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2





A Sabela, Daniel, Óscar
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Resumen

El desempleo es actualmente uno de los problemas más importantes de nuestra sociedad.
Las medidas globales de lucha contra el desempleo no suelen ser satisfactorias para llevar
a cabo poĺıticas efectivas a nivel local, de ah́ı la necesidad de herramientas que permitan
disponer con precisión de información del mercado de trabajo a nivel local. En España
la estimación de los indicadores del mercado laboral se hace mediante la Encuesta de
Población Activa que está diseñada para obtener información a nivel provincial. Los
tamaños de muestra por debajo del nivel de desagregación de provincia son bajos y los
estimadores directos en las comarcas o en los municipios suelen tener poca precisión. Por
tanto, el objetivo de esta tesis es la estimación de indicadores del mercado laboral, tales
como ocupados, parados y tasas de paro, en las comarcas gallegas. Utilizamos técnicas
de estimación en áreas pequeñas con modelos multinomiales mixtos. El primer modelo
que utilizamos para la estimación de los indicadores laborales es un modelo multinomial
mixto a nivel de área basado en Molina et al. (2007). Estos autores consideraron un
efecto aleatorio común para las dos categoŕıas multinomiales (ocupados y parados). En
el problema real esta situación no es apropiada por las distintas caracteŕısticas de estos
dos grupos poblacionales. Esta es la razón por la cual nosotros introducimos en el mod-
elo dos efectos aleatorios, uno para cada una de las categoŕıas multinomiales. Además,
la disponibilidad de encuestas para distintos periodos de tiempo produce un importante
incremento en la muestra en las áreas y nos permite introducir en el modelo efectos aleato-
rios independientes y correlados a lo largo del tiempo. La estimación de la precisión en los
estimadores de áreas pequeñas es fundamental porque a menudo estos son sesgados. En
este trabajo utilizamos diferentes métodos para la estimación del error cuadrático medio,
mediante expresiones anaĺıticas y mediante técnicas bootstrap.

8





Abstract

Unemployment is currently one of the most important problems of our society. Global
measures to fight against unemployment are usually not satisfactory to carry out effective
policies at the local level, hence the need of tools to provide accurate labor market infor-
mation at local level. In Spain the estimation of labor market indicators is made by means
of the Labour Force Survey that is designed to obtain information at the provincial level.
Sample sizes below the provincial level of disaggregation are low and direct estimators in
the counties or municipalities often have low precision. Therefore, the aim of this thesis
is to estimate labor indicators, such as employed, unemployed and unemployment rates,
in Galician counties. We use small area estimation techniques under area level multi-
nomial mixed models. We will first use estimators based on the area level multinomial
mixed model introduced by Molina et al. (2007). These authors considered a model with
a common random effect for the two multinomial categories (employed and unemployed
people). In the real data problem this may not be appropriate because of the very dif-
ferent characteristics of these two populations. This is the reason why we introduce in
the model two random effects, one for each of the multinomial categories. In addition,
the availability of surveys for different periods of time produces a significant increase of
the domain samples and allows us to introduce in the model independent and correlated
time random effects. The estimate of the accuracy of the estimators of small areas is a
fundamental issue because these estimators are often biased. In this work we use different
methods for estimating the mean squared error, by using analytical expressions and using
bootstrap techniques.
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Resumo

O desemprego é actualmente un dos problemas máis importantes da nosa sociedade. As
medidas globais de loita contra o desemprego non adoitan ser satisfactorias para levar
a cabo poĺıticas efectivas a nivel local, de áı a necesidade de ferramentas que permitan
dispor con precisión de información do mercado de traballo a nivel local. En España a
estimación dos indicadores do mercado laboral faise mediante a Enquisa de Poboación Ac-
tiva que está deseñada para obter información a nivel provincial. Os tamaños de mostra
por debaixo do nivel de desagregación de provincia son baixos e os estimadores directos
nas comarcas ou nos municipios adoitan ter pouca precisión. Polo tanto, o obxectivo
desta tese é a estimación de indicadores do mercado laboral, tales como ocupados, para-
dos e taxas de paro, nas comarcas galegas. Utilizamos técnicas de estimación en áreas
pequenas con modelos multinomiais mixtos. O primeiro modelo que utilizamos para a es-
timación dos indicadores laborais é un modelo multinomial mixto a nivel de área baseado
en Molina et al. (2007). Estes autores consideraron un efecto aleatorio común para as
dúas categoŕıas multinomiais (ocupados e parados). No problema real esta situación non é
apropiada polas distintas caracteŕısticas destes dous grupos poboacionais. Esta é a razón
pola cal nós introducimos no modelo dous efectos aleatorios, un para cada unha das cat-
egoŕıas multinomiais. Ademais, a dispoñibilidade de enquisas para distintos peŕıodos de
tempo produce un importante incremento da mostra nas áreas e permı́tenos introducir no
modelo efectos aleatorios independentes e correlados ao longo do tempo. A estimación da
precisión nos estimadores de áreas pequenas é fundamental porque a miúdo estes son nes-
gados. Neste traballo utilizamos diferentes métodos para a estimación do erro cuadrático
medio, mediante expresións anaĺıticas e mediante técnicas bootstrap.
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Chapter 1

Introduction

The study of the national labour market is a critical issue in every kind of analysis of
the economic structure of a country. It affects to different aspects of productive sectors
and, in fact, it is a valuable aid for sectorial analysis. Therefore, the knowledge of the
balances and imbalances between supply and demand in the labour market is important
for economical researchers (Pérez-Infante, 2006).

Unemployment is one of the most important problems nowadays. Sociological surveys
usually place it as one of the main concerns of citizens, and the fight against unemploy-
ment is a priority of the political action at all levels of Public Administration. Moreover,
in the context of the crisis in which the European Union is involved, the impact on the
Spanish labour market has been much more intense than in most advanced economies.
The Spanish unemployment rate in the third quarter of 2013 reached 25.98%, more than
14 percentage points higher than in 2008. The labour market situation in Galicia is not
very different, the unemployment rate is 21.6% and the number of unemployed people has
reached 277000. At this point, politicians at all levels of the administration are planning
and acting toward reducing unemployment.

Global political measures are not often satisfactory for local authorities, which can also
develop their own strategies for employment. They need some tools to determine, with
precision, reliability and acceptable punctuality, the main variables and labour market
indicators in order to implement their strategies. Among the main labour market indica-
tors, we can cite the totals of employed, unemployed and inactive people, the employment,
unemployment and occupation rates, and the corresponding disaggregations by gender,
age and economic activity.

In Spain, like in other European countries, the estimation of labour market indicators
is made by means of the Labour Force Survey (LFS). The Spanish Labour Force Survey
(SLFS) uses a stratified sampling design. The stratification variable is the size of the
municipality (INE, 2009). As most municipalities are not represented in the sample and
many of them are present with a very small sample size, the estimates at the municipal
level are not accurate enough. Small sample sizes and, in some cases, no sample at all is
the main problem when performing municipal estimations. In this situation the sample
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size could be enlarged but this, in addition to cause an increase in the costs and in the
denial by the respondents to answer the sample questionnaire, can lead to other kind
of damages due to delays in obtaining results and to the impact of non-sampling errors.
Therefore the increase of the sample size is not always advisable and even sometimes
unfeasible from an economic point of view.

The interest in developing small area estimation techniques to solve these problems in
a reasonable way is growing among statisticians. The term ”small area” is often used to
refer to geographic areas but it can also be applied to other interesting areas with non
geographical boundaries (domains), like age groups, economic activity sectors and so on.
It is the small sample size in the domain, and consequently the large variance of the direct
estimators, the key point defining the concept of small area. It is not the actual size of the
area. In the small area estimation context, an estimator of a parameter in a given domain
is direct if it is based only on the sample data of the specific domain. A drawback of these
estimators is that they can not be calculated when there is no sample observations in an
area of interest.

Small area estimation (SAE) is a part of the statistical science that combines sample
information and inference in finite populations with statistical models. The use of small
area statistics was originated centuries ago. Brackstone (1987) mentions the existence
of these statistics in the eleventh century in England and in the seventeenth century in
Canada. These early statistics were based on censuses and administrative registers. Over
time, the sampling has been replacing the census as the most effective and economical
tool to obtain information on a wide range of topics.

Early attempts of small area estimations with survey data can be found in the classic
text Hansen et al. (1953), p.483-486, where regression estimators were proposed. Nev-
ertheless, the popularity of these estimators is basically due to Ericksen (1974). The
first reviews on small area estimation emphasize demographic methods for estimating the
population in post-census periods, at this point Morrison (1971) writes a review of the de-
mographic methods that exist before 1970. Purcell and Kish (1979) reviews demographic
and statistical methods for estimation in small domains. Later, Zidek (1982) introduces
a criterion to evaluate the relative performance of different methods for estimating the
population in small areas. Platek et al. (1987) summarizes some techniques and applica-
tions, Rao (1986) and Chaudhuri (1994) show traditional techniques and methods, which
at that time were more recent. Schaible (1996) reviews traditional and indirect estimators
based on the models that were used in U.S. Federal programs. Also, a large number of
conferences and workshops took place, a list of which is presented in the review of Ghosh
and Rao (1994) and Rao (2003). A large number of reviews were published, such as
Rao (1986, 1999, 2001), Chaudhuri (1994), Ghosh and Rao (1994), in addition to Marker
(1999), Pfeffermann (2002), Lahiri and Meza (2002), Jiang and Lahiri (2006) and Pfef-
fermann (2012). Two books were written: Mukhopadhyay (1998); Rao (2003). All these
activities have helped to spread the research in small area estimation and also they helped
to understand the methodology and applications.
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Generally small area estimation techniques can be divided into design-based methods
and model-based methods. Model-based methods are used both from a frequentist point
of view and from a Bayesian perspective. In some cases, as a combination of the two
approaches, which in SAE literature is known as ”empirical Bayes”. Design-based meth-
ods often employ a model for the construction of the estimators, but the bias, variance
and other properties of the estimators are calculated taking into account the probability
distribution induced by the sampling design. However, the model-based methods make
inference by taking into account the underlying model. The estimators based on these
methods are useful because they give to practitioners an idea of how the data generation
process is and how the different sources of information are incorporated.

Although these two methods have differences, they also have common characteristics.
In both cases, they use auxiliary information obtained from samples and administrative
or census registers. The use of auxiliary information in SAE is critical, because in many
cases we find very small sample sizes. In small area estimation studies, even the most
elaborate model will not produce accurate estimates if it cannot be feeded with proper
auxiliary information about the target variable.

Depending on the availability of auxiliary information, small area models are classified
into two main types:

• Area level models: when auxiliary information is available only at the area level.
These models link the direct area estimator with an area specific covariate. It is
assumed that the area-level direct estimator follows a population model.

• Individual level models: when auxiliary information is available on the units of the
population. These models link the target variable with the covariates at the unit
level. Unit-level data is assumed to be a realization of a population model and the
sampling design distribution is not taken into account.

Model selection and validation play a vital role in the estimation process, because the
properties of the model-based estimators rely on the assumed model distribution.

Mixed models are suitable for small area estimation due to its flexibility to make an
effective combination of different sources of information and to its capacity to describe
the various sources of error (Searle et al., 1992). These models incorporate random area
effects that explain the additional variability that is not explained by the fixed part of
the model. In addition, small area parameters such as the mean or the total can be ex-
pressed as a linear combination of fixed and random effects and they can be estimated by
means of best linear unbiased predictors (BLUP). The BLUP minimizes the mean square
error inside the class of linear unbiased estimators. Its derivation does not require the
normality of the random effects and errors, but it assumes the existence of their second
order moments. The model variances and covariances can be estimated, for example,
by the maximum likelihood method (ML) or the restricted maximum likelihood method
(REML). By plugging the estimations of these variance components in the expression of
the BLUP we obtain the Empirical BLUP (EBLUP).
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Mixed models have been used in the U.S. to estimate the per capita income in small
areas (Fay and Herriot, 1979), the not included population in the census (Dick, 1995;
Ericksen and Kadane, 1985) and the poverty in schoolchildren studies (Council, 2000). It
is important to mention that using these estimators, the Department of Education of the
United States allocates more than 7000 million dollars in general funds to the counties,
and then the states distribute these funds among school districts (Rao, 2003). The use
of these techniques is not restricted to socioeconomic data. The work of Battese et al.
(1988) is an example of application in the field of agriculture using a linear mixed model
to estimate the area under cultivation of corn and soy in 12 counties of North-Central
Iowa. The inclusion of area random effects in the model is also a common practice in the
literature of SAE (Herrador et al., 2009; Molina et al., 2007; Rao and Yu, 1994; Saei and
Chambers, 2003). The random effects model the variability across the areas that is not
explained by the auxiliary variables and, additionally, allow the correlation between them.

The objective of this thesis is the estimation of labour market indicators (totals em-
ployed and unemployed people and unemployment rate) in the counties of Galicia using
small area estimation techniques under area level multinomial mixed models. The totals
of unemployed and employed people can be estimated by using two separate linear mixed
models relating the direct estimations of the respective proportions with other auxiliary
variables. In that case we cannot ensure that the estimated proportions are in the interval
[0, 1], which is an important disadvantage. Another disadvantage is that these models do
not take into account the natural relationship between the unemployed, employed and
inactive population, since the sum of totals of the three categories is the total of the
population aged 16 and over. These disadvantages can be overcome by using multinomial
logistic models. These models have been discussed in the literature. See for example, Saei
and Chambers (2003), Molina et al. (2007), Morales et al. (2007) and González-Manteiga
et al. (2008b).

