable-
length codes called Directly Addressable Codes. In this chapter we introduce
Directly Addressable Codes and the K2-tree, two data structures that are essential
to understand most of the proposals in this thesis. Section 3.1 introduces Directly
Addressable Codes, that will later be used in other data structures including the
K2-tree. Then, Section 3.2 provides a conceptual description of the K2-tree, its
structure and basic navigation algorithms, that are necessary to understand most
of the contributions in the next chapters.

3.1 Directly Addressable Codes (DAC)

Consider a sequence of symbols encoded using End-Tagged Dense Codes (ETDC),
described in Section 2.2.4: the encoded sequence is a sequence of variable-length
codes, probably smaller than the original message. However, in order to access a
specific symbol we must decode the sequence from the beginning, since we have
no way to know where the k-th symbol starts. Directly Addressable Codes [Lad11,
BFLN12](DAC) provide a way to represent the sequence using almost the same
space used by ETDC (or (s, c)-DC, from the same family of Dense Codes), but
providing efficient access to any position in the sequence.

Recall from Section 2.2.4 that codewords in ETDC were variable-length codes
of chunk size b, where a bit in each chunk was used as a marker to indicate whether
the codeword contained more chunks or not. The key idea in DAC is to separate
the chunks of the codewords using the following data structures:

• Three different arrays Li, i = 1..3 are set up, that will contain the i-th chunk

29
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Figure 3.1: Sequence of variable-length codes represented using DACs.

of each codeword (only the b− 1 bits that correspond to the offset). Each Li

will contain as many entries as codewords exist in the sequence with at least
i codewords.

• Three bitmaps Bi contain, for each chunk in Li, a bit indicating if the
corresponding codeword has more chunks or not.

Example 3.1: Figure 3.1 shows an example where a sequence S of variable-length
codes is partitioned using DACs. The sequence contains 7 variable-length codes,
each of which may contain a different number of chunks: for example, codeword 1
would consists of the chunks C11 and C12, while codeword 2 only contains a single
chunk C21. These codewords would be the result of creating a vocabulary of symbols
using ETDC. In the DAC representation of the sequence, shown below the sequence,
the first list L1 we store the first chunk of all codes, i.e. Ci1 for all i. In addition,
the bitmap B1 contains, for each chunk in L1, a 1 if the corresponding code has
more chunks or a 0 otherwise: for example, the first bit is a 1 because C1 has two
chunks, but the second bit is 0 because C2 only contains a chunk. In the second
list L2 we store all the second chunks of the codes that contain at least two chunks,
and again a bitmap to know which codes contain a third chunk. The arrays are
built from left to right adding the corresponding chunks of each codeword in the
sequence.

This scheme in DAC supports efficient access to any code in the sequence. If
we want to access the k-th, we can find its first chunk in L1 simply indexing the
array, since the elements are now fixed-size chunks. Then we check B1[k] to know
if the code contains more chunks. If B[k] = 0 we return immediately, otherwise we
retrieve its second chunk in L1. Computing p′ = rank1(B1, p) we can determine how
many codes have at least two chunks until position p, hence we obtain the position
p′ in L2 where the second chunk of the code is located. Repeating this process
recursively we can obtain the complete code accessing the appropriate positions in
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all the Li’s until we find a 0 in Bi. A rank structure supports the rank operations in
each Bi in constant time. For example, if we want to retrieve code C5 in S we would
start by accessing L1[5] and find C51. Now we check B1[5] = 1, so we need to find a
second chunk. The second chunk will be located at position p′ = rank1(B1, 5) = 4
in L2. In L2[4] we find the second chunk of the code, so now the code is C51C52.
We access now B2[4], and we find a 0, so we have finished the computation of the
code and return the value C51C52.

3.2 The K
2-tree

The K2-tree [BLN09] is a compact data structure for the representation of sparse
binary matrices. It was originally designed as a compressed representation of Web
graphs, representing their adjacency matrix in reduced space. In later works, the K2-
tree has been applied to the compression of other kinds of graphs or binary relations,
such as social networks [CL11] or RDF databases [ÁGBFMP11]. In this section we
will present the K2-tree as a method for the compression of a binary matrix, that
will usually be the adjacency matrix of a simple graph or binary relation.

3.2.1 Data structure and algorithms

Given a binary matrix of size n×n, the K2-tree represents it using a conceptual K2-
ary tree that represents the complete matrix, for a given K. The size of the matrix
is assumed to be a power of K1. The root of the conceptual tree corresponds to the
complete matrix. Then, the matrix is partitioned in K2 equal-sized submatrices of
size n

K ×
n
K . The K2 submatrices are taken in left-to-right and top-to-bottom order

and a child node is added to the root of the conceptual tree for each of them. Each
node of the tree is labeled with a bit: 1 if the corresponding submatrix contains
at least a one or 0 otherwise. Then the process continues recursively only for the
submatrices that contain at least a one. The recursive subdivision of the matrix
stops when the current submatrix is full of zeros or when the cells of the original
matrix are reached. Figure 3.2 shows a 10× 10 binary matrix, virtually expanded
to size 16× 16 (left), and the conceptual K2-tree that represents it, for K = 2.

Following the example in Figure 3.2, in order to access the highlighted cell (row
9, column 6) the conceptual tree can be traversed from the root. The cell (9,6) is
in the bottom left quadrant of the matrix, that is, the third child of the root node.
This child is labeled with a 1 so the traversal continues recursively for the current
submatrix. The traversal continues until a 0 is found (the value of the cell is 0) or
the last level of the tree is reached. In our example, the highlighted branches in
the conceptual tree are traversed until we finally reach a 1 in the last level, showing
that the cell was set to 1 in the matrix.

1If n is not a power of K, we use instead n′ = K⌈log n⌉, the next power of K. Conceptually,
the matrix is expanded with new zero-filled rows and columns until it reaches n′

× n′.
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Figure 3.2: Representation of a binary matrix using a K2-tree, for K =2.
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The actual K2-tree representation of the binary matrix is a succinct representa-
tion of the conceptual tree. The conceptual K2-tree is traversed levelwise and the
bits from all the levels except the last one are stored in a bitmap T . The bits of the
last level are stored in a second bitmap L. Figure 3.2 shows the bitmaps T and L
for the example binary matrix. The conceptual tree is not actually stored, and the
actual representation of the K2-tree consists only of the bitmaps T and L.

In order to retrieve the values of the binary matrix top-down traversals of the
conceptual K2-tree are required. These traversals can be performed efficiently over
the K2-tree taking advantage of a property of the representation: for any 1 located
at position p in T , its K2 children start at position rank1(T, p) × K2 in T : L
(T : L represents the concatenation of T and L). This property is due to the fact
that leaf nodes (labeled with 0) have no children, and all internal nodes (labeled
with 1) have exactly K2 children. In order to provide efficient navigation, a rank
structure like those explained in Section 2.3 can be added to the bitmap T , hence
supporting each step in the top-down traversal in constant time. Nevertheless, K2-
tree implementations used for most applications use a simpler implementation of
rank based on a single directory and sequential scan that is not constant-time but
is very fast in practice [GGMN05].

Using the basic traversal algorithm based on rank operations, K2-trees can
efficiently solve single cell queries, row/column queries or general range reporting
queries (i.e., report all the 1s in a range) by visiting all the subtrees that store cells
belonging to the queried region. The traversal algorithms start at the root of the
tree (position 0 in T ) and access at each level all the submatrices that intersect with
the row/column or region of interest.
Example 3.2: We want to retrieve the value of the cell at row 9, column 6 in the
matrix of Figure 3.2. The path to reach the cell is highlighted in the conceptual
K2-tree in the bottom. To perform this navigation, we would start at the root
of the tree (position 0 in T ). In the first level, we need to access the third child
(offset 2), hence we access position 2 in T . Since T [2] = 1, we know we are in
an internal node. Its children will begin at position rank1(T, 2)×K2 = 12, where
we find the bits 0100. In this level we must access the second child (offset 1),
so we check T [12 + 1] = T [13] = 1. Again, we are at an internal node, and its
children are located at position rank1(T, 13)×K2 = 9 × 4 = 36. We have reached
the third level of the conceptual tree, and we need to access now the second child
(offset 1). Again, T [36 + 1] = 1, so we compute the position of its children using
p = rank1(T, 36)× 4 = 80. Now p is higher than the size of T (40), so the K2 bits
will be located at position p − |T | = 80 − 40 = 40 in L. Finally, in L we find the
K2 bits 1010, and need to check the third element. We find a 1 in L and return
the result.

The K2-tree is able to efficiently represent sparse matrices by compressing in
small space large regions of zeros and taking advantage of the clustering of the sparse
ones. In the worst case, the total space in bits is K2m

(

logK2

n2

m + O(1)
)

, for an
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n×n matrix with m ones. However, the results are much better in practice. Query
times do not have a worst-case guarantee in K2-trees. The time to retrieve the value
of a single cell is proportional to the height of the conceptual tree logK n = O(log n).
The time to retrieve all the 1s in a row/column is O(n) in the worst case, even if no
1s are returned. Despite the worst-case analysis, K2-trees are able to obtain good
query times in practice in real datasets.

3.2.2 Improvements

Some improvements have been proposed to obtain better compression results in the
K2-tree. In this section we describe the most relevant modifications that can be
added to the basic K2-tree. This modifications affect the query algorithms but the
computations to take them into account are straightforward in most cases, so we
will explain them shortly.

3.2.2.1 Hybrid K2-tree: multiple values of K

Higher values of K reduce the number of levels, and therefore improve query times,
in the K2-tree, at the cost of potentially increasing the final size of the structure.
However, a careful selection of different values of K depending on the level of the
conceptual tree can obtain significant improvements in query time without actually
increasing the size. Hybrid K2-tree representations have been proposed [Lad11],
using higher values of K in the first levels of decomposition only, and proved to
overcome classic representations. The computations required to find the children
of a node are slightly different, since we must take into account the different values
of K in different levels of the tree, but it is easy to see that we can still compute
the children of a node using a rank operation if we store additional information to
determine the position of the bitmap where the value of K changes. In practice, the
computations in the lower levels of the tree need to add an adjust factor to correct
the rank value and all the navigation is essentially the same.

3.2.2.2 Compression of L: matrix vocabulary

Another major improvement proposed over basic K2-trees is the use of a matrix
vocabulary to compress the lower levels of the conceptual tree [Lad11]. In
this variation, the decomposition process is stopped when submatrices of a
predetermined size are reached (for example, we can stop decomposition when the
submatrices are of size K×K, K2×K2, etc.) This is equivalent to have a different
value K ′ that is used to partition the last level of the tree. Once the value of K ′

is defined, the conceptual tree is built like any other K2-tree, where the matrix is
decomposed recursively in K2 submatrices, but in the last level the decomposition
creates a K ′×K ′ submatrix. The enhancement proposed is to represent the sequence
of submatrices that appear in the last level using a statistical compressor instead
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of the plain bitmap representation. The sequence of submatrices is statistically
encoded using Dense Codes (in practice (s, c)-Dense Codes for better compression).
Hence, the original sequence of submatrices is replaced by the sequence of variable-
length codes that encodes the sequence plus a matrix vocabulary that stores the
plain representation of each matrix only once, in decreasing order of frequency.
The advantage of the statistical encoding is that when the represented matrix
contains low-level regularities, this leads to a skewed distribution of the possible
submatrices, so this approach can reduce the space requirements since each matrix
is only stored once in plain form (in the vocabulary) and the most frequent matrices
are represented using shorter codewords.
Example 3.3: In the conceptual tree in Figure 3.2 we want to use a matrix
vocabulary to represent the matrices in the last level of the tree. We choose to stop
decomposition when we reach submatrices of size 2×2. The new representation will
contain a bitmap T identical to the original version. However, the representation of
the matrices in the last level will be a sequence of variable-length codes. Following
the usual steps of Dense Codes we would build a matrix vocabulary where elements
are stored in decreasing order by frequency:

0010(5) > 0011(2) > 0001(1) > 0100(1) > 1000(1) > 1010(1)

The plain bitmap L is replaced by the matrix vocabulary V and the sequence of
variable-length codes S:

V = [0010 0011 0001 0100 1000 1010]

S = c1c1c0c0c2c0c3c0c4c0c5,

where ci is the i-th codeword in the (s, c)-Dense code scheme selected. If we consider
chunks of 2 bits and an ETDC encoding, or (2,2)-DC encoding, the codewords
c0 = 10 and c1 = 11 would consist of a single chunk and we would be saving 2
bits per occurrence of the matrices 0010 and 0011. In large datasets with skewed
distribution of submatrices the use of variable-length codes to represent the matrices
can obtain important savings.

The direct representation of L using a sequence of variable-length codes and a
submatrix vocabulary does not allow random access to positions in L, since now we
should decompress it sequentially to reach a position. Since random access to L is
necessary to perform any query, DACs are used to store the sequence of variable-
length codes. Recall from the precious section that the DAC representation is a
reorganization of the variable-length codewords that requires little additional space
and allows direct access to any position in the sequence. This direct access allows
us to access the sequence at any position, reading the corresponding codeword and
retrieving the actual matrix from the matrix vocabulary.
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Chapter 4

Previous work in application
areas explored in this thesis

In this chapter we introduce the main application areas where our representations
will be used. This chapter provides an introduction to the specific requirements,
problems and state-of the art solutions to each domain, focusing on the problems
solved by our representations.

In Section 4.1 we introduce the notion of temporal graph and some existing
models and data structures for their representation. Then, Section 4.2 introduces
RDF graphs, a graph representation of knowledge that has gained a lot of popularity
in the Semantic Web community in recent years, and whose storage and querying
is an active line of research. Finally, in Section 4.3 we introduce Geographic
Information Systems, the main characteristics and problems in the GIS domain
and state-of-the-art representations of geographic data, focusing mainly on the
alternatives for the compact representation of raster datasets.

4.1 Temporal graphs

We can define a temporal graph, or time-evolving graph, as a tuple G = (V, E),
where V and E are a set of nodes/vertices and edges respectively, and each edge
e ∈ E has somehow associated a collection of valid times, that indicate the times at
which the edge existed in the graph. In this sense, we can see a temporal graph as
the temporal union of its snapshots Gi(Vi, Ei), ∀ti ∈ T , where T is the set of possible
time instants. In this way, we consider V = ∪iVi and E = ∪iEi, so that each edge
in the temporal graph would be labeled with the timestamps ti corresponding to
the time instants where the edge was active.

In this thesis we will focus on the representation of a specific kind of time-
evolving graphs. We assume that the graph is relatively large and it has many

37
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timestamps ti, instead of just a few snapshots. Additionally, we will focus on graphs
that change gradually between timestamps, in the sense that the state of the graph
in consecutive time instants is not too different (i.e. the majority of edges keep their
state between consecutive time instants).

We will focus on the representation of temporal graphs with efficient support
to retrieve the state of the graph at any time point, providing support for different
queries associated to time instants or time intervals. Essential queries in this kind
of models are successor and predecessor queries (retrieving the nodes related with
the given one, because an edge points from the current edge to the successor or from
the predecessor to the current node), checking the state of a specific edge or more
advanced queries such as range queries (e.g. compute all the messages sent from a
group of users to another group of users). Additionally, according to the temporal
dimension of the graph we can categorize queries in two main groups:

• Time-slice queries (time point, timestamp queries) ask for the state of the
graph at a given time instant, that is, they try to recover the state of the
temporal graph at a given point in time.

• Time-interval queries ask for the state of the graph during a time interval,
that is, during a period of time that spans many snapshots of the graph. In
this kind of queries the goal is to discern whether each edge was active or
not during the complete interval. Two different semantics can be applied to
time-interval queries, depending on the meaning associated with “being active”
during a time interval:

– Weak time-interval queries ask for edges that have been active at any
point within the time interval. For example, if an edge was active only
at t2 and we ask for the time interval [0, 4] the edge was active according
to the weak semantics.

– Strong time-interval queries ask for edges that have been active during
the complete time interval. For example, if we ask for the time interval
[0, 2] a cell that was active at t = 0, t = 1, t = 2, t = 3 would be active
according to the strong semantics, but a cell that was active at t = 0, t =
1, t = 3 would not be active in the interval, because there is at least a
point in the interval (t = 2) where it was not active.

4.1.1 Alternatives and existing proposals for representing
temporal graphs

Research on temporal graphs has led to the development of multiple approaches
to model time-evolving data. The simplest strategy is possibly the representation
of the temporal graph as a collection of snapshots. This strategy is simple but is
somehow limited in its ability to represent the temporal graph in reduced space
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(since the complete state of the graph is stored in each snapshot) and makes it
difficult to analyze the evolution of the graph along time, since the information of
the evolution of edges is scattered among the different snapshots. However, the
storage of time-evolving graphs using snapshots is still widely used in domains
such as Web graphs or social networks, where very large graphs are managed and
snapshots are created with low frequency.

Another simple model for the representation of temporal graph is the times-
tamping approach. This approach considers time as an additional dimension of the
graph: a series of temporal values will be associated with each edge, which allows a
representation based on this model to efficiently find all the information associated
with a node or edge, querying the time dimension.

More advanced models for the representation of temporal graphs take into
account the notion of changes in the graph, and build their models over this concept.
Change-based representations are based on an initial snapshot of the complete graph
and then they store only changes with respect to the initial state. This helps
reducing the amount of information stored, since (ignoring the initial snapshot)
information is only stored when an actual change exists in the graph. A variation of
this approach stores not the changes themselves, but the events that produce these
changes: this approach is called an event-based representation [Wor05, GW05].

The FVF Framework [RLK+11] combines a change-based strategy with a
clustering step. In this approach, similar snapshots are grouped in clusters and only
two representative graphs are kept for each cluster, corresponding to the union and
the intersection of all the snapshots inside the cluster. In order to obtain a compact
representation of the graph, the collection of snapshots grouped inside a cluster
are encoded using the change-based approach. The authors propose two different
methods that provide a tradeoff between query efficiency and space utilization. In
both cases, only a representative of the cluster is stored completely. In the first
method of storage, the remaining snapshots are encoded differentially with respect
to the representative. However, in the second method, the sequence of snapshots
in the cluster is stored differentially with respect to the previous snapshot. This
second method reduces very significantly the space utilization, since the authors
focus on graphs that model evolving graphs, so consecutive snapshots are expected
to be very similar. On the other hand, a purely differential representation requires
a reconstruction step to rebuild the original value in a snapshot, processing the
differences in all the intermediate snapshots.
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4.1.1.1 A representation of temporal graphs based on compact data
structures

The ltg-index [dBBCR13]1 is a compact data structure based on a collection of
snapshots and logs of changes to store a temporal graph in reduced space. Each
snapshot is a simple unlabeled graph representing the complete state of the graph at
a given time instant. The logs of changes, one for each node in the graph, contain the
sequence of changes in the adjacency list of the node between consecutive snapshots.
A parameter c manages the number of snapshots that is created, so that, if the first
snapshot has e edges, a new snapshot is created after e× c changes in the log.

The ltg-index is based on the combination of several existing compact data
structures to provide a very compact representation of the temporal graph and
support time-slice and time-interval queries. Figure 4.1 shows a conceptual
representation of the components in the ltg-index. An additional element in the
figure, the delgraph, is required to efficiently answer reverse (predecessor) queries,
since the logs store changes in successors of each node.

Figure 4.1: Conceptual representation of the ltg-index.

The conceptual representation depends on efficient representations for both logs
and snapshots, but does not impose severe restrictions on the actual data structures
used to store them, since the operations performed in both of them are relatively
simple. However, the ltg-index is proposed using a specific set of data structures

1A preliminary version demonstrating the ltg-index was published together with other
representations that are included as contributions on this thesis. The ltg-index itself was developed
by our coauthor Diego Caro and is part of his ongoing PhD work related to the representation of
temporal graphs
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that are designed to provide the best performance. A table with n entries stores the
log for each node. Each entry contains two lists: a time-ordered sequence of changes,
storing the id of the successor that changed, and another sequence that stores the
time instants or timestamps when each change occurred. The first sequence is
encoded using ETDC to take advantage of repetitive changes, and the sequence of
timestamps is encoded using PForDelta [ZHNB06] on the gaps between timestamps,
since it is a fast and compact representation to store long sequences containing many
small integers. The delgraph associated to each snapshot is a graph that stores all
the removed edges within the time interval of the log. Both snapshots and delgraphs
are stored using K2-trees.

The ltg-index can easily retrieve the successors (direct neighbors) of a node at a
time instant of time interval, simply finding the previous snapshot and sequentially
traversing the change log of the corresponding node. For each successor in the log,
it suffices to count the number of times it appears in the log to know whether it
has the same state as in the previous snapshot (an even number of changes) or a
different state. Hence, the successors of the node computed in the previous snapshot
are completed with the changes in the log to answer the query.

The process to find the predecessors (reverse neighbors) of a node is more
complicated: the predecessors of the node are computed in the previous and next
snapshot, as well as in the delgraph associated to it. The union of the three lists is
the list of candidate predecessors. For each of them, the algorithm for successors is
used to find their actual state at the time instant or time interval of the query.

4.2 RDF graphs

The Resource Description Framework (RDF [MM04]) is a standard for the
representation of information. It models information as a set of triples (S, P, O)
where S (subject) is the resource being described, P (predicate) is a property of
the resource and O (object) is the value of the property for the subject. RDF was
originally conceived as a basis for the representation of information or metadata
about documents.

In recent years, a new interpretation of the web has gained a lot of influence: the
Semantic Web, or Web of Data, is a data-centric interpretation of the web. It tries
to provide a framework for the exchange of semantic information on the web. The
Linked Data project2 is a project that defines a way to share information between
nodes in a standard way, based on HTTP and RDF. The growth of the Linked
Data perspective in recent years has made of RDF the de-facto standard for the
representation of information in the Web of Data.

RDF provides a framework for the conceptual representation of information. As
we said, it represents the information as a set of triples (S, P, O). These triples can

2http://linkeddata.org
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Figure 4.2: RDF representation: triples (left) and RDF graph (right).

also be seen as edges in a labeled directed graph. The vision of a set of RDF triples
as a graph is called RDF graph in the original recommendation [MM04]. Figure 4.2
shows a small example of RDF representation that models some statements about
J.R.R. Tolkien. For example, the first triple states that Tolkien was born in South
Africa; the second one shows that Tolkien wrote The Lord of the Rings; etc. The
same information shown by the triples can be seen in the labeled graph in the figure.

RDF datasets can be queried using a standard language called SPARQL [PS08].
This language is based on the concept of triple patterns: a triple pattern is a
triple where any of its components can be unknown or variable. In SPARQL this is
indicated by prepending the corresponding part with ?. Different triple patterns are
created simply changing the parts of the triple that are variable. The possible triple
patterns that can be constructed are: (S, P, O), (S, P, ?O), (?S, P, O), (S, ?P, O),
(?S, P, ?O), (S, ?P, ?O), (?S, ?P, O) and (?S, ?P, ?O). For instance, (S, P, ?O) is a
triple pattern matching with all the triples with subject S and predicate P , therefore
it would return the values of property P for the resource S. (S, ?P, ?O) is a similar
query but it contains an unbounded predicate: the results of this query would include
all the values of any property P of subject S.

SPARQL is a complex language, similar to the SQL of relational databases, and
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Figure 4.3: Example SPARQL queries.

it supports multiple selection clauses, ordering and grouping, but its main features
are based on the triple-pattern matching and join operations, that involve merging
the results of two triple patterns. For example, (?S, P1, O1) ⊲⊳ (?S, P2, O2) is a join
operation between two triple patterns where the common element ?S is the join
variable. The result of this join operation would contain the resources S whose
value for property P1 is O1 and their value for P2 is O2.

Like simple triple patterns, multiple join operations can be constructed varying
the variable (or unbounded) elements that appear in the join: (?S, ?P1, O1) ⊲⊳
(?S, P2, O2), (?S, ?P1, O1) ⊲⊳ (?S, ?P2, O2), etc. Independently of the number of
variable elements, different join categories can be determined depending on the
elements of the triple patterns that act as join variable: in subject-subject (S-S)
joins the join variable is the subject of both triple patterns (e.g. (?V, P1, O1) ⊲⊳
(?V, P2, O2)), in subject-object (S-O) joins the variable is the object in one pattern
and the subject in the other (e.g. (S1, P1, ?V ) ⊲⊳ (?V, P2, O2)) and in object-
object (O-O) joins the variable is the object in both patterns (e.g. (S1, P1, ?V ) ⊲⊳
(S2, P2, ?V )).
Example 4.1: Figure 4.3 shows two examples of SPARQL queries over the triple
patterns in Figure 4.2. In the first query the triple pattern used shows that we are
asking for the books written by J. R. R. Tolkien. The second query is a join query
that asks for all the people born in the same place as J. R. R. Tolkien (this is due
to the value ?O, that is the same in both triple patterns and therefore behaves as
join element).

4.2.1 Representation of RDF graphs

RDF is only a conceptual framework that does not force any physical representation
of the data. The recent popularity of RDF has led to the appearance of many
different proposals for the actual storage of information in RDF, known as RDF
stores. They can be divided in two main categories: those based on a relational
database and those based on specific data structures designed to adjust to the
characteristics of RDF.

4.2.1.1 Relational proposals

Many of the most popular solutions for the representation of RDF are based on
relational databases. In these representations, and depending on the tables created
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for the storage of the triples, SPARQL queries can be easily translated into relational
queries that can be easily interpreted by the database system. Virtuoso3 stores RDF
triples essentially in a table with three columns for the subject, predicate and object
respectively. Other systems, such as Jena [Wil06], try to represent the information
in a more structured way by categorizing the subjects and creating tables in the
database that represent the common set of properties for a list of objects. Other
solutions are based on the concept of vertical partitioning. The vertical partitioning
approach builds a table for each different predicate in the RDF dataset, so the
triples are partitioned according to their P value. In a relational approach, the
result of vertical partitioning is typically the creation of a separate table for each
different Pi, containing all the pairs (s, o) such that a triple (s, Pi, o) exists in the
dataset.

4.2.1.2 Specific solutions

Moving away from relational solutions, several other proposals have been proposed
for the compact representation of RDF datasets.

• Hexastore [WKB08] is based on the creation of multiple indexes over the
triples. It basically builds 6 different indexes, one for each of the possible
orders (S, P, O),(S, O, P ),(P, S, O),(P, O, S),(O, S, P ),(O, P, S). This leads to
easy access to triples independently of the triple pattern used, but increases
a lot the space requirements. Additionally, Hexastore is designed to work in
main memory, so the space requirements limit this approach to work with
smaller datasets.

• RDF-3X [NW10a] is also based on building multiple indexes to represent the
set of triples. In this approach, however, the indexes are stored in compressed
B+-trees. The procedure used to build the triples is specifically designed so
that the entries in the indexes can be easily compressed, and custom encoding
methods are applied to reduce the space of the indexes. This reduces the
space requirements, and the B+-tree storage of the indexes allows RDF-3X
to work from external memory. Even if the space requirements are still high,
the ability to work from external memory in large dataset makes of RDF-3X
a better indexed solution. Additionally, further work has evolved the tool to
optimize update operations in the dataset [NW10b].

4.2.1.3 Representation of RDF graphs using K2-trees

A new proposal, based on the K2-tree, has been proposed recently for the compact
representation of RDF datasets [ÁGBFMP11, ÁGBF+14]. This proposal, called
K2-triples, is based on a vertical partition of the triples, and takes advantage of the
K2-tree as the basis for efficient query support.

3http://www.openlinksw.com/
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The first step to represent an RDF dataset in K2-triples is the dictionary
encoding. In this step, the triples (S, P, O), where the components of the triple
are URIs, are translated into triples of ids. Each URI is replaced by its id in the
corresponding dictionary, so that the triples that will be actually represented are of
the form (vs, vp, vo), where each v is an integer value. They use 4 different groups
of URIs, that may be encoded independently, containing respectively elements that
are both subjects and objects, only subjects, only objects and only predicates.

After the dictionary encoding has been applied, a vertical partitioning is applied
to the triples. For each different predicate, a K2-tree is created to store all the
triples corresponding to that predicate. Conceptually, each K2-tree represents a
binary matrix where the rows are all the subjects in the RDF dataset, the columns
are all the objects, and the ones in the matrix are the pairs (S, O) that correspond
to existing triples (S, Pi, O) for the current predicate. The matrices for all the
different predicates contain the same rows and columns in the following order: the
first rows/columns correspond to elements that are both subjects and objects; then,
the next rows correspond to the elements of the vocabulary that are only subjects,
and the next columns correspond to the elements of the vocabulary that are only
objects.

Triple patterns can be answered very efficiently in K2-triples. Each possible
triple pattern is translated into row/column/range operations in one or all the K2-
trees in the dataset. For example, a pattern (S, P1, ?O) can be translated as a row
query in the K2-tree that stores the triples for predicate P1; a pattern (S, ?P, ?O)
requires to compute the same row query in all the K2-trees; a pattern (?S, P1, ?O)
simply involves obtaining all the cells in the K2-tree for predicate P1.

Join operations can also be solved in K2-triples. The authors propose different
strategies to solve different join operations involving two triple patterns can be
solved:

• Independent evaluation simply computes both patterns independently and
then merges the results: for example, to answer a query of the form
(?S, P1, O1) ⊲⊳ (?S, P2, O2) this strategy would compute the results for
(?S, P1, O1) and the results for (?S, P2, O2) and then intersect the sequences
of results obtained from the first and second queries.

• Chain evaluation, computes the “easiest” pattern first and then runs the
second pattern limited to the results in the first one. Following the previous
example, to answer a query of the form (?S, P1, O1) ⊲⊳ (?S, P2, O2) using chain
evaluation we would first compute the results for (?S, P1, O1) and then run a
set of simpler queries looking for (Si, P2, O2) for each Si obtained in the first
query.

• A third strategy, called interactive evaluation, performs a synchronized
traversal of the K2-trees involved in both patterns, filtering the results
depending on the values on each side of the join. To answer a query of the
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form (?S, P1, O1) ⊲⊳ (?S, P2, O2) we would execute the queries (?S, P1, O1)
and (?S, P2, O2) in parallel. Whenever we find a 0 in one of the K2-trees
corresponding to a range of subjects S, we know that the join operation cannot
yield any result for this range so we stop traversal in the second K2-tree. In
these operations the branches traversed in each K2-tree are not necessarily the
same (in the previous example, in the first K2-tree we are looking for column
O1 and in the second one we are looking for column O2). Additionally, even the
operations required in each K2-tree may be different. Consider for example
a join (S1, P1, ?V ) ⊲⊳ (?V, P2, ?O2): in the first K2-tree we would look for all
elements in the row corresponding to S1, and in the second K2-tree we would
traverse the complete matrix. If we find a 0 for a range of values of V in the
first K2-tree we can stop traversal in all regions intersecting ?V in the second
K2-tree. This kind of join operation requires some computation to keep count
of the mapping between nodes in the left part of the join and nodes in the
right part that “cancel each other”.

In K2-triples, triple patterns or join operations with variable predicates must
query all the K2-trees for each predicate, which becomes very costly if the number
of predicates is high. An enhanced version of K2-triples, called K2-triples+, has
also been proposed to speed up operations involving variable predicates [ÁGBF+14].
The authors propose the creation of additional indexes that indicate, for each subject
and object in the dataset, which predicates are associated with that subject/object.
This allows them to limit the execution of queries with variable predicates to the
predicates associated with the corresponding subject(s) or object(s). The authors
create two compressed indexes SP and OP that return the list of predicates
associated to a given subject or object. In practice, to obtain good compression
they do not store the lists directly: instead, Directly Addressable Codes are used
to statistically encode the lists and store the resulting sequence of variable-length
codes providing direct access to any of them.

K2-triples have proved to be very competitive with other state-of-the-art
RDF stores in most queries involving triple patterns and simple join opera-
tions [ÁGBF+14], that are the building blocks of SPARQL. However, the static
nature of the K2-tree is an important drawback for K2-triples, as RDF datasets
have a dynamic nature. The improved K2-triples+ approach is able to improve times
in queries with variable predicate in datasets with a large number of predicates, at
the cost of a significant increase in space and the introduction of new static indexes
that are not suitable for a dynamic environment.
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4.3 GIS

4.3.1 Geographic Information Systems and spatial data

A Geographic Information System (GIS) is a “computer-based information system
that enables capture, modeling, storage, retrieval, sharing, manipulation, analysis,
and presentation of geographically referenced data” [WD04]. Essentially, the goal
of GIS is to provide support for any activity that involves any kind geographic
information. Following this definition, the applications of GIS are immense.
Cartography or meteorology are immediate domains of application where clearly
we need to manage geographic information, but Geographic Information Systems
are also used in many other domains, like traffic monitoring, disaster management,
wildlife monitoring and plague control, etc.

Advances in technology have made the utilization of GIS available even to
small organizations in recent years. Many countries in the world put to the
disposition of the public increasingly large volumes of geographic data corresponding
to topographic information, weather information, land use, etc. In addition, there
has been an important effort to provide the community with standard specifications
for the interoperability of these systems. The Open Geospatial Consortium4 (OGC)
is an international consortium formed by public agencies and private companies that
has published many open standards for the publication of geographic information
in the web. The combination of all these factors leads to a huge volume of spatial
data that is accessible to the public and has many applications for small business
as well as for large companies and government agencies.

4.3.1.1 Models for geographic information

The data obtained from the real world in a geographic information system needs
to be conceptualized using models that allow us to represent the data and perform
the required operations over it within a well-defined framework.

There are two main conceptual models for the representation of geographic
information: field-based models and object-based models.

• In a field-based model the space is seen as a surface over which different features
or spatial attributes are represented. Features in a field-based model can be
seen as a mapping from coordinates in space to a value for the coordinate,
that is, the space itself is considered as an entity that can be described by
attributes. Examples of information that would suit a field-based model are
temperature, elevation, pressure, etc., that can be measured at any point
of space. The typical operations of interest in field-based models involve
computing the maximum, minimum or average value in a zone, computing
slopes, etc.

4http://www.opengeospatial.org/
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• In an object-based model, the space is simply a frame over which a set of
discrete objects appear. Object-based models describe a set of objects that
have spatial attributes, and these objects are themselves perfectly identifiable.
The space, however, is now simply a frame of reference. Object-based models
describe different types of objects, such as points, curves and regions, and the
usual operations are based on the topological relationships between objects
(check if two objects intersect, one of them is contained in the other, etc.).

The two conceptual models are somehow opposed, in the sense that field-based
models understand the information as a set of “attributes of the space”, while object-
based models identify specific objects that have a given geometry and a location in
the space.

The conceptual representation of geographic information does not enforce a
particular way of representing the elements defined. The logical models determine
the way of translating the abstractions of the conceptual models into an actual
representation in a system. There are two main logical models for the representation
of geographic information systems: the vector model and the family of tessellation
models, of which the raster model is the most important representative.

In the vector model, geographic information is represented by a collection of
points and segments. A point is represented by its coordinates and a segment
is represented by its endpoints. Abstractions such as curves and surfaces are
approximated using multiple connected segments. The representation of objects
using a vector model requires a previous step to discretize the actual shapes in
order to obtain an approximation that can be stored in the system. Figure 4.4 (left)
shows an example of objects represented using a vector model.

Tessellation models are based on a decomposition of the space in a collection
of non-overlapping polygons. Tessellations can be regular (the decomposition
uses regular polygons) or irregular. The most usual irregular tessellation is the
Triangulated irregular network (TIN). Regular tessellations can use triangles or
hexagons, but the most used tessellation is the grid or raster model. In a raster
model, the space is partitioned in a grid of disjoint cells. Each cell stores a set
of values, typically the value of the feature or features that are being represented.
Figure 4.4 (right) shows an example of application of the raster model, compared
with the equivalent representation in the vector model.

In general, any kind of data can be represented using any of the logical models.
However, spatial features such as temperature or elevation, that fit better with
a field-based model, are usually represented using a raster model. On the other
hand, domains involving discrete objects and following an object-based conceptual
model are usually represented using the vector model. Additionally, there are
several advantages and drawbacks of both methods that should be considered. In
general, information represented using the vector model tends to require less space,
provides efficient support for spatial operations such as rotations and supports the
definition of explicit relationships between geographic objects. On the other hand,
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Figure 4.4: Graphical comparison of the vector model (left) and the raster
model (right).

the raster model is much simpler to implement and simple algorithms for displaying
and filtering can be used over the data. Additionally, a lot of information coming
from real-time measurements is originally represented using the raster model. We
will devote the remaining part of this chapter to give an overview of the state-of-
the-art representations of geographic information under the raster model and the
vector model, focusing especially in representations of raster data.

4.3.2 Representation of raster data

As explained in the previous section, the representation of geographic information
usually requires a choice of representation model depending on the characteristics of
the data and the operations required. The vector model is the most used model, as it
is of application in most contexts and provides interesting applications to work with
well-defined discrete objects. However, the representation of spatial features that
are continuous in space is still based on the raster model. Geographic Information
Systems usually provide some support for the direct storage and manipulation of
raster data, and many specific data structures have been designed for storing raster
dataset.

Conceptually, a raster is simply a matrix or grid containing different values of
a spatial feature. However, in practice we may distinguish several kinds of rasters
according to the nature of the data:

• The simplest raster is a binary matrix containing the existence or not of a
spatial feature at each possible cell of the matrix. A binary raster can be used
to determine, for instance, cloud cover or the evolution of fires, plagues, etc.
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• A general raster contains values of a spatial feature. Each cell of the raster
will store a value with a predefined precision, thus we may differentiate a
raster depending on the data type required for storing each value. Raster
representations may require bytes, 32-bit integers or even double-precision
floating-point values to store each value.

• In GIS a general raster is usually understood as a grid that may store a
collection of spatial features for the covered space. Each layer of the raster
corresponds to a given feature. Therefore, a general raster in this case may
be seen as a collection of rasters, each storing the value of a single layer for
the same spatial region.

The raster model of representation, although applied here to the regular
decomposition of geographic information, is also extended to the representation of
images in general. Many image representations are based on a raster decomposition
of the image and the raster representation of its values. Furthermore, one of the
simplest but most used application of raster datasets is efficient visualization of
data. Because of all this, the strategies for representing and compressing raster
data are also of application to represent general images, and many well-known
image file formats are widely used to store raster datasets in small space. We will
refer in general to raster images as a matrix of values corresponding to the raster
decomposition of spatial information.

Raster datasets in GIS usually contain spatial data in addition to the matrix of
values, including for instance the actual size of the raster, the coordinates it covers
and the size of the cell. Furthermore, it is usual in raster datasets to have cells
where the value is not known, cannot be computed or was simply not measured (for
example, in a land use map we would not have values for cells in the sea, in many
raster datasets we may not have data outside the boundaries of our own country,
etc.). These cells are usually stored with a special NODATA value that has to be
managed in most queries.

The set of operations that are usually applied to raster data are usually based on
map algebras: given a set of raster datasets, the operations are designed to obtain
results or compute new raster datasets based on the values in one or more of those
raster representations. We can distinguish the following categories of operations
over a raster dataset:

• Local operations are applied to a single cell of the raster(s) to obtain or
compute a result. Different operators can be used, for example, to compute
whether the value in a raster is greater/smaller than a given value, or to
compute the maximum/minimum/average/sum of the values of the same cell
in multiple rasters.

• Focal operations are applied to a cell and its neighborhood (the set of adjacent
cells) to compute the new value. A typical example of this is the computation
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of slopes from elevation values, where the slope in a cell depends on the
elevation in the current cell and its adjacent cells.

• Zonal operations involve cells that share the same zone or category, usually
determined by the cell value. For example, in a map representing land usage
a zonal operation may want to retrieve only the cells corresponding to pasture
zones in order to perform some computation (simply compute the total area
of pastures, or select only the pasture regions in a different raster dataset).

• Global operations may involve all the cells in the raster dataset to compute
the output.

• Any other application-specific operation that involves a combination of
multiple of the previous operations.

A typical requirement in spatial queries is to restrict the query to a subregion
of the space covered by the raster. For example, consider a land usage map for a
country stored in a raster dataset. An operation that tries to obtain pasture regions
only in a region of the country requires to perform the zonal operation restricted
to the spatial window indicated in the query. Window queries are one of the most
basic and widely used queries over raster datasets.

In many cases, the processing of raster data is performed sequentially in a pass
over the complete representation. This requires simple data structures to store
the information, and allows efficient compression since access is sequential, but it
is highly ineffective considering the kind of queries that are usually performed in
spatial data: a local operation that asks for the value of a single cell should not need
to access the complete raster dataset. In order to support spatial queries efficiently,
a representation of raster data should provide at least some level of spatial indexing
of the data, that is, efficient access to specific regions of the space without the need
to process the complete raster. Compression and query efficiency must be taken
into account in a space/time tradeoff to provide an efficient representation of raster
data.

4.3.3 Common strategies for compressing raster data

The representation of huge volumes of raster data requires a strategy for compressing
the raster dataset. An uncompressed raster, that stores the value of each cell directly,
will require a large amount of space to represent large datasets. For example, a
50, 000×50, 000 raster image that stores a 32-bit integer for each cell would require
roughly 10 GB of space to be stored. Even simple operations over such a raster
(for instance, sequential processing) would require reading 10 GB, which would slow
down significantly all operations involving the raster.

Most of the compression techniques used for raster data are based on well-known
properties that are expected in most raster datasets corresponding to different
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kinds of spatial information. The most important of these properties is the spatial
continuity of the values in the raster. Raster datasets represent the value of spatial
attributes that tend to be clustered: elevation, land usage, temperature, extension
of a plague, habitat of animals, oil spills. . . All of them tend to contain well-defined
regions of identical or at least similar values. The raster representation of such
information will be a matrix with many uniform regions that should be efficiently
compressed.

The clusterization of close values in raster datasets leads to approaches that
tackle raster compression relying on this property. The tiling technique consists of
partitioning the complete raster into a collection of equal-sized tiles. This reduces
the problem to the representation of smaller matrices, that are usually compressed
independently. The locality of values in most raster datasets makes each tile easier
to compress using simple techniques than the complete matrix, since the number
of different values and the differences between values within a tile will be much
smaller than on the overall matrix. Furthermore, the tiling approach can also
provide efficient access to individual tiles of the raster for partial decompression in
window queries, even if each tile must be completely decoded.

The simplest techniques for compressing raster data combine the tiling technique
with simple and effective sequential compression algorithms that are applied to the
individual tiles, to take advantage of the regularities in each tile. This approach
reduces significantly the size of the raster at the cost of losing efficient direct
access to any position in the raster (direct access is restricted to the tile, and
the tile must be decompressed sequentially to access any cell in it). However,
when combined with the tiling approach, the use of sequential compression usually
provides very good space results while providing some level of spatial indexing in
the raster. Many different compression algorithms can be used to compress the
values in a raster (recall Section 2.1): run-length encoding is a simple and fast
approach; LZW-compression takes advantage of many regularities to compress even
further while providing good decompression times; arithmetic encoding is used
in some representations to obtain very good compression at the cost of higher
decompression times. Again, the compression method used provides a tradeoff
between compression and query efficiency. The combination of tiling and efficient
sequential compression of each tile provides a tradeoff between efficient random
access to regions of the matrix and space requirements of the compressed dataset.

The current representations of raster data can be coarsely divided in the
following categories:

• File-based representations. This approach covers a large collection of file
formats that are designed for the representation of spatial raster data or
are designed for the general representation of images, arrays, etc. but can
be used for the storage and compression of raster data by a GIS. In these
representations the raster data is simply stored in a (possibly compressed)
file and stored on disk. Many of these formats are thought mainly for the
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compressed storage of raster images and only support a sequential access to the
data, while other representations follow strategies like the tiling approach to
enhance compression and support local access to tiles. Examples of file-based
representations of raster data include GeoTIFF and general image formats
like JPEG or PNG.

• Relational representations. This is the approach followed by many geographic
information systems for the representation of raster data. A set of database
tables is prepared for the storage of raster data. Tiling approaches are used to
provide some level of spatial indexing and database representations are used
to store the tiles independently. Most commercial databases, including Oracle
and PostgreSQL, contain modules for the management of spatial information
that support raster data.

• Fully-indexed representations. In this group of representations we include
specifically designed data structures, or spatial access methods, that efficiently
support spatial access to the data and at the same time are able to compress
the data. The families of data structures based on a recursive decomposition
of the space are probably the most successful representatives of this group,
and are widely used for the representation of spatial data and also in other
fields related to image representation and processing. The family of quadtree
data structures is widely used for the representation of spatial information.
A similar family of data structures, based on a binary tree structure called
bintree, is based on a binary decomposition of the space and has also been
used for the compact representation of raster images.

In the rest of this section we will briefly describe some file formats and relational
representations for raster data, that are mostly based on the general techniques
already explained: efficient compression methods and tiling to optimize compression
and provide random access to regions of the image. The quadtree-based and bintree-
based data structures share many similarities with our proposals in this thesis and
their structure and applications to the representation of raster images will be studied
in detail in Sections 4.3.4 to 4.3.6.

4.3.3.1 File formats

GeoTIFF5 is a standard proposed for enriching a Tagged Image File Format (TIFF)
image file with specific annotations regarding the geographic characteristics of the
image, such as the coordinate system and projection used. The TIFF format is very
flexible and many extensions to it have been proposed since its first specification.
It supports binary, grayscale and color images with different depths. It allows a
decomposition of the image in strips (one or more rows) or tiles that are compressed

5http://geotiff.osgeo.org
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ncols 4

nrows 4

xllcorner 0.0

yllcorner 0.0

cellsize 30.0

NODATA_value -999

4 4 5 6

3 3 4 4

1 2 3 4

-999 -999 1 4

Figure 4.5: An example of ArcInfo ASCII file.

independently from each other. Different compression methods are supported,
including run-length encoding, LZW or DEFLATE6 (a combination of LZ77 and
Huffman coding). Its extension capabilities and the ability to even add custom
headers to the format make of TIFF a perfect candidate for the extension to
geographic images. Support for accessing and manipulating GeoTIFF images is
provided by existing libraries such as libgeotiff7, that provides elementary spatial
operations on top of the common libtiff library for manipulating TIFF images.

NetCDF8 is a standard of the Open Geospatial Consortium (OGC) for the
encoding of geospatial data. It provides a representation of data as sets of arrays
and can represent efficiently different kinds of multidimensional data. It provides
metadata that can store the spatial and temporal properties of the stored data. The
data itself is organized in arrays for the different dimensions, including attributes
for the specification of relevant properties. To obtain compression, NetCDF files
can use DEFLATE compression to represent the data.

Esri grid is a proprietary binary format developed by Esri as the file format for
the storage of raster data in ArcGIS, a proprietary system. It decomposes the raster
in rectangular tiles. The tiles are stored independently either in plain or compressed
form (run-length encoded). A plain variant of the ArcInfo grid format using ASCII
also exists for the representation of raster data. It is called ArcInfo ASCII Grid and
provides a simple representation of raster data based on plain text storage of the
matrix of values. It only defines the essential information of the raster image and
encodes it in plain text, as shown in Figure 4.5. It is not a practical representation
due to its high space requirements but is used as an intermediate format because
of its simplicity.

Many common image file formats are used frequently to store raster data,
separating the spatial information (that can be stored as metadata) from the

6http://www.ietf.org/rfc/rfc1951.txt
7http://download.osgeo.org/geotiff/libgeotiff/
8http://www.opengeospatial.org/standards/netcdf
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actual raster data, that can be easily compressed using general techniques of image
compression. JPEG20009 is a standard of the Joint Photographic Experts Group,
proposed as an evolution of the JPEG standard10. It is designed for the compression
of general images and can be used for the storage of raster data. JPEG2000 supports
both lossy and lossless compression and obtains better compression than the
previous JPEG standard. PNG (Portable Network Graphics) is another example
of file format for the storage of general images. It provides good compression of the
resulting file but does not provide any kind of random access. However its wide use
and good compression make it a candidate for the transmission and visualization of
raster images. Other file formats that are sometimes used for the storage of raster
data are the Graphics Interchange Format (GIF) or JPEG. In all of these formats
we can see some limitations: access to the raster is limited and there is no support
for geographic information.

4.3.3.2 Relational solutions

Oracle Spatial is an extension of the Oracle database management system11 for the
management of geographic information. It provides a GeoRaster data type that is
used for the storage of raster data. In this representation, a GeoRaster object in
the database stores the basic information of the raster (the dimensionality, whether
it contains multiple layers, its object identifier within the database) and a pointer
to a table T that stores it and some metadata. The raster is partitioned in tiles,
corresponding to blocks, and each tile is placed as a BLOB (custom binary object)
in a row of T , together with its MBR and its tile position. Database indexes allow
efficient access to each tile to provide support for window queries.

Similar representations are used in other database management systems: Post-
GIS, the geographic extension of PostgreSQL, provides utilities for importing and
exporting raster files into a database schema based in tiling the source raster and
storing each tile in a different row.

4.3.4 Representation of binary raster images

Binary images are the simplest form of raster, where a single feature is collected
and we only need to store whether it exists in a given region or not. Despite
the simplicity of the raster, binary images are used in many GIS applications to
represent region features (for example, extension of plagues or oil spills) and can
be combined with other raster images to obtain more complex results. In this
section we present two families of representations for binary images that are widely
used: quadtrees and bintrees. Both structures are very similar conceptually and the
different variants also share similarities. Both quadtrees and bintrees and all their

9http://www.jpeg.org/jpeg2000/
10http://www.jpeg.org/jpeg
11http://www.oracle.com/
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variants achieve good compression of binary raster images and efficiently support
different operations depending on the variant, including random access to regions
in the image, image manipulations and set-theoretical operations that compute new
images from a logical combination of one or more input images.

4.3.4.1 Quadtrees

The term “quadtree”, first used by Finkel and Bentley [FB74], is generalized
nowadays to describe a class of hierarchical data structures that are based on the
recursive decomposition of the space into smaller blocks (typically in quadrants)
until the data in each block satisfy some condition. Quadtrees have been widely
used in different domains due to their simplicity and ability to represent efficiently
clustered data. Particularly, quadtree representations are widely used for the
representation of geographic information (either for the representation of raster
data or to store points in an object-based model) and for the general representation
of images (we can consider a raster dataset as an image where each cell corresponds
to a pixel of the image).

Conceptually a quadtree is a tree data structure in which each node represents
a region of the space. The root node covers the complete space. All internal nodes
have 4 children, whose regions correspond to a partition of the parent’s region.

Many different variations of quadtrees have been proposed to represent points,
lines, polygons or regions. The rules for decomposition may follow fixed rules or
be dependant on the input data. Different decomposition rules lead to a regular
partition of the space in equal-sized parts (following the embedding space hierarchy)
or an irregular decomposition (following the data space hierarchy). The number of
times the decomposition process is applied (known as the resolution of the raster)
may also be predefined or depend on the actual input).

An extensive explanation of many quadtree variants can be found in [Sam90b].
We will focus on the quadtree variants used for the representation of region data,
particularly in the region quadtree and the linear region quadtree.

Region quadtree

The region quadtree [Sam90b], also named Q-tree [KD76], is one of the most
popular data structures of the quadtree family. The popularity of this structure is
such that the general term “quadtree” is used frequently to refer to region quadtrees.
Further references to the term “quadtree”, unless otherwise specified, refer to the
region quadtree.

The region quadtree, as its name states, is designed to store region data, and
has been extensively used to store and query binary images in image processing and
geographic information systems. Consider a binary matrix of size n × n, where n
is a power of two, that represents a binary image. Each cell in the binary matrix
represents a pixel in the binary image. A cell with value 1 represents a black
pixel in the binary image and a cell with value 0 represents a white pixel. The
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region quadtree uses a fixed-size decomposition to partition the image. If the image
is not uniform (all cells are 0 or all cells are 1), it is divided in four quadrants.
The decomposition process continues recursively until all the obtained blocks are
uniform. Figure 4.6a shows an example of binary matrix and the decomposition
process followed by the region quadtree.

(a) Binary matrix (b) Region quadtree

Figure 4.6: A binary matrix decomposition and the resulting region
quadtree.

The blocks resulting of the decomposition are stored in a 4-ary tree. The root of
the tree corresponds to the complete matrix. Each child of a node represents one of
its subquadrants (the children are usually labeled NW, NE, SW, SE to identify the
corresponding quadrant). All internal nodes are said to be gray nodes. Leaf nodes
are called black nodes or white nodes depending on the value of their associated
block. Figure 4.6b shows the region quadtree generated for the binary matrix in
Figure 4.6a. Notice that large regions of black or white pixels are represented with
a single node in the tree, and only regions that contain both black and white pixels
need to be decomposed again. This property is the key of the compression achieved
by quadtree representations.

The decomposition process followed to build a region quadtree can be easily
explained using a top-down recursive approach:

• The quadtree for a matrix full of zeros (completely white image) is a single
white node.

• The quadtree for a matrix full of ones (completely black image) is a single
black node.

• The quadtree for a matrix with ones and zeros is a gray node with four children.
The children will be the quadtree representations of the 4 quadrants of the
current matrix.
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Despite this definition, the quadtree construction is usually performed in a
bottom-up fashion. Additional details on the construction algorithms used for
quadtrees can be found in [Sam90b].

The region quadtree can represent binary images in very small space depending
on the distribution of black and white pixels. In general, binary images with large
regions can be efficiently represented using a region quadtree, as many uniform
square regions will be found during the decomposition process.

Region quadtrees efficiently support many simple queries, such as retrieving
the value of a single pixel, thanks to their fixed-size space decomposition. The
process to perform a search in a region quadtree involves a top-down traversal of
the tree. At each level of the tree, we must check all the children of the current
node that intersect with our query: if we are looking for a cell we must check the
quadrant that contains the cell, if we are looking for a large region we must check
all the quadrants that intersect with the region. The selection of the appropriate
children is very simple because all the nodes at the same level represent equal-sized
square regions. Additionally, some transformations are specially easy to perform
in a region quadtree: 90° rotations are obtained applying a permutation to the
children of each node; scaling by a power of two just requires a change in resolution.
Set operations are also very simple to implement in a region quadtree: union or
intersection of two binary images can be performed by a synchronized traversal
of their quadtree representations, determining the color of the union/intersection
quadtree from the color of the equivalent branch in each of the source quadtrees.
A complete explanation of the supported operations and additional details about
them can be found in [Sam84].

The original representation of the region quadtree is an in-memory tree. Each
internal (gray) node stores four pointers to its children and a pointer to its parent
if desired. Leaf nodes store a flag that determines their color. This in-memory
representation provides easy navigation over the tree and facilitates some operations,
but is clearly not very space-efficient. A lot of space is devoted to store the internal
nodes of the tree and their pointers, hence adding a lot of overhead to the overall
representation.

Linear quadtree
The linear (region) quadtree [Gar82] (linear quadtree from now on) is a

secondary memory implementation of the region quadtree. Linear quadtrees try
to optimize the representation of the data stored by following two main principles:

• The representation does not need to store a complete tree representation. In
a linear quadtree, only the black nodes of the conceptual tree are represented.

• Each (black) node is represented in a format that implicitly determines the
position and size or the corresponding black block.

Hence, a linear quadtree stores only a sequence of codes that identify the black
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blocks of the image. The sequence of codes can be easily stored in secondary memory
using a B-tree or any of its variations (usually a B+-tree).

In order to represent a block, the usual approach is to use a sequence of “location
codes” that determine the path in the tree that leads to the node corresponding to
that block. The fixed length (FL) and the fixed length-depth (FD) representations,
that have fixed code length, are the most popular representations for the location
codes. Variable length representations can also be used to reduce space requirements
at the cost of increased complexity in handling the sequence of codes.

• The FL encoding, proposed originally by Gargantini [Gar82] represents each
block using a base 5 number with exactly h digits, where h = log n is the height
of the conceptual quadtree. Each digit of the number is either a “location code”
that indicates the quadrant corresponding to the block (we will use 0, 1, 2, 3 to
represent the NW, NE, SW and SE quadrants respectively) or a “don’t care”
code (we will use the X symbol) that indicates that the block belonged to an
upper level and covers all the quadrants in this level. Thus, this fixed-length
code suffices to know the position and size of the corresponding block.

• The FD encoding uses a pair of numbers to represent each block. The first
number is a sequence of h base 4 digits that indicates the position of the block
using the locations codes 0,1,2,3 as in the FL encoding. To represent the node
level, and therefore the block size, a second number is used. This second
number requires ⌈log h⌉ bits to store the depth of the node in the quadtree.

• The variable length encoding (VL) uses base 5 digits to represent each node,
where the quadrants are represented by the digits 1, 2, 3 and 4. Each node
is represented using only as many digits as its depth. The digits are chosen
in a way that allows efficient computation of the depth of a node. Additional
details on this and the other linear representations can be found in [Sam90a].

Figure 4.7 shows the linear quadtree codes generated for the example in
Figure 4.6. Notice that the resulting sequence, independently of the actual encoding
used, is built in a preorder traversal of the tree. The resulting sorted sequence of
quadcodes can be easily placed in a B-tree or B+-tree data structure and stored in
secondary memory. Notice also that the traversal of the tree already generates a
sequence of sorted codes.

The linear quadtree representation has some desirable properties that make it
very efficient. First, thanks to representing only black nodes it can obtain important
savings in space. Thanks to avoiding the use of pointers it is suitable for external
memory.

Algorithms The linear quadtree efficiently supports many query operations.
A simple query that involves retrieving the value of a cell can be performed in a
single search in the B-tree data structure. The procedure to search a value in a
linear quadtree starts by building the corresponding quadcode for the cell we are
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Figure 4.7: Linear quadtree location codes for the example in Figure 4.6.

looking for. Since the quadcodes for all black nodes are stored in the B-tree in order,
we can search in the B-tree the corresponding code in a single top-down traversal,
performing the usual binary search in each node. If the exact quadcode for the cell
we are looking for is found, we can return immediately. If the quadcode is not found,
we need to look at the quadcode that is located in the position where the one we
are looking for would be placed. The quadcode we find could be a quadcode that
contains the query cell (hence the cell is set to 1) or any other quadcode (hence
the cell is set to 0). The ordering of the quadcodes guarantees that if the previous
quadcode does not contain the query cell no other node in the linear quadtree
representation will.

