
A. Verschoren
University of Antwerp
Department of Mathematics and Computer Science
Antwerp, Belgium
alain.verschoren@ua.ac.be

Towards a computer science program:
adventures of a mathematician
in the world of informatics

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/61911925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

When I received the invitation to participate to the workshop “High standards in
research and teaching in computing engineering and related subjects – some reflec-
tions” organized by José Luis Freire in A Coruña, I was flattered but also somewhat
surprised. Of course, I have been knowing José Luis for many years and even if I
have been acquainted with certain subjects within computer science, I still remain a
mathematician, even a rather pure mathematician. From this point of view, I might
definitely not be the best placed person to answer fundamental questions about
good practices within the field of computing engineering. It was only later, when
glancing through the list of participants and speakers, that I realized that the aim
of the meeting was actually to bring together people with different background
and experience, to interact on the subject and thus to attain extra insight and ideas
based on this confrontation.

To say the least, even the subject itself of the meeting was somewhat controversial.
It has been clear for decades that the relationship between computer science and
software engineering is somewhat unclear, even at the level that it remains unde-
cided which topics software engineering and computer science are (supposed to
be) dealing with. Specialists claim that computer science should be studying the
properties of computation in general, whereas software engineering should con-

16 A. Verschoren

centrate on the design of specific computations to achieve practical goals. A defini-
tion which is far from perfect, but which has at least the merit that it separates the
subject(s) into two separate and complementary disciplines.

One should also not forget that computer science, in its broadest sense, has at
least two academic roots, one situated within mathematics and with strong con-
nections to logic and computation theory, the other within electrical engineering
with somewhat more emphasis on hardware aspects. These ambivalent roots do
not make things much simpler, although it remains clear that computer science
departments usually find their origin in engineering-based departments, whereas
computational science departments remain much more related to mathematics de-
partments. Moreover, both types of department invest serious efforts in trying to
align their education and research.

2. First steps

How does one develop a computer science curriculum? This might appear to be a
theoretical, academic1 question, but at our university, it was a very concrete one,
back in the eighties.

Maybe some background should be included to understand the situation. The Uni-
versity of Antwerp used to be composed of three independent sub-universities. First
there was RUCA (the “Rijksuniversitair Centrum Antwerpen”), a state university,
which had its origin in an economic highschool which was started in 1852. It of-
fered undergraduate courses in sciences and medecine, and had a complete faculty
of applied economics. On the other hand, there was UFSIA (the “Universitaire
Faculteiten Sint Ignatius Antwerpen”), a jesuit university, also having its origin in
an economic highschool, started at about the same period. It offered undergraduate
courses in humanities, and had a complete faculty of applied economics, in direct
competition with its RUCA analogue. Finally, there was UIA (the “Universitaire
Instelling Antwerpen”), a ‘pluralistic’ university, which only started in 1971 and

1 Academic: theoretical or hypothetical; not practical, realistic, or directly useful: an academic
question; an academic discussion of a matter already decided.

17Towards a computer science program

was aimed at graduates and PhD’s, both in sciences and humanities. Education at
UIA was very innovative at the time, based on a trimester system, a credit system, a
limited number of contact courses but a definite emphasis on active education and
self-study, a system that is nowadays widely adapted in Flanders.

These three universities were fused into a single one (the “UA”, the University of
Antwerp) in 2003, after years of dialogue – a non-trivial task in view of the com-
petitition between both Faculties of Applied Economics and the different ‘color’ of
RUCA and UFSIA (state versus private-catholic).

We had a department of mathematics at UIA in those days, the good old days,
where at the graduate level several options were possible: pure mathematics, ap-
plied mathematics, mathematical physics and computer science.

Of course, even then, all undergraduate students in mathematics had to follow
some courses in computer science, but this essentially amounted to elementary
programming, some basic ideas about computability or Turing machines and the
use of computing techniques within applied mathematics. And that was it, except
when you chose to continue at the graduate level, still within mathematics, in the
direction of proper computer science.