For estimating labour indicators we will first use estimators based on the area level
multinomial logit mixed model introduced by Molina et al. (2007). These authors consid-
ered a model with a common random effect for the two multinomial categories (employed
and unemployed people). In the real data problem we are dealing with, this may not be
appropriate because of the very different characteristics of these two groups in Galicia. Al-
ternatively, we introduce models with two random effects, one for each of the multinomial
categories. Furthermore, the availability of time series produce a significant increase of
the domain samples and led us introducing in the model independent and correlated time
effects. This last idea is not new and has been developed in some papers (Pfeffermann
and Burck, 1990; Rao and Yu, 1994; Saei and Chambers, 2003; Tiller, 1992; Ugarte et al.,
2009a). As we will see, these models are naturally suited to the problem of interest, over-
coming the disadvantages of previous proposals and allowing a simultaneous estimation of
totals of employed, unemployed and inactive people. In this case, area-level models will be
applied to the sample data. To illustrate the inferential process, Galicia’s LFS data is used.

The estimation of the accuracy of the EBLUP is a fundamental issue in SAE because
these estimators are often biased. Several approaches have been published in the litera-
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ture. The first MSE simplification was obtained by Kackar and Harville (1981) assuming
normality in the errors and in the random effects. In a second paper Kackar and Harville
(1984) obtained an approximation of the MSE and proposed an estimator based on it.
Prasad and Rao (1990) gave a new approach to covariance block diagonal matrix. Datta
and Lahiri (2000) obtained analogous MSE estimator for models with covariance block
diagonal matrices and variance components estimated by ML or REML. More recently
Das et al. (2004) studied the prediction error approach in a wider class of models when
the variance components are estimated using ML or REML methods. When there are
not suitable estimators, the best option is to use resampling methods. Jiang et al. (2002)
using jackknife give asymptotically unbiased estimators specifying the order of consis-
tency. Pfeffermann and Tiller (2005) introduce parametric and nonparametric bootstrap
procedures in order to estimate the MSE in state space models. Hall and Maiti (2006)
present double bootstrap algorithms, González-Manteiga et al. (2008b) apply bootstrap
procedures in mixed logistic regression models at area level and González-Manteiga et al.
(2008a) introduce bootstrap procedures in mixed linear models at individual level. Their
simulations show a reduction of bias compared with other estimators.

The fact that the estimators are biased has to be complemented with an accuracy
gain. Hence, in this thesis different approaches to estimate the mean square error (MSE)
are used, first through an analytical expression and second by bootstrap techniques. At
this point it is desirable to take into account that in the statistics of labour the Office
for National Statistics (ONS) in the UK considers that an estimate is publishable, and
therefore official, if the coefficient of variation is less than 20% (ONS, 2004).

The remainder of the thesis is organized as follows. Chapter 2 describes the data
sources on employment and unemployment in Spain and the direct estimators obtained
from these sources. Chapter 3 introduces the general theory of the multivariate generalized
linear mixed models (MGLMM) that we use in this work. Chapter 4 proposes a first
multinomial mixed model and presents a simulation study and an application to LFS data
from Galicia for the fourth quarter of 2008. Chapter 5 expands the model of Chapter 4
to include independent temporal effects and the corresponding application to data from
the third quarter of 2009 to the fourth quarter of 2011. Chapter 6 considers correlated
time effects, carries out the corresponding simulation study and gives the application to
data for the period between the third quarter of 2009 and the fourth quarter of 2011.
Chapter 8 presents the final conclusions. Finally, Chapter 7 gives a description of the
mme package developed in the R programming language. This package implements the
models discussed throughout this dissertation.
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Chapter 2

Statistical sources for measuring the
labour force: employment and
unemployment

2.1 The Labour Force Survey

In Spain there are only two regular statistics that measure simultaneously the different
situations of the labour force in the labour market (active or inactive people and employed
or unemployed people): The Population Census and the Labour Force Survey (LFS), both
conducted by the Spanisgh National Institute of Statistics (INE).

The Population Census is a comprehensive and decennial statistic operation, which
since 1981, is elaborated in the years ending in one (until 1970 was made in the years
ending in 0). The target population of the census is the whole population living in the
country. The variables related to the labour market considered in population censuses
are the active and inactive population, employed and unemployed people classified by
variables such as sex, age, professional status, studies, economic sectors and with a geo-
graphical breakdown reaching the census section level.

Despite the enormous advantages at obtaining information with the Census, it has
two major problems. The information obtained from the Census is very expensive and
consists on a collection of demographic, social and/or economical variables. The time
reference does not have, in many cases, the necessary update for users because of, among
other reasons, the delay in obtaining results due to the large size of the operation.

Although it is still useful for analyzing long-term trends in the labour market, the Cen-
sus is not the appropriate instrument to study the current situation and the evolution of
this market. In addition, until the last census of 2011 the respondent defines him/herself
as active, inactive, employed or unemployed. This self-assessment conducted by the re-
spondents completing the questionnaire may be influenced by subjective criteria, since
they had no objective definitions. This is not the actual case, where the determination
of the labour classifications is done by the set of rules established by the International
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Labour Organisation (ILO).

For all the above reasons, LFS is the only existing Spanish statistic with suitable
periodicity to carry out the study of the labour market situation and evolution. It also
permits international comparability because it uses ILO criteria for classifying people in
different situations related to the activity. The LFS is a sample survey conducted by the
INE since 1964 and is addressed to the population living in the country. From that date,
and until the end of 1968, results were obtained quarterly. From 1969 to 1974, results
were obtained every six months. Since 1975, it became quarterly once again.

In 1987, the survey questionnaire was modified and adapted to the latest international
recommendations given in the International Conference of Labour Statisticians in Geneva
1982. As one year before Spain became member of the European Community, at that
year the Spanish LFS was also adapted to the European Community Labour Force Sur-
vey. Further, retrospective series were recalculated with the new methodology beginning
in the third quarter of 1976. This is the origin of the so-called ”homogeneous series” of
the LFS that is currently offered to users of INEBASE and other supports via the final
survey files available from that period and up to date.

Until 1999 the Labour Force Survey interviews were conducted during 12 weeks of
the 13 weeks of each quarter. Since 1999 the Labour Force Survey became a continu-
ous survey, given that the interviews were conducted throughout the whole period of 13
weeks. In 2002, a new operative definition of unemployment was introduced, producing
a break in the series of unemployed and active people. The impact of this modification
was calculated by compiling a double estimation of both definitions throughout the year
2001.

Finally, the last substantial methodological change up to date was produced in 2005.
It introduced a new questionnaire and a centralised control of the collection system, via
a computer-assisted telephone survey. On that year, part of the survey variables were
collected exclusively in an annual sub-sample that was representative of the average sit-
uation for the year, instead of obtaining them quarterly. These are the so-called annual
sub-sample variables, and the corresponding results are disseminated annually. With the
purpose of maintaining the homogeneity of the estimates, retrospective series were also
calculated in 2005 for the period 1996-2004. These calculations were done under the new
population base established for 2005. No more variations has been introduced since 2005.
The current figures of the survey are encompassed in the methodology founded in 2005.

The main objective of the LFS is to reveal information about economic activities
as regards their human component. It focuses on providing data on the main popula-
tion categories related to the labour market (employed, unemployed, active and inactive
population) and obtaining classifications of these categories depending on different char-
acteristics. It also allows the creation of homogeneous time series of results. Finally, since
all definitions and criteria used are in line with those established by international organi-
sations dealing with labour-related topics, all data can be compared with information of
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other countries.

Detailed results are available for the whole country. As regards autonomous commu-
nities and provinces, information is provided on the main characteristics with the level of
breakdown allowed by the variation coefficient of the estimators.

The LFS is aimed at the population living in family dwellings, namely, those used
throughout the whole year (or most of it) as the habitual or permanent dwelling. There-
fore, the survey does not consider group dwellings (hospitals, residences, barracks, etc.)
or secondary or seasonal dwellings (used during holiday periods, at weekends, etc.). The
survey does include families that, forming an independent group, reside in said group
establishments (for example, the director or caretaker of the centre).

The reference period for the results of the Survey are quarters. The reference period
for the information is the week (Monday to Sunday) just before the interview according to
the calendar. The answers to the questionnaire will, therefore, always refer to said week.
Nevertheless, some questions have special reference periods, such as seeking work meth-
ods, peculiarities of the working day and questions about studies refer to the four weeks
prior to the interview and the availability to work refers to the two weeks subsequent to
the Sunday of the reference week.

After the inclusion of Ceuta and Melilla in the second quarter of 1988, the LFS covers
the whole of the Spanish territory.

Definitions are based on the recommendations endorsed by the ILO:

• Active population: All persons 16 years old and older who, during the reference
week (week prior to the interview according to the calendar), fulfil all the conditions
required to be included among the employed or unemployed persons, as defined
below.

• Employed population: All persons 16 years old and older who, during the reference
week, either were employed by others or performed freelance work, according to the
next definitions:

– Persons employed by others or wage-earners are all persons described in the
following categories:

∗ Working: Persons who worked for at least one hour during the reference
week, even sporadically or occasionally, in exchange for a salary, wages or
another form of remuneration in cash or in kind.

∗ Employed but not working: Persons who, having worked in their current
job, were absent from said job during the reference week, but are closely
tied to the job.

– Freelance or self-employed workers are all persons included in the following
categories:
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∗ Working: Persons who worked for at least one hour during the reference
week, even sporadically or occasionally, in exchange for personal gain or
family earnings, in cash or in kind.

∗ Employed but not working: Persons who should have worked during the
reference week in exchange for personal gain or family earnings, but were
temporarily absent from work, due to illness or accident, holidays, public
holidays, bad weather or other similar reasons. According to this defini-
tion, the following persons perform freelance work: entrepreneurs, inde-
pendent workers, members of cooperatives who work in said cooperatives
and unpaid family workers (family assistance).

• Unemployed population: Unemployed persons are those persons 16 years old or
older who combine the following conditions simultaneously:

– without work, in other words, who have not been employed by others or have
not freelanced during the reference week.

– seeking work, in other words, who have taken specific measures to look for work
employed by others or who have performed procedures to set up as freelancers
during the previous month.

– available to work, in other words, in conditions to start working within two
weeks from Sunday of the reference week.

Unemployed persons are also persons 16 years old and older who were without work
during the reference week, who are available to work and who were not seeking work
because they have found a job which they would be starting in the three months
following the reference week. This case does not require the effectively seeking work
criterion.

• Economically inactive population: comprises all persons 16 years old and older who
do not classify as employed, unemployed or population counted separately during
the reference week. This definition covers the following functional categories:

– Persons who perform household chores: persons who perform household chores
without performing an economic activity; for example, housewives and other
family members looking after houses and children.

– Students: persons who receive systematic instruction in any degree of education
without performing an economic activity.

– Retired or pre-retired persons: persons who have had a previous economic
activity and who because of their age or other reasons have abandoned it,
thereby receiving a pension (or some pre retirement income) because of their
previous activity.

– Persons currently perceiving a pension other than a retirement or pre retirement
income.

– Unpaid persons who perform social work, charitable activities, etc. (excluding
family assistance).

27



– Incapacitated to work.

– Another situation: persons who, without exercising any economic activity, re-
ceive public or private aid and all those who are not included in any of the
previous categories, for example the independently wealthy.

• Unemployment rate: Quotient between the number of unemployed persons and the
active population.

Moreover, all defined characteristics refer to the national concept, not to the domestic
concept, in line with the definitions of the European System of National and Regional
Accounts (ESA-95, EUROSTAT-1996). This is due to the fact that information cannot
be collected for the population who work in Spain and live abroad, since the Survey is
aimed at the population resident in family dwellings on the Spanish territory.

The sample size is about 4000 dwellings in Galicia until the second quarter of 2009,
which are uniformly distributed throughout the 13 weeks of each quarter (every week is
interviewed the thirteenth part of the sample). In 2008, a collaboration agreement was
signed between the INE and the Galician Statistics Institute (IGE) increasing the sample
size in the Autonomous Community of Galicia. The goal of this sample increase is to
allow the population analysis related to the economical activity with further breakdown
of what was done until that time. As a result of this agreement, in the third quarter of
2009 additional sample is included, collected by the IGE (234 sections) using the same
methodology and the same system of fieldwork that INE. In the second quarter of 2009
the sample in Galicia is about 8000 households.

The survey uses a two-stage sampling with primary sampling units stratification. Pri-
mary sampling units (PSU) are composed by census sections, which are geographical areas
with a maximum of 500 dwellings or about 3000 people. Secondary sampling units are
composed by main family dwellings and permanent accommodations. Sub-sampling is
not carried out in secondary sampling units, information is collected on all persons who
regularly live in the same.

Census sections are grouped in strata, according to the province and the type of
municipality considering the following classification:

1. Stratum 1: Province capital municipality.

2. Stratum 2: Self-represented municipalities, important areas compared to the capital
or municipalities with more than 100.000 inhabitants.

3. Stratum 3: Municipalities between 50.000 and 100.000 inhabitants.

4. Stratum 4: Municipalities between 20.000 and 50.000 inhabitants.

5. Stratum 5: Municipalities between 10.000 and 20.000 inhabitants.

6. Stratum 6: Municipalities between 5.000 and 10.000 inhabitants.
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7. Stratum 7: Municipalities between 2.000 and 5.000 inhabitants.

8. Stratum 8: Municipalities under 2.000 inhabitants.

Census sections are grouped in substrata inside each strata, according to socioeconomic
conditions.

