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ABSTRACT

Artificial neural networks (ANNs) are powerful data driven modelling tools which has the potential

to approximate and interpret complex input/output relationships based on the given sets of data

matrix. In this paper, a predictive computerised approach has been proposed to predict the

performance of an immobilized cell biofilter treating NH
3
 vapours in terms of its removal efficiency

(RE) and elimination capacity (EC). The input parameters to the ANN model were inlet concentration,

loading rate, flow rate and pressure drop, while the output parameters were RE and EC respectively.

The data set was divided into two parts, training matrix consisting of 51 data points, while the test

matrix had 16 data points representing each parameter considered in this study. Earlier, experiments

from continuous operation in the biofilter showed removal efficiencies from 60 to 100% at inlet

loading rates varying between 0.5 to 5.5 g NH
3
/m3.h. The internal network parameters of the ANN

model during simulation was selected using the 2k factorial design and the best network topology

for the model was thus estimated. The predictions were evaluated based on their determination

coefficient values (R2). The results showed that a multilayer network (4-4-2) with a back propagation

algorithm was able to predict biofilter performance effectively with R2 values of 0.9825 and 0.9982.

The proposed ANN model for biofilter operation could be used as a potential alternative for

knowledge based models through proper training and testing of the state variables.
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1 INTRODUCTION

Ammonia is used extensively in the semiconductor industry, as the starting material

for the manufacture of nitric acid and as a refrigerating fluid instead of chlorofluo-

rocarbons. Malodors containing NH
3
 are released from pulp and paper industry,

wastewater treatment plants, night soil treatment plants and aerobic composting of

low C/N material. Hence there arises a potential need to adapt suitable control

techniques for the effective removal of these emissions from related process industries.

Biofiltration is a cost effective technology for treatment of waste gases containing

low concentrations of VOCs at large flow rates. The high removal efficiencies (REs)

achieved along with uncomplicated flexible design, low operational and maintenance

costs edges biofilters over other biological treatment techniques such as biotrickling

filters and bioscrubbers (Kennes and Veiga, 2001). Biofilters have proved to remove

NH
3 
emissions effectively from gas streams using a bed of biologically active material

such as compost, peat, wood bark, etc. In recent years, immobilization of microbes

in support matrix such as alginate beads or suitable polymeric materials has gained

popularity in the field of biofiltration. The main advantages of adopting

immobilization techniques in biofiltration is to provide high cell concentrations,

improve genetic stability, protection from shear damage and to enhance favorable

microenvironment for microbes (nutrient gradients and pH). Chung et al. (1996)

evaluated the effects of operational factors such as retention time, temperature and

inlet concentration on the performance of a biofilter packed with Thiobacillus

thioparus immobilized with Ca-alginate pellets and found an optimal S-loading of

25 g m–3 h–1.

Traditionally the performance of biofilters has been modeled/predicted using

process based models that are based on mass balance principles, simple reaction kinetics

and a plug flow of air stream (Ottengraf and van Den Oever, 1983; Shareefdeen et al.,

1993; Deshusses et al., 1995; Jin et al., 2006). The main advantages of these process

models are that they are based on the underlying physical process and the results

obtained generally provide a good understanding of the system. However this depends

on numerous model parameters and obligates information on specific growth rate of

microbes, biofilm thickness and density, values of diffusivity, partition, yield and

distribution coefficient, intrinsic adsorption etc. The accurate estimation of some of

these parameters requires elaborate technical facilities and expertise, the absence of

which hinders the preciseness of the model and limits the application and reliability

of the model.

An alternate modelling procedure consists of a data driven approach wherein

the principles of artificial intelligence is applied with the help of neural networks. It

has been shown earlier that the performance of biofilters and biotrickling filters can

be predicted from prior estimation of easily measurable operational parameters such

ELDON R. RENE, JUNG HOON KIM AND HUNG SUCK PARK



155

as flow rate, unit flow, inlet loading rate, pressure drop and inlet concentration (Rene

et al., 2006; Elias et al., 2006).