The procedure to perform window queries in a linear quadtree is quite similar to
the single-cell query. The usual approach to solve a window query is to decompose
the query window in a collection of maximal blocks, that is, the largest square blocks
that would be generated if the window query was decomposed following the quadtree
strategy. This decomposition returns a number of blocks proportional to the sides
of the window and can be computed very efficiently. For each of the quadblocks the
same procedure explained for single-cell queries is used: the quadcode is searched
in the B-tree to find it or one of its ancestors, determining for each of them its value
in the quadtree representation.

Compact quadtree representations for binary images

The linear quadtree is a very efficient representation of raster images that
supports a wide range of operations. However, other quadtree representations
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have been proposed to represent binary images that require significantly less space.
These representations, like the linear quadtree, are based on encoding the nodes
of the quadtree in a sequence that can be efficiently traversed. The different
proposals are mainly designed for the compact storage of the image and usually
support image manipulation operations such as union and intersection of multiple
images, but are more limited than the linear quadtree (or the simple pointer-based
quadtree) to access random regions of the image without processing the compressed
representation.

Several proposals of compact quadtrees follow a representation scheme that
stores the nodes of the quadtree following a breadth-first traversal instead of the
usual depth-first traversal, hence reducing the average space required to encode
each node in the quadtree.

The Fixed Binary Linear Quadtree (FBLQ [CC94]) distinguishes two different
kinds of codes: “position” codes serve to indicate the position of the nodes, and
“color” codes are used to know the color of a node. The FBLQ assigns a position
code of 1 bit to each node (1 if the node is internal/gray, 0 if it is a leaf) and a color
code of 1 bit to each leaf (0 for white leaves, 1 for black leaves). Therefore, each
internal node in the quadtree is represented using a single bit and each leaf node
requires two bits. An exception is the last level of the tree, where only color codes
are used. Codes are stored together for groups of siblings: for each four siblings,
their 4 position codes are stored and then the color codes of the nodes that required
them are placed immediately afterwards. The bit placement is shown in Figure 4.8:
the complete FBLQ representation is shown at the bottom, and the codes used for
the nodes are indicated over the tree to the left of each node (the first number is
the position code, the color code follows between parentheses).

The Constant Bit-Length Linear Quadtree (CBLQ [Lin97b]) uses a different
code assignment, distinguishing between white nodes, black nodes and two types of
internal nodes: internal nodes whose children are all leaves and any other internal
nodes. Each node is then assigned a base-4 number: white nodes are encoded with
a 0, black nodes with a 1, internal nodes with a 2 and internal nodes whose children
are all leaves with a 3. Figure 4.8 shows the codes assigned to the nodes of a
quadtree (to the right of each node) and the final sequence in the bottom.

These representations based on the breadth-first traversal of the tree are in
general less efficient than depth-first representations such as the linear quadtree,
and they do not support advanced queries. Hence, these representations can be seen
as an alternative for the compact storage or transmission of a binary image, but are
usually replaced by other approaches in order to perform queries or other operations.
Because of this, some research effort has been devoted to the efficient transformation
between depth-first and breadth-first linear quadtree representations [Che02].

Some of the compact quadtree representations that follow a depth-first traversal
of the tree are described next:

• The DF-expression [KE80] encodes all the nodes in the quadtree, following
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Figure 4.8: Examples of breadth-first quadtree codes.

a depth-first traversal, using three different symbols: “(” encodes an internal
node, “0” encodes a white leaf, and “1” encodes a black leaf. Different methods
can be used to represent the actual codes. The authors propose 3 different
encodings for the symbols: i) using 2-bit codes for all the symbols, ii) encoding
“0” with 1 bit and the other symbols with 2 bits, and iii) encoding “(” using 2
bits, “0” using a single bit 0 and “1” using a single bit 1 if it is in the last level
or two bits 10 if it is in the upper levels. Figure 4.9 shows the DF-expression
for a simple tree.

• The Compact Improved Quadtree (Compact-IQ [YCT00]) encodes only the
internal nodes of the quadtree, using a representation based on the type of
all their children. Considering node type 0 for white nodes, 1 for black nodes
and 2 for gray nodes, each internal node is encoded using the formula C =
∑3

i=0 Ci×3i, that is, the types of its four children are considered as digits in a
base-3 number that is converted to decimal. The basic representation, called
simply “Improved Quadtree”, stores this values in a sequence. Figure 4.9
shows an example of this representation, including the computation of the
values for the internal nodes and the final sequence. The Compact-IQ is able
to further compress the sequence of integers using statistical properties of
the nodes. A dictionary is stored that assigns a variable-length code to each
number depending on its level, so numbers that are statistically more probable
to appear in a given level are assigned shorter codewords. The dictionary uses
the random pixel model to estimate the probabilities of each number at each
level, and uses different Huffman codes for each level of the tree. The final
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Compact-IQ representation is formed by the compressed sequence of variable-
length codes plus the representation of the vocabulary.

Figure 4.9: Examples of depth-first quadtree codes.

4.3.4.2 Binary tree representations of binary images

The bintree is a data structure conceptually very similar to the quadtree. A bintree,
like a quadtree, is based on a fixed decomposition of the space. Given a binary
matrix like the one shown in Figure 4.10, a bintree partitions the image in half at
each decomposition step. Following the usual notation in quadtrees, a bintree first
partitions the image in two rectangular sub-images W and E (west and east), and
then each of the subimages in (now square) subimages N (north) and S (south).
Figure 4.10 shows the bintree decomposition of a small binary image. As we can
see, the decomposition is first in rectangular subimages for the east and west half of
the image and then each rectangular subimage (if it is not uniform) is decomposed
again to obtain new square subregions. Leaf nodes in odd levels of decomposition
correspond to rectangular subimages (for example, node d is the rectangular block
at coordinates (0, 0)), while nodes at even levels of decomposition are associated
with square regions.

The bintree, like the region quadtree, can be implemented as a pointer-based
structure. Algorithms for performing searches in a bintree are very similar to those
of a linear quadtree: at each step in the top-down traversal of the tree, a simple
computation can be used to determine which branches need to be traversed to find
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Figure 4.10: Bintree decomposition of a binary image.

a specific region. The size and position of the region covered by a black (white)
node in a bintree are implicitly stored in the path followed from the root to the leaf
node. Theoretical and experimental comparisons show that in general a bintree
representation of a binary image should require less space than the equivalent
quadtree representation [SJH93], although the space requirements may be more
dependent on the actual representation chosen for each data structure than on the
choice between quadtrees and bintrees.

Compact bintree representations for binary images

Compact representations of a bintree have also been proposed following the same
strategies used in different quadtree representations:

The Interpolation-Based Bintree [OY92] or IBB represents the bintree as a
sequence of encoded leaf nodes, following a strategy similar to the encoding used
in the linear quadtree. In an IBB each black node is represented by a bincode that
encodes its coordinates and depth. Given a 2N × 2N image, the bincode of a black
node at coordinates (x, y) and found at depth d is computed interleaving the bits
of x, y and a representation of d. For example, consider the bincode corresponding
to the square located at (2, 0) in the image of Figure 4.10. Its associated node in
the bintree is node j, and can be found at depth 2 following the path E-N in the
tree. To assign it a bincode, we consider the binary representation of x = (10)2

and y = (00)2, and the bit sequence s = 1100, that is an N -bit sequence of the
form 1 . . .d . . . 10 . . .2N−d . . . 0 (the d first bits are 1 and the remaining bits are 0).
The bincode for the node in our example is formed interleaving bits of x, y and s:
first we write the leftmost bit of x, then the leftmost bit of s, then the leftmost bit
of y and then the next bit of s. We repeat the process to obtain a final bincode
C = xn−1s2n−1yn−1s2n−2xn−2s2n−3 . . . x0s1y0s0, in our case C = 11010000. All
this formulation is translated visually in a path traversed in the bintree to reach the
node: the bincode of node j contains the path followed to reach the node (10, for a
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sequence of “right”, “left” child) interleaved with 1s. Once the path is complete, the
code is simply filled with 0s. The complete sequence of bincodes for the bintree in
Figure 4.10 would be: <01010100><01011101><11010000><11111111>. The actual
representation of the bincodes is a sequence of integer numbers corresponding to
the binary sequences.

The IBB, or bincode representation, efficiently supports different operations
over the stored image. The strategy followed for the code assignment makes easy
searching for a specific bincode: to check for a region, we generate its bincode and
binary search in the IBB (i.e. in the sorted sequence of bincodes). If the bincode
is found the region is black. If the bincode is not found, we can still know whether
the bincode is in a black region thanks to the ordering of bincodes. From the
position where the searched bincode should be, we check the previous bincode: if
it corresponds to a region containing the current bincode, the bincode is in a black
region; otherwise, the bincode cannot be in a black region. Additionally, the IBB
efficiently supports other operations such as the intersection or union of binary
images, computing the complement of a binary image or finding the neighbors of a
given node [CCY96].

Logicodes and restricted logicodes [WC97] are based on a reinterpretation of
bincodes as logical operations. Logicodes build a logical expression that represents
each bincode, so the original image can be seen as a sum of the expressions for each
individual code. The goal of logicodes is to minimize the size of the sum of all the
individual codes.

Figure 4.11: Different S-tree representations of the bintree in Figure 4.10.

The S-tree [DSS94] is a linear representation of the bintree based on the concept
of position codes and color codes. The S-tree for a bintree is built traversing the tree
in preorder and appending a specific code for each node found (including internal
and white nodes): for each internal node a “0” is stored, and for each leaf node a “1”
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is stored in a position table. Additionally, for each leaf node its “color” is added to
a color table, encoded with a single bit (1 for black nodes, 0 for leaf nodes). In the
S-tree representation searching for a specific region requires to traverse the sequence
until the region is found. Figure 4.11 shows the S-tree representation of the image
in Figure 4.10. Notice that the encoding procedure of the S-tree is identical to the
procedure explained for the FBLQ.

The modified S-tree [CW95] adds to the S-tree a third table (the count table)
that stores, for each internal node, the number of leaves in its left subtree. The
addition of the count table to the modified S-tree allows more efficient searches.
In a modified S-tree we can look up a given code without traversing the complete
sequence, using the count values to jump forward in the sequence: if we want to go
to the second child of a node, instead of traversing the complete first child we use
count to jump directly to the second child. This makes navigation faster but the
space requirements are significantly higher.

The compact S-tree [CWL97] is another variant of the S-tree that uses a single
table (the linear-tree table) to represent the same information stored in the three
tables of the modified S-tree. The compact S-tree is built from a bintree traversing
the tree in preorder. For each internal node found, the number of leaves in its left
subtree is added to the table. For each leaf node found, its color is added to the
table. The final result is a sequence that contains a single symbol per node of the
bintree: the number of leaves covered by each internal node and the color of each
leaf node. An example of compact S-tree is shown in Figure 4.11. Notice that the
symbols “B” and “W” that denote the color of a leaf node are finally encoded as
integers (-1 for “B” and 0 for “W”), so the final representation would be a sequence
of integer values.

The S+-tree [DSS94] is a secondary-memory implementation of the S-tree,
designed for efficiently storing the S-tree representation of a binary image in
secondary memory. An S+-tree stores the S-tree representation in blocks, where
each block contains a fragment of the position table together with the corresponding
fragment of the color table. Each block is built appending bits until it is full: bits
in the position table are added from the beginning of the block, and bits of the
color table are added from the end of the block. The construction process forces
the last node in a block to be a leaf node, and when no more leaves fit in a block,
a new one is created. The value used to index the next block is the encoded path
from the root of the bintree to the first leaf node in the block (encoding with “0”
a left child and with “1” a right child). Figure 4.12 shows an example of S+-tree
representation. Notice that the values used in the internal nodes of the B+-tree to
index the leaf blocks are actually the path in the bintree to the first leaf node in
each block: the first node in block B2 is node g, corresponding to path 0011; the
first node in block B3 is node k, corresponding to path 11. To make easier the
computations in the leaf nodes, the S+-tree adds a prefix and suffix to each node,
that is shown separately in Figure 4.12: the prefix represents the separator of the
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node, storing each 0 with 0 and each 1 with 01, while the suffix stores a 0 for each
1 in the separator. If we add the prefix at the beginning of the node table and the
suffix at the end of the node, the representation of the node becomes a complete
bintree representation of the branches in the current node (each 01 in the prefix and
0 in the suffix acts as a dummy left branch in the bintree). This addition is mainly
for convenience, to make easier the computations inside the node, since the values
can be easily computed from the separator.

Figure 4.12: S+-tree representation of the S-tree in Figure 4.11.

4.3.5 Representation of general raster data

The spatial access methods presented in the previous section are mainly oriented
to the representation of binary images. However, as we explained earlier in this
chapter, general raster datasets may need to store more complex information at
each cell of the raster. In this section we present spatial access methods specifically
designed to store and query raster images with multiple non-overlapping features.
This includes thematic maps or general raster datasets where we are interested in
performing queries attending to the values stored in the cells.

Most of the representations are evolutions or variants of the data structures
presented in the previous section, that are enhanced with additional information or
modified to represent efficiently the values stored in the raster. Particularly, these
representations are designed to efficiently solve the following usual operations when
representing general raster data:

• exists(f,w): check whether any cell in the window w contains the value f .

• report(w): return all the different values (features) contained inside window
w.

• select(f,w): report all the occurrences of value (feature) f inside window w.
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4.3.5.1 Quadtree representations

The Simple Linear quadtree [NP95], or SL-quadtree, is a straightforward
generalization of the linear quadtree representation. Consider a raster dataset where
each cell contains a value (a specific feature in a thematic map or the value of a
numeric feature like elevation). We can decompose the raster recursively using
the same strategy followed in binary quadtrees, but we stop decomposition when
we find uniform regions. The leaf nodes in this tree will store the actual value
of the associated region. In an SL-quadtree, each uniform region is encoded with
two numbers: its locational code and the value of the corresponding region. The
sequence of values is stored in a B+-tree and indexed according to the locational
codes exactly like in a linear quadtree. Figure 4.13 shows an example of simple linear
quadtree representation, where three different “colors” are possible for each region.
The sequence of locational codes in the leaf nodes corresponds to the locational
code of each block in the image, independently of its color.

Figure 4.13: Simple Linear Quadtree representation.

Notice that spatial operations in an SL-Quadtree are identical to the operations
in a binary raster. However, it is difficult to answer queries involving the values
stored: a complete traversal of the raster (or the spatial window) is required to
retrieve the regions with a specific value.

The Hybrid Linear Quadtree [NP97], or HL-quadtree, tries to obtain a better
representation for managing different values in a raster image. In the HL-quadtree,
all the nodes of the quadtree decomposition of an image are physically stored. Given
a colored image, it is first decomposed into uniform regions as explained for the
previous method. Then, a pair 〈loc, feat〉 is stored for each node in the quadtree
(including internal nodes), where loc is the locational code of the corresponding node
and feat is a bit array that indicates, for each different feature in the raster image,
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whether it exists in the region covered by the current node (bit set to 1) or not (bit
set to 0). The sequence of pairs, as in the previous linear quadtree representations,
is then placed in the leaf nodes of a B+-tree that indexes the content by locational
codes. According to this, the sequence of codes that would be stored by the HL-
Quadtree representation of the image in Figure 4.13 would be (considering that the
features are sorted as WGB):

(XXX,111) (0XX,001) (1XX,100) (2XX,111)

(20X,010) (21X,100) (22X,110) (220,010)

(221,010) (222,010) (223,100) (23X,001)

(3XX,100)

The first pair corresponds to the root node, that contains all the possible values.
The remaining codes follow a preorder traversal of the conceptual tree. Notice
that, in this case, internal nodes may contain more than one feature (the bit array
contains many 1s), but leaf nodes will store a single 1 in their bitmap.

In this representation spatial operations can be solved as in the SL-Quadtree,
since the B+-tree is still indexed by location codes. The advantage of the HL-
Quadtree is in the specific queries for values/features: to check whether feature
f exists inside a window, the window can be decomposed into maximal blocks
and these blocks searched in the B+-tree. Each block (or ancestor) found will
contain the explicit list of all the features contained in the current region, so we
can answer immediately. Similar simple algorithms can be used to report all the
features contained in a window of to select all the locations of a feature inside a
window.

4.3.5.2 Bintree based representations

The S∗-tree [NP99] is an evolution of the S+-tree for the representation of multiple
non-overlapping features. The S∗-tree is based on the same idea proposed in the
S+-tree, to store position and color bits together in nodes of a B+-tree. To store
information of the different features, the S∗-tree stores, for each internal node, a
color string of f bits (where f is the number of different features) that indicates
features contained in the region. For leaf nodes a color string of ⌈log f⌉ bits is used
to indicate the feature it contains.

Figure 4.14 shows an example image, its bintree decomposition (top), the
corresponding position and color tables (middle) and the final (simplified) S∗-tree
representation. In this example, node a (the root node) contains all features, so its
color string is 111; node e contains only white and gray leaves, so its color string
is 110 (the order of the colors is white-gray-black, as in previous examples). Leaf
nodes contain 2-bit color codes (00 for white nodes, 01 for gray nodes, 10 for black
nodes). The position codes and color codes are placed in the S∗-tree in the leaves of
a B+-tree. The partition of the blocks occurs between nodes e and f and between
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Figure 4.14: S∗-tree representation of a colored image.

nodes k and l. Hence, the indexes stored in the internal nodes of the B+-tree are the
representation of a path from the root of the bintree to nodes f and l respectively:
0100 and 011. A small but important difference between the S∗-tree and the S+-tree
is that the S∗-tree does not force the last node in each block to be a leaf node (in
our example, the last node in the first block of the B+-tree is e, an internal node
in the bintree). This change reduces the unused space in the blocks of the B+-tree
and has small implication in queries.

An enhancement in the B+-tree data structure used in the S∗-tree has been
proposed to optimize the efficiency of queries by feature [MNPT01]. This
enhancement simply adds to the entries in internal nodes of the B+-tree a bitmap
that indicates, for each different feature, whether the pointed node contains at least
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an entry with the feature. This bitmap can be easily generated computing the or

of the bitmaps that would be associated with the entries in the child node. This
modification allows us to stop navigation in the internal nodes of the B+-tree if
its bitmap indicates that there are no entries in the corresponding leaf for a given
value. This enhancement can be also applied to SL-quadtrees and HL-quadtrees,
leading to a “subfamily” of spatial access methods called BSL-tree (SL-quadtree
over enhanced B+-tree), BHL-tree (HL-quadtree) and BS∗-tree.

4.3.6 Representation of time-evolving region data

The representation of geographic information also needs to deal with the evolution
of spatial objects or features over time. In many real-world GIS applications,
information does not only contain a spatial component, but also a temporal
component. The modeling and compact representation of spatio-temporal datasets
has been widely studied. In this section we will focus on the representation of
spatio-temporal information under the raster model, or time-evolving region data.
Notice that the representation of sequences of raster images can also be seen as a
special case of a more general problem: the representation of multiple overlapping
features. Many of the proposals for the representation of time-evolving raster images
are similar in structure and functionalities to the representations for general raster
data (multiple non-overlapping features)

Most spatio-temporal data require a set of common queries that involve filtering
information depending on a set of spatial and temporal constraints. Spatial
constraints are similar to those explained in previous sections. We will distinguish
the following categories of temporal constraints (the same categories are used in
Section 4.1 for temporal graphs):

• Time-slice queries are concerned with the state of the dataset at a specific
point in time.

• Time-interval queries refer to a longer time interval. The simplest query asks
for the values at each time point in the interval, but we also use two special
semantics: weak queries return all the cells that fulfilled a condition (e.g.
having a value higher than a threshold) at some point in the query interval,
while strong queries return only the cells that fulfilled the condition during
the complete interval.

The simplest approach to represent a temporal raster dataset is to store a
different data structure with the state of the raster at each time instant. This
approach is usually unfeasible due to the high storage requirements to represent
the complete raster at each time instant. Because of this, several proposals have
been presented to reduce the cost of storing temporal raster data, while supporting
time-slice and time-interval queries. In the remaining of this section we will describe
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representations of time-evolving region data under the raster model, based mostly
on the linear quadtree.

4.3.6.1 Quadtree-based proposals

Inverted Quadtrees
The Fully-Inverted Quadtree [CT91] (FI-quadtree) is a data structure for the

efficient access to a collection of images or binary raster datasets. It is based on the
idea of grouping a collection of images in a single quadtree. For a collection of n
images, an inverted quadtree is built creating a full quadtree (i.e. a quadtree that
contains all possible branches, no leaf nodes exist in the inner levels). Each node v
in the FI-quadtree contains a bitmap Bv of length n, such that Bv[i] = 1 iff node v
is black for image i. Figure 4.15 shows the conceptual full quadtree generated for
a collection of 3 different images, where for each node we indicate the sequence of
images where this node would be black (recall, in the FI-quadtree this information
is finally actually stored in a bitmap of length n in each node). The nodes are
traversed in preorder and placed in secondary memory.

Since the quadtree is full and the nodes are of equal size we can know the actual
offset of each node easily. To search a given region (i.e. a node or set of nodes in the
quadtree), all the nodes in the path to the desired region are checked. In each node
it is very easy to check the value of a given image accessing its bitmap. Because of
this, the FI-quadtree supports efficiently spatial query operations and also queries
involving specific features. Nevertheless, the FI-quadtree requires too much space
to represent a collection of similar images: a full quadtree is created even if most of
the nodes do not exist for any image, and each node requires as many bits as images
in the collection. Hence, this representation is only suitable for small collections of
images, and does not take advantage of the regularities between images.

The Dynamic Inverted Quadtree [VM95] (DI-quadtree) is an evolution of the
FI-quadtree that tries to solve some its drawbacks. It is based on the same idea
of building a full quadtree to store a collection of images, but each node in a DI-
quadtree points to a list of identifiers that contain the images for which the node
is black. This makes the representation dynamic (new images can be added to the
lists) and reduces the space requirements of the FI-quadtree since the space required
by each node is now proportional to the number of images where it is a black node.
To query a DI-quadtree we use the same strategy of FI-quadtrees, accessing at each
node the list of images instead of the bitmap.

MOF-Tree
The Multiple Overlapping Features Quadtree (MOF-tree [MNPP97]) is essen-

tially a combination of multiple quadtrees in a single data structure. It can be seen
as an enhancement of some of the ideas in the FI-quadtree and the DI-quadtree.
A region quadtree is built, and for each node we store for which features (or, in
our case, time instants) the region is covered. When a region is not covered for
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Figure 4.15: Conceptual representation of an inverted quadtree.

any time instant or is covered in all of them, decomposition stops. A conceptual
MOF-tree representation is shown in Figure 4.16. Notice that the MOF-tree is not
a complete tree, therefore the number of nodes may be much smaller than in an
inverted quadtree.

The MOF-tree can be implemented as a linear quadtree representing each node
with its locational code. Each node must store, in addition to its code, the
information of the features that cover it. A bit vector feature indicates, for each
feature, whether it overlaps (covers partially) the region of the node. A second bit
vector cover indicates, for each feature, whether the region is completely covered
(the bitmap cover can be omitted in the leaves since it would be equal to feature:
a leaf node is either entirely covered or entirely uncovered by all the features).
Additionally, a flag is added to each node to indicate whether it is a leaf node.

Spatio-temporal queries are solved in a MOF-tree like in inverted quadtrees,
checking in this case the feature bit vector to know whether the region was covered
by a specific feature.

Overlapping Linear Quadtrees

Overlapping Linear Quadtrees (OLQ [TVM98]), as their name states, are based
on the overlapping technique. The idea of overlapping, that can be applied to many
data structures, is to reduce the redundancy in the representation of a collection of
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Figure 4.16: Conceptual MOF-tree.

datasets by reusing the common parts of the data structures used to represent each
of them. Overlapping linear quadtrees are built combining ideas from Overlapping
B+-trees [TML99] with a linear quadtree representation.

Consider a sequence of linear quadtrees that store the state of the raster at
each time instant. We will assume in our examples that the linear quadtree
implementation uses fixed length (FL) encoding of the blocks, and the sequence of
block codes can be stored in a B-tree variant in secondary memory. In overlapping
linear quadtree, consecutive B-trees are “overlapped” so that the common branches
are represented only once. This means that, if a node in a B-tree would store the
same codes than another node in the previous quadtree, we do not create a new node
but point to the node in the previous B-tree. Figure 4.17 shows the overlapping
linear quadtrees representing two binary images.

The access to a single quadtree in overlapping linear quadtrees has no overhead:
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Figure 4.17: Overlapping linear quadtrees.

time instant queries can be answered exactly as they would if independent linear
quadtrees were stored for each time instant, since the linear quadtree data structures
are not affected by the OLQ (the only difference is that pointers between nodes may
point now to “shared” nodes.

To efficiently answer time-interval queries, the OLQ also stores a set of pointers
between nodes of different trees. These pointers allow us to locate the nodes storing
“future” and “past” versions of the current node, therefore making it easier to
retrieve the state of the raster in a long time interval without querying all the
time instants.

Time Split Linear Quadtree and Multiversion Linear Quadtree
The Time Split Linear Quadtree (TSLQ [TVM01]), based on the Time-Split

B-tree [LS89], combines spatial and temporal information in the entries of a single
B+-tree data structure. All nodes in a TSLQ have two additional fields StartTime
and EndTime that indicate their valid times. The leaves of the TSLQ store a set of
entries including a locational code and its creation time. This additional information
is used in spatio-temporal window queries to only traverse nodes corresponding to
the query times. To speed up time-interval queries, the leaves of the TSLQ can be
enhanced with backward- and forward-pointers, like Overlapping Linear Quadtrees,
to efficiently navigate between “versions” of a node.

The Multiversion Linear Quadtree (MVLQ [TVM00]) also combines temporal
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and spatial information. It is based on the Multiversion B-tree [BGO+96], that can
be seen as a collection of B+-trees storing information about different time intervals.
In the MVLQ, information is stored in a collection of version trees, where nodes
combine locational codes with validity intervals.

The Multiversion Access Structure for Evolving Raster Images [TVM04]
(MVASERI) can be seen as a modified MVLQ, with an identical data structure
but different algorithms to manage update operations.

Overlapped CBLQ

The overlapped CBLQ [Lin97a] is based on the overlapping mechanism explained
in Overlapping Linear Quadtrees: the quadtree representation of an image is
encoded using only the differences with the quadtree representation of the previous
one. Overlapped CBLQs are designed to compress groups of similar images by using
a modified CBLQ to represent the overlapped quadtrees. They use special codes to
indicate changes in a node between a version and the previous ones, and only the
fragments of the quadtree that change have to be represented.

Overlapped CBLQs can obtain very good compression of a temporal raster
dataset or any set of similar binary images, thanks to combining the overlapping
technique with a compact representation of each quadtree. However, this data
structure is not very efficient to access a specific image, since to retrieve a given
image we have to sequentially compute all the previous ones, rebuilding each image
from the previous one using the “differential” CBLQs at each step.

4.3.7 Representation of vector data

The efficient representation of spatial objects in the vector model is probably one
of the most studied problems in GIS. Many different data structures have been
proposed to index different kinds of objects. Some of them are specifically designed
to represent objects of a specific kind (for instance, they store only points), while
others are mainly designed to be able to represent any kind of complex object.
For example, the k-d-tree [Ben75] (and its variant K-D-B-tree [Rob81]), the HB-
tree [LS90] are mainly designed to store points. To store more complex objects,
the R-tree [Gut84] and its variants are most widely used. We will not describe in
detail most of these representations, since the work in this thesis is mainly oriented
to representations based on the raster model (a complete explanation of these and
other data structures can be found in different surveys [GG98, BBK01]). In the
remaining of this section we will describe the R-tree and its variants, that are the
most popular access methods and will be used in the last part of this thesis.

4.3.7.1 The R-tree

The R-tree [Gut84] is a data structure designed mainly for the representation of
regions, or in general any spatial object that can not be represented using points.
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Later, it has been widely used to the representation of all kinds of spatial objects,
including points. The R-tree can be used to represent n-dimensional objects.

The key idea in the R-tree is to group together objects that are “close” in space
and to index objects according to their minimum bounding box. The minimum
bounding box of an object is the smallest n-dimensional rectangle that contains the
object (it is usually called minimum bounding rectangle, or MBR).

The R-tree is based on a balanced tree structure similar to a B-tree. Each node
of the tree is a block that may contain a predefined number of entries. Each node
is usually stored in a disk page and has a maximum capacity determined by the
disk page size and also a minimum capacity that determines the space utilization
of the tree. In a leaf node, each entry stores information about the objects stored:
typically, the information for each object is the MBR of the object and a unique
identifier of the object (OID). Internal nodes contain entries that point to other
nodes: each entry in an internal node contains a pointer to the corresponding child,
together with the MBR for the child node (that is, the smallest rectangle that
contains all the MBRs in the child node). This guarantees that all the objects in
the descendants of a node are contained in the MBR of the node. An important
characteristic of the R-tree is that the MBRs of nodes at the same level may overlap
(that is, for any given node, many of its children can contain a given point at the
same time).
Example 4.2: Figure 4.18 shows an example of R-tree representation. The
rectangles R1,. . . ,R12 are the MBR of 12 different objects indexed by the R-tree.
The rectangles RA,. . . ,RF are the MBRs generated in internal nodes of the R-tree.
The right side of the image shows the actual tree structure, considering nodes with
3 entries as maximum capacity. Notice that the MBRs for objects may overlap (R7
and R10 overlap), and MBRs in internal nodes also overlap.

Figure 4.18: R-tree space decomposition and data structure.

The procedure to search in an R-tree, given a query rectangle (in general, the
MBR of the region searched), performs a top-down traversal of the tree. At each
internal node (starting in the root node), all the entries are checked to determine
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if they intersect with the query rectangle. For all the entries that intersect with
the query rectangle, the child node pointed to by this entry must be checked also.
When a leaf is reached, all the entries in the leaf are also checked. Each entry in the
leaf whose MBR intersects with the query rectangle is a candidate result. Only the
elements in the candidate list would have to be checked later to see if they actually
intersect with the query, comparing their actual geometries.
Example 4.3: In the R-tree of Figure 4.18, if we want to search objects within
the region defined by the highlighted rectangle, we would start at the root node.
The only entry that overlaps the query rectangle is RE, so we would navigate to
the first child. Now two entries (RA and RB) intersect with the query rectangle, so
both children N3 and N4 must be checked. Finally, we would need to check all the
entries in N3, where R2 intersects with the query rectangle, and N4, where R3 and
R5 intersect with the query rectangle.

The R-tree is a completely dynamic representation. Objects may be added and
deleted from the representation at any time. To insert a new object we compute its
MBR. Then, starting at the root, a recursive procedure tries to find the best child
of the current node to add the new entry. To do this, at each step, we check all
the entries in the current node. The entry whose MBR needs less enlargement to
contain the MBR of the new entry is chosen, and we repeat the process recursively
in the pointed child. When a leaf node is reached, the new entry is simply added
to the node. If the maximum capacity of the leaf node is exceeded, the leaf is split
and the entries in internal nodes are adjusted recomputing their MBRs. Splits in
internal nodes are handled similarly. Deletions are implemented in a similar way,
merging nodes as necessary.

Many variants of the R-tree have appeared to enhance the capabilities of the
original R-tree. R∗-trees [BKSS90] are similar to R-trees but use a different
algorithm during insertion, trying to obtain at the same time MBRs of the smallest
area and with reduced overlap. Many other data structures based on the R-tree
have been used in related problems: for example, the HR-tree [NST99], MV3R-
tree [TP01] are examples of data structures based on the R-tree designed for the
representation of moving objects in spatio-temporal databases.



Part I

New static data structures

79





Chapter 5

K
2-trees with compression of

ones

The K2-tree, introduced in Section 3.2, is a compact representation of binary
matrices that has proved its efficiency in different domains for the representation of
different real-world matrices. However, the application of the K2-tree is somehow
limited by some characteristics in the matrices it represents, particularly their
sparseness and clusterization: the K2-tree compression is based on compressing
groups of “close” 1s with as few bits as possible.

In many real-world applications, data can be viewed as a binary grid where the
regions of zeros and ones are heavily clustered but the number of ones and zeros is
approximately the same. Typical examples of this are black and white (or binary,
or bi-level) images, where the image can be represented as a matrix where each cell
corresponds to a pixel of the original image.

In this chapter we present our proposal for the compact and indexed repre-
sentation of clustered binary grids, focusing on the compression of large regions
of zeros and ones. Our proposal is conceptually an extension of the K2-tree
(originally designed to compress sparse binary matrices) to handle a wider range
of datasets where clusterization exists but sparseness is not required. To obtain a
better representation of images with many ones, we extend K2-trees to behave like
classic region quadtrees in the sense of compressing efficiently large regions of ones
as well as large regions of zeros. We design several simple but effective variants
that behave like the K2-tree but compress efficiently regions full of ones, making
our variants useful to compress binary raster images.

The rest of the chapter is organized as follows: in Section 5.1 we summarize
some concepts and state-of-the-art proposals for the representation of binary images.
After this, Section 5.2 presents the conceptual description of our proposals and
the different implementations of the conceptual representation, including the basic
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navigation operations. In Section 5.3 we present a theoretical analysis comparing
the space requirements of our representation with state-of-the-art proposals based
on recursive space decomposition. Then, Section 5.4 introduces a method to
improve compression results in our representations. Section 5.5 describes the
implementation of different query algorithms and typical operations over our
representations. Section 5.6 presents an experimental evaluation of our proposals,
showing the differences in compression and query times among our representations
and comparing them with alternative representations. Section 5.7 introduces
some other applications of our encodings. Finally, Section 5.8 summarizes the
contributions on this chapter and refers to additional related contributions that
will appear later in the thesis.

5.1 Representation of binary images

The design of data structures for the compact representation and efficient manipula-
tion of images has been studied for a long time in different fields of computer science,
from the pure storage and manipulation of images in image databases to specific
applications in GIS (visualization of raster data). Binary images are usually easier
to compress, and are widely used to represent digitized documents (i.e. scanned text
documents stored as images without OCR processing), in image communications
(fax transmissions of text documents and drawings) and in many other documents
related to cartographic information (maps, urban plans and all kinds of spatial
information in Geographic Information Systems). Many different proposals exist
for the efficient compression of binary images that take into account the expected
properties of some kinds of binary images. For example, representations designed
primarily for the transmission of digitized text documents aim to compress efficiently
line patterns and should provide efficient compression and decompression but do not
need to provide advanced operations on images. On the other hand, representations
primarily designed for computer graphics or GIS do need to support efficiently the
usual operations in the domain: efficient access to regions of the image, image
manipulations such as rotation, scaling or set operations involving multiple images,
etc.

Some of the simplest strategies for binary image compression involve a sequential
compression of the pixels in the image in row-major order: techniques such as run-
length encoding, LZW or Huffman encoding can be used to compress a binary image
simply using the bit sequence determined by the pixels. Many other techniques are
based on different variants of classic compression techniques. For example, JBIG1 1

and its evolution JBIG2 2 are standards of the Joint Bi-level Image Experts Group,
published as recommendations of the International Telecommunication Union (ITU)
for the encoding and transmission of bi-level images. These standards are designed

1http://www.jpeg.org/jbig
2http://jbig2.com

http://www.jpeg.org/jbig
http://jbig2.com
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for the compression of binary images that may contain large portions of text, and
are widely used for the transmission of information in fax machines. They are based
on an arithmetic coder specially tuned and use different compression techniques to
compress text regions, images or other content.

A common approach for the representation of binary images with support for
image manipulations and queries in compressed form are pixel tree approaches, that
have been presented in Section 4.3.4: quadtree representations decompose an image
into quadrants, while bintree representations decompose the image alternating in
dimensions. Our proposals in this chapter can be seen as compact and querieable
pixel tree representations, in the sense that they build a conceptual tree similar to
the conceptual quadtree of an image.

5.2 Our proposal: K
2-tree with compression of

ones (K
2-tree1)

Our proposal, as its name states, is conceptually an evolution of the K2-tree
explained in Section 3.2, to enhance it with the ability to efficiently compress
uniform regions of ones, as it already compresses regions of zeros.

In the original K2-tree representation, a K2-ary conceptual tree is built to
represent an adjacency matrix. The conceptual tree generated can be seen as a
form of quadtree that only stops decomposition when uniform regions of 0’s are
found. This conceptual representation chosen in the K2-tree comes from its original
purpose: it was designed to compress Web graphs, which have an extremely sparse
adjacency matrix. In our proposal we focus on obtaining an efficient representation
for binary matrices that contain large clusters of 0’s and 1s.

To fulfill this goal, we propose to change the conceptual tree used by the K2-tree
representation. In our proposal, the conceptual tree used to build the K2-tree data
structure will use a different method for partitioning the matrix: decomposition of
the binary matrix will stop when uniform regions are found, be them full of 0’s or
1s. This simple change will reduce the number of nodes in the conceptual tree when
large regions of 1s appear in the binary matrix. Figure 5.1 shows an example of
binary matrix with large clusters of ones and its conceptual tree representation, for
K = 2. We use the typical quadtree notation to show the nodes of our conceptual
trees: internal nodes are gray nodes, containing mixed regions of 0s and 1s, regions
of 1s are marked with black nodes and regions of 0s are marked with white nodes.
Notice also that, in this example, the conceptual tree built is similar to a region
quadtree representation of the binary matrix, explained in Section 4.3.4.1, since our
proposal for K = 2 is based on the same partitioning method used in quadtrees.
However, the K2-tree may use different values of K in different levels of the tree,
and the K2-tree1, as we will show later in this chapter, can also use this and
other techniques that make the conceptual K2-tree1 different from a classic region
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Figure 5.1: K2-tree with compression of ones: changes in the conceptual
tree.

quadtree.
In the remaining of this section we present our proposals for the physical

representation of the conceptual tree. In all the approaches we focus on keeping
the navigational properties of original K2-trees, thus providing efficient traversal
over the conceptual tree using only rank operations. We will propose the different
representations and show how they can be used to perform basic navigation over
the conceptual tree. We note that to perform queries over the underlying matrix
we will rely on three basic navigational operations that must be provided by our
representations:

• internal(n) to know whether a node is internal or leaf.

• children(n) to locate the K2 children of the current internal node. The K2

siblings will be in consecutive positions in all our representations, so we only
need to find the position of the first child.

• color(n) to know the color (white or black) of a leaf node3.

If we support these operations, the basic navigation algorithms in our repre-
sentations can be implemented as if our representation was a pointer-based region
quadtree. For example, to find whether a cell (x, y) is black or white, we start at the
root of the tree. From the cell coordinates we can determine the child of the current
node that should contain it, so we find the location of the children using the children
operation, move to the corresponding offset in the K2 siblings and check whether
the child is an internal node. If it is not internal, we can return immediately the

3Notice that these operations can be combined in different ways. For example, we may consider
an operation color that returns three values: gray, white or black, and thus replaces both internal

and color. The goal of this partition in basic operations is to show conceptually the ability of
our proposals to answer high-level queries using only the low-level operations. In practice, our
proposals will actually combine computations of the different operations to improve efficiency.
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Figure 5.2: K2-tree12bits−naive representation.

color of the node, that will give us the actual value of the cell. If the node is internal,
we repeat the process recursively until we reach a leaf node. General window queries
can also be solved using the basic functions as a replacement for the pointer-based
tree navigation.

5.2.1 Encoding the colors of nodes with three codes

5.2.1.1 Naive coding: the K2-tree12bits−naive

The simplest approach for the representation of the conceptual tree is simply to
use 2-bit codes to represent each node in the conceptual tree. We assign 10 to gray
nodes (internal nodes), 01 to black nodes and 00 to white nodes. In the last level
of the conceptual tree we can use simply the codes 1 or 0 for black or white nodes
respectively, since no gray nodes can appear. Figure 5.2 shows the bit assignment
for the conceptual tree of Figure 5.1. Notice that the bit assignment is not arbitrary,
but chosen to maintain the ability to navigate the K2-tree efficiently: the first bit
of each node indicates whether it is internal (1) or a leaf (0), and the second bit
determines whether a leaf represents a white or a black region.

Once the codes have been assigned, we perform a levelwise traversal of the
conceptual tree to obtain all the codes. We place them in 3 different bitmaps, as
follows:
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• T will contain the first bit of each node in all the levels except the last one.

• T ′ will contain the second bit of each node in all the levels except the last one.

• L will contain the (only) bit of each node in the last level.

In this representation, each node is identified by its position in T or L. In L each
node represents a single cell and is either black or white. The bitmap T contains a
1 for each gray (internal) node and a 0 for each leaf node, so internal(p) = true↔
T [p] = 1. Only gray nodes have (exactly K2) children. Therefore, given a (gray)
node at any position p in T , its K2 children will begin at position

children(p) = rank1(T, p)×K2 = p′

If p′ is higher than the length of T (we will denote this using |T |), the access is
instead performed in L at position p′′ = p′ − |T |. This operation is identical to the
navigation required in original K2-trees, and uses a rank data structure over T to
support the rank1 operation in constant time.

Finally, to provide the support for the operations we also need to provide a way
to tell apart white from black nodes (color operation). This operation is immediate
in a K2-tree12bits−naive: given a (leaf) node at position p in T , its color is given by
T ′[p] (white nodes have T ′[p] = 0, black nodes T ′[p] = 1).

In terms of space the K2-tree12bits−naive is a completely naive proposal: internal
nodes do not need to use 2-bit codes to be differentiated. However, it is presented
here because it leads to the simplest implementation of the data structure with
virtually no overhead in terms of query time (recall from Section 3.2 that the rank1

operation needed to find the children of a node was already required in the original
K2-tree). We will show later that this naive representation using 2 bits per tree node
is already competitive in space with some compact quadtree representations that
do not support direct navigation like our representations. The rest of this section
is devoted to present more space-efficient alternatives for encoding the conceptual
K2-tree1.

5.2.1.2 Efficient encoding of leaf nodes: the K2-tree12bits

To reduce the space overhead of the K2-tree12bits−naive, a simple improvement is
obtained by noticing that using 2 bits for each node in the upper levels of the K2-
tree1 representation is not necessary, since we only have 3 possible node types. We
can use a single bit 1 to mark an internal node and only use 2-bit codes 00 and 01 to
distinguish between white and black leaves. Figure 5.3 shows the code assignment
and resulting bitmaps following this strategy. The only difference with the previous
proposal is that the bitmap T ′, that still contains the second bit of each 2-bit code,
now only contains a bit for each 0 in T . The encoding used determines that T ′ will
contain a bit with the color of each leaf node, and all leaf nodes are encoded with
a 0 in T .
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Figure 5.3: K2-tree12bits representation.

To provide basic navigation, we note that the basic property of K2-tree
navigation still holds: the bitmaps T and L are identical to those of the K2-
tree12bits−naive, and therefore the children of a node at position p are located
at rank1(T, p) × K2. Additionally, we can know that a node is internal simply
checking T [p]. The operation to know the color of a leaf node is still very efficient:
given a leaf node at position p in T , its color can be obtained using the formula
color(p) = T ′[rank0(T, p)]. The new color operation is shown in Algorithm 5.1,
considering also accesses to the bitmap L. It only differs from the K2-tree12bits−naive

in the additional rank0 operation to compute the position in T ′ that stores the color
of the leaf. We can compute this rank0 operation in constant time using the same
rank structure that is already necessary for the children operation4.

We note at this point that the bitmaps stored in the K2-tree12bits can be seen
as a reordering of the FBLQ, described in Section 4.3.4.1: our K2-tree12bits turns
out to use the same encoding for the nodes of the conceptual tree than the FBLQ
representation, and simply places them in a way that allows us to perform efficient
traversals over the tree. On the other hand, the FBLQ representation was designed
for storage and can not be navigated easily like a pointer-based representation. Our
representation is also similar in structure to the variants of S-tree presented in
Section 4.3.4, in the sense that it stores two bitmaps equivalent to the position list
and the color list in the S-tree variants. However, our representation provides an

4Notice that in a binary sequence each bit is either 0 or 1, so rank0(T, p) = p − rank1(T, p)
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Algorithm 5.1 color operation in K2-tree12bits.

1: function color(tree, p)
Output: nodeType: BLACK, WHITE

2: T ← tree.T
3: T ′ ← tree.T ′

4: L← tree.L
5: isLast← false
6: if pos ≥ T.size then
7: p← p− T.size
8: isLast← true
9: end if

10: if isLast then
11: if L[p] = 0 then
12: return WHITE
13: else
14: return BLACK
15: end if
16: else
17: p′ ← rank0(T, p)
18: if bitget(T’, p’) then
19: return BLACK
20: else
21: return WHITE
22: end if
23: end if
24: end function
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efficient method to navigate the quadtree representation using only a small rank
structure in addition to the bitmaps, while S-tree variants either must be traversed
sequentially (the basic S-tree representation) or require significant additional space
(the modified and compact S-tree representations store the size of the left subtree
for each internal node).

5.2.1.3 Reordering codes: navigable DF-expression

Following the observation in the previous subsection, we present here another
alternative that is based on an already existing encoding. In this case, we use
the most efficient encoding proposed for the DF-expression [KE80], explained in
Section 4.3.4.1. This encoding is similar to the K2-tree12bits, but uses 1 bit for
white nodes and 2 bits for black and gray nodes, based on the observation that
white nodes may be usually the most frequent nodes in the quadtree representation
of real-world binary matrices. We call this representation K2-tree1df, and propose
it as an alternative representation that shows the flexibility of our techniques.

In a K2-tree1df a white node will be encoded with “0”, a gray node with “10”
and a black node with “11” (except those black nodes in the last level of the tree
that can be represented using a single bit “1”). We also use the bitmaps T , T ′ and
L like in the previous proposals: T will store the first bit of all the nodes except
those in the last level, T ′ the second bit of all the nodes except those in the last
level and L will store the bits for the nodes in the last level.

In a K2-tree1df the navigation can still be performed using simply rank
operations but is slightly more complicated. The used codes affect the navigational
properties of the K2-tree. In a K2-tree1df , the nodes that have children are those
labeled with a “1” in T and a “0” in T ′. Therefore, to find the children of a node
at position p we need to count the number of ones in T until that position (this
accounts black nodes and gray nodes), and subtract the number of black nodes
(that is, we need to count how many 1s appear in T ′ that correspond to the nodes
until position p). Following this reasoning, the formula to locate the children of a
node is children(p) = rank1(T, p)− rank1(T ′, rank1(T, p)). The procedure to check
whether a node is internal is also slightly changed: a node is internal if T [p] = 0
(it is black or gray) and the corresponding bit in T ′ is “0”: T ′[rank1(T, p)] = 0.
Finally, to compute the color of a leaf node at position p we check T [p]: if T [p] = 0
it is white, otherwise it is black.

This representation, although it is based on a possibly better code assignment,
presents some drawbacks when implemented as a K2-tree1. The first one, related
to space, is that we must add a rank structure not only to T but also to T ′. This
additional space, although sublinear in theory, may lead to worse compression than
the K2-tree12bits in some cases. The second drawback, related to time efficiency,
is that the children operation requires now two rank operations. Again, the rank
operation is theoretically constant-time but it is the most costly operation in our
representation. Nevertheless, the K2-tree1df is presented as an example of the
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Figure 5.4: K2-tree12bits representation.

versatility of our conceptual proposal. As we will see later in this chapter, our
representations can be compared in terms of space with some of the most compact
quadtree representations while supporting advanced navigation over the conceptual
tree as if we had a pointer-based representation.

5.2.2 A custom approach: K
2-tree11−5bits

Our last variation is a proposal designed to compress regions of ones but making
as few changes to the original K2-tree as possible. This implementation, K2-
tree11−5bits, fulfills two objectives: i) it never uses more space that the original
K2-tree, and ii) it tries not to change the original K2-tree structure (actually only
the query algorithms will be changed).

The key idea in the K2-tree11−5bits is the following observation: in a K2-tree,
a node is set to 1 if and only if some of its children are set to 1. Therefore, given
any node that is set to 1, at least one of its K2 children must be set to 1 in order
to obtain a valid K2-tree. The K2-tree11−5bits takes advantage of this property to
obtain a compact representation of regions of ones using the same data structure of
original K2-trees.

In a K2-tree11−5bits the bitmaps are constructed almost like in a simple K2-tree.
However, a K2-tree11−5bits is built over a slightly modified tree representation of
the binary matrix. In this representation we use a conceptual tree similar to those
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in the previous variants, but we represent regions of ones using the “impossible”
combination shown below: a region of ones will be represented with a 1 with K2 0
children. Figure 5.5 shows an example with a conceptual tree where regions of ones
are marked with black nodes: in the K2-tree11−5bits variant, the conceptual tree
contains a node with K2 “white” children for each region of ones. The conceptual
K2-tree11−5bits is now identical to the original K2-tree, in the sense that it uses a
single bit to encode each node and it can be represented using the same bitmaps T
and L of original K2-trees. The only difference is that the “impossible” combination
in original K2-trees is given a special meaning in this representation and the query
algorithms must be adapted to take this into account.

Figure 5.5: K2-tree11−5bits representation.

To perform the basic navigation in this approach, we can use the navigational
properties of K2-trees: the children of an internal node will be located at position
children(p) = rank1(T, p)×K2, as usual. The method to know whether the current
node is internal requires a more complicated check: a node is internal if T [p] = 1
and at least one of its children is a 1 (T [children(p), children(p)+K2−1] 6= 0 . . . 0).
Additionally, whenever we find a leaf node we can check its color easily: a leaf node
is white if T [p] = 0 and black if T [p] = 1.

The code assignment in the K2-tree11−5bits is very asymmetric, it uses much
more space to represent a black node than to represent a white one, particularly for
large K. This fact is inherited from the K2-tree conceptual design, that is tuned
to compress matrices with few ones. This characteristic of our proposal may be a
drawback in some contexts but also an interesting feature for the representation of
images with a different rate of black and white pixels. Trivially, the codes can be
swapped depending on the characteristics of the image to compress better white or
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black nodes as needed.
The main advantage of the K2-tree11−5bits is that the K2-tree data structure

is not modified at all, because the structure we build is actually a K2-tree
representation of a slightly different conceptual tree. This makes it easier to
apply changes or enhancements of the K2-tree to a K2-tree11−5bits, since only the
algorithms need to be adjusted to deal with regions full of ones.

Another advantage of the K2-tree11−5bits, derived from the first one, is that a
K2-tree11−5bits is guaranteed to use at most the same space as the original K2-tree.
To demonstrate this property we look at the conceptual tree and the codes used.
In the K2-tree11−5bits, a region full of 1s is encoded as a 1 with K2 0s as children;
in the original K2-tree, the same region full of 1s would be encoded as a complete
subtree of 1s: a node with K2 children, each of them with K2 children, and so on
until the last level of the tree was reached. Therefore, the K2-tree11−5bits saves the
space required by the complete subtree (except its first two levels); in the worst
case no (aligned) regions of 1s larger than K2 bits exist and the K2-tree11−5bits

representation is identical to an original K2-tree. Because of this property we
consider the K2-tree11−5bits a conservative approach in the sense that it is designed
to never require more space than a classic K2-tree, even if the represented matrix
does not contain regions of ones. In the next section we will show a theoretical
analysis of the space utilization of all our variants.

5.3 Space Analysis

In this section we will analyze the space required by all our representation as a
function of the number of nodes in the tree representation of the binary matrix. We
will focus on the basic case where K = 2, hence our conceptual tree representations
are similar to region quadtrees and we can analyze them in terms of the bits required
per node of the conceptual quadtree. We assume a binary matrix M [2n×2n], and its
quadtree representation Q. In this context, we call level of a node the distance from
the root to the node. Without loss of generality, we will consider the case where
the quadtree decomposition reaches the n-th level in at least one of its branches
(i.e., some of the quadtree leaves correspond to cells of the original matrix). Hence
level n is the last level of the quadtree5. At each level i, 1 ≤ i ≤ n, Q contains
wi, bi and gi white, black and gray nodes respectively, adding up to a total of
w =

∑n
i=1 wi white nodes, b =

∑n
i=1 bi black nodes and g =

∑n
i=1 gi gray nodes.

We analyze the space occupation of the different K2-tree representations considering
the number of bits devoted to represent each node. We will consider only the size of
the bitmaps, ignoring for now the lower order terms added for the rank structures.

5In the general case, the height of the quadtree may be smaller than n if the smallest uniform
region found is of size 2b

× 2b with b > 0. The nodes in the quadtree representation would not
change if we consider each 2b

× 2b submatrix as a cell in a submatrix of size 2n−b
× 2n−b. The

quadtree for the new submatrix would have now height n − b.
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For simplicity, we will not take into account the fact that the root node is omitted
in all our representations, which would change all our formulas in just 1-2 bits.

A K2-tree uses 1 bit for each gray node and white node, but for black nodes
at level l it would require a complete subtree to represent all the cells covered
by the node (

∑n
i=l(K

2)i−l bits). The total space used by a K2-tree is therefore
w + b + g +

∑n
i=0 bi

∑n
j=i(K

2)j−i. A K2-tree12bits−naive uses 2 bits for each node
in the upper levels, and 1 bit for each node in the last level, for a total space of
2(w+b+g)−(wn +bn). A K2-tree12bits uses 1 bit for gray nodes and 2 bits for each
black or white node, except those at the last level of decomposition, that can be
represented using a single bit. The total space used is simply g+2(w+b)−(wn +bn).
A K2-tree1df uses 1 bit for white nodes and 2 bits for black or gray nodes (except
black nodes in the last level, encoded with a single bit), for a total w + 2(g + b)− bn

bits. A K2-tree11−5bits uses 1 bit for each gray or white node, and 5 (K 2+1) bits
for each black node that is not in the last level of decomposition. The space is
w + g + 5b− 4bn.

The exponential cost of indexing regions of ones in a K2-tree makes clear the
advantage of our variations. However, if a matrix does not contain regions of ones,
the additional bits used to represent white nodes in the K2-tree12bits−naive and
the K2-tree12bits, or gray nodes in the K2-tree1df , make these alternatives more
expensive than a classic K2-tree. On the other hand, it is easy to see that a K2-
tree11−5bits can never use more space than the classic structure, since its space can
be rewritten as w+b+g+

∑n−1
i=1 biK

2. This makes this alternative a good candidate
for indexing data whose structure is not known.

To provide a more comprehensive comparison between our proposals, we use the
equality b + w = 3g + 1⇒ b + w ≈ 3g to reduce our formulas. The total space for
a K2-tree12bits−naive is

2g + 2(3g + 1)− (wn + bn) ≈ 8g − (wn + bn)

The K2-tree12bits further compresses the gray nodes, obtaining

g + 2(3g + 1)− (wn + bn) ≈ 7g − (wn + bn)

The K2-tree1df obtains similar results, yielding

w + 2g + 2b− bn ≈ 5g + b− bn

Finally, the K2-tree11−5bits space is

w + g + 5b− 4bn ≈ 4g + 4b− 4bn

In Table 5.1 we show these results together. As a rough estimation of an average
case, we add in the third row an estimation that provides a direct comparison
between the proposals. For this estimation we use b = w (and thus g = 2b

3 ), which
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Approach General Simplified Average estimation

K2-tree12bits−naive 2(w + b + g)− (wn + bn) 8g − (wn + bn) 13b
3

K2-tree12bits g + 2(w + b)− wn − bn 7g − (wn + bn) 11b
3

K2-tree1df w + 2(g + b)− bn 5g + b− bn
23b
6

K2-tree11−5bits w + g + 5b− 4bn 4g + 4b− 4bn
14b
3

Table 5.1: Space analysis for all the approaches. The average estimation
assumes b = w and bn = wn = b/2.

is the average case for random images. Additionally, we follow the steps in [Che02]
and let bn = wn = b

2 to get rid of the level-dependant terms. The result is a rough
estimation of the efficiency of the proposals in terms of the number of black nodes.

Trivially, the K2-tree12bits representation will always perform better than a
K2-tree12bits−naive (the codes used for each node are always equal or shorter in
the K2-tree12bits). The K2-tree11−5bits appears in our formulae close to the K2-
tree12bits−naive but with slightly worse results in the average estimation. However,
we note that the estimation uses a simplification (b = w) that has no significant
effect in the K2-tree12bits−naive or the K2-tree12bits, but can be considered as a worst
case scenario for the K2-tree11−5bits or the K2-tree1df, because their asymmetric
codes can take advantage of the skewed distribution of black and white nodes.

To give a more generalized estimation of the efficiency of our proposals, we
characterize different cases depending on the actual rate of 1s and 0s in the matrices.
We use a pixel oriented random model, in which an inary matrix (image) is composed
of 2n×2n pixels, each of which is black with probability p and white with probability
1−p. We call the quadtree representing a 2n×2n matrix a class-n quadtree. Given
the value n and the black pixel probability p, the average number of black, white
and gray nodes at each level of a class-n quadtree can be obtained easily [VM93].
This yields an average case estimation for all our proposals as a function of the black
pixel probability. In Table 5.2 we show, for different values of p, the average overall
rate of black/white/gray nodes in the quadtree and the average rate of black/white
nodes in the last level of the quadtree, as fraction of the total number of nodes.
These values are computed following the formulae in [VM93]. In our case the values
are computed for class-10 quadtrees, but the rates of nodes are similar for most
values of n.

Using the values in Table 5.2, we compute the expected space in bits for all our
proposals, in bits per node of the conceptual quadtree. In Table 5.3 (top) we show
the expected space, in bits per node of the conceptual tree, of all our proposals for
matrices of size 210×210 following the random pixel model. For matrices with many
ones (p ≥ 0.5), the K2-tree12bits representations obtains the best results in average.
In this estimation, for matrices with few ones the K2-tree11−5bits representation
appears to be the best, using just 1 bit/node.
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Black pixel b w g bn wn

probability

0.99 0.67 0.08 0.25 0.23 0.08
0.9 0.59 0.16 0.25 0.39 0.16
0.75 0.51 0.24 0.25 0.43 0.24
0.5 0.375 0.375 0.25 0.36 0.36
0.25 0.24 0.51 0.25 0.24 0.43
0.1 0.16 0.59 0.25 0.16 0.39
0.01 0.08 0.67 0.25 0.08 0.23

Table 5.2: Average rate of nodes in the quadtree as a function of the black
pixel probability.