Sample selection is performed to ensure that in each stratum all family dwellings
have the same probability of being selected, in other words, to ensure that there are
self-weighted samples in each stratum. First stage units are selected with a probability
proportional to the number of main family dwellings. In each section selected in the first
stage, a pre-set number of family dwellings with the same probability is selected by im-
plementing a random start systematic sample. For this survey, 18 dwellings have been
selected per section.

Let P be the population of individuals aged 16 years old and older residing in family
households in Galicia. This population is divided in 4 provinces Pp, p = 1, 2, 3, 4. Each
province is divided into 9 strata, denoted by Pph, p = 1, 2, 3, 4, h = 1, . . . , 9. The samples
are independent in each province, therefore we simplify notation and used Ph. In addition,
the provinces are divided into domains Pd, defined by sex groups and regions. These
domains are not always nested in strata. Let S be the full sample and Sp, Sh, and Sd the
sub-samples inside the province p, stratum h and domain d, respectively. Let Vha be the
number of dwellings in the PSU a and in the stratum h, Vh is the number of dwellings in
the stratum h and mh is the number of PSU selected in the stratum h. Therefore, the
probability of selection of each dwelling V of the PSU a, belonging to the stratum h, can
be calculated by

P (Vha) = P (PSUha)P (Vha|PSUha) = mh
Vha
Vh

18

Vha
=

18mh

Vh
.

As all residents in the dwelling aged 16 years old or older are interviewed, the probability
πj of selecting an individual j of dwelling v coincides with the probability of selecting
the dwelling v. From the above formula it follows that this probability is constant within
each stratum. Thus, the selection probability and the sample weights of the individual j
in the stratum h are

πj =
18mh

Vh
w

(1)
j =

1

πjrh
=

Vh
18mhrh

∼= w
(1)
h , ∀j ∈ Sh.

where rh is the relative frequency of responses in the stratum h.

2.1.1 Estimators provided by the LFS

Let Nh be the size of the population aged 16 years old or older in the stratum h, according
to the population projections given by the INE, and let nh be the number of individuals
of the sample in the stratum h. Until the year 2001, the total Yp of a province p was
calculated by using the ratio estimator

Ŷ LFS
p =

∑
h∈Pp

Nh

N̂h

∑
v∈Sh

∑
j∈v

w
(1)
j yj, where N̂h =

∑
v∈Sh

∑
j∈v

w
(1)
j = w

(1)
h nh.

29



The ratio estimator can also be written as a weighted sum of the values yj, i.e.

Ŷ LFS
p =

∑
j∈Sp

w
(2)
j yj, where w

(2)
j =

Nhw
(1)
h

N̂h

=
Nh

nh
,∀j ∈ Sh.

Since the year 2002, calibration techniques are applied to the weights w
(2)
j (Deville and

Sarndal, 1992) in order to adjust the estimates of the survey with the information from

external sources. New weights w
(3)
j are obtained by minimizing the sum of the weighted

differences between the old weights w
(2)
j and the new ones w

(3)
j . This is to say, by mini-

mizing ∑
j∈S

w
(2)
j G(

w
(3)
j

w
(2)
j

)

in w
(3)
j , subject to ∑

j∈S

w
(3)
j xjk = Xk, k = 1, . . . , K,

where Xk, k = 1, . . . , K are known population quantities. INE uses the disparity function

G(z) =

{
1
2
(z − 1)2 if 0.1 ≤ z ≤ 10,
∞ otherwise

Calibration equations match the totals of K known population variables with the cor-
responding weighted sums of the elements of the sample. The calibration variables are
category indicators, so that restrictions are used to match the sum of the calibrated
weights to the population sizes of

1. the sex-age groups in the autonomous region, with the age groups 16 − 19, 20 −
24, 25− 29, 30− 34, 35− 39, 40− 44, 45− 49, 50− 54, 55− 59, 60− 64,≥ 65, and

2. the provinces.

To simplify the notation, the final calibrated weights will be denoted by wj = w
(3)
j , j ∈ S,

so that the final expression of the estimator of totals Yp in the p province is

Ŷ LFS
p =

∑
j∈Sp

wjyj

In Galicia there are 53 counties but in this thesis we consider D = 96 domains. For all the
quarters preceding the third quarter of 2009, the considered domains are obtained from
crossing the 48 counties represented in the sample with the two sexes. Since the third
quarter of 2009, D = 102 domains will be considered because on that period there were
51 counties with sample representation.

We divide the D domains Pd into subsets Pd1, Pd2 and Pd3 of employed, unemployed
and inactive people. Our goal is to estimate the totals of employed and unemployed people
and the unemployment rate, defined by

Ydk =
∑
j∈Pd

ydkj, Rd =
Yd2

Yd1 + Yd2
, k = 1, 2,
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where ydkj = 1 if the j individual of the d domain is in Pdk and ydkj = 0 in other case.

Official LFS data are not related to the domains (counties × sex) but the analogue
direct estimators of the total Ydk, the mean Ȳdk = Ydk/Nd, the size Nd and the unemploy-
ment rate Rd are

Ŷ dir
dk =

∑
j∈Sd

wdj ydkj,
ˆ̄Y dir
dk = Ŷ dir

dk /N̂
dir
d , N̂dir

d =
∑
j∈Sd

wdj, R̂
dir
d =

Ŷ dir
d2

Ŷ dir
d1 + Ŷ dir

d2

, k = 1, 2.

(2.1.1)
where Sd is the sample domain and wdj’s are the official calibrated sample weights that
take into account the non-response.

2.2 Employment measurement: Registrations in the

social security system

Besides LFS, which periodically estimates the unemployment and employment totals,
there is another source of statistical information that provides regular information on the
occupation: people registered in the social security system. The social security system
(SSS) register is an administrative register that is not intended to estimate direct employ-
ment but people registered and paying to Social Security. It is published monthly with
the data referring to the last day of each month and the average of the month. In this
work we use the data at the last day of the month.

The registration data shows the number of workers enlisted, doing a labour activity
(excluding unemployed or students) and are therefore forced to contribute to the public
system for the protection of at least retirement situations, disability and death. The reg-
istration data, as all data from registers, is sensitive to law changes that affect it. The file
can also contain fictitious contributors looking to get a pension in the future or the right
to receive unemployment insurance. There are people employed according to LFS that are
not required to pay into Social Security, as is the case with some family assistance (this
category of workers must be registered in the Social Security only when they work daily,
fundamentally and directly). There are also people who are required to be registered in
the Social Security and they are not.

The registration file does not include government employees registered with their own
mutual funds that do not perform any other activity that determine inclusion in any of
the schemes of the Social Security System. It also does not include students who do not
perform a work activity. Subsidized temporary agricultural workers are included in the
file whether they work or not that month. The papal clergy is registered in the social
security system but does not develop an economic activity in the strict sense, as discussed
in the LFS. Workers with special agreement do not work and, although they are members
in order to obtain benefits, with few exceptions, are not counted as such. Furthermore, it
should be noted that when referring to statistical registrations and not the people regis-
tered, people with multiple jobs are considered more than once.
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Although the two statistics, LFS and SSS, have important differences. They also have
many similarities which will make us to use the variable registered in the social security
system as an auxiliary variable in the models proposed in the following chapters.

2.3 Unemployment measurement: Registered unem-

ployment

The two most important sources about unemployment in Spain are LFS and people reg-
istered as unemployed in the administrative register of employment claimants. There are
important differences between the two sources, which can be of methodological or con-
ceptual type and of dissimilarity of contents or considered population groups. Therefore
the two data sources produce significantly different estimates of labour force indicators.

Registered unemployment consists of the total employment demands, registered by
the administrative register of employment, existing on the last day of each month, ex-
cluding the ones that correspond to work situations described in the Ministerial Order
of 11 March 1985 (B.O.E. of 14/3/85) by introducing statistical criteria for measuring
registered unemployment.

Labour demand is the application for a job that makes a worker, unemployed or not,
to an administrative register of employment. For measuring the registered unemployment,
the unemployment register excludes all demands that, at the end of the reference month,
are in any of the following situations:

• Claimants seeking other employment compatible with their current job (moonlight-
ing). They are also excluded of the LFS unemployment.

• Claimants who, being employed, apply for a job to change it. They are also excluded
of the LFS unemployment.

• Claimants with unemployment benefits participating in Social Collaboration works.
They are also excluded of the LFS unemployment.

• Claimants who are retirement pensioners, pensioners with a huge absolute disability
and claimants aged 65 years or older (Retired). They are not excluded from LFS
unemployment.

• Claimants seeking employment for a period less than three months. They are not
excluded from LFS unemployment.

• Claimants applying for a time working less than 20 hours a week. They are not
excluded from LFS unemployment.

• Claimants who are studying for formal education if they are under 25 years old or
overcoming this age are seeking their first job. They are not excluded from LFS
unemployment.
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• Claimants attending to occupational training courses when their teaching hours
exceed 20 a week, with at least a scholarship to support and be seeking their first
job. They are not excluded from LFS unemployment.

• Claimants with suspended request while remaining in this situation since the sus-
pension of the request, usually processed at the request of applicant and good cause,
interrupts the job search. If demand is suspended for not being available for work,
they would not be LFS unemployed.

• Claimants with unemployment benefits which are compatibles by having a part-time
job. They are also excluded from LFS unemployment.

• Claimants who are receiving the farming benefit or who, having it spent, has not
elapse a period longer than one year from the date of entitlement (Benefited Agricul-
tural Temporary Workers). They are not excluded from LFS unemployment, unless
they had been working.

• Claimants who refuse job placement activities suited to their characteristics, as pro-
vided in Article 46, 1.2 of Law 8/88 of 7 April. The exclusion of LFS unemployment
depends on the characteristics of each person included in this group.

• Claimants not immediately available for work or in incompatible situation with
it, as claimants in situation of temporary disability or sick leave, claimants who are
performing military service or alternative service, claimants registered to participate
in a selection process for one particular job, job claimants exclusively for overseas,
claimants of a home-based work, claimants who, under an employment regulation
file, are in situation of suspension, and other causes.

If the claimants are available to work within 15 days, they would be LFS unemployed

As both data sources use different definitions of employment and unemployment, they
give different estimations of unemployment rates. On the one hand, in the LFS people
can seek employment in various ways, not only by registering in the administrative reg-
ister of employment; this fact would expect the LFS figure to be higher. On the other
hand, enrollment in the administrative register of employment within the registered un-
employment community does not include other conditions that are indeed necessary in
the LFS to assign the condition of unemployed (such as availability for working in the
next two weeks). This would favor a higher number of registered unemployment. The reg-
istered unemployment, like all figures from administrative registers, is strongly influenced
by changes in legislation that affects it. Also the potential attractiveness of registration
(ability to receive benefits, to receive training courses, etc.) has influence on registered
unemployment figures. Moreover, data from the LFS, like any survey, reflect the state-
ments made by the interviewees, which in some cases may not correspond to reality. Their
estimates have also the associated sampling error inherent to any survey.

An approximation to the analysis of LFS unemployment can be done through regis-
tered unemployment. This is the reason why, in the models considered in Chapters 3, 4
and 5, this variable is included as an auxiliary variable for explaining of unemployment.
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Chapter 3

Multivariate generalized linear
mixed models

This chapter gives an introduction to multivariate generalized linear mixed models (GLMM)
and their applications to small area estimation. The more simpler linear mixed models
(LMM) and the linear models (LM) belong to the family of GLMM. To understand how
the GLMM works in practice, it is better to start by describing the behavior of the LM
and the LMM. Therefore, we first give some comments about the linear regression model.
This model can be expressed as y = Xβ + ε, where y is a vector of observations, X is
a matrix of known covariates, β is a vector of unknown regression coefficients and ε is
a vector of errors. In this model the regression coefficients are fixed unknown constants.
However, there are some cases where it is better to assume that some of these coefficients
are realizations of random variables. These cases typically are when the observations are
correlated.

Let us see how a linear mixed model may be useful for modeling the correlations among
observations. Consider, for example, the mortality in 53 counties of Galicia. Assume that
the response variable yij, measured at individual i of county j, depends on a random effect
uj associated to the county j and whose value is unobservable. A linear mixed model may
be expressed as yij = xij + uj + εij, i = 1, . . . ,m, j = 1, . . . , 53, where xij is a vector
of known covariates, β is a vector of unknown regression coefficients, the random effects
u1, . . . , u53 are assumed to be i.i.d. with mean zero and variance σ2 and the εij’s are i.i.d.
errors with mean zero and variance τ 2. This is a simple LMM. In a general form LMM
may be expressed as

y = Xβ +Zu+ ε,

where y is a vector of observations, X is a matrix of known covariates, β is a vector of
unknown regression coefficients, which are often called fixed effects, Z is a known matrix,
u is a vector of random effects and ε is a vector of errors. Note that u is unobservable
and β is unknown. This model assumes that the random effects and errors have mean
zero and finite variances and that u and ε are uncorrelated (Jiang et al., 2002). These
models are used in small area estimation

Large-scale sample survey are usually designed to produce reliable estimates of various
characteristics of interest for large geographic areas. However, for effective planning of
health, social, and other services, there is a growing demand to produce similar estimates
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for smaller geographic areas for which adequate samples are not available. The usual
design-based estimator are unreliable for these areas. This makes necessary to ”borrow
strength” from related areas for finding precise estimators without increasing the sample
size. Such estimators are typically based on linear mixed models or generalized linear
mixed models that provide a link to related small areas through the use of supplementary
data. This data may be a recent census data or current administrative records.