2 THE ANN BASED MODELING APPROACH

A multi layer perceptron (MLP) using the back propagation algorithm (Rumelhart et

al., 1986) is the most widely used neural network for forecasting/prediction purposes

(Maier and Dandy, 2000). Neural networks acquire their name from the simple

processing units in the brain called neurons which are interconnected by a network

that transmits signals between them. These can be thought of as a black box device

that accepts inputs and produces a desired output. MLP generally consists of three

layers; an input layer, a hidden layer and an output layer. Each layer consists of neurons

which are connected to the neurons in the previous and flowing layers by connection

weights (W
ij
). These weights are adjusted according to the mapping capability of the

trained network. An additional bias term (θ
j
) is provided to introduce a threshold for

the activation of neurons. The input data (X
i
) is presented to the network through the

input layer, which is then passed to the hidden layer along with the weights. The

weighted output (X
i
W

ij
) is then summed and added to a threshold to produce the

neuron input (I
j
) in the output layer. This is given by:

(1)

This neuron input passes through an activation function f (I
j
) to produce the

desired output Y
j
. The most commonly used activation function is the logistic sigmoid

function which takes the form;

(2)

3 MATERIALS AND METHODS

Experimental details pertaining to cultivation of micro organisms, media composition,

preparation of immobilized packing media, experimental setup, biofilter operation

and analytical techniques for data collection are given in our previously published

work (Kim et al., 2007).
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4 MODELING METHODOLOGY

4.1 MODEL INPUT-OUTPUTS

A neural network based predictive model was developed with flow rate, inlet

loading rate, pressure drop and inlet concentration as the model inputs and elimination

capacity and removal efficiency as the outputs.

4.2 DATA DIVISION

The experimental data was divided into training (N
Tr

, 75%) and test data (N
Te

,

25%). The test data was set aside during network training and was only used for

evaluating the predictive potentiality of the trained network.

4.3 ERROR EVALUATION

 The closeness of prediction between the experimental and model predicted

outputs were evaluated by computing the determination coefficient values computed

by the following formulae (Elias et al., 2006).

(3)

4.4 DATA PRE-PROCESSING AND RANDOMIZATION

Experimental data collected from the biofilter during the 67 days of continuous

operation was randomized to obtain a spatial distribution of the data, which accounts

for both steady state and transient steady state operation. The data was also normalized

and scaled to the range of 0 to 1 using equation 4, so as to suit the transfer function in

the hidden (sigmoid) and output layer (linear).

(4)

Where,  is the normalized value, X
min 

and X
max

 are the minimum and maximum

values of X respectively.

4.5 NETWORK PARAMETERS

The internal parameters of the back propagation network namely epoch size,

error function, learning rate (η), momentum term (μ), training count (T
c
) and transfer

function are to be appropriately selected to obtain the best network architecture that

gives high predictions for the performance variables.

In this study the number of neurons in the input layer (N
I
=4) and output layer

(N
0
=2) were chosen based on the number of input and output variables to the network.
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A detailed study on the effect of internal network parameters on the performance of

back propagation networks and the procedure involved in selecting the best network

topology has been described elsewhere (Maier and Dandy, 1998). However in most

instances, literature suggests the use of a trial and error approach where the performance

goal is set by the user. In this study the best values of the network parameters were

chosen by carrying out simulations performed using the 2k full factorial design

(Montgomery, 1991). The 2k design is of particular significance in exploring the effect

of many factors on the response variable for a particular system. It provides the smallest

number of runs with which ‘k’ factors can be studied in a complete factorial design

(In this study, k=4, Hence 16 simulations were done – data not shown). Determination

coefficient (R2) values were taken as the response variable and the setting that yielded

the maximum R2 value in the test data was taken as the best network parameter.

4.6 SOFTWARES USED

ANN based predictive modelling was carried out using the shareware version

of the neural network and multivariable statistical modelling software, NNMODEL

(Version 1.4, Neural Fusion, NY) and full factorial design was carried out by the

statistical software MINITAB.

5 RESULTS AND DISCUSSIONS

5.1 EXPERIMENTAL

The performance of the immobilized cell biofilter was monitored by varying

the flow rate and inlet concentration. A step increase from low to high loading rates to

the biofilter caused a few days to adapt to the new concentration and reach a new

steady state value shortly. The results from this study are shown in Figure 1 as a

function of the operating time, loading rate, EBRT and RE. These removal profiles

indicated that the immobilized cells possessed good activity with steady and consistent

removal even during the beginning of the experiments. The loading rate of NH
3
 was

gradually increased to 2.5 g m–3 h–1 on the 14th day of continuous operation. The

response was a sudden decline in the RE from 100% to 96% followed by a new steady

state at the end of the 16th day where the RE was 98%. Hence, the loading rate was

decreased to 1.7 g m–3 h–1 and subsequently increased in small time steps to a maximum

of 4.5 g m–3 h–1. The biofilter RE profiles displayed minor ameliorating fluctuations

due to step increase in loading rate between 1 and 4.5 g NH
3
 m–3 h–1. It is also evident

that the RE was nearly 100% (>95%) up to a loading rate of 4.5 g m–3 h–1. However,

after 60 days, when the ILR to the biofilter was increased significantly by varying

both the concentration and flow rate to values as high as 7.5 g NH
3
 m–3 h–1, a noticeable

decrease in the RE values from 100% to nearly 60% was observed. The critical NH
3
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loading rate to the biofilter was considered as 4.5 g NH
3
 m–3 h–1. Pressure drop values

were sufficiently low during the operational time (0.1 - 1.7 cms of H
2
O) and did not

cause any significant operational problem.