At this point we must remark that this analysis, although it provides some
insight to the efficiency of our proposals, cannot be taken as a basis for results in
realistic scenarios. All our representations are designed for contexts in which the
bits are clustered, so that the representations can take advantage of that. In this
random pixel model, our representations would achieve a poor compression of the
input matrix. As a proof of concept, Table 5.3 (bottom) shows the expected space
results for the same examples in the top part of the figure but now in bits/one.
The values for sparse matrices go well above 10 bits/one in all the representations.
K2-trees are designed to take advantage of clusterization and other regularities, and
they typically achieve much better compression ratios when clusterization exists. In
the experimental evaluation of our proposals we will show the actual performance
of our proposals in real matrices that contain some clusterization of ones and zeros.

5.3.1 Comparison with quadtree representations

In Table 5.4 we compare our approaches with several existing representations for
quadtrees. We perform a theoretical comparison with the three encodings proposed
for the DF-expression, and different codes designed for linear quadtrees: Gargantini
codes in a classic linear quadtree (using FL-encoding), the breadth-first oriented
CBLQ and FBLQ representations and the Improved Quadtree (the Compact-IQ
without additional compression of the bitmaps). We make some simplifications
in the formulae: the cost of additional rank structures is not considered in our
proposals, and the additional cost of the B+-tree in the linear quadtree (LQT)
approach is also not considered. The last columns of the matrix show the space
estimation as a function of the number of black nodes in the quadtree and also an
average estimation for all the proposals. Additionally, for each representation we
show the memory model of application (in-memory representations are designed as
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Black pixel K2-tree12bits−naive K2-tree12bits K2-tree1df K2-tree11−5bits

probability (bits/node) (bits/node) (bits/node) (bits/node)

0.99 1.69 1.44 1.69 2.76
0.9 1.45 1.20 1.45 1.80
0.75 1.33 1.08 1.33 1.32
0.5 1.28 1.03 1.27 1.06
0.25 1.33 1.08 1.25 1.00
0.1 1.45 1.20 1.25 1.00
0.01 1.69 1.44 1.25 1.00

Black pixel K2-tree12bits−naive K2-tree12bits K2-tree1df K2-tree11−5bits

probability (bits/one) (bits/one) (bits/one) (bits/one)

0.99 0.21 0.18 0.21 0.35
0.9 1.02 0.84 1.02 1.26
0.75 1.79 1.46 1.79 1.78
0.5 3.09 2.49 3.06 2.56
0.25 5.38 4.37 5.05 4.04
0.1 9.15 7.57 7.88 6.31
0.01 21.27 18.12 15.73 12.58

Table 5.3: Average space results for all approaches, in bits/node (top) and
bits/one (bottom).

compact representations for main memory; external representations are designed
to be indexed and accessed in external memory). Additionally, we mark the
representations that support efficient access to regions of the image without
sequential decompression: notice that in general the in-memory representations
are designed for an efficient processing of the complete image, and as such do not
provide support for algorithms to access regions of the image.

The third representation for the DF-expression is probably the most compact
representation in many realistic cases, although in our estimation it behaves slightly
worse that our K2-tree12bits. This is because this representation, like our K2-
tree11−5bits, is not symmetric, and should behave better when the image contains
mostly white pixels. Notice that the code assignment in our representations is very
similar to the encoding used in other quadtree representations, and this leads to
identical space results. The FBLQ is equivalent to the K2-tree12bits representation
in terms of space, but our proposal is designed to support efficient navigation.
The same occurs comparing the K2-tree1df representation with the most efficient
encoding of the DF-expression. The IQ representation does not obtain good results
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Representation Model
Spatial

Space Spaceest
access

K2-tree12bits−naive In-memory X 8g − (wn + bn) 13b/3
K2-tree12bits In-memory X 7g − (wn + bn) 11b/3
K2-tree1df In-memory X 5g + b− bn 23b/6
K2-tree11−5bits In-memory X 4g + 4b− 4bn 14b/3
DF-expression(1) In-memory 8g 16b/3
DF-expression(2) In-memory 5g + b 13b/3
DF-expression(3) In-memory 5g + b− bn 23b/6
LQT(Gargantini) External X 3nb 3nb

CBLQ In-memory 8g 16b/3
FBLQ In-memory 7g − (wn + bn) 11b/3
IQ In-memory 7g 14b/3

Table 5.4: Space results for the different approaches. Spaceest assumes
b = w and bn = wn = b/2.

since we do not consider additional compression. Finally, it is easy to see that our
representations are comparable in space with any compressed in-memory quadtree
representation but support random access to the contents of the images thanks to
the simple navigation using rank operations.

5.4 Enhancements to the K
2-tree1

Several improvements have been proposed for original K2-trees to improve their
space utilization and query efficiency. Most of them can be directly applied to the
K2-tree1 with similar results.

The first improvement in original K2-trees is the utilization of different values
of K in different levels of the conceptual tree, particularly larger values in the
upper levels of the tree and smaller values in the lower levels. The utilization of
different values of K in the K2-tree does not change the navigation algorithms, but
the computations to find the children of a node must be adjusted. This simply
requires to add an adjustment factor to the formula that computes the children
of a node. This change is not affected by the encodings used in our variants,
so this improvement can be directly applied to the K2-tree1, obtaining hybrid
implementations of the K2-tree1 with different values of K per level.

Matrix vocabulary: The most important enhancement over original K2-trees is
the addition of a matrix vocabulary to compress small submatrices according to their
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frequency. This enhancement, explained in Section 3.2.2, yields a representation
in which the subdivision is stopped at a fixed level, and all the submatrices
corresponding to the nodes at that level are represented in a different manner.

In a K2-tree12bits−naive, K2-tree12bits or K2-tree1df, the matrix vocabulary can
be added following exactly the same procedure. The bitmaps T and T ′ will represent
upper levels of the conceptual K2-tree1, and the last level will be represented by
the matrix vocabulary that replaces the bitmap L. This allows all these variants
to take advantage of any small-scale regularities in the binary matrix that can be
exploited using the statistical encoding of the submatrices. In a K2-tree11−5bits, the
addition of a matrix vocabulary can also be implemented like in the original K2-tree:
the bitmap T is stored in plain form and L is replaced by a statistically-encoded
sequence stored using DAC.

Notice that the improvements added to the basic K2-tree representation increase
significantly its ability to compress regions of ones: if large regions of 1s appear in the
binary matrix and we use a matrix vocabulary for submatrices of size K ′×K ′, a short
codeword can be used to represent a complete submatrix full of 1s, thus reducing
the cost of storing a complete subtree full of 1s in the K2-tree by a significant
fraction. This means that, when using the improvements proposed in this section,
and particularly a matrix vocabulary, original K2-trees should also improve their
ability to represent clustered binary images. Later in this chapter we will compare
original K2-trees with our K2-tree1 variants, also studying the effect of the matrix
vocabulary in compression.

5.5 Algorithms

All the main operations supported by original K2-trees are also supported by our
representations. The algorithms to find the value of a single pixel have been covered
in the basic traversal explanation. Other queries that look for all the ones in a
row/column of the binary matrix are solved filtering the children traversed at each
step. In this section we will present the resolution of different operations of interest
in image processing where quadtrees are typically used.

5.5.1 Window queries

Window queries are a relevant query in different domains of spatial data. In a
pointer-based quadtree representation, a window query can be efficiently answered
performing a top-down traversal over the tree and collecting the set of nodes that
correspond to regions that overlap the query window. Notice that in our proposals
a window query can be performed using exactly the same procedure followed in a
pointer-based quadtree, since we have the only required operations: know the color
of a node and find the children of an internal node.
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All our representations are variants of the K2-tree, that already supports range
queries. Essentially a window query is a range query, with the only difference that
in our context we may not be interested in obtaining all the cells in the binary
matrix contained in the window. Instead, our queries may want to retrieve all the
maximal blocks that are strictly contained in the window or the maximal blocks
that overlap the window. In any case, all operations can be performed using the
same top-down traversal followed in pointer-based quadtrees or original K2-trees.

5.5.2 Set queries

Our proposals efficiently support queries involving multiple K2-tree1s at the same
time. We call these set queries, understanding them as a variant of the set operations
that are widely used in image processing and are supported by most quadtree
representations. A set operation is a transformation that takes the representation
of two images and returns the representation for a combination of those images.
In general, each operation simply takes each pixel in the original images, applies
the corresponding set operation to them and sets the corresponding pixel of the
resulting image to the obtained value. Typically the result is the representation of
the result image instead of the image itself. We will show how our representations
can answer queries (for example, any window query) that involve multiple trees,
returning directly the results of the query (the sequence of pixels or blocks) instead
of building a compact representation as output. Then we will extend the problem
to returning a compact representation in a set operation. We will consider four
different set operations (most operations are based on logical tables in each node,
so similar operators can be implemented following the same principles):

• Intersection (A ∩B): each pixel will be black iff that pixel is black in both of
the original images.

• Union (A ∪ B): each pixel will be black iff that pixel is black in any of the
original images.

• Subtraction (A− B): each pixel will be black iff that pixel is black in A and
white in B.

• X-or (A⊕B): each pixel will be black iff the pixel is black in A and white in
B or vice versa.

Given any query Q (for instance, a window query) that can be executed in a
single K2-tree1, we can efficiently support the same query on the union, intersection,
etc. of two (or more) K2-trees. Q determines, at each level of the conceptual K2-
tree1, which of the branches would have to be traversed (candidate nodes). In a
query involving a simple K2-tree1, at each level of the conceptual tree, the bitmaps
of the K2-tree1 are checked to find which of the candidate nodes are internal nodes
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that can be traversed and which of the candidate nodes are actually leaf nodes
that can be returned or discarded immediately. The process to answer queries on
multiple K2-tree1 will be similar, but it will require a synchronized traversal of all
the involved K2-tree1.

To perform a query Q over a combination of two K2-tree1s Kx and Ky we simply
need to traverse both K2-tree1 representations at the same time and run the checks
at each level for the corresponding nodes of each K2-tree1. We can define a simple
table, shown in Table 5.5, that computes the process to perform depending on the
operation and the color of the node in each K2-tree1. If we already know that the
result is a black or white node, we return it as a result of Q. If the result is still
unknown, we must keep traversing the K2-tree1s. In this case we must distinguish
three cases: 1) when no information can be derived from the colors, both K2-trees
must be traversed (traverse operation). 2) If a leaf node has been found in Kx,
then its color cx is stored and only Ky must be traversed (traversey(cx)). 3) If
a leaf node has been found in Ky, we store its color cy and only Kx is traversed
(traversex(cy)).

Kx Ky Kx ∩Ky Kx ∪Ky Kx −Ky Kx ⊕Ky

w w return(w) return(w) return(w) return(w)
w g return(w) traversey(w) n.p. traversey(w)
w b return(w) return(b) n.p. return(b)
g w return(w) traversex(w) traversex(w) traversex(w)
g g traverse traverse traverse traverse

g b traversex(b) return(b) n.p. traversex(b)
b w return(w) return(b) return(b) return(b)
b g traversey(b) return(b) traversey(b) traversey(b)
b b return(b) return(b) return(w) return(w)

Table 5.5: Table for set queries on K2-tree1s.

As an example, given the two conceptual trees Kx and Ky shown in Figure 5.6,
and a window query Q highlighted in the figure, we want to compute Q on the
intersection of both trees. Starting at the root of both trees, we check the children
that intersect the window (in this case, the second and fourth children). For each
of them, we find out the color of the node in each of the K2-tree1s. The fourth
child of the root is black in both trees, so according to Table 5.5 we can add the
corresponding submatrix to the result. The second child in both trees is gray, so we
keep traversing both representations (finding the children of the node). In the next
level all the submatrices are contained in the query window, so we check all children
in both trees. The relevant cases are c (c′) and k (k′), since the other intersections
result in white nodes. For c and c′, we find two gray nodes and keep traversing the
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Figure 5.6: Intersection of two K2-tree1s.

tree. Finally, in the children of c and c′ we find that all the pairs are black-white
nodes, so no blocks are added to the result. When comparing k and k′ we find
that k is black and k′ is gray, so we only need to keep traversing the right tree
and considering that the corresponding left node is black (traversey(black)). The
children of k are checked and compared with the fixed black value in the left side.
Comparing all nodes in Table 5.5, only m′ returns a black block.

The actual implementation of the set queries, as we have seen, is simply based
on our ability to check the color of a node and find its children. Hence, the
conceptual query algorithm is directly applicable to all our proposals simply using
the appropriate implementation of the basic operations.

5.5.2.1 Returning a compact representation

Set operations on compressed images, as we have seen, are usually considered to
return also a compressed representation of the image. A proper set operation
involving two of our tree representations should also return a new compact
representation of the resulting image. In most cases, the support of our proposals
for set operations during queries will suffice. However, in order to implement proper
set operations that return the same K2-tree1 representation of the resulting image
more complex operations are needed.
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Kx Ky Kx ∩Ky Kx ∪Ky Kx −Ky Kx ⊕Ky

white white return(w) return(w) return(w) return(w)
white gray return(w) copy(Ky) n.p. copy(Ky)
white black return(w) return(b) n.p. return(b)
gray white return(w) copy(Kx) copy(Kx) copy(Kx)
gray gray undef undef undef undef

gray black copy(Kx) return(b) n.p. complement(Kx)
black white return(w) return(b) return(b) return(b)
black gray copy(Ky) return(b) complement(Kx) complement(Ky)
black black return(b) return(b) return(w) return(w)

Table 5.6: Table for set operations on K2-tree1s.

To build an output K2-tree1 representation we consider that the result is
precomputed completely before returning it (that is, we do not return partial
representations until the complete image has been processed). We will use a table
that determines the action to follow depending on the value in both trees; this table
is very similar to the one used for queries, but this one explicits the operations
needed to build the tree representation of the result.

We store a set of auxiliary lists L1, . . . , Ln, one for each level of the conceptual
tree, that will be filled from left to right as needed. Then, the procedure starts
traversing both K2-tree1s as follows: we start at the root, and follow a depth-first
traversal over the tree, using the children operation to reach the lower levels. At
each level, we check the corresponding node in both representations. If the result
for the node is already known (black or white) according to Table 5.6, we append
the appropriate result to the list of the current level and stop traversal in the
current branch, going to the next node. If Table 5.6 returns a copy or complement
operation, we continue traversal only through the specified tree: operation copy(Ki)
indicates that the result for all the children of the current node will be the value
in Ki, while complement(Ki) indicates that the result will be the complement of
each node in Ki (that is, white and black nodes are interchanged). When we find
a copy or complement operation we do not use Table 5.6 until we have finished
processing the subtree of the node that generated the copy. Finally, when the result
is unknown in Table 5.6 (undef), we do not have any information about the current
node, since its value depends on its subtree. When we find and undef value we
append it to the corresponding list and keep traversing. When the traversal of the
subtree finishes and we reach back the node we will already know the color of the
node, that can be easily computed from its K2 children: if the K2 children are
leaves of the same color, they are removed and the undef node is stored as a leaf
of that color; otherwise the node is gray.
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Nodes processed L1 L2 L3

a [w] [ ] [ ]
b [w, u] [ ] [ ]
c [w, u] [u] [ ]
d [w, u] [u] [w]
e, f, g [w, u] [u] [w, w, w, w]
c∗ [w, u] [w] [ ] L2.last : u→ w.
h, i [w, u] [w, w, w] [ ]
k [w, u] [w, w, w, g] [ ] copy(Ky)
l, m, n, o [w, u] [w, w, w, g] [w, b, w, w]
k∗ [w, u] [w, w, w, g] [w, b, w, w]
b∗ [w, g] [w, w, w, g] [w, b, w, w] L1.last : u→ g.
p, q [w, g, w, b] [w, w, w, g] [w, b, w, w]

Table 5.7: Construction of output K2-tree as the intersection of the K2-
trees in Figure 5.6.

Depending on the K2-tree1 variant used, the actual storage of values in the Lis
should use the same codes used in the corresponding representations. For instance,
in a K2-tree12bits each Li should actually store 2 bitmaps corresponding to Ti

and T ′
i , the fragment of bitmap corresponding to level i. In a K2-tree1df or K2-

tree12bits−naive we would use similar 2-bit representations for the nodes. Once all
the nodes have been traversed, we have in the Lis the sequence of node values using
already the encoding corresponding to the different levels of the tree. The final
representation will be the concatenation of the corresponding bitmaps in each Li

to obtain the final bitmaps T , T ′ and L.
Our implementation is not as efficient as other image representations based

on quadtrees, that are specifically designed to answer these queries and return a
compact representation. The operations in this section are provided as a proof
of concept to show that our proposals can still provide set operations in compact
space, and the processing time is still proportional to the number of nodes in both
trees (we perform all operations in a single traversal of both trees, and the final
concatenation of the lists requires time proportional to the number of nodes in the
conceptual tree of the resulting image).
Example 5.1: Following the example representations in Figure 5.6, to return
a compact representation of the intersection we would perform a synchronized
depth-first traversal of both conceptual trees. Table 5.7 shows the step-by-step
construction of the Li tables as the nodes are processed. We start at the root
of the tree, where all our Lis are empty. The first node processed is a/a′, and the
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intersection is a white node. Hence w is appended to L1. The second node processed
is b, that is gray in both trees. We set the node as undefined, appending u to L1.
The value of the node will be computed after the complete subtree is traversed.
Then we process c, that is again undefined, so we append u to L2. Next, the four
children of c and c′ are processed, obtaining for each of them a white node that is
appended to L3. After we finish processing g and g′ we go back to c (marked as c∗ in
Table 5.7). Since the last value in L2 is u (undefined), we need to compute it from
the values of its children. We check the last K2 values in L3, and find that they
are all white nodes, so node c is actually a white leaf: we remove the last K2 bits
in L3 and replace u with w in L2. Then we would process h, i, k, obtaining white
leaves for h and i. When we process k, k′ (black and gray respectively), Table 5.6
tells us to copy the right subtree. Hence, we add g to L2 and process the complete
right subtree (nodes l′, m′, n′, o′), appending all the values to the corresponding list
(in this case, only L3). Then we have to move up in the tree, going back to k (that
is already gray, so no action is needed) and then to b (step b∗ in Table 5.7). Since
the last value in L1 is u we would again compute it using the K2 last values in L2,
hence setting it to g. The intersection is completed processing nodes p and q. At
this point, the Li contain the sequence of nodes for each level. The output K2-tree
is built concatenating the encodings for all the Lis in order. Notice that the lists
are only accessed at their end points, and almost all the operations only require to
append elements (at most we need to remove the last K2 elements from a list).

5.5.3 Other manipulations

Other image manipulations that are usually simple in quadtree representations can
be performed easily in our proposals. In most cases, the efficiency depends on the
variant used (for example, some operations that are implemented with a simple
left-to-right traversal of the bitmaps in the other proposals are not feasible in a
K2-tree11−5bits due to the fact that black nodes are stored in two different levels).
Nevertheless, all our variants are mainly designed for efficient querying, so queries
that are supported very efficiently are expected in general to be more complex to
implement if we want to return a K2-tree1 variant as output. Next we present
a sketch of the implementation of some usual image manipulations on top of our
K2-tree1 representations that would return a K2-tree1 as output.

The complement operation of an image simply requires to swap black and white
nodes in any quadtree. This operation can be performed with maximum efficiency
in a K2-tree12bits−naive and a K2-tree12bits, since the color of leaves is stored only
in T ′. A simple traversal of T ′ and L flipping all the bits suffices to obtain the
complement K2-tree12bits−naive or K2-tree12bits 6. This operation can be performed

6Actually, the code assignment explained in the K2-tree12bits−naive was “10” for internal nodes,
so flipping all the bits in T ′ internal nodes would become “11” instead. This would have no effect
on the query algorithms since the second bit of internal nodes is never accessed. For the purpose
of validating this operation we can redefine the code of an internal node in a K2-tree12bits−naive
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Figure 5.7: Complement operation in a K2-tree12bits−naive or K2-tree12bits.

very efficiently in a sequential traversal of both bitmaps. If a matrix vocabulary is
used instead of L, the procedure for flipping the bitmap is even easier: we only need
to flip the bits in the matrix vocabulary, and the sequence of encoded matrices does
not change. Figure 5.7 shows the representation of a quadtree and its complement
using a K2-tree12bits−naive and a K2-tree12bits: as we can see, only T ′ and L are
changed.

To rotate an image 90 degrees we will use a recursive definition of the rotation of
a quadtree: a rotation by 90 degrees of a quadtree node is obtained by first rotating
its K2 children and then rearranging them, so that the old sequence NW −NE −
SW − SE becomes SW − NW − SE − NE (that is, we permute them in order
3–1–4–2. The rotation of a leaf node does not change the node. This operation
can be performed in a K2-tree following a depth-first traversal of the conceptual
tree. Each time we find an internal node, we first process its children. For each
node processed, we keep track of its offsets in T and T ′ or L: for a leaf, we store
simply its position, for an internal node we store its position and also the intervals
in T and T ′ or L where its descendants are stored. Notice that, for any internal
node, the positions occupied by its descendants will be a contiguous interval in each
level of the conceptual tree below the level of the node (with some possibly empty

as “1x” so that the resulting codes are still valid.
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intervals). Notice also that the interval covered by a node is easily computed while
its children are processed, since the intervals for a node are the union of the intervals
for its K2 children. Using this property, we can easily rearrange K2 siblings if at
least one of them is an internal node. For each sibling node we have computed
the intervals of the bitmaps T , T ′ and L that store the node and its descendants.
The intervals are arranged according to the previous permutation, moving the bit
sequences in the corresponding intervals to their new positions. This operation is
performed independently for each level of the conceptual tree, permuting the bit
sequences in the intervals for each level. The intervals for the parent node of the K2

sibling nodes just processed is computed as the union of the intervals in the children
nodes. After the rotation operation has finished (i.e. the conceptual root node has
been rotated), we must recompute the rank directories. If we use a compressed
version of L the rotation of K2 siblings is performed similarly, but rotating the
submatrices in the vocabulary. Then, groups of K2 codewords are rearranged using
the same permutation explained. After the rotation is complete, the sequence of
variable-length codes must be encoded again using DACs to provide direct access
to the rotated representation.

Notice that, even though the rotation operation in the K2-tree1 variants is
relatively complex, a rotated query is performed with no penalty by our K2-
tree1 representations: if a query requires us to compute results over a rotated
representation, we can use the same traversal algorithms and support the same
operations, if we consider the appropriate permutation of the children of each node
during traversal. The same occurs with complement queries: we can use any of our
variants as a complemented variant, returning regions of 0s instead of regions of 1s,
without affecting the query algorithms.

5.6 Experimental evaluation

5.6.1 Experimental framework

In this section we will test the efficiency of our proposals for the representation
of different kinds of binary matrices. As we have seen earlier in this chapter, our
encodings are expected to obtain good compression results in images that are highly
clustered, and their results depend heavily on this property of the datasets. In order
to test the efficiency of our representations, we will provide two sets of test cases: the
first group will be a collection of Web graphs, that have some level of clusterization
but are very sparse, so the number and size of the regions of ones found in them
should be small. Table 5.8 shows some basic information about the Web graphs used.
All the datasets are publicly available datasets provided by the Laboratory for Web
Algorithmics (LAW)7. Since several variants of each dataset are provided, we use the
representations where the nodes are in natural order, that is, the rows/columns of

7http://law.di.unimi.it/datasets.php

http://law.di.unimi.it/datasets.php
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the adjacency matrix correspond to Web pages in lexicographical order according to
their URL. The first two datasets are small graphs according to current Web graph
standards, while the latter two datasets can be considered good representatives of
a Web graph.

Dataset #Rows #Columns #Ones % Ones

cnr-2000 325,557 325,557 3,216,152 0.0030
eu-2005 862,664 862,664 19,235,140 0.0026
indochina-2004 7,414,186 7,414,186 194,109,311 0.0004
uk-2002 18,520,486 18,520,486 298,113,762 0.0001

Table 5.8: Web graphs used to measure the compression of ones.

To measure the compression capabilities of our proposals in a more suited
scenario, we also use a collection of raster datasets corresponding to elevation data
in several regions of Spain. All the datasets are taken from the Digital Land Model
(Modelo Digital del Terreno MDT05) of the Spanish Geographic Institute8, which
contains altitude information of Spain with 5 meter resolution. We take several
fragments of the model, shown in Table 5.9. The first datasets are numbered after
the corresponding pieces in the MDT dataset. Dataset mdt–A is a combination of
four different fragments in a single raster, and finally mdt–B contains the elevation
data for the complete Galician region. From these datasets, that are actually grids
of values, we will build different binary matrices with different percentage of 1s
for our experiments. To build the binary matrices we process the complete raster
dataset and sort the cells by value. Then, we determine the threshold value that is
at percentile p% in the sorted list of values, where p is the percentage of 1s desired.
We use this threshold value to build the binary matrix, that will contain 1 for all
cells of the original dataset whose value is not greater than the threshold.

We run all the experiments in this chapter on an AMD-Phenom-II X4 955@3.2
GHz, with 8GB DDR2 RAM. The operating system is Ubuntu 12.04.1. All our
implementations are written in C and compiled with gcc version 4.6.2 with full
optimizations enabled.

5.6.2 Comparison of our proposals with original K
2-trees

In this section we compare our proposals with original K2-trees for the representa-
tion of different kinds of binary matrices. First we will show how our proposals
behave in matrices will small (or no) clusters of ones, where a classic K2-tree
should obtain better results. To do this, we build a representation of all the Web
graphs in Table 5.8 with each of our encodings, as well as the equivalent classic

8http://www.cnig.es

http://www.cnig.es
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Dataset #Rows #Columns

mdt–200 3,881 5,461
mdt–400 3,921 5,761
mdt–500 4,001 5,841
mdt–600 3,961 5,881
mdt–700 3,841 5,841
mdt–900 3,961 6,041
mdt–A 7,721 11,081
mdt–B 47,050 48,266

Table 5.9: Raster datasets.

K2-tree representation (base). For all the Web graph datasets we use the hybrid
K2-tree approach with 2 different values of K, K = 4 in the first three levels of
decomposition and K = 2 in the lower levels. The same values of K are used in the
original K2-tree and all our variants.
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Figure 5.8: Space results of K2-tree variations for Web graphs.

Figure 5.8 shows the space results for all the variants and the original K2-tree in
the studied Web graphs. The comparison results are very consistent among all the
datasets, showing that our encoding based on 2 bitmaps obtain consistently worse
compression in Web graphs than the baseline. As we said, this is expected since
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all the Web graph datasets are very sparse and their adjacency matrices contain
only small clusters of ones. As expected from the theoretical analysis, the K2-
tree12bits−naive obtains the worst compression in all cases, being considerably larger
than the baseline and all other encodings (notice the logarithmic scale in the y-axis).
The K2-tree12bits and K2-tree1df are far more competitive, and in all the studied
datasets the K2-tree1df is smaller than the K2-tree12bits, even if slightly. Finally,
and as expected from theoretical analysis, the K2-tree11−5bits obtains compression
results very similar to the baseline, being smaller than the baseline in all the datasets
and particularly in the indochina dataset. As we can see, the K2-tree11−5bits is able
to take advantage of the small clusters of ones in the adjacency matrices of Web
graphs and provide better compression than the baseline even though the graphs
are very sparse.

 80

 100

 120

 140

 160

 180

 200

 220

 2  4  8

S
pa

ce
 (

M
B

)

Value of K’

base
2bits-naive

2bits
df

1-5 bits

Figure 5.9: Space results for dataset uk for different leaf (K’) sizes.

In the previous comparison we intentionally ignored the compression of subma-
trices in the lower levels of the K2-tree, an enhancement that leads to much better
compression in Web graphs. This makes the results in Figure 5.8 a good comparison
between our approaches, but does not give the best estimation of the results that can
be obtained by our encodings in Web graphs, since the compression of L significantly
reduces the space requirements of K2-trees. In order to properly test the efficiency
of our encodings applied to Web graphs, we compare our approaches with original
K2-trees compressing the bitmap L in all the proposals. We measure the space
requirements of all the proposals as K ′, the size of the submatrices in the last level
of the tree, increases. In Figure 5.9 we show the results for the dataset uk, having
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submatrices of 2 × 2, 4 × 4 and 8 × 8 in the last level. It is easy to see that the
K2-tree11−5bits outperforms the original K2-tree, but the difference becomes much
smaller as K ′ increases. This is due to the fact that the clusters of ones are relatively
small, so if we use 8 × 8 leaves most of the clusters are contained in a few leaves
and further compression reduces at most a tiny fraction of the overall space.

5.6.2.1 Compression of clustered binary images

Next we test the efficiency of our representations using heavily clustered datasets, in
which our representations should obtain their best compression results. To do this,
we compare again all our encodings with the original K2-trees, using in this case
the datasets of Table 5.9. To obtain an estimation of the compression achieved by
our proposals, we first test them using images with 50% of ones. We build a binary
image with 50% of ones from each of the raster datasets filtering out the points
with elevation above the median. To build the different approaches we use a hybrid
variant with K = 4 in the first level of decomposition and K = 2 in the remaining
ones, and 4 × 4 leaves for better compression. The results obtained are shown
in Figure 5.10. As expected, all our encodings are significantly smaller than the
baseline. Focusing on the comparison between our proposals, the K2-tree12bits−naive

obtains again the worst compression results, and the K2-tree11−5bits is just slightly
smaller than the K2-tree12bits−naive. The K2-tree12bits obtains consistently the best
compression results, but the K2-tree1df is very close. Even if the results are very
close among all proposals, the K2-tree12bits approach consistently obtains the best
results among our proposals.

Notice that, as we explained in Section 5.2, the K2-tree1df and K2-
tree12bits−naive approaches are not symmetric, and they can take advantage
of a skewed distribution of zeros and ones in the base matrix. In order to test the
evolution of the different approaches depending on the number of ones, we analyze
the space results obtained by all our proposals applying different thresholds to the
raster datasets to obtain binary images with a 1-90% of black pixels (i.e. 1-90% of
ones in the binary matrix).

In Figure 5.11 we show the results obtained for the dataset mdt–400, although
similar results can be obtained in the other datasets. In the top of the figure
we show the complete results of our approaches and the baseline; in the bottom
we show a more detailed view of the results of our encodings, that, as we have
already seen, obtain much better compression than the original K2-tree. As the
figure shows, the results are very similar regardless of the black analogy, with the
K2-tree12bits obtaining the best compression results of all our approaches and the
K2-tree12bits−naive obtaining the worst results. The most relevant result is the
evolution of the K2-tree11−5bits, that is always between the previous encodings but
is less competitive when the percentage of ones is around 50%. It is noteworthy
that even when the percentage of ones is small the K2-tree11−5bits obtains slightly
worse results than the best representation, the K2-tree12bits. This result is due to
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Figure 5.10: Space results of K2-tree variations for raster datasets with
50% of 1s.

the nature of the datasets: independently of the number of ones in the matrix, they
will be so highly clustered that the K2-tree decomposition produces a relatively high
number of black nodes in upper levels of the tree. Therefore, the K2-tree11−5bits

and K2-tree1df representations will obtain worse results than the K2-tree12bits due
to the additional cost to represent black nodes in the tree.

5.6.2.2 Query times

Finally, after demonstrating the efficiency of our representations to compress binary
matrices by exploiting the clusterization of large regions of ones and zeros, we
experimentally test their query efficiency. We compare our encodings with original
K2-trees when applied to the two main domains studied: the representation of Web
graphs and the representation of binary raster images. In each domain, and for
each dataset, we run a set of 10 million cell retrieval queries (that is, each query
asks for the value of a single cell). The query sets are built selecting random cells
within the boundaries of each dataset.

First we test the efficiency of our encodings in comparison with original K2-
trees to represent Web graphs. As we have already seen, our encodings are not
well suited for the compression of such sparse matrices, since Web graphs contain
few and relatively small clusters of ones. Therefore, when applied to Web graph
datasets our encodings do not reduce the number of nodes in the conceptual tree
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Figure 5.11: Space results of K2-tree and K2-tree1 variants for the dataset
mdt-400 with varying % of 1s. Complete results are shown in the top plot
and the detail of K2-tree1 variants in the bottom plot.

and require essentially the same number of navigation steps over the conceptual
tree.

Figure 5.12 shows the average query times for the different Web graph datasets
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Figure 5.12: Query times to access a cell in different Web graph datasets
using all our encodings (times in µs/query).

studied. All our encodings, as expected, obtain higher query times than original K2-
trees, due to the additional computations required to keep track of the “color” of tree
nodes. The K2-tree12bits−naive obtains the best query times of all our approaches,
since the cost of checking the color of a leaf node is simply a bitmap access. The
K2-tree11−5bits also obtains good query times in all the Web graphs, because the
main overhead in this approach is the computation to differentiate between gray
and black nodes, so for many queries that reach a white node in upper levels of
the conceptual tree the overhead is very small. Recall that the K2-tree11−5bits

was also the only approach that was always competitive in space with original K2-
trees, always overcoming them by a tiny fraction. The K2-tree11−5bits combines
space results, that are guaranteed to never be worse than original K2-trees, with
relatively close query times, making it a good alternative for the representation
of graphs where the level of clusterization is not known or is very irregular. The
K2-tree12bits and K2-tree1df encodings obtain the worst query times, due to the
additional rank operations required to navigate the conceptual tree, and the K2-
tree1df is significantly slower than all our other encodings. This is due to the
fact that in a typical traversal we need to traverse many internal nodes until we
finally reach the leaves, and the K2-tree1df requires an additional rank operation
in both internal nodes and leaves, while the K2-tree12bits for example only requires
and additional rank operation at the leaves of the conceptual tree, to distinguish
between black and white nodes.
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Next we present a comparison of our representations in a better suited scenario:
the compression of highly clustered raster images. We build two sets of binary
images, the first with 50% of black pixels and the second with 10% black pixels,
based on the usual raster datasets. For each dataset we build a set of 10 million
cell retrieval queries, corresponding to random cells within the dimensions of each
dataset. Figure 5.13 shows the results obtained by all our representations and
original K2-trees in the different datasets. Focusing on the top of the figure,
corresponding to images with 50% black pixels, we can see that the results in
raster datasets are significantly different from the comparison in Web graphs: most
of our approaches are faster than original K2-trees, and the relative comparison
between them is also changed. The fact that most of our encodings are faster
than original K2-trees is due to the reduction in the number of nodes in the
conceptual tree: in original K2-trees, all queries that ask for a cell that is set to
1 need to traverse the complete tree; on the other hand, in our representations
most of these queries are stopped in upper levels of the conceptual tree when
a uniform region of ones appears in the matrix. The reduction in the average
height of the tree is enough to compensate the additional cost of bitmap accesses
and rank operations in most cases. The K2-tree12bits−naive is again the fastest
approach but the K2-tree12bits and K2-tree11−5bits also obtain close query times.
We consider of particular interest the comparison between the K2-tree12bits−naive

and the K2-tree12bits, that provides a space-time tradeoff in this kind of data: the
K2-tree12bits−naive is a larger representation but is in general faster than the K2-
tree12bits; depending on the final application of the representation, they can be
easily interchangeable to provide slightly faster access or a smaller data structure.

Figure 5.13 (bottom) shows the query times obtained for the same query sets in
datasets with 10% black pixels. If we compare the results in the top and bottom
plots of the figure, it is easy to see that the query efficiency of our encodings depends
heavily on the existence of large regions of zeros or ones in the image that can reduce
the average height of the conceptual tree. With 10% black pixels, original K2-trees
become competitive in query times with most of our representations (even if they
are far from competitive in space, as we have shown in Figure 5.11). As the number
of ones reduces, so does the size of the black regions in the datasets, improving the
efficiency of the K2-tree11−5bits representation that becomes slightly faster than
the K2-tree12bits. The K2-tree12bits−naive is still the fastest approach, and the
K2-tree1df is still significantly slower in all cases.

5.6.3 Comparison with linear quadtrees

In the theoretical analysis of our proposals we have shown that they are competitive
in space with some of the most compact quadtree representations, and also
provide efficient access to regions of the represented matrix/image. In this
section we demonstrate the capabilities of our representations comparing our best
overall encoding in highly clustered data, the K2-tree12bits (it obtained the best
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Figure 5.13: Query times to access a cell in raster datasets with 50% (top)
or 10% (bottom) black pixels(times in µs/query).

compression in general, even though its query times were a bit slower than the K2-
tree12bits−naive), with the linear quadtree representation proposed by Gargantini, a
widely used compact quadtree representation that provides efficient support for most
operations, including random access to pixels or regions of the image as well as image
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manipulations (set operations, rotations, etc.). Since the linear quadtree (LQT) is
designed to operate in external memory, we implemented an in-memory version
of the LQT that provides a fairer comparison with our K2-tree1 representation.
Our in-memory implementation, that we call LQT-array, stores the sequence of
quadcodes (represented using FL encoding) in an array in main memory, so searches
for quadcodes can be implemented using a simple binary search on the sequence of
quadcodes.

We perform our comparison using a subset of the raster datasets and some Web
graphs in order to measure the differences in different kinds of data. As in the
previous sections, the raster datasets (mdt−) correspond to the expected use case
of our encodings, matrices with relatively large clusters of zeros and ones. On the
other hand, we also experiment with Web graph datasets to provide a baseline for
comparison. In all cases, we compare our K2-tree representation with the equivalent
LQT-array and measure the compression obtained in bits per one of the binary
matrix.

Table 5.10 shows some basic information about the datasets used, including the
size of the matrix and the number of ones in it. For the raster datasets, in these
experiments we build a binary matrix for each of them with roughly a 50% of ones.
The last two columns of the table show the space results obtained by our encoding
and the equivalent linear quadtree. As expected, our representation is always much
smaller than the linear quadtree: in all the raster datasets and Web graphs studied,
our encodings are approximately 10 times smaller than a linear quadtree.

Dataset rows × cols #ones K2-tree LQT-array

mdt-600 3961×5881 11,647,287 0.02 0.25
mdt-700 3841×5841 13,732,734 0.02 0.17
mdt-A 11081×7821 50,416,771 0.01 0.22

cnr 325,557×325,557 3,216,152 3.14 41.32
eu 862,664×862,664 19,235,140 3.81 49.92

Table 5.10: Space utilization of K2-trees and LQTs (in bits per one).

The space results confirm that our representations are indeed much smaller
than the linear quadtree, as expected from the theoretical analysis. Next we
compare the efficiency of our representations performing random queries against
the different datasets. For each dataset we executed a set of queries asking for the
value of a cell, selecting the cell uniformly at random within the matrix in each
query. We build a different set of random queries for each dataset, according to its
dimensions, and execute the same set of queries in our representation and the LQT-
array representation. In our case, the query in the K2-tree12bits is implemented
with a simple traversal of the tree that returns immediately when a leaf node is
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found. In the LQT-array implementation, the query is implemented with simple
binary searches for the corresponding quadcode in the array. The results of our
experiments are shown in Table 5.11. The query times, in µs/query, show that our
representation is not only smaller but also faster than a simple LQT representation
of the data. In all the examples our encodings are on average roughly 3 times faster
than the LQT-based approach to access a cell of the raster.

Dataset K2-tree LQT-array

mdt-600 0.25 0.84
mdt-700 0.28 0.88
mdt-A 0.26 0.98

cnr 0.77 2.08
eu 1.10 2.62

Table 5.11: Time to retrieve the value of a cell of the binary matrix, in
µs/query.

5.7 Other applications of our encodings

An interesting point of our encodings is their ability to maintain the navigational
properties of the classic K2-tree while adding more information to the conceptual
tree represented. Even though our representations have been proposed for the
compact representation of regions of ones, we believe they provide the basis for
multiple enhancements of the K2-tree. The new encodings allow us to distinguish 3
different kinds of nodes in the K2-tree without destroying its navigational properties.
Using a K2-tree12bits−naive, we could also build a tree with 4 different kinds of nodes.

Essentially, our encoding techniques provide the basis to add information to
a K2-tree while maintaining its navigational properties. The K2-tree12bits−naive

provides the simplest method to mark “special” nodes in a K2-tree without affecting
the structure and with a guaranteed upper bound in space requirements determined
by the K2-tree size. However, the encodings based on using an additional bitmap
provide better support to not only mark special nodes but also associate additional
information to them. Next we introduce a technique to improve compression in
K2-trees by shortening some paths of the conceptual tree, called “unary paths”,
that contain a single 1 of the matrix. In this technique, a long path is replaced
by a special leaf node and it is compressed in a separate data structure. A similar
technique can be used to add any information to some nodes of a K2-tree and
retrieve that information efficiently.
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Compression of unary paths: Consider the classic K2-tree representation of a
sparse binary matrix, as explained in Section 3.2. The K2-tree is able to compress
efficiently large regions of 0s, and takes advantage of the clusterization of 1s in
the adjacency matrix to obtain the best compression. However, if we consider
a very sparse binary matrix where the 1s are not really clustered, the K2-tree
obtains its worst compression results: for each 1 in the binary matrix, we need to
encode a complete path from the root of the conceptual tree to the cell, thus storing
K2 × logK n bits to represent a single cell in a matrix of size n × n. We call these
paths unary paths, since they are formed by K2 nodes in multiple levels to represent
a single cell in the matrix. The K2-tree decomposition becomes very inefficient if
there are many unary paths. A unary path of length l (i.e. a unary path that spans
l levels of the conceptual tree) represents the cell using space K2 logK l bits instead
of the K logK l bits required to simply address the cell coordinates.

An optimization that can be added to the K2-tree to enhance its compression
is to remove unary paths from the representation and store them separately. This
requires a special encoding of the K2-tree nodes: a leaf node in the modified K2-tree
can correspond to a region full of 0s or to a unary path. We can use our encodings
to encode this information in a K2-tree. Then we can encode the sequence of unary
paths in the tree in a different data structures using K logK l bits for each path. If
the unary paths at each level of the conceptual tree (i.e. the unary paths with equal
length l) are sorted in a separate list pathsl, we can index the list easily since all
elements have the same size. To know the index of the current unary path in the
corresponding list we can use the K2-tree12bits encoding (where each unary path is
represented using a 0 in T and a 1 in T ′). First, we store the number of unary paths
before each level of the conceptual tree in a separate array unary[1, logK n]. In this
array, unary[1] = 0 and unary[i] = Σi−1

j=1unary[j] + nP aths[i], where nP aths[i] is
the number of unary paths at level i. Since each unary path is stored in T ′ with
a bit 1, and the nodes are stored levelwise, we can compute the offset of a unary
path easily. If we find a unary path at position p in T , p′ in T ′, corresponding
to level l in the K2-tree, we know it will be stored in the list pathsl, at offset
rank1(T ′, p′)− unary[l]. Adding rank support to T ′ we can perform the operation
very efficiently, and access immediately any unary path found during traversal.

This approach for the compression of unary paths may not be significant in most
applications of the K2-tree, due to the additional space required to encode leaves
of the tree. As we will see, the same ideas presented here can be applied in higher
dimensionality problems, and the effect of compression of unary paths may be much
more significant in these problems9.

9The compression of unary paths has been implemented and is currently being used to develop
new data structures for the compression of temporal graphs in Diego Caro’s ongoing PhD work,
in combination with another of our proposals, the Kn-tree, an extension of the K2-tree to
multidimensional data that will be introduced in Chapter 6.
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5.8 Summary

At this point, we have shown that our representations are able to compress
very efficiently binary matrices with large clusters of zeros and ones, and we
provide a set of efficient algorithms to query the data in compressed form. Our
theoretical analysis and experimental evaluation of the different K2-tree1 variants
show that they obtain space results competitive with the state-of-the-art quadtree
representations in different datasets with high clusterization, while providing
efficient support for selective access to regions of the image over the compressed
in-memory representation. We compare the compression and query times of our
proposals with the well-known linear quadtree, showing that the K2-tree1 can be
both smaller and faster than the linear quadtree when representing clustered binary
images. Additionally, we have introduced a number of different operations like set
queries that are efficiently solved by K2-tree1 variants. We have also presented some
other applications of our encodings to improve original K2-trees with additional
functionality, particularly the compression of unary paths that is useful to compress
very sparse matrices.

In order to fully demonstrate the efficiency of our representations for the general
representation of binary images, some other points will be studied later in this thesis.
Firstly, all the encodings presented here are based on an essentially static data
structure. We have introduced some algorithms to perform some manipulations
on top of our compressed representations, but the static nature of K2-trees limits
their applicability to domains, such as GIS, where some parts of the images may be
modified dynamically. In Part II we will introduce a dynamic alternative to the K2-
tree, and we will also show that all the encodings developed in this chapter can be
applied to the dynamic representation as well. We will also expand on the current
experimentation to demonstrate that a dynamic version of the encodings introduced
in this chapter is also competitive with alternative quadtree representations in terms
of space and query times.

Our variants of K2-tree1 can also be of application in domains where data is not
binary, as long as a clusterization of similar values still exists. In following chapters
of this thesis we will study the representation of multidimensional grids and grids
of integers, and in each of these problems we will provide a solution based on the
K2-tree1 to take advantage of the clusterization of values.

We will also study the representation of raster data, a specific area of application
where clusterization usually appears. In Part III we will study different applications
of our variants to the representation of raster images and temporal or time-evolving
raster data. The simplest of our proposals to represent this kind of data will
be the storage of a simple collection of K2-trees representing multiple equal-sized
submatrices corresponding to each different value or time instant, where each K2-
tree will be actually based on our new encodings.
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Chapter 6

Representing
multidimensional relations
with the K

2-tree

The extension of spatial data structures to high-dimensionality problems has been
studied for most of the existing representations. As we have shown in Section 4.3,
many of the spatial representations are directly designed to handle multidimensional
data, while others are originally designed for bi-dimensional space but later extended
to manage multidimensional data. The k-d-tree [Ben75] and the R-tree [Gut84] are
examples of data structures that are conceived in general for the representation
of n-dimensional data. On the other hand, the quadtree and its variants have
been proposed for 2-dimensional data, but they can be extended to n-dimensional
problems: the octtree is a straightforward generalization of the quadtree to 3-
dimensional data, and the same name is used for a general extension to represent
n-dimensional data.

In this chapter we present a new data structure for the representation of n-
dimensional binary matrices. Our proposal is an extension of the K2-tree, explained
in Section 3.2, for the representation of n-ary relations. We call our proposal Kn-
tree. The Kn-tree is based on a generalization of the partitioning algorithm that
maintains the simple navigation operations of the K2-tree and provides a fully-
indexed representation of n-ary relations. Our representation efficiently supports
queries that involve constraints in all the dimensions, including fixing a value or
range of values in any of them. We also introduce another data structure, the IK2-
tree, that was originally proposed for the compact representation of RDF graphs1.

1The IK2-tree was first devised to improve the representation of RDF databases based on
classic K2-trees explained in Section 4.2. The IK2-tree data structure, along with some variants
and its applications to RDF databases and temporal graphs, was first published as a result of joint
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In this thesis we will propose new applications of the IK2-tree for the representation
of data in specific domains. Particularly, in this chapter we will show how to use a
Kn-tree and an IK2-tree for the compact representation of temporal graphs, as a
proof of concept of the applicability of both data structures and differences between
them.

6.1 Representation of ternary relations as a collec-

tion of binary relations

A simple method to store a ternary relation is to reduce the problem to a collection
of binary relations. Given a ternary relation R ⊆ X × Y × Z, we can transform it
into a set of |Y | binary relations Ry, one for each different value y ∈ Y . Following
this approach, each (x, y, z) ∈ R becomes a pair (x, z) in Ry. Let us denote the
dimension Y partitioning dimension or partitioning variable. The decomposition of
a ternary relation in multiple binary relations simplifies the problem of storing the
original data, that can now be stored efficiently using any representation for binary
relations.

6.1.1 The MK
2-tree

This approach of partitioning a ternary relation into a collection of binary relation
has been studied to take advantage of the functionalities of K2-trees. This has been
applied to represent RDF graphs using K2-trees (recall Section 4.2), considering the
RDF graph as a collection of unlabeled graphs and representing each of them using
a K2-tree. We call this simple approach, based on multiple K2-trees, MK2-tree.

The MK2-tree of a ternary relation R ⊆ X×Y ×Z, where Y is the partitioning
dimension, is simply defined as a collection of K2-tree data structures Ky that
represent each induced binary relation Ry. Each Ky is built over the adjacency
matrix of its corresponding binary relation, that will contain a 1 for all positions
(x, z) such that (x, y, z) ∈ R.

The utilization of multiple K2-trees to represent a ternary relation provides
a method to efficiently answer queries that are restricted to a single value in
the partitioning dimension (fixed-value partitioning dimension queries, for example
finding all the pairs (x, z) for a fixed y = 3): these queries are answered accessing
a single K2-tree.

The main drawback of the MK2-tree, caused by the decomposition of a ternary
relation in multiple binary relations, is the fact that indexing capabilities in the
partitioning dimension are usually reduced. When our query is not restricted in
the partitioning dimension (unbounded partitioning dimension queries), we must

work with Sandra Álvarez-García [ÁGBdBN14]. An extensive description of the data structure
and its applications in RDF datasets is part of Álvarez-García’s PhD thesis [ÁG14].
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query multiple K2-trees to obtain the final results. For example, to find all the
values with y ∈ [1, 10] we must access all the Kys corresponding to values in [1, 10]
independently to obtain the final results. This causes the efficiency of these queries
to degrade significantly when the partitioning dimension is large.

6.1.2 The IK2-tree

The IK2-tree [ÁGBdBN14] was originally devised as an improvement of the MK2-
tree, particularly oriented to solve the problem of the representation of RDF
databases. Given the decomposition of a ternary relation into |Y | adjacency
matrices, the IK2-tree represents all those matrices simultaneously, “merging” the
multiple K2-trees used in the MK2-tree in a single data structure. Instead of using
a single bit to know whether the matrix is empty or not, the IK2-tree uses a variable
number of bits.

Figure 6.1 shows an example of IK2-tree construction, where the partitioning
variable Y can take three different values. The top of the figure shows the three
adjacency matrices that represent the different Ry, where the black cells correspond
to valid relations. Below each matrix we show the conceptual K2-tree representation
of the matrix, and in the bottom of the figure the IK2-tree representation of the
complete collection. The IK2-tree representation is a reorganization of the multiple
K2-trees into a single data structure, created merging the equivalent branches in
all of them. Figure 6.1 shows this process visually, highlighting the bits of each K2-
tree in a different color. The IK2-tree representation, shown below the K2-trees,
contains all the branches in the different K2-trees, but each node stores all the bits
corresponding to the equivalent nodes in all the K2-trees that contain that branch.
For example, node labeled N0 contains 3 bits corresponding to the 3 K2-trees, but
node N2 contains only 2 bits, because only the second and third K2-trees contain
that branch.

Like a single K2-tree, the IK2-tree is stored in two bitmaps T and L, that are
built in a levelwise traversal of the tree. The bitmap representation of the IK2-tree
shown at the bottom of Figure 6.1 contains all the bits of the IK2-tree. As we can
see, the final bitmap representation contains the bits of the different K2-trees for
each matrix, but they are interleaved in the bitmap so that the bits of all K2-trees
for the same node are stored together in the IK2-tree. The bitmaps T and L are
the actual data structure used to store the tree.

The IK2-tree representation has some interesting properties derived from its
construction:

• An IK2-tree uses the same number of bits that the equivalent representation
based on multiple K2-trees: as we can see in Figure 6.1, the IK2-tree can be
built rearranging the bits of the individual K2-trees.

• Even if nodes in different branches may have a different number of bits, nodes
belonging to a group of K2 siblings always have the same number of bits. This
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Figure 6.1: Representation of a ternary relation using MK2-tree and IK2-
tree.
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is because all K2-tree nodes have either 0 or K2 children.

• Another property, important for navigation, is that each 1 in a level generates
K2 bits in the next level (even if the K2 bits are not consecutive now, but
interleaved with bits from other K2-trees), and a 0 in a level does not generate
any bits in the next level. In the first level of decomposition, all K2 nodes
contain m bits, where m = |Y |. Moreover, only nodes that contain at least
a 1 have children, and the number of 1s in a node determines the number of
bits in each of its K2 children. These properties allow us to perform basic
navigation over the bitmap representation:

– In the first level of decomposition, we have K2 nodes of m bits each. To
determine if a node has children we need to check if there is at least a 1
among its m bits.

– Given a node that contains b bits starting at offset p in T (i.e., the
node covers positions [p, p + b − 1]), its children will begin at position
(rank1(T, p− 1) + m) × K2, where m (the number of matrices) is a
correction factor. Each child will have o bits, where o = rank1(T, p +
b− 1)− rank1(T, p− 1) is the number of 1s among the bits of the current
node.

These properties provide the basis to navigate the conceptual IK2-tree. Next
we will show how to answer queries using the basic navigation operations.

6.1.3 Query support

The IK2-tree lacks some filtering capabilities in the partitioning dimension, but is
more efficient in practice than the MK2-tree in many queries, especially if the size
of the partitioning dimension is large. In this section we will show how to answer
queries in the IK2-tree depending on the filter applied in the partitioning dimension.

Fixed-value partitioning dimension: When the partitioning dimension is
fixed (a single value) we must perform in the IK2-tree the equivalent of a query in
a single K2-tree. This is independent of the filters in the other dimensions, that
only determine the branches that are explored. The key to answer these queries
is simply to track the position in each node that corresponds to the desired value.
Consider, for example, that we want to find the value of (x = 4, y = 1, z = 5) in the
example of Figure 6.1, where Y is the partitioning variable (that is, we want access
row 4, column 5 in the second matrix). At the first level of decomposition, we go
to the last quadrant (node N0), that will be located at T [|Y | × 3, |Y | × 4− 1] =
T [9..11]. We check the second bit, located at T [p + y] = T [9 + 1], and find that it
is set to 1. Therefore, we need to continue traversal to its children. We compute
(rank1(T, 9−1)+ |Y |)×K2 = 28 to locate the offset of its children, and rank1(T, p+
m− 1)− rank1(T, p− 1) = rank1(T, 11)− rank1(T, 8) = 2 to determine the number
of bits that each child will contain. Additionally, we need to keep track of the offset
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corresponding to y = 1 in the children. This can be computed easily as the number
of ones in N0 prior to the current bit: y′ = rank1(T, p + y−1)− rank1(T, p−1) = 0.
Therefore, in the next level we will check offset 0 in the corresponding node. The
process is repeated in all the nodes until we reach the last level of the conceptual
tree.

Any other queries involving a fixed partitioning dimension are solved in the same
way, applying the K2-tree basic navigation techniques to answer queries involving
ranges in the other two dimensions. Notice that queries with fixed Y may be
significantly slower in an IK2-tree representation than in the MK2-tree, due to the
additional rank operations required at each step during navigation.

Unbounded partitioning dimension: When we are interested in all the
possible values for the partitioning dimension (unbounded partitioning dimension)
we must check all the bits of each node to determine which of them are set to 1, and
keep track of all of them during traversal to answer the query. In order to answer
queries with unbounded partitioning dimension, we simply keep a list of “active” y’s
for each IK2-tree node. The list of active values A is initialized with all the possible
values in Y . In each node traversed, we check which of the bits are set to 1 and
build a new list of active values containing only those elements. The list of active
values A used in each node contains an entry per bit in the node, corresponding to
the y value represented by the bit. Finally, when we reach the leaves of the tree,
each bit set to 1 found in the node is mapped to a y value using the active list A.

Example 6.1: In the IK2-tree of Figure 6.1 we want to access row 4, column 5
and retrieve all the values of y. At the first level of decomposition, we go to the
last quadrant (node N0). Our list of active matrices is A = 0, 1, 2. Since all nodes
in this level have m = 3 bits, the fourth child will be located in T [9..11]. We now
check all the bits in N0, and find that only the second and third bit are set to one.
This means that its K2 children will have 2 bits, corresponding to the second and
third matrices in A. We set A = 1, 2 and find the children of N0, located at p = 28.
We now access the first child N1, whose bits are all set to 1, so A remains the same,
and the children of N1 will have 2 bits each. We compute the rank again to find
the children of N1 at position (rank1(T, 27) + 3)× 4 = 13× 4 = 52. Since |T | = 36,
the children will begin at position 52−36 in L. Finally, we want to access the third
child in this level. We locate it in L[20, 21], and check its bits: the first bit is set to
0, so we discard it. The second bit is set to 1, so the cell was active for the matrix
at the second position in A. In our case, the second element in A was 2, so we can
know that the cell was set to 1 only in matrix 2.

Like in fixed-y queries, the same procedure can be applied to row/column/range
queries using the basic traversal techniques of the K2-tree. In this type of queries
the IK2-tree is very efficient thanks to the fact that for each tree node the different
y values for a node are stored in consecutive bits. Notice that in the MK2-tree
the same query would require |Y | rank operations, one in each K2-tree, to be
completed. This difference makes the IK2-tree an interesting approach to represent
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ternary relations replacing the MK2-tree, especially in domains where queries with
unbounded Y are very frequent in comparison with queries with fixed partitioning
variable.

Fixed-range partitioning dimension: The third type of query that may
be of interest in a ternary relation involves a range of values in the partitioning
dimension. These queries can be solved using a combination of the procedures
explained for the fixed-value and unbounded case. We need to keep track of the
offsets in the bitmap of each node that correspond to the query range. This can be
easily computed using two rank operations at each node. Additionally, we need the
same list of active values A to keep track of the y values that correspond to each bit
in the node in order to properly answer the query. Like in the case of fixed-value
queries, in the case of very short ranges the overhead required to perform navigation
in the IK2-tree may be higher than the costs of maintaining independent K2-trees.
However, as the length of the range increases the query in the IK2-tree will become
more efficient than an approach based on separate K2-trees.