The LMM have been widely used in situations where the observations are continuous.
However, there are practical cases where the observations are discrete or categorical. For
example, the number of forest fires in a country or the number of employed, unemployed
and inactive people in a county. McCullath and Nelder (1999) proposed an extension of
linear models, called generalized linear models (GLM). They pointed out that the key
elements of a classical linear model are that the observation are independent, the mean of
the observation is a linear function of some covariates and the variance of the observation
is constant. The extension to GLM modifies the second and the third assumption. In
GLM the mean of the observation is associated with a linear function of some covariates
through a link function and the variance of the observation is a function of the mean. The
GLM include as special cases, linear regression and analysis-of-variance models, logit and
probit models for binary responses, log-linear models and multinomial response models
for counts and some commonly used models for survival data. Therefore, these models
are applicable to cases where the observations may not be continuous.

The GLM have in common with linear models that the observations area assumed to
be independent. But, in many cases, the observations are correlated, as well as discrete or
categorical. It is clear that it is necessary to extend the linear mixed models to cases where
the responses are both correlated and, at the same time, discrete or categorical. Besides,
many variables of interest in small area estimation are not normally distributed, and
therefore cannot be adequately modeled via the linear mixed models. For such variables
we can instead consider using a GLMM. Under this type of models, the distribution of the
vector y of population values of the variable of interest is assumed to depend on a vector
quantity η that is related to regression covariates and random components through the
equation η = Xβ +Zu. The linear predictor η is connected to y via a known function
g, defined by E(y|u) = g(η) (Saei and Chambers, 2003).

In the rest of the chapter we introduce the general theory of the multivariate gener-
alized linear mixed models (MGLMM) that we use in this work. First, we present the
model and then we describe the penalized quasilikelihood algorithm used to fit the model
and the predictors. Finally, we introduce an explicit-formula procedure to estimate the
mean squared error.

3.1 The model

Let u1, . . . ,um be independent vectors such that

ui ∼ Nνi(0, ϕiΣui), i = 1, . . . ,m,
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where Σu1, . . . ,Σum are known symmetric and positive-definite matrices. Let u = (u′1, . . . ,u
′
m)′

and ν =
∑m

i=1 νi be such that

u ∼ Nν(0,V u), with V u = diag(ϕ1Σu1, . . . , ϕmΣum).

Let y1, . . . ,yn be q× 1 independent vectors whose densities, conditioned to u, belong
to the exponential family, i.e.

f(yj|u) = c(yj) exp
{
θ′jyj − b(θj)

}
, j = 1, . . . , n,

where θj ∈ Θ, j = 1, . . . , n, are the unknown q×1 vectors of natural parameters. Let µj =
µ(θj) and Σj = Σ(θj) be the mean vector and the covariance matrix of yj conditioned to

u. If we use the matrix notation ∂a
∂b

= ∂
∂b
· a, where “·” denotes the product of the column

vector ∂
∂b

= ( ∂
∂b1
, . . . , ∂

∂bm
)′m×1 by the row vector a1×n, then

µ(θj) = E[yj|u] =
∂b(θj)

∂θj
, Σ(θj) = cov[yj|u] =

∂µ′j
∂θj

=
∂2b(θj)

∂θj∂θ
′
j

, j = 1, . . . , n.

Let xj and zj be matrices of sizes q × p and q × ν respectively. The linear predictors are

ηj = xjβ + zju, j = 1, . . . , n.

Let us consider an injective link function g : M 7→ Rq, where M ⊂ Rq is the subset of
possible values of µ(θj), and such that

g(µ(θj)) = ηj, j = 1, . . . , n.

The dependency of the natural parameters from the random effects is explicitly given by
the function d = (g ◦ µ)−1, i.e.

θj = d(ηj), j = 1, . . . , n.

The natural link is g = µ−1, so that

θj = xjβ + zju, j = 1, . . . , n.

In the next sections we present a penalized quasi-likelihood (PQL) method to estimate
the model parameters and to predict the random effects of multivariate generalized linear
mixed models (MGLMM) with natural link.

3.2 The Penalized quasi-likelihood algorithm

3.2.1 Estimation and prediction of β and u

The joint probability density function of y = (y′1, . . . ,y
′
n)′, conditioned to u is

f1(y|u) =

[
n∏
j=1

c(yj)

]
exp

{
n∑
j=1

(
θ′jyj − b(θj)

)}
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and the log-likelihood is

l1(y|u) = c1 +
n∑
j=1

(
θ′jyj − b(θj)

)
.

The probability density function of u is

f2(u) = (2π)−ν/2 |Σu|−1/2 exp

{
−1

2
u′Σ−1u u

}
,

and the log-likelihood is

l2(u) = c2−
1

2

{
log |Σu|+ u′Σ−1u u

}
= c2−

1

2

{
m∑
i=1

(
νi logϕi + log |Σui|+ ϕ−1i u

′
iΣ
−1
ui ui

)}
.

The ML-PQL estimator of β and predictor of u (see Breslow and Clayton (1993)) maxi-
mizes the joint likelihood

l(y,u) = l1(y|u) + l2(u).

In this section we derive a Newton-Raphson algorithm to calculate ML-PQL estimator of
β and predictor of u.

Proposition 3.2.1. Under the MGLM model with natural link defined in the Section
3.2.1, the score vector and the Fisher information matrix of l(y,u) are

S(θ) =

[
Sβ(θ)
Su(θ)

]
, F (θs) =

[
F ββ(θ) F βu(θ)
F uβ(θ) F uu(θ)

]
,

where
Sβ(θ) =

∑n
j=1 x

′
j[yj − µj], Su(θ) =

∑n
j=1 z

′
j[yj − µj]−Σ−1u u,

F ββ(θ) =
∑n

j=1 x
′
jΣjxj, F βu(θ) =

∑n
j=1 x

′
jΣjzj,

F uβ(θ) =
∑n

j=1 z
′
jΣjxj, F uu(θ) =

∑n
j=1 z

′
jΣjzj −Σ−1u .

Proof. Let lj = θ′jyj − b(θj) and remind that θj = xjβ + zju, j = 1, . . . , n. Then

Sβ =
∂l(y,u)

∂β
=
∂l1(y|u)

∂β
=

n∑
j=1

∂θ′j
∂β

∂lj
∂θj

=
n∑
j=1

x′j

(
yj −

∂b(θj)

∂θj

)
=

n∑
j=1

x′j
(
yj − µj

)
,

Su =
∂l(y,u)

∂u
=
∂l1(y|u)

∂u
+
∂l2(u)

∂u
=

n∑
j=1

∂θ′j
∂u

∂lj
∂θj
−Σ−1u u =

n∑
j=1

z′j
(
yj − µj

)
−Σ−1u u,

The second order partial derivatives are

Hββ =
∂S′β
∂β

= −
n∑
j=1

∂µ′j
∂β

xj = −
n∑
j=1

∂θ′j
∂β

∂µ′j
∂θj

xj = −
n∑
j=1

x′jΣjxj,

Huβ =
∂S′β
∂u

= −
n∑
j=1

∂µ′j
∂u

xj = −
n∑
j=1

∂θ′j
∂u

∂µ′j
∂θj

xj = −
n∑
j=1

z′jΣjxj,

Huu =
∂S′u
∂u

= −
n∑
j=1

∂µ′j
∂u

zj −Σ−1u = −
n∑
j=1

∂θ′j
∂u

∂µ′j
∂θj

zj −Σ−1u = −
n∑
j=1

z′jΣjzj −Σ−1u .
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Finally F ββ = −Hββ, F uβ = F ′βu = −Huβ and F uu = −Huu.

Algorithm A. Let ϕ1, . . . , ϕm be known. The ML-PQL estimator and predictor of β
and u can be calculated by applying the following Newton-Raphson algorithm:

(A.1) Set initial values: Do r = 0, β(0) = βinicial and u(0) = uinicial.

(A.2) Iteration r + 1: Calculate

θ
(r)
j = xjβ

(r) + zju
(r), µ

(r)
j = µ(θ

(r)
j ), Σ

(r)
j = Σ(θ

(r)
j ), j = 1, . . . , n.

Update β(r) and u(r) by means of[
β(r+1)

u(r+1)

]
=

[
β(r)

u(r)

]
+
(
F (r)

)−1 [ ∑n
j=1 x

′
j(yj − µ

(r)
j )∑n

j=1 z
′
j(yj − µ

(r)
j )−Σ−1u u

(r)

]

with

F (r) =

[
F11 F12

F21 F22

]
=

[ ∑n
j=1 x

′
jΣ

(r)
j xj

∑n
j=1 x

′
jΣ

(r)
j zj∑n

j=1 z
′
jΣ

(r)
j xj

∑n
j=1 z

′
jΣ

(r)
j zj + Σ−1u

]

and(
F (r)

)−1
=

[
F 11 F 12

F 21 F 22

]
=

[
(F11 − F12F

−1
22 F21)

−1 −F 11F12F
−1
22

−F−122 F21F
11 F−122 + F−122 F21F

11F12F
−1
22

]
.

(A.3) End: Repeat step (A.2) until convergence of β(r) and u
(r)
i , i = 1, . . . ,m.

3.2.2 PQL estimation of the variance components

Let us write l1(β,u) = l1(y|u) as a function of β and u. We expand l1(β,u) in Taylor
series around the values β◦ and u◦ that maximizes l1(β,u). We obtain

l1(β,u) ≈ l1(β
◦,u◦) +

(
∂l1(β

◦,u◦)

∂β
,
∂l1(β

◦,u◦)

∂u

)(
β − β◦
u− u◦

)

+
1

2
(β′ − β◦′,u′ − u◦′)

 ∂2l1(β
◦
,u◦)

∂β∂β′
∂2l1(β

◦
,u◦)

∂β∂u′
∂2l1(β

◦
,u◦)

∂u∂β′
∂2l1(β

◦
,u◦)

∂u∂u′

( β − β◦
u− u◦

)
(3.2.1)

Let η = Xβ +Zu and η◦ = Xβ◦ +Zu◦, then

∂l1
∂β

=
∂η′

∂β

∂l1
∂η

= X ′
∂l1
∂η

,
∂l1
∂u

=
∂η′

∂u

∂l1
∂η

= Z ′
∂l1
∂η

,
∂2l1
∂β∂β′

= X ′
∂2l1
∂η∂η′

X,

∂2l1
∂β∂u′

= X ′
∂2l1
∂η∂η′

Z,
∂2l1
∂u∂u′

= Z ′
∂2l1
∂η∂η′

Z.
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As β◦ and u◦ maximize l1(β,u), the linear term of (3.2.1) is null. Therefore

l1(y|u) ≈ c+
1

2
(β′ − β◦′,u′ − u◦′)

(
X ′

Z ′

)(
∂2l1
∂η∂η′

)
(X,Z)

(
β − β◦
u− u◦

)
≈ c− 1

2
(η◦ − η)′W (η◦ − η)

.
= `1(η

◦|u),

where

W = −E
[
∂2l1(y|u)

∂η∂η′

]∣∣∣∣
η=η◦

. (3.2.2)

For the natural link we have ηj = θj and

W = −E
[
∂2l1(y|u)

∂θ∂θ′

]∣∣∣∣
θ=θ◦

= cov(y|u)|θ=θ◦ = diag
1≤j≤n

(Σ(θ◦j)).

Remark. Under the natural link it holds that ηj = θj and the partial derivatives of
l1(y|u) with respect to θ are

∂l1(y|u)

∂θj
=

∂(θ′jyj − b(θj))
∂θj

= yj −
∂b(θj)

∂θj
, j = 1, . . . , n,

∂2l1(y|u)

∂θj∂θ
′
j

= −∂
2b(θj)

∂θj∂θ
′
j

, j = 1, . . . , n,

∂2l1(y|u)

∂θj∂θ
′
k

= 0 ∀j 6= k, j, k = 1, . . . , n.

Therefore

∂2l1(y|u)

∂η∂η′
=
∂2l1(y|u)

∂θ∂θ′
= −diag(Σ1, . . . ,Σn) = −Σ and W = E[Σ] = Σ,

because the expectation is taken with respect to f(y|u) and u is fixed.

In summary, we have got that

l1(y|u) ≈ `1(η
◦|u) = −1

2
(η◦ −Xβ −Zu)′W (η◦ −Xβ −Zu) .

This is to say, l1(y|u) can be approximated to the likelihood function of multivariate linear
mixed model. The marginal probability distribution function should also be approximately
the same, i.e. l1(y) ≈ `1(η

◦). Therefore, the values of ϕ1, . . . , ϕm maximizing l1(y) should
be approximately the same to those maximizing `1(η

◦). On the other hand `1(η
◦) can be

obtained from `1(η
◦|u) and l2(u), which are both normal log-likelihoods. Therefore, we

have

• `1(η◦) is the loglikelihood of η◦ ∼ N(Xβ,Σy), with Σy = Z ′ΣuZ +W−1,

• For η◦ we assume the model η◦ = Xβ + Zu + e, where e ∼ N(0,W−1) and
u ∼ N(0,Σu) are independent.

39



• The values ϕ1, . . . , ϕm maximizing `1(η
◦) and `1(η

◦|u) + l2(u) should be approxi-
mately the same.

McGilchrist (1994) proposed to maximize `1(η
◦) for obtaining an updating equation for

ϕ1, . . . , ϕm. The PQL algorithm of McGilchrist for ϕ1, . . . , ϕm can be implemented by
applying the ML or the REML method to `1(η

◦,u) = `1(η
◦|u) + l2(u).

