
 

Experimental and neural model analysis of styrene removal from 
polluted air in a biofilter 

 

Eldon R. Rene, María C. Veiga, Christian Kennes 
Journal of Chemical Technology & Biotechnology, Volume 84, Issue 7, July 2009  
Pages 941–948  
DOI: 10.1002/jctb.2130 
 

Abstract 

BACKGROUND: Biofilters are efficient systems for treating malodorous emissions. 
The mechanism involved during pollutant transfer and subsequent biotransformation 
within a biofilm is a complex process. The use of artificial neural networks to model the 
performance of biofilters using easily measurable state variables appears to be an 
effective alternative to conventional phenomenological modelling. 

RESULTS: An artificial neural network model was used to predict the extent of styrene 
removal in a perlite-biofilter inoculated with a mixed microbial culture. After a 43 day 
biofilter acclimation period, styrene removal experiments were carried out by subjecting 
the bioreactor to different flow rates (0.15–0.9 m3 h−1) and concentrations (0.5–17.2 g 
m−3), that correspond to inlet loading rates up to 1390 g m−3 h−1. During the different 
phases of continuous biofilter operation, greater than 92% styrene removal was 
achievable for loading rates up to 250 g m−3 h−1. A back propagation neural network 
algorithm was applied to model and predict the removal efficiency (%) of this process 
using inlet concentration (g m−3) and unit flow (h−1) as input variables. The data points 
were divided into training (115 × 3) and testing set (42 × 3). The most reliable condition 
for the network was selected by a trial and error approach and by estimating the 
determination coefficient (R2) value (0.98) achieved during prediction of the testing set. 

CONCLUSION: The results showed that a simple neural network based model with a 
topology of 2–4–1 was able to efficiently predict the styrene removal performance in 
the biofilter. Through sensitivity analysis, the most influential input parameter affecting 
styrene removal was ascertained to be the flow rate.  
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INTRODUCTION 

For many years, volatile organic compounds (VOCs) in the air have been shown to have 
detrimental effects on human health and the environment. Among the 188 VOCs 
classified under Title III of the Clean Air Act Amendments of 1990 (CAAA–90), 
styrene is one of the most frequently encountered solvents in many chemical industries. 
It is an important chemical feedstock, which is used commonly as a raw material for the 
synthesis of plastics, synthetic resins, butadiene–styrene latex, styrene co-polymers and 
unsaturated polyester resins.1 Due to improper practices and treatment, a substantial 
amount of vapours containing styrene are emitted to the atmosphere from process 
industries. Exposure to even low concentrations of styrene could cause contact-based 
skin inflammation, irritation of the eyes, nose and respiratory tract, and may induce 
narcotism.2 Thanks to increased attention from regulatory authorities, legislation 
controlling emissions of air pollutants has proliferated and treatment systems for 
successful operation and control of VOCs has emerged in recent years.3 

Biodegradation is a promising method for complete mineralization of VOCs into 
innocuous end products. In recent years, bioreactor configurations such as biofilters, 
bioscrubbers, biotrickling filters, rotating drum bioreactors, stirred tank bioreactors and 
membrane bioreactors have been studied and applied successfully to decontaminate 
VOC emissions.4 The simplicity in the operation of biofilters has often resulted in its 
emergence as the most practical treatment option.4, 5 Biofilters have proven to be 
effective in treating large volumes of VOCs at relatively low pollutant concentrations.4–
8 Several studies have shown that biofiltration is a suitable technology to treat air 
polluted with styrene and other related benzene compounds,1, 6, 8–10 but hardly any 
work has been published on artificial neural network (ANN) modelling of such air-
pollution treatment systems. 