6.2 The K
n-tree

The Kn-tree is a generalization of the K2-tree explained in Section 3.2 to higher
dimensionality problems. The goal of a Kn-tree is to represent a binary n-
dimensional matrix using the partitioning strategy and physical representation
used in a K2-tree while providing efficient access to the relation and supporting
constraints in all the dimensions simultaneously.

Consider an n-dimensional matrix. Without loss of generality, we can assume
that all its dimensions are of the same size s and that s is a power of K. If a matrix
does not fulfill these conditions we can “virtually” expand it, considering that all
dimensions are enlarged to size s′ = 2⌊log s⌋, where s is the size of the largest
dimension, and considering that all the added space is filled with 0s. The matrix
is subdivided in Kn equal-sized submatrices as follows: for each of the dimensions,
K − 1 hyperplanes divide the matrix at positions i s

K , i ∈ [1, K − 1] across that
dimension. After all the dimensions have been partitioned, Kn submatrices are
induced by the hyperplanes, each of them of size s

K ×
s
K . The submatrices can

be numbered using their relative ordering in each dimension. In the general case,
we can choose to take the submatrices in row-major order (start sorting by the
first dimension) or column-major order (start sorting by the last dimension). If we
consider (v1, v2, · · · , vn), the relative position of the submatrix in each dimension,
and we sort starting by the first dimension, the submatrices that share the same v1

will be placed consecutively, while submatrices sharing vn will be placed at every
Kn−1-th position. If we start sorting by the last dimension, the submatrices that
share the same vn are consecutive, while the submatrices that share the same v1

are isolated, separated by Kn−1 positions. As we will see later, the method used to
order the submatrices has little effect in the algorithms, so in practice any choice of
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ordering of the Kn submatrices will be supported by the Kn-tree simply adjusting
the basic operations.
Example 6.2: Consider a 3-dimensional matrix of size s×s×s, like the one shown
in Figure 6.2. Notice the placement of the axis that determines the dimensions x,
y, z. To partition the matrix we cross the matrix with the planes x = i s

K , y = i s
K ,

z = i s
K , for i = 1..K − 1. K3 submatrices are induced by these planes, with

positions (1, 1, 1) to (K, K, K). As for the ordering of the submatrices, we chose a
left-to-right, top-to-bottom, front-to-back traversal of the matrix, therefore sorting
first by z, then by y (row) and finally by x (column). The actual numbering of
the submatrices for the usual case K = 2 is shown in the right part of Figure 6.2.
Notice that in this example we choose the ordering so that the traversal is easy to
understand visually, but in the general case the ordering of the dimensions can be
arbitrary.
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Figure 6.2: K3-tree partition of a matrix: general case (any K) and typical
partition with K = 2.

A Kn-tree is built from a binary matrix following the same recursive procedure
used in the K2-tree. A conceptual tree is created, whose root corresponds to the
complete matrix. Then, the matrix is subdivided as explained, and each of the
submatrices will become a child node of the root. This node will be labeled with a
1 if the corresponding submatrix contains at least a 1, or 0 otherwise. For all the
nodes labeled with a 1, the decomposition process is repeated recursively until the
cells of the matrix are reached.
Example 6.3: Figure 6.3 shows an example of K3-tree representation for a small
3-dimensional matrix and K = 2. The original matrix, of size 8×8, is shown on the
left side. The matrix is represented as an empty cube in which the cells with value 1
are highlighted in black. The root node of the conceptual tree (right) has 8 children,
corresponding to the 8 submatrices of the partition following the order explained
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in Figure 6.2. Only the second submatrix has at least a 1, so the decomposition
only continues in that node. The decomposition proceeds, as shown in the matrix,
until the individual cells are reached. The last level of the tree corresponds to all
the 2× 2× 2 submatrices that contain at least a 1.

Figure 6.3: 3-dimensional matrix and its K3-tree representation.

6.2.1 Data structure and algorithms

The conceptual Kn-tree is stored using the same bitmaps used in the K2-tree: a
bitmap T stores the bits in all the levels except the last one, and a bitmap L stores
the values of the last level. The basic navigational property of the K2-tree also holds
with a small modification: each internal node will have exactly Kn children, so the
children of the node at position p in T will be located at p′ = rank1(T, p)×Kn.
Example 6.4: The bitmaps for the K3-tree shown in Figure 6.3 are:

T: 01000000 10010001

L: 11010000 00110000 00010101

The children of the node at position 1 (we start numbering in 0) begin at position
p′ = rank1(T, 1) ×K3 = 1 × 8 = 8. The children of the node at position 8 begin
at position p′′ = rank1(T, 8)×K3 = 16. As p′′ ≥ |T |, they are actually located in
L[p′′ − |T |].

The navigation needs to be adjusted to take into account the different dimensions.
Each node of the Kn-tree will have exactly Kn children. The formula to determine
the actual offset of a child depends on the numbering selected for the submatrices.
If we order the submatrices by the dimensions in reverse order (from n to 1), then
the offset for a submatrix at position (v1, v2, · · · , vn) can be computed with the
following formula:

offsetROW−MAJOR = Σn
i=1vi ×Ki−1

offsetCOLUMN−MAJOR = Σn
i=1vi ×Kn−i
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Any other ordering of the dimensions can be translated into a similar formula that
allows us to find the corresponding child given its partition in each dimension.

Using this generalization of the formulas, a Kn-tree supports advanced queries
involving all its dimensions, extending the algorithms of the K2-tree to work in
multiple dimensions. Recall from Section 3.2 that the K2-tree is able to answer
unconstrained queries, queries that ask for a specific row or column or queries that
involve a range of rows/columns. The Kn-tree supports the same constraints in all
the dimensions represented at the same time.

6.2.1.1 Check the value of a cell

To answer this query, we need to determine at each step which of the submatrices
contains the desired cell. Starting at the root, we check the coordinates of the
cell (c1, · · · , cn) to find the submatrix that contains it. This simply requires to
compute, for each ci , the value ci

s/K , where s is the size of the current submatrix
(the total size at the root, divided by K at each level). With this we obtain a tuple
(v1, · · · , vn), v ∈ [0..K−1] that we can use to find the position of the child, using the
offset formula: offset = v1Kn−1 +v2Kn−2 + · · ·+vn−1K +vn. If the corresponding
bit is set to 1, we find its children using the rank operation and repeat the process
recursively. In the child node, the new ci’s will be updated to reflect offsets within
the current block. To do this, we simply compute the new ci as c′

i = ci mod s/K
and use the new values in the next level. The iteration is repeated until we find a
0 (the cell is a 0) or we reach a 1 in the last level (the cell is a 1).
Example 6.5: In the matrix of Figure 6.3 we want to check the value of the cell
at coordinates (6, 3, 0) (row 3, column 6, front layer). In the associated K3-tree,
we start at the root (position 0 in T ). Dividing each component by s/K = 4, we
find that the submatrix that contains the cell is the submatrix (1, 0, 0), thus the
child that we must check is at offset 1K0 + 0K + 0K2 = 1. As we can see in T ,
shown in the previous example, the bit is a 1, so we keep traversing and divide s
by K. The children of the node begin at position rank1(T, 1)×K3 = 8. Again, we
find which of the submatrices contains the desired cell. In this case, we compute
(

6 mod 4
2 , 3 mod 4

2 , 0 mod 4
2

)

, which gives us the position of the child (1, 1, 0), at offset
1K0 + 1K1 + 0K2 = 3. We check the bit at position 8 + 3 = 11 and find another 1.
The K3 children of the current node start at position rank1(T, 11)× 8 = 24. As it
is greater than |T |, we go to L at position 24− |T | = 8. The cell we are looking for
is in the submatrix (0, 1, 0), so its bit is at offset 2. Therefore, bit 8 + 2 = 10 in L
contains the value of the cell (1).

6.2.1.2 General range queries

All the queries in a Kn-tree can be seen as a special case of a general n-dimensional
range query. For instance, a query that asks for the value of a cell sets a range of
length 1 in all the dimensions, therefore at each step in the conceptual tree there is
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only a child that may contain the desired cell. In a general range query, we define
a set of ranges (r1, · · · , rn) that determine the constraints in each dimension.

To perform a general range query in the Kn-tree we generalize the range
queries supported in K2-trees to higher dimensionality. Starting at the root of
the conceptual tree, we check at each step which of the children of the current node
contain cells within the specified ranges. Again, this can be easily checked dividing
the values of the range by the size of the current node’s submatrix to obtain the
set of candidate children. The bit of each child is checked, and we keep traversing
only the children that have value 1. As an additional computation, the range values
must be updated at each node to reflect only the subinterval that falls within the
corresponding submatrix.
Example 6.6: In the matrix of Figure 6.3 we want to find all the cells with value
1 in row 3 (y = 3), within the three closest layers (0 ≤ z ≤ 2). This query gives us
the constraints (0−7, 3−3, 0−2) that have to be checked at each step. At the root
of the tree, we first find which submatrices may contain cells in the given region.
We divide the extremes of the intervals by s/k = 4 and we identify the submatrices
(0/4− 7/4, 3/4− 3/4, 0/4− 2/4) = (0 − 1, 0, 0) as candidates, and their offsets are
respectively 0 and 1. Checking the bits in T , we find that only the second submatrix
contains ones. We traverse the Kn-tree to position rank(T, 1)×K3 = 8 and remove
the part of the intervals that falls outside the current submatrix, obtaining a new
range (0−3, 3−3, 0−2). In the new node, the submatrices (0−1, 1, 0−1) intersect
with the ranges. Their offsets are 2,3,5,7, but only (1, 1, 0) at position 8 + 3 = 11
and (1, 1, 1) at 8 + 7 = 15 are set to 1. The process would be repeated for each of
the submatrices: the children of 11 are at offset 8 in L, and the new ranges would
be (0−1, 1−1, 0−1). The relative offsets of these submatrices are 2,3,6,7. Checking
the corresponding bits we would find the cells (6, 3, 0) and (7, 3, 0) at positions 10
and 11 in L. Repeating the same process for the node at position 15, we would find
its children and locate the cell (7, 3, 2) as another result of the query.

6.2.2 Enhancements to the K
n-tree

All the enhancements of the basic K2-tree presented in Section 3.2 can be extended
to a general Kn-tree, either with a simple generalization of the methods or
with small changes. In this section we sketch the implementation of different
enhancements that can be applied to the Kn-tree:

• A hybrid Kn-tree can be built with different values of K depending on the
level of decomposition. This provides the same space/time tradeoff of K2-
trees (a small K leads to tall but relatively thin trees; a big K leads to shorter
trees –therefore reducing the number of traversals– but the number of children
per node increases). In general, the value of K used will be smaller (usually
2) for most of the levels of the Kn-tree, but a higher value (4 or 8) may be
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chosen for a few top levels. This change requires to adapt the basic traversal
algorithms like in the K2-tree.

• A matrix vocabulary can be added to the last levels of the Kn-tree following the
same steps of the K2-tree. The procedure and data structures do not change
significantly: at a given level the decomposition stops, and the resulting K ′×
. . .n × K ′ submatrices are assigned variable-length codes according to their
overall frequency.

• A partition of the original matrix can be performed before constructing the
Kn-tree. The original matrix can be converted into a collection of regular
fixed-size submatrices. The query algorithms need to be adjusted to take into
account the set of submatrices during the navigation.

• The variants with compression of ones can be also adapted to higher
dimensionality. The proposals presented change the original K2-tree data
structure but the essential navigation algorithms are very similar. The
adaptations explained for a basic K2-tree can be easily extended to any of
the proposals with compression of ones presented.

6.2.2.1 Concerns of high dimensionality problems

The generalization of the K2-tree conceptual tree to higher dimensionality problems
leads to some problems derived of the conceptual tree representation. In a
conceptual Kn-tree, each node has exactly Kn children if its submatrix contains
at least a 1. The increased arity of the tree may lead to a waste of space in some
matrices. This was already a concern in simple K2-trees: the selection of values of
K in a K2-tree had a significant effect in the overall size of the representation. This
effect is due to the fact that for bigger K, the lower levels of the tree may require
K2 bits to represent branches almost filled with 0s.

In a Kn-tree the effect of the distribution of the cells in the size of the tree
may be significant. For an isolated cell (a cell that is not close to any other cell of
the matrix), a long branch in the conceptual Kn-tree must be created. In a worst-
case scenario, a matrix with very few cells set to 1, each cell may require almost
Kn × logK s bits to be represented, as all the branches created in the Kn-tree are
unary paths (i.e., paths in the conceptual tree that contain a single 1 at each level).
The Kn-tree depends on the clustering of the cells to obtain good compression, and
this dependency increases with K and also with n.

The enhancements proposed earlier in this section, although directly applicable
to a Kn-tree, may obtain worse results as the number of dimensions increase. For
n-dimensional matrices the selection of values of K higher than 2 will not be feasible
for all the levels of the conceptual tree; hence the hybrid approach is necessary if
we want to reduce the height of the tree. On the other hand, a hybrid Kn-tree may
only have high values of K in very few of the top levels of the tree.
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The use of a matrix vocabulary in the last levels of the Kn-tree becomes also
more difficult as n increases. The compression obtained by the matrix vocabulary
depends not only on the frequency distribution of the submatrices but also on
obtaining a reduced set of submatrices that can be represented in small space. Even
for small K ′ value of the submatrices, the number of different submatrices may
become difficult to manage, as each matrix must be physically stored using (K ′)n

bits.
Finally, we must note that the implementation of a Kn-tree with compression

of ones may also be constrained by the value of n. The proposals based on using
a second bitmap for the representation of the three colors of a node, presented
in Section 5.2, should be extendible to a Kn-tree without problems. However, the
asymmetric proposal presented in Section 5.2.2 degrades clearly as n increases: each
black node requires 1 + Kn bits to be represented. In further chapters we will make
use of variants with compression of ones of the Kn-tree, disregarding the possibility
of using this asymmetric proposal due to this overhead.

6.3 Applications

The Kn-tree, the MK2-tree and the IK2-tree can be used to index a 3-dimensional
dataset, providing access to the data according to filters in any of the dimensions.
However, the data structures are significantly different in how they index the data,
so one may be better suited than the other for specific kinds of datasets or queries.
The Kn-tree provides a simple and efficient way to access a multidimensional dataset
filtering by any of its dimensions, its algorithms are symmetric and simple. However,
the Kn-tree performance may degrade significantly as the number of dimensions
increases, and its compression results depend heavily on the existence of some level
of clustering or other regularities in the distribution of values across the dimensions.
On the other hand, the MK2-tree and the IK2-tree are not symmetric, since
the algorithms to filter the partitioning dimension are different from the simple
traversals required to filter the other dimensions. The IK2-tree and especially the
MK2-tree are less efficient to index the partitioning dimension. Finally, we must
take into account the fact that the MK2-tree and the IK2-tree do not depend on the
existence of regularities in the partitioning dimension to obtain good compression
(they compress the data as a collection of binary relations), while the Kn-tree
compression may degrade significantly if the dataset has no regularities.

In this thesis we will focus on two specific applications of the K2-tree variants
to represent multidimensional data: the representation of temporal graphs and
the representation of raster data. The representation of general raster data using
variants of Kn-tree and other of our new data structures will be fulfilled in Part III of
this thesis, where we will demonstrate how to combine and apply our representations
to obtain compact and efficient representations of general raster data as well as
spatio-temporal raster data. In the rest of this chapter we introduce simple schemas



134 Chapter 6. Representing multidimensional relations with the K2-tree

to represent a temporal graph using a K3-tree and a new variant of IK2-tree, called
diff-IK2-tree, specially designed to store temporal information.

6.3.1 Representation of temporal graphs using a K
3-tree

A temporal graph can be interpreted as a ternary relation, or 3-dimensional grid
X × Y × T , where the first two dimensions represent the origin and destination of
edges and the third dimension represents time. Such a representation can be easily
stored using a K3-tree, that will support the usual queries in temporal graphs. Our
representation can easily support queries asking for the successors or predecessors
of a given node or range of nodes at a specific time point (time-slice queries), or to
retrieve the complete state of the graph at a given time point: all these queries are
reduced to a 3-d range query where the third dimension T , the temporal dimension,
is fixed to a single value.

A K3-tree representation of a temporal graph can also answer time-interval
queries. In this case, the data structure does not provide such a direct access to
retrieve the results; instead, some additional filtering is required to obtain the results
of the query depending on its semantics:

• A simple time-interval query that asks for all the time points where
a cell/range has been active can be answered directly performing a
3-dimensional range query on the K3-tree.

• A strong time-interval query, that asks for the cells that have been active
during the complete time interval, requires us to perform the same 3-
dimensional range query to look up all possible results. In this case, the
children of each node must be traversed in ascending order of t. If for an
(x, y) pair a t value within the interval has value 0, we stop traversal of the
remaining siblings for the same (x, y). Notice however that this process can
only be performed efficiently on groups of direct siblings. In order to efficiently
filter results for each edge during traversal, we can alter the traversal procedure
to check all the results for an (x, y) together, that is, we traverse the tree
following that specific order. However, this change makes the traversal slower,
so in practice it may be faster to extract all cells in the matrix that fall inside
the interval and then extract only (x, y) pairs that are not active during the
complete interval.

• A weak time-interval query is symmetrical to its strong counterpart. In this
case, we can avoid looking at siblings for a given (x, y) once we find the first
1 in the K3-tree for those coordinates.
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6.3.2 Representations based on a collection of K
2-trees

6.3.2.1 Naive approach: multiple snapshots of the graph

The simplest representation of a temporal graph consists of storing a complete
snapshot of the graph for each time instant. This simple approach has a clear
drawback: the amount of space required to store the temporal graph increases
with the number of snapshots, and is completely independent of the actual number
of changes that occurred in the graph. This means that a graph that remains
unchanged for 1000 time instants will require 1000 times the space of the initial
graph, because we are storing the complete state of the graph at each time instant.

Even though this approach is unfeasible in practice because of its space
requirements, let us present a sketch of its implementation using a MK2-tree or
an IK2-tree. The construction of both data structures is direct, considering the
complete state of the graph at each time instant. To answer queries, the process is
similar to the basic algorithms explained:

• We can answer time-slice queries in the MK2-tree querying only the K2-tree
corresponding to the query time instant. The same query is answered in the
IK2-tree as a fixed-value partitioning dimension query.

• To answer time-interval queries in the MK2-tree, we have to check all the K2-
trees for the interval. This operation can be especially tuned to the different
semantics in the query: to answer weak queries, we must check the cell in
all the K2-trees until we find a time instant where the cell was active; to
answer strong queries we check all K2-trees until we find a time instant where
the cell was not active. Notice that these operations are actually the union
and intersection of multiple K2-trees, studied in Chapter 5 for the K2-tree1
but that can also be implemented as basic operations in the K2-tree. To
answer time-interval queries in the IK2-tree we would use the range-restricted
partitioning variable strategy, and again we can optimize the query for this
case: in weak queries, we only need to check that there is at least a 1 in the
interval, and we may not store the actual list of active values; in strong queries,
we may stop traversal if a node does not contain a 1 in all the positions in
the interval.

The snapshot approach just explained is very efficient performing time-slice
queries and can also efficiently answer time-interval queries if we use an IK2-
tree representation. However, in most real-world temporal graphs we expect a
relatively small number of changes between consecutive timestamps in relation to
the total number of elements in the graph. In this case, the application of the naive
multiple-snapshots approach to the compact representation of the graph becomes
very inefficient in terms of space, therefore we will use this approach only as a
baseline.
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6.3.2.2 Differential snapshots: the diff-IK2-tree

Our proposal is also based on a collection of K2-trees that will later be merged in an
IK2-tree, like the previous approach. However, in this proposal each K2-tree will be
a differential K2-tree representation of the graph. For the first time instant we will
store a complete snapshot of the original state of the temporal graph (that is, the
same K2-tree we used in the naive approach, corresponding to the active edges at
t0). However, each Ki for i > 0 will store only the edges in the graph that changed
their state between ti−1 and ti. In this new representation, the different K2-trees
require a 1 per change in the temporal graph instead of a 1 per active cell at each
time instant. Hence, if an edge of the graph was inactive at t0, became active at
t8 and then inactive again at t = 120, we would store a 1 in the corresponding
cell in K8 and K120 instead of storing the cell in all the K2-trees for the interval
[8, 119]. Notice that, because of how K2-trees are built, in each differential K2-tree
an internal node in a K2-tree Ki will be set to 1 if and only if there has been at
least one change in the region it covers between ti−1 and ti. Figure 6.4 shows the
conceptual decomposition of a temporal graph with only 3 snapshots. In the top of
the figure we show the complete snapshots for all the time instants t = [0, 2]. For
clarity, below the complete snapshots we show the “differential snapshots” that must
be built. Finally, at the bottom we display the conceptual K2-tree representations
for each snapshot: the complete snapshot at t = 0 and the differential snapshots
for the remaining time instants. As we can see in the figure, this optimization is
designed for temporal graphs with a relatively small number of changes, where the
differential snapshots reduce significantly the number of ones in each K2-tree, which
should also reduce the overall space requirements.

To answer a time-slice query (R, ti) in the differential K2-tree representation,
we need to rebuild the state of each cell at time t. However, since we only store the
changes for each cell, we do not have the state explicitly stored. In order to find the
state of a cell we need to count the number of changes between t0 and ti. Notice that
at t0 a complete snapshot is kept, so a cell is initially active if it was set at t0; each
change is based on the previous state, so even changes are deactivations and odd
changes (re)activations of the cell. Hence, if the number of “changes” (the number
of K2-trees where the cell is set to 1) is odd, the cell is active at ti; otherwise, the
cell is inactive. This count operation can be implemented with an x-or operation
involving all the K2-trees corresponding to the interval [t0, ti].

To answer weak time-interval queries (R, I = [tℓ, tr]) we need to perform a similar
operation adapted to the semantics of the query. Following the weak semantics, the
cell will be returned if it was active at tℓ or if it changed its state at any point
between tℓ and tr (whether it was active and became inactive or the other way, we
would know it was active at some point within I. We can compute this performing
an x-or operation to check if the cell was active at tℓ and an or operation in the
interval [tℓ, tr] to check for changes within the query interval. Again, this operation
must be checked for each node expanded in the K2-trees depending on the range R
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Figure 6.4: Differential K2-tree representation of a temporal graph.

determined in the other dimensions.
To answer strong time-interval queries (R, I = [tℓ, tr]) the operations are very

similar to those in weak queries. In this case, a cell will be returned if it was active
at tℓ and no changes occurred within the query interval I. This can be computed
using an x-or operation to check the state at tℓ and an or operation to check for
changes in [tℓ, tr].

Notice that in all the queries required a costly operation must be executed
involving many K2-trees: we always need to x-or all the K2-trees corresponding to
time instants before the time instant or interval in our query. In many temporal
graphs with a large number of time instants the cost of these operations may become
too large for this representation to be feasible. However, we can speed up operations
following the same differential approach using an IK2-tree built over the collection
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of K2-trees explained.

Figure 6.5: diff-IK2-tree representation of the example in Figure 6.4.

Figure 6.5 shows the equivalent “differential” IK2-tree representation of the
temporal graph in Figure 6.4, that we call diff-IK2-tree. In each leaf of the diff-IK2-
tree we store a bit for each change in the associated edge. In the internal nodes of
the IK2-tree we store a bit for each time instant where at least one cell covered by
that node suffered a change. For example, node N1 represents row 6, column 5 of
the adjacency matrix. This cell is active at t0 and does not change at any other
instant, hence its bitmap contains a single 1 in the first position, corresponding to
t0 (the actual mappings of the bits are t0 and t2, as we can see in the bitmap of
N0). On the other hand, node N2, that represents row 7, column 5, is active at
t0 and becomes inactive at t2, therefore its bitmap contains two bits set to 1, one
for each change. Notice that in this case the diff-IK2-tree representation provides
a huge advantage to perform the counting operations required by queries, since the
changes for each node are consecutive in the final bitmap representation. As we will
see, all queries can be rewritten in terms of counting operations that are solved by
means of rank operations in the bitmaps of the K2-tree:

• To answer a time-slice query, (R, ti), we navigate the diff-IK2-tree like in
a fixed-value query. In each internal node, we only stop navigation in the
branch if the bitmap of the current node has all bits set to 0 until (and
including) the bit corresponding to ti: this case indicates that all cells in the
current submatrix were 0 at t0 and never changed. When we reach a leaf node,
we can know whether the cell was active at ti counting the number of ones
between t0 and ti, which can be easily computed with 2 rank operations on L.
Notice that we need to add rank support to L, which is not needed in basic
K2-trees, but the small increase in space provides a much more efficient query
method. The cost of a time-slice query does not depend anymore on ti, the
number of time instants before the current one. For example, following the
example of Figure 6.5, if we want to check if the cell of N2 was active at t2 we
navigate from the root of the diff-IK2-tree mapping the offset in the bitmap
corresponding to t2. In the first level (node N0), we find some changes before
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t2 so we keep traversing, updating the offset of t2 to 1. In the next level we
keep traversing, and the offset does not change. Finally, when we reach N2

we know that the bit corresponding to t2 is the second one. We count the
number of ones in the bitmap and obtain a value of 2, meaning the cell is
inactive at t2. If we wanted to check the value at t1, we would perform the
same operation and obtain an odd value (1), meaning the cell is active.

• To answer time-interval queries, we behave exactly like in time-slice queries:
we navigate until we reach the leaves, and in the leaves we check the number
of changes using just rank operations.

6.3.3 Experimental evaluation

In order to demonstrate the efficiency of our proposals to compactly represent
temporal graphs, taking advantage of the regularities between consecutive snap-
shots, we perform an experimental evaluation of several of our proposals in a set
of real and synthetic temporal graphs with different characteristics. We will test
a representation based on a K3-tree and the representations based on differential
snapshots using a collection of “differential” K2-trees and a diff-IK2-tree. We will
compare our representations with a baseline approach based on a simple collection
of snapshots of the temporal graph, that should be very inefficient in space in
graphs with few changes but provides a reference for query times in our other
proposals. Additionally, we will compare the space and query times obtained by
our representations with the ltg-index, introduced in Section 4.1.

Table 6.1 shows a summary with some information about the datasets used
in our experiments. MContact is a real dataset, obtained from the relationships
between users in the real social network MonkeyContact. PowerLaw is a synthetic
graph whose edges are distributed following a power-law degree distribution. Finally,
CommNet simulates a communication network where connections with a short
lifespan are established frequently between random nodes. As a first reference
of the expected size of the datasets we show for each dataset a “base size” and
a “differential size”. The base size is the size of the temporal graph represented as
a collection of snapshots, where each snapshot is encoded using a pair of integers
per edge (that is, the base size uses 8 bytes per active cell and time instant). The
differential size gives a better estimation of the amount of information in the graph,
as it considers the size of the first snapshot (8 bytes per edge) and then the size of
the changes at each successive timestamps (12 bytes/change). The fourth column
shows the number of snapshots or time instants contained in each dataset, and the
change rate represents the percentage of the total number of edges that change at
each timestamp on average. The last two columns are an estimation of the average
size of the graph, indicating the number of nodes and edges that are active on
average in the different time instants.
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Collection Base size Diff. size snapshots change avg.nodes/ avg. edges/
(MB) (MB) rate snapshot snapshot

CommNet 225.9 222 10,000 25% 10,000 20,000
MContact 4,303.9 33.5 220 1% 3,200,000 2,500,000
PowerLaw 22,377.1 716.4 1,000 2% 1,000,000 2,900,000

Table 6.1: Temporal graphs used in our experiments.

6.3.3.1 Comparison of a diff-IK2-tree with a collection of “differential”
K2-trees

Dataset Snapshots Edges/snap. Multiple K2-trees IK2-tree

CommNet 10,000 20,000 137.28 136.51
Monkey contact 220 2,500,000 4.55 4.54

Power Law 1,000 2,900,000 281.11 281.03

Table 6.2: Space comparison on different temporal graphs (sizes in MB).

In order to prove the efficiency of the diff-IK2-tree to represent the “differential
snapshots” of the temporal graph, we compare the two differential approaches, using
a diff-IK2-tree or multiple K2-trees, in terms of space and query efficiency. In
Table 6.2 we compare the space requirements of both approaches, that as expected
are almost identical, since the diff-IK2-tree is essentially a reorganization of the bits
in all the differential K2-trees.

Next we compare the query times of the diff-IK2-tree with the multiple K2-
trees. We perform the comparison using two essential and basic queries in any
kind of graph: retrieving the direct neighbors (successors) or reverse neighbors
(predecessors) of a given node. Both queries are translated easily into a row/column
query in the adjacency matrices of the K2-trees. We build several query sets asking
for direct and reverse neighbors of a node at a time instant or time interval, using
both strong and weak semantics in time-interval queries. All our query sets are
composed of 2000 queries, where nodes and time instants are chosen randomly,
while the length of the intervals is fixed for each query set (100).

The results are shown in Table 6.3 for time-slice queries and Table 6.4 for time-
interval queries, comparing the query times of the diff-IK2-tree (IK2) and the
collection of K2-trees (M.K2). The experimental results show the superiority of
the diff-IK2-tree when compared with the simpler approach based on multiple K2-
trees in terms of querying efficiency in the context of temporal graphs.

An important consideration is the superiority of the diff-IK2-tree in time-slice
queries in this approach, that must not be confused with the difference between
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CommNet MContact PowerLaw

Query M.K2 IK2 M.K2 IK2 M.K2 IK2

Direct neighbors 86.78 1.7 0.27 0.14 17.60 1.28

Reverse neighbors 89.07 1.79 0.28 0.15 19.86 1.43

Table 6.3: Time comparison on time-slice queries (times in ms/query).

CommNet MContact PowerLaw

Query Semantics M.K2 IK2 M.K2 IK2 M.K2 IK2

Direct Weak 87.19 1.84 0.27 0.14 20.72 1.56
neighbors Strong 88.02 1.82 0.26 0.16 19.73 1.44

Reverse Weak 90.96 2.07 0.26 0.15 18.36 1.46
neighbors Strong 93.75 2.05 0.26 0.16 19.98 1.50

Table 6.4: Time comparison on time-interval queries (times in ms/query).

fixed-partitioning-variable queries and fixed-range queries. Notice that we are using
“differential” representations, so all our queries (even time-slice queries) require
traversing a series of time points to be answered. Particularly, in this “differential
snapshot” approach the cost of the query depends more on the time point used in
the query than on the length of the query interval: if the time-slice query refers to
an early time point ti (or time interval [tℓ, tr]), we only need to check the changes
in the interval [0, ti] (or [0, tr]); on the other hand, a time-slice query that asks for
a time point tj > ti requires us to check more time slices and compute a higher
number of changes. This is confirmed in our experiments, since time points and
time intervals are selected randomly and the cost of time-slice and time-interval
queries is almost the same in Table 6.3 and Table 6.4, with only minor differences.

6.3.3.2 Comparison with other representations

In this section we test the actual efficiency of the two main compact representations
introduced in this chapter, the K3-tree and the diff-IK2-tree. The K3-tree has
the advantage of providing simpler algorithms that can access all the dimensions
similarly, while the diff-IK2-tree is designed to be very compact and still solve
efficiently the relevant queries. We will also compare our approaches with another
compact data structure, based on the combination of regular snapshots and explicit
logs of changes, explained in Section 4.1. We consider this representation our state-
of-the-art alternative for the compact representation of temporal graphs with basic
query support. For the ltg-index we use two different setups, one optimized for speed
and another optimized for compression, varying the number of snapshots generated.
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The “small” approach creates a single snapshot to obtain the best possible space
results, while the “fast” approach creates more snapshots to reduce query times.

Dataset
Snapshots

diff-IK2-tree
K3-tree ltg-index ltg-index

(baseline) (fast) (small)

MContact 362.0 4.54 35.0 35.0 35.0
CommNet 666.0 136.51 147.2 194.0 111.0

Table 6.5: Space comparison of the approaches (sizes in MB).

Table 6.5 shows the space requirements of the different approaches in different
temporal graph datasets. The diff-IK2-tree is very competitive with the ltg-index,
particularly in the real dataset MContact that has a relatively small number
of time instants (220) and a small number of changes between time instants.
Another important result is the difference in compression results depending on
the compressibility of the dataset: in the CommNet dataset, whose edges are
activated randomly and suffer many changes, all the representations designed to
take advantage of regularities are smaller than the naive approach based on full
snapshots by a factor of 2. On the other hand, in the MContact dataset where the
number of changes is relatively small all the compact representations are at least 10
times smaller than the baseline, even when the dataset has a small number of time
instants. Finally, the results for the datasets MContact also show that the ltg-index
space/time tradeoff does not work in this dataset, because the varying snapshot
ratio requires a large number of time instants to provide a significant tradeoff.

Next we compare the query times of all the approaches in time-slice and time-
interval queries. The results are shown in Table 6.6. Notice that for the MContact
dataset we only show the query times of the “fast” version of the ltg-index, since the
“small” version does not reduce the total space and would be slower. The diff-IK2-
tree, that obtained clearly the best results in space, is slower than the K3-tree in
most of the queries. This is due to the additional computation required to rebuild
the original state from the differential encoding used in the diff-IK2-tree. The K3-
tree can answer all queries very fast because it can translate any query in a range
query in the 3-d matrix, where at least one coordinate is fixed (row or column)
and the time coordinate may be either fixed or restricted to the query interval (in
any case a small subset of the overall dataset). On the other hand, the baseline
is obviously very fast in time-slice queries but much slower in time-interval queries.
Finally, the ltg-index is very competitive in direct queries, that can answer directly,
obtaining the best query times of all the representations in all of them. The K3-tree
is still competitive with the ltg-index in time-slice queries, that do not require any
post-processing of the results, but the small overhead required by the K3-tree is
enough to make it slower than the fast change logs in the ltg-index, at least when it
is optimized for speed. In reverse neighbor queries, where the ltg-index uses a more
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Dataset Query Semantics baseline IK2-tree K3-tree
ltg-index

(fast) (small)

CommNet

Direct

Instant 27 1622 96 28 183

Weak-10 263 1787 183 29 201

Weak-100 2633 1776 539 47 201

Strong-10 263 1747 178 29 200

Strong-100 2640 1745 542 40 202

Reverse

Instant 29 1718 106 144 32937

Weak-10 280 1971 211 164 62158

Weak-100 2788 1989 609 306 61912

Strong-10 280 1927 210 164 62174

Strong-100 2782 1943 610 292 62060

MContact

Direct

Instant 57 143 78 45 *

Weak-10 487 157 118 44 *

Weak-100 4915 163 149 45 *

Strong-10 504 153 126 46 *

Strong-100 4830 145 130 44 *

Reverse

Instant 59 147 89 147 *

Weak-10 578 161 162 167 *

Weak-100 5944 159 180 169 *

Strong-10 598 153 157 167 *

Strong-100 5928 149 177 163 *

Table 6.6: Time comparison on time-slice and time-interval queries (times
in µs/query).

complex method to obtain the result, the K3-tree becomes competitive even with
the “small-and-fast” version of the ltg-index. The IK2-tree is in general slower than
the other approaches, particularly in the CommNet dataset, and it cannot compete
with the query times of the K3-tree, that relies on a much simpler representation
to efficiently index the data.

Summarizing the results, our representations provide interesting alternatives for
the compact representation of temporal graphs, providing a space/time tradeoff
depending on the characteristics of the datasets and the desired applications. Our
diff-IK2-tree representation of the temporal graph is very competitive in space, and
should be much smaller than other representations in datasets with a small change
ratio and a reduced number of time instants, like the MContact dataset tested.

On the other hand, the K3-tree provides a simple and efficient representation of
the temporal graph, combining good space results with reasonable and symmetric
query times. Both representations provide possible alternatives to non-compact
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representations of temporal graphs, and even to compact representations such as
the ltg-index when the space utilization is crucial (we can use the diff-IK2-tree to
exploit all the regularities in the graph) or when symmetric query support is of
interest (the K3-tree provides efficient access to direct and reverse neighbors, as
well as single cell retrieval and range searches with very simple algorithms).

6.4 Summary

In this chapter we have introduced a generalization of the K2-tree, called Kn-tree,
that can be applied to represent multidimensional data in multiple domains. We
analyzed the differences between our new proposal and two existing alternatives
called MK2-tree and IK2-tree, designed for 3-dimensional data and based on storing
the data as a collection of 2-dimensional grids. We give an overview of the differences
between the 3 approaches when representing ternary relations. We also showed that
the Kn-tree can be used in combination with the encodings developed in Chapter 5
to compress multidimensional grids with highly clustered values.

We have studied a particular application of the Kn-tree, particularly its 3-
dimensional variant K3-tree, to the representation of temporal graphs. We
compared the K3-tree with another proposal introduced in this chapter, the
differential IK2-tree or diff-IK2-tree, especially designed to compactly represent
time-evolving data. Our experimental evaluation shows that the diff-IK2-tree is
able to reduce the space utilization to a small fragment of the original space, at the
cost of higher query times. We experimentally compare the K3-tree and the diff-IK2-
tree with state-of-the-art alternatives, showing that the IK2-tree can obtain very
good space results and the K3-tree provides simple and symmetric query support.

The proposals in this chapter will be used in Part III to represent raster
data. Particularly, the K3-tree will be used in Chapter 10 to represent raster
data, and the variant with compression of ones will also be used in Chapter 11 to
represent time-evolving region data. Throughout Part III we will also introduce
other representations of raster data using variants of the MK2-tree and the IK2-
tree.



Chapter 7

The K
2-treap

Top-k queries, that compute the k most relevant results in multidimensional datasets
according to a score function, are widely used in a variety of domains. Retrieving
the k most relevant documents for a given query pattern in a web search engine,
finding the most productive days or vendors in OLAP cubes or locating the highest
points in a map are some examples of usual top-k queries. The simplest top-k
queries involve finding the top values within a dataset, but many interesting queries
require to compute the top-k values in any subset of the data. For example, queries
such as “Find the top 10 stores with store_id between x0 and x1 that have the
highest amount of sales between date y0 and y1” can be translated into a two-
dimensional query over a range Q = [x0, x1] × [y0, y1] in a grid. If we consider the
bi-dimensional dataset as an n×m matrix M , we can formally define top-k range
queries as queries to retrieve the top-k points according to their weights within a
two-dimensional range Q inside M .

In this chapter we present a new compact data structure, called K2-treap, that
is able to store multidimensional grids in compact space and is designed to efficiently
answer top-k queries. Our proposal, as its name states, is inspired by two existing
data structures: the K2-tree and the treap. The K2-treap is able to answer general
top-k queries or top-k range queries, but also supports other simpler queries such
as general range searches.

7.1 Conceptual description

Consider a matrix M [n×n] where each cell can either be empty or contain a weight
in the range [0, d− 1]. We consider a K2-tree-like recursive partition of M into K2

submatrices. We build a conceptual K2-ary tree similar to the K2-tree, as follows:
the root of the tree will store the coordinates of the cell with the maximum weight
of the matrix, and the corresponding weight. Then the cell just added to the tree
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is marked as empty, deleting it from the matrix. If many cells share the maximum
weight, we simply pick one of them.

Then, the matrix is conceptually decomposed into K2 equal-sized submatrices,
and we add K2 children nodes to the root of the tree, each representing one of the
submatrices. We repeat the assignment process recursively for each child, assigning
to each of them the coordinates and value of the heaviest cell in the corresponding
submatrix and removing the chosen points.

The procedure continues recursively for each branch until we reach the cells of
the original matrix or we find a completely empty submatrix. Notice that we may
find an empty submatrix due to two cases: either the original matrix did not contain
any values/weights in the complete region covered by the current node or all the
cells that had a weight have been “emptied” in earlier steps of the construction
process.

Figure 7.1: Example of K2-treap construction from a matrix.

Figure 7.1 shows an example of K2-treap construction, for K = 2. On the
top of the image we show the state of the matrix at each level of decomposition.
M0 represents the original matrix, where the maximum value is highlighted. The
coordinates and value of this cell are stored in the root of the tree, and the cell would
be “emptied”, or removed from the matrix. In the next level of decomposition
(matrix M1), the matrix is decomposed in quadrants and we find the maximum
values in each quadrant (notice that the cell assigned to the root is already empty
in M1). The new local maxima, highlighted in M1, are added to the conceptual
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tree as children of the root node in the usual left to right, top to bottom order. The
process continues recursively, subdividing each matrix into K2 submatrices. The
cells chosen as local maxima are highlighted in the matrices corresponding to each
level of decomposition.

The decomposition stops in all branches when empty submatrices are found
(empty submatrices are marked in the tree with the symbol “-”). For instance,
following the example of Figure 7.1, the third child of N0 is empty because the
complete submatrix was empty in the original matrix. On the other hand, the
first child of N1 is also empty, even if the original matrix had a weight in the
corresponding submatrix, because that weight (7) was already added to the tree as
a local maximum in N1 and removed from the matrix. Notice that for each local
maximum we store its value and its coordinates, except in the last level of the tree
where each node corresponds to a single cell of the matrix, hence the coordinates
of the local maximum can be implicitly obtained from the path in the tree leading
to the current node.

7.2 Data structure and algorithms

The conceptual tree that composes the K2-treap is actually partitioned in several
data structures that compose the actual K2-treap data structure. To obtain a
good compression of all the components of the K2-treap, we use 3 different data
structures to store the location of local maxima, the weights of the local maxima
and the tree topology. Additionally we perform some transformations of the data
stored in the conceptual tree that allow us to obtain a more compact representation.

The first step is to apply some transformations to the data, particularly to the
numeric values of coordinates and cell weights, in order to obtain more compressible
values:

• Coordinate values: We transform all coordinates into an offset, relative to the
origin of the current submatrix. The coordinates at each level ℓ of the tree are
transformed into an offset in the corresponding submatrix. Notice that this
can be computed easily during the construction procedure, since we only need
to take into account the current level in the conceptual tree and transform
each coordinate ci into ci mod (n/Kℓ). In Figure 7.2 (top) we can see the
conceptual tree after this transformation has been applied to the conceptual
tree of Figure 7.1. Notice that, for example, the coordinates of node N1 have
been transformed from the global value (4, 4) to a local offset (0, 0), after
computing their mod-4 values. In the next level of the tree, the coordinates
of N2 are transformed from (6, 6) into (0, 0) again, and so on.

• Weights: A second transformation applied to the original data is to differen-
tially encode the values of local maxima. This transformation is performed
in a post-order traversal of the conceptual tree, replacing each value with
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the difference between its value and the value of its parent. For example, in
Figure 7.2 (top) the new value of node N1 is computed subtracting the original
values of its parent N0 and N1 itself, that is, N0 new value is 8−7 = 1. This
transformation, as we said, is applied to all non-empty nodes in the conceptual
tree and can be performed in a single traversal of the conceptual tree (either a
levelwise bottom-up traversal or a post-order depth-first traversal). The result
of the differential encoding is a new sequence of non-negative values, because
the value of a node can never be higher than the local maximum stored in
its parent. If there are regularities in close values within the matrix, the new
sequence may be composed on average of smaller values than the original and
therefore it should be easier to compress.

Figure 7.2: Storage of the conceptual tree in our data structures.

After the data transformations we store each type of data in a different data
structure to take advantage of their different properties:

• Local maxima coordinates: The conceptual K2-treap is traversed levelwise,
reading the sequence of cell coordinates from left to right in each level. The
sequence of coordinates at each level ℓ is stored in a different sequence coord[ℓ].
The previous transformation of the coordinate values into relative offsets
allows us to use a different number of bits to represent the coordinates in
each level. Since each coordinate is now a value not larger than the submatrix
size of the current level, the coordinates in each sequence coord[ℓ] are stored
using a fixed-width representation that uses exactly log(n) − ℓ log K bits per
coordinate. In the bottom of Figure 7.2 we highlight the coordinates of nodes
N0, N1 and N2 in the corresponding coord arrays. Notice that empty nodes
are ignored to build the coord arrays, we only store an entry for each non-
empty node. Also, in the last level all nodes represent single cells, so there
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is no coord array in this level. With this representation, the worst-case space
for storing t points is

∑logK2 (t)
ℓ=0 2K2ℓ log n

Kℓ = t log n2

t (1 + O(1/K2)), that is,
the same as if we stored the points using the K2-tree.

• Local maxima values: The K2-treap is traversed levelwise and the
complete sequence of values is stored in a single sequence named values. After
the transformation of the original values into differential values, the sequence
values is expected to consist of a majority of small values that should be
efficiently compressed using any integer encoding method. In order to exploit
the regularities and small values while allowing efficient direct access to the
array, we represent values with DAC, explained in Chapter 3. Following again
the example in Figure 7.2, in the bottom of the figure the complete sequence
values is depicted and the positions of the example nodes highlighted. We also
store a small array first[0, lgK n] that stores the offset in values where each
level starts. This small array adds negligible space to the overall structure
and will be used to efficiently navigate the K2-treap.

• Tree structure: The final part that will allow us to efficiently query the
conceptual representation is a compact representation of the tree structure
independent of the values in the nodes. The tree structure of the K2-treap
is stored in a K2-tree. In the bottom of Figure 7.2 we show the K2-tree
representation of the example tree, where only cells with value are labeled
with a 1, while empty cells are labeled with a 0. However, our K2-tree
representation will be slightly different from the original K2-tree. Our K2-tree
is stored in a single bitmap T with rank support, that contains the sequence
of bits from all the levels of the tree, instead of the usual two bitmaps T and
L. We implement this minor difference because we will need to perform rank
operations in the last level of the tree to efficiently answer queries, as we will
see when we describe the query algorithms.

The separation of the information in independent data structures provides the
basis for an efficient compression. Next we will show how the K2-treap builds on
top of the K2-tree basic navigation algorithms to provide advanced query support
and efficient access to the different data structures.

7.2.1 Query algorithms

7.2.1.1 Basic navigation: accessing a cell of the matrix

Assume we want to retrieve the value of a single cell of the original matrix M
represented using a K2-treap. In order to access a cell C = (x, y) we start accessing
the root of the K2-tree. The coordinates and weight of the root node are always
stored at (x0, y0) = coord[0][0] and w0 = values[0]. If the coordinates of the
root node are equal to C, we can immediately return w0 as the value of the cell.
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Otherwise, we need to recursively descend in the conceptual tree to find the answer.
To do this, we find the quadrant where the cell would be located and navigate to
that node in the K2-tree using the usual rank operations.

Let now p be the position we have just navigated to, that is, the position of the
new node in the bitmap T . If T [p] = 0 we know that the corresponding submatrix is
empty and we can return immediately (the cell was empty). Otherwise, we need to
retrieve the coordinates and weight stored for the current node. Since only nodes set
to 1 in T have coordinates and weights, we take advantage of the K2-tree structure
to find their offsets. We compute r = rank1(T, p) in the K2-tree. The value of the
current node will be at values[r], and its coordinates at coord[ℓ][r−first[ℓ]], where
ℓ is the current level in the conceptual tree. Then we compute the absolute values
of the coordinates and weights: the weight w1 is computed as w0 − values[r] and
(x1, y1) is computed adding the current submatrix offset to coord[ℓ][r − first[ℓ]].

With the real values already computed, we check again if (x1, y1) are equal
to the query coordinates C. If the coordinates are equal, we have found the cell
and we return w1, otherwise we repeat again the decomposition process to find the
appropriate quadrant in the current submatrix where C would be located. Notice
that the formula to find the children, identical to that of the original K2-tree, is
based on computing rank1(T, p)×K2, and the rank value r is also needed to access
the coordinates and weights, so the cost added by the K2-tree navigation is very
small. The decomposition process is repeated recursively until we find a 0 bit in the
target submatrix, we find the coordinates of the cell in an explicit point or we find
a 1 in the last level of the K2-tree. Notice that when we reach the last level of the
K2-tree the current node is already associated with the queried cell C, so we only
need to check whether it is empty or not and if it is not empty rebuild its original
value.

Example 7.1: In the K2-treap of Figures 7.1 and 7.2 we want to retrieve the value
of cell (7, 6), that corresponds to the highlighted node N3. In the root of the tree
we find the value w0 = 8 in values[0] and the coordinates (0, 3) in coord[0][0]. Since
the coordinates do not match, we move to the bottom-right quadrant of the root,
located at position p = 3 in T (node N1). After we check that the node is not empty
(T [3] = 1) we retrieve the relative weight and coordinates associated with the node:
we compute r = rank(T, 3) = 3, and access the relative weight at values[3] = 1
and the coordinates at coord[1][3 − first[1]] = coord[1][2] = (0, 0). The absolute
weight of the current node is computed as w0 − values[3] = 8 − 1 = 7, and the
coordinates are updated adding the offset of the current matrix: since we are at the
bottom-right quadrant of the submatrix, we add (4, 4) to the current coordinates,
that become (4, 4). Again we have reached a different cell so we keep traversing.
We use the value of r to find the children of N1 at offset 3×K2 = 12 in T , and then
we access the fourth child, node N2, at position p = 15. The node is not empty,
and we find an absolute value w2 = 7 − 4 = 3 at coordinates (6, 6). We repeat the
process again to reach the last level, where we find the third child of node N2, node
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N3, at p = 42. We check T [42] = 1, so the cell is not empty. Since we are at the
last level, we know we are at the right coordinates. We compute and return the
final absolute value of the cell as 3− 2 = 1.

7.2.1.2 Top-k queries.

The process to answer top-k queries, like all query algorithms in most K2-tree
variants, is based on a tree traversal that starts at the root of the conceptual tree.
We consider a general top-k query that asks for the top k values inside a range
Q = [x1, x2] × [y1, y2] (as we will see, the process to answer top-k queries without
range restrictions is identical).

First, we initialize a max-priority queue P that will store K2-tree nodes
according to their associated absolute weight. Each entry in the priority queue
will store the rank of the node, its coordinates (xi, yi) and its weight wi. In this
context the rank of the node is not the actual position of the node p in T , that is
no longer needed after the coordinates and value have been obtained. Instead, we
store the value of r = rank(T, p), that has already been computed and is used to
compute the position of its children in the K2-tree.

Initially, the priority queue is populated only with the K2-tree root. The process
to answer top-k queries iteratively extracts the first node N in the priority queue
(in the first step, the extracted element is the root node). If the coordinates of
N fall inside Q we output the cell as the next answer to the query. Regardless of
whether or not N was within the range, we check which of its children correspond to
(non-empty) submatrices that intersect with the query range Q, and insert into the
priority queue only the children that do (including their coordinates and weight).
Since all the added elements will be sorted in the priority queue according to their
absolute weight, in the next iteration we will extract from the priority queue the
next highest value in the matrix, corresponding to a child of a previously extracted
node. The process finishes when k results have been found and emitted as output
or when the priority queue becomes empty. The latter case occurs only when there
are less than k non-empty elements in Q.

For example, assume we want to find the top-3 elements in the range Q =
[4, 7][4, 7] in the K2-treap of Table 7.1 shows the iterations required to answer the
query along with the extracted and output nodes in each of them. Initially we
have in our priority queue only the root node, with coordinates (0, 3) and value 8
(notice that in this example we omit the rank of each node, that is not relevant
for the results but must be stored to allow computing the children of a node). In
the first iteration we extract the root node and find that its coordinates do not fall
within the query range, so we discard the node. We then add to the priority queue
P only the children of the root that intersect with Q, in our case only its fourth
child N1. Hence now P contains only the tuple corresponding to N1: 〈(4, 4), 7〉. In
the second iteration we emit to the output the current maximum and add its only
non-empty child to the queue. In the third iteration we emit another result to the
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output, corresponding to node N2 and add its children to the priority queue. In
the fourth iteration we emit the third result to the output and return immediately,
since k results have been found already. In we wanted to emit more results, we
would continue extracting elements from P in the same way (at most we should
find two more results, since the current elements in P do not have children and
there were no more values in the range).

Iteration Extracted node Output P

0 〈(0, 3), 8〉
1 〈(0, 3), 8〉 〈(4, 4), 7〉
2 〈(4, 4), 7〉 〈(4, 4), 7〉 〈(6, 6), 3〉
3 〈(6, 6), 3〉 〈(6, 6), 3〉 〈(6, 7), 2〉, 〈(7, 6), 1〉, 〈(7, 7), 0〉
4 〈(6, 7), 2〉 〈(6, 7), 2〉 〈(7, 6), 1〉, 〈(7, 7), 0〉

Table 7.1: Iterations in a top-k query.

Notice that the K2-treap is especially efficient when no range restrictions are
applied (that is, the query range is the complete matrix). In this case, the filtering
step that determines whether or not the current maximum is inside the query range
is not needed. If no range restrictions are given, the K2-treap will always emit a
result per iteration, finishing computation in at most k iterations.

7.2.1.3 Other supported queries

The K2-treap can also answer simpler queries that do not involve prioritized access
to data.

• Range queries (i.e., report all the points that fall inside the query range Q
without a particular ordering of the results). To answer these queries, the
K2-treap can be traversed like a K2-tree: at each step we compute all the
children of the current node that intersect with Q and only continue traversal
through them. At each step we must now obtain the coordinates and value
of the local maxima, that can be immediately emitted to the output if they
fall inside the query range. To perform simple range queries we can simply
replace the priority queue used in range queries with a simpler queue or stack
where the children of each expanded node are added to be processed.

• We can also answer interval queries, which ask for all the points in Q whose
weight is in a range [w1, w2]. We traverse the tree exactly like in a top-k query,
but we only output weights whose value is in [w1, w2]. Moreover, we discard
submatrices whose maximum weight is below w1. Notice that this procedure
is much less efficient than top-k queries in the sense that many nodes with
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values higher than w2 are still checked and expanded, while in top-k queries
only the children of valid nodes are expanded.

7.3 Better compression of similar values

The K2-treap is designed to take advantage of similarities in close values in the
matrix or grid, thanks to the differential compression of weights in each node of the
tree. This differential compression can improve the compression obtained in some
datasets, but can be applied in general to datasets where the values in the matrix
are not necessarily clustered, or at least not heavily clustered. However, in some
application domains we may find grids in which close cells tend to have not only
close values but in many cases the same value. In this case the K2-treap cannot
obtain a good compression of uniform regions due to the fact that the K2-tree
that represents its shape only stops decomposition on empty regions. The key to
obtain a much better compression in this kind of datasets is to follow the strategies
explained in Chapter 5, to compress regions of 1s in the K2-tree1. In this section we
will present two variants of the K2-treap that take advantage of the clusterization
of similar values to improve compression.

K2-treap-uniform: Our new K2-treap representations are built similarly to the
basic K2-treap, but the partition process stops when we identify a “uniform”
submatrix, either because all its cells are empty or because all of them share the same
value. Figure 7.3 shows an example of conceptual tree representation. Matrices M0
to M3 show the steps of the K2-treap construction, where the top cells selected at
each step are highlighted. In this representation when a submatrix is uniform we
mark the corresponding node in the K2-treap (in bold font in the figure) and stop
decomposition in that branch, removing all the values in the submatrix. The result
is a more compact representation of the dataset if many submatrices with similar
values exist in it. Also, notice that in uniform nodes we do not need to store the
coordinates of the maximum, since the complete submatrix shares the value.

This representation is stored using the same data structures used in the
previous section, with some minor variations. In this case we use a K2-tree12bits

representation to store the shape of the tree, so that uniform regions can be
distinguished from empty submatrices. Navigation of the K2-tree12bits is identical
to the navigation of the original K2-tree, except that we need an additional
operation to check whether a node is uniform but empty or uniform with a value.
During the K2-tree12bits traversal we check for uniform regions, and when a uniform
region is found we can immediately emit all the cells within the current submatrix
using its associated value.

Notice however that we store the value of all the nodes of the K2-treap, but we
only store the coordinates of non-leaf nodes. Hence, to obtain the offset in the lists
of coordinates we can use the same formula of the previous version (rank1(T, p) −



154 Chapter 7. The K2-treap

Figure 7.3: Compression of uniform subtrees in the K2-treap (K2-treap-
uniform).

first[ℓ]), that computes the number of non-leaf nodes in the current level of the tree.
However, to obtain the offset in the list of values we must also take into account the
uniform leaf nodes, that are marked with a 1 in T ′: hence, the offset in the value
list for a node at position p in T is computed as rank1(T, p)+rank1 (T ′, rank0(T, p))
(i.e., the number of internal nodes plus the number of uniform nodes up to the
current position).

K2-treap-uniform-or-empty: Next we present a slightly different approach that
aims to obtain even better compression at the cost of higher query times. In this
approach we change slightly the definition of uniform submatrix to include also
submatrices that contain both empty and non-empty cells, as long as the non-empty
cells share the same value. Notice that in Figure 7.3 we have some submatrices that
would become uniform regions according to this definition (for instance the top-left
quadrant in M1). We can build the previous K2-treap considering these regions as
uniform as well. An example of this variant is shown in Figure 7.4.

This approach clearly obtains a better compression than the previous one in
the example, since it can stop decomposition earlier in many branches of the
tree. However, in this representation uniform regions and empty regions are not
differentiated, which leads to a problem in query time: some cells might be emitted
twice using the original algorithms. For instance, cell (0, 0) can be found in the root
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Figure 7.4: Compression of “uniform-or-empty” regions in the K2-treap
(K2-treap-uniform-or-empty).

of the tree but is also found in its first child, as part of the uniform region identified
in that node.

To answer top-k queries using this approach we need to keep track of the already
emitted results to avoid emitting a cell more than once. This can be easily done with
an additional data structure that stores the already emitted results and is looked up
before emitting any result (a hash table or a binary search tree, for example). The
effect of this change is that we have an added cost of checking each result before
emitting it, in addition to the cost of retrieving the result, and this cost may be
very significant for large values of k if we use a data structure like a binary search
tree to store previous results. Nevertheless, this alternative should obtain a better
compression than the K2-treap-uniform variant and therefore both variants provide
an interesting space/time tradeoff.

7.4 Experiments and Results

7.4.1 Experimental Framework

In order to test the efficiency of our proposal we use several synthetic datasets, as
well as some real datasets where top-k queries are of interest. Our synthetic datasets
attempt to simulate OLAP data that have little or no regularities in general. All
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our synthetic datasets are square matrices where a variable percentage of the cells
have a value set. We build different matrices varying the following parameters: the
size s×s of the matrix (s = 1024, 2048, 4096, 8192), the number of different weights
or values d in the matrix (16, 128, 1024) and the percentage p of cells that have a
weight (10, 30, 50, 70, 100%). The distribution of the weights in all the datasets
is uniform in the interval [0, d − 1], and the cells with valid points are distributed
randomly. For example, the synthetic dataset with (s = 2048, d = 128, p = 30) has
size 2048× 2048, 30% of its cells have a value and their values are follow a uniform
distribution in [0, 127].