At the undergraduate level, we did not have genuine computer science at that time,
but we offered degrees in dentistry, that is, until a fire destroyed two of the main
labs at RUCA. This forced us to make some choices. One possibility was to rebuild
the labs and reinvest in dentistry, but dentistry was not really a very successful di-
rection at our university – how many dentists does a country need? Another option
was to stop offering courses in dentistry and exchange this for something else, and
this was exactly what we did. You have to know that our university was by Belgian
law an incomplete university - we were not allowed to offer courses in civil engi-
neering or psychology, for example - and, by the same law, we could only start a new
direction in exchange for another one.

So RUCA decided on an undergraduate degree in computer science. We started
it within the mathematics department, before making it an independent degree,

18 A. Verschoren

mainly to be compatible with what happened at UIA, where computer science re-
mained an option within mathematics.

3. A program?

A program had to be developed. Within a department of mathematics and, ergo,
by mathematicians and a minority of already present computer scientists. But even
these were mainly dealing with rather theoretical topics: they worked on topics
like theoretical databases, formal grammars or logic. We of course hired extra staff,
but highly in function of the program we were developing. A nice program, but a
complete fiasco: the percentage of students that failed the first year was large. No,
it was huge! The reason was probably a lack of efficiency and disinformation: most
students had a pc at home, they were accustomed to use Microsoft products, and
sometimes they also had some elementary ideas about Basic or Pascal. And that was
about it. They had a complete misconception about what computer science was
about (“Computer science is no more about computers than astronomy is about
telescopes”) or: they just wanted to write programs (but had no idea about the
algorithms behind it). Moreover, at that time (and even nowadays!) computer sci-
ence was poorly taught at secondary schools, classes limiting themselves to teaching
students how to use specific programs.

But they, our future students, thought that they were already well prepared – and
we did not really contradict them. On the other hand, stemming from a mathemat-
ics department, we thought that we should include a lot of math in the first and sec-
ond year programs. Of course: all of us, while thinking about the “ideal” computer
science program had taken a look at what we thought was some kind of computer
science bible: Knuth’s marvelous book [1], a book, or a series of books, dealing
with the fabulous applications of mathematics in computer science. A book full
of number theory, Fibonacci sequences, formal power series and so on, definitely
fundamental mathematical tools which appeared to be essential if one wanted to
write his or her first computer program!

All this seemed marvelous at the time: we offered students computer science from
within a department of mathematics, and we could continue teaching what we
taught before - algebra, analysis, operator theory and so on - but now with a defi-

19Towards a computer science program

nite insight: even pure mathematics has become widely applicable with the rise of
of computer science. What we did not realize at the time was that our students and
future students maybe did not exactly know what computer science was about, but
that there was one thing which they definitely did not want, at least not too much,
and that was: mathematics!

Of course, this was not the only reason our start was a complete fiasco. Not being
“genuine” computer scientists, it was very hard for us to judge the exact time that
a student would need to spend on the concrete projects we suggested to them. As
told before, even at that time, we tried to use innovative educational techniques,
including projects and group work. We included this point of view in the computer
science curriculum, and tried to complement our rather formal, mathematical ap-
proach with lots of individual practical activities, but not being experts, it was really
quite impossible for us to judge the time that would effectively be spent on these
activities by the students. It should not come as a surprise that the projects were
much more time consuming than we expected.

To put it briefly: after our first year’s experiment our students learned something
(a lot even), but so did we:

4. Lesson 1

 – Explain clearly what your topic is about before students start; be honest! Do
not try to attract as many students as possible: emphasize that the subject
might well be difficult, their previous preparation insufficient and that they
will have to work hard!

 – Use mathematics as a tool, but do not exaggerate: students interested in com-
puter science are interested primarily in computer science, and not in math-
ematics, even if mathematics is a marvelous tool (and a nice subject, by the
way – as a mathematician, I should know!).

 – Try for a good mix between theory and practice, convince the ‘hard-liners’
that there is nothing wrong with applying their nice theoretical results, con-
vince the ‘applied’ people that there is nothing wrong in looking for theoreti-
cal foundations and tools.

20 A. Verschoren

 – Do not include too much mathematics, and if you do, explain why (there are
lots of connections with logic - refer to Turing machines, GÖdel - but also
algebra provides for applications).

 – Include lots of projects in your program, let them work and learn what it re-
ally is all about, but be sure that you know exactly how much time should be
spent on these projects.