The extent of biodegradation of pollutants in the filter bed depends primarily on waste 
gas concentration and composition, moisture content, microbial ecology and 
distribution, nutrient and oxygen availability, temperature and pH. A considerable 
amount of modelling work has been done with biofilters explaining the micro- and 
macro-kinetics of the degradation process.4, 5 These knowledge-driven models explain 
the underlying phenomenon of the biofilter system with a prior knowledge of sensitive 
physico-chemical and biological parameters such as microbial growth rate, biofilm 
thickness, overall mass transfer coefficient, partition, distribution and diffusion 
coefficients, Henry's rate constant, porosity, O2 consumption rate and biomass yield 
coefficient. However the accurate measurement of these variables in a biofilter involves 
elaborate experimentation that is not only complex, but also difficult. Hence under such 
circumstances, based on an assumption of the state variables or by conducting batch 
studies and with the aid of previously reported literature values, biofiltration researchers 
have been able to successfully develop appropriate models to describe the performance 
of biofilters. However, biokinetic constants (for example, µmax, Ks) reported in the 
literature may vary significantly, depending on the experimental conditions used to 
determinate those parameters.4 The most proficient way to overcome such practical 



limitation is to quantify or predict the performance of the system under consideration 
using knowledge gained from experimental trials and techniques capable of indicating 
the non-linearity of the process.11 These techniques, also called data-driven modelling 
strategies (borrowed heavily from Artificial Intelligence (AI) techniques), are based on a 
limited knowledge of the modelling process and can rely on the data describing the 
input and output functions. The concept of ANN modelling has widespread applications 
in the field of health and medicine, marketing, applied sciences and engineering.12 For 
instance, an ANN-based model was developed to simulate different types of biomass for 
a gasification process and demonstrated that the model-predicted profiles matched 
closely the experimental values.13 A model based on wavelet packet decomposition, 
entropy and neural networks was used to predict the long-term performance of a 
wastewater treatment plant.14 A three-layered neural network with the standard back 
propagation algorithm was used in their study and they found that the model was able to 
predict plant performance better. ANNs have been used to model a wide variety of 
environmental processes such as adsorption, odour monitoring, optimizing media 
constituents for lipase production, prediction of pollutant concentrations in atmospheric 
air and, only recently, biofilters.3, 15–18 Cluster analysis coupled with genetic 
algorithm was recently used to analyze the initial data subsets, and later, a multi-layered 
perception (MLP) with the following topology, 2–2–1 and hyperbolic transfer function 
(tanh) was able to predict the removal efficiency of an inorganic pollutant, i.e. H2S, in a 
biofilter packed with natural packing material; pig manure and sawdust.3 

The aforementioned literature and the strategies adopted suggest that neural network 
based models could efficiently make an abstraction and generalization of the process 
behaviour and play a complementary role to knowledge-driven models. The present 
report is the first one applying an ANN to a biofilter packed with a synthetic carrier 
material and degrading a volatile organic compound, i.e. styrene, from polluted air. The 
input and output parameters for building the neural network model were chosen based 
on suggestions given in the literature,3 where two measured variables, i.e. inlet 
concentration (g m−3) and unit flow ( , h−1), were used as the inputs and removal 
efficiency (%) as the output parameter for the model. 

 

 

 

 

 

 

 

 



LIST OF SYMBOLS 

Q Gas flow rate (m3 h−1) 

V Volume of the filter bed (m3) 

Cgi and Cgo Inlet and outlet styrene concentrations, respectively 
(g m−3) 

NI Number of neurons in the input layer 

NH Number of neurons in the hidden layer 

NO Number of neurons in the output layer 

Od Desired output vector 

Op Predicted output vector from neural model 

 Normalized value for the variable 

Xmin Minimum value of the variable 

Xmax Maximum value of the variable 

NTr Number of training vectors 

NTe Number of testing vectors 

η Learning rate 

E Global error function 

ε Number of training parameters presented to the 
network 

α Momentum term 

Wij Connection weights 

Tc Training count 

R2 Determination coefficient 

Ymodeli Predictions made by the model 

Yobservedi Observed true values from experiments 

N Number of cases analyzed 

Ȳ Average value 

SY Standard deviations 

Ski(p) Sensitivity of a trained output 

p Number of training patterns 

 