We also test our representation using real datasets. We extracted two views from
a real OLAP database storing information about sales achieved per store/seller each
hour over several months: salesDay stores the number of sales per seller per day,
and salesHour the number of sales per hour. Historical logs are accumulated over
time, and are subject to data mining processes for decision making. In this case,
finding the places (at various granularities) with most sales in a time period is
clearly relevant. Table 7.2 shows a summary with basic information about the real
datasets. For simplicity, in our datasets we will ignore the cost of mapping between
real timestamps and seller ids to rows/columns in the table, and we assume that
the queries are given in terms of rows and columns. This process may be necessary
to perform queries in real OLAP databases, but is not always necessary and should
have a very small cost in comparison with the total cost of the query.

Dataset #Sellers #Instants #Values
(rows) (columns)

SalesDay 1314 471 297
SalesHour 1314 6028 158

Table 7.2: Characteristics of the real datasets used.

We compare the space requirements of the K2-treap with a state-of-the-art
solution based on wavelet trees enhanced with RMQ structures [NNR13] (wtrmq),
described in Section 2.3.4. Since our matrices can contain none or multiple values
per column, we transform our datasets to store them using wavelet trees. The
wavelet tree will store a grid with as many columns as values we have in our matrix,
in column-major order. Following the steps explained in Section 2.3.3, an additional
bitmap is used to map the real columns with virtual ones. Therefore, after the
bitmap mappings, top-k range queries in the dataset are translated into top-k range
queries in the sequence represented by the wavelet tree.

We also compare our proposal with a representation based on constructing
multiple K2-trees, one per different value in the dataset. In this representation
(mk2tree), top-k queries are answered by querying consecutively the K2-tree
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representations for the highest values.
All bitmaps that are employed use a bitmap representation that supports rank

and select using 5% of extra space. The wtrmq was implemented using a pointerless
version of the wavelet tree [CN08] with an RMQ implementation that requires 2.38
bits per value.

We run all the experiments in this section in a machine with 4 Intel(R) Xeon(R)
E5520 CPU cores at 2.27 GHz 8 MB cache and 72 GB of RAM memory. The
operating system is Ubuntu version 9.10 with kernel 2.6.31-19-server (64 bits). Our
code is compiled using gcc 4.4.1, with full optimizations enabled.

7.4.2 Space Comparison

We start by comparing the compression achieved by the representations. As shown
in Table 7.3, the K2-treap overcomes the wtrmq in the real datasets studied by a
factor over 3.5. The mk2tree representation is competitive with the K2-treap and
even obtains slightly less space in the dataset salesHour, taking advantage of the
relatively small number of different values in the matrix.

Dataset K2-treap mk2tree wtrmq

SalesDay 2.48 3.75 9.08
SalesHour 1.06 0.99 3.90

Table 7.3: Space used by all approaches to represent the real datasets
(bits/cell).

The K2-treap also obtains the best space results in most of the synthetic datasets
studied. Only in the datasets with a very small number of different values (d = 16)
the mk2tree uses less space than the K2-treap. Notice that, since the distribution of
values and cells is uniform, the synthetic datasets are close to a worst-case scenario
for the K2-treap and mk2tree, that could take advantage of a more clustered
distribution of the values.

Due to the large number of synthetic datasets created, we provide in Figure 7.5
just a summary of the space results for some of the synthetic datasets used. In the
top of the figure we show the evolution of space with the percentage of cells set, p.
In all the representations we obtain worse compression in bits/cell (i.e., total bits
divided by s2) as p increases. However, the wtrmq increases much faster depending
on p. If we measured the compression in bits per point (i.e., total bits divided by
t), then the space of the wtrmq would become independent of p (lg s bits), whereas
the K2-treap and mk2tree obtain less space (in bits per point/value) as p increases
(lg 100

p ). That is, the space usage of the wtrmq increases linearly with p, while that
of the K2-treap and mk2tree increases sublinearly.
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In the middle plot of Figure 7.5 we show the evolution of compression with the
size of the matrix s. As we can see, the K2-treap is almost unaffected by the matrix
size, as its space is around t lg s2

t = s2 p
100 lg 100

p bits, that is, constant per cell as s

grows. On the other hand, the wtrmq uses t lg s = s2 p
100 lg s bits, that is, its space

per cell grows logarithmically with s. Finally, the mk2tree obtains poor results in
the smaller datasets but is more competitive on larger ones (some enhancements in
the K2-tree representations behave worse if the matrices are below a minimum size).
In any case, the improvements in compression of the mk2tree stall once the matrix
reaches a certain size and the K2-treap is still the most competitive approach in
larger matrices.

Finally, at the bottom of Figure 7.5 we show the space results when varying the
number of different weights d. The K2-treap and the wtrmq are affected only
logarithmically by d. The mk2tree, instead, is sharply affected, since it must
build a different K2-tree for each different value: if d is very small the mk2tree
representation obtains the best space results also in the synthetic datasets, but for
large d its compression degrades significantly. Summing up, over all the synthetic
datasets, the K2-treap uses from 1.3 to 13 bits/cell, the mk2tree from 1.2 to 19, and
the wtrmq from 4 to 50 bits/cell. The K2-treap is the most competitive approach
and significantly overcomes the wtrmq in all cases.

7.4.3 Query Times

7.4.3.1 Top-k queries on synthetic datasets

In this section we analyze the efficiency of top-k queries, comparing the K2-treap
with the mk2tree and the wtrmq. For each dataset, we build multiple sets of top-
k queries for different values of k and different spatial ranges. All query sets are
generated for fixed k and w (side of the spatial window or range). Each query
set contains 1000 queries where the spatial window is placed at a random position
within the matrix. Given that the distribution of the values in the matrices is also
random, the queries are expected to have a similar number of results, proportional
to the window size and the percentage of ones p in the dataset, but no restrictions
were imposed during the construction of the query sets.

Figure 7.6 shows the time required to perform top-k queries in some of our
synthetic datasets, for different values of k and w. The K2-treap obtains better
query times than the wtrmq in all the queries, and both evolve similarly with
the size of the query window. On the other hand, the mk2tree representation
obtains poor results when the spatial window is small or large, but it is competitive
with the K2-treap for medium-sized ranges. This is due to the procedure to query
the multiple K2-tree representations: for small windows, we may need to query
many K2-trees until we find k results; for very large windows, the K2-treap starts
returning results in the upper levels of the conceptual tree, while the mk2tree
approach must reach the leaves; for some intermediate values of the spatial window,
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the K2-treap still needs to perform several steps to start returning results, and the
mk2tree representation may find the required results in a single K2-tree. Notice
also that, as we explained in the algorithm description, the K2-treap is more efficient
when no range limitations are given (that is, when w = s), since it can return after
exactly k iterations. Figure 7.6 shows the results for two of the synthetic datasets,
but similar comparison results have been obtained in all the synthetic datasets
studied: the K2-treap outperforming the alternative approaches in almost all the
cases, except in some queries with medium-sized query windows, when the mk2tree
can obtain slightly better query times.

7.4.3.2 Top-k queries on real datasets

Next we perform a set of queries that would be interesting in our real datasets. We
start with the same w × w queries as before, which filter a range of rows (sellers)
and columns (days/hours). Figure 7.7 shows the results of these range queries. As
we can see, the K2-treap outperforms both the mk2tree and wtrmq in all cases.
Similarly to the previous results, the mk2tree approach also obtains poor query
times for small ranges but is better in larger ranges.

We run two more specific sets of queries that may be interesting in many
datasets, and particularly in our examples: “column-oriented” and “row-oriented”
range queries, that only restrict one of the dimensions of the matrix. Row-oriented
queries ask for a single row (or a small range of rows) but do not restrict the columns,
and column-oriented ask for single columns. We build sets of 10,000 top-k queries
for random rows/columns with different values of k. Figure 7.8 (top) shows that
in column-oriented queries the wtrmq is faster than the K2-treap for small values
of k, but our proposal is still faster as k grows. The reason for this difference is
that in “square” range queries, the K2-treap only visits a small set of submatrices
that overlap the region; in row-oriented or column-oriented queries, the K2-treap is
forced to check many submatrices to find a few results. The mk2tree suffers from
the same problem of the K2-treap, being unable to filter efficiently the matrix, and
obtains the worst query times in all cases.

In row-oriented queries (Figure 7.8, bottom) the wtrmq is even more competitive,
obtaining the best results in many queries. The reason for the differences found
between row-oriented and column-oriented queries in the wtrmq is the mapping
between real and virtual columns: column ranges are expanded to much longer
intervals in the wavelet tree, while row ranges are left unchanged. Notice anyway
that our proposal is still competitive in the cases where k is relatively large.

The overall results show that the K2-treap is a very flexible representation and
provides the best compression results and query times in most of the datasets
and queries. More importantly, its compression and query times are good in all
the studied cases, while the alternative representations become very inefficient
depending on the characteristics of the query.
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7.5 Summary

In this chapter we have shown the space and time efficiency of our proposal, the
K2-treap, to represent multidimensional datasets in small space and efficiently
answer top-k range queries. Our experimental evaluation has demonstrated that
the K2-treap achieves small space in synthetic and real datasets, and is faster than
state-of-the-art proposals based on wavelet trees in most cases. Additionally, our
experiments show that the K2-treap scales better than alternatives based on the
MK2-tree or the wavelet tree when the size of the dataset or the number of different
values changes.

In this chapter we have also introduced some variations of the K2-treap, inspired
by the encodings used in Chapter 5, that are designed to improve compression in
datasets where regularities of values exist and are very significant. The most direct
application of these variants is the compact representation of raster datasets, that
consist of matrices of values with a very high level of clusterization of values. These
K2-treap variants optimized for the compression of uniform regions will be tested
in this domain (compression of raster data) in Chapter 10.

Even though we focused in the representation of bi-dimensional data, the K2-
treap can be easily generalized to higher dimensionality problems, replacing the
K2-tree data structure used to manage the shape of the conceptual tree with a Kn-
tree. The K2-treap should scale better than alternatives based on wavelet trees, in
terms of space and query efficiency, as the number of dimensions increases.
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Chapter 8

Dynamic K
2-tree: dK

2-tree

A lot of effort has been devoted in the literature to obtain efficient dynamic
representations for well-known static problems. In particular, the representation
of dynamic bit vectors supporting insertions and deletions has been widely studied,
as it is the basis for many other succinct data structures. As an example, the
representation of dynamic sequences and trees is usually based on dynamic bit
vectors.

In Section 2.4 we have introduced theoretical data structures for the representa-
tion of bit vectors and sequences that match the theoretical lower bound for their
respective problems. However, as we have seen, practical implementations usually
abandon the theoretical proposals to obtain good results in practice. The compact
representation of dynamic binary relations has also been tackled in the past. The
general problem was only recently studied, and several representations that are
based on sequence representations can be adapted to a dynamic environment.

In this chapter we aim to provide a dynamic data structure for the compact
representation of binary relations that obtains good compression results in different
domains. Our proposal is a dynamic version of the K2-tree, called dK2-tree, that
aims to provide the same compression and query capabilities. Three main goals are
pursued in the dK2-tree:

• Achieve space efficiency: the space results of the dynamic version of the K2-
tree should be very close to those of the static K2-tree. The main advantage
of K2-trees over other binary relation representations is the reduced space and
the advanced query support (symmetric cost of queries and support for range
queries). Our goal is to obtain a dynamic representation that can obtain space
results close to those of a static K2-tree.

• Query efficiency: the dK2-tree must support the same queries that static K2-
trees. Regarding query efficiency, the overhead in dynamic compressed data
structures is usually high due to the theoretical lower bounds and the complex
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data structures required to meet them, as shown in Section 2.4. Our goal is
to obtain a reasonable overhead in the dynamic data structure.

• Efficient support for usual update operations: the dK2-tree should support
the most usual update operations in a binary relation, particularly adding
new pairs to the relation and adding new objects to the base sets of the
relation.

In order to fulfill these goals, the dK2-tree replaces the main data structures
of the static K2-tree with dynamic implementations. We focus on obtaining a
representation that can work well in practice. To do this, we design data structures
that do not aim at providing worst-case bounds in time and space, but are simple
to implement and will allow us to fulfill our goals in many real-world applications.

8.1 Data structure and algorithms

Recall from Section 3.2 that a in a static K2-tree there is a conceptual tree that
represents a binary matrix and is stored in two bitmaps T and L, that contain the
bits of the upper levels of the tree and the last level respectively. In the dK2-tree,
the bitmaps T and L are replaced by dynamic data structures that support the
same operations. Therefore, a dK2-tree consists of two dynamic data structures,
that we call Ttree and Ltree, that replace T and L respectively, providing the
same functionalities of the static bitmaps and allowing at the same time update
operations.

Our Ttree and Ltree are tree structures similar to some of the state-of-the-art
proposals for the representation of dynamic bit vectors. The leaves of Ttree and
Ltree contain chunks of the the bitmaps T and L respectively. The size of the leaves,
as well as their maximum and minimum occupancy, can be parameterized. The
internal nodes of Ttree and Ltree allow us to access the leaves for query and update
operations.

Each internal node of Ttree contains a set of entries of the form 〈b, o, P 〉, where b
and o are counters and P is a pointer to the corresponding child node. The counters
b and o store the number of bits and ones in the fragment of the bitmap stored in
all the leaves that are descendants of the node pointed to by P . Therefore, if P
points to a leaf node, the counters will store the number of bits stored in the leaf b
and the number of ones o in it. If P points to an internal node, b and o will contain
the sum of all the b and o counters in the child node. Internal nodes in Ltree are
very similar, but they contain entries 〈b, P 〉 since o-counters are not needed because
we do not need rank support in L.

Figure 8.1 shows a simplified example of a dK2-tree representation. In this
example, we assume that the leaf nodes can store at most 8 bits, while the internal
nodes of Ttree and Ltree can store at most 2 and 3 entries respectively. The entries
of Ttree contain a pair b/o and the pointer to the child node is represented visually.
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Figure 8.1: A binary matrix, conceptual K2-tree representation (top) and
dynamic K2-tree representation of the conceptual K2-tree.
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Note that in this example, and in general in any dK2-tree, the nodes of Ttree and
Ltree may be partially empty. Each node has a maximum and minimum capacity
and may contain any number of bits or entries between those parameters. The
tree is completely balanced, and nodes may be split or merged when the contents
change. The behavior of Ttree and Ltree on update operations will be explained in
more detail later in this chapter.

The actual implementation of this data structure is quite straightforward. The
entries in internal nodes of Ttree and Ltree are stored uncompressed in order to
facilitate traversal of internal nodes. The loss in space caused by this choice is
very small and, as we will see later, traversing an internal node becomes very easy.
All the entries in an internal node have the same size, in order to provide efficient
access to them. The leaves of Ttree and Ltree simply store the bit arrays of their
corresponding chunk. Additionally, each node in Ttree and Ltree contains a small
header with its structural information. A flag leaf indicates whether each node is an
internal or leaf node. To save space, another flag long can be used in internal nodes
to determine the size of the counters in bits; otherwise, a sufficiently large size can
be determined beforehand and used in all the nodes. Finally, a field size is used
to store the current size of the node contents in order to detect when the node is
full. In leaf nodes, size contains the number of bits in the stored chunk. In internal
nodes, size stores the space occupied by all the entries used (since the entries are
of fixed size, we can store the total space or just the number of entries). Figure 8.2
shows an example of internal node and leaf node in Ttree: the internal node (top)
contains fixed-size entries, storing in the field size just the number of entries in the
node (an additional flag long would be added if different nodes may have entries
of different sizes). The first entry contains the 3 fields explained: number of bits,
number of 1s, and a pointer to the child. The child node (bottom) is a leaf node
that stores its size in bits and the plain bitmap representation.

8.1.1 Query support

8.1.1.1 Access and rank operation on the dynamic bitmaps

The dK2-tree essentially replaces the bitmaps T and L of a static K2-tree with
dynamic bitmap implementations. Therefore, all the queries supported by static
K2-trees are also supported by dK2-trees simply by providing the same low-level
operations offered by T and L in the dynamic bitmaps Ttree and Ltree. T and L
support random access to any position in the bitmap (access operation, that is
trivial in the static bitmap representation), and T also supports rank operations.
In this section we will show how to perform access and rank operations in Ttree and
access operations in Ltree.

The procedure to perform access and rank operations in Ttree or Ltree is very
similar:

• First, we must find the leaf that contains p. This is performed by the findLeaf
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Figure 8.2: Example of an internal node (top) and a leaf node (bottom) in
Ttree.

operation, that returns the leaf node Nℓ containing position p and the number
of bits bbefore and ones obefore before the beginning of the leaf.

• After findLeaf returns, the bitmap operation can be reduced to the same
operation in the bitmap of Nℓ. bbefore and obefore are used to compute the
global result for the access or rank operation.

The findLeaf operation starts at the root node of Ttree or Ltree and uses the
counters stored in internal nodes to guide the navigation. The algorithm is quite
straightforward and differs only slightly between Ttree and Ltree, because Ltree does
not store o counters. Algorithm 8.1 shows the complete implementation of the
findLeaf operation. It starts at the root of Ttree or Ltree and traverses the tree until
it reaches a leaf node. During traversal, the counters in the internal nodes are used
to compute the number of bits and ones to the left of the leaf storing the desired
position. At each internal node, all its entries are traversed in order, updating bbefore

and obefore until bbefore surpasses the current position. At this point, we know that
the child storing position p is the one pointed by the current entry, so the algorithm
proceeds to the next level of the tree. When a leaf node is found, the values of
bbefore and obefore contain the accumulated number of bits and ones to the left of
the current node.
Example 8.1: We want to access position 18 of Ttree in the dK2-tree of Figure 8.1.
The findLeaf operation starts at the root of Ttree (N1) and traverses all its entries.
The first entry of the root node contains 28 bits, so the procedure traverses its
pointer to N2. At N2, the procedure jumps over the first entry, setting bbefore = 16
and obefore = 9 and goes to the second entry. Now, the accumulated number of bits
in the second entry (16 + 12) is bigger than the position we are looking for, so the
procedure jumps again to the child pointed by the second entry (N6). In the third



172 Chapter 8. Dynamic K2-tree: dK2-tree

Algorithm 8.1 findLeaf operation

function findLeafT(N , p, bbefore, obefore)
if not N.leaf then

nEntries ← N.nEntries
i← 0
e← N.entries[i]
P ← e.P
while bbefore + e.b < p do

bbefore ← bbefore + e.b
obefore ← obefore + e.o
i← i + 1
e← N.entries[i]
P ← e.P

end while
return findLeafT(readNode(P ), p, bbefore, obefore)

else
return (N, bbefore, obefore)

end if
end function

function findLeafL(N , p, bbefore)
if not N.leaf then

nEntries ← N.nEntries
i← 0
e← N.entries[i]
P ← e.P
while bbefore + e.b < p do

bbefore ← bbefore + e.b
i← i + 1
e← N.entries[i]
P ← e.P

end while
return findLeafL(readNode(P ), p, bbefore, 0)

else
return (N, bbefore, obefore, 0)

end if
end function

function findLeaf(tree, p)
if p < tree.Ttree.size then

return findLeafT(tree.Ttree.root, p, 0, 0)
else

return findLeafL(tree.Ltree.root, p - tree.Ltree.size, 0)
end if

end function
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Figure 8.3: Leaf node in Ttree with rank directory, for ST = 16 bits.

level, the procedure finds the position in the first entry and jumps to N7 without
changing the values of bbefore and obefore. Finally, the reached node N7 is a leaf and
the procedure stops, returning the current node and the computed values for bbefore

and obefore: (N7, 16, 9).
When findLeaf returns the leaf node Nℓ that contains the desired position, any

bitmap operation is reduced to the local operation in Nℓ. Let Tℓ be the bitmap
stored in Nℓ. Then, access and rank operations in Ttree can be computed as follows:

access(Ttree, p) = access(Tℓ, p− bbefore)

rank(Ttree, p) = obefore + rank(Tℓ, p− bbefore)

The access operation in Tℓ is trivial: we simply need to access the corresponding
bit. However, the rank operation in Tℓ is still a costly operation. In order to speed
up the local rank operation inside the leaves of Ttree, we add a small rank structure
to each leaf of Ttree. This rank structure is a set of counters that stores the number
of ones in each block of ST bits, where ST is a parameter for the sampling interval.
ST determines the number of samples that are stored in each leaf and provides a
space/time tradeoff for the local rank operation inside the leaves. Figure 8.3 shows
an example of Ttree leaf with rank samples: the node is divided in chunks of fixed
size, and the number of ones in each chunk is stored in the corresponding sample.
Notice that the number of samples and the size in bits used to store each sample is
prefixed by B and ST .

Using the modified leaf structure, the operation to compute a local rank
operation inside a leaf, rank1(Tℓ, p) now requires to sum the values of all samples
previous to position p and perform a sequential search only on the fragment from
the end of the last sample:

rank1(Nℓ, p) =
p/ST
∑

i=0

si + countOnes(Nℓ[p− p mod ST , p])

8.1.1.2 Query operations in the dK2-tree

All the queries supported by K2-trees are based on access and rank operations to the
bitmaps T and L. Our tree structures Ttree and Ltree support these basic operations
and therefore all the queries supported by static K2-trees can be directly applied
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Algorithm 8.2 Find a cell in a dK2-tree

1: function findCell(tree, r, c)
2: p← 0
3: Nℓ ← NULL
4: bbefore, obefore, rank ← 0
5: while p < tree.Ttree.size do
6: p← p + computeChild(r, c, p)
7: (Nℓ, bbefore, obefore) ← findLeaf (tree, p)
8: Tℓ ← Nℓ.data
9: if access(Tℓ, p− bbefore) then ⊲ access(tree, p)

10: rank ← obefore + rank1(Tℓ, p− bbefore) ⊲ rank1(tree, p)
11: p← rank × K2

12: else
13: return 0
14: end if
15: end while
16: return access(Tℓ, p− bbefore)
17: end function

to dK2-trees simply replacing the operations on T and L with their equivalents on
Ttree and Ltree.

As an example, Algorithm 8.2 shows the complete process to access a single
cell of the matrix in a dK2-tree. The complete procedure is essentially equal to
the navigation of a static K2-tree. We assume we have a method computeChild
that obtains the child that has to be traversed at each level depending on the row
and column queried. This method only selects the branch to be traversed in the
conceptual tree and does not depend on the underlying data structure, thus the
computation is identical in dK2-trees and static K2-trees.

Then, at each level, the position p containing the current node is accessed
and checked. In the dK2-tree, the operation findLeaf is invoked to obtain the
appropriate leaf Nℓ and the counters bbefore and obefore. The bit corresponding to
position p is checked in Nℓ, and if it is a 1 the traversal continues to the next
level. A rank operation is performed (notice that obefore is already computed, so
the rank operation must only compute the rank in Nℓ) and the position in the next
level is computed like in a static K2-tree. When the position exceeds the size of
Ttree we know we have reached the leaves of the conceptual tree and we simply
access Ltree to retrieve the value of the desired bit. Notice that the only difference
between the static and dynamic algorithms is the inner work for computing rank
and access, that in the dK2-tree is based on the lower-level operation findLeaf .
All the operations supported by static K2-trees can be adapted to the dK2-tree
implementation following the same principles.
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Example 8.2: We want to check the value of the cell at row 9, column 6 in the
dK2-tree representation shown in Figure 8.1. Starting at the root node (p = 0),
we compute the child that contains the cell. The first computeChild returns us
the third child of the root node (offset 2). We call findLeaf (2), that returns us
(N4, 0, 0). At N4 we access the bit at offset 2−0 = 2, and since it is a 1 we compute
rank = rank1(N4, 2 − 0) = 2. The children of the node will be located at position
2 × K2 = 8. The process is repeated again, comparing the new p in line 5 of the
algorithm and repeating the process. Now we would traverse the second quadrant
of the current node, so we need to access position 8+1 = 9. findLeaf will lead us to
the corresponding leaf findLeaf(9) = (N5, 8, 6). The procedure would be repeated
until we eventually find the cell at position 42 in Ltree.

8.1.2 Update operations

In addition to the queries supported by static K2-trees, dK2-trees support update
operations over the binary relation. First, relations between existing elements may
be created or deleted (changing zeros of the adjacency matrix into ones and vice
versa). Additionally, dK2-trees support changes in the base sets of the binary
relation (new rows/columns can be added to the binary matrix, and existing
rows/columns can be removed as well).

8.1.2.1 Changing the contents of the binary matrix

Changes in the binary matrix are translated into a set of modifications in the
conceptual K2-tree representation of the matrix, leading to the creation or removal
of branches in this conceptual K2-tree. We will first describe the changes required
in the conceptual tree and the bitmaps that are the actual representation of the
tree. Then we will focus on how these changes in the bitmaps are implemented over
the data structures Ttree and Ltree.

In order to insert a new 1 in a binary matrix represented with a K2-tree, we
need to make sure that the appropriate path exists in the conceptual tree that
reaches the cell. The insertion procedure begins searching for the cell that has to be
inserted. The traversal of the conceptual tree continues as usual until a 0 is found
in the conceptual tree. Two cases may occur:

• The simplest case occurs when the 0 is found in the last level of the conceptual
tree. In this case, the 0 is simply replaced by a 1 to mark the new value of
the cell and the update is complete.

• If the 0 is found in the upper levels of the conceptual tree, a new path must
be created in the conceptual tree until the last level is reached. First, the 0
is replaced with a 1 as in the previous case. Then, groups of K2 bits must be
added in the lower levels. After replacing the 0 with a 1, a rank operation is
performed to compute the position in the next level. At the new position we
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add K2 0 bits and repeat the procedure, setting to 1 only the bit corresponding
to the branch of the cell we are inserting. The procedure continues recursively
until it reaches the last level in the conceptual tree.

Figure 8.4 shows an example of insertion in a conceptual tree. At a given level in
the conceptual tree a 0 is found and replaced with a 1, and a new path is created
adding K2 bits to all the following levels. The new branch is highlighted in gray
and the changes in the bitmaps of the K2-tree are also highlighted.

1 1 0000 1 1 11 0 0 10 0 1 0 10 0

0011 0010

             1                                                  1                                   1              0

1                1        0             1                         1       0         1        0            0   1  0  0              

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T = 1110  1101 1010 0100   0110 1001 0101 0010 1010 0100 1100

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 0010 1010

1

0100

0010

1

Figure 8.4: Insert operation in a K2-tree: changes in the conceptual tree.

To change a 1 into a 0 in the binary matrix, we need to set to 0 the bit of
the last level that corresponds to the cell. Additionally, the current branch must be
checked to ensure that it contains at least a 1 and deleted otherwise. The procedure
is similar to an insertion. First, the conceptual tree is traversed until we reach the
position of the cell to be deleted. Then, the bit corresponding to that cell is set to
0. After this, we check the K2 − 1 siblings of the current node. If at least one of
the siblings is set to 1 the procedure ends. If all of them are set to 0, the current
branch is empty so all the K2 bits are deleted and we move one level up. In the
upper level the operation is repeated, setting to 0 the bit of the current branch,
checking its K2 − 1 siblings and removing the K2 bits if necessary.

Implementation
As we have seen, in order to support insertions and deletions in the dK2-tree

we only need to provide three basic update operations in Ttree and Ltree: flipping
the value of a single bit, adding K2 bits at a given position and removing K2 bits
starting at a given position. For example, Algorithm 8.3 shows the complete process
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of insertion of new 1s in the matrix, that is similar to the search algorithm but relies
on the additional operations flip and append4. We will focus in this section on the
implementation details of the basic update operations over Ttree or Ltree.

Algorithm 8.3 Insert operation

function insert(tree, r, c)
p← 0
mode ← Search
for l← 0 to tree.nlevels - 1 do

5: p← computeChild(p, r, c, l)
(Nℓ, bbefore, obefore) ← findLeafT(Ttree, p)
Tℓ ← Nℓ.data
if mode = Search then

if access(Tℓ, p− bbefore) = 0 then
10: flip(Tℓ, p− bbefore)

mode ← Append
end if

else
append4(Tℓ, p− bbefore)

15: flip(Tℓ, p− bbefore)
end if
rank ← obefore + rank1(Tℓ, p− bbefore) ⊲ rank1(tree, p)
p← rank ×K2

end for
20: l← tree.nlevels

p← p− tree.Ttree.length
p← computeChild(p, r, c, l)
(Nℓ, bbefore) ← findLeafL(Ltree, p)
Tℓ ← Nℓ.data

25: if mode = Search then
if access(Tℓ, p− bbefore) = 0 then

flip(Tℓ, p− bbefore)
mode ← Append

end if
30: else

append4(Tℓ, p− bbefore)
flip(Tℓ, p− bbefore)

end if
end function

To flip a single bit, we first retrieve the leaf Nℓ containing the desired position
(notice that in all the algorithms for insertion and deletion the position has already
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been accessed before we need to change its value). The bit is changed in the bitmap
of Nℓ and its rank directory is updated (adding or subtracting 1 to the value of
the appropriate counter). Finally, if we are updating Ttree, the o-counters in the
ancestors of Nℓ must be updated to reflect the change. To perform this operation
efficiently, the current entry at each level of Ttree and Ltree is stored during tree
traversal, so that after any change the entries in the ancestors can be updated
immediately.

To add K2 bits at a given position, we first compute the leaf Nℓ that contains
that position. The K2 bits are inserted in the bitmap of Nℓ directly, and the
counters in the rank directory must be updated accordingly. In this case, all the
counters from the current position until the end of the leaf must be recomputed
to take into account the bits that have been moved. Finally, the b- and o-counters
in the ancestors of Nℓ must also be updated. Every time we insert K2 bits we
are creating a new branch that will contain a single 1 so the b- and o-counters are
increased by K2 and 1 respectively.

When a leaf of Ttree or Ltree reaches its maximum node size we split it in two
nodes, always keeping groups of K2 siblings in the same leaf. This is propagated
to the parent of the leaf, causing the insertion of a new entry pointing to the new
node and updating the b- and c-counters accordingly.

To achieve better space utilization the dK2-tree can store nodes of different
maximum sizes. Given a base node size B, we allow a number e of partial expansions
of the node before splitting it. In practice, for fixed B and e, Ttree and Ltree may
contain nodes of size B, B + B

e+1 , · · · , B + (e)B
e+1 (we call them class-0, · · · , class-e

nodes. If a node overflows and it can be expanded, its contents are reallocated
in a node of the next maximum capacity updating the P pointer in its parent if
necessary. If a fully-expanded node overflows, it is split into two class-0 nodes and
the parent entries are updated accordingly.

Example 8.3: The changes in the conceptual tree described in Figure 8.4 are
translated in the actual data structure as shown in Figure 8.5. First the bit at
position 12 is flipped. This causes a change in the second leaf of Ttree (the rank
counter in the leaf node that includes that position must also be updated) and all
the o-counters in the path to the root of Ttree are increased by one. Then we move
to the position where the new 4 bits must be added, that falls in the last leaf of
Ttree. In this case, we add the new K2 bits and update both the b- and o-counters
in the path to the root. The process is repeated in Ltree, adding the corresponding
K2 bits to a leaf node and updating the b-counters in the path to the root. In this
example we consider that the leaf node updated in Ltree can allocate the new K2

bits. If the new K2 bits do not fit in the node, a new node with the next allowed
size should be allocated. In the worst case, the leaf node would be split, and a new
entry added to its parent. In this case, as all entries in its parent are full, the parent
node would also be split and its entries redistributed.
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Figure 8.5: Insert operation in a dK2-tree: changes in the data structures.

8.1.2.2 Changes in the rows/columns of the adjacency matrix

The dK2-tree supports the insertion of new rows/columns in the adjacency matrix it
represents, as well as deletion of existing rows/columns. These operations, although
less frequent than changes in the contents of the matrix, are required to provide a
fully-functional representation of binary relations. The dK2-tree supports efficiently
insertions of new elements at the end of the current matrix (that is, insertions at
unspecified positions).

The insertion of new rows/columns to the adjacency matrix represented by a
dK2-tree can be easily supported using the following property: if the size of the
matrix is not a power of K it is virtually expanded to the next power of K (recall
Section 3.2). This means that a K2-tree already contains in most cases a number
of unused rows/column at the end of the matrix. In practice, in a dK2-tree we can
explicitly store the actual size of the matrix and consider the remaining rows and
columns as unused. When a new row (column) is needed, the actual size of the
matrix is increased and the first unused row (column) becomes available.

When the size of the matrix becomes exactly a power of K no unused
rows/columns are available. In this case, the dK2-tree is modified to expand the
current Kn ×Kn matrix to a size Kn+1 ×Kn+1. The current matrix will become
the top-left quadrant of the new matrix. In order to do this expansion, we only need
to add a new root level to the conceptual tree that represents the matrix, whose
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first child will be the current root. This operation requires simply the insertion of
K2 bits 1000 at the beginning of Ttree.

To delete an existing row/column, the procedure is symmetric to the insertion.
The last row/column of the matrix can be removed by updating the actual size of
the matrix and zeroing out all its cells. Rows/columns at other positions may be
deleted logically, adding them to a list of deleted rows and columns after zeroing
all their cells. In this case, the deleted rows and columns may be reused when new
rows are inserted.

The insertion of new columns at specific positions in the matrix is not supported
by dK2-trees. This operation is difficult to implement in the dK2-tree because
of the regular decomposition of space it uses. Additionally, the K2-tree and
its variants rely on the clusterization and regularity of matrices to obtain good
compression results, so the logical deletion of rows in the middle of the matrix
may have significant effects in compression. This means that a dK2-tree may need
additional data structures to represent binary matrices that require these operations
(a permutation can be used, for instance, to map real element numbers to actual
row/column positions).

8.2 Matrix vocabulary

The K2-tree can be improved using a matrix vocabulary to compress the bitmap
L, as explained in Section 3.2.2. This improvement replaces the plain bitmap L
with a sequence of variable-length codes plus a matrix vocabulary consisting of
a single table that stored all the submatrices. Given any code, its offset in the
vocabulary could be retrieved and the corresponding submatrix recovered. In dK2-
trees, the leaves in Ltree could use the same encoding procedure to store a sequence of
matrix codes. In this section we show how a dynamic implementation of the matrix
vocabulary can be used to compress Ltree using ETDC (recall Section 2.2.4).

First, in order to use a matrix vocabulary in the dK2-tree we need to handle a
dynamic matrix vocabulary. This means that we should be able to add and remove
entries from the vocabulary. In order to do this, we need a data structure that allows
us to check whether a given matrix already exists in the vocabulary. We built a
simple implementation that stores a hash table H to look up matrices. An array
V stores the position in H where each matrix is stored. Finally, we add another
array F that stores the frequency of each matrix. An additional list V empty stores
the codewords that are not being currently used.

In order to store variable-length codes in the leaves of Ltree some details must
be taken into account: first, the actual number of bits and ones in a leaf is no longer
the same as the logical values stored in b- and o-counters. This does not affect the
tree structure because the actual size of each leaf node is stored in the size field of
its header, and this is the value used to determine when to expand or split a leaf,
while the values in the counters are still used as before to access the appropriate
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Figure 8.6: Dynamic vocabulary management: vocabulary (top) and Ltree

(bottom).

leaf.
Example 8.4: Figure 8.6 shows an example with a complete vocabulary represen-
tation containing 4 different matrices. The leaves of Ltree store now a sequence
of variable-length codes represented with ETDC (we use chunk size b = 2 in this
example to obtain the simpler codewords shown in the figure). Notice that leaves
N2 and N3 store only the codewords corresponding to the matrices, but the b- and
o-counters in internal node N1 still refer to the logical size of the leaf: the entry
pointing to N2 contains 64 bits (4 submatrices of size 4 × 4) and 5 ones. The
submatrices are stored in a hash table that stores for each matrix its offset in the
vocabulary (that can be easily translated into a codeword). The array V allows us
to find the matrix from the codeword, storing the actual address of the entry in H
(in this case, since H is backed by an array, V stores the position in the array of
the corresponding entry in H). F stores the actual frequency of each submatrix in
the vocabulary.

The algorithm to access a position in Ltree with matrix vocabulary must be
modified to use the encoding. After findLeaf returns, we obtain a logical offset in
the leaf. In order to find the value of that position we must traverse the sequence
of variable-length codes stored in the leaf until we find the one that corresponds to
the desired position. When we find the code that contains the desired position, we
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Figure 8.7: Leaf node in Ltree with rank directory, for SL = 4.

retrieve the actual matrix it represents: the codeword is translated into an array
index, and V is used to retrieve the actual matrix. For example, suppose we want
to access position 21 in the example of Figure 8.6. Our findLeaf operation would
take us to node N2, offset 21. To obtain the actual matrix we would traverse the
codes in N2, taking into account the actual size of each submatrix (16 bits), so our
offset would be at position 5 in the second submatrix. We go over the code 10 and
find the second code 0010. To find the actual matrix, we convert this code to an
offset (2) and access V [2] to locate the position in H where the matrix is actually
stored (3, second non-empty position). Finally, in H we can access bit 5 in the
matrix bitmap (0).

The main difference with a static implementation is the need to sequentially
traverse the list of variable-length codes. We can reduce the overhead of this
sequential traversal adding to the leaves of Ltree a set of samples that store the
actual offset in bytes of each SL-th codeword. The idea is similar to the sampling
used for rank in the leaves of Ttree, and an example is shown in Figure 8.7. With this
improvement, to locate a given position we can simply use the samples to locate the
previous sampled codeword and then start the search from the sampled position.

Update operations. Update operations now require to add, remove or modify
variable-length codes from the leaves of Ltree. All the update operations start
by finding the real location in the node where the variable-length code should be
added/removed/modified.

To insert groups of K2 bits we need to add a new codeword. The matrix
corresponding to the new codeword is looked up in H , adding it to the vocabulary
if it did not exist and increasing its frequency in F . Then, the codeword for the
matrix is inserted in the leaf, updating the counters in the node and its ancestors.

To remove groups of K2 bits in a leaf node of Ltree a codeword must be removed:
we locate the codeword in Ltree, decrease its frequency in F and then we remove
the code from the leaf node, updating ancestors accordingly. If the frequency of the
codeword reaches 0, the corresponding index in V is added to V empty. When new
entries must be added to the vocabulary V empty will be checked to reuse previous
entries and new codes will only be used when V empty is empty.

To change the value of a bit in Ltree we need to replace existing codewords.
First, the matrix for the current codeword is retrieved in H and its frequency is
decreased in F . We look up the new matrix in H . Again, if it already existed its
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frequency is increased and if it is new it is added to H and its frequency set to 1.
Then, the codeword corresponding to the new matrix is inserted in Ltree replacing
the old codeword.

Following the example of Figure 8.6, suppose that we need to set to 1 the bit
at position 21 in Ltree. findLeaf would take us to N2, where we have to access the
second bytecode 00 10 at offset 21 − 16 = 5. This bytecode (C2) corresponds to
offset 2 in the ETDC order. We would access V [2] to retrieve the corresponding
matrix. The operation would require us to transform the matrix as follows:

0000
0011
0000
0000

−→

0000
0111
0000
0000

The new submatrix created flipping the bit at offset 5 would be checked in H ,
and we would find that it already exists at position 3 in V with frequency 1. Hence,
we would need to update the leaf node replacing the old codeword 00 10 with the
new codeword C3: 00 11. This change is performed in the leaf node, and the
vocabulary is also updated: the frequency for C2 would be decreased to 1 and the
frequency for C3 would be increased to 2.

8.2.1 Handling changes in the frequency distribution

The compression achieved by the matrix vocabulary depends heavily on the
evolution of the matrix frequencies. As update operations are executed in the
dK2-tree, the distribution of the submatrices may change significantly and the
efficiency of the variable-length codes will degrade. The simplest approach to obtain
a reasonably efficient vocabulary is to use a precomputed vocabulary, precomputing a
fraction of the matrix to obtain the frequency distribution of submatrices and build
a preliminary vocabulary. Alternatively, a tentative vocabulary may be provided
by the user during construction if the properties of the matrix to be represented are
well known or the matrix is expected to be very regular.

To obtain the best compression results, when the frequency of a submatrix
changes too much its codeword should also be changed to obtain the best
compression results. This is a process similar to the vocabulary adjustment in
dynamic ETDC (DETDC, recall Section 2.2.4.1). However, in a dK2-tree we are
presented with a space/time tradeoff: each time we want to change the codeword of
a submatrix, we must also update all the occurrences of the codeword in the leaves
of Ltree.

To maintain a compression ratio similar to that of static K2-trees we can use
simple heuristics to completely rebuild Ltree and the matrix vocabulary: we can
rebuild every p updates, or count the number of inversions in F . To rebuild Ltree,
we must sort the matrices in H according to their actual frequency and compute the
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optimal codes for each matrix. Then we have to traverse all the leaves in Ltree from
left to right, replacing the old codes with optimal ones. Notice that the replacement
can not be executed completely in place, because the globally optimal codes may
be worse locally, but the complete process should require only a small amount of
additional space. After Ltree is rebuilt, the old vocabulary is replaced with the
optimal values.

8.2.1.1 Keeping track of the optimal vocabulary

An alternative to the simple heuristics to rebuild the matrix vocabulary is to keep
track of how good the current compression is. To guarantee that the compression of
Ltree is never too far from the optimum, we can keep track of the actual optimum
vocabulary. In this section we propose an enhanced vocabulary representation in
which we maintain updated at all times an optimal vocabulary. This vocabulary
representation is similar to the adaptive encoding used in DETDC, in the sense that
it uses data structures to maintain the optimal vocabulary on update operations.
However, in our case it would be unfeasible to change the actual vocabulary each
time the length of a codeword changes (since changing the codeword of a matrix
implies rebuilding Ltree to replace the old codes with the optimal ones). Hence, we
store the optimal vocabulary to keep track of the space efficiency but still use a
suboptimal one.

To keep track of the optimal vocabulary we store, in addition to H and F ,
a permutation VP between the current vocabulary and the optimal one: VP(i)
gives the optimal position of the codeword at offset i, while VP−1(i) gives the
current position given the optimal position. This permutation will be updated
when necessary and will allow us to keep V and F always sorted in descending
order of frequency (that is, according to the optimal vocabulary). Figure 8.8 shows
the data structures required to represent the same vocabulary of Figure 8.6 using
the new method.

In this representation, the procedure to find the codeword for a matrix and to
obtain the matrix for a codeword is essentially the same explained for the basic
vocabulary: to find the codeword of a matrix, we look up the matrix in the hash
table to obtain its offset in the optimal vocabulary; then we use VP−1 to compute
the offset in the current vocabulary. To find the matrix for a given codeword we
compute the optimal offset for the codeword using VP and then use V to find the
position of the matrix.

To keep track of the changes in frequencies, we also build an array Top that
stores, for each different frequency, the position in V of the first codeword with
that frequency. The array Top is used to perform codeword swaps when frequencies
change, as it was performed in DETDC. If the frequency of a matrix at index i in
V changes from f to f + 1, the new optimum position for it would be the position
Top[f ]. For example, following the example of Figure 8.8, if a new codeword C2 (00

10, corresponding to offset 2 in the current vocabulary, therefore offset VP (2)=1 in
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Figure 8.8: Extended vocabulary to keep track of the optimal codewords.

the optimum one) is added to the vocabulary, the value of F [1] must be increased
to 3. To keep the vocabulary sorted by frequency we would simply swap the current
offset 3 at V [1] and T op[1] = 1 (i.e., we exchange the current matrix with the first
matrix with frequency 2). The indexes in V , VP and H would be updated to reflect
the change. The case when the frequency of a matrix decreases from f to f − 1 is
symmetric: we swap the current position of the matrix with Top[f−1]+1, updating
the corresponding indexes in F and VP.

The use of the extra data structures allows us to control precisely how much
space is being wasted at any moment, since we know the length of the sequence of
codewords sizecur and we can also know the size the optimum sequence would have
(sizeopt). This means that we can set a threshold rebLtree

and rebuild Ltree when
the ratio sizecur

sizeopt
surpasses it.

In order to physically store all the data structures required for the dynamic
vocabulary, we resort to simple data structures that can be easily updated. H is a
simple hash table backed by an array. V and F are extendible arrays. If we want to
set the threshold rebLtree

we need additional data structures for VP and Top. Top
can be implemented using an extendible array and two extendible arrays can store
VP and its inverse. The goal of these representations is to provide efficient update
times (recall that each update operation in the dK2-tree will always lead to a change
Ltree, that will cause at least one frequency change in the vocabulary).
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8.3 Improving accesses to the dK
2-tree

An interesting property of the navigation of K2-trees is that sequences of consecutive
accesses to the bitmaps T and L follow well-defined patterns. All the queries
supported by K2-trees start at the root of the conceptual tree (i.e., at the beginning
of bitmap T ). The traversal of the conceptual tree jumps to lower levels until the
last level of the conceptual tree (bitmap L) is reached. Each traversal operation in
the conceptual tree becomes a jump to positions to the right of the current one in
the bitmap T , until finally the last level is reached and the bitmap L is accessed
instead.

In this section we propose a modification of the access mechanisms of the dK2-
tree to speed up queries. The idea is simply to modify the findLeaf operation to be
able to search the new leaf from a previously accessed leaf instead of from the root
of Ttree or Ltree. This modification will reduce the cost of traversing the complete
tree from the root for each access to the dynamic bitmap: instead, we will find the
shortest path from a leaf to another. This modification will make accesses more
efficient in the dK2-tree because accesses to positions follow a well-defined pattern,
as we explained: each query in the K2-tree is based on a top-down traversal of the
conceptual tree, that translates into accesses to increasing positions in the bitmap
T . In the case of range operations, that may access many children of each node,
query algorithms are expected to perform accesses to very close positions, at least
in the first levels of the conceptual tree.

To be able to start search from a previously accessed leaf node, the new findLeaf ∗

operation must store the relevant data from the current search that allows us to
traverse Ttree or Ltree and find a path to the next leaf node. For each level of Ttree

(Ltree) some information is stored in order to be able to perform backtracking from
the last leaf. An array levelData[Ttree.depth] is kept, that stores for each level of
Ttree an entry 〈N, e, s, b, o〉, where N is a pointer to the Ttree node accessed at that
level, e the entry that was traversed (if N is an internal node), s is the number of
bits covered by N1 and b and o are the values of bbefore and obefore. This information
will be kept between consecutive findLeaf ∗ operations.

To locate the leaf for a new position p, we start from the previously accessed
leaf and check if the new position p is in the current leaf (i.e. if b ≤ p < b + s). If
the new position is in the current leaf we can simply return immediately. If p is
not in the current leaf we navigate to the upper level of Ttree (the previous entry
in levelData) until at some point the inequality b ≤ p < b + s holds (i.e. the new
position is in the fragment covered by the current node). At this point, we know
the bbefore and obefore until the beginning of the current entry, and we can resort to
the top-down traversal used in the basic findLeaf operation.

1We assume that s is stored for convenience. It can be easily computed: in the root node, s is
the total size of the bitmap, that can be physically stored in the dK2-tree; in lower levels, s is the
value of the b-counter in the parent node
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The effect of this modification is simply that the cost of each new access
operation now depends on the distance to the previous access. In the original
algorithm, each access required us to perform a complete top-down traversal of the
tree; now, we can start from a leaf of the tree that has been accessed recently and
locate the new leaf and offset without traversing all the levels of Ttree or Ltree. In the
best case, the new access is so close to the previous one that the new position falls
actually in the same leaf node of the tree. In this case, we do not need to traverse
internal nodes and can return immediately the current leaf. This makes our indexed
solution a good tool for reducing the cost of the operations: at least in the upper
levels of the tree, and in queries that involve ranges of values, the cost of many
access and rank operations in Ttree can be reduced to the cost of performing the
operation in the leaf node, that is comparable to the cost of a static rank operation.

8.4 Analysis

In this section we will compare the space and time costs of the dK2-tree with those
of a static K2-tree. As we explained previously in this chapter, the dK2-tree aims to
provide good results in practice, but it does not provide good theoretical guarantees
when compared with the static data structure.

The dK2-tree stores essentially a dynamic implementation of the bitmaps T
and L of the static K2-tree. The leaves of Ttree and Ltree store the bits of T and L
and may be partially empty, so the overall space required is O(|T |+ |L|). The main
variable that affects compression in the dK2-tree is the number of node expansions e,
that affects node occupancy. The actual overhead required by the dK2-tree depends
in a smaller factor on the sampling intervals ST and SL and the block size B. In
practice, the total space can be upper bounded by a linear overhead with a small
factor, at least if we do not consider a matrix vocabulary. The additional cost of the
matrix vocabulary is difficult to measure, since it depends heavily on the input data.
However, we can assume that, if we want to keep track of the optimal vocabulary,
the overhead to pay is several times the space of the vocabulary in a static K2-tree
(recall from Section 3.2 that the vocabulary in a K2-tree only requires the table with
submatrices, while our solution requires in addition a hash table H , a permutation
VP and the array Top). In general, the dK2-tree with matrix vocabulary may be
competitive with the static K2-tree as long as the size of the vocabulary is a small
fraction of the overall size of the representation.

The cost of query operations in dK2-trees can be calculated in relation to the cost
in a static implementation. We can reduce the overhead required by our dynamic
representation to the overhead required by findLeaf operations and local access and
rank operations inside leaves of Ttree and Ltree, compared with the constant-time
access and rank times in T and L. The main overhead in dK2-trees is the findLeaf
operation, since we can reduce the cost of local access and rank operations using
samples in the leaves of Ttree and Ltree. In the worst case, a findLeaf operation
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requires us to traverse a full path in Ttree or Ltree from the root to a leaf node,
performing O(B/ log n) operations at each internal node. When a leaf node is
reached, local access operations are O(1) in Ttree and Ltree or require traversing
O(SL) codewords in a compressed Ltree. Local rank operations require adding up
the values of the samples in the leaf and computing the rank value for the remaining
interval, thus O(B/ST +ST ) time. In our implementation we will consider relatively
large values of B so that the space overhead caused by internal nodes is small.

An important consideration regarding practical efficiency is the fact that
searches implemented using the findLeaf ∗ operation can start the search from the
previous leaf accessed, thus this search very efficient at least for the first levels. If
the queries executed in the dK2-tree lead to many close accesses in Ttree and Ltree,
the total cost of the operations can be reduced almost exclusively to the cost of the
local operations in leaf nodes.

The cost of update operations in the dK2-tree can also be decomposed in the
cost in internal nodes and cost in leaves. In our representation any update operation
will require a findLeaf operation, exactly like a search, and a modification in a leaf
node. To update a bit a leaf node of Ttree we need to flip the bit and update its
corresponding sample. On the other hand, to insert/remove bits we need to shift the
bit sequence stored in the node, requiring O(B/ log n) time, and recompute all the
samples in the worst case. However, notice that in practice the cost of recomputing
all the samples is amortized by the fact that in the K2-tree each time a position is
updated we usually need to find the rank value of that position to navigate to the
next level of the conceptual tree.

8.5 Experimental evaluation

In this section we experimentally test the efficiency of our new dynamic repre-
sentation. Our goal is to demonstrate its capabilities to answer simple queries
in space and time close to those of the static K2-tree data structure. We will
start by comparing the dK2-tree with static K2-trees to compress Web graphs,
the original field of application of K2-trees. This will serve as a baseline for the
expected efficiency of dynamic K2-trees in comparison with a static version. We
choose Web graphs to compare the dK2-tree with the original K2-tree because
they are the original application of static K2-trees and all the improvements to
K2-trees have been proved to be very efficient in this kind of graphs, particularly
the compression of the last levels using a matrix vocabulary. Nevertheless, this
experimental evaluation is a proof of concept and a reference of the overhead
required by our dynamic representation that will be completed in the next chapter
where we will move to other domains, such as the compression of RDF graphs,
raster images or temporal graphs, where representations based on K2-trees are also
efficient but a dynamic implementation that allows changes to the underlying matrix
would be useful in many cases.
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All the experiments in this section are run on an AMD-Phenom-II X4 955@3.2
GHz, with 8GB DDR2 RAM. The operating system is Ubuntu 12.04. All our code
is written in C and compiled with gcc version 4.6.2 with full optimizations enabled.

8.5.1 Parameter tuning

The main parameters used to adjust the efficiency of our structure are 1) the
sampling period s in the leaves of Ttree (ST ) and Ltree (SL), 2) the block size B, 3)
the number of partial expansions e and 4) the utilization of a matrix vocabulary,
and if so the selection of an appropriate value of K ′ in the last level. This last
parameter has a great effect on the overall compression in static K2-trees, but is
highly dependent on the dataset to be represented, its size and the regularities it
contains. We will first focus on the effect of the first group of parameters, and leave
the study on the effect of the matrix vocabulary for later, since the utilization or not
of a matrix vocabulary should be independent of the tuning of the first parameters.

To prove the validity of the parameter selection we show the results obtained
by the dK2-tree representation of a Web graph dataset, eu-2005. It is a small web
graph with 19 million edges, already used in Chapter 5, that provides an example,
but the parameter tuning is very similar in other datasets used in following sections.
We just use this dataset as an example to show the effects of changes in the tuning
parameters. We do not use a matrix vocabulary in this example.

Figure 8.9 shows the evolution of the dK2-tree size and the creation and rebuild
time depending on each parameter. The dK2-tree size, expressed in MB, is the
overall memory used by the data structure. The creation time is the time required
for building the dK2-tree structure from an adjacency list representation of the
dataset. We build the datasets inserting each edge separately, so this time provides
an estimation of the update time of the structure. Finally, the rebuild time is the
time required to find all the 1s in the adjacency matrix, thus rebuilding the input
dataset from the dK2-tree representation. This process of rebuilding the original
dataset is performed by a single range query that covers the complete matrix, and
it is shown again as a rough estimation of the expected evolution of query times.
Both times are shown in microseconds per element inserted/retrieved.
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Figure 8.9: Evolution of space/time results of the dK2-tree changing the
parameters s, B and e.

The top plot in Figure 8.9 shows the space/time results obtained for different
values of the sampling interval s. The times shown correspond to fixed values
B = 512 bytes and #classes = e + 1 = 4, but the tradeoff is similar for different
values. Notice that the sampling period s has an interesting effect in the dK2-tree.
Smaller values of s increase the size of the trees slightly (more samples are stored).
The small increase in size is compensated by a considerable reduction in query time,
because the rank operation in leaves (rankLeaf ) has a cost directly proportional to
s. Additionally, update operations can also be improved by using smaller values of
s. Blocks with more samples are more costly to update when their contents change,
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but the recomputation of the samples is not so expensive and it is only performed
if the node contents actually change. On the other hand, the rankLeaf operation
must always be performed at all the levels of the conceptual tree, and its cost is
greatly reduced when using smaller values of s. This effect allows us to choose a
sampling period as small as necessary to obtain a rankLeaf operation comparable
to a static rank, with only a minor increase in the size of the dK2-tree.

The middle plot in Figure 8.9 shows the results for different values of B, for fixed
s = 128 bytes and #classes=e+1=4. The block size B provides a clear space/time
tradeoff. Small values of B yield bigger dK2-trees because the constant overhead
added by the node headers and the block manager becomes more relevant. As
the value of B increases, the query times are similar thanks to the sampling but
updates become more costly. In our experiments we will choose values of B = 256
or B = 512 to obtain the best space results with small penalties in update times.

Finally, in the bottom plot of Figure 8.9 we show the evolution with e (or,
equivalently, with the number of different block sizes e + 1), for fixed s = 128 and
B = 512. If we use a single block size (e + 1 = 1), the node utilization is low
and the figure shows poor space results. For a relatively small number of block
sizes the space results improve fast, and we can see only minor changes in the
creation and rebuild times. As we can see, using just 4 different block sizes yields
a considerable improvement in space and allows us to use simple techniques for the
memory management.

8.5.2 Effect of the matrix vocabulary

The creation of a matrix vocabulary to compress the last level of the tree (L) reduced
significantly the space requirements of static K2-trees, as explained in Section 3.2.
In this section we experimentally evaluate our proposals for the compression of Ltree

in a dK2-tree, that follow the same principles used in static K2-trees but are more
challenging because we must also update the vocabulary.

To test the efficiency of using a matrix vocabulary in the dK2-tree in comparison
with a static K2-tree, we build the data structure for the same datasets with and
without a matrix vocabulary and for different values of the parameter K ′. We
compare the static and dynamic representations in two different Web graph datasets,
already used in Section 5.6: the indochina-2004 dataset, with 200 million edges, and
the uk-2002 dataset, with 300 million edges. In all cases we build a hybrid variant
of the K2-tree or the dK2-tree, with K = 4 in the first 5 levels of decomposition and
K = 2 in the remaining levels. We first build a version with no matrix vocabulary
as a baseline and then build the same representations with a matrix vocabulary for
matrix sizes K ′ = 4 and K ′ = 8. In the dK2-tree we choose a block size B = 512,
e = 3 (4 different block sizes) and s = 128. The static K2-tree representation uses
a sampling factor of 20 for its rank data structures, hence requiring an additional
5% space.
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We design an experimental setup to test the efficiency of the simplest version
of the matrix vocabulary (that does not keep track of the optimum values) and
the more complex one, that keeps track of the optimum and is able to determine
how much compression overhead is obtained in Ltree. We use in the dK2-tree the
most complex version of the matrix vocabulary, that keeps track of the optimum
vocabulary and rebuilds the complete vocabulary when the total size is 20% worse
than the optimum. Additionally, and in order to avoid multiple rebuild operations
in the first few insertions, we set a threshold of 100 KB for the size of Ltree, so that
the vocabulary is only checked (and rebuilt if necessary) when Ltree reaches that
size. An interesting result of this setup is that, when a matrix vocabulary is used
in the dK2-tree, the graphs are only rebuilt once, when the size of Ltree reaches
the threshold. In this case, the small-scale regularities in the adjacency matrices of
Web graphs ensure that, once a small fragment of the adjacency matrix has been
built, the resulting matrix vocabulary becomes good enough to compress the overall
matrix with a relatively small penalty in space. Given this result, we measure the
overall memory utilization of both data structures considering in the dK2-tree two
different scenarios: the space required by the simplest version of the vocabulary
(including H and F but not the additional data structures to keep track of the
optimum vocabulary) (dynamic) and the total space required to keep track of the
optimum vocabulary (dynamic-complete).
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Figure 8.10: Space utilization of static and dynamic K2-trees with different
matrix vocabularies in Web graphs.