The ML-PQL approach

The penalized maximum likelihood estimation of ϕ1, . . . , ϕm maximizes `1(η
◦) after ap-

proximating l1(y|u) + l2(u) by `1(η
◦|u) + l2(u). We assume the approximate model

η◦ = Xβ +Zu+ e,

where e ∼ N(0,W−1) and u ∼ N(0,Σu) are independent. Therefore η◦ ∼ N(Xβ,Σy),
with Σy = ZΣuZ

′+W−1 and Σu = diag(ϕ1Σu1 , . . . , ϕmΣum). The marginal density and
log-density of η◦ are

f ◦1 (η◦) = (2π)−nq/2|Σy|−1/2 exp

{
−1

2
(η◦ −Xβ)′Σ−1y (η◦ −Xβ)

}
,

`ML(η◦) = −nq
2

log 2π − 1

2
log |Σy| −

1

2
(η◦ −Xβ)′Σ−1y (η◦ −Xβ).

Let Gi = ZiΣuiZ
′
i. By taking derivatives with respect to ϕi, i = 1, . . . ,m, we get

∂Σy

∂ϕi
= ZiΣuiZ

′
i = Gi,

Sϕi
=

∂`ML(η◦)

∂ϕi
= −1

2
tr

(
Σ−1y

∂Σy

∂ϕi

)
+

1

2
(η◦ −Xβ)′Σ−1y

∂Σy

∂ϕi
Σ−1y (η◦ −Xβ)

= −1

2
tr(Σ−1y Gi) +

1

2
(η◦ −Xβ)′Σ−1y GiΣ

−1
y (η◦ −Xβ),

∂2`ML(η◦)

∂ϕi∂ϕj
=

1

2
tr(Σ−1y GjΣ

−1
y Gi)− (η◦ −Xβ)′Σ−1y GiΣ

−1
y GjΣ

−1
y (η◦ −Xβ).

We recall that
E[y′Qy] = tr {Q v(y)}+ E[y]′QE[y].

The Fisher amount of information associated to ϕi is

F ϕiϕj
= E

[
−∂

2`ML(η◦)

∂ϕi∂ϕj

]
= −1

2
tr(Σ−1y GjΣ

−1
y Gi) + tr(Σ−1y GiΣ

−1
y GjΣ

−1
y Σy)

=
1

2
tr(Σ−1y GiΣ

−1
y Gj).

For ϕ = (ϕ1, . . . , ϕm) the updating equation of the Fisher-scoring algorithm is

ϕk+1 = ϕk + F−1(ϕk)S(ϕk).
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The REML-PQL approach

The REML log-likelihood is

lreml(η
◦) = −1

2
(qn− p) log 2π − 1

2
log |K ′ΣyK| −

1

2
η◦′P η◦,

where

P = Σ−1y −Σ−1y X(X ′Σ−1y X)−1X ′Σ−1y , K = W −WX(X ′WX)−1X ′W .

The first order partial derivatives of lreml(η
◦) with respect to ϕi are

Sϕi
= −1

2
tr(PGi) +

1

2
η◦′PGiPη

◦, i = 1, . . . ,m.

The elements of the Fisher information matrix are

Fϕiϕj
=

1

2
tr(PGjPGi), i, j = 1, . . . ,m.

For ϕ = (ϕ1, . . . , ϕm) the updating equation of the Fisher-scoring algorithm is

ϕk+1 = ϕk + F−1(ϕk)S(ϕk).

3.2.3 The PQL algorithm

The PQL algorithm is

Algorithm B. This algorithm calculates the PQL predictors of u and estimators of β
and ϕi, i = 1, . . . ,m.

(B.1) Do ` = 1, where ` counts the external iterations. Set the values β(0), u(0) and ϕ
(1)
i ,

i = 1, . . . ,m.

(B.2) Run Algorithm A. Use ϕ
(`)
1 , . . . , ϕ

(`)
m as know values and β(`−1), u(`−1) as algorithm

seeds. Let β(`) and u(`) be the output of Algorithm A.

(B.3) Update ϕi by using the ML or the REML Fisher-scoring updating equation

ϕk+1 = ϕk + F−1(ϕk)S(ϕk).

(B.4) Repeat the steps (B.2)-(B.3) until the convergence of β(`), u
(`)
i and ϕ

(`)
i , i = 1, . . . ,m.

3.3 Prediction and mean squared error

We are interested in predicting
δ = Ay.
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If we fit the model µ = E[y] = h(η), where η = Xβ + Zu, we get the prediction of y,
h(η̂), where η̂ = Xβ̂ +Zû. The predictor of δ is

δ̂ = Ah(η̂),

and the difference is δ̂ − δ = A[h(η̂)− y]. Therefore, the MSE of the predictor δ̂ is

MSE(δ̂) = E[(δ̂ − δ)(δ̂ − δ)′] = E
[
A {h(η̂)− y} {h(η̂)− y}′A′

]
.

Let V G = E[(y − h(η))(y − h(η))′]. By summing and substracting h(η), we get

MSE(δ̂) = E
[
A {h(η̂)− h(η)} {h(η̂)− h(η)}′A′

]
+ AV GA

′

+ AE
[
{h(η̂)− h(η)} {h(η)− y}′

]
A′

+ AE
[
{h(η)− y} {h(η̂)− h(η)}′

]
A′.

From the results in Kackar y Harville (1984), we have that the two last terms are null.
It is possible to obtain an approximation to the first term on the right hand side of the
above equality. Let us take an arbitrary element of h(η), for example hj(ηj). We recall
that hj(ηj) is a vector of size q, i.e. hj(ηj) = (hj1(ηj), . . . , hjq(ηj))

′. Let ζj be an
admissible value of ηj. We make a first-order Taylor series expansion of hjk(ζj) around
ηj = (ηj1, . . . , ηjq)

′, and we do the substitution ζj = η̂j. This to say,

hjk(η̂j)− hjk(ηj) ∼=
q∑
`=1

∂hjk(ηj)

∂ηj`
(η̂j` − ηj`).

If we do the same with hj′k′(ηj′) and we multiply both expressions, we get

[hjk(η̂j)− hjk(ηj)][hj′k′(η̂j′)− hj′k′(ηj′)] ∼= H ′jk(η̂j − ηj)(η̂j′ − ηj′)′H ′j′k′ ,

where

H ′jk =

[
∂hjk(ηj)

∂ηj1
, . . . ,

∂hjk(ηj)

∂ηjq

]
.

By doing the same calculations on the pairs j, k and by defining the matrices

Hj =


∂hj1(ηj)

∂ηj1
· · ·

∂hj1(ηj)

∂ηjq
...

. . .
...

∂hjq(ηj)

∂ηj1
· · ·

∂hjq(ηj)

∂ηjq

 , j = 1, . . . , N, and H = diag{H1, . . . ,HN},

we obtain
[h(η̂)− h(η)][h(η̂)− h(η)]′ ∼= H(η̂ − η)(η̂ − η)′H ′.

Therefore, we can write

E
[
A {h(η̂)− h(η)} {h(η̂)− h(η)}′A′

] ∼= E [AH(η̂ − η)(η̂ − η)′H ′A′]

= E[(τ̂GE − τG)(τ̂GE − τG)′] = MSE(τ̂GE),
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where

τG = AGη = AG(Xβ +Zu), τ̂GE = AGη̂ = AG(Xβ̂ +Zû), AG = AH.

In the case of using the maximum penalized likelihood approach for estimating β and ϕi,
i = 1, . . . ,m, we do following:

1. For estimating β and predicting u, maximize l1(y|u) + l2(u).

2. For estimating ϕ1, . . . , ϕm, maximize the loglikelihood of the distributionN(Xβ, V ),
where

V = ZΣuZ
′ +W−1, W = −E

[
∂2l1(y|u)

∂η∂η′

]∣∣∣∣
η=η◦

, η◦ = Xβ◦ +Zu◦.

and (β◦,u◦) are the values of (β,u) maximizing l1(β,u) = l1(y|u).

Observe that in step 2 we assume a normal mixed model with Σ−1e = W . In what follows,
we show how to estimate the mean squared error MSE(τ̂GE).

Let τ̂GB = AGη̂ = AG(Xβ̂ + Zû) be the estimator of τG that is obtained from

maximizing l̃1(ỹ|u) + l2(u) when the variance components ϕi, i = 1, . . . ,m, are known.
For the predictor τ̂GE, the MSE is

MSE(τ̂GE) = MSE(τ̂GB) + E[(τ̂GE − τ̂GB)(τ̂GE − τ̂GB)′]

+ E[(τ̂GE − τ̂GB)(τ̂GB − τG)′] + E[(τ̂GB − τG)(τ̂GE − τ̂GB)′].

As the estimators ϕ̂j, that maximize l̃1(ỹ|u) + l2(u), are translation invariant, we have

MSE(τ̂GE) = MSE(τ̂GB) + E[(τ̂GE − τ̂GB)(τ̂GE − τ̂GB)′].

Furthermore, the MSE of the τ̂GB is

MSE(τ̂GB) =
[
AGX AGZ

]
I−1F (β,u)

[
X ′A′G
Z ′A′G

]
,

where IF (β,u) is the Fisher information matrix derived from the joint p.d.f f ◦(y◦,u) =
exp{l◦1(y◦|u) + l2(u)}. It holds that

IF (β,u) =

[
X ′WX X ′WZ
Z ′WX Z ′WZ + Σ−1u

]
.

Define T =
(
Σ−1u +Z ′WZ

)−1
and V = ZΣuZ

′ +W−1. The inverse of IF (β,u) is

IF (β,u)−1 =

[
P Q
Q′ R

]
,

where R = T + TZ ′WXPX ′WZT , Q = −PX ′WZT and P = (X ′V X)−1. There-
fore

MSE(τ̂GB) ∼= G1(ϕ) + G2(ϕ) + G3(ϕ),
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where G1(ϕ) and G2(ϕ) are

G1(ϕ) = AHZTZ ′H ′A′,

G2(ϕ) = [AHX −AHZTZ ′WX]Q[X ′H ′A′ −X ′WZTZ ′H ′A′].

In a similar way, we can adapt the results of Prasad and Rao (1990) to obtain the
approximation

G3(ϕ) = E[(τ̂GE − τ̂GB)(τ̂GE − τ̂GB)′] ≈
m∑

k1=1

m∑
k2=1

cov(ϕ̂k1 , ϕ̂k2)AHL
(k1)V L(k2)′H ′A′,

where

T = V u − V uZ
′V −1ZV u, Q = (X ′V −1X)−1,

L(k) = (I −R)V̇ kV
−1, V̇ k =

∂V

∂ϕk
, R = V uV

−1.
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Chapter 4

Multinomial logit mixed model

This chapter introduces the multinomial logit mixed model that will be used for the
estimation of totals of employed and unemployed people and of unemployment rates in
the D = 96 domains defined by the combination of the 48 counties of Galicia and the
two sexes. Section 4.1 describes the model, gives an algorithm to estimate the model
parameters and proposes small area estimators of labor market indicators. It also shows
how estimating the mean square errors. Section 4.2 presents two simulation experiments.
The first simulation compares the small area estimators obtained under the introduced
multinomial model with the corresponding ones obtained under the multinomial model
of Molina et al. (2007) and under independent binomial logit mixed models. The second
simulation studies the behavior of the three introduced MSE estimation methods. Finally,
Section 4.3 applies the proposed methodology to data from the SLFS in Galicia.

4.1 The model

This section introduces an area-level multinomial logit mixed model with domain random
effects associated to the categories of the response variable. We first give some notation
and assumptions. Let use indexes k = 1, . . . , q − 1 for the q − 1 multinomial categories
of the target variable and d = 1, . . . , D for the D domains. In the real data presented in
Section 4.3 there are q = 3 categories, i.e. employed, unemployed and inactive people.
However, there are only q− 1 = 2 categories in the multinomial model, i.e. employed and
unemployed people. Let udk be the random effect associated to category k and domain
d, and define ud = col

1≤k≤q−1
(udk). We assume that ud ∼ N(0,V ud) are independent with

covariance matrices V ud = diag
1≤k≤q−1

(ϕk). We further assume that the response vectors

yd = col
1≤k≤q−1

(ydk), conditioned to ud, are independent with multinomial distributions

yd|ud
∼ M(νd, pd1, . . . , pdq−1), d = 1, . . . , D, (4.1.1)

where the νd’s are known integer numbers. The covariance matrix of yd conditioned to
ud is W d = var(yd|ud) = νd[diag(pd) − pdp′d], where pd = col

1≤k≤q−1
(pdk) and diag(pd) =
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diag
1≤k≤q−1

(pdk). For the natural parameters ηdk = log(pdk
pdq

), we assume the model

ηdk = xdkβk + udk, d = 1, . . . , D, k = 1, . . . , q − 1, (4.1.2)

where xdk = col′
1≤r≤lk

(xdkr), βk = col
1≤r≤lk

(βkr) and l =
∑q−1

k=1 lk. The mean and the variance

of ydk, conditioned to ud, are µdk = νdpdk and ωdk = νdpdk(1 − pdk), respectively. The
probability of the multinomial category k in the domain d is

pdk =
exp{ηdk}

1 +
∑q−1

`=1 exp{ηd`}
, d = 1, . . . , D, k = 1, . . . , q − 1.