NEURAL MODELLING STRATEGY 

The ANN consists of a set of highly interconnected, yet simple processing units 
commonly referred to as neurons or nodes that are responsible for executing the 
prescribed rudimentary computation. These neurons are arranged in a series of layers, 
i.e. input, hidden and output layer of the ANN architecture. The neurons in the input 
layer represent the set of parameters that are likely to influence the predicting variable, 
namely removal efficiency (RE %) in this study. The number of hidden layers can be 
varied depending on the complexity of the relations between the input and output 
variable. It has been shown that a network architecture with one hidden layer can 
approximate any continuous function.3, 19 The optimum number of neurons in the 
hidden layer is normally estimated by trial and error. The output layer corresponds to 
the output from the network and the number of neurons in this layer is equal to the 
number of variables to be predicted. The architecture of a three-layered ANN as 
employed in this study is shown in Fig. 1. The input layer consists of two neurons (NI = 
2) that are connected to the neurons in the hidden layer (NH) and subsequently from the 
hidden layer to the output layer (NO = 1). Each of these input data (χi) are transformed 
by multiplying with a connection weight (Wij) and a threshold value (θj) to generate 
data to the hidden layer. Each neuron in the hidden layer receives the weighted outputs 
from the preceding layer, and then feeds it through a transfer function to generate the 
neuron input, Ij and then the desired output. This is given by  

(1) 

 

Figure 1.  

Schematic of a multilayer perceptron used for predicting removal efficiency of biofilter. 

INFLUENCE OF INTERNAL NETWORK PARAMETERS 

The process of developing the best network architecture involves a number of network 
specifications to be optimized; the number of neurons in the hidden layer (NH), the 
learning rate (η), epoch size, momentum (µ), the processing element activation function, 
training count (Tc) and the training algorithm. 



The minimum number of neurons (nodes) in the hidden layer can be equal to or greater 
than the number of inputs to the network. However, the optimum number of neurons is 
generally estimated by trial and error. In certain cases, general guidelines such as those 
given by Hecht–Nielsen20 below can be followed to choose the upper limit for the 
number of neurons in the hidden layer.  

(2) 

A lot of effort has been made in recent years to develop procedures that automatically 
adjust the number of neurons during network training, so as to determine the smallest 
network that is capable of capturing the relationships between different parameters.21 
The rate at which the ANN learns the given pattern depends on several controllable 
parameters, among which the learning rate is very crucial. The amount a particular 
weight connection changes is proportional to the learning rate, η, which in turn affects 
the size of steps taken in weight space.22 If η is too small, the algorithm will take a long 
time to converge, and conversely, if η is too large, the network would go through large 
oscillations during training and never converge. Most learning functions have some 
provision to change the learning rate and this value remains fixed during the training 
process.23 This term is usually positive and varies between 0 and 1. If this value is more 
than 1, it is easier for the learning algorithm to overshoot in correcting the weights and 
one would notice more oscillations in the error surface.24 Hence sufficient care should 
be taken when choosing this parameter. 

The momentum term µ accelerates the convergence of the error during the learning 
process and is the most popular extension of the back propagation algorithm. This term 
simply adds a fraction of the previous weight update to the current one and is often 
related to the learning rate. High η and µ values can accelerate convergence towards a 
local minimum with huge steps, whereas small η values with high µ can lead to 
divergent behaviour during training.22, 24 This value ranges from 0–1 and is normally 
determined by trial and error for a given network.25 

The activation function, denoted by f(x), defines the output of a neuron in terms of the 
induced local field x. Three basic types of activation functions are normally envisioned 
during the development of networks for prediction purposes; linear, hyperbolic tangent 
and sigmoid.26 The most commonly used activation function within the neurons for 
complex biological systems is the logistic sigmoid function, which takes the form  