Figure 8.10 shows the evolution of the space utilization for both datasets required
by original K2-trees (static) and a dK2-tree (dynamic). The dK2-tree space
utilization is close to that of the static K2-tree when no matrix vocabulary is
used (noV oc). The space overhead of dK2-trees, around 20%, is mostly due to
the space utilization of the nodes. Static K2-trees obtain better compression for
larger values of K’, reaching their best space utilization when K ′ = 8. On the
other hand, the dK2-tree improves its space utilization for small K’ but it is not
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able to take advantage of larger values of K ′. However, when we try to keep
track of the optimum vocabulary, the overall size of the dK2-tree becomes worse
than the simpler approach. This is due to the additional data structures required,
particularly the array Top, that add a very significant space overhead to the simpler
matrix vocabulary. Considering these results, a simpler strategy to maintain a
“good” matrix vocabulary (such as using a predefined matrix vocabulary extracted
from experience of simply rebuild after x operations) may be the best approach
in many domains. On the other hand, the strategy to keep track of the optimum
vocabulary is still of theoretical interest and could be of application in domains
where the matrix vocabulary is expected to be very small.

Dataset K’
Vocabulary size

(% of total)
Static Dynamic

indochina-2004
4 0.12 2.77
8 19.20 46.12

uk-2002
4 0.08 1.30
8 19.88 59.40

Table 8.1: Percentage of the total space required by the matrix vocabulary
in Web graphs.

The space results with no matrix vocabulary and even with matrix vocabulary
and small K’ show that the main difference between the static K2-tree and the dK2-
tree when using a matrix vocabulary is the space required to store the vocabulary,
that in the dK2-tree must be searchable and updatable. Table 8.1 shows the
evolution of the vocabulary size in relation to the overall size of the representation
for the studied datasets. As we can see, the dynamic vocabulary used in dK2-trees
requires a much larger fraction of the overall space for all values of K’. For small
K’, the difference between the static and dynamic vocabularies is larger due to the
larger number of entries in the vocabulary, that must be stored in H and F . For
K ′ = 8 the dK2-tree already uses much more space than static K2-trees, and the
space required to store the complete vocabulary can be more than half the total
space. This makes the utilization of a matrix vocabulary difficult for large values of
K’ in the dK2-tree. As we have shown, some improvements can be obtained using
matrix vocabularies with K ′ = 4 in Web graphs, but even with this improvement
in space the space utilization of the dK2-tree with K ′ = 4 essentially doubles the
results for the best static K2-tree representations using a matrix vocabulary with
K ′ = 8.
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8.5.3 Access times

As a proof of concept of the efficiency of the dK2-tree we compare its query efficiency
with static K2-trees in the context of Web graphs. We choose the most usual query
in this domain, namely, a successor query that asks for the direct neighbors of a
specific node (that is, all the cells with value 1 in a specific row of the adjacency
matrix). For each dataset we run all possible successor queries, that is, we run a set
of queries including all the possible nodes, and measure the average query times in
µs/query. We compare the query times between static K2-trees and the dK2-tree.
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Figure 8.11: Time to retrieve the successors of a node in a static K2-tree
and a dK2-tree in the Web graphs studied. Query times in µs/query.

Figure 8.11 shows the results obtained. The dK2-tree is always slower than a
static representation, and its query times are very similar independently of whether
a matrix vocabulary is used. Comparing the dK2-tree version that obtained the
best space results (K ′ = 4) with the best static K2-tree version (K ′ = 8), the dK2-
tree is 50-80% slower than the static data structure. This difference in query times
is significant, but considering the dynamic nature of the dK2-tree data structures
a result that is below the double of the original times is still a good achievement.

8.5.4 Update times

The cost of update operations depends on several factors. As we have shown, the
choice of block size B and sampling parameter s causes significant differences in
both query and update times. Apart from this, the characteristics of the dataset
also have a great influence in its K2-tree and dK2-tree representation, since the
clusterization of 1s and thee small-scale regularities in the adjacency matrix lead
to a better compression of the data. In the dK2-tree, the clusterization of 1s and
the sparsity of the adjacency matrix also affect update times: when new 1s must be
inserted and they are far apart from any other existing 1, the insertion operation
must insert K2 bits in many levels of the conceptual K2-tree, which increases the
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cost of the operation. Therefore, insertion costs are expected to be higher on average
when datasets are very sparse.

To show the effect of the distance between 1s on update costs, we build a set of
very sparse synthetic datasets where we precisely control the distance between 1s
in the adjacency matrix. We create matrices where 1s are inserted every 2d rows
and 2d columns, so that the K2-tree representation has a unary path of length d to
each edge. Table 8.2 shows a summary with the basic information of the datasets.
We choose the separation for the different dataset sizes so that all the datasets have
the same number of edges (4,194,304).

Dataset #rows/columns Separation between 1s (2d) # K2-tree levels

synth_22 4,194,304 2,048 (d = 11) 22
synth_24 16,777,216 8,192 (d = 13) 24
synth_26 67,108,864 32,768 (d = 15) 26

Table 8.2: Synthetic sparse datasets used to measure insertion costs.

Over these datasets we measure the insertion cost depending on the number of
levels ℓ that must be created in the conceptual K2-tree (that is, the number of levels
where K2 bits have to be added) to insert the new 1. We compare the insertion
costs for ℓ ∈ [0, 10]. For each dataset and value of ℓ, we create a set of 200,000 cells
of the matrix that require exactly ℓ new levels in the conceptual tree (that is, they
are separated of the closest 1 by 2ℓ−1 − 2ℓ rows/columns). To build the query sets
we select random 1s of the original matrix and choose a new 1 adding 2ℓ to the row
and/or column of the original 1. This guarantees that the new 1 will be located in
the same K2-tree node of height ℓ + 1, but it will require a new path of length ℓ
from this node down. For each dataset we select the same 1s of the original matrix
for all the different values of ℓ (we use a pseudo-random number generator with
the same seed), so that insertions access similar positions. Additionally, to limit
the effect of other parameters in this measurement, we use a simple setup with no
partial expansions (a single block size).

We run the insertions for all different values of ℓ over the synthetic datasets
and measure the average insertion times in µs/query. Additionally, and in order
to estimate the actual cost of the update operation, we query the new cells over
the unmodified synthetic datasets. These queries, that return no results, will be
used to determine how much of the insertion cost is due to locating the node of the
conceptual K2-tree where we must start the insertion. Notice that since we query
the original datasets but each insertion modifies it, the average query time for the
cells is just an estimation of the actual cost during insertion.

Figure 8.12 (left) shows the evolution of insertion and query times in the different
datasets. When ℓ is small (new 1s are inserted very close to existing 1s), insertion
and query times are almost identical, since we only need to update a single bit and
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Figure 8.12: Insertion times (left) and estimation of update cost (right) in
the dK2-tree with varying ℓ.

some counters in the dK2-tree. However, as ℓ increases the insertion cost becomes
higher due to the additional cost of inserting data in the blocks of the dK2-tree and
update samples and counters in multiple levels. On the other hand, query times
become lower because the first 0 in the conceptual tree (the node where insertion
should start) is found in upper levels of the tree. Figure 8.12 (right) shows an
estimation of the actual cost devoted to update the tree depending on ℓ. This
result is computed subtracting the average insertion times and average query times
shown in the left plot. Notice that for very small ℓ the estimation of the update
costs becomes 0 (actually in some cases we obtain small negative values that are
rounded to 0 due to the fact that we are measuring an estimation of the query cost).

Our overall results show that insertion times in the dK2-tree can be very close
to query times if the represented dataset has some properties that are also desirable
for compression, particularly the clustering of 1s in the binary matrix. As expected,
insertion times increase with the number of levels that must be updated in the
conceptual tree. Varying the level of the tree where insertion begins we can see that
insertion times increase slowly as the total cost of insertion becomes dominated by
the updates required in the dK2-tree blocks.

The evolution of insertion times shows that insertions at the upper levels of
the tree may be several times more costly than insertions in the lower levels of the
tree. However, insertions in the upper levels of the tree should be very infrequent
in most of datasets where a dK2-tree will be used, since compression in K2-trees
also degrades when matrices have no clusterization at all.

Notice that the insertion of new nodes, when it requires the insertion of a root
node to increase the size of the conceptual matrix, is the most extreme case of
insertion: we are adding a new root node to the conceptual tree and therefore
creating a completely new path of K2 bits at each level of the tree for a new edge.
This operation can be several times more costly than the typical insertion, however it
is so infrequent that the additional cost is acceptable. Notice also that, in general,
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the K2-tree and therefore the dK2-tree are mainly designed to work in domains
where values are somehow clustered: the compression achieved by the K2-tree in
clustered matrices is much larger thanks to the efficient compression of large regions
of 0s and the compression of other regularities in the matrix. A similar argument
can be followed in the case of update times in the dK2-tree: in domains where data
is clustered, most of the insertions in the dK2-tree should be in clusters of 1s, so
the average insertion costs should be small. In unclustered matrices, update times
of the dK2-tree may be higher, and compression may also degrade significantly.

8.6 Summary

In this chapter we have presented the dK2-tree, our proposal for the compact
representation of dynamic binary relations. Our proposal is a dynamic version of the
K2-tree, that is built by replacing the static data structures (static bitmaps and a
matrix vocabulary) by dynamic versions with the same functionality but supporting
updates. We described the techniques used to take advantage of the properties of
the K2-tree to provide an efficient access to the dynamic representation.

In this chapter we also provided an experimental evaluation of the dK2-
tree. First we analyzed the efficiency depending on the different parameters and
compression options implemented, including the utilization of a matrix vocabulary.
Then we compared the dK2-tree with a static K2-tree, showing that the dK2-tree
may require a significant (but reasonable) space overhead. Additionally, the dK2-
tree can answer successor/predecessor or range queries in times relatively close to
those of static K2-trees. Finally, we provided an analysis of the update times in
the dK2-tree, showing that insertion times are not much higher than query times
in clustered datasets where insertions occur in positions close to existing 1s.
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Chapter 9

Variants and applications of
the dK

2-tree

The dK2-tree, introduced in the previous chapter, provides a simple method to
apply static representations based on the K2-tree to a dynamic environment where
data may suffer changes. In this chapter we introduce different specific applications
of the dK2-tree to different domains, in order to show the applicability and flexibility
of the new data structure. Some of the proposals will be direct applications of the
dK2-tree data structure, while in other cases we introduce specific variants for a
problem.

The rest of this chapter is structured as follows: in Section 9.1 we introduce a
dynamic representation of RDF databases based on a collection of dK2-trees, that
enhances an existing static representation with update capabilities. In Section 9.2
we show how to adapt the new encodings proposed in Chapter 5 to the dK2-tree,
therefore providing a dynamic representation of binary images. In Section 9.3
we introduce a new proposal for the dynamic representation of temporal graphs.
Finally, Section 9.4 shows a summary of the proposals in this chapter.

9.1 Representation of RDF databases

RDF datasets can be built from snapshots of data and therefore stored in static
form. However, in many cases new information is continuously appearing and must
be incorporated into the dataset to keep it updated. If we use a static representation
of the dataset the complete dataset must be rebuilt when updates of the information
appear, even though they may consist of a small fragment in comparison with the
complete dataset.

A representation of RDF datasets based on K2-trees, called K2-triples, has
been presented in Section 4.2. This representation uses a collection of K2-trees
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to represent the triples corresponding to each predicate in the RDF dataset. This
representation was proved to be very competitive in space and query times with
state-of-the-art alternatives, but was limited to a static context due to the static
nature of K2-trees.

In this section we propose a simple dynamic representation of RDF datasets
based on dK2-trees, that simply replaces static K2-tree representations with a dK2-
tree per predicate. The goal of this section is to demonstrate that a representation
based on the dK2-tree can obtain query times close to the static K2-triples approach.
Additionally, the dK2-tree representation provides the basis to perform update
operations on the RDF dataset.

9.1.1 Our proposal

Our proposal simply replaces the static K2-tree representation in K2-triples with a
dK2-tree per predicate. We consider a partition of the RDF dataset by predicate,
and build a dK2-tree for each predicate in the dataset. We use the same strategy
of K2-triples to store the information of triples: for each predicate we consider a
matrix storing all relations between subjects and objects with that predicate. All
matrices will contain the same rows/columns, where subject-objects (elements that
appear as both subjects and objects in different triples) will be located together
in the first rows/columns of the matrix and the remaining rows (columns) of the
matrices will contain the remaining subjects (objects). Notice that this organization
of the elements is necessary for the representation to efficiently answer join queries
without accessing the vocabulary to map between subjects and objects.

Our proposal based on dK2-trees aims to solve the representation of the
structural part of an RDF dataset. We assume in our proposal that additional data
structures must be used to store vocabularies of subjects, objects and predicates
and map between them and rows/columns of the matrices represented by dK2-trees.
The creation of a dynamic and efficient dictionary representation to manage large
collections of URIs and literal values is a complex problem, since the vocabulary
may constitute a large part of the total size of an RDF dataset [MPFC12].

9.1.1.1 Query support

As we have shown in Chapter 8, dK2-trees support all the basic queries supported by
static K2-trees, since our representation supports the basic navigation operations
over the conceptual tree with its dynamic bitmap implementations. Hence, our
proposal can directly answer all triple pattern queries: (S, P, O) and (S, ?P, O)
queries are actually cell retrieval queries (involving one dK2-tree or all the dK2-trees
in the collection), (S, P, ?O), (S, ?P, ?O), (?S, P, O) and (?S, ?P, O) are row/column
queries and (?S, P, ?O) is a full range retrieval query that asks for all the cells in a
dK2-tree.
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Join operations can also be answered using a dK2-tree exactly like in static
K2-trees. Let us consider the three join strategies used in K2-triples:

• Independent evaluation separates any join operation in two triple pattern
queries and a simple merge that intersects the results of both queries. The
adaptation to dK2-trees is immediate using the basic operations explained.

• Chain evaluation is similar, in the sense that a join operation is translated into
a collection of triple pattern operations. For any join operation involving two
(or more) triple patterns, we can decompose the join into its basic patterns
and chain the execution in any order using the basic operations available in
dK2-trees.

• Interactive evaluation is a more complex operation, in which two K2-trees
are traversed simultaneously. The basic elements of this strategy include a
synchronized traversal of the conceptual trees, similar to the set operations
(specifically the intersection operation) described in Chapter 5 for static K2-
trees and that can be directly applied to dK2-trees. Regardless of the type or
complexity of the join operation, the essential steps of interactive evaluation
are based on the access to one or more nodes in the conceptual trees of different
K2-trees to check their value and determine whether or not to continue the
navigation in the current branches of the remaining conceptual trees. All these
operations are directly supported by dK2-trees using just the basic traversal
operations over the conceptual tree.

9.1.1.2 Update operations using dK2-trees

Our proposal is able to answer all the basic queries supported by K2-triples simply
replacing static K2-trees by dK2-trees and assuming the same organization of the
dictionary required to manage the values in the triples. In this section we will show
that update operations in RDF datasets can be easily supported by our proposal.
This is presented as a proof of concept of the applicability of dK2-trees to this
domain, even though our proposal focuses only on the representation of the triples.

The most usual update operation in an RDF dataset is probably the insertion of
new triples, either one by one or, more frequently, in small collections corresponding
to new information retrieved or indexed regularly. The insertion of new triples in
an existing RDF database involves several operations in our representation based
on dictionary encoding:

• First, the values of the subject, predicate and object of the new triple must be
searched in the dictionary, and added if necessary. If all the elements existed
in the dictionary the new triple is stored as a new entry in the dK2-tree
corresponding to its predicate.
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• If the triple corresponds to a new predicate, a new empty dK2-tree can be
created to store the new subject-object pair.

• If the subject and/or object are new, we must add a new row/column to all
the dK2-trees. This operation is usually trivial in dK2-trees, since the virtual
matrices represented by dK2-trees are always of size power of K and many
rows/columns may be unused. In this case to add a new subject/object we
simply need to keep count of the new row/column that will be used. When all
rows/columns are full, we must increase the size of the matrices, an operation
(with a cost comparable to the insertion of a new 1 in the matrix) that must
be repeated in all the dK2-trees. For a matrix of size n × n this process
creates (K − 1)n new available rows/columns, so this costly operation should
be rarely executed. Larger values of K can be used in the upper levels of the
conceptual tree to further reduce the number of times we need to expand the
matrices.

The removal of triples to correct or delete wrong information is also a typical
update operation in RDF datasets. The possible changes when triples are removed
are similar to the insertion case: when new triples are removed we may need to
simply remove a 1 from a dK2-tree or remove a row/column (marking it as unused)
if the subject/objects has no associated triples.

Detecting subject-object changes. A particular case that must be considered
is the insertion of triples that causes a subject(object) to become a subject-object
(or the deletion of triples that transforms a subject-object in just subject or object).

We assume in our representation that subject-object elements are stored together
in the top-left region of the matrices, so that join operations do not need to perform
additional computations. A simple solution to avoid the problem in the dynamic
case would be to use a different setup where rows/columns of the matrices would
contain all the elements (subjects and objects) instead of storing only subjects
in the rows and objects in the columns. This should have small effect in the
overall compression, since K2-trees and dK2-trees depend mostly on the number
and distribution of the 1s in the matrix than on the matrix size. The effect on
query times should also be limited since we would at most double the size of
the matrices, adding a single level to their conceptual trees. The selection of
this or other organization for the rows/columns of the matrices could be adjusted
depending on which organization allows us to efficiently store and query a dictionary
of subjects/objects.

In order to follow the original setup with subject-object elements in the first
rows/columns of the matrix, when a subject(object) becomes a subject-object we
need to move it to the beginning of the matrix. This requires finding all the 1s in
the corresponding row(column), allocating a new row and column at the beginning
of the matrix and inserting the 1s in the same locations in the new row (column).
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Notice that, even though we only described the ability of dK2-trees to add new
rows at the end of the matrix, the process can be trivially extended to add rows
at the beginning: if we have an n × n matrix, subject-object elements start at
row/column n/2 − 1 and are created towards the top-left corner of the matrix,
while subjects and objects start at row/column n/2 and are created in the usual
order. When new rows/columns are necessary at the beginning or the end of the
matrix we simple expand it adding a new level to the tree, where the current matrix
could be in the top-left corner of the new one (we add new available rows at the
end) or in the bottom-right corner (we add new available rows/columns at the
beginning for subject-object elements). Simply keeping track of the point in the
matrix that divides between types of elements we can still answer all queries. This
setup, even though it requires more complex operations (copying several elements),
is still feasible in this domain since in many cases elements that are subjects and
objects will be detected when adding new sets of triples before adding each element
as simple subject or object.

9.1.2 Experimental evaluation

As a proof of concept of the efficiency of the dK2-tree for the representation of
RDF databases, we compare our proposal based on dK2-trees with the static data
structures used in K2-triples and K2-triples+ described in Section 4.2. Our proposal
is a direct adaptation of the K2-triples representation where static K2-trees are
replaced by dK2-trees and all queries are also directly adapted to use our dynamic
representation. The goal of these experiments is to demonstrate the efficiency of
dK2-trees in this context, and their ability to act as the basis for a dynamic compact
representation of RDF databases. We will compare the space results and query
times of dynamic and static representations to show that dK2-trees can store RDF
datasets with a reduced overhead over the space and time requirements of static
representations.

9.1.2.1 Experimental setup

We experimentally compare our dynamic representation with the equivalent repre-
sentation using static K2-trees. We use a collection of RDF datasets of very different
sizes and number of triples, and also include datasets with few and many different
predicates1. Table 9.1 shows a summary with some information about the datasets
used. The dataset jamendo2 stores information about Creative Commons licensed
music; dblp3 stores information about computer science publications; geonames4

1The datasets and general experimental setup used are based on the experimental evaluation
in [ÁGBF+14], where K2-triples and K2-triples+ are tested. We use the same datasets and query
sets in our tests.

2http://dbtune.org/jamendo
3http://dblp.l3s.de/dblp++.php
4http://download.geonames.org/all-geonames-rdf.zip

http://dbtune.org/jamendo
http://dblp.l3s.de/dblp++.php
http://download.geonames.org/all-geonames-rdf.zip
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stores geographic information; finally, dbpedia5 is a large dataset that extracts
structured information from Wikipedia. As shown in Table 9.1, the number of
predicates is small in all datasets except dbpedia, that is also the largest dataset
and will be the best example to measure the scalability of queries with variable
predicate.

Collection #triples #predicates #subjects #objects

jamendo 1,049,639 28 335,926 440,604
dblp 46,597,620 27 2,840,639 19,639,731

geonames 112,235,492 26 8,147,136 41,111,569
dbpedia 232,542,405 39,672 18,425,128 65,200,769

Table 9.1: RDF datasets used in our experiments.

We will build our dynamic representation following the same procedure used
for static K2-trees, where elements that are both subject and object in any triple
pattern are grouped in the first rows/columns of the represented matrices. We use
a similar setup to build static and dynamic K2-trees: we use a hybrid K2-tree
representation, with K = 4 in the first 5 levels of decomposition and K = 2 in
the remaining levels. The dK2-tree uses a sampling factor s = 128 in the leaf
blocks (sampling every 128 bytes), while static K2-trees use a single-level rank
implementation that samples every 20 integers (80 bytes). In dK2-trees we use a
block size B = 512 and e + 1 = 4 different block sizes.

We test query times in all the approaches in all possible triple patterns (except
(?S, ?P, ?O), that simply retrieves the complete dataset) and some join queries
involving just 2 triple patterns. We use the experimental testbed in [ÁGBF+14]
to directly compare our representation with K2-triples. To test triple patterns, we
use a query set including 500 random triple patterns for each dataset and pattern.
To test join operations we use query sets including 50 different queries, selected
randomly from a larger group of 500 random queries and divided in two groups: 25
have a number of results above the average and 25 have a number of results below
the average.

The experimental evaluation of join operations is expected to yield similar
comparison results to triple patterns, considering the fact that the implementation
of the different strategies to answer join queries is identical in dK2-trees and
static K2-trees. As a proof of concept of the applicability of dK2-trees in more
complex queries, we will experimentally evaluate dK2-trees, and K2-triples to
answer join operations (?V, P1, O1) ⊲⊳ (?V, P2, O2) (join 1 : only the join variable
is undetermined) and (?V, P1, O1) ⊲⊳ (?V, ?P2, O2) (join 2 : one of the predicates is
variable). Recall from Section 4.2 that each join type can lead to 3 different join

5http://wiki.dbpedia.org/Downloads351

http://wiki.dbpedia.org/Downloads351
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operations depending on whether the join variable is subject or object in each of the
triple patterns: for example, join 1 can be of the form (?V, P1, O1) ⊲⊳ (?V, P2, O2)
(S-S), (S1, P1, ?V ) ⊲⊳ (?V, P2, O2) (S-O) and (S1, P1, ?V ) ⊲⊳ (S2, P2, ?V ) (O-O).

9.1.2.2 Space results

We compare the space requirements of our dynamic representation, based on dK2-
trees, with K2-triples and its improvement K2-triples+ in all the studied datasets.
We build the K2-tree representations that obtain the best compression results in
all cases. The static K2-trees used in K2-triples and K2-triples+ use a matrix
vocabulary with K ′ = 8 to obtain the best compression results. In our dK2-trees
we use the version with no matrix vocabulary. Table 9.2 shows the total space
requirements on the different collections studied.

Collection K2-triples K2-triples+ dK2-trees

jamendo 0.74 1.28 1.61

dblp 82.48 99.24 125.34

geonames 152.20 188.63 242.60

dbpedia 931.44 1,178.38 1,151.90

Table 9.2: Space results for all RDF collections (sizes in MB).

Our dynamic representation is significantly larger than the equivalent static
version, K2-triples, in all the datasets. In jamendo, a very small dataset, the
dynamic representation requires more than twice the space of K2-triples. However,
the overhead required by the dynamic version is smaller in larger datasets and
particularly in dbpedia. This result is significant considering the fact that the static
representations use a matrix vocabulary with a relatively large value of K’ that
helps them improve compression. Even so, the dK2-tree with no matrix vocabulary
is able to store the dataset with an overhead below 50% extra in the dblp and
geonames datasets. Even though the overhead is significant, the results must be
put into context considering that K2-triples was proved to be several times smaller
than other RDF stores like MonetDB and RDF-3X in these datasets (at least 4
times smaller than MonetDB, the second-best approach in space, in all the datasets
except dbpedia [ÁGBF+14]).

In the dbpedia dataset our proposal has a space overhead around 20% over
K2-triples, and becomes smaller than the K2-triples+ static representation. This
result is mostly due to the characteristics of the dbpedia dataset. It contains many
predicates with few triples, and a small number of predicates condense 90% of
the total triples. The static representations based on K2-triples store a static K2-
tree representation for each different predicate, each one containing its own matrix
vocabulary. These many K2-tree representations of matrices with very few ones are
difficult to compress also in the static data structures, and the utilization of a matrix
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vocabulary in these matrices does not improve compression. However, most of the
cost of the representation is in the matrices with many triples, so the utilization of
a matrix vocabulary still obtains the best results overall.

9.1.2.3 Query times

In this section we aim to determine the relative query efficiency of dK2-trees and
static K2-trees in the studied datasets. We first measure the efficiency of our
dynamic proposal in comparison with K2-triples to answer simple queries (triple
patterns) in all the studied datasets. The results for all the datasets are shown in
different tables: Table 9.3 shows the results for jamendo, Table 9.4 the results for
dblp, Table 9.5 for geonames and Table 9.6 for dbpedia. For each dataset we show
the query times of K2-triples, K2-triples+ (only in queries with variable predicate)
and our equivalent dynamic representation of K2-triples. The last row of each
table shows the ratio between our dynamic representation and K2-triples, as an
estimation of the relative efficiency of dK2-trees.

S, P, O S, P, ?O ?S, P, O ?S, P, ?O S, ?P, O S, ?P, ?O ?S, ?P, O

K2-triples 1.0 4.6 102.8 6954.1 4.9 39.4 29.3
K2-triples+ 1.1 23.6 10.0
Dynamic 1.9 4.8 235.6 12788.5 6.0 34.6 28.4

Ratio 1.88 1.06 2.29 1.84 1.22 0.88 0.97

Table 9.3: Query times for triple patterns in jamendo. Times in µs/query.

Solution S, P, O S, P, ?O ?S, P, O ?S, P, ?O S, ?P, O S, ?P, ?O ?S, ?P, O

K2-triples 1.2 79.8 1016.4 771061.6 3.6 1294.1 187.5
K2-triples+ 1.7 1102.1 140.8
Dynamic 6.5 92.9 2776.3 1450058.3 14.0 1421.8 247.9

Ratio 5.54 1.16 2.73 1.88 3.87 1.10 1.32

Table 9.4: Query times for triple patterns in dblp. Times in µs/query.

Solution S, P, O S, P, ?O ?S, P, O ?S, P, ?O S, ?P, O S, ?P, ?O ?S, ?P, O

K2-triples 1.2 59.4 4588.0 1603677.4 2.9 1192.9 273.7
K2-triples+ 1.4 915.9 139.0
Dynamic 9.4 79.6 9544.2 2958262.4 17.9 1514.7 423.5

Ratio 7.71 1.34 2.08 1.84 6.11 1.27 1.55

Table 9.5: Query times for triple patterns in geonames. Times in µs/query.
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Solution S, P, O S, P, ?O ?S, P, O ?S, P, ?O S, ?P, O S, ?P, ?O ?S, ?P, O

K2-triples 1.1 441.4 10.5 1859.5 7960.3 54497.4 29447.7
K2-triples+ 1.4 2216.7 518.3
Dynamic 6.6 561.9 19.1 3870.7 23045.4 83340.2 57051.8

Ratio 6.21 1.27 1.82 2.08 2.90 1.53 1.94

Table 9.6: Query times for triple patterns in dbpedia. Times in µs/query.

In most of the datasets and queries, query times of dK2-trees are between 1.2
and 2 times higher than in K2-triples. The results in Table 9.3 for the dataset
jamendo show some anomalies, with the dK2-tree performing faster than a static
representation. However, due to the reduced size of the dataset we shall disregard
these results and focus on the larger datasets. The results in Table 9.4, Table 9.5
and Table 9.6 show very different query times but the ratios shown in each table
are very similar in all three datasets.

Our results show that dK2-trees are several times slower than static K2-trees in
triple patterns that are implemented with single-cell retrieval queries (i.e. patterns
(S, P, O) and (?S, P, ?O)). Particularly dK2-trees are 5.5-7.7 times slower than
static K2-trees to answer (S, P, O) queries. In this queries, the cost of accessing
Ttree and Ltree is very high since a single position is accessed per level of the tree.

In all the remaining patterns, that are translated into row/column or full-range
queries in one or many K2-trees, dK2-trees are much more competitive with static
K2-trees, obtaining query times less than 2 times slower than K2-triples in most
cases. These differences are mostly due to the indexed representation used in dK2-
trees, that avoids complete traversals of Ttree or Ltree when many close positions
are accessed in each query. In all these patterns, multiple positions are accessed at
each level of the dK2-tree, and in many cases positions accessed consecutively will
fall in the same leaf block of Ttree or Ltree. The findLeaf ∗ operation, that locates
the leaf for a current position from the previously accessed one, can save most of
the cost of traversing the internal nodes of Ttree and Ltree when the next position
is in the same leaf block or a sibling of the current leaf block.

After analyzing the relative efficiency of dK2-trees and static K2-trees, we focus
on the effect of the additional indexes used in K2-triples+. In the datasets with
few predicates, that are the most usual RDF datasets, K2-triples+ is around 1.5-3
times faster than K2-triples, hence up to 10 times faster than dK2-trees in (S, ?P, O)
queries and up to 3 times faster in the remaining patterns with variable predicate. In
the dbpedia dataset, the efficiency of K2-triples+ is much more significant, reducing
query times by several orders of magnitude. This makes dK2-trees much slower
than K2-triples+ in this dataset to answer patterns with variable predicate.

Join operations
Next we test the efficiency of dK2-trees in comparison with K2-triples to answer

join queries on RDF datasets. Considering that all join strategies used in K2-
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triples can be directly implemented in dK2-trees, we expect a relative comparison
between static and dynamic K2-trees in the same ranges obtained for simple queries.
To test the efficiency of dK2-trees we compare them with static K2-trees in the
join operations that are more selective, or require more selective operations in the
matrices.

We start our experiments with join 1 ((?V, P1, O1) ⊲⊳ (?V, P2, O2)). We test the
3 different join strategies applied to this join: i) independent evaluation requires
two row/column queries in different K2-trees and an intersection of the results; ii)
in chain evaluation, we run a row/column query in the K2-tree corresponding to P1

and for each result v obtained we run a single cell retrieval in the K2-tree for P2;
iii) the interactive evaluation runs two synchronized row/column queries in both
K2-trees. For each evaluation strategy, we test all the join categories S-O, S-S and
O-O and query sets with few results (small) or more results (big).

The results are shown in Figure 9.1. The results for each query set are normalized
by the times of static K2-trees, so each result for dK2-trees measures the overhead
required by the dynamic representation (that is, query times in dK2-trees divided
by query times in static K2-trees). We also show for each query set the actual query
times obtained in K2-triples, in ms/query. Given the significant differences in query
times between datasets, strategies and even query sets, we normalize all the results
so that the query times of static K2-trees are always at the same level.

Results show that dK2-trees are very competitive with K2-triples in most of the
datasets and strategies: independent evaluation (left plots of Figure 9.1) yields the
worst results for dK2-trees, that are 3-4 times slower than K2-triples in most of the
query sets, except on the larger dataset dbpedia where our solution is on average
less than 2 times slower than static K2-trees. In chain evaluation dK2-trees are
much faster in comparison with static K2-trees, and our solution is less than 2
times slower than a static representation in most of the datasets and query sets.
Finally, if we use the interactive evaluation strategy dK2-trees are able to obtain
query times very close to static K2-trees in most of the cases.

Averaging the results of all the datasets and query sets for each evaluation
strategy, dK2-trees are 3.5 times slower than static K2-trees in the independent
evaluation strategy, 2.6 times slower using the chain evaluation strategy and
have a penalty of 27% extra query time using the interactive evaluation strategy.
Even though the results vary significantly between datasets and query sets, the
overall results show that dK2-trees are able to support the query operation with a
reasonable overhead in space and query times.

Join queries with variable predicate

Next we analyze the effect of the additional indexes in join operations with
variable predicates. We compare dK2-trees with static K2-triples and K2-triples+

(static-DACs) to answer the join 2 ((?V, P1, O1) ⊲⊳ (?V, ?P2, O2)), that involves a
variable predicate. Again, we normalize the results to the query times obtained
by K2-triples and measure all the other query times as a ratio in comparison with
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Figure 9.1: Comparison of static and dynamic query times in join 1 in all
the studied datasets and query types. Results are normalized by static query
times. Query times of the static representation shown in ms/query.

them.
The results are shown in Figure 9.2. Like in the previous tests we obtain diverse

results in the comparison depending on the dataset, the evaluation strategy and
the query set. In spite of the varying results, dK2-trees show again a significant
overhead compared with K2-triples, but this time overhead is in general limited by a
small factor. Overall, dK2-trees are between 1.5 and 3 times slower than K2-triples
depending on the query strategy.

If we focus on the comparison between dK2-trees and the best static representa-



210 Chapter 9. Variants and applications of the dK2-tree

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Independent evaluation

Small Big

static-DACs
static

dynamic

9.
61

13
2.

23

0.
08

0.
17

0.
04

0.
06

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Chain evaluation

Small Big

jamendo

static-DACs
static

dynamic

62
.3

6

83
.9

7

0.
16

0.
36

0.
06

0.
08

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Interactive evaluation

Small Big

static-DACs
static

dynamic

78
.1

8

10
8.

72

1.
27

1.
64

0.
16

0.
50

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Independent evaluation

Small Big

static-DACs
static

dynamic

0.
05

0.
33

16
.9

7

36
.9

0

0.
02

0.
02

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Chain evaluation

Small Big

dblp

static-DACs
static

dynamic

0.
01

0.
76

54
.8

0

23
.1

4

0.
03

0.
05

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Interactive evaluation

Small Big

static-DACs
static

dynamic

2.
44

33
.5

7

34
.2

5

16
6.

67

12
.7

3

17
1.

85

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Independent evaluation

Small Big

static-DACs
static

dynamic

18
6.

15

16
59

5.
31

0.
91

13
4.

40

0.
05

0.
13

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Chain evaluation

Small Big

geonames

static-DACs
static

dynamic

2.
53

25
2.

91

0.
44

5.
42

0.
12

0.
35

 0
 1

 2
 3
 4
 5

 6
 7

SO SS OO SO SS OO

Interactive evaluation

Small Big

static-DACs
static

dynamic

45
.4

5

24
8.

54

0.
60

3.
81

1.
16

2.
42

 0
 1

 2
 3

 4
 5

 6
 7

SO SS OO SO SS OO

Independent evaluation

Small Big

static-DACs
static

dynamic

0.
01

0.
10

1.
23

21
88

.5
1

49
.0

0

29
4.

68

 0
 1

 2
 3

 4
 5

 6
 7

SO SS OO SO SS OO

Chain evaluation

Small Big

dbpedia

static-DACs
static

dynamic

0.
06

0.
10

3.
95

67
.4

7

20
.1

3

40
.7

2

 0
 1

 2
 3

 4
 5

 6
 7

SO SS OO SO SS OO

Interactive evaluation

Small Big

static-DACs
static

dynamic

0.
74

3.
06

11
.2

3

58
.2

3

35
.5

9

10
0.

35

Figure 9.2: Comparison of static and dynamic query times in join 2 in all
the studied datasets and query types. Results are normalized by query times
of K2-triples. Query times of the static representation shown in ms/query.

tion, that is now K2-triples+, the overhead required by the dynamic representation
becomes much larger. Notice that in Figure 9.2 there are some query sets for which
the query times of K2-triples+ (static-DACs) are so much lower than K2-triples that
the result for K2-triples+ is not even visible in the plot. This is consistent with the
results obtained in triple patterns, where the use of S-P and O-P indexes in K2-
triples+ provided a major improvement in triple patterns with variable predicate. In
all these cases our dynamic proposal becomes orders of magnitude slower than K2-
triples+. However, in many cases the improvement obtained by K2-triples+ is not
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so significant and dK2-trees are still reasonably close in query times. Nevertheless,
even in datasets with few predicates the addition of the specific static indexes used
in K2-triples+ leads to much better query times in some cases.

9.2 Image representation with the dK
2-tree

In this section we combine the ideas of Chapter 5 with the dK2-tree of Chapter 8
to obtain a variant of the dK2-tree able to compress regions of 1s and 0s in a binary
matrix. First, we show that all the techniques used to obtain better compression
of ones in the K2-tree can be directly applied in the dK2-tree, obtaining different
dK2-tree variants with compression of ones. After this, we give some details on the
additional considerations needed to implement the update operations in a dK2-tree
with compression of ones.

Finally, we will show, as a proof of concept of the applicability of our proposal,
an experimental comparison between a dK2-tree with compression of ones, a static
K2-tree with compression of ones and a state-of-the art alternative, Gargantini’s
linear quadtree (LQT), that supports spatial access to a binary raster as well as
update operations that change 0s into 1s and vice versa.

9.2.1 Dynamic versions of K
2-tree variants with compression

of ones

The K2-tree variants with compression of ones explained in Chapter 5 are based on
changes in the conceptual tree and changes in the underlying bitmaps that represent
the conceptual tree. In all the static variants the basic navigation of the conceptual
tree, that is used to answer all the supported queries, is based on the same simple
ideas: 1) a method to determine whether a node is internal or a leaf node, 2) know
the color of a leaf node (i.e. know whether a leaf node represents a region of 1s
or a region of 0s) and 3) a method to find the K2 children of a node. In all the
proposed static variants, all computations are based on access and rank operations
over the bitmaps T or L, that are trivially supported by dK2-trees. Hence, the
changes in the conceptual tree required by all the static variants can be reproduced
using dK2-trees. In this section we sketch the steps required to build a dK2-tree
representation for the different static variants.

• Dynamic K2-tree12bits−naive, K2-tree12bits and K2-tree1df. In all these
approaches we use an additional bitmap T ′ in order to use 2-bit codes for some
nodes in the conceptual tree. The differences between the variants arise from
the encoding used to assign bits to T and T ′, since the bitmap L is identical
to the original K2-tree representation:

– In the K2-tree12bits−naive, we can know whether a node at position p
is internal or a leaf, and its color, simply accessing T [p] and T ′[p]. To



212 Chapter 9. Variants and applications of the dK2-tree

locate the children of an internal node we need to compute rank1(T, p).
Therefore, we need support for access in T ′ and access and rank in T . We
can directly adapt this representation to our dynamic tree representations
using Ttree, Ltree and an additional tree structure T ′

tree to store the bits
in T ′. Since we only need to access T ′

tree, we can use the same data
structure used for Ltree to represent T ′

tree.

– In the K2-tree12bits the operations to know if a node is internal and
to find its children are identical, but we also need to compute rank
operations in T to know the color of a leaf node. Since rank support
was already required by the children operations, the basic access to T
and T ′ does not change and we can use the same tree structures Ttree,
T ′

tree and Ltree used in the K2-tree12bits−naive.

– In the K2-tree1df, slightly more complex operations are required to find
the children or color of a node. The main difference in practice is that
we also need rank support in T ′. Hence, our representation for T ′

tree in
a dynamic K2-tree1df should be a data structure similar to Ttree instead
of Ltree.

• Dynamic K2-tree11−5bits. In the K2-tree11−5bits, the data structure of the
K2-tree was not altered. Instead, a special sequence of K2 0 siblings was used
to identify black nodes in the conceptual tree. Since no changes are made to
the tree structure, a dynamic K2-tree11−5bits can be built directly replacing
the bitmaps T and L with dynamic representations Ttree and Ltree.

9.2.2 Algorithms

All the typical query algorithms explained for the K2-tree variants with compression
of ones are based on the basic navigation operations that are already supported
by dK2-trees. Therefore, all queries supported by static K2-trees can by
straightforwardly adapted to a dynamic scenario using dK2-trees.

We focus next on the implementation of update operations in dK2-tree variants
with compression of ones, considering the special cases that must be managed in
these variants. Insertion of new rows/columns in the matrix does not change, and
similar strategies can also be used to handle the deletion of rows/columns. We focus
on the implementation of the basic operations required in a dynamic representation,
the insertion of new elements (changing 0s into 1s) and the deletion of elements
(changing 1s into 0s). These operations are implemented using algorithms very
similar to the algorithms explained in the basic dK2-tree. We conceptually describe
the differences that must be taken into account when compressing regions of ones.
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9.2.2.1 Inserting new 1s

In original dK2-trees the insertion of a new 1 in the matrix is divided in two steps:
1) we search the node in the conceptual tree where the new 1 should fall. At this
point, the value of the node must be changed from 0 to 1. 2) If the node was not
at the last level of decomposition, we must create a new branch in the conceptual
tree adding K2 bits in the remaining levels, all of them set to 0 except the branch
corresponding to the new 1.

When we use a dK2-tree with compression of 1s, the algorithm for insertion
of new 1s is similar to the basic case: we first locate the position where the new
1 should fall; at some point we will find a white node (a region of 0s), and from
this point on we should start creating new branches in the conceptual tree until we
reach the leaves. Again we face two possibilities:

• The simplest case occurs when the white node is in the last level of the
conceptual tree: in this case, we simply change its value from 0 to 1.

• If the node was in upper levels of the conceptual tree, the white node must
become gray and we continue the insertion procedure exactly like in the basic
case: in each new level we add new K2 nodes, K2 − 1 of them will be white
(regions of 0s) and one of them, corresponding to the region where the new 1
belongs, will be gray. Eventually we will reach the last level of decomposition,
and we will create K2 bits, one of which will correspond to the inserted
position and will be set to 1, while the others will be 0s (white).

Once the basic insertion procedure has finished, the insertion algorithm must
also check if a new region of 1s has been created in the matrix. Trivially, only
insertions that find the white node in the last level of the conceptual tree will
generate new black regions (otherwise we are creating branches with K2 − 1 white
nodes and a gray/black node), so only this case must be checked. After the insertion
of the 1 in the last level, we check the K2-1 siblings of the modified node. If not all
of them are black nodes, the current region of the matrix cannot be full of 1s and
the algorithm ends. Otherwise, we know the current region is full of 1s, so we must
delete all K2 black nodes and replace their parent by a black node. The process is
then repeated in the upper level of the conceptual tree, checking the K2−1 siblings
of the newly-created black node to check if they are also black nodes. Eventually
we will find a mixed region and stop the bottom-up traversal.

9.2.2.2 Deleting 1s

To delete a 1 in the matrix (i.e. change a 1 into a 0), the algorithm in a dK2-tree
with compression of ones is also very similar to the original one. First, in a top-
down traversal of the conceptual tree, we locate the (black) node that contains the
1 we want to delete. If the black node is in the last level of the tree, the deletion is
identical to the basic algorithm: we replace the black node with a white node and
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check its K2 − 1 siblings to determine if all of them are white. If they are, we need
to delete them and replace their parent by a white node. The process is repeated
in the upper levels until we find that at least one sibling of the modified node is not
white.

When we are deleting a 1 from a black node that is not in the last level of
decomposition a slightly different algorithm is used. In this case, we are “destroying”
a black region by deleting one of its 1s. This eventually transforms the black node
corresponding to the region into a gray node with K2−1 black children and a single
gray child (we are deleting a single element in the complete region). This case is
handled exactly like the insertion of new 1s in a white region: first we transform
the current node into a gray node, and add in the next level K2 children: one of
them, the one that contains the new 0, will be gray, and the remaining ones will
be black. Eventually the last level of the conceptual tree is reached, and K2 nodes
will be created: K2− 1 black nodes corresponding to the remaining 1s and a single
white node corresponding to the element that has been set to 0.

9.2.2.3 Considerations on the implementation

Update operations over the binary matrix in the different variants studied require
changing the type of nodes of the conceptual tree, that can be implemented in all
the variants simply flipping, adding or removing bits to the different bitmaps used.
In the K2-tree12bits−naive, K2-tree12bits and K2-tree1df variants, that use 3 bitmaps
(Ttree, T ′

tree and Ltree), changes in nodes will require updating both Ttree and T ′
tree.

In the K2-tree12bits−naive representation most of the changes simply require
flipping bits in Ttree or Ltree except when large white or black regions are destroyed
when changing 0s into 1s or 1s into 0s.

Additionally, some optimizations can be used to optimize update operations in
a K2-tree11−5bits variant. First, when inserting new 1s, the special case where new
black nodes are created can be handled in a single step, since a gray node with
K2 children is transformed into a black node simply setting all its children to 0. A
similar case occurs when destroying black nodes to create new gray nodes.

9.2.3 Application: representation of binary images

As a proof of concept of the applicability of our proposals, we compare the efficiency
of dK2-trees with compression of ones with the static variants. We experimentally
compare their space and query times to represent sparse binary matrices and binary
matrices with large regions of both 0s and 1s. The experimental evaluation in this
section is based in the same datasets and setup used in Chapter 5, and compares
dK2-trees and K2-trees in the compression of Web graphs and binary raster data.
The goal of this experiments is to prove the suitability of our encodings for the
compact representation of clustered binary images also in dynamic domains.
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To demonstrate the efficiency of our variants, we also compare our dynamic
and static proposals with an existing quadtree representation. Following the steps
in Chapter 5, we implement a completely in-memory version of the LQT that
can be compared with our proposals. As a dynamic representation we build
a dK2-tree using the K2-tree11−5bits encoding, that uses just the two original
tree structures Ttree and Ltree and only requires changes in the algorithms. We
compare the dynamic representation with a static K2-tree12bits, that obtained the
best compression results and good query times in our previous experiments. Our
dynamic LQT implementation (LQT-BTree) stores the list of quadcodes in a B-tree
in main memory. We compare all the approaches for the compression of the same
datasets used in our previous experimental evaluation of static variants: binary
raster images mdt-600, mdt-700 and mdt-A and the small Web graphs cnr and eu.
In all cases we focus on the space utilization of the representations and the query
times obtained.

9.2.3.1 Space results

Dataset rows × cols #ones K2-tree LQT-BTree
Static Dynamic

mdt-600 3961×5881 11,647,287 0.02 0.04 0.31
mdt-700 3841×5841 13,732,734 0.02 0.04 0.23
mdt-A 11081×7821 50,416,771 0.01 0.02 0.23

cnr 325,557×325,557 3,216,152 3.14 4.95 41.46
eu 862,664×862,664 19,235,140 3.81 5.86 50.07

Table 9.7: Space comparison of a dK2-tree with a K2-tree12bits and LQTs
(compression in bits per one).

Table 9.7 shows the compression results of all the data structures. For
completeness we also include basic information about the size and number of 1s in
each dataset. In all the studied datasets the dK2-tree representation is significantly
larger than the static version, but always within a factor of 2. Additionally, we can
see in the comparison with linear quadtrees that the dK2-tree is still at least 5 times
smaller than a linear quadtree representation and supports updates in compressed
form.

9.2.3.2 Time results

We also test the query times of the dynamic representation of binary images in
comparison with the static version and the B-tree linear quadtree implementation.
We use the same query sets and experimental setup used in Chapter 5 to test the
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static version, measuring the average query times to retrieve the value of random
cells. The results are shown in Table 9.8.

Dataset
K2-tree

LQT-BTree
Static Dynamic

mdt-600 0.25 0.56 0.89
mdt-700 0.28 0.61 0.92
mdt-A 0.26 0.71 1.23

cnr 0.77 2.55 2.28
eu 1.10 3.80 2.94

Table 9.8: Time to retrieve the value of a cell of the binary matrix, in
µs/query.

The dK2-tree is in our results slower than a static K2-tree by a factor of 2.5
at most in the raster datasets where compression of 1s can be applied. This
is a significant result considering the usual overhead in compact dynamic data
structures, and is consistent with our previous evaluation of the dK2-tree. We
must note that the query overhead is larger in Web graphs, reaching a factor of 3-4
times slower. In practice, we believe that even an overhead of 3-4 times the static
time in cell retrieval queries is acceptable, considering that we have shown that
dK2-trees become more competitive with static K2-trees in row/column or range
queries where multiple elements are accessed at each level of the conceptual tree.

The query times of the dK2-tree are still competitive with the dynamic in-
memory LQT, especially in raster datasets where we can answer the query in upper
levels of the conceptual tree when we find a region of ones. Our proposal is faster
than LQT-BTree in all the raster datasets studied. Nevertheless, even considering
that our advantage in speed is relatively reduced, we believe this result is particularly
relevant taking into account the relative simplicity of the LQT in comparison with
our dK2-tree and the fact that dK2-trees are roughly 5 times smaller than LQTs
in all datasets.

9.3 Representation of temporal graphs

In this section we introduce a new approach to store temporal graphs using a dK2-
tree that provides a fully-dynamic compact representation of the temporal graph.
Unlike the static representations introduced in Chapter 6, this representation is able
to store the complete state of the graph while supporting changes in the current
state of the graph as well as changes in past states of the graph.



9.3. Representation of temporal graphs 217

9.3.1 ttK
2-tree: temporally-tagged dK

2-tree

The new data structure, called ttK2-tree, models the graph and its versions taking
into account the temporal dimension explicitly. It is designed as a dynamic data
structure for the management of changes in temporal graphs. Due to its dynamic
nature, it can be easily built online, starting with an empty graph and inserting
the changes as they appear. This is a common requirement that could also be
implemented in simpler approaches based on snapshots. Additionally, the ttK2-tree
provides also the possibility of “correcting” the graph, that is, providing changes
not only at the current time but also in past states of the graph.

A ttK2-tree is conceptually a dK2-tree in which all the leaves and internal
nodes contain a list of timestamps that represent the time instants when the node
has changed its value from 0 to 1 or from 1 to 0. These values represent valid
time intervals for each position of the dK2-tree. Figure 9.3 shows an example of
the conceptual representation of a ttK2-tree, with the valid intervals for each node
with value 1. The 1s in the last level of the conceptual dK2-tree are associated with
edges of the represented graph, so their temporal information will contain the valid
intervals for that edge. The 1s in the inner levels of the dK2-tree are related, as
always, with a submatrix, so their intervals represent the time intervals at which
there was at least a valid edge in that submatrix. This means that the valid intervals
for an inner node are simply the union of all the valid intervals for its children.

Figure 9.3: Conceptual representation of a ttK2-tree.
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9.3.1.1 Data structure and algorithms

The conceptual dK2-tree with timestamps is implemented using two independent
but related data structures that work together to index spatio-temporal information.
A dK2-tree plays the role of a spatial index, storing all the edges that ever existed
in the graph.

To index the temporal information, we store a change list for each bit set to
1 in the dK2-tree. Each change list is represented by a sequence of time instants
at which the bit would have changed its value. These time values are encoded
differentially and a header is added to each list to indicate its number of instants.
For instance, for the leftmost leaf of the conceptual tree in Figure 9.3, we store the
intervals [t1, t2][t4, t6] as the sequence [ 4; 1, 1, 2, 2 ]. The values are encoded using
variable-byte variations (in which the chunk size can be, for instance, 4 bits instead
of 1 byte). We choose this representation because it is fast and easy to update, and
because it behaves well even if the length of the list is relatively small.

The change lists are stored consecutively in a dynamic sequence, following
the same order of the corresponding nodes. We store them in a tree structure
changestree similar to Ltree, in which internal nodes store counters with the number
of elements (lists) in their subtree and the leaves store the actual change lists. In
practice, we use a data structure almost identical to the Ltree with compressed
vocabulary, where leaf nodes have a “logical” size (the number of lists stored in
each node) that is indexed in the counters of internal nodes and used to find the
appropriate leaf node for each list. Many change lists may be stored consecutively
in a leaf node of our tree structure.

The dK2-tree also suffers a small change, since we need to compute rank
operations in the last level of the tree as well. Hence, we use the same tree structure
used for Ttree also in Ltree, to obtain a dK2-tree with rank support in its last level.

Query support

In the ttK2-tree, any query can be reduced to the equivalent query in a dK2-tree
complemented with a set of temporal filters. All queries are implemented starting
in the dK2-tree representation and traversing all the nodes that may intersect with
our query. For each node of the conceptual tree we traverse in the dK2-tree, we
retrieve the change list for the position of the node and check if the time instant
or interval of the query fits the valid intervals for the node. Since the change list
for any node represents the time intervals where at least one node in its associated
region was active (i.e. the union of its children’s valid intervals), if the query does
not fit the valid intervals in the node we can stop traversal in its branch.

Given a node located at position p in the bitmap of Ttree, its change list will be
at position rank1(Ttree, p) in changestree. For a node in Ltree, its change list can
be located at position Ttree.size + rank1(Ltree, p). The process to locate the change
list in changestree is similar to a search in Ltree, with the only difference being the
code to traverse the leaf nodes until we find the appropriate change list. Once the
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change list has been found, we traverse it completely and check whether the time
intervals stored in the list intersect with the time instant or time interval of the
query.

The method to determine whether the query fits the valid intervals for a node
is similar for time-slice and interval queries, with strong and weak semantics. In
time-slice queries we simply need to check that the time instant is inside a valid
interval in the change list. Starting from the beginning of the change list, we simply
traverse it sequentially, updating the differential values to obtain the actual time
instants that determine the valid intervals. A time instant will belong to a valid
interval if the latest point in the change list that is before the time instant is at
an odd position. In time-interval queries, depending on the semantics, we need to
check that the query interval has a non-empty intersection with the valid intervals
(weak semantics) or that the query interval is contained in one of the valid intervals
(strong semantics).

Update operations

Update operations in a ttK2-tree, similarly to queries, are based on traversing
the dK2-tree and updating the change lists for each node as necessary. The
ttK2-tree supports changes at any time instant, that represent the activation or
deactivation of an edge. We will focus on the description of changes in the present
state of the graph (that is, changes that affect time instants after all the existing
time instants in changestree), describing the two main operations:

Marking active edges: To mark an edge as active we first search the edge in
the dK2-tree using the usual cell-retrieval algorithm. If the cell already existed in
the dK2-tree, we locate its change list in changestree and add a new “open” instant
marking the current time instant as the beginning of a new valid interval. Then, the
change in the valid intervals must be propagated to the ancestors of the current leaf
of the conceptual ttK2-tree: they must also include the newly-created time interval.
We check and update if necessary the change lists for all the nodes in the path from
the leaf of the ttK2-tree to the root, so that an open valid interval containing the
current time exists in all of them.

Marking inactive edges: The procedure to mark an edge as inactive is similar
to the insertion: we locate the position of the edge in the dK2-tree and its change
list. We update its change list in changestree to close the last valid interval. After
the edge has been marked as inactive, we must update the valid intervals of its
ancestors. This operation is similar to the one where nodes are marked as valid. In
this case, to determine whether or not the parent of the current node must also be
marked as invalid, we must check all the siblings of the current node to see if any of
them still has an open valid interval. If this is the case, the parent node must not
be modified. If all the siblings have closed valid intervals (even-sized change lists),
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the parent node must be marked as inactive at the current time and the process is
repeated in the upper level of the tree.

Although we focused on changes in the current state of the graph, the same
algorithms can be used to perform updates in past states of the graph. In this case,
the assumptions on the size of the change lists are invalid but the techniques to
update them and keep the ancestors up-to-date afterwards are identical.

9.3.2 Comparison with static representations

We compare our new proposal, that provides a fully-dynamic representation of the
temporal graph, with the static representations introduced in Chapter 6.

Table 9.9 shows the space comparison between the ttK2-tree and the static
representations based on a K3-tree and an IK2-tree, using the same datasets and
experimental setup of Chapter 6. The ttK2-tree is competitive in space in the
MContact dataset due to the small number of changes in the graph, that can
be efficiently encoded in the additional data structure used to store changes in
edges. On the other hand, as the number of changes in the dataset increases, the
additional information stored by the ttK2-tree (that includes the changes in all the
internal nodes of the conceptual tree) makes it less competitive with other static
representations.

Dataset IK2-tree K3-tree ttK2-tree

MContact 4.54 35.0 20.5
CommNet 136.51 147.2 400.0

Table 9.9: Space comparison of the ttK2-tree with static variants to
compress temporal graphs (sizes in MB).

To test the efficiency of the dynamic representation we compare its query
times with those of static representations. As we have shown in Chapter 6, the
representations we test here (the IK2-tree and the K3-tree) are in general slower
than the ltg-index approach. Nevertheless, they are closer to the ttK2-tree in the
method for representing information, so we use them as a simple baseline for the
query times of the ttK2-tree. The results are shown in Table 9.10. The ttK2-tree
is slower than both static alternatives, and is particularly several times slower than
the K3-tree.

9.4 Summary

In this chapter we presented several applications of the dK2-tree to different real-
world problems, either using directly the dK2-tree or building new variants using
the dK2-tree as the basis.
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Dataset Query Semantics IK2-tree K3-tree ttK2-tree

CommNet

Direct

Instant 1622 96 2328

Weak-10 1787 183 2970

Weak-100 1776 539 4756

Strong-10 1747 178 1525

Strong-100 1745 542 513

Reverse

Instant 1718 106 2398

Weak-10 1971 211 3063

Weak-100 1989 609 4901

Strong-10 1927 210 1558

Strong-100 1943 610 531

MContact

Reverse

Instant 143 78 227

Weak-10 157 118 226

Weak-100 163 149 234

Strong-10 153 126 231

Strong-100 145 130 212

Reverse

Instant 147 89 274

Weak-10 161 162 272

Weak-100 159 180 285

Strong-10 153 157 255

Strong-100 149 177 260

Table 9.10: Time comparison of the ttK2-tree and static representations
of temporal graphs (times in µs/query).