5. Something about the author

I already mentioned above, in the introduction, that I am a mathematician, even
a pure mathematician (sorry!) - I am essentially working within the fields of ring
theory and algebraic geometry. The reason I was invited to the meeting probably
has something to do with the fact that I have also been dealing with computer sci-
ence the last two decades.

This was not really ‘on purpose’: at some moment some colleagues of mine asked
me whether I would be interested in contributing to a joint project on “Machine
Learning”. I said ‘yes’. For the wrong reason: I have been interested in new teaching
techniques for many years and I thought that the project would deal with compu-
ter assisted teaching. Quite on the contrary, it appeared the project was devoted
to developing artificial intelligence based techniques to make the computers more
‘intelligent’, not the user. I only realized this when it was too late, i.e., when I sat
face to face with an impressive Sparc Station, one Sun’s top nodge machines at the
time (this was part of the project), an excellent workstation running unix, and vi as
an editor. For the younger readrs: I am speaking about times when X-terminals and
graphical interfaces on unix machines were just on the brink of developing.

After the initial shock I indeed learned unix and C and C++ (and vi!) and started
to like the field. I read some stuff on AI, quickly grew into evolution based op-
timization techniques, and found myself after some time within the field of ge-
netic algorithms. Originally I concentrated on theoretical aspects of this subject,
but it quickly appeared that the techniques we developed (‘we’, that is the people
with whom I work in our ISLab (Intelligent Systems Lab)) were widely applicable
within economy, at the level of datamining, and proteomics. There is still a strong
collaboration on the mathematical, theoretical aspects of genetic algorithms with

21Towards a computer science program

some colleagues (in particular in La Coruña), but most output is nowadays quite
applied and really situated within biochemistry and work on large data-sets.

6. Something about genetic algorithms

The idea behind genetic algorithms is quite straightforward. Indeed, some func-
tions are just too difficult to optimize by ordinary, classical algorithms and tools,
for example due to exponential behavior in their growth. Moreover, sometimes we
do not really want to find (or: cannot find) ‘the’ maximum, but just need a reason-
able approximation. In situations like this, a solution may be found in the use of
evolutionary algorithms, like genetic algorithms, or techniques like simulated an-
nealing, which realize exactly what we need: they do not aim at finding the exact
maximum of a function but rather find in a polynomial time reasonable approxima-
tions of a maximal solution or even indicate its ‘structure’.

Most of these algorithms are based on a competition/cooperation model between
possible solutions of the optimization problem. Genetic algorithms work with
populations of binary strings representing possible solutions to the underlying op-
timization problem and let these populations evolve through competition between
these strings, based on ideas essentially stemming from Darwinism, including ‘sur-
viving of the fittest’ and genetic modification like cross-over or mutations.

The (surprising!) fact is that these techniques work, at least if we let the algorithm
run ‘long enough’ and if we include sufficient knowledge. Of course, there remain
some fundamental questions when applying a genetic algorithm, like: “How long
does it take before we find a reasonable approximation of the solution we are seek-
ing?”, i.e., “When do we stop the algorithm?”. This question is difficult, let us ad-
mit it, and its study involves statistical methods, Markov chains, Brownian motion,
differential equations and catastrophe theory, for example.

Another basic question is: “How can we see whether a function is difficult or easy
to optimize?”, a question which is, of course, tightly connected to the previous one.
Here we need to introduce some invariants which help to classify the functions to
be optimized into classes with predictable difficulty (‘GA-hardness’, as it is some-
times called). These invariants include notions like order, deception and epistasis.

22 A. Verschoren

The last invariant, epistasis, associates to every function a real number between 0
and 1, which for large classes of functions is an indicator of its level of difficulty, the
easy (linear!) functions having epistasis 0 and the more difficult functions having
epistasis closer to 1.

To introduce and study epistasis, one needs a large amount of linear algebra, con-
vex analysis and differential geometry. To give an example, from linear algebra, one
needs serious input dealing with:

 – matrices;
 – diagonalization, eigenvalues and spectra;
 – generalized (Moore-Penrose) inverses;
 – abstract vector spaces (in particular basis manipulation);
 – tensor algebra;
 – Walsh-Hadamard transforms (this is some kind of discrete Fourier transform

used in image compression, for example).