(3) 

The standard back propagation neural network (BPNN) developed by Rummelhart et 
al.27 is the most popular method of optimizing the connection weights during network 
training. This process involves adjusting the weights of the connections in the network 
so as to minimize the difference between the output vector predicted by the trained 
network and the desired (experimental) output vector. Hence when a training vector 



sample is presented to the network, the global error function (E) is calculated according 
to  

(4) 

In the BPNN, the error of the output layer in the network propagates backward to the 
input layer through the hidden layer to obtain the final desired output. During the 
learning process, the connection weights are adjusted using a form of the generalized 
delta learning rule in order to minimize the error function, E and obtain the desired 
output from a given set of inputs. The connection weights (Wij) are updated using the 
gradient descent algorithm,24 which can be represented in the form  

(5) 

The value of ε was kept constant at 100 during the training process. The closeness 
between experimental and model-predicted outputs was evaluated by computing the 
coefficient of determination values3 as below:  

(6) 

The experimental data collected from the biofilter were also normalized and scaled to 
the range 0 to 1, so as to suit the transfer function in the hidden (sigmoid) and output 
layer (linear):  

(7) 

MATERIALS AND METHODS 

Microbial seed 

A mixed microbial culture obtained from petrochemical refinery sludge was used to 
inoculate the biofilter. This was done by filling the biofilter with the sludge and draining 
it after 12 h. The procedure was repeated several times until visible biomass was noticed 
on the surface of perlite. 

Biofilter construction and experiments 

The biofilter was made of glass having a diameter (ID) of 10 cm and 70 cm in height. 
The biofilter was packed with sieved perlite particles (4–6 mm) to give a total working 
volume of 5 L. A perforated plate at the bottom provided support for the packing while 
another plate at the top acted as a distributor for gas flow and mineral salt media 
addition. Gas sampling ports sealed with airtight rubber septa were provided at equal 
intervals along the biofilter height. The bed moisture was maintained constant by 



periodic, bi-weekly, addition of fresh mineral salt medium from the top.6 During the 
operation, the relative humidity of the air stream was maintained at 95 ± 3%. 
Experiments were carried out by varying the flow rates of the styrene vapors and 
humidified air independently to get different initial concentrations and residence times 
in the biofilter. The biofilter was operated in a downflow mode. Gas samples were 
collected from different ports and analyzed for residual styrene and CO2 concentrations. 

Analytical methods 

Styrene concentration in gas samples was measured by gas chromatography on an HP 
5890 (Agilent Technologies, Spain) gas chromatograph (GC), using a 50 m TRACER 
column and a flame ionization detector (FID). The flow rates were 30 mL min−1 for H2 
and 300 mL min−1 for air. Helium was used as the carrier gas at a flow rate of 2 mL 
min−1. The temperatures at the GC injection, oven and detection ports were 150 °C in 
all three cases. CO2 was analyzed with a HP 5890 gas chromatograph equipped with a 
thermal conductivity detector (TCD), using a Porapack Q column (1/8″ diameter × 2 
m). The injection and oven temperatures were 90 and 25 °C, respectively, with the TCD 
set at 100 °C. Relative air humidity was measured using a Lufft thermo-hygrometer, 
model C-210 fitted with a flexible sampling probe (G. Lufft Mess- und Regeltechnik, 
GmbH, Germany). 

Biofilter performance parameters 

Inlet loading rate, removal efficiency and elimination capacity were used to evaluate 
biofilter performance, using the equations defined below:  

(8) 

(9) 

(10) 

Software used 

ANN-based predictive modelling was carried out using the shareware version of the 
neural network and multivariable statistical modelling software, NNMODEL (Version 
1.4, Neural Fusion, NY). The same software was also used to generate contour plots and 
carry out sensitivity analysis. 