First we proposed a new representation of RDF databases with support for
updates using a collection of dK2-trees. Our proposal is a dynamic version of an
existing static representation that was proved to be very competitive with state-of-
the-art solutions in single-pattern and join queries. Our experiments show that our
proposal can require as little as 20% extra space on top of the static representation
in some datasets, and we are less than 2 times slower than the equivalent static
data structure in most queries.

We also introduced a variant of the dK2-tree built on top of the K2-
tree1 presented in Chapter 5. This proposal provides the basis for a dynamic
representation of binary images, or any binary matrix with clusters of 1s and 0s.
We extend the experimental evaluation of Chapter 5 to show that our dynamic
representation of binary raster images is competitive with a classic representation
based on linear quadtrees, obtaining better compression and query times.

Finally, we also proposed a new fully-dynamic representation of temporal graphs
using the dK2-tree as the basis, and compared our proposal with the static
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representations of temporal graphs introduced in Chapter 6.
Our proposals in this chapter show the flexibility of the dK2-tree and the

applicability of the trees Ttree and Ltree (the actual data structures that compose
the dK2-tree) to store bitmaps or sequences. This opens the door to the creation
of dynamic variants of other data structures based on the K2-tree, such as the
Kn-tree or the IK2-tree, that can be easily made dynamic replacing their bitmap
representations with the tree structures used in the dK2-tree.
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Chapter 10

K
2-trees for general rasters

Most of the operations usually performed in a raster dataset are essentially based
on a spatial filtering of the raster: local operations access a specific position in the
raster, while a general window query performs an operation over a subregion of the
overall raster. However, the group of zonal operations require additional capabilities
to be performed efficiently: in an operation that accesses, for instance, all the cells
with a given value, general spatial access methods do not provide any advantage
over sequential processing, since they do not support filtering the queries by value.

As we have seen in Section 4.3, the representations of raster datasets based on
simple tiling (either in compressed file formats or database schemas) provide some
query support for spatial queries, but do not provide any support for the kind of
queries that access the raster depending on the values stored in its cells. On the
other hand, in Section 4.3.5 we have presented different representations that are
specifically designed for the representation of this kind of rasters, and have the
ability to filter regions according to their spatial location but also according to the
values stored in the cells within the region.

In this chapter we will present our proposals for the compact representation of
general raster data efficiently supporting typical queries involved in the representa-
tion of general raster data:

• exists(v1, . . . , vn, w): check whether any cell in the window w contains any of
the values v1, . . . , vn.

• exists([vℓ, vr], w): check whether any cell in the window w contains any value
in the interval [vℓ, vr].

• report(w): return all the different values (features) contained inside window
w.

• select(v1, . . . , vn, w): report all the occurrences of values v1, . . . , vn inside
window w.
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• select([vℓ, vr], w): report all the occurrences of values in the range [vℓ, vr]
inside window w.

Notice that these operations are similar to those defined in Section 4.3.5 for
general raster data or multiple non-overlapping features, but we extend them to
support multiple values and ranges of values. All the proposals we will introduce
in this chapter, are also valid for the representation of multiple non-overlapping
features (for example, thematic maps), where each value in the raster represents
the main characteristic of the region from a limited set. In the case of thematic
maps, the added operations for ranges of values may not be useful because the order
of the different features has no meaning to the user. However, when representing
general raster data, numeric values in the cells have an explicit order and queries
involving ranges according to this order are useful in many real-world queries: for
example, in an elevation raster we may be interested in obtaining all the regions
below sea level to determine potential flood risks, or finding all regions above a
threshold to determine zones where it may snow. Essentially, our main goal is to
provide an efficient representation that is able to answer queries restricted to a
spatial window and/or to a value or range of values.

Consider a raster dataset that has any number of different values. Our proposals
are based on indexing these values in different ways using the K2-tree variants
proposed previously. Our input data will be a matrix M of size n× n whose values
come from a set V of possible values. Moreover, we assume that the values in
M have the usual characteristics of spatial data: similar values tend to group in
clusters or contiguous regions, and the difference between the values of two close
cells will usually be small. Figure 10.1 shows an example of a matrix of this kind,
where the set of different values is much smaller than the number of cells in the
matrix. In this example matrix, the raster dataset has 5 different values, and cells
with the same value are grouped in one or more clusters. Our proposals, in different
ways, take into account the different values stored in the raster matrix and are able
to provide efficient access to the raster by spatial coordinates and ranges of values.

The rest of this chapter is organized as follows: in Section 10.1 we will present
our proposals for the compact representation of general raster datasets, based on the
data structures introduced in Part I. In Section 10.2 we discuss the differences and
expected strengths of the different proposals. In Sections 10.3 and 10.4 we provide
an experimental comparison of our proposals with state-of-the-art representations
of raster data to demonstrate the efficiency of our solution. Finally, in Section 10.5
we summarize the contributions and results in this chapter.
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Figure 10.1: Example of raster matrix.

10.1 Our proposals

10.1.1 Independent K
2-trees: MK

2-tree1

Our first proposal is based on a simple partition of the raster dataset according to its
different values. We partition the matrix in a collection of binary matrices Mi. Each
Mi will contain the cells of M with value vi, i ∈ [1, |V |]. This simple step reduces
the problem of storing a general raster to the representation of simple binary images.
The MK2-tree1 approach represents each Mi using a different K2-tree Ki. In order
to capture the clustering of similar values the Ki’s are K2-tree1 variants instead
of a simple K2-tree to efficiently compress regions of 1s in the binary matrices (i.e.
regions of equal values in the original matrix). Given the raster matrix shown in
Figure 10.1, the partition into binary matrices and the corresponding conceptual
tree decomposition for each binary matrix would be the ones shown in Figure 10.2.
Our representation is essentially the MK2-tree explained in Chapter 6 but using
the K2-tree1 variants proposed in Chapter 5 instead of classic K2-trees.

We consider in all our proposals that the set of possible values is an integer range.
In a general case, an additional data structure would be necessary to map the actual
values to the corresponding offset in V . If we assume we have a manageable number
of different values |V |, a simple data structure like a sorted array would suffice to
provide this mapping: to find the appropriate index i from the value we perform
a binary search in the array, with total cost O(log |V |). In all the queries we will
disregard the cost of computing the actual index from the value obtained in the
query, assuming that |V | is small enough.
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K1 K2 K3 K4 K5

Figure 10.2: Representation of the raster matrix of Figure 10.1 using MK2-
tree1.

The MK2-tree1 approach is very efficient to solve a subset of queries related to
values, but it presents a tradeoff between purely spatial queries and queries involving
values:

• To answer select(vi, w) queries, that ask for all the occurrences of the value vi

inside window w, we only need to run a window query in Ki with window w.
To obtain the result of exists(vi, w), that asks whether or not at least a cell
with value vi exists inside w, we run the same query but stop after we find
the first result.

• To answer general select and exists queries that involve multiple values
(vi, vj , . . . , vd) or ranges of values [vℓ, vr], we need to run the same window
query in all the Kis involved. In the MK2-tree1 this is implemented either
running the query sequentially in each Ki or with an or (union) operation
involving all the Ki’s in the range of values. Notice that in order to obtain
also the values associated to each cell we can slightly modify the operation to
return the index of the Ki that contains each 1 found, instead of just the cell.

• report queries, that ask for all the different values inside window w, are solved
as a window query w with unbounded value. It can be implemented using
a generalized union operation over all the Ki. Notice that this is a very
important drawback of this approach, since all purely spatial queries (queries
that only want to access positions in the raster independently of the value)
become very costly due to the union required of all the Ki.
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K1 K2 K3 K4 K5

Figure 10.3: Representation of the raster matrix of Figure 10.1 using
AMK2-tree1.

10.1.2 Accumulated K
2-trees: AMK

2-tree1

Our second proposal is based on the same partition used in the MK2-tree1, but tries
to solve some of its drawbacks. The raster dataset is still considered as a collection
of binary matrices. However, in this approach we consider accumulated values. For
each different value vi, we consider a binary matrix Mi whose cells are set to one if
the value stored in the cell is not greater than vi. Then, for each binary matrix Mi

we build a K2-tree Ki to represent it. Again, the K2-trees will be our variations with
compression of ones. Notice that each Mi (and each Ki representation) contains all
the cells that were contained in the previous Ki in addition to the cells with value
vi, that is, Kaccum

i = ∪i
x=1Kbase

x . Figure 10.3 shows an example of AMK2-tree1
representation. Each Ki representation in this approach can be seen as the union
of all the previous matrices in a MK2-tree1.

A direct consequence of the method of representation is that K|V | does not
require any space if all the cells have a value, since it should be a completely black
matrix. However, we still consider it in our representation because it is needed
if the representation contains NODATA cells (i.e. cells without a value). If the
raster contains NODATA cells, K|V | contains all the cells in the raster that have
any value, and is necessary to recover the original raster from our representation
and to perform general range queries.

Another consequence of the construction method in AMK2-tree1 is that we store
many more 1s in the K2-tree1s than in the previous proposal. However, this should
not worsen the overall compression, because the K2-tree1 variations used will take
advantage of the clusterization of ones in the binary matrices. In fact, the use
of accumulated values can improve the space results significantly, since it avoids
the creation of holes in many matrices that are usual in raster datasets. Typical
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examples are elevation or atmospheric pressure, that are sometimes displayed using
concentric curves that represent the limits between different values (isobars for
pressure in meteorological maps, contour lines for elevation in other maps). We can
see an example of the effect of accumulating values in Figures 10.2 and 10.3: the
representation of K3 using MK2-tree1 (Figure 10.2) needs to represent the border in
the NW quadrant of the image, the first child of the root node is gray and a complete
branch is generated; on the other hand, the representation of K3 using AMK2-tree1
(Figure 10.3) condenses the previous values and thanks to this the shape is simpler.
As we said, and like in the previous proposal, the choice of representation for the
binary matrices is a K2-tree1 to take advantage of this property.

10.1.2.1 Algorithms

The main advantage of the AMK2-tree1 proposal is its ability to efficiently handle
queries involving ranges of values. In fact, the method to find all the cells with a
single value or with values in a range is exactly the same:

• To answer a query select (vi, w) or exists (vi, w) we need to access two K2-
tree1s. From our construction process, we know that the set of cells that
have value vi are the cells stored in Ki (values ≤ vi) that do not appear in
Ki−1 (values ≤ vi−1). Hence both operations can be performed as a simple
window query over Ki −Ki−1, where the subtraction algorithm is performed
as explained in Section 5.5. The only difference between both queries is that
exists queries return immediately when a result is found, while select queries
compute the complete window query.

• A query exists([vℓ, vr], w) can be handled using exactly the same procedure
used for a single value, since the cells that have values in the range [vℓ, vr] are
those that appear in Kr −Kℓ−1.

• If we want to retrieve all the cells that have values within a range
(select([vℓ, vr], w)) we can also perform the window query over Kr − Kℓ−1

to return the set of cells. Nevertheless, select queries implemented using a
subtraction only return the set of cells that have values in the range. To
compute the actual value of each cell we still need to perform a modified
union operation that involves all the Ki in the range. This operation would
access all the trees in the range and return for each black region only the first
i such that Ki contains that region.

In spite of the fact that a synchronized traversal of many K2-trees is still required,
some operations can still be performed more efficiently in the AMK2-tree1. Consider
the example of obtaining the value of a specific cell (a 1 × 1 window). A general
synchronized traversal needs to access [K1, K|V |] to obtain the result. Using the
AMK2-tree1 characteristics, we can use a simpler method and perform a binary
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search in the sequence of trees: each time we find the cell is black in a Ki we know
the value is ≤ vi, each time we find the cell is white we know the value is greater.
Finally, after log |V | accesses we obtain the actual value of the cell. For example,
following the example of Figure 10.1, assume we want to find the value of the cell
in row 3, column 1. The AMK2-tree1 representation, shown in Figure 10.3, uses
5 matrices to store this raster. To find the actual value, we would first access the
middle tree K3 and find that the cell is in a black region, hence the value is ≤ v3,
and we need to check the values to the left. We would repeat the process accessing
now K2 and find again a black region. In the third step we access K1 and find a
white region. Since the value appears in K2 but not in K1 the value of the cell is 2.

10.1.3 K
3-tree

Our third proposal is to use a K3-tree to provide an indexed representation of the
raster that can be accessed symmetrically by space and by range of values. We
consider the raster values as a third dimension in a 3-dimensional binary matrix,
that can be represented directly using a K3-tree. Our K3-tree representation will
store the tuples 〈x, y, z〉 such that the coordinate (x, y) of the raster matrix has
value z. This is essentially equivalent to stacking all the binary matrices used in
the MK2-tree1 proposal into a single 3-dimensional matrix and index this matrix
using a K3-tree.

Because of our construction method, for each coordinate (x, y) there will only
be a single cell in the K3-tree with value 1. A consequence of this is that the matrix
will be relatively sparse (for a raster of size n× n with |V | different values we have
n2 cells set to 1 from a total of n2|V |). However, the binary matrix still has some
level of clustering because cells with close coordinates (x, y) are expected to have
similar values. Therefore, the K3-tree compression can still be applied thanks to
this locality. A second consequence of our construction is that there will be no 3-
dimensional regions of ones in the generated matrix (for each (x, y) there is a single
cell set to 1). Therefore, the K3-tree we use in this approach is a simple K3-tree
without compression of ones, unlike all the other representations.

The implementation of the queries required in the K3-tree is based on the
modification of the generic traversal solutions presented in Chapter 6. An exists
query involving any number of values, or a range of values, is directly translated into
a 3-dimensional range query that limits the x and y coordinates to the boundaries of
the window w and the z coordinate to the value(s) in the query. As in the previous
cases, the query returns immediately when a 1 is found within the limits of the
query. A similar implementation that returns all the results is used to answer select
queries. To report all the values inside a given window or to obtain the value of a
cell or cells in a window we simply perform another generalized range query, fixing
only x and y. The K3-tree takes advantage of the clusterization of close values to
limit the number of accesses, so even if the z coordinate is not limited the properties
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of the dataset should limit the number of accesses to a small number of branches
of the conceptual tree.

10.1.4 IK2-tree with compression of ones

The IK2-tree, explained in Chapter 6, was devised as an alternative to a combination
of multiple K2-trees. Even though the IK2-tree was originally conceived for classic
K2-trees, using the encodings proposed in Chapter 5 an IK2-tree with compression
of ones (or IK2-tree1) can be easily built. In this section we propose this new
variant, the IK2-tree1, as an alternative and show how it is built and how it can
support the required operations to represent raster data.

The first observation when building an IK2-tree with compression of ones,
or IK2-tree1, is that if we use the K2-tree12bits−naive or the K2-tree12bits repre-
sentation, the algorithms for finding the children of a node are identical. The
representation of T ′ is based on the same interleaving technique, placing in
each node of the conceptual tree the bits corresponding to the individual K2-
tree12bits−naive or K2-tree12bits. Figure 10.4 shows an example of representation of
multiple binary images using individual K2-tree12bits representations and the final
IK2-tree1. Notice that, since the bits in T and T ′ are placed in the same order,
the color of a node at position p in T can still be retrieved as T ′[rank0(T, p)]. The
internal operation is not affected by the representation, and the children operation
is performed like in the basic IK2-tree representation.

We can use the IK2-tree1 directly to merge the K2-tree1 representations in the
MK2-tree1. Figure 10.5 shows the IK2-tree representation of the K2-trees shown
in Figure 10.2, including the bits associated to each node using the K2-tree12bits

representation and the final bitmaps for the IK2-tree. The main advantage of this
representation is that we do not need to traverse multiple K2-tree representations
to answer queries involving multiple values:

• To answer exists queries of the form exists([vℓ, vr], w), exists([vi, . . . , vj ], w)
we now perform a traversal of the IK2-tree for the nodes that intersect with
the window. At each node we find we check the bits corresponding to all the
values in our query. If we find a black node that corresponds to any value in
our range, we can return immediately that at least a result exists.

• To answer select queries we perform the same window query used for exists
queries, but now we run the complete query returning all the results for cells
that intersect with the window.

• To answer report queries that ask for the different values inside a window are
again performed as a window query in the IK2-tree. For each node traversed
that intersects with the query window, we check all its bits and for each bit
that corresponds to a black node we add to the result its corresponding value
in A.
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Figure 10.4: Multiple binary images represented using IK2-tree1.

Example 10.1: Using the example in Figure 10.2, assume we want to report the
different values that occur in the window [0–1, 0–7] (the first 2 rows of the matrix).
To do this in the IK2-tree representation of Figure 10.5, we check all the branches
that intersect with the window. We start at the root node and check the NW and
NE quadrants. The NE quadrant (second child) is a leaf node (all the bits in T
are set to 0). We check the corresponding bits in T ′ and find that the third bit,
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Figure 10.5: IK2-tree1 representation of the raster in Figure 10.2.

corresponding to v3, is a 1, hence we add V3 to our result. The NW quadrant (node
N0) is an internal node, and from its bitmap we know that it contains cells with
value v1, v2, v3. We find the children of N0, of which we only need to check the first
two nodes N1 and N2 that intersect with our window. N1 is white for v2 and v3

but black for v1, so we add v1 to the result. Similarly, the information in N2 allows
us to add v2 to the result, that is finally {v1, v2, v3}.
Example 10.2: Using again the example in Figure 10.2 and the IK2-tree
representation of Figure 10.5, we want to select all the occurrences of v5. To do this,
we start at the root of the IK2-tree and check all its children. For each of them,
we check the fifth bit corresponding to v5. In the first three children, the fifth bit
is a “white 0” (the bit in T is 0 and the corresponding bit in T ′ is also 0), so we
do not traverse these branches. In the fourth child, the fifth bit is “gray”, so we
need to find its children. Since we are interested in a single value, we do not need
to set A: we simply count the number of 1s in N3 until the fifth bit (4 1s), and
store this offset; the fourth bit in the children will be the one corresponding to v5.
The only child of N3 whose fourth bit is not “white” is N4: the fourth bit is “gray”,
and it is the second 1, so we will look for the second bit in all the children of N4.
Finally, we have reached the last level of the tree. We check all the children of N4

and find that the second bit is set to 1 in N5 and N6. Hence, the only occurrences
of v5 in the raster correspond to the cells represented by these two nodes, in paths
SE, NW, NW and SE, NW, SW .
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10.2 Comparison of the proposals

Our representations are based on the compact and indexed representation of
multiple non-overlapping binary images, specially designed for the representation
of thematic maps or general raster data where queries by value are usually required.
The MK2-tree1 representation is particularly efficient to answer exists or select
queries involving a single value, since it can query a single K2-tree1. The AMK2-
tree1 is able to solve exists and select queries involving a range of values with the
same query efficiency than single-value queries, using a synchronized traversal of
two K2-tree1s (this essentially doubles the cost of the MK2-tree1 queries for single-
value queries but is independent of the length of the range of values). Additionally,
the AMK2-tree1 representation may obtain better space results in multiple datasets
since it can avoid the pattern of concentric curves that appears in the MK2-tree1
representation. The K3-tree representation is able to provide a simple algorithm
for all the operations thanks to its symmetrical indexing capabilities in space and
values. However, the K3-tree representation depends a lot on the spatial correlation
of values to obtain good compression and to answer queries efficiently. On the
other hand, the IK2-tree1 representation has a smaller dependency on the values
and obtains the same compression as the MK2-tree1. Additionally, the IK2-tree1
representation is well-suited to answer queries involving ranges of values as well as
multiple non-contiguous values, thanks to its structure that groups all the values
for a node in contiguous bits in memory.

The MK2-tree1 and the equivalent IK2-tree1 representations of binary images
are similar in their organization of the information to other state-of-the-art
proposals for the representation of multiple overlapping or non-overlapping images,
like the S∗-tree, inverted quadtrees or the MOF-tree. In all these data structures,
as in our representations, a bit is used to mark whether or not a feature/value
exists in a region of the space. The MK2-tree1 representation is mainly oriented
to answer queries involving a single value or a small range of values, and may be
inefficient in longer ranges. The IK2-tree1 representation of the trees aims to solve
this problem by storing all the values for each node together in a single tree. Even
though the IK2-tree1 navigation is slower than accessing individual K2-trees (we
need to check many bits and perform additional rank operations), the cost of the
operations is not so dependent on the ranges of values. Particularly, the IK2-tree1
representation uses a similar approach to the state-of-the-art proposals mentioned
before, in the sense that it tries to group the information for a single node in order
to answer efficiently queries by value. However, some key differences with those
proposals must be noted. First, unlike inverted quadtrees, our representation is not
a full quadtree but a tree representation tuned to the characteristics of the image.
This means that our representation will have a much smaller number of nodes than
inverted quadtrees in the vast majority of real raster datasets. Additionally, the
IK2-tree1 representation is able to store the feature information for all the nodes
of the quadtree (both internal and leaf nodes) without explicitly storing m bits
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in each of them. This is a significant saving in space: particularly in the case of
non-overlapping images, we expect that as we descend in the tree the number of
different values stored in the region will decrease significantly due to the properties
of spatial raster data. Our representation adjusts the number of bits to store only
information about the values that actually exist in the current region of the image.
This can lead to huge space savings in comparison with state-of the art proposals.
For example, consider a raster representation where a value is only present in a
single cell. In a representation that stores m bits in all the nodes we are forced to
pay an additional bit that is unnecessary in almost all the nodes of the quadtree.
In our representation, the information about the infrequent value is only stored in
the branches of the conceptual tree that are actually relevant.

10.3 Experimental evaluation

10.3.1 Experimental Framework

To test the efficiency of our proposals we use several real raster matrices obtained
from the MDT05 collection. Table 10.1 gives details about the different fragments
taken. The number of different values in each raster is also shown in the table, after
rounding the elevation values to a precision of 1 meter.

Dataset Raster size #values

mdt-500 4001× 5841 578
mdt-700 3841× 5841 472
mdt-A 7721× 11081 978
mdt-B 48266× 47050 2142

Table 10.1: Raster datasets used.

We will compare all our representations in terms of space requirements and query
times. As a baseline for comparison we convert all the datasets to the GeoTIFF
file format, a widely-used standard for the storage of raster data. GeoTIFF builds
on top of the TIFF file format, and provides several options to determine the level
of compression applied to the files. We will use two different variants of GeoTIFF
files: the first, tiff-plain, is a plain representation without compression, that stores
all the values in row order (we use short (16-bit) integers as the data type for
the representation, so the expected space utilization of this approach is always
around 16 bits/cell). The second representation, tiff-comp, is optimized for a better
compression: the image is divided in tiles of size 256×256 and each tile is compressed
using a linear predictor and LZW encoding.
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To measure query results for the usual window queries, we build sets of random
queries corresponding to each case, each sufficiently large to obtain accurately-
measurable results in all the representations. We will consider different typical
queries that measure the ability of the representations to filter spatial ranges and
stored values: retrieving all the cells with a given value, retrieving all the cells with
values in a specified range, retrieving all cells with values in a range and within a
spatial window. As an extreme case of report query, we also test the efficiency of
the representations to retrieve the value of a single cell.

All the time results shown correspond to CPU time. We implement the same
queries over the GeoTIFF images on top of the libtiff library, version 4.0.3, to
retrieve the appropriate fragments from the GeoTIFF images and answer each query
type. The libtiff library is not designed to process these queries, and is instead more
oriented to process complete images from disk, so some of the comparisons may show
worst results than expected when querying the tiff datasets. It must be taken into
account that libtiff reads the images from external memory during processing time,
however we are measuring only CPU time in all our experiments to provide a fair
comparison.

All the experiments in this chapter are run on an AMD-Phenom-II X4 955@3.2
GHz, with 8GB DDR2 RAM. The operating system is Ubuntu 12.04. All our
implementations are written in C and compiled with gcc version 4.6.2 with full
optimizations enabled.

10.3.2 Space comparison

First we compare the space utilization of all our approaches with the GeoTIFF
variants, used as a reference. Table 10.2 shows the space utilization of our proposals
and the reference GeoTIFF images, in bits per cell of the raster. As an additional
reference, columns 2 and 3 show the base-2 logarithm of the number of different
values in each raster and the zero-order entropy H0 of these values. These columns
represent the minimum space that would be required by a representation of the
raster as an uncompressed or entropy-compressed sequence, respectively. The K3-
tree clearly obtains the best space utilization among our approaches in all the
datasets, being very close to the compressed GeoTIFF representation and using
much less space than the zero-order entropy. However, as we will see, the tiff-comp
approach provides limited access to the data and makes it hard to perform queries
on the data. A significant result is the difference between the MK2-tree1 and
the AMK2-tree1, where both approaches obtain relatively good compression of the
datasets but none of them is clearly better than the other. Finally, the IK2-tree1
obtains compression results very close to the MK2-tree1 approach, as expected, but
always obtains slightly better space results because some of the redundancies in the
independent K2-trees (particularly, their matrix vocabularies in the lower level of
the tree) are eliminated when merging them in a single structure.
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Dataset lg(values) H0(values) MK2 AMK2 K3 IK2 tiff-plain tiff-comp

mdt-500 9.17 5.43 2.75 2.21 1.83 2.53 16.01 1.52

mdt-700 8.88 4.39 2.07 2.30 1.38 1.84 16.01 1.12

mdt-A 9.93 5.86 3.24 2.83 1.94 3.10 16.01 1.52

mdt-B 11.06 5.32 3.15 4.36 1.62 3.12 16.00 1.35

Table 10.2: Space utilization of all approaches (in bits/cell).

10.3.3 Query times

10.3.3.1 Retrieve the value of a single cell

First we measure the time required to retrieve the value of a single cell of the raster.
This operation is the most extreme case of report query, where the query window is
limited to a single cell and the range of possible values is not limited. Additionally,
this particular query shows the ability of the representations to provide random
access to the raster. Table 10.3 shows the results obtained. The K3-tree obtains
the best results in all the datasets for this kind of query. This result confirms
the efficiency of the multidimensional index in this domain: the K3-tree is able to
restrict its search only to the coordinates of the cell, and the high locality of values
in the real raster datasets allows it to filter many of the branches corresponding
to values very different from the value of the cell. The MK2-tree1, that needs to
check multiple independent K2-tree representations, is much worse than our other
representations, since the relative cost of traversing all the K2-trees is very high in
this query. The AMK2-tree1 obtains very good results, much closer to the K3-tree
than to the MK2-tree1, thanks to the binary search it performs to answer this query.
Finally, the IK2-tree1 obtains query times much smaller than the MK2-tree1 but
still worse than the AMK2-tree1 and the K3-tree: in this case, the overhead required
to keep track of the values in the IK2-tree1 is relatively high compare to the total
cost of the query. The approaches based on querying GeoTIFF images obtain very
different results, as expected, depending on whether or not compression is enabled.
The tiff-plain representation is very fast, obtaining results close to the K3-tree (the
results of this query in the tiff-plain approach should actually be even better, but
the libtiff library is designed to process complete rows/tiles of the image at once,
limiting the efficiency in this kind of query). On the other hand, the tiff-comp
representation presents much higher query times compared to the uncompressed
version, since it needs to retrieve the appropriate tile of the image and decompress
it to recover a single cell. In all cases, the tiff-comp representation obtains much
higher query times than our best representations.
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Dataset MK2-tree1 AMK2-tree1 K3-tree IK2-tree1 tiff-plain tiff-comp

mdt-500 123.6 7.2 2.2 31.4 2.6 491.7

mdt-700 66.0 5.9 1.7 26.5 2.7 461.9

mdt-A 132.4 10.1 2.6 45.6 5.2 499.0

mdt-B 421.4 11.1 2.8 75.9 87.9 494.8

Table 10.3: Retrieving the value of a single cell. Times in µs/query.

10.3.3.2 Retrieve all cells with a given value

Next we show the efficiency of the representations to select the cells of the raster that
contain a specific value, a widely used selection query in raster data. The results
for this query are shown in Table 10.4. Not surprisingly, our representations obtain
much better results than the tiff representations, because the latter must always
traverse the complete raster. In this case, the MK2-tree1 obtains better results in all
the datasets: only one K2-tree is accessed and the regions of the ones in the K2-tree
can be decoded efficiently using the K2-tree12bits representation. The AMK2-tree1
has to access two K2-trees, hence its query times are close to doubling the times of
the MK2-tree1. The K3-tree, like the MK2-tree1, only needs to perform a query
for a single value in its third dimension; however, the existence of other regions with
close values forces it to explore many branches that will be then discarded, hence its
query times are in general worse than the previous proposals. Finally, the IK2-tree1
also obtains query times within a factor of 2 of the MK2-tree1, since it performs a
fixed-value traversal of the tree but the computations are more expensive.

Dataset MK2 AMK2 K3 IK2 tiff-plain tiff-comp

mdt-500 3.9 5.8 9.4 5.9 39.5 221.4
mdt-700 3.0 6.0 7.3 4.5 37.5 199.5
mdt-A 8.2 13.6 18.9 12.7 142.6 799.0
mdt-B 110.2 255.1 196.6 173.5 3,838.9 19,913.4

Table 10.4: Retrieving all the cells with a given value. Times in ms/query.

10.3.3.3 Filtering values and spatial windows

Next we measure the efficiency of general window-range queries, that is, general
select queries that involve a spatial window and a range of values. This kind of
queries, like the previous single-value-selection queries, are widely used to filter
spatial attributes in regions of space, thus avoiding the complete processing of the
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Dataset Window Range MK2 AMK2 K 3 IK2 tiff-plain tiff-comp

size length

mdt-500

10
10 10.3 1.9 1.9 25.8 33.0 533

50 43.1 2.2 2.6 27.9 26.0 528

50
10 14.3 3.6 5.0 28.9 124.0 694

50 73.9 6.0 16.0 41.5 124.0 694

mdt-700

10
10 9.6 1.9 1.7 23.7 33.0 499

50 46.1 2.1 2.2 25.5 24.5 495

50
10 13.9 3.9 4.4 33.4 123.7 649

50 69.7 5.5 13.4 37.1 123.8 649

mdt-A

10
10 10.6 2.6 2.0 35.9 82.0 550

50 43.5 2.7 2.5 37.6 48.0 528

50
10 14.6 3.4 4.2 39.2 229.2 699

50 62.4 5.1 11.1 48.5 228.5 703

mdt-B

10
10 13.9 3.9 2.3 57.0 285.5 519

50 60.8 3.9 2.4 56.9 927.0 521

50
10 17.3 4.6 3.1 59.5 1,873.0 1,422

50 55.8 5.2 5.7 62.7 1,009.6 691.9

Table 10.5: Retrieving cells inside a window and within a range of values.
Times in µs/query.

raster. For different fixed window sizes and ranges of values, we build query sets
asking for all the cells found within a square query window of the given size and
within the range of values specified. Table 10.5 shows the results obtained for
different window and range sizes. As long as queries involve any range of values,
the AMK2-tree1 and the K3-tree become the fastest of our alternatives, with similar
query times in most cases. The MK2-tree1 query times increase linearly with the
length of the range of values, making it very inefficient for ranges of 50 values.
On the other hand, the IK2-tree1 obtains high query times in short ranges, but
in longer ranges becomes more efficient than the MK2-tree1 thanks to its indexed
representation of the values. Nevertheless, it is never competitive with the AMK2-
tree1 and K3-tree, that take advantage of their structure to filter results very early.
All our proposals are much faster in all the queries than the tiff-comp representation,
overcoming it by at least a factor of 10 on average. The tiff-plain representation,
that is not compressed, is much faster than the compressed version and obtains
query times close to our less efficient representations, but is still at least 10 times
slower than the K3-tree in all the datasets. Regarding the results in range queries,
particularly the comparison of the AMK2-tree1 with the other representations, we
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must note that all the other representations are able to return for this query not
only the cells that fall within the range of values, but also the actual value of
that cell. However, the query times of the AMK2-tree1 proposal correspond to the
subtraction query that is only able to return the list of cells but not their actual
values. As we explained in the description of this proposal, if the actual value of
each cell is required the AMK2-tree1 is no longer efficient in filtering the results
and must resort to a sequential traversal of all the K2-trees in the range.

10.4 Top-k range queries in raster data

In this section we test the efficiency of our proposals to answer a different kind of
query that is also usual in raster data: top-k range queries, that ask for the cells
with maximum values in a spatial window. We have introduced in Chapter 7 a data
structure called K2-treap that is specifically designed to answer this kind of queries.
In this section we will apply the K2-treap variants for the better compression
of uniform regions introduced in Chapter 7 to the representation of raster data,
supporting range top-k operations. The goal of this section is first to confirm that
our variants obtain reasonable compression and query times in this context, thanks
to the fact that close cells usually have the same or close values.

We will test both of the variants introduced in Section 7.3. The first one, K2-
treap-uniform, uses a K2-tree12bits to stop decomposition when uniform regions are
found. The second variant, K2-treap-uniform-or-empty, stops decomposition when
all the non-empty cells have the same value (but in the submatrix there may be
empty cells and cells with value together). In our experiments we will compare
the K2-treap variants with the MK2-tree1 representation tested in the previous
section. The algorithm to answer range top-k queries in the MK2-tree1 is a naive
iterative method that runs the spatial range query in all the K2-trees starting in
the “highest” one, until k results are found. The reason to choose the MK2-tree1
instead of the other alternatives studied earlier in this chapter is that the MK2-tree1
is the fastest representation to answer range queries restricted to a single value, the
essential query in the naive algorithm used for top-k queries.

10.4.1 Space comparison

First we measure the compression obtained by the K2-treap variants in comparison
with the MK2-tree1. The other proposals studied earlier in this section could also
answer top-k queries, working with a simple algorithm that first extracts cells from
the highest value and continues until no more cells exist or k cells have been found;
however, the MK2-tree1 was already shown to be the fastest representation to
retrieve cells with a fixed value, hence it will be the baseline to measure the efficiency
of top-k queries in the K2-treap variants.
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Dataset MK2-tree1
K2-treap

(uniform) (uniform-or-empty)

mdt-500 2.75 3.18 2.87
mdt-700 2.07 2.19 1.98
mdt-A 3.24 3.51 3.20

Table 10.6: Space utilization of K2-tree variants and MK2-tree1 (in
bits/cell).

Table 10.6 shows a space comparison between the K2-treap variants and the
MK2-tree1. The K2-treap-uniform does not obtain the same overall compression
as the MK2-tree1, but the K2-treap-uniform-or-empty is able to obtain even better
compression than the MK2-tree1. In any case the K2-treap variants provide good
compression results, directly comparable to those of the previous representations.
Notice however that this does not make the K2-treap a good candidate to answer
general range reporting queries since the navigation cost in the K2-treap is much
higher than in a simpler K2-tree. However, its space efficiency makes of the K2-
treap a good alternative for domains where top-k queries are of interest.

10.4.2 Query times

Next we compare the average time to answer top-k queries in raster data using the
three different approaches. For each dataset, window size and k we generate sets
of random square windows within the bounds of the dataset and run each query
set using the three proposals to measure the average query time. In Table 10.7 we
compare the query times to perform range top-k queries for different ranges (spatial
windows) and k values. The K2-treap-uniform, the less compact of the K2-treap
variants, obtains the best results in the vast majority of the cases, independently
of the window size or k value. The K2-treap-uniform-or-empty is very competitive
with the previous one when the value of k is small, since the additional overhead to
check for repeated results is very small. Finally, for larger values of k, the MK2-tree1
is more competitive with the K2-treap variants, due to the additional navigation
cost required in the K2-treap to retrieve values and coordinates of cells.

10.5 Summary

In this chapter we introduced several compact data structures for the representation
of general raster data with advanced query support. We provide representations that
are able to store real raster datasets in small space and provide at the same time
efficient access not only to regions of the raster but also advanced query capabilities,
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such as selecting cells that look for a particular value or range of values, or queries
finding the top-k cells with highest value in the raster. Most of the proposals are
direct applications of data structures proposed in Part I or are based in those data
structures. Additionally, most of the approaches introduced can be transformed
into dynamic solutions using the dK2-tree introduced in Part II.

Our proposals obtain good compression results in the studied datasets and
are able to answer queries restricted to a spatial window and/or a value/range
of values. We analyze the differences between our representations to show their
strengths, and experimentally evaluate all of them to measure their compression
and query efficiency. We compare our representations with a classic state-of-the-art
representation of raster data, showing that our proposals are very compact and
easily overcome classic tools, designed mainly for processing the complete raster.
Additionally, the compression results obtained by our representations make them
several times smaller than state-of-the-art representations based on linear quadtrees,
being able to store and query large datasets in main memory.

We also test different representations to answer top-k queries in raster data.
Our experiments confirm the space efficiency of the K2-treap variants introduced
in Chapter 7, that are competitive in space with our other representations of raster
data and faster to answer top-k queries.

In our experiments we show the scalability of our representations to efficiently
represent rasters with several thousands of different values. Nevertheless, the space
efficiency of most of our proposals will degrade if the number of different values in the
raster becomes too high. As a consequence, an implicit assumption in our proposals
is that the number of different values in the raster dataset is not too high. We claim
that in many real-world datasets, even though the values actually stored may have
a high precision (most often being stored in floating-point numbers), the precision
in the values does not add any quality or accuracy to the dataset after a given
threshold: when measuring spatial features such as temperature, elevation, pressure,
etc. the actual measurements may be taken with high-precision methods but the
interpolation of values, or even the simple averaging of measurements, distorts the
precision of the measurements, so we can safely reduce the precision of the values
significantly without reducing the quality of the dataset for many purposes.
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Dataset Window k MK2-tree1
K2-treap

uniform uniform-or-empty

mdt-500

100

10 165 14 16

100 176 39 49

1,000 279 234 386

500

10 133 16 16

100 143 41 51

1,000 219 237 375

1000

10 126 16 16

100 135 41 52

1,000 199 217 358

mdt-700

100

10 337 12 13

100 352 31 37

1,000 459 176 285

500

10 310 15 16

100 338 41 48

1,000 495 243 383

1000

10 284 16 17

100 313 46 54

1,000 518 283 443

mdt-A

100

10 499 18 21

100 533 43 51

1,000 609 239 373

500

10 399 22 23

100 456 51 59

1,000 582 253 395

1000

10 483 22 22

100 424 49 57

1,000 556 256 441

Table 10.7: Query times to answer top-k queries (times in µs/query).
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K2-index for time-evolving
region data

Time-evolving region data usually follows some rules that allow its efficient
compression. At any point, the binary raster representation of moving regions
is expected to contain relatively large clusters of ones and zeros that can be
efficiently compressed. Additionally, the changes in the shape and size of a region
are progressive in time, so the expected number of changes between consecutive
time instants is relatively small. The usual representations of moving regions take
advantage of these characteristics. Also, efficient representations of moving regions
must be able to answer different types of queries. In Section 4.3.6 we have presented
different proposals for the compact representation of time-evolving raster data using
data structures based on the regular decomposition of the space. In this chapter
we will present our proposals for the compact representation of time-evolving raster
data. Our proposals are based on the K2-tree variants presented before and rely on
the compression and query efficiency obtained by K2-tree representations to provide
an efficient and simple representation of the time-evolving features.

The rest of this chapter is organized as follows: in Section 11.1 we present our
proposals for the representation of time-evolving raster data or general multiple
overlapping features, considering their characteristics and their ability to represent
multiple images depending on the level of similarity between consecutive images. In
Section 11.2 we present an experimental evaluation of our proposals that shows their
space and time efficiency. Finally, in Section 11.3 we summarize the contributions
and results of this chapter.

245
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t1 t2 t3 t4 t5

Figure 11.1: Temporal raster dataset.

11.1 Our proposals

Our proposals for the representation of temporal raster data, or time-evolving
binary rasters, are based on K2-tree representations similar to those presented
in Section 10.1. The main idea is to consider a time-evolving binary raster as a
collection of binary rasters corresponding to the different time instants.

Essentially we end up with a collection of binary matrices that can be efficiently
compressed with the representations proposed in previous chapters. We present
next our alternatives for the representation of temporal raster data.

Multiple K2-trees: MK2-tree1. Our first proposal is to use the MK2-tree1
presented in Section 10.1 to index the collection of binary images. The data
structure used to store the collection of binary rasters is essentially the same: we
have a collection of K2-trees Ki, i = 1 . . . t, each representing the state of the raster
at a different point in time. Again, the binary matrix that represents the raster at
each time instant should be clustered, so the variants of K2-tree with compression
of ones are used to store each Ki.

This representation allows direct access to the complete state of the raster at
each time instant. Each Ki can be queried independently to run window queries at
a given time instant.

Time-interval queries can be easily solved using synchronized query operations
over multiple K2-trees: to find all the cells that were covered at any point within
an interval [tstart–tend] we perform an or operation of all the Kis in the interval.
To find the cells that were covered at all points within an interval, we perform an
and operation on the Kis involved.

K3-tree with compression of ones. Our second proposal for the representation
of moving regions is to use a K3-tree to provide an indexed representation of time
and space. The sequence of binary matrices is considered as a 3-dimensional matrix
where time is the third dimension, and a K3-tree is build to represent this matrix,
like we showed in Section 10.1.
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A time-evolving raster dataset may consist of very slow changes between
consecutive time instants, so large regions of ones will be similar in several
consecutive snapshots of the raster. This leads to the possibility of compressing
the large regions of ones present in the 3-dimensional matrix we generate. To take
advantage of the repetitions between consecutive time instants we build in this case
a K3-tree variant with compression of ones. Therefore, large regions of ones or
zeros that change slowly over time may be compressed efficiently by the K3-tree
representation.

The most relevant queries in time-evolving region data can be solved using a
simple query on the K3-tree representing the sequence of binary rasters. Time
point queries simply ask for the regions of the matrix with fixed third coordinate
t. Time interval queries require a more careful implementation to take into account
the nature of the intervals. If we want to find the cells that were covered within a
time interval together with all the time points where they were covered we simply
need to perform a range query on the K3-tree limiting the time dimension to the
given interval. All the cells found within the region will correspond to different
points and instants when they were covered.

To find cells in a weak interval, we need to perform the same range query
explained for simple time interval queries. However, each coordinate (x, y) must
be returned only once independently of the number of cells (x, y, t) found in the K3-
tree. A simple solution is to compute all the results in the K3-tree and then filter out
repeated coordinates. A similar solution can be used to solve strong interval queries:
compute the total number of results and filter out the coordinates that do not have
results at all times in the interval. A more elaborate solution for both queries can
be obtained arranging the navigation of the K3-tree algorithms so that the results
are returned sorted by (x, y) coordinates. Using a sorted traversal like this, weak
and strong queries can be optimized so that the remaining branches for the current
(x, y) coordinates are not explored as soon as a 1 or 0 is found respectively: in weak
interval queries, the coordinates are added to the result as soon as we find the first
1, in strong interval queries we immediately discard coordinates after we find a 0 in
any t in the interval.

IK2-tree1. The proposal based on an IK2-tree1 for combining multiple K2-
tree representations into a single tree, presented in the previous chapter, can be
applied directly to the representation of time-evolving raster images. The IK2-tree1
representation does not assume that the images are non-overlapping (although some
optimizations can be performed if this is the case). Hence, the application of the
IK2-tree1 representation to time-evolving data is immediate. The process to answer
time-slice queries is identical to the select query that asks for cells with a given value:
select(vi, w) is equivalent to a time-slice query replacing the vi by the appropriate
time instant. In addition, a general query that asks for all the occurrences of cells
in multiple timestamps is equivalent to a select([vℓ, vr], w) query in a general raster.
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We will focus on the explanation of the changes required to perform weak and strong
interval queries.

To perform a weak interval query we need to check the nodes that were active
at least at one instant within the interval. During the window query, we keep track
of the bits in each node that fall within our interval (this can be obtained easily
computing the offset of the first point and the offset of the last point with rank
operations). Then, if the current node contains at least a “black bit” in the bits
corresponding to our interval, we can return immediately the region covered by that
node and stop traversal. Otherwise, we keep traversing its children (if it has any),
adjusting the interval of bits that we must check.

To perform a strong interval query the algorithm is similar to the previous
one. During the top-down traversal, we keep track of the bits corresponding to our
interval. We will return only the nodes that only contain “black bits” in our interval.
If the node contains at least a “white bit” in our interval, we stop decomposition
of that node immediately (no children will be black for that time instant). If the
node contains a mix of gray and black bits we must keep traversing to find which
of its children are completely black in our interval.

11.2 Experimental evaluation

11.2.1 Experimental Framework

We test the efficiency of our proposals using several different synthetic and real
datasets. Table 11.1 shows some details about the datasets we use. The real
datasets CFC1 and CFC2 were obtained from the Satellite Application Facility
on Climate Monitoring (CM SAF1), and they store values of cloud fractional cover.
Both are actually temporal rasters that contain daily mean values of cloud cover
worldwide, with a spatial resolution of 0.25 degrees, between 1982 and 1985 (CFC1)
and between 2007 and 2009 (CFC2). In order to build our input data, we apply
a threshold (in this case, require a value greater than 50%) to convert each raster
to a binary raster, so that the resulting collections shows the temporal evolution
of moving regions (in this case, movements of clouds). The synthetic datasets
RegionsA and RegionsB were built using a custom generator, and contain large
regions that move and change shape slowly along time. These synthetic datasets
are built generating shapes by clustering circles of variable size in a region of space
and randomly adding or removing bits to their borders in several iterations. After
these iterations irregular shapes are formed, and isolated pixels are cleaned to obtain
smoother images.

We run all our experiments in a machine with 4 Intel(R) Xeon(R) E5520 CPU
cores at 2.27 GHz 8 MB cache and 72 GB of RAM memory. The machine runs

1http://www.cmsaf.eu
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Dataset Raster size #time instants #Cells covered % covered

CFC1 720× 1440 1111 778,541,888 67.6

CFC2 720× 1440 918 555,708,566 58.4

RegionsA 1000× 1000 1000 236,634,823 23.7

RegionsB 1000× 1000 1000 242,190,966 24.2

Table 11.1: Datasets used in our experiments.

Ubuntu GNU/Linux version 9.10 with kernel 2.6.31-19-server (64 bits). Our code
is compiled using gcc 4.4.1, with full optimizations enabled.

11.2.2 Space Results

We measure the space utilization of our proposals using two different values of K,
K = 4 in the first level of decomposition and K = 2 in the remaining levels. We
use a K ′ = 4 in the last level (i.e., we compress 4× 4 and 4× 4× 4 submatrices in
L in the different approaches).

Dataset K3-tree MK2-tree1 IK2-tree1
Quadcodes

naive diff

CFC1 1.11 0.71 0.55 6.73 5.01

CFC2 1.37 0.83 0.65 7.53 5.77

RegionsA 0.04 0.09 0.06 0.64 0.16

RegionsB 0.03 0.08 0.06 0.53 0.13

Table 11.2: Space results obtained. Compression in bits per one.

Table 11.2 shows a summary of the results for all the datasets. In the last
two columns we provide, as a reference, the space that would be needed to store
the quadcodes in a Linear Quadtree representation of the same datasets (we only
consider the size of the quadcodes, ignoring overheads added by the data structure).
The column naive represents the size required to store the complete raster at each
time instant. The column diff shows the size to store only the new quadcodes
at each time instant. Notice that this size is a lower bound for an Overlapping
Linear Quadtree, that stores at each timestamp a new Linear Quadtree reusing
unchanged nodes (however, the OLQ must repeat all the common quadcodes in a
node if only one of them changes). We use this value as a reference because the
OLQ is in general the most compact approach based on Linear Quadtrees [TVM04].
The results, shown in bits per covered cell (i.e. bits per one) are good in all datasets
(ranging from less than 0.1 bits per one to a little over 1 bit per one). Our best
representation is always 10 times smaller than a naive representation based on
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Linear Quadtrees and 4-8 times smaller than the lower bound for OLQs. However,
we can see considerable differences between datasets. In CFC1 and CFC2 the
multiple K2-trees and the IK2-tree1 obtain the best results, being significantly
smaller than the K3-tree. On the other hand, in the synthetic datasets RegionsA
and RegionsB the results are inverted: the K3-tree obtains the best results among all
the representations, and the MK2-tree1 approach is the worst. In all cases, the IK2-
tree1 is smaller than the MK2-tree1, because a lot of redundant information is stored
in the latter to keep track of the independent vocabularies for each K2-tree. The
discording results in different datasets can be easily explained taking into account
the nature of the data: in CFC1 and CFC2, the moving regions are taken from daily
snapshots, so the regions change very significantly in a few snapshots. This means
that the K3-tree cannot take advantage of regularities in the temporal dimension,
because it needs large clusters of ones to appear in the matrix to obtain its best
results. On the other hand, the “multiple K2-trees” approaches compress each
snapshot independently so they can obtain good compression even if consecutive
snapshots have nothing in common. In RegionsA and RegionsB, that represent
regions changing and moving very slowly, the results are inverted because the K3-
tree takes advantage of the high regularity in the time dimension.

To provide additional insights on the differences between the K3-tree and
multiple K2-trees depending on the characteristics of the dataset, we analyze the
evolution of compression in both approaches taking into account an additional
parameter: the change rate of each dataset, that is, how fast the contents
change between consecutive snapshots. To study this variability, we use again
synthetic datasets. We use the dataset RegionsA and build another 2000 × 2000
dataset RegionsC following the same principles. In order to obtain datasets with
different change rate, we create datasets with only 100 time instants extracted from
RegionsA and RegionsC with different granularity: a dataset will contain all the
first 100 snapshots, another will contain snapshots 1, 3, . . . , 199, another snapshots
1, 4, . . . , 299, etc. In this way we build in practice multiple datasets that correspond
to the same moving regions seen with different time granularities.

Figure 11.2 shows the evolution of the compression obtained by our different
proposals depending on the change rate of the dataset. The change rate is the
average number of cells that change value divided by the average number of ones in
all the snapshots (i.e. the percentage of the moving region that changes or moves at
each time instant). There is a threshold that divides datasets in which a K3-tree will
obtain better compression and datasets that are better represented with multiple
K2-trees. This threshold may depend on the actual dataset, but in our experiments
is shown to be relatively small. This is due to the fact that, even for a region
changing slowly, after a small number of snapshots a large percentage of the region
may have changed. This limits the maximum size of the cubic regions of ones we
can find in the binary matrix of the K3-tree, and therefore its compression efficiency.
We believe that for any real moving regions dataset with very slow changes a K3-
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Figure 11.2: Evolution of compression with using a K3-tree and multiple
K2-trees.

tree should be a better representation. However, the strategy of using multiple
K2-trees or an IK2-tree1 becomes more efficient in space when changes in the third
dimension are significant. Notice that the datasets with high change rate will also
be very difficult to compress using any other proposal based on encoding changes,
like OLQs, MVLQs or any other of those introduced in Section 4.3.6.

11.2.3 Query times

In order to compare our proposals we measure the query times in two different
categories: snapshot queries and time interval queries. We generate sets of 1,000
random queries corresponding to different spatial window sizes, always using square
windows. The queries are executed several times on all approaches and we take
the average time per query. Figure 11.3 shows the results obtained for all the
datasets and approaches. As we can see, the MK2-tree1 obtains better results in
all the queries, since it only needs to access a K2-tree for the corresponding instant.
Additionally, the K3-tree is forced to go deeper in its conceptual tree because the
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Figure 11.3: Query times for snapshot queries in all the datasets.

uniform regions found in each K2-tree are in general much larger than the cubic
regions the K3-tree can find, and because of this the K3-tree compression is limited
to fragments of the regions that are covered for a long interval. The IK2-tree1, as
expected, is slower than the MK2-tree1 by a factor of at most 2, and still faster
than the K3-tree in all the snapshot queries studied.

Next, in order to show the tradeoff between the different proposals, we measure
the efficiency of our proposals in interval queries. First we use the simplest interval
query, the one that asks for all the cells covered at each time instant within a given
time interval. We generate sets of 10,000 random queries, each set with a different
interval length. Figure 11.4 shows the query times obtained for a window size 32×32
and interval lengths 1 (snapshot query) to 40. The K3-tree, that can restrict its
search to the region enclosed by the window and the interval, obtains the best query
times for all interval queries. The MK2-tree1 and the IK2-tree1 obtain very close
results in the synthetic datasets RegionsA and RegionsB, but the IK2-tree1 becomes
much slower in the real datasets. This is due to the fact that the IK2-tree1 must
keep track of all the active times that fall inside the query interval. Notice also that
this result is very different from the comparison obtained in Chapter 10, where we
used essentially the same data structure and algorithm: when compressing raster
data, the number of active values for any node in a spatial window will be relatively
small, because of the locality of values; on the other hand, in spatio-temporal data
many time instants may be active for a spatial window up to the lower levels of the
tree, adding a significant overhead to the IK2-tree1 in mapping all of them.
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Figure 11.4: Query times for interval queries in all the datasets, for fixed
window size 32.

We run the same query sets using now the two semantics associated with time-
interval queries: weak queries ask for the cells active at any point within the interval,
strong queries ask only for cells that were active during the complete time interval.
The results are shown in Figure 11.5 for weak queries and Figure 11.6 for strong
queries. The IK2-tree1 obtains the best query times when the time interval is longer,
since it can efficiently check the values for the complete interval in each node. For
very short intervals, the MK2-tree1 is still the best approach, due to the additional
computations required to navigate the IK2-tree1. The K3-tree becomes slower in
general than the IK2-tree1 because it is not able to filter out nodes in the upper
levels of the tree. The results also show that in the synthetic datasets (left side of
the figures) query times are better in general and the K3-tree is more competitive.
This is due to the reduced change rate of these datasets, that makes it easier to
filter nodes.

11.3 Summary

In this chapter we introduced compact representations for temporal raster data.
Our proposals are very similar to those presented in the previous chapter, that are
extended to manage the specific interval queries required in temporal data.

Our representations are similar to state-of-the-art compact representations of
temporal raster data, and require much less space than alternatives based on classic
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Figure 11.5: Query times for weak interval queries, for window size 32.
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Figure 11.6: Query times for strong interval queries, for window size 32.

data structures like the linear quadtree. Our experimental evaluation shows that our
proposals are especially suited for different kinds of datasets: the K3-tree obtains
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the best space results for slowly-changing datasets, but as soon as the change rate
increases the approaches based on multiple K2-trees become smaller.

Our results in this chapter also confirm some of the results obtained in Chapter 6,
where the advantages and drawbacks of both representations were studied in a
general case. The evolution of the K3-tree, the MK2-tree1 and the IK2-tree1 is
consistent with the results obtained for temporal graphs and confirms the idea
that the K3-tree is an efficient alternative to the MK2-tree and the IK2-tree, but
the characteristics of the datasets should be taken into account to select between
the representations, since the change rate of the dataset has significant effect in
compression and query times.
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Chapter 12

Join operations between
raster and vector
representations

In recent years the availability of different types of spatial data has increased, as
many national geographic agencies are using and publishing digital cartography, and
other private organizations make extensive use of geographic information obtained
using airborne and satellite technologies. This leads to an increasingly large amount
of vectorial and raster information available for its use.

However, many application domains require accessing vector and raster data at
the same time. A typical example would be emergency management, where the
evolution of fires or floods (typically represented in raster form) must be checked
considering road networks or populated areas that may be affected.

Most of the models and languages designed for the representation of spatial
data in traditional database models include data types and operators to represent
and query vectorial and raster data [SH91, BDF+98, VZ09]. However, in many
cases the user is forced to know and use different sets of operations for vector and
raster data. While multiple access methods have been developed to query raster or
vector data [Sam90b, GG98], not much work has been devoted to the development
of algorithms to simultaneously query data structures for vectorial objects and data
structures for raster data.

In this chapter we present a method to perform a spatial join between a vectorial
dataset represented using an R-tree and a raster dataset represented using the K2-
tree1 variants introduced in Chapter 5. This method can be used to evaluate queries
between vector and raster data without having to convert one of the datasets to the
other data model. This method is also extended to perform joint queries where the
raster dataset is not binary; in this case we adjust our algorithms to work with the

257
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variants covered in Chapter 10, particularly the AMK2-tree1.
The rest of this chapter is structured as follows: Section 12.1 presents some

related work in the combination of representations following the raster and vector
models. Section 12.2 presents our proposal, a query algorithm that allows
efficient join operations between a raster dataset stored in a K2-tree1 and an
R-tree representation of objects following the vector model. In Section 12.4 we
experimentally evaluate our algorithm using different real-world datasets to show
the efficiency of the join operation to filter results from the raster dataset. Finally,
a summary of the chapter is presented in Section 12.5.

12.1 Querying vectorial and raster data

As we have said, not much work has been devoted to algorithms or data structures
that support queries combining raster and vectorial datasets. Some previous work
has been presented [CVM99, CTVM08] dealing with binary rasters, as in our case.
The first one presents five algorithms for processing joins between an R-tree and a
linear region quadtree. Those access methods are based on classic external memory
data structures, and their main target is reducing the number of disk accesses.

12.1.1 Join between linear quadtrees and R-trees

In [CVM99] the authors consider the problem of join operations between a linear
region quadtree and a R-tree. The authors are based on a typical external-memory
implementation of a linear region quadtree using a B+-tree. A collection of simple
and more sophisticated algorithms is presented, focused on reducing the number
of accesses to external memory. The simplest algorithms are based on traversing
one of the data structures sequentially and performing searches in the other. In a
first proposal, called B+ to R join, all the FD-codes in the B+-tree tree leaves are
traversed sequentially, and for each code a range search is performed in the R-tree
to find all leaves that intersect with it. Two other simple algorithms, called R to B+

joins, are based on the reverse process, in which the R-tree is traversed sequentially,
and for the MBR of each entry found in the leaves of the R-tree a search is performed
in the linear quadtree (the B+-tree) to retrieve all the blocks that intersect with
the MBR of the entry. In order to perform the search in the linear quadtree for
each MBR the authors propose two strategies: a naive strategy looks for the SW
corner of the MBR in the B+-tree and then traverses sequentially the entries until
the SE corner is surpassed, hence accessing probably many blocks that are outside
the MBR; a second proposal is based on the decomposition of the MBR in maximal
blocks that can be efficiently searched in the B+-tree independently.