Figure 1. Time course profile of inlet loading rate and removal efficiency in the immobilized

cell biofilter.

5.2 ANN BASED MODELING

To model the performance of the biofilter, neural based simulations were carried

out using the standard back error propagation network. The ranges of input and output

parameters for the ANN model are given in Table 1. The experimental data collected

from the biofilter was suitably divided into the training and test data set, pre-processed

and randomized before carrying out simulations. The model was evaluated with the

test data and the effect of network parameters on the R2 value was used as a measure

to choose the best network architecture.

Table 1.

Range of input and output parameters used for training and testing ANN model developed to

represent biofiltration of NH
3
 vapours

Parameter Training data, N
Tr

-51 Testing data, N
Te

-16

Min Max Mean Min Max Mean

Input

Inlet concentration, ppm 10 150 63.3 20 150 74.1

Flow rate, m3/h 6 16 9.25 6 16 9.13

Inlet loading rate, g/m3.h 0.3 7.5 3.08 0.6 7.5 3.54

Pressure drop, cms of H
2
O 0.1 1.5 1.1 0.2 1.5 1.16

Output

RE, % 60 100 97.2 66.8 100 93.2

EC, g/m3.h 0.3 5.3 2.93 0.5 5 3.18
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5.2.1 EFFECT OF NETWORK INTERNAL PARAMETERS

The different values of network internal parameters used to train the network

are given in Table 2. During simulations with different combinations of settings as

given by the experimental design, the following interpretations were made; (i)

increasing the number of neurons in the hidden layer decreases the R2 value significantly

(ii) an increase in the training count from low to high levels displays high R2 value for

the model (iii) the effect of learning rate did not play a major role in increasing the R2

value, but it played a complementary role in speeding up the error convergence and

(iv) the momentum term increased the R2 value when increased from lower to high

levels. The best network architecture was then selected by observing high R2 value in

the test data set (Table 3, For RE predictions, R2 value – 0.9825, for EC, R2 value –

0.9982).

Table 2.

Full 24 - factorial design for estimating the best network architecture.

Parameters Values

Neurons, N
H

4 – 12

Training count, Tc 1000 – 16000

Learning rate, η
ih

0.1 – 0.9

Momentum term, μ 0.1 – 0.9

Best R2 1

Error tolerance 0.0001

Table 3.

Best architecture obtained with different values of network internal parameters.

N
I

N
H

N
O

T
C

η μ

4 4 2 16000 0.9 0.9

5.2.2 PREDICTIVE CAPABILITY OF THE MODEL

The RE and EC values predicted by the ANN model is illustrated in Figure 2

and 3 for the training data. It is quite apparent that, while predicting the RE and EC,

the network was able to exactly map the data points.  However, two or three data

points were not adequately mapped by the network during training. This might have

been caused by the step increase in loading rates where the microbes were

reacclimatizing itself to attain new steady states. After training, the network was

provided with the separate set of data for testing the developed model. The results

ARTIFICIAL NEURAL NETWORK BASED MODEL FOR EVALUATING PERFORMANCE



160

presented as EC and RE is illustrated in Figure 4 and 5 respectively. A comparison

between the EC and RE values predicted by the model with the experimental values

reveals the predictive capability of the model. The model was able to adequately identify

the low and high peaks in the EC and RE values. The R2 values obtained during

training and testing were greater than 0.98, which indicated that the predictions are

accurate with best network architecture of 4-4-2.

Figure 2. Comparison of experimental and predicted values of removal

efficiency during model training (N
Tr 

-51).

Figure 3. Comparison of experimental and predicted values of elimination

capacity during model training (N
Tr

 -51).
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Figure 5. Comparison of experimental and predicted values of elimination

capacity during model testing (N
Tr 

-16).

Figure 4. Comparison of experimental and predicted values of removal

efficiency during model testing (N
Tr 

-16).
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6 CONCLUSIONS

A laboratory scale immobilized cell biofilter evaluated to remove NH
3
 vapours showed

RE higher than 90% at loading rates less than 4.5 g NH
3
/m3 h. This study explores the

application of ANN as a performance prediction tool for a biofiltration process. The

ANN model showed the ability to predict the extreme operating conditions and address

the performance with R2 values greater than 0.98 for the training and test data set. The

best network architecture (4-4-2) during effective training of the model was determined

by 2k factorial design. The results from this study suggest that neural networks can

capture and extract complex relations among the easily measurable parameters in a

biofiltration process and predict the performance.
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