RESULTS AND DISCUSSIONS 

Effect of operating conditions on biofilter performance 

The biofilter was initially acclimated to styrene by passing low pollutant concentrations 
and low gas flow rates (0.15 m3 h−1) for several days, which allowed enough biomass 
to gradually colonize the packing material. Scanning electron microscopy was used to 



visualize the perlite particles colonized with microbial populations under steady-state 
conditions. These images (Fig. 2) clearly show the dominant presence of fungi as 
potential styrene oxidizers. The degree of acclimatization depends primarily on the 
adaptive capability of the microorganisms inoculated on the perlite, substrate 
concentrations, nutrient concentration and its availability and other necessary 
environmental conditions. 

 

Figure 2.  

SEM micrographs of biomass grown on the surface of the perlite packing material, 
showing the highly dominant presence of fungi. 

The combined effect of styrene inlet concentration and gas flow rate was then 
investigated in different phases of continuous biofilter operation, that corresponded to 
residence times varying between 20 s and 120 s. Thus, after day 43, once enough 
biomass was attached to the carrier material, different empty bed residence times 
(EBRT) were used, while modifying the feed concentration in each case, in order to 
evaluate the effect of those parameters on the elimination capacity and maximum 
performance of the reactor. The EC, which reflects the capacity of the biofilter to 
remove pollutants, is plotted for the different EBRT, i.e. different gas flow rates, as a 
function of the inlet styrene concentration in Fig. 3. Though there were fluctuations in 
the EC values during start–up, under steady state conditions, a linear relation between 



the two variables was observed with a maximum EC of 260 g m−3 h−1 (RE = 100%). 
The results from this study are relatively high compared with other studies reported in 
the literature using biofilters for styrene biodegradation, which could be due to the 
dominant presence of fungi, as shown in Fig. 2. Indeed, it has been reported that fungal-
dominant biofilters allow a better performance to be reached than is usual for 
hydrophobic VOCs.28 

 

Figure 3.  

Elimination capacity profiles versus inlet pollutant concentrations, at different EBRT 
(i.e. gas flow rates): (A) 20 s, (B) 40 s, (C) 60 s, (D) 120 s. The dotted straight line 
denotes100% removal efficiency. 

In order to understand the styrene elimination mechanism within the reactor, the 
concentration profile at different bed heights was measured at a constant loading rate. 
The results indicated that styrene removal was more efficient in the upper section of the 
filter bed than in the lower section. Nearly 40% of the styrene was removed in the first 
section followed by 30% in each of the other two sections. This may be due to a higher 
concentration of microbial populations and higher moisture content in the upper section 
of the filter bed (data not shown). 

Neural modelling 

A neural network based predictive model was developed for the biofilter with inlet 
concentration and unit flow as the model inputs and RE as the sole model output. The 
entire experimental data were divided into training (NTr—75%) and test data (NTe—
25%), leaving behind the quasi-steady-state data during initial biofilter acclimatization 
(days 1–43). The test data was set aside during network training and was used only for 
evaluating the predictive potentiality of the trained network. The basic statistics of the 
variables for the training and test matrix are shown in Table 1. 

 



 

Table 1. Basic statistics of the data matrix used for ANN model development (a) 
training and (b) test data 

 Basic statistics of the training data 

(a) Variable N Mean Std Dev Minimum Maximum Sum Sq 

Concentration, g m−3 115 4.19 3.83 0.034 17.25 482.64 

Unit flow, h−1 115 71.73 57.26 30 180 8250 

Removal efficiency, 
% 

115 86.61 20.38 20.99 100 9961.02 

 Basic statistics of the test data 

(b) Variable N Mean Std Dev Minimum Maximum Sum Sq 

Concentration, g m−3 42 3.644 2.42 0.52 11.58 153.08 

Unit flow, h−1 42 64.28 51.14 30 180 2700 

Removal efficiency, 
% 

42 82.45 25.53 25.23 100 3463.16 

The number of neurons in the input layer (NI = 2) and output layer (N0 = 1) were 
chosen based on the number of input and output variables to the network. A detailed 
study on the effect of internal network parameters on the performance of back 
propagation networks19 and the procedure involved in selecting the best network 
topology has been described elsewhere.22 However, in most instances, literature 
suggests the use of a trial and error approach where the performance goal is set by the 
user.29 The best network architecture was chosen (Table 2) based on the maximum 
predictability of the network for the test data by analyzing values of the coefficient of 
determination.3 