In matrix notation, the model is

ηd = Xdβ +Zdud, d = 1, . . . , D, (4.1.3)

where ηd = col
1≤k≤q−1

(ηdk), Xd = diag
1≤k≤q−1

(xdk), β = col
1≤k≤q−1

(βk) and Zd = Iq−1 with

Iq−1 being the (q − 1) × (q − 1) unit matrix. If we introduce the additional notation
η = col

1≤d≤D
(ηd), X = col

1≤d≤D
(Xd), u = col

1≤d≤D
(ud) and Z = diag

1≤d≤D
(Zd), then (4.1.3) can be

represented in the matrix form
η = Xβ +Zu, (4.1.4)

with V u = var(u) = diag
1≤d≤D

(V ud) and W = var(y|u) = diag
1≤d≤D

(W d).

Alternatively, (4.1.3) can be expressed in the form

ηd = Xdβ + Zdu, d = 1, . . . , D, (4.1.5)

where u = col
1≤k≤q−1

(uk), the uk = col
1≤d≤D

(udk) ∼ ND(0, ϕkID) are independent and Zd =

diag
1≤k≤q−1

( col′
1≤`≤D

(δ`d)). We also can express (4.1.5) as

η = Xβ + Zu, (4.1.6)

where Z = col
1≤d≤D

(Zd). We recall that (4.1.4) and (4.1.6) define the same model.

4.1.1 The PQL-REML fitting algorithm

To fit the introduced multinomial mixed model we combine the PQL method, described
by Breslow and Clayton (1993) for estimating and predicting the βk’s and the ud’s, with
the REML method for estimating the variance components ϕk’s. The presented method
is based on a normal approximation to the joint probability distribution of the vector
(y,u). The combined algorithm was described in Section 3.2. It was first introduced by
Schall (1991) and later used by Saei and Chambers (2003) and Molina et al. (2007) in
applications of generalized linear mixed models to small area estimation problems. In this
chapter, we adapt the combined algorithm to the multinomial logit mixed model defined
by (4.1.1) and (4.1.2).
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The log-likelihood of y conditioned to u is

l1(y|u) =
D∑
d=1

{
q−1∑
k=1

ydk log
pdk
pdq

+ νd log pdq + log
νd

yd1! · · · ydq!

}

=
D∑
d=1

{
q−1∑
k=1

ydkηdk − νd log
(
1 +

q−1∑
k=1

exp{ηdk}
)

+ log
νd

yd1! · · · ydq!

}
.

The partial derivatives of

ηdk =

pk∑
r=1

xdkrβkr + udk, d = 1, . . . , D, , k = 1, . . . , q − 1,

with respect to βkr and udk are

∂ηdk
∂βkr

= xdkr,
∂ηdk
∂udk

= 1.

The first order partial derivatives of l1 are

S1,βkr =
∂l1(y|u)

∂βkr
=

D∑
d=1

{
xdkrydk −

νdxdkr exp{ηdk}
1 +

∑q−1
`=1 exp{ηd`}

}
=

D∑
d=1

xdkr(ydk − µdk),

S1,udk =
∂l1(y|u)

∂udk
= (ydk − µdk).

The vector expressions of the first order partial derivatives of l1 are

S1,βk =
∂l1(y|u)

∂βk
=

D∑
d=1

x′dk(ydk − µdk), S1,β = col
1≤k≤q−1

(S1,βk),

S1,u =
∂l1(y|u)

∂u
= col

1≤d≤D
( col
1≤k≤q−1

(S1,udk)).

The second order partial derivatives of l1 are

H1,βkrβks =
∂2l1(y|u)

∂βkr∂βks
= −

D∑
d=1

νdxdkrxdkspdk(1− pdk),

H1,udkβkr =
∂2l1(y|u)

∂udk∂β
= −νdxdkrpdk(1− pdk),

H1,udk,udk =
∂2l1(y|u)

∂udk∂udk
= −νdpdk(1− pdk),

and for the case k1 6= k2, we have

H1,βk1rβk2s
=

∂2l1(y|u)

∂βk1r∂βk2s
=

D∑
d=1

νdxdk1rxdk2spdk1pdk2 ,

H1,udk1βk2s
=

∂2l1(y|u)

∂udk1∂βk2s
= νdxdk2spdk1pdk2 ,

H1,udk1 ,udk2
=

∂2l1(y|u)

∂udk1∂udk2
= νdpdk1pdk2 , H1,ud1k1 ,ud2k2

=
∂2l1(y|u)

∂udk1∂udk2
= 0, d1 6= d2.
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The vector expressions of the second order partial derivatives of l1 are

H1,βk1βk2
=
(
H1,βk1rβk2s

)
r = 1, . . . , pk1

s = 1, . . . , pk2

, H1,ββ =
(
H1,βk1βk2

)
k1 = 1, . . . , q − 1
k2 = 1, . . . , q − 1

,

H1,udβk2
=
(
H1,udk1βk2s

)
k1 = 1, . . . , q − 1
s = 1, . . . , pk2

, H1,uβ =
(
H1,udβk2

)
d = 1, . . . , D
k2 = 1, . . . , q − 1

,

H1,ud1ud2
=
(
H1,ud1k1 ,ud2k2

)
k1 = 1, . . . , q − 1
k2 = 1, . . . , q − 1

, H1,uu =
(
H1,ud1ud2

)
d1 = 1, . . . , D
d2 = 1, . . . , D

.

It holds that H1,uu = diag
1≤d≤D

(H1,udud).

The likelihood of u is

f2(u) =
1

(2π)D(q−1)/2|V u|1/2
exp

{
−1

2
u′V −1u u

}
.

The loglikelihood of u is

l2(u) = κ−
D∑
d=1

q−1∑
k=1

{
D

2
logϕk +

1

2

u2dk
ϕk

}
,

where κ = −D(q−1)
2

log 2π. The first order partial derivatives of l2 are

S2,udk =
∂l2(u)

∂udk
= − 1

ϕk
udk.

The vector expression of partial derivatives of l2 are

S2,u = col
1≤d≤D

(
col

1≤k≤q−1

(
S2,udk

))
.

The second order partial derivatives of l2 are

H2,udkudk = − 1

ϕk
, H2,ud1k1ud2k2

= 0, d1 6= d2 or k1 6= k2.

The matrix of the second order partial derivatives of l2 are

H2,ud1ud2
=
(
H2,ud1k1 ,ud2k2

)
k1 = 1, . . . , q − 1
k2 = 1, . . . , q − 1

, H2,uu =
(
H2,ud1ud2

)
d1 = 1, . . . , D
d2 = 1, . . . , D

.

The log-likelihood of (y,u) is

l(y,u) = l1(y|u) + l2(u).

The first order partial derivatives l are

Sβ = S1,β, Su = S1,u + S2,u.
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The blocks of the Fisher information matrix associated to l are

F β,β = −H1,ββ, F u,β = −H1,uβ, F β,u = F ′u,β, F u,u = −H1,uu −H2,uu.

We define

S = S(β,u) =

(
Sβ
Su

)
, F = F (β,u) =

(
F ββ F βu

F uβ F uu

)
, F−1 =

(
F ββ F βu

F uβ F uu

)
.

It holds that

F ββ = (F ββ − F βuF
−1
uuF uβ)−1, F βu = −F ββF βuF

−1
uu ,

F uβ = (F βu)′, F uu = F−1uu + F−1uuF uβF
ββF βuF

−1
uu .

The combined algorithm has two parts: A and B. Algorithm A updates the values of
βk and ud, k = 1, . . . , q−1, d = 1, . . . , D. Algorithm B updates the variance components.

Algorithm A.

(A.1) Beginning: Assign the initial values l = 0, β(0) = βinitial and u(0) = uinitial.

(A.2) Iteration l + 1: For d = 1, . . . , D, k = 1, . . . , q − 1, calculate F (β(l),u(l)) and
S(β(l),u(l)) and update β(l) and u(l) by using the equation[

β(l+1)

u(l+1)

]
=

[
β(l)

u(l)

]
+ F−1(β(l),u(l))S(β(l),u(l)), (4.1.7)

where S and F are the vector of scores (first order partial derivatives) and the
Fisher information matrix (minus expectation of second order partial derivatives) of
the joint log-likelihood of (y,u).

(A.3) End: Repeat the step (A.2) till convergence of β(l) and u(l) and obtain the final
values β̂ and û.

Algorithm A maximizes l(y,u) in β and u for fixed values of ϕ1, . . . , ϕq−1. To update
the values of the variance components, we assume that β and u are known and we adapt
the ideas of Schall (1991) to a multivariate setting. For this sake, we consider a Taylor
expansion of

ξdk = gk(yd) = log
ydk

νd −
∑q−1

`=1 yd`

around the point µd = νdpd. We obtain

ξd ≈Xdβ +Zdud + ed, (4.1.8)

where ξd = col
1≤k≤q−1

(ξdk), ed = W−1
d (yd − µd). By assuming equality in (4.1.8), it holds

that E[ξ] = Xβ and V = var(ξ) = ZV uZ
′ +W−1. Schall (1991) proposed to update

the variance components by maximizing the normal approximation to the distribution
of ξ, with β and u fixed. This proposal assumes the approximation of l1(y) by the
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log-likelihood l1(ξ) of the cited multivariate normal distribution. The basic idea is thus
maximizing l(ξ,u) instead of l(y,u), where ξ is assumed to follow model (4.1.8) under
normality. The approximating REML log-likelihood is

lreml(ξ) = −1

2
(D(q − 1)− t) log 2π − 1

2
log |KtV K| − 1

2
ξtPξ,

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1 and K = W −WX(X ′WX)−1X ′W .

The update of the variance components can be done by applying the Fisher-Scoring
algorithm to the REML log-likelihood. The algorithm is described below.

Algorithm B.

(B.1) Do ` = 1. Initiate the values β(0), u(0) and ϕ(0).

(B.2) Run the Algorithm A by using ϕ(`) as known value of the vector of variances and
β(`−1) and u(`−1) as initial values. Let β(`) and u(`) be the obtained estimates and
predictors.

(B.3) For d = 1, . . . , D, calculate η
(`)
d = Xdβ

(`) +Zdu
(`) and apply the updating equation

ϕ(`+1) = ϕ(`) + F−1(ϕ(`))S(ϕ(`)),

where S and F are the vector of scores and the Fisher information matrix of the
log-likelihood lreml(ξ).

(B.4) Repeat the steps (B.2)-(B.3) until the convergence of β(`), u(`) and ϕ(`).

The variance components ϕk can be also updated by applying the formula

ϕ̂k =
û′kΣ

−1
uk
ûk

dim(uk)− τk
=
û′kûk
D − τk

,

where Σuk = ID, τk = 1
ϕ̂k

tr
(
Σ−1uk T̂

rml

kk

)
= 1

ϕ̂k
tr
(
T̂
rml

kk

)
and Trmlkk is the block (k, k) of the

matrix
T̂
rml

= T̂ + T̂Z′WX(X ′V̂
−1
X)−1X ′WZT̂,

with T̂ = (ZWZ′ + Σ̂
−1
u )−1, Σ̂u = diag(ϕ1ID, . . . , ϕq−1ID) and V̂ = ZΣ̂uZ

′ +W−1.

Algorithm B (alternative).

(B.1) Do ` = 1. Initiate the values β(0), u(0) and ϕ(0).

(B.2) Run the Algorithm A by using ϕ(`) as known value of the variance components,
and β(`−1) and u(`−1) as initial values. Let β(`) and u(`) the obtained estimators and
predictors.
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(B.3) Calculate η
(`)
d = Xdβ

(`) + Zdu
(`), d = 1, . . . , D.

p
(`)
dk =

exp(η
(`)
dk )

1 +
∑q−1

k=1 exp(η
(`)
dk )

, p
(`)
d = col

1≤k≤q−1
(p

(`)
dk ), W (`) = diag

1≤d≤D
(νd[diag(p

(`)
d )− p(`)d p

(`)′
d ])

Σ(`)
u = diag

(
ϕ
(`)
1 ID, . . . , ϕ

(`)
q−1ID), T(`) = (Z′WZ + Σ(`)−1

u )−1, V (`) = ZΣ(`)
u Z′ +W (`)−1,

Trml(`) = T(`) + T(`)Z′W (`)X(X ′V (`)−1X)−1X ′W (`)ZT(`), τ
(`)
k =

(
ϕ
(`)
k

)−1
tr
(
T
rml(`)
kk

)
(B.4) Update the variance components by using the equations

ϕ̂
(`+1)
k =

û
(`)′
k û

(`)
k

D − τ (`)k

, k = 1, . . . , q − 1.

(B.5) Repeat the steps (B.2)-(B.4) until the convergence of β(`), u(`) (o u(`)) y σ(`).

The difference between this algorithm and the previous is that the last is a fixed-point
algorithm and the previous is an iterative Fisher-Scoring algorithm.

The above described algorithms require initial values for β, u and ϕ. We suggest
employing some easy-to-calculate estimates. More concretely, we use u(0) = 0 and β(0) =
β̃, where β̃ is obtained by fitting the non mixed variant of the model (4.1.1)-(4.1.2)
without the random effect u. The non mixed model is also used for calculating ϕ(0) by
means of the formula

ϕ̂k =
1

D − 1

D∑
d=1

(η̃
(dir)
dk − η̃dk)2, k = 1, . . . , q − 1, (4.1.9)

where η̃dk = β̃kxdk and η̃
(dir)
dk = log ydk

ydq
, k = 1, . . . , q − 1, d = 1, . . . , D.