It appeared that, although the applications of these genetic algorithms are highly
applicable in concrete situations, one needs a serious mathematical background,
but also, within and without mathematics, a wide diversity of complementary tech-
niques.

When I started working on these topics, it was unclear which part of my math
background would come into the picture. I was unable to guess or predict where
the (possible) applications should or could be situated. Even more: to be able to
apply some of these techniques outside of their theoretical realm, one needs some
interdisciplinary background or better, at least someone who is able to translate
problems from biology, chemistry or economics into our language, be it mathemat-
ics or computer science.

From this I learned a new lesson:

23Towards a computer science program

7. Lesson 2

 – Take into account that your curriculum is not made for eternity: the qual-
ity of your program will not be evaluated by scholars but society and its de-
mands. On the other hand: do not forget that a university is supposed to
provide answers to questions which have not been raised yet - show some
initiative.

 – Stimulate students to think nonlinearly, in a creative way. Stress that there is
something like “serendipity” and that they should never believe that there is a
straightforward way of going from ‘A’ to be ‘B’. Do not trust mathematicians
who claim otherwise!

 – Stimulate “freedom of research”: include free space in your program to al-
low students to pick up topics from other disciplines if they want, and even
stimulate them. You never know when this comes in handy! Do not force
them, however: they wanted to study computer science in the first place.

 – Computer science should be treated from an interdisciplinary point of view.
This does not mean that all these interdisciplinary aspects have to be includ-
ed in the curriculum: seek advice from colleagues working in other disci-
plines when needed.

 – But beware:
•	 biologists (economists, physicists, chemists, sociologists, ...) some-

times (usually) do not understand what mathematics or computer sci-
ence is about or what these disciplines can do for them;

•	 computer scientists (and mathematicians) sometimes (usually) do not
know what biologists are talking about;

•	 so: one needs translators, people acquainted with both topics and
once the translation is made (this may take some time!), each group
can work in his own surroundings;

•	 concentrate on team building: it is preferential having a group of
experts working together than concentrating on everything but not
knowing a lot on anything.

 – Do include mathematics (but not too much and maybe not for everybody)!

24 A. Verschoren

8. Towards a genuine program

So, having experimented and learned a lot from facts and fallacies, we started
thinking and rethinking our program. It had to include and emphasize, but not too
much, interdisciplinarity, at least at the master’s level. Pedagogically we decided
to make our curriculum project-oriented and problem-based: do not teach them
before they ask, let them not be confronted with answers before the questions arise
naturally and give them the opportunity to make mistakes to learn from. Let us not
exclude involvement from industry, even if our program is pending somewhat more
on the theoretical side: most of our students will be hired by industry, anyway. And
finally, let us include as much flexibility as possible in our program: provide for a
quick start of the or a new curriculum, which should be open to easy modifications;
make the program central, not the individual courses (and ego’s).

They sometimes say in Flanders: “We moeten het warm water niet opnieuw
uitvinden”2, so we tried not to start from scratch this time but we looked at ideas
elsewhere.

In particular, we took into account the Joint IEEE/ACM Curriculum Guidelines
for Undergraduate Degree Programs in Computer Engineering, which define the
core knowledge areas of computer engineering as consisting of:

 – Algorithms
 – Computer architecture and organization
 – Circuits and signals
 – Database systems
 – Digital logic
 – Digital signal processing
 – Electronics
 – Embedded systems
 – Human-computer interaction
 – Operating systems

2 “Let us not re-invent hot water!”

25Towards a computer science program

 – Programming fundamentals
 – Social and Professional issues
 – Software engineering
 – VLSI design and fabrication
 – Computer Networking
 – Distributed Systems

Of course, we had to make a choice: although the program should include both
theoretical and practical aspects, it is impossible to work these out in full depth.
We decided upon a more theoretical approach and tried to combine mathematical
foundations, computation and data structures with concrete applications. We tried
to include a reasonable amount of optional courses. Students were to be guided
by their teachers in their choice of topics. The legal system in Belgium does not
permit us, however, to organize genuine “on-demand-teaching”: the curricula are
supposed to have a reasonable degree of uniformity and students are supposed to
have a comparable background when they finish their studies. Of course, there is
much more freedom at the graduate than at the undergraduate level.