 

 

 

 

 

 

 



Table 2. Best values of network parameters used for training the network 

Training parameters Value 

Training count 22 000 

Number of neurons in input layer 2 

Number of neurons in hidden layer 4 

Number of neurons in output layer 1 

Learning rate 0.8 

Momentum term 0.8 

Error tolerance 0.0001 

Training algorithm Gradient descent algorithm 

Number of training data set 115 

Number of test data set 42 

The model was trained using different combinations of these network parameters so as 
to achieve maximum coefficient of determination (R2) values (target value = 1, i.e. 
100% correlation between measured and predicted variables). This was achieved by a 
vigorous trial and error approach by keeping some training parameters constant and by 
slowly moving the other parameters over a wide range of values. The R2 value was 
0.973 during training (sum square error, SSE—0.000786), while for the test data it was 
slightly better at 0.98 (SSE—0.000691). Hence, only about 2% of the total deviations 
could not be mapped by the model for RE profiles. From Figs 4 and 5, it can be seen 
that data points before 20 show some differences between measured and predicted RE 
profiles. During this step of continuous operation in the biofilter (days 53–63), the inlet 
concentration to the biofilter was suddenly increased from 0.5 to 4 g m−3 after the 
acclimatization step, where a sudden deterioration in the performance was ascertained. 
However, in the later steps, the biofilter was able to re–acclimatize to this sudden shock 
load within a few days and restored its performance completely. This sudden and 
unexpected decrease in removal profiles would have caused an impact in the neural 
networks learning/generalization pattern while predicting the performance parameter. 
However, at the highest flow rate tested in this study (days 163–190, 0.9 m3 h−1) and 
when the concentration was increased from <0.7 to 4.8 g m−3, the loading rates were 
sufficiently high (877 g m−3 h−1) that just 30% of the incoming styrene was removed. 
For this case, the prediction power of the neural network was good without any 
discrepancies, showing its ability to learn how to do tasks based on the data given for 
training or initial experience gained from successive training counts. Overall, the ANN 
model developed was able to demonstrate high accuracy in predicting the various 



operating conditions of the biofilter remarkably well. This implies that the degree of 
complexity of the data for the given network is not high, so that a simple MLP is 
sufficient to map a relation between the given inputs and the output. Figure 6 depicts 
several contours of RE (%) generated from the ANN model predictions due to changes 
in unit flow and inlet concentration to the styrene degrading biofilter. It can be seen that, 
to achieve high removals, it would be necessary to operate the biofilter under the 
following conditions: low concentrations (<2 g m−3), irrespective of the range of unit 
flows (30–180 h−1) and high concentrations (>5.8 but <13 g m−3) and unit flow <40 
h−1 (Q—0.2 m3 h−1). Practically, this would be feasible because, as envisaged earlier, 
the biofilter was able to perform well with 100% RE under different flow conditions 
(for EBRTs varying between 20 s and 120 s) and at the highest EBRT tested in this 
study (120 s) the critical load of the biofilter was 260 g m−3 h−1. The connection 
weights and bias term obtained for the interconnections between different neurons in 
different layers of the MLP are shown in Table 3. 

 

Figure 4.  

Prediction of removal efficiency after network training. 

 

Figure 5.  

Prediction of removal efficiency after network testing. 