Under regularity conditions the asymptotic distribution of the REML estimator β̂
is multivariate normal N(β,F ββ), where F ββ = (qrr)r=1,...,tk is the block sub-matrix of
the Fisher information matrix in the output of the fitting algorithm A. Therefore, an
approximate (1− α)-level confidence interval for βkr is

β̂kr ± zα/2qrr, r = 1, . . . , tk,

where zα is the α-quantile of the normal distribution N(0, 1). If we use β̂kr to test
H0 : βkr = 0 and we observe the realization β̂kr = β0, the approximate p-value is

p = 2PH0(β̂kr > |β0|) = 2P (Z > |β0| /
√
qrr)

where Z follows a standard normal distribution.

4.1.2 Model-based small area estimation

In practice we are interested in estimating the domain totals

Ydk =
∑
j∈Pd

ydkj, d = 1, . . . , D, k = 1, . . . , q − 1,
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where Pd is the population domain with size Nd. A synthetic model-based estimator of Ydk
is Ŷdk = m̂dk = N̂dp̂dk. Estimates of rates can be obtained by plugging the corresponding
estimators of totals. In this section we deal with the problem of estimating md = Ndpd,
d = 1, . . . , D, where Nd is an estimated population size that can be obtained from the
unit-level survey data or from administrative registers. As we are assuming the area-level
model approach, Nd is treated as a known constant. In the application to real data, we
take Nd = N̂dir

d because N̂dir
d is the official best estimate of the domain size. We further

estimate md by means of m̂d = Ndp̂d, where

p̂d = col
1≤k≤q−1

(p̂dk), p̂dk =
exp{η̂dk}

1 +
∑q−1

`=1 exp{η̂d`}}
, η̂dk = xdkβ̂k + ûdk.

Note that md can be written in the form md = hd(ηd), where hd = col
1≤k≤q−1

(hdk) and

hdk(ηd) = N̂dpdk = N̂d
exp{ηdk}

1 +
∑q−1

`=1 exp{ηd`}
, k = 1, . . . , q − 1.

The partial derivatives of hdk are

∂hdk
∂ηdk

= N̂dpdk(1− pdk),
∂hdk1
∂ηdk2

= −N̂dpdk1pdk2 , k1 6= k2,

and the matrix of derivatives is

Hd =

(
∂hdk1
∂ηdk2

)
k1,k2=1,...,q−1

= N̂d[diag(pd)− pdp′d].

A Taylor expansion of hdk(η̂d) around ηd yield to

hdk(η̂d)− hdk(ηd) ≈
q−1∑
`=1

∂hdk
∂ηd`

(η̂d` − ηd`),

or equivalently to

hd(η̂d)− hd(ηd) ≈Hd(η̂d − ηd), h(η̂)− h(η) ≈H(η̂ − η).

where H = diag
1≤d≤D

(Hd) and h = col
1≤d≤D

(hd). As m̂d = AHη̂, with A = col′
1≤d1≤D

(δdd1Iq−1),

then η̂ can be viewed as a vector of EBLUPs in the linear mixed model (4.1.8). Therefore,
we propose to apply the methodology of Prasad and Rao (1990) as explained in Chapter
3 (Section 3.3). This is to say, we approximate the MSE of m̂d by means of

MSE(m̂d) ≈ G1(ϕ) + G2(ϕ) + G3(ϕ). (4.1.10)

where

G1(ϕ) = AHZTZ ′H ′A′,

G2(ϕ) = [AHX −AHZTZ ′WX]Q[X ′H ′A′ −X ′WZTZ ′H ′A′],

G3(ϕ) ≈
q−1∑
k1

q−1∑
k2

cov(ϕ̂k1 , ϕ̂k2)AHL
(k1)V L(k2)′H ′A′,

53



T = V u − V uZ
′V −1ZV u, Q = (X ′V −1X)−1,

V u = diag
1≤`≤D

(V u`), V u` = diag
1≤k≤q−1

(ϕk), V = ZV uZ
′ +W−1 = diag

1≤`≤D
(V `),

Z = diag
1≤`≤D

(Z`), Z` = Iq−1, T = diag
1≤`≤D

(T `), T ` = V u` − V u`V
−1
` V u`,

L(k) = (I −R)V kV
−1, V k =

∂V

∂ϕk
= diag

1≤d≤D
( diag
1≤i≤q−1

(δik)), R = V uV
−1.

It holds that

G1(ϕ) = Iq−1HdIq−1T dIq−1HdIq−1 = HdT dHd.

The expression of G2(ϕ) is

G2(ϕ) = [A21 −A22]Q[A′21 −A′22],

where

A21 = Iq−1HdXd = HdXd, A22 = Iq−1HdIq−1T dIq−1W dXd = HdT dHdXd.

In the calculation of G3(ϕ), we observe that L(k) = diag
1≤d≤D

(L
(k)
d ), where

L
(k)
d = (Iq−1 − diag

1≤i≤q−1
(ϕi)V

−1
d ) diag

1≤i≤q−1
(δik)V

−1
d .

and cov(ϕ̂k1 , ϕ̂k2) is obtained from the inverse of the Fisher information matrix F in the
algorithm B. The proposed analytic MSE estimator is

mse(m̂d) = G1(ϕ̂) + G2(ϕ̂) + 2G3(ϕ̂), (4.1.11)

where ϕ̂ is the estimator of ϕ obtained from algorithm B.

Concerning the estimation of the MSE of m̂dk, we can also use the approach of
González-Manteiga et al.(2008a) by introducing the following parametric bootstrap method.

1. Fit the model (4.1.1)-(4.1.2) and calculate ϕ̂k and β̂k, k = 1, . . . , q − 1.

2. Generate u∗d ∼ N(0, diag
1≤k≤q−1

(ϕ̂k)) and y∗d ∼ M(νd, p
∗
d1, . . . , p

∗
dq−1), where

p∗dk =
exp{η∗dk}

1 +
∑q−1

`=1 exp{η∗d`}
, η∗dk = β̂kxdk+u

∗
dk,m

∗
dk = N̂dp

∗
dk, d = 1, . . . , D, k = 1, . . . , q−1.

3. Calculate ϕ̂∗k, β̂
∗
k and

p̂∗dk =
exp{η̂∗dk}

1 +
∑q−1

`=1 exp{η̂∗d`}
, η̂∗dk = β̂

∗
kxdk+û

∗
dk, m̂

∗
dk = N̂dp̂

∗
dk, d = 1, . . . , D, k = 1, . . . , q−1.
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4. Repeat B times steps 2-3 and calculate the bootstrap mean square error estimator

mse∗1dk =
1

B

B∑
b=1

(m̂∗dk −m∗dk)2, d = 1, . . . , D, k = 1, . . . , q − 1.

In addition to mse∗1dk, we propose another estimator. The second bootstrap MSE estimator
is based on the analytic one (4.1.11) and follows the ideas of bagging from Breiman (1996).
The bootstrap approximation of MSE(m̂d) is

mse∗2(m̂d) = E∗[G1(ϕ̂∗) + G2(ϕ̂∗) + 2G3(ϕ̂∗)],

with the Monte Carlo approximation

mse∗2(m̂d) =
1

B

B∑
b=1

(G∗b1 (ϕ̂∗) + G∗b2 (ϕ̂∗) + 2G∗b3 (ϕ̂∗)).

4.2 Simulation study

In this section we present two simulation experiments designed to analyze the behavior
of the estimators β̂k, ϕ̂k, p̂dk and the proposed estimators of the MSE. We consider a
multinomial logit mixed model with two model categories (q − 1 = 2).

4.2.1 Sample simulation

For d = 1, . . . , D and k = 1, 2, we generate the explanatory variables

xd1 = µ1 + σ
1/2
x11Ud1, xd2 = µ2 + σ

1/2
x22

[
ρxUd1 +

√
1− ρ2xUd2

]
, Udk =

d−D
2D

+
k

6
,

where µ1 = µ2 = 1, σx11 = σx22 = 1 and ρx = 0.75.
We generate random effects udk ∼ N(0, ϕk), with ϕ1 = 1, ϕ2 = 2. We also generate

the linear parameter

ηdk = β0k + β1kxdk + udk, with β01 = 1.3, β02 = −1.2, β11 = −1.3, β12 = 1, (4.2.1)

and the cell probabilities

pdk =
exp{ηdk}

1 + exp{ηd1}+ exp{ηd2}
.

We finally generate the response variable

yd = (yd1, yd2)
′ ∼ M(νd, pd1, pd2), yrd = (yrd1, y

r
d2)
′ ∼ M(νrd, pd1, pd2), d = 1, . . . , D,

with νd = 100, Nd = 1000, νrd = Nd − νd.
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In matrix notation, model (4.2.1) can be written in the form

η11
η12
η21
η22
...
ηD1

ηD2


=



1 x11 0 0
0 0 1 x12
1 x21 0 0
0 0 1 x22
...
1 xD1 0 0
0 0 1 xD2




β01
β11
β02
β12

+



u11
u12
u21
u22
...

uD1

uD2


+



e11
e12
e21
e22
...
eD1

eD2


,

or equivalently, in the more concise notation
η1

η2
...
ηD

 =


X1

X2
...
XD

β +Zu,

where

ηd =

(
ηd1
ηd2

)
, Xd =

(
1 xd1 0 0
0 0 1 xd2

)
, Z = I2D =

 I2 0
. . .

0 I2

 , I2 =

(
1 0
0 1

)
,

u ∼ N(0,ϕI2D), ϕ = (ϕ1, ϕ2).

4.2.2 Simulation experiment 1: model fit

We consider three area-level models. Model A is the multinomial mixed model described
in Section 4.1. Model B is the product of two independent binomial mixed models with
the same explanatory variables and model parameters as model A with this expresion:

ηd1 = β10 + β11xd1 + ud1, d = 1, . . . , D

ηd2 = β20 + β21xd2 + ud2, d = 1, . . . , D

Model C is Model A with a common random effect for all the categories, i.e. with
udk = ud in (4.1.2) and have this expresion.

ηdk = βk0 + βk1xdk + ud, d = 1, . . . , D, k = 1, 2

Model C is the one considered by Molina et al. (2007).

Under Model A, the random effects are udk ∼ N(0, ϕk), with ϕ1 = 1 and ϕ2 = 2. The
target variable is yd = (yd1, yd2)

′ ∼ M(νd, pd1, pd2), where

pdk =
exp{ηdk}

1 + exp{ηd1}+ exp{ηd2}
, ηdk = βk0 + βk1xdk + udk, d = 1, . . . , D, k = 1, 2,
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νd = 100, β10 = 1.3, β20 = −1.2, β11 = −1.3 and β21 = 1. Under model B, data is similar
to Model A, but yd ∼ M(νd, pd1, pd2) is substituted by independent ydk ∼ B(νd, pdk),
k = 1, 2, 3, pd3 = 1 − pd1 − pd2 and ν̂d = yd1 + yd2 + yd3 are taken as multinomial size
parameters for obtaining estimators based on models A and C. Under Model C, data is
similar to Model A, but udk is substituted by ud ∼ N(0, φ) with φ = (ϕ1 + ϕ2)/2.

The target of the first simulation is to analyze the behavior of the estimators β̂k, ϕ̂k
and p̂dk. As efficiency measures, we consider the relative empirical bias (RBIAS) and
relative mean squared error (RMSE). The simulation is described below.

1. Repeat I = 1000 times (i = 1, . . . , 1000)

1.1. Generate a sample (ydk, xdk), d = 1, . . . , D, k = 1, 2, under Model A, B or C.

1.2 Calculate β̂
(i)
kr , ϕ̂

(i)
k , φ̂(i) and p̂

(i)
dk with r = 0, 1, d = 1, . . . , D, k = 1, 2.

2. For r = 0, 1, d = 1, . . . , D and k = 1, 2, calculate

BIAS(β̂kr) =
1

I

I∑
i=1

(β̂
(i)
kr − βkr), BIAS(ϕ̂k) =

1

I

I∑
i=1

(ϕ̂
(i)
k − ϕk),

MSE(β̂kr) =
1

I

I∑
i=1

(β̂
(i)
kr − βk)

2, MSE(ϕ̂k) =
1

I

I∑
i=1

(ϕ̂
(i)
k − ϕk)

2,

RBIAS(β̂kr) =
BIAS(β̂kr)

|βkr|
, RBIAS(ϕ̂k) =

BIAS(ϕ̂k)

ϕk
,

RMSE(β̂kr) =

√
MSE(β̂kr)

|βkr|
, RMSE(ϕ̂k) =

√
MSE(ϕ̂k)

ϕk
,

MEANdk =
1

I

I∑
i=1

m
(i)
dk , MSEdk =

1

I

I∑
i=1

(m̂
(i)
dk −m

(i)
dk)2, RMSEd =

√
MSEd

MEANd

.

Table 4.2.1 presents the RMSE-values for the parameters of models A and B under Model
A. We observe that the RSME is higher in model B than the rest of the models, so that
the use of a multivariate model produce a significant gain of efficiency. We also observe
that as D increases from 50 to 300 we obtain a great reduction in RMSE (around 60% in
model A). Table 4.2.2 presents the RBIAS-values for the parameters of models A and B
under Model A. Relative bias is greater for model B, so the use of the multinomial model
is again recommended.
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Model A Model B

D 50 100 150 200 300 50 100 150 200 300

RMSE(β̂01) 0.73 0.53 0.42 0.35 0.28 0.90 0.62 0.50 0.47 0.39

RMSE(β̂02) 0.85 0.60 0.50 0.41 0.32 1.05 0.81 0.70 0.63 0.59

RMSE(β̂11) 0.78 0.56 0.45 0.37 0.30 1.37 1.24 1.18 1.14 1.11

RMSE(β̂12) 0.99 0.70 0.59 0.48 0.38 1.14 0.87 0.75 0.67 0.60

RMSE(ϕ̂1) 0.27 0.18 0.14 0.13 0.10 0.62 0.52 0.48 0.48 0.46

RMSE(ϕ̂2) 0.26 0.18 0.14 0.12 0.10 0.48 0.30 0.25 0.22 0.20

Table 4.2.1: RMSE for the parameters of models A and B under model A.