The courses about computation theory and data structures were rather easy to de-
cide upon and would include topics like, for example, automata, languages and
grammars, computability and complexity on the side of computation theory and
analysis of data structures or algorithms on the side of data structures. Filling in the
mathematics part was surprisingly more complicated. We started with

 – logic
 – graph theory
 – data theory
 – category theory
 – numerical analysis
 – computational geometry
 – discrete mathematics

But what about topics like cryptography, numerical algorithms and computer alge-
bra? From my own experience, I recalled that one might also need linear algebra,
group theory, number theory, statistics, calculus and even representation theory,

26 A. Verschoren

system theory, differential equations, operational research and fuzzy logic. Should
all of this be included? Well, even with our math roots, we decided against it. Our
point of view was: let us offer the basics and if a student needs a particular topic
at some point of his or her career, it is only then that the necessary background
should be picked up. On the other hand, we wanted to leave sufficient free space
in our program to give our students the opportunity to included topics from other
curricula, even outside of the proper faculty of sciences or our own university. In
this way, they would be able to follow their own interests and ‘invest’ in the future.

During these discussions, we learned:

9. Lesson 3

 – Make some choices. Theoretical and applied computer science are hard to
combine. In particular, theoretical computer science is, in principle, more
suitable to be organized within a faculty of sciences, applied computer sci-
ence within a faculty of engineering.

 – Specialize, even within choice/options. There is no harm in making the con-
tents of your masters, even in the Bologna context, depend on the presence
of local specialists and local research. Do not try to be the best at everything
- you just cannot!

 – Evolve. A program is not made for eternity.
 – Work together with other universities. Attracting lots of students only realiz-

es part of your funding: more than 50 % of your income comes from research
activities. Combine competition and cooperation.

10. A program!

The bachelor part is essentially a scientifically funded introduction to several sub-
topics within the field of computer science, complemented by necessary ingredi-
ents from other fields like mathematics and physics. In includes the possibility to
acquire programming skills.

Starting from the first year, there is a strong emphasis on concrete projects and
team-work. In the second and the third year, there is already ample opportunity to

27Towards a computer science program

put personal accents in the program: more than one quarter of the program - the
so-called “profiling space” - can be filled in with optional courses. These may be
directed towards a specialization within computer science, as a preparation to a
further specialization at the master level, or towards a broadening of the student’s
scope by including topics not properly connected to computer science, like eco-
nomics or statistics.

The total amount of “contact hours” is about 600 hours per year. Exercises and ap-
plications are dealt with in small groups of students.

Bachelor 1
Introduction to programming 6
Discrete mathematics 9
Computer systems 6
Languages and automata 6
Data structures 6
Introduction to software engineering 6
Calculus 9
Computer networks 6
Computer graphics 6

Bachelor 2
Advanced programming 6
Machines and computability 6
Operating systems 6
Databases 6
Numerical linear algebra 9
Algorithms and complexity 6
Project: distributed computing 9
+ 12 to choose from:
Network applications 3
Physics 6
Programmation paradigms 6
Elementary statistics 3
General economy 3

At the master level, we offer 4 specializations, each of these totaling 120 credits
(roughly 600 hours per year):

 – Computational computer science
 – Computer networks and distributed systems
 – Data-bases
 – Software engineering

28 A. Verschoren

In each of these specializations, 30 credits are compulsory in the first year, 12 may
be chosen freely from a list of optional topics. Moreover, the students have to
choose between the options Entrepreneurship,

Bachelor 3
Thesis 9

Databases (XML + web technology) 6

Scientific programming 6

Software engineering 6

Computer architecture 6

Telecommunication systems 6

Philosophy and Ethics 3

+ 18 to choose from Bachelor 2 or:
Introduction to distributed systems 3

Data mining 3
Applied logic 3
Artificial intelligence 3
Advanced programming techniques 3
Formal techniques in software engineering 6
Network protocols 3
Image processing 3
Economy and entrepreneurship 3
Data structures and algorithms 3

Education or R & D’ (18 credits). The option Entrepreneurship is mainly aimed at
students who choose for a job position in the business world. Education is meant
for students who want a teaching position and R & D for students who aim at a
research career within the university or industry.