To provide more efficient algorithms for join operations, several heuristics are
studied, always oriented to reducing the number of page accesses. A first strategy
is based on processing the nodes of the R-tree following an order similar to the
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ordering of the regions in the linear quadtree, keeping in main memory only the
quadcodes that can actually intersect with the R-tree nodes currently evaluated.

The algorithm to perform the join operations works recursively on the R-tree.
It starts at the root node, where all the entries are sorted according to the Z-order
of their NW corner (the same ordering imposed by the linear quadtree). Each entry
will be processed sequentially in this order. For each entry in the root node, a search
in the linear quadtree is performed to retrieve a black block that covers the MBR
or as many blocks as possible that intersect with the MBR of the entry. Then, all
the children of the current node are traversed recursively and joined with the list of
quadcodes: in each internal node, all its entries are again sorted following z-order
and processed sequentially adding its children nodes to the list. When a leaf node
is reached in the R-tree, all its entries are joined with the quadcodes loaded in main
memory.

The join of an internal node returns when all its entries that intersect with the
quadcodes loaded in memory have been processed. Eventually the root node will
be reached again, and at this point all the entries descending from its first node
that intersect with any of the quadcodes in memory have been processed. Then the
list of quadcodes is emptied and reloaded with new quadcodes that intersect the
entries in the current root entry. After no more quadcodes are found that intersect
with the first root entry the process is repeated for the next root entry. To perform
these operations, some buffers are necessary to store the list of quadcodes and to
keep track of the positions that have been checked for each entry. A similar but
improved algorithm is also proposed, that tries to expunge unnecessary quadcodes
from memory as soon as possible to reduce even further I/O costs. We will omit
the details on the actual implementation and techniques used, that as we said are
focused on reducing page accesses. A detailed explanation of the algorithms can be
found in the original paper.

The different algorithms proposed for join operations between a linear quadtree
and an R-tree obtain significant reductions in the number of I/O accesses required
in their experimental evaluation. An interesting conclusion is that the more
sophisticated join algorithms proposed by the authors obtain very good results
even using limited memory to cache accesses to the structures and quadcodes.
However, the authors also show that allowing larger sizes of in-memory structures
(mainly LRU caches for accesses in both structures) the performance of the simplest
algorithms becomes comparable to the more sophisticated ones.

12.2 Our proposal

In this section we describe our method to perform a join between representations
of vector and raster data. Our algorithm accesses an R-tree, that indexes all the
minimum bounding rectangles (MBRs) from the vectorial dataset, and a K2-tree1
that represents the raster dataset. The K2-tree1 is used to store the complete
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raster in main memory, efficiently distinguishing between regions covered by the
raster field. The actual representation we will use in our experiments will be the K2-
tree12bits, but the algorithm is based on simple traversals that could be implemented
in any of the variants and we will refer to a K2-tree1 throughout this chapter. In
the vectorial dataset we will consider only the MBRs of the objects, ignoring the
additional space and processing time required to check the actual objects. This
operation may be very expensive and is independent of the algorithm used to select
the MBRs.

Our algorithm is designed in general to return all the MBRs that spatially
intersect regions of the raster value the studied spatial field is active (regions of
1s in the binary raster). Our algorithm will return two different lists of MBRs:
a list of confirmed results and a list of possible results. If an MBR is completely
contained in a region of 1s, it will be a confirmed result. If the MBR intersects, but
is not contained in, regions of 1s, it will be a possible result. Only the elements in
the list of possible results have to go through the additional refinement step that
checks the actual geometry of the object.

We define two data types for the algorithm:

• Type k ≡ 〈x,y,level,offset〉 nodes represent a K2-tree1 node: its coordinates x
and y, its level or depth in the conceptual tree and the offset in the bitmap
where it is stored.

• Type r ≡ 〈MBR, ref, oid〉 nodes store R-tree nodes. Each tuple represents the
MBR of the node, a list of references to children nodes and a list of object ids.
Internal nodes of the R-tree will have a null value for the list of object ids (i.e.
they will be 〈 MBR, ref, null 〉) whereas leaf nodes will have a null value for
the list of references (〈MBR, null, oid〉). We also assume that two functions
are available to check the type of any node of the R-tree (isLeafNode() and
isInternalNode()).

Our main algorithm is also based on two auxiliary functions that operate on
the K2-tree1: getMinMatrix and rangeSearch. Both of them are straightforward
adaptations of existing K2-tree1 navigation operations:

• The function getMinMatrix receives as input an MBR and a reference to a
node kCur in the K2-tree1 and returns a pair 〈k,type〉. The value k is the
deepest node descending from kCur whose submatrix completely contains the
given MBR, while type describes the “color” of the node: the returned value
is 0 for white nodes (regions of 0s), 1 for black nodes (regions of 1s) and 2 for
gray nodes (mixed 0s and 1s). Since the MBR is translated into a rectangular
region in the raster, getMinMatrix simply needs to traverse the K2-tree1 down
until we find a leaf node or the lowest node containing this rectangle. In the
worst case, the cost of this operation is proportional to the height of the
K2-tree1.
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Figure 12.1: A raster dataset and four spatial objects with their MBRs.

• The function rangeSearch takes an MBR and a reference of a node kCur in
the K2-tree1 and performs a range search on the K2-tree1 using the MBR.
The function returns the type or “color” of the region, with a similar meaning
to the result of getMinMatrix :

– If all cells that intersect the MBR are 0s, then type = 0. An example
would be object e in Figure 12.1.

– If all cells that intersect the MBR are 1s, then type = 1. An example
would be object c in Figure 12.1.

– If the MBR intersects 0s and 1s, then type = 2. Examples of this case
would be objects a, b and d in Figure 12.1.

Algorithm 12.1 shows the complete algorithm. We start by defining the lists of
confirmed (C) and possible (P ) results, and a stack that will be used to keep track
of the pairs of nodes that still have to be processed. Then, we set two variables
rCur and kCur that point to the root of the R-tree and the K2-tree1 respectively.
This pair of variables is added to the stack S.

After this initialization, the algorithm repeatedly extracts and processes entries
from the stack until the stack is emptied. For each 〈rCur, kCur〉 pair extracted
from the stack, we use getMinMatrix (line 10) to find the deepest node of the K2-
tree1 that contains the MBR of rCur. We will continue depending on the type of
the K2-tree1 node:

• If the K2-tree1 node is a white node (type = 0), the R-tree node and all its
descendants fall within a region not covered by the raster, so we do nothing
and advance to the next iteration of the algorithm. Notice that this case is
omitted in the algorithm, because nothing is done.
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Algorithm 12.1 R-tree × K2-tree1 join.
1: Let R be an R-tree
2: Let K be a K2-tree1
3: Let C and P be lists with objects of type r
4: Let S be a stack with objects of type 〈r,k〉
5: rCur ← 〈MBR(R), R, null〉
6: kCur ← 〈0,0,0,0〉
7: push(S, 〈rCur,kCur〉)
8: while S 6= empty do
9: 〈rCur,kCur〉 ← pop(S)

10: 〈kNew,type〉 ← getMinMatrix(rCur.MBR, kCur)
11: if type = 1 then
12: if isLeafNode(rCur) then
13: add(rCur.oid, C)
14: else
15: addSubTree(rCur.ref, C)
16: end if
17: else if type = 2 then
18: if isInternalNode(rCur) then
19: for rNew ∈ rCur.ref do
20: push(S, 〈rNew,kNew〉)
21: end for
22: else
23: type ← rangeSearch(rCur.MBR, kNew)
24: if type = 1 then
25: add(rCur.oid, C)
26: else if type = 2 then
27: add(rCur.oid, P)
28: end if
29: end if
30: end if
31: end while
32: return 〈C,P〉

• If the K2-tree1 node is black (type = 1, line 11), the R-tree node and its
descendants are covered by the raster. We add the current object (line 13) or
the complete R-tree branch (line 15) to the confirmed list.

• If the K2-tree1 node corresponds to a mixed region (type = 2, line 17) we
cannot yet determine whether the intersection is true. In this case, if the R-
tree node is internal node we must explore all its descendants (we add all its
children to the stack in line 19 and go to the next iteration of the algorithm).
If the R-tree node is a leaf, we use function rangeSearch to determine if there is
an intersection between the object in the R-tree node and the raster (line 23).
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Again, our algorithm depends on the type returned by rangeSearch:

– If type is 0 (region of 0s), we discard the object since it cannot intersect
the raster (e.g. object e in Figure 12.1). Again, this case is not shown
in the algorithm since nothing is done

– If type is 1 we are in the case of object c in Figure 12.1: it can be added
to the confirmed list since it is completely contained in a region of 1s
(line 25).

– If type is 2 we are in the case of objects a, b or d in Figure 12.1: the
object intersects 0s and 1s and we must use the actual geometry of the
object to confirm the result, therefore we add the object to the list of
possible results (line 27).

As we have shown, when our algorithm finishes it returns a list of confirmed
results and a list of possible results. An additional step would be necessary for each
object in the list of possible results, retrieving its geometry and checking if the
result is finally confirmed (this would be the case of objects a and b in Figure 12.1)
or if it was a false positive (e.g. object d in Figure 12.1). This additional check,
that will not be covered here, is common in spatial access methods that require
two-step algorithms composed of a filter step and a refinement step that removes
false positives from the result.

12.3 Join between a general raster dataset and a

vectorial dataset

We have just described our join algorithm as a solution to perform a join between
a binary raster dataset and a vector dataset. Nevertheless, our algorithm can be
extended to the case where the raster dataset is not a binary coverage but a general
raster instead. In this case, the type of queries of interest would involve a query on
the raster dataset, typically a query involving the values stored in it. An example of
such a query would be retrieving all the objects in the vectorial dataset that occur
in regions with values over or below a threshold, or in regions with an exact value
or small range of values. As we have shown in Chapter 10, this kind of queries can
be efficiently solved using different K2-tree1 variants in small space and providing
good query times.

Consider now a straightforward generalization of the types described for K2-
tree1 nodes in our algorithm: a node is type 0 if none of its cells fulfill a query
condition (originally, be set to 1), type 1 if all the cells fulfill the condition, or type
2 if some cells fulfill the condition but others do not. This simple adaptation allows
our algorithm to work with any representation that is able to compute the node
type given a query, that is, as long as getMinMatrix and rangeSearch can work
with a general raster. All the representations used in Chapter 10 could be used
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to represent a general raster dataset and perform join operations with a vectorial
dataset, where the raster dataset could be filtered to search for cells with a given
value or any range of values.

Consider for example a general raster and a vectorial dataset, and a join
operation asking for all the objects that intersect with regions of the raster with
values in [v1, v2]. The algorithm does not change, only the implementations of
getMinMatrix and rangeSearch do. Consider, without loss of generality, that we are
using the AMK2-tree1 representation for the raster (we can use any of the proposals
for general raster: MK2-tree1, AMK2-tree1, IK2-tree or K3-tree). For each R-tree
node, we look for the deepest node in the raster representation that contains its
MBR. This traversal is actually performed as a range search in the AMK2-tree1,
traversing simultaneously the K2-tree1s of v2 and v1 − 1 to determine the “type”
of the node for the condition of the join (i.e. the function getMinMatrix would
return 0 when there are no values in the raster falling in the range [v1, v2], 1 when
all the values in the raster fall in the range, and 2 otherwise). When the lowest
node containing the MBR is found, the AMK2-tree1 already has computed its type
depending on the range of values. The getMinMatrix auxiliary function should then
return the “node” (in our case a pair of nodes in Kv2

and Kv1−1) and its type. This
change, combined with additional information stored in the stack about the nodes
in the raster representation, suffices to adjust our algorithm to work with general
rasters.

The previous generalization increases the complexity of the getMinMatrix
operation, because we must do more complex operations to know the actual color of
the node. In practice, we use a simple algorithm over the AMK2-tree1 that uses the
original getMinMatrix algorithm and additional tables to determine the next step
depending on the types of the nodes in Kv2

and Kv1−1, as shown in Table 12.1. The
algorithm acts depending on this virtual “new type”, that is not necessarily equal
to the type obtained in the synchronized traversal, but computation becomes much
easier. In particular, if type1 and type2 are 2, the result can be either 2 (mixed) or
0 (region of 0s), depending on whether Kv2

contains any 1 not contained in Kv1−1,
but to compute this we must traverse both subtrees completely.

type1/type2 0 1 2

0 newType=0 newType=1 newType=2
1 Impossible newType=0 newType=2
2 Impossible newType=2 newType=2

Table 12.1: Action table for getMinMatrix.

Notice however that the rangeSearch must still perform the complete compu-
tation to know the actual type of the node, otherwise we would not be able to
distinguish some results in the general algorithm (in the previous example, and in
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Table 12.1, when type1=2 and type2=2 we do not actually know if the result is a
gray node or a white node).

An additional observation related with the specific implementation using an
AMK2-tree1 is the fact that queries asking for regions with values above or below a
threshold (threshold queries) can be answered more efficiently using the same basic
algorithm explained for binary rasters. Since each K2-tree1 in the AMK2-tree1
contains cells with values below a given one, this query is answered querying directly
the appropriate K2-tree1: when asking for cells with value above a threshold, we
query the complement of the K2-tree1, which can be easily performed with a special
implementation of getMinMatrix and rangeSearch that returns 0 for type-1 nodes
and 1 for type-0 nodes.

12.4 Experimental evaluation

In order to evaluate the performance of the algorithms described in Sections 12.2
and 12.3, we perform several of experiments that use real and synthetic data. We
test our algorithm with binary and general raster datasets to demonstrate its query
efficiency. First we will test the efficiency of the algorithm showing its ability to
filter accesses to the R-tree in a join operation with a binary raster coverage. Then,
we will test the extension of our algorithm to query a general raster and an R-tree.
We implemented our generalized algorithm using the AMK2-tree1 representation,
that uses a collection of “accumulated” K2-tree1s to represent the raster dataset.

12.4.1 Experimental setup

Dataset Size (cells) %1s
K2-tree1 size

(bytes)

ras1024_20 1024 × 1024 20 2,448
ras1024_60 1024 × 1024 60 3,692
ras2048_20 2048 × 2028 20 6,548
ras2048_60 2048 × 2048 60 8,632
ras4096_20 4096 × 4096 20 23,728
ras4096_60 4096 × 4096 60 33,980

Table 12.2: Binary raster coverages used in the experiments.

Table 12.2 describes the six binary raster coverages used in the experiments.
For each raster the table describes its size in pixels, the percentage of 1s in
the coverage, and the size of the corresponding K2-tree1. All the datasets are
square subsets of different sizes extracted from the elevation raster mdt–A first
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Name Size (cells) # diff. values

ras1024 1024 × 1024 209
ras2048 2048 × 2048 413
ras4096 4096 × 4096 704
ras8192 8192 × 8192 973
ras16384 16384 × 16384 1,716

Table 12.3: General raster coverages used in the experiments.

introduced in Chapter 5. We build different binary rasters from the original dataset
considering different percentages of black pixels simply varying a threshold on the
elevation value used to distinguish black from white positions. Similarly, Table 12.3
describes general rasters used in the second set of experiments. These rasters
are fragments from mdt–B, a large elevation raster also introduced in Chapter 5.
Finally, Table 12.4 describes the different sets of MBRs used as vectorial datasets.
For each MBR dataset, we describe whether the dataset is real or synthetic, the
number of MBRs it contains and the number of nodes in the resulting R-tree.

Name Type # MBRs R-tree size (nodes)

vects Real 194,971 3,130
vectcb Real 556,696 9,147
vecca Real 2,249,727 33,754

vec2m Synthetic 2,000,000 28,267
vec5m Synthetic 5,000,000 70,587
vec10m Synthetic 10,000,000 140,628
vec20m Synthetic 20,000,000 280,705

Table 12.4: MBR datasets used in the experiments.

To make the implementation of the experiments easier, all coordinates of the
MBRs and the rasters are normalized to a [0, 1] × [0, 1] space. Figure 12.2 shows
the distribution of the MBRS in the different real datasets using a representative
fraction of the MBRs. The three real datasets, denoted by vects (see Figure 12.2a),
vectcb (see Figure 12.2b), and vecca (see Figure 12.2c), are the Tiger Streams
(vects), Tiger Census Blocks (vectcb), and California Roads (vecca) datasets from
the ChoroChronos.org web site1. The synthetic datasets consist of uniformly
distributed MBRs with an area between 0.001 and 0.03 square units. Figure 12.2d
shows also one of the synthetic datasets.

1http://www.chorochronos.org/?q=node/59

http://www.chorochronos.org/?q=node/59
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Figure 12.2: MBR distributions in the space [0, 1]× [0, 1].

We use Marios Hadjieleftheriou’s implementation of the R-tree2, written in java.
The R-tree nodes are of 4KB and have a capacity of 100 entries. To run our tests
we use a java implementation of the K2-tree1, that as we said is based on the
K2-tree12bits variant. The AMK2-tree1 representation used for general rasters is
also based on the same java implementation of K2-tree1. In order to provide a pure
version of the algorithm, we do not include any of the enhancements to the K2-tree1
variants used in other chapters to improve compression (there is no compression of
submatrices in lower levels of the tree and we use a single value of K = 2). This
change leads to worse compression results than those obtained in previous chapters
but provides a clean basis to test the efficiency of the basic algorithm.

All the tests in this chapter are run in a machine with 4 Intel(R) Xeon(R) E5520
CPU cores at 2.27 GHz 8 MB cache and 72 GB of RAM memory. The operating
system is Ubuntu 9.10.

2http://libspatialindex.github.com/

http://libspatialindex.github.com/
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12.4.2 Experimental results with binary coverages

In Figure 12.3 we show the experimental results obtained with the real and synthetic
vectorial datasets. Figures 12.3a and 12.3c show that the algorithm requires
approximately linear time on the number of MBRs in the vectorial dataset in both
real and synthetic datasets. Figures 12.3b and 12.3d show the percentage of the
total R-tree nodes that are accessed by the join algorithm. The percentage of nodes
accessed clearly depends on the rate of 1s in the raster dataset: for raster datasets
with 20% 1s the percentage of R-tree nodes accessed never surpasses 80%, and can
be as low as 10%; on the other hand, for raster datasets with 60% 1s the percentage
of R-tree nodes accessed ranges from 80-95%. There is also a significant difference
between the results in real datasets, shown in Figure 12.3b, and in synthetic datasets,
shown in Figure 12.3d: the percentage is much higher and less variable in synthetic
datasets, that are built with an uniform distribution; however, in real datasets the
locality of the data allows the algorithm to access a lower percentage of the total
nodes.
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Figure 12.3: Processing time (in seconds) and % of R-tree nodes accessed
using real (top) and synthetic (bottom) MBR datasets.
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Datasets Number of results
%

Vectorial Raster Total Confirmed

vects ras1024_20 27,985 26,483 94.6

ras1024_60 106,010 103,388 97,5

ras2048_20 29,480 27,575 93,5

ras2048_60 115,466 112,366 97,3

ras4096_20 46,801 42,309 90,1

ras4096_60 131,707 126,693 96,2

vectcb ras1024_20 182,852 180,630 98,7

ras1024_60 375,089 372,831 99,4

ras2048_20 83,509 80,839 96,8

ras2048_60 375,315 371,435 98,9

ras4096_20 123,523 118,560 96,0

ras4096_60 382,373 375,737 98,2

vecca ras1024_20 65,622 63,185 96,3

ras1024_60 1,369,044 1,319,018 96,3

ras2048_20 516,917 497,309 96,2

ras2048_60 1,684,579 1,642,619 97,5

ras4096_20 444,533 407,875 91,7

ras4096_60 1,350,981 1,296,004 95,9

Table 12.5: Results retrieved by the algorithm using real MBR datasets.

The percentage on R-tree nodes accessed by our algorithm is very high in some
cases, especially in synthetic datasets. In order to measure the actual efficiency
of the algorithm we show in Tables 12.5 and 12.6 the total results obtained by
our algorithm in real and synthetic datasets and the percentage of results that are
confirmed results (i.e. results that do not require a second comparison between
the actual spatial object geometry and the raster dataset to confirm or discard the
result). This percentage is above 90% in real datasets, therefore our algorithm can
save disk accesses and also much of the costly computation of intersecting the actual
geometries of the results with the raster. In Table 12.6 we show the same results
for two of the synthetic datasets (the percentages are almost identical in all the
synthetic datasets). As expected, in this case the percentages are lower, but we still
obtain around 70% of confirmed results.

12.4.3 Experimental results with general raster data

Next we test the extension of our algorithm to deal with general raster data using
the AMK2-tree1 representation. We compare our representation with a simpler
approach based on a direct representation of the raster dataset using a matrix of
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Datasets Number of results
%

Vectorial Raster Total Confirmed

vec2m ras1024_20 445,161 324,163 72.8

ras1024_60 1,287,176 1,098,651 85.3

ras2048_20 485,101 322,654 66.5

ras2048_60 1,316,354 1,097,920 83.4

ras4096_20 545,345 261,415 47.9

ras4096_60 1,411,308 1,004,285 71.1

vec20m ras1024_20 4,454,095 3,242,037 72.7

ras1024_60 12,861,243 10,974,984 85.3

ras2048_20 4,853,557 3,231,135 66.5

ras2048_60 13,167,282 10,977,876 83.3

ras4096_20 5,452,352 2,617,038 47.9

ras4096_60 14,111,225 10,031,539 71.0

Table 12.6: Results retrieved by the algorithm using synthetic MBR
datasets.

values. This alternative representation also uses a simpler algorithm to answer
the queries: it traverses all the nodes in the R-tree and checks if they fulfill the
condition in the raster dataset simply accessing the matrix. In our experiments we
use a simple matrix representation where each value is stored using an integer for
maximum efficiency in access.

To measure the quality of our algorithms, we will focus on space utilization and
query efficiency. We distinguish 2 main groups of queries according to the desired
result: strong queries that only answer MBRs that completely fulfill the condition
(all their points are in the interval or above/below the threshold) and weak queries
that answer all MBRs that partially fulfill the condition (some points in the MBR
fall in the interval). We will also distinguish two different queries according to
the filter involved in the query: interval queries, that ask for the MBRs in the
R-tree that intersect with regions of the raster whose values are in an interval,
and two different threshold queries, that involve regions of the raster above/below
a threshold. Even though threshold queries can be reduced to interval queries, we
consider this particular case because it is a frequent query and, as we have explained,
our algorithm can be optimized in this kind of queries to access a single K2-tree1.

12.4.3.1 Space results

Table 12.7 shows the space utilization of the complete AMK2-tree1 representation
(a K2-tree1 per value in the raster) and the actual space requirements of the matrix
representation using an integer per cell. In the last column matrix-optimum we
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Name AMK2-tree1 matrix matrix-optimum

ras1024 0.31 4 0.96
ras2048 1.53 16 4.34
ras4096 5.77 64 18.92
ras8192 25.61 256 79.41
ras16384 148.51 1,024 343.83

Table 12.7: Space requirements (MB) of AMK2-tree1 and a matrix
representation for all the raster datasets.

show the minimum size that could be achieved by a simple matrix representation,
using log(#values) bits per element. Our complete representation is clearly much
smaller than an uncompressed matrix representation, roughly 10 times smaller.
Notice also that some optimizations used in Chapter 10 such as the use of a matrix
vocabulary are not used in this chapter. Additionally, in practice our representation
only needs to have 2 K2-tree1s in main memory to answer interval queries, while
the naive representation may need to traverse the complete raster in most queries.
However, we consider the memory requirements of the complete AMK2-tree1 to
answer queries without accessing external memory.

12.4.3.2 Query times

Threshold queries
First we compare our algorithm with the uncompressed raster representation

(Raster) to answer threshold queries. Following the same steps of the previous
experimentation with binary rasters, we study the evolution of query times with
the length of the query interval in the different raster and vectorial datasets. In
Figure 12.4 we show the results for the all the vectorial datasets studied. To compare
the results obtained for rasters of different sizes, we show in Figure 12.4a the results
for all queries using the ras1024 dataset and in Figure 12.4b the results for the
largest raster dataset ras16384. The results for the intermediate raster datasets are
similar.

Query times differ significantly depending on the vectorial dataset, mainly due
to the difference in size between them. On the other hand, the cost of the queries is
not very different depending on the semantics (strong queries where all the points
must be included or weak queries where only some of the points need to be included)
or the type of threshold used (asking for values above or below a threshold).

In the vects dataset our query times are similar to the query algorithm using
an uncompressed raster, and we even obtain worse query times in some cases.
The characteristics of the vects dataset are the reason for this result: the MBRs
are more uniformly distributed than in the other real vector datasets, as we
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can see in Figure 12.2. This fact, combined with the small size of the dataset,
causes that the reduction in terms of number of accesses to R-tree nodes is not
enough to compensate the added complexity of our algorithm. The results in the
larger vectorial datasets, independently of the raster dataset used, demonstrate the
efficiency of our algorithm, that is always faster than the baseline in the vectcb and
vecca datasets, and especially in the vecca dataset where our query times are 2.5
times faster than the baseline.

Interval queries

In Figure 12.5 we analyze the evolution of query times in interval queries in the
two largest vectorial datasets for different raster dataset sizes. The three left plots
show the results for the vectcb dataset and the rightmost 3 plots the results for
the vecca dataset. We show a selection of results for the raster datasets ras1024,
ras4096 and ras16384 (top, middle and bottom plots respectively, for each vectorial
dataset).

Our results show that, like in the binary case, the efficiency of our algorithm
depends on the selectivity of the query and the characteristics of the datasets studied.
While the baseline algorithm obtains consistent query times, that change only
slightly in less selective queries due to the additional number of results processed,
our algorithm takes advantage of the characteristics of the query to speed up queries
that are very selective in their intervals. In particular, Figure 12.5 shows that our
algorithm obtains its best results in general when the query interval is very small,
thus making the query very selective since few elements will belong to the interval.
In this case, our algorithm is able to efficiently filter out a great fraction of the
MBRs and reduce significantly the computation costs, while the baseline algorithm
still must pay the cost of traversing the complete vectorial dataset. Our results
also show that when asking with low selectivity in the raster (the query interval
is close to 100% of the values), our algorithm also obtains good results in general,
because it can filter out the MBRs not contained in the raster very early and then
the computations in the AMK2-tree1 are very fast because the K2-tree1 involved
are small (since few values are below the query interval or above it).

The results in Figure 12.5 show that, for almost all the vectorial and raster
datasets, our algorithm obtains better query times than the baseline, especially in
very selective queries. Results for the other vectorial dataset and the remaining
raster datasets are similar, with our algorithm consistently obtaining better query
times. A particular case occurs in the bottom-left plot of Figure 12.5, corresponding
to the vectorial dataset vectcb and the raster dataset ras16384: in this case, our
algorithm becomes a bit slower than the baseline in some cases (similar results were
obtained for the vects dataset with the ras16384 raster, while in all the remaining
combinations our algorithm was always faster). Similarly to the results obtained in
threshold queries, the smaller size of the datasets and the fact that our algorithm
relies on the distribution of both datasets cause this particular negative result: if
the distribution of the MBRs in the vectorial dataset and the regions in the raster
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dataset is such that we cannot filter a significant fraction of the total MBRs in our
queries, our specific algorithm may become slower than the simpler baseline that
simply traverses. Nevertheless, our algorithm is in general much faster than the
baseline in interval queries, and especially in selective interval queries where our
query times are up to 2.5 times faster.

12.5 Summary

In this chapter we have presented an algorithm to jointly query vectorial and raster
datasets, when the vectorial datasets are stored using an R-tree and the raster
datasets are stored using the K2-tree1 variants introduced earlier in this thesis.
First we described an algorithm to join a K2-tree1, introduced in Chapter 5, with
an R-tree. Our algorithm is designed to avoid most of the accesses to R-tree nodes.
Then, we extended our algorithm to work with the AMK2-tree1 representation of
general rasters, proposed in Chapter 10.

We experimentally evaluated our algorithm to show its efficiency with real and
synthetic datasets. We tested its query efficiency in terms of time and number of
accesses to R-tree nodes required, showing that it was able to reduce the number
of accesses to R-tree nodes significantly. In addition, most of the results returned
by the algorithm are confirmed results whose geometries do not have to be checked
later.

We also tested our algorithm with general raster datasets, comparing it with
a simpler approach based on a sequential algorithm and an uncompressed raster
representation. Our experiments show that our representation is not only smaller,
as expected, but also faster than the alternative to answer interval and threshold
queries in most of the vectorial and raster datasets studied. Our solution is
particularly effective in very selective queries, obtaining query times up to 2.5
times faster than the baseline. These results are relevant taking into account the
fact that we are comparing our representation with an uncompressed in-memory
representation of the raster.
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Figure 12.4: Query times of threshold queries joining all vectorial datasets
with ras1024 (top) and ras16384 (bottom) raster datasets.
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Figure 12.5: Query times of interval queries with different interval length,
in with some of the studied vectorial and raster datasets.
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Part IV

Summary of the thesis
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Chapter 13

Conclusions and future work

13.1 Main contributions

The amount of information stored and processed in digital form has been increasing
exponentially for several decades. Nowadays, huge amounts of information are
obtained in real time from multiple sources and must be efficiently processed and
accessed. Because of this, processing efficiently the increasingly large amounts of
information available has become a very important challenge in different areas.

Several strategies are followed to process the large amounts of information
available, from the parallel processing of data to the creation of specific hardware
architectures designed for specific goals. One of the most fruitful research lines has
been the development of compact representations that are able to reduce the space
used by the data. These representations allow us to process the data in upper levels
of the memory hierarchy, and therefore to process it faster thanks to the speed gap
between levels. The development of compact or succinct data structures, that are
able to not only store the data but also answer queries in compressed form, has
received a lot of attention.

In this thesis we focus on the compact representation of bi-dimensional or n-
dimensional data. Our goal is to provide efficient representations for grids that
can be easily applied to the representation of binary or n-ary relations, graphs,
etc. We are also particularly interested in domains where the data has a “spatial”
distribution (e.g. geographic data). We study a set of related problems, associated
with the compact representation of grids in different domains.

The main contributions of this thesis are a collection of compact data structures
with applications in different contexts. We summarize them in this section. First, we
have proposed several general data structures with general application in different
domains:

• We presented a collection of representations, called K2-trees with compression

279
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of ones or K2-tree1. These representations are an extension of an existing
data structure, the K2-tree, to efficiently represent clustered binary grids
with large regions of 1s and 0s. We provide a small set of different encodings
that extend classic K2-trees improving very significantly their compression
capabilities in clustered grids. We theoretically and experimentally compare
our representation with state-of-the-art representations of binary images,
showing that our representations provide efficient query support and achieve
compression results very competitive. These representations are also used to
develop variants of other proposals studied in this thesis.

• We introduced a new data structure for the compact representation of n-ary
relations, called Kn-tree. This representation is a generalization of the K2-
tree to higher dimensionality problems. We study its applicability and its
drawbacks in the general case.

• We proposed a new compact data structure to answer top-k queries in
multidimensional grids, called K2-treap.

• We developed a new dynamic representation of grids, called dynamic K2-
tree or dK2-tree. This representation is able to answer all queries supported
by static K2-trees and supports update operations on the grid, including
changing the contents of a cell and the insertion of new rows/columns.

In addition to the proposal of the new data structures, that can be applied in
different domains, we have focused on the applications of the new data structures
proposed and created new variants of some of them to answer specific problems in
each application area:

• We studied the representation of OLAP cubes, and particularly the problem
of top-k queries, as a particular query very often required in multidimensional
databases. We experimentally evaluated our proposal, the K2-treap, in
comparison with state-of-the-art alternatives based on the wavelet tree. Our
experiments show that our representation is smaller and faster than the
alternatives in a large majority of cases.

• We also studied the representation of temporal graphs. In this area we have
developed a new data structure, called differential IK2-tree or diff-IK2-tree, a
variant of an existing data structure called IK2-tree that is able to store time-
evolving graphs in very reduced space. We have also shown the applicability
of a K3-tree to the representation of temporal graphs, considering the time
as another dimension. Our experimental evaluation shows that our proposals
are complementary alternatives for the representation of time-evolving data.
In Chapter 9 we also show that a fully-dynamic representation of a temporal
graph can be built using our dynamic K2-tree representation.
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• We studied the compact representation of RDF databases, a problem that
had already been tackled using K2-trees [ÁGBF+14] but was limited to
a static context. In Part II we make use of the dynamic representation
proposed to provide a dynamic alternative that supports the same queries.
Our experimental evaluation focuses on the comparison with the static version,
that was a very competitive alternative with state-of-the-art proposals. Our
results show that the overhead required by our dynamic representation is small
in most cases.

• Finally, in the third part of the thesis we study the representation of raster
data using the compact data structures developed in the thesis. We study
three different problems and provide specific solutions for each of them:

– We propose several alternatives for the representation of general raster
data, based on the different proposals presented in the thesis. All our
proposals answer the most important queries in the domain, including
queries restricted to a spatial window or to cells with a given value/range
of values. We design specific variants of the general data structures
for this problem: the MK2-tree1 is a simple representation based on
multiple K2-tree1 with specific set operations; the AMK2-tree1 is a
variant specific to this problem that optimizes queries involving ranges of
values; the K3-tree is applied directly, with specific algorithms; the IK2-
tree1, developed specifically for this problem, is a combination of the
IK2-tree with the K2-tree1 to provide better indexing properties. All
our representations have strengths in particular queries in this domain.
Additionally, we also propose two variants of the K2-treap especially
adapted to answer top-k range queries in raster data.

– We apply our proposals to the representation of time-evolving region
data, or moving regions. The same proposals used for general rasters are
applied to the representation of temporal rasters, with specific algorithms
and adjustments. Our representations can efficiently retrieve the state of
the raster or a spatial window in a given time instant or during a specific
time interval. As in the previous case, our proposals provide alternatives
for the representation, allowing a space/time tradeoff depending on the
characteristics of the dataset and the most relevant queries.

– We study the problem of querying raster and vectorial data together,
or join operations between raster and vectorial data. We provide
new algorithms to perform join operations between binary or general
raster datasets, represented using our variants, and vectorial datasets
represented using classic data structures. Our algorithms are simple to
implement and can work with the complete raster stored in main memory
thanks to the compact representation used. In addition to being smaller,
our solutions are also faster than simple representations that use an
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uncompressed representation of the raster even when the uncompressed
representation is stored completely in main memory.

13.2 Future work

In this section we devise some of the future work planned after this thesis. Due
to the characteristics of the work, with many small contributions and applications,
part of the main work has already been introduced in the summary of previous
chapters. In this section we summarize the most important lines of future work:

• A field with important challenges for our structures is the representation
of datasets with high dimensionality. We have shown that the K2-tree
can be extended to 3-dimensional problems and still provides a compact
representation in domains such as the representation of temporal graphs.
However, the partitioning algorithm and the need to store always groups of
Kn siblings even if few of them are active limits the application of the Kn-
tree as the number of dimensions is above 3 or 4. The problem of the arity of
the conceptual tree has been reduced with techniques based on our encodings,
such as the compression of unary paths, that aim to efficiently reduce the
space requirements in very sparse datasets, but we believe that more general
solutions would be interesting to guarantee the efficiency of our proposal.

• The K2-treap has been proved to be a very efficient solution to answer top-k
range queries in OLAP data and also in raster data. We believe that the same
philosophy of using a K2-tree-like data structure enhanced with summary
information in its nodes, that is also applied in the ttK2-tree proposed in
Chapter 9, can lead to new and interesting applications in other domains.
Therefore, we plan to design and test similar variants where K2-tree nodes
include other types of relevant information about the covered submatrix.

• We plan to study the improvement of our dynamic representation dK2-
tree with specific additions depending on the domain. Particularly, the
representation of RDF databases in a static context can be improved with
additional static indexes that significantly reduce query times in some
operations. However, the creation of dynamic versions of these indexes is
problematic due to the space requirements: while the static index provides
a reasonable increase in size, a dynamic index may require several times the
size of the static index to be used. A similar problem occurs in the case of
RDF with the management of a dynamic dictionary of terms, that associates
each subject, predicate and object with its id; this problem is satisfactorily
solved in a static context but an efficient fully-dynamic in-memory dictionary
is more challenging.
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• The dK2-tree representation is based on a B-ary tree that could easily be
stored in external memory. This would allow our representation to work in
domains where the relations are too big to be stored completely in main
memory even in compressed form. Our representation can be moved to
external memory with minimum changes, as all the information is blocked
and the rank information for each block is stored in the block itself. However,
the minimum access of a block per level of the conceptual tree seems like a
big drawback in terms of efficiency. We claim that our representation, even
for huge datasets, could be stored almost entirely in main memory. In this
case, a simple caching of blocks would allow us to use it when stored partially
in secondary memory, as only a reduced number of blocks would have to be
actually retrieved from external memory during queries. Nevertheless, we plan
to explore alternative representations of the blocks that allow a more efficient
retrieval of the tree in terms of I/O costs.

• Regarding the representation of spatio-temporal raster data, a challenge that
remains as future work is the possibility of creating differential snapshots
of the time-evolving region data. This would go in line with the diff-IK2-
tree proposal for temporal graphs introduced in Chapter 6, where differential
snapshots were used to reduce very significantly the space utilization at the
cost of increasing query times. However, the simple creation of differential
snapshots in this domain does not provide a better compression, because
compression of each snapshot depends heavily in the existence of large clusters
of 1s or 0s. In Chapter 10, the comparison between the MK2-tree1 and the
AMK2-tree1 showed that the reduction in the number of 1s to store in the
dataset does not necessarily imply a reduction in the space utilization in this
domain. However, the development of more efficient and compact differential
representations is still an interesting line of improvement, following the steps
of the OLQ and its family of spatio-temporal data structures but providing a
much more succinct representation of the data that can be navigated efficiently
like our K2-tree variants.

• Regarding the join algorithm with vectorial representations, we have proposed
our algorithm to join with the R-tree because it is probably the most used
representation for this kind of data. However, there are also compact data
structures for vectorial data (e.g., [BLNS13]). We believe new algorithms that
are able to work with a compressed representation also for vectorial data could
provide an interesting alternative for current approaches based on traditional
data structures.

• Finally, another future goal that covers all the thesis is the creation and
publication of a unified framework containing all our proposals and K2-tree
variants, so that they can be efficiently combined and used in any domain.
In this thesis we have combined the encodings developed in Chapter 5 with
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other data structures, like the Kn-tree or the IK2-tree, and we also used
them to create new variants of the K2-treap. However, other combinations
of our techniques, that have not been applied yet, can be easily built without
affecting the existing data structures and algorithms: the K2-treap can be
easily generalized to n-dimensional data replacing its K2-tree representation
by the appropriate Kn-tree variant, and the adaptations of the IK2-tree and
Kn-tree to the compression of regions of ones can be transparently adjusted
to use any of the different encodings proposed. Additionally, most of the
representations can be made dynamic directly using the dK2-tree, but a
more careful study of specific solutions is still future work: for example,
a dynamic representation of the IK2-tree can be obtained directly using a
dynamic bitmap representation, but specific solutions to efficiently access and
update the variable-length nodes could provide much better efficiency. Even
if most of the code is currently being reused and is easy to combine, the
publication of a complete set of tools that can be easily used is still work in
progress and could give more visibility to the new data structures we created.
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La representación comprimida de información ha sido una necesidad básica en casi
cualquier área de Ciencias de la Computación, y prácticamente desde sus inicios.
Aunque el total de espacio de almacenamiento ya no es un problema tan importante
hoy en día, dado que el almacenamiento en memoria secundaria (disco) es barato
y puede contener gran cantidad de datos, el tiempo de acceso es todavía un cuello
de botella muy importante en muchas aplicaciones. Tradicionalmente el acceso a
memoria secundaria ha sido mucho más lento que el acceso a memoria principal, lo
que ha llevado al desarrollo de representaciones comprimidas que puedan almacenar
la misma información en menos espacio.

Se ha dedicado mucho esfuerzo al desarrollo de estructuras de datos compactas
para representar todo tipo de información: textos, permutaciones, árboles, grafos,
etc. Las estructuras de datos compactas normalmente permiten un tiempo de
procesamiento más bajo que estructuras clásicas, simplemente debido a estar
almacenadas en niveles más altos de la jerarquía de memoria, con lo que aprovechan
la diferencia de velocidad en el acceso a distintos niveles de esta jerarquía.

En esta tesis nos centramos en la representación de datos multidimensionales,
particularmente en datos bidimensionales que aparecen en diferentes dominios en
forma de matrices/grids, grafos o relaciones binarias. Existen diversas estructuras
que permiten representar eficientemente este tipo de información. El wavelet
tree [GGV03] puede representar grids en los que cada columna contiene un único
elemento. El K2-tree [Lad11] es una estructura inicialmente propuesta para
representar la matriz de adyacencia de grafos Web y que puede representar en
general cualquier matriz binaria, aprovechando ciertas características en la matriz
(en particular, la agrupación de 1s) para obtener compresión.

El objetivo de esta tesis es el desarrollo de nuevas y eficientes representaciones
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de datos espaciales, típicamente grids bidimensionales o n-dimensionales, binarias o
de enteros. Para conseguir este objetivo, desarrollamos representaciones eficientes
que se aprovechan de características habituales en datos espaciales para reducir el
espacio utilizado, proporcionando al mismo tiempo métodos eficientes para procesar
la información almacenada sobre la representación comprimida. Gran parte de las
estructuras propuestas en esta tesis se orientan a la representación en general de
datos espaciales, pero también desarrollamos propuestas específicas para diferentes
ámbitos de aplicación.

Entre las aplicaciones de las estructuras propuestas se encuentran la repre-
sentación de bases de datos RDF, la representación grafos temporales, la repre-
sentación de datos OLAP y muy particularmente la representación de conjuntos
de datos raster en Sistemas de Información Geográfica (SIG), en los cuales la
información espacial se almacena como un conjunto de valores en una matriz o
rejilla regular. Dentro de este último campo, estudiamos la representación de
distintos tipos de datos raster: imágenes raster binarias, utilizadas tanto en SIG
como en procesamiento de imágenes para su almacenamiento y transmisión en faxes,
rasters generales (en los cuales cada celda de la rejilla contiene un número entero)
y rasters temporales, en los cuales se almacena la evolución de una única imagen
raster a lo largo del tiempo. Por último, y también dentro del ámbito de SIG,
proponemos nuevos algoritmos para consultar simultáneamente conjuntos de datos
raster (almacenados usando nuestras propuestas) y conjuntos de datos vectoriales
(almacenados usando una estructura clásica, el R-tree [Gut84]).

B.1 Metodología

En este trabajo se han estudiado diversos problemas relacionados con la repre-
sentación de datos multidimensionales, particularmente datos espaciales, y se han
propuesto soluciones a múltiples problemas. Como resultado se han obtenido
una serie de algoritmos y estructuras de datos que permiten representar datos
espaciales de diferentes características con soporte eficiente para consultas usuales.
El planteamiento seguido para obtener estos resultados ha sido el siguiente:

• Se realizó un estudio bibliográfico en relación a las representaciones existentes
de datos multidimensionales, tanto las estructuras de datos compactas
generales utilizadas para la representación de relaciones binarias como rep-
resentaciones específicas utilizadas en la representación de bases de datos
temporales, espaciales y espacio-temporales. El objetivo de esta parte era
adquirir el mayor conocimiento posible del estado del arte en estructuras de
datos compactas, la representación de datos espaciales y en particular las
soluciones existentes para la representación de datos en ámbitos de aplicación
como la representación de grids de valores en SIG. Es de destacar que este
estudio se realizó en distintas fases, comenzando por estructuras compactas
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para la representación de relaciones binarias como el wavelet tree o el K2-tree
para determinar sus limitaciones y posibles mejoras. A partir de este estudio
se analizaron las posibilidades de expansión a otras áreas de aplicación y se
estudiaron específicamente soluciones aplicadas en cada una de ellas.

• El análisis de estructuras generales para la representación de relaciones
binarias nos llevó a determinar las limitaciones existentes a la hora de
obtener una representación general que permita almacenar de forma compacta
datos multidimensionales aprovechando sus características específicas y con
acceso eficiente a la información. Centrándonos en particular en el K2-
tree, que ya había sido estudiado en diferentes dominios, quedaron claras
importantes limitaciones en una estructura de datos que por otra parte había
mostrado ser muy competitiva en varios dominios: las características del
K2-tree permiten una muy buena compresión de matrices binarias que sean
esparsas, particularmente si los 1s están muy agrupados. La compresión
eficiente de valores agrupados es interesante en datos espaciales, ya que es
una característica habitual, sin embargo las matrices no son necesariamente
binarias ni esparsas. Además, el K2-tree es una estructura de datos
esencialmente estática y sólo se había propuesto para datos bi-dimensionales.
Todas estas limitaciones nos llevaron al desarrollo de nuevas propuestas
que solucionasen cada uno de los problemas manteniendo las características
interesantes y deseables del K2-tree, como su buena compresión en la práctica
y la simplicidad de las operaciones de consulta sobre la representación
comprimida.

• Como hemos dicho, el estudio de las limitaciones en el K2-tree nos llevó al es-
tudio de nuevas representaciones basadas en la misma filosofía (representación
de una matriz mediante el particionamiento recursivo siguiendo una estrategia
similar a la de los quadtrees [Sam84]). La mejora de las distintas limitaciones
del K2-tree nos llevó al desarrollo por una parte de una versión dinámica
del K2-tree, una generalización para datos n-dimensionales y el desarrollo de
nuevas soluciones para la representación de datos espaciales que pueden ser
representados por matrices no necesariamente esparsas ni binarias, como es el
caso de datos raster en SIG o datos OLAP. El resultado de todo este desarrollo
fue una familia completa de estructuras, que pueden combinarse entre si y
aplicarse a nuevos problemas como la representación de grafos temporales o
datos raster temporales, también estudiados a lo largo de la tesis.

• Cada una de las propuestas se ha validado comparando su eficiencia bien
con versiones existentes y más limitadas de la misma estructura bien con
alternativas del estado del arte para solucionar el mismo problema. En
particular, mejoras al K2-tree como la generalización a datos n-dimensionales
o el K2-tree dinámico se comparan con el K2-tree original para evaluar la
calidad de las nuevas propuestas y mostrar la variación en relación con la
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estructura original, independientemente de sus aplicaciones. En las diferentes
áreas de aplicación, las variantes introducidas para la representación específica
de datos se evalúan analizando su comportamiento en comparación con
estructuras de datos alternativas en cada uno de los dominios.

B.2 Contribuciones y conclusiones

Como ya hemos adelantado, en esta tesis presentamos un grupo de estructuras de
datos diseñadas para la representación de datos multidimensionales. La mayor parte
de las propuestas están basadas en el K2-tree, una estructura de datos diseñada para
representar de forma compacta matrices de adyacencia muy esparsas como las que
aparecen en grafos Web. La mayor parte de nuestras propuestas intentan superar
alguna de las limitaciones de esta estructura, mejorando su funcionamiento para la
representación de matrices con otras características o ampliando sus funcionalidades
para ser utilizada en otras áreas. En esta sección describimos más detalladamente
cada una de las contribuciones individuales, incluyendo las áreas de aplicación de
cada una de ellas:

1. Nuestra primera contribución es el diseño, implementación y evaluación
experimental de estructuras de datos para la representación de grids o matrices
binarias, con la capacidad de comprimir de forma eficiente zonas con valores
similares (zonas de 0s o de 1s). Nuestra propuesta está basada en el K2-tree,
pero es capaz de comprimir matrices binarias en las cuales existen grandes
zonas de 0s y de 1s, por lo que no requiere que la matriz sea esparsa como
el K2-tree original. Nuestra propuesta puede ser denominada por tanto “K2-
tree con compresión de unos” o K2-tree1, dado que elimina la ineficiencia de
los K2-trees para comprimir matrices con grandes zonas de unos. Nuestra
propuesta conceptual permite distintas variantes o implementaciones. Todas
ellas permiten el acceso eficiente a regiones o celdas específicas de la matriz que
representan. Para mostrar su eficiencia, comparamos nuestra propuesta con
representaciones compactas de quadtrees, que son conceptualmente similares a
un K2-tree. Nuestros resultados muestran que nuestras variantes son similares
en espacio a las representaciones de quadtrees más compactas en el estado del
arte, y soportan una gran variedad de algoritmos para procesar o consultar la
matriz que no son habitualmente eficientes en las alternativas más compactas.
En particular, nuestras propuestas proporcionan algoritmos eficientes para
acceder a regiones específicas de la matriz, obteniendo tiempos de consulta
más rápidos que otras representaciones en mucho menos espacio.

2. Nuestra segunda contribución es el diseño e implementación de una estructura
de datos compacta para la representación de matrices multidimensionales, o
relaciones n-arias. Nuestra propuesta es una generalización de los conceptos
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en el K2-tree a problemas en más dimensiones, de donde sale su nombre Kn-
tree. Como parte del desarrollo de esta nueva estructura de datos también
analizamos alternativas al Kn-tree usando otras variantes del K2-tree: el
MK2-tree y el IK2-tree se basan en la descomposición de una relación ternaria
en una colección de relaciones binarias, que son representadas utilizando un
K2-tree por relación binaria (MK2-tree) o una estructura de datos que agrupa
una colección de K2-trees (IK2-tree). Analizamos el Kn-tree en comparación
con estas alternativas, comparando las áreas de aplicación recomendables
para cada una de ellas. Como prueba de concepto de la aplicabilidad
de la nueva propuesta, estudiamos la representación de grafos temporales
utilizando las diferentes estructuras de datos para relaciones ternarias: un
K3-tree (un Kn-tree para 3 dimensiones), y la representación del grafo en
todos sus instantes utilizando un K2-tree por instante de tiempo. Como
parte de esta evaluación también proponemos una variante del IK2-tree
que permite codificar diferencialmente la colección de K2-trees ahorrando
gran parte del espacio utilizado para representar el grafo temporal. Esta
estructura, que llamamos diff-IK2-tree, es una contribución de interés en
sí misma ya que es aplicable en general para representar colecciones de
datos similares. Nuestra evaluación experimental muestra que las distintas
representaciones son aplicables al problema y tienen distintas ventajas e
inconvenientes: mientras el K3-tree es simple y eficiente en consulta, el diff-
IK2-tree puede comprimir mucho más la representación si el grafo temporal
sufre pocos cambios.

3. Nuestra tercera contribución es el diseño e implementación de una rep-
resentación de matrices multidimensionales con soporte de consultas top-
k de rango (recuperar los k resultados más importantes, en este caso los
k resultados con valor más alto, en una región de la matriz). Nuestra
nueva estructura de datos se llama K2-treap y permite representar de
forma muy compacta matrices de valores, soportando al mismo tiempo
consultas top-k sobre la matriz completa o sobre una región cualquiera de
la matriz. Estudiamos empíricamente la eficiencia de nuestra estructura
utilizando matrices sintéticas y datos OLAP reales, una de las aplicaciones
más directas de este tipo de consultas. Comparamos nuestra propuesta con
una representación más simple basada en un MK2-tree y una representación
alternativa basada en wavelet trees. Nuestros resultados muestran que nuestra
propuesta es en general más compacta y más rápida que ambas alternativas
y obtiene buenos resultados independientemente de las características del
conjunto de datos, mientras el funcionamiento de las alternativas es más
variable.

4. Nuestra cuarta contribución es el diseño, implementación y evaluación
experimental de una nueva estructura de datos para la representación de
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relaciones binarias dinámicas. Nuestra propuesta, llamada K2-tree dinámico
o dK2-tree, supera la limitación del K2-tree original que sólo podía ser
aplicado a conjuntos de datos estáticos. El dK2-tree soporta todas las
operaciones de consulta del K2-tree pero además permite actualizaciones
de los datos en la matriz que representa, en particular cambiar el valor
de las celdas y añadir/quitar filas/columnas a la matriz. Comparamos el
dK2-tree con el K2-tree estático para mostrar que requiere no demasiado
espacio adicional y los tiempos de consulta son también bastante próximos
a la representación estática. También estudiamos la utilización de variantes
del dK2-tree que permitan compresión de matrices con grandes regiones de
unos (proporcionando una variante dinámica de la primera contribución)
y proponemos la aplicación del dK2-tree a la representación de bases de
datos RDF y grafos temporales. En la representación de matrices binarias,
mostramos que el dK2-tree puede representar imágenes raster binarias en
menos espacio que alternativas basadas en linear quadtrees, permitiendo al
mismo tiempo consultas más rápidas. En el caso de bases de datos RDF,
mostramos que el K2-tree dinámico requiere un espacio adicional reducido
sobre la representación estática y sus tiempos de consulta son competitivos.

5. Nuestra quinta contribución es el diseño, implementación y evaluación
experimental de nuevas propuestas específicas para la representación de datos
raster en SIG. Estudiamos 3 problemas específicos en este dominio, que pueden
verse como partes de esta contribución:

(a) Proponemos estructuras de datos para representar datos raster generales,
que permiten consultar valores en una región pero también consultas
avanzadas como obtener todas las celdas con valor dentro de un rango,
una consulta muy habitual en este dominio. Nuestras propuestas son
aplicaciones o variantes de propuestas ya presentadas, como el IK2-
tree (que combinamos con nuestro K2-tree1 para comprimir regiones
uniformes) o el K3-tree. Nuestras propuestas son muy compactas y
similares en estructura a alternativas existentes menos compactas, y al
mismo tiempo permiten resolver eficientemente consultas filtradas por
regiones espaciales o por valor de las celdas. Comparamos nuestras
propuestas entre sí y con alternativas existentes, mostrando las ventajas
de cada propuesta y demostrando que nuestras propuestas son más
eficientes en tiempo y espacio que alternativas existentes.

(b) Proponemos representaciones de datos raster temporales, similares a
las presentadas para datos raster generales, y mostramos que nuestras
representaciones son más compactas que las alternativas habituales
y permiten realizar consultas espacio-temporales de forma sencilla y
eficiente.
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(c) Proponemos nuevos algoritmos que permiten consultar de forma sin-
cronizada datos raster y datos vectoriales, utilizando nuestras propuestas
para datos raster y un R-tree para datos vectoriales. Estudiamos el prob-
lema tanto para datos raster binarios como generales, proporcionando
un algoritmo que permite reducir significativamente el número de nodos
del R-tree accedidos para realizar una consulta. En el caso de datos
raster generales, comparamos nuestra propuesta con alternativas basadas
en representaciones no comprimidas del raster, mostrando que nuestro
algoritmo es más rápido en general además de utilizar menos memoria.

El resultado global obtenido de estas contribuciones es una familia de estructuras
de datos similares, que combinamos entre sí y de las que mostramos gran cantidad de
variantes para problemas específicos. Las posibilidades de combinación de nuestras
propuestas ya estudiadas y las todavía no aplicadas muestran la flexibilidad de las
contribuciones para adaptarse a la representación de datos multidimensionales en
diferentes contextos.

B.3 Trabajo futuro

Como hemos dicho, la combinación de las diferentes propuestas en esta tesis da
lugar a una pequeña familia de estructuras con posibles aplicaciones en otras áreas
todavía no estudiadas. El hecho de proporcionar diversas estructuras estáticas y
una variante dinámica que podría utilizarse para obtener de forma más o menos
directa versiones dinámicas de otras variantes o combinaciones de las propuestas
también es un factor que consideramos puede abrir las puertas a nuevas áreas de
aplicación.

En relación con las estructuras propuestas, hay algunos aspectos que consider-
amos interesante seguir estudiando en el futuro de cara a mejorar el rendimiento o
la aplicabilidad de nuestras propuestas:

• La aplicación del Kn-tree a datos con muchas dimensiones, como ya hemos
expuesto, puede ser problemática. Algunas mejoras se han propuesto ya para
reducir el efecto del número de dimensiones en la compresión del Kn-tree,
como la compresión de caminos unarios presentada en el Capítulo 5. Sin
embargo la búsqueda de soluciones más generales para este problema es una
línea de investigación interesante.

• El K2-treap ha mostrado ser eficiente para resover consultas de tipo top-
k, y hemos propuesto algunas variantes para datos raster. Sin embargo,
creemos que el potencial de esta idea de enriquecer un K2-tree con información
adicional sobre las regiones puede ser mucho mayor, y estamos estudiando
otras representaciones basadas en la misma idea en las cuales otro tipo de
“resúmenes” se almacene en cada nodo, como el total de celdas con valor en
la submatriz.
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• La aplicación del dK2-tree en áreas como la representación de RDF es promete-
dora pero no proporciona una solución completa al problema. La utilización
de índices adicionales en un K2-tree estático hace que la representación sea
mucho más competitiva, pero la aplicación a un entorno dinámico es más
compleja. Lo mismo ocurre con la representación del vocabulario necesario
en una base de datos RDF, un problema complejo en un entorno dinámico.
Otra línea de trabajo futura relacionada con el dK2-tree es la búsqueda de
representaciones más eficientes para ser almacenadas en disco.

• En cuanto a la representación de datos raster temporales, la creación de
representaciones diferenciales, en la línea de nuestras propuestas para grafos
temporales, puede ser una mejora interesante, si bien como hemos mostrado
el uso de nuestras variantes con compresión de unos limita la eficiencia de esta
aproximación diferencial.

• Una ampliación interesante sobre nuestros algoritmos de consulta sincronizada
de datos raster y vectoriales sería la implementación utilizando estructuras
de datos compactas también para los datos vectoriales, lo que sería una
interesante alternativa a nuestra propuesta utilizando un R-tree.

• Por último, un trabajo pendiente es la creación y publicación de un framework
completo que incluya la familia de estructuras completa y proporcione un
método sencillo para su combinación y ampliación. Aunque en este punto
gran parte del código de las estructuras puede ser reutilizado de forma sencilla,
la creación de un entorno que permita el uso y combinación de las propuestas
de forma directa por cualquier usuario daría mayor visibilidad a nuestra
propuesta y permitiría su uso de forma más sencilla.
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