 



Figure 6. Contour plot showing the effect of inlet concentration and unit flow on the 
predicted removal efficiency after ANN training. 

Table 3. Hidden later connection weights and bias term after network training 

Input to hidden layer weights 

Variable HID001 HID002 HID003 HID004 

V1 9.535 − 5.379 − 13.806 9.912 

V2 14.910 − 5.997 8.523 − 15.415 

Bias − 11.661 − 0.484 − 3.600 − 2.731 

Hidden to output layer weights 

  V3    

HID001 − 2.265       

HID002 − 1.030       

HID003 4.433 V1-Inlet concentration  

HID004 0.946 V2-Unit flow  

Bias 1.337 V3-Removal efficiency  

By estimating the absolute average sensitivity (AAS), a sensitivity analysis was carried 
out using the software NNMODEL to identify the most influential parameter affecting 
the reactor performance. The sensitivity is calculated by summing the changes in the 
output variables caused by moving the input variables by a small amount over the entire 
training set.30 The absolute value average sensitivity matrix, Ski, abs can be defined as 
follows:  

(11) 

These AAS values were 0.5250 and 0.4249 for unit flow and inlet concentration, 
respectively. The higher values for unit flow than concentration suggest that unit flow 
change has a significant and greater influence on the RE of the biofilter than 
concentration. This result also matches the sensitivity analysis results carried out by 
Elias et al.3 and corroborates the observed decline in RE at higher flow rates in this 
study. For waste gas treatment systems, it has been reported that at higher gas flow rates 
(high turbulence), shear force effects causes a decrease in the biofilm thickness. Hence 
resistance decreased and mass transfer was enhanced.31 The critical load for 100% 
removal in the biofilter at an EBRT of 20 s (flow rate 0.9 m3 h−1) was just 200 g m−3 



h−1, where for high styrene loading rates at this EBRT, the RE dropped significantly to 
values as low as 25%. 

In general, the predictive ability of the proposed model using the concepts of artificial 
intelligence and the back propagation algorithm was high at the 95% confidence interval 
and meaningfully significant, as ascertained from the R2 value between the measured 
and predicted outputs in the training and test data. This work could enable the 
intensification of research into neural networks for evaluating pilot scale biofilters, 
besides helping to optimize their state variables. 

CONCLUSIONS 

The following conclusions are based on the results of the data collected from the perlite 
biofilter and its performance modelling using neural networks.  

• 1.Continuous experiments conducted in a perlite biofilter showed promising 
results for the treatment of high concentrations of off gas emissions containing 
styrene. The inlet loads were varied between 60 and 1380 g m−3 h−1, reaching a 
high maximum EC of 382 g m−3 h−1, which could be due to the dominant 
presence of fungi. 

• 2.Under the process conditions tested, for loading rates less than 260 g m−3 h−1 
RE as high as 100% were achieved. 

• 3.The results from ANN-based data-driven modelling shows that the biofilter 
performance, in terms of RE, can be predicted with high confidence level (95%) 
using easily measurable operational parameters, namely, inlet concentration and 
unit flow. The model was adequately trained with the lab scale biofilter data and 
tested with a separate data set. 

• 4.A three-layered MLP was sufficient to describe the process behavior using 
connection weights and bias terms (thresholds). The suitable network 
architecture of the model was determined through a vigorous trial and error 
approach. The computed determination coefficient (R2) values for the test data 
set show high correlation between the predicted and measured performance 
values. The best topology was found to be a simple three-layered network, 2–4–
1, achieved at the following settings of internal network parameters: learning 
rate (0.8), momentum (0.8) and a training count (epoch size) of 22 000. 

• 5.The robustness of the ANN was further explored with a sensitivity analysis of 
the input parameters, which showed that unit flow was a more critical factor 
affecting biofilter performance, than the inlet concentration. The results from 
this study could be used to assess, monitor and design control strategies for 
continuously operated biofilters treating high concentrations of VOCs. 
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