The program for the specialization “Computational computer science” looks as
follows:

Computational computer science:
Master 1
Compilers 6

Distributed systems 6

Modeling and simulating 6

Optimisation techniques 6

Computational finance 6

+ 12 to choose from (or other discipline)
Mathematical methods in image processing 3

Computational geometry 3

Multilevel and multi-grid methods 3
Computer linguistics 6
Cluster computing 6
Digital signal and image processing 6
Capita selecta in computational sciences 3
Computational neuroscience: machine learning 3
Wavelets 6
Optimalisation 6
Technical-scientific software 6
Deterministic and stochastic integration techniques 4

29Towards a computer science program

30 A. Verschoren

Option Entrepreneurship
Communication 6

Managing an organization 6

Financial management and legal aspects 6

Option Teaching
Introduction to education 3

Didactics of computer science 6

Practica/students/... 9

Option R&D
Scientific English 3
Communication 6
Science philosophy 3
Research project I 6

Computational computer science:
Master 2
Thesis 30

+ 12 to choose from (or other discipline)
Mathematical methods in image processing 3

Computational geometry 3

Multilevel and multi-grid methods 3

Computer linguistics 6

Cluster computing 6
Digital signal and image processing 6
Capita selecta of computational sciences 3
Computational neuroscience: machine learning 3
Wavelets 6
Optimization 6
Technical-scientific software 6
Deterministic and stochastic integration techniques 4

31Towards a computer science program

Option Entrepreneurship
Innovation and entrepreneurship 6

Process management 6

Option Teaching
Educational management 3

Practica/students/... 3

+ 6 to choose from:
Class management 3
Teaching ‘special’ groups 3
Stimulating thought process 3
Language and learning 3
Mathematical didactics 3
Option R&D
Research project II 6
+ 6 ‘personalized’ extra. 6

Distributed systems:
Master 1
Compilers 6

Distributed systems 6

Mobile and wireless networks 6

Prestation analysis and telecom
systems 6

Distributed computing paradigms 6
+ 12 to choose from (or other
discipline)
Advanced performance modeling 6
Lab mobile and wireless networks 3
Grid computing 6
Cluster computing 6
Seminar computer networks 3
Software for real-time and
embedded systems 4

Capita selecta in distributed
systems 5

Internet infrastructure 5
Multi-agent systems 4
Secure network and computer
infrastructure 4

32 A. Verschoren

Data-bases:
Master 1
Compilers 6

Distributed systems 6

Advanced data-base systems 6
Recent trends in data-bases 6
Data-mining 6
+ 12 to choose from (or other
discipline)
Mathematical methods in image
processing 3

Data-base security 3

Advanced AI techniques 6

Project data-bases 6

Statistical methods and data-
analysis 4

Text-based informational retrieval 4
Machine-learning and inductive
inference 4

User interfaces 4
Web-information systems 4
Foundations of data-bases 4
Bio-informatics 6

Software engineering:
Master 1
Compilers 6

Distributed systems 6

Modeling and transformation 6

Formal specifications 6

Software re-engineering 6

+ 12 to choose from (or other
discipline)
Capita selecta of software
engineering 6

Data-base security 3
Software testing 6
Data-mining 6
Distributed software architectures 6
Requiremants analysis 6
Aspect oriented software
development 6

Programming language
engineering seminar 6

Software architecture 6

33Towards a computer science program

The master thesis corresponds to 9 credits. There are different types: it could be
research oriented, it may reflect the result of a theoretical or practical project
or build upon results previously published in the literature, for example. The
student is usually guided by a team and he or she has to “defend” the thesis at
the end of the second (last) year. This defense is usually consisting of a short
presentation to a jury, which might include people from outside, e.g., working in
industry, in the presence of fellow students. After the formal presentation, some
questions may be asked and there will be some interaction about the contents of
the thesis.

Acknowledgement

The I wish to thank the organizers for the excellent organization of this work-
shop. Maybe I should also stress the fact that this note only reflects personal ideas
and that the department of mathematics and computer science at the University
of Antwerp should not be held responsible for its contents.

References

1. Donald E. Knuth. The art of computer programming, volume 1 (3rd ed.):
fundamental algorithms. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 1997.