Model A Model B

D 50 100 150 200 300 50 100 150 200 300

RBIAS(β̂01) -0.02 -0.02 0.001 -0.01 -0.02 0.18 0.16 0.17 0.21 0.19

RBIAS(β̂02) -0.05 -0.05 -0.05 -0.04 -0.03 0.46 0.48 0.48 0.43 0.45

RBIAS(β̂11) -0.03 -0.02 -0.002 -0.01 -0.02 1.05 1.06 1.07 1.06 1.04

RBIAS(β̂12) -0.04 -0.05 -0.05 -0.02 -0.02 0.43 0.44 0.44 0.43 0.43

RBIAS(ϕ̂1) 0.01 -0.004 -0.01 -0.01 -0.02 0.49 0.46 0.44 0.45 0.43

RBIAS(ϕ̂2) 0.01 -0.002 -0.01 -0.01 -0.01 0.29 0.20 0.17 0.16 0.16

Table 4.2.2: RBIAS for the parameters of models A and B under model A.

In the previous simulations we do not present Model C, because this model only has one
variance component, then this model is not comparable with the others. To investigate
the behavior of the three candidate models, we have repeated the simulation experiment
generating data from models A, B and C. Further, to analyze the importance of including
a random effect per category (model A), we also include the estimators based on model C.
Table 4.2.3 presents the RMSE values of the estimators of the cell totals based on models
A, B and C (columns), when data is generated under models A, B and C (rows). The
number of domains is D = 100, which is the value of D from the first simulation that is
closest to the our real data case.
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Estimator

Scenario D Model A Model B Model C

Model A RMSEd1 d = 1 0.09 0.15 0.38

d = 1
2
D 0.11 0.16 0.48

d = D 0.14 0.13 0.57

RMSEd2 d = 1 0.14 0.2 0.69

D/2 0.12 0.17 0.56

d = D 0.1 0.15 0.43

Model B RMSEd1 d = 1 0.15 0.08 0.5

d = 1
2
D 0.17 0.1 0.66

d = D 0.19 0.12 0.81

RMSEd2 d = 1 0.2 0.13 0.94

D/2 0.17 0.1 0.78

d = D 0.16 0.09 0.61

Model C RMSEd1 d = 1 0.09 0.14 0.07

d = 1
2
D 0.11 0.16 0.07

d = D 0.14 0.18 0.09

RMSEd2 d = 1 0.15 0.2 0.1

d = 1
2
D 0.12 0.17 0.08

d = D 0.1 0.16 0.07

Table 4.2.3: RMSEdk for D = 100 and models A-C.

If data is generated under Model A, Table 4.2.3 shows that the loss of efficiency when
passing from model A to model B is not very high; however the loss is dramatic when
passing from model A to model C. This is somehow expected because substituting udk by
ud in (4.1.2) is a rather extreme simplification. If data is generated under model B, we
observe that the loss of efficiency when passing from model B to model A is negligible;
however there is a significant loss when passing from model B to model C. If data is
generated under model C, we observe that the loss of efficiency when passing from model
C to model A is also negligible; however the loss is larger when passing from model C
to model B. The final conclusion is that estimators based on model A behaves much
better than the corresponding ones based on models B and C when data is generated
under Model A. Furthermore, estimators based on model A still behaves well when data
is generated under model B or C. This last conclusion does not hold for estimators based
on models B or C.

4.2.3 Simulation experiment 2

The second simulation experiment is designed to study the behavior of the three mean
square error estimators (analytic and bootstrap). In this case we consider D = 100, which
is the closest to our real data case. The simulation has the following steps.
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1. Repeat I = 500 times (i = 1, . . . , 500)

1.1. Generate a sample (y
(i)
dk , x

(i)
dk), d = 1, . . . , D, k = 1, 2 in the same way as in

simulation 1.

1.2. For d = 1, . . . , D, k = 1, 2, r = 0, 1, calculate ϕ̂
(i)
1 , ϕ̂

(i)
2 , β̂

(i)
kr , p̂dk and

mse
(i)
dk = G(i)1dk(ϕ̂

(i)
1 , ϕ̂

(i)
2 ) + G(i)2dk(ϕ̂

(i)
1 , ϕ̂

(i)
2 ) + 2G(i)3dk(ϕ̂

(i)
1 , ϕ̂

(i)
2 ).

1.3. Repeat B = 500 times (b = 1, . . . , B)

1.3.1. For d = 1, . . . , D, k = 1, 2, generate

u
∗(ib)
dk ∼ N(0, ϕ

(i)
k ), η

∗(ib)
dk = β̂

(i)

k x
(i)
dk + u

∗(ib)
dk ,

y
∗(ib)
d = (y

∗(ib)
d1 , y

∗(ib)
d2 )′ ∼ M(νd, p

∗(ib)
d1 , p

∗(ib)
d2 ), p

∗(ib)
dk =

exp{η∗(ib)dk }
1 + exp{η∗(ib)d1 }+ exp{η∗(ib)d2 }

.

1.3.2. Calculate ϕ̂
∗(ib)
k , β̂

∗(ib)
kr , p̂

∗(ib)
dk , p̃

∗(ib)
dk , m̂

∗(ib)
dk , k = 1, 2, r = 0, 1, d = 1, . . . , D.

1.4 For d = 1, . . . , D, k = 1, 2, calculate

mse
∗1(i)
dk =

1

B

B∑
b=1

(m̂
∗(ib)
dk −m

∗(ib)
dk )2,

mse
∗2(i)
dk =

1

B

B∑
b=1

{
G(∗ib)1dk (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 ) + G∗(ib)2dk (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 ) + 2G∗(ib)3dk (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 )

}
.

2. Calculate

B0
dk =

1

I

I∑
i=1

(mse
(i)
dk−MSEdk), B

`
dk =

1

I

I∑
i=1

(mse
∗`(i)
dk −MSEdk), k = 1, 2, ` = 1, 2,

E0
dk =

1

I

I∑
i=1

(mse
(i)
dk−MSEdk)

2, E`
dk =

1

I

I∑
i=1

(mse
∗`(i)
dk −MSEdk)

2, k = 1, 2, ` = 1, 2,

RB`
dk =

B∗`dk
MSEdk

, RE`
dk =

√
E∗`dk

MSEdk
, k = 1, 2, ` = 0, 1, 2,

where the MSEdk’s were obtained in the simulation 1.

Table 4.2.4 shows that the bootstrap-based estimators give better results than his analytic
competitor.

d mse mse∗1 mse∗2 d mse mse∗1 mse∗2

RB`
d1 1 0.13 -0.11 -0.04 RE`

d1 1 0.33 0.14 0.07

50 0.07 -0.07 -0.01 50 0.35 0.10 0.05

100 0.12 -0.04 0.05 100 0.49 0.11 0.09

RB`
d2 1 0.08 0.10 0.18 RE`

d2 1 0.67 0.15 0.21

50 0.05 -0.03 0.04 50 0.52 0.09 0.07

100 0.06 -0.12 -0.04 100 0.42 0.14 0.08

Table 4.2.4: RB`
dk, RE

`
dk for D = 100, k = 1, 2, ` = 1, 2, under model A.
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Figure 4.2.1 presents the box-plots of the simulated mse
(i)
dk ,mse

∗`(i)
dk , k = 1, 2, ` = 1, 2,

i = 1, . . . , 500, for the three estimators in three particular domains d = 1, 50, 100. The
true MSE is plotted in a horizontal line. We observe that mse has the largest variability
and the best estimators are mse∗1 and mse∗2.
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Figure 4.2.1: Boxplots of Simulation 2 for D = 100 and d = 1, 50, 100.

4.3 Application to real data

4.3.1 Data Description

We deal with data from the SLFS of Galicia in the fourth quarter of 2008. In this section
the domains of interest are the counties crossed with sex. As there are 48 counties in the
SLFS of Galicia for the fourth quarter of 2008, we have D = 96 domains Pd partitioned in
the subsets Pdk, k = 1, 2, 3, of employed (k = 1), unemployed (k = 2) and inactive (k = 3)
people. Our target population parameters are the totals of employed and unemployed
people and the unemployment rate, this is to say

Ydk =
∑
j∈Pd

ydkj, Rd =
Yd2

Yd1 + Yd2
, d = 1, . . . , 96, k = 1, 2,
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where ydkj = 1 if the individual j of domain d is in Pdk and ydkj = 0 otherwise.

The SLFS does not produce official estimates at the domain level, but the analogous
direct estimators of the total Ydk, the mean Ȳdk = Ydk/Nd, the size Nd and the rate Rd are

Ŷ dir
dk =

∑
j∈Sd

wdj ydkj,
ˆ̄Y dir
dk = Ŷ dir

dk /N̂
dir
d , N̂dir

d =
∑
j∈Sd

wdj, R̂
dir
d =

Ŷ dir
d2

Ŷ dir
d1 + Ŷ dir

d2

, k = 1, 2,

(4.3.1)
where Sd is the domain sample and the wdj’s are the official calibrated sampling weights

which take into account for non response. The design-based covariance covπ(Ŷ dir
dk1
, Ŷ dir

dk2
),

k1, k2 = 1, 2, can be estimated by

ˆcovπ(Ŷ dir
dk1
, Ŷ dir

dk2
) =

∑
j∈Sd

wdj(wdj − 1)(ydk1j − ˆ̄Y dir
dk1

)(ydk2j − ˆ̄Y dir
dk2

), (4.3.2)

where the case k1 = k2 = k denotes estimated variance, i.e. V̂π(Ŷ dir
dk ) = ˆcovπ(Ŷ dir

dk , Ŷ
dir
dk ).

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with
the simplifications wdj = 1/πdj, πdj,dj = πdj and πdi,dj = πdiπdj, i 6= j in the second order

inclusion probabilities. The design-based variance of R̂dir
d can be approximated by Taylor

linearization, i.e.

V̂π(R̂dir
d ) =

(Ŷ dir
d1 )2

(Ŷ dir
d1 + Ŷ dir

d2 )4
V̂π(Ŷ dir

d2 )+
Ŷ 2
d2

(Ŷ dir
d2 + Ŷ dir

d1 )4
V̂π(Ŷ dir

d1 )− 2Ŷ dir
d1 Ŷ

dir
d2

(Ŷ dir
d1 + Ŷ dir

d2 )4
ˆcovπ(Ŷ dir

d1 , Ŷ
dir
d2 ).

In the fourth quarter of 2008 the distribution of the sample sizes per domains in the SLFS
of Galicia has the quantiles qmin = 8, q1 = 24, q2 = 47, q3 = 90 and qmax = 734. This
means that direct estimates in (4.3.1) and (4.3.2) are not reliable. Therefore, small area
estimation methods are needed.

Small area estimators based on unit level models (models stated for the individual
units) are likely to achieve high precision when the model is correctly specified. However,
the estimators derived from these models usually need auxiliary data for each unit of the
sample along with aggregated data for each domain, something not always available. Area
level models need only the domain totals of the auxiliary variables, information that can
be usually found in administrative registers. This is why we consider an area-level model
using as auxiliary variables the domain proportions of individuals within the categories of
the following grouping variables.

• SEX: This variable is coded 1 for men and 2 for women.

• AGE: This variable is categorized in 3 groups with codes 1 for 16-24, 2 for 25-54
and 3 for ≥55

• SS: This variable indicates if an individual is registered or not in the social security
system.

• REG: This variable indicates if an individual is registered or not as unemployed in
the administrative register of employment claimants.
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Figure 4.3.1: Proportions of employed (left) and unemployed (right) people versus AGE
categories.
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Figure 4.3.2: Log-rates of employed and unemployed over inactive people versus propor-
tions of people in the social security system (left) and registered as unemployed (right)
respectively.

We first analyze the potential predictive power of these auxiliary variables through an
exploratory data analysis. Figure 4.3.1 plots the SLFS estimated proportions of employed
(left) and unemployed (right) for each AGE category. Observe that both estimated pro-
portions vary considerably across the AGE categories. Moreover, comparing the left and
right plots, we can see that the lines are far from being parallel. This suggests that the
three estimated proportions vary differently across categories. Thus, these figures suggest
that the variable AGE can be a good predictor of the probabilities of being employed and
unemployed.

Figure 4.3.2 shows the scatterplots of the log-rates of employed over inactive people
against the proportions of people in social security system (left) and the log-rates of un-
employed over inactive people against the proportions of people registered as unemployed
(right). We observe that, despite the large variability observed in both plots, the log-rates
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of the two considered proportions seem to increase linearly with the proportions of people
in the social security system and registered as unemployed respectively. Then, the propor-
tions of people in the social security system and registered as unemployed could probably
be good covariates for modeling the two probabilities. Indeed, after fitting the model
described in Section 4.1, tests of significance for the regression parameters and diagnosis
of residuals confirmed the explanatory power of the auxiliary variables that were selected
for each model.

4.3.2 Model estimation

We are interested in estimating the totals of employed and unemployed people, and the
unemployment rates per sex in the counties of Galicia. We consider the multinomial
mixed model (4.1.1)-(4.1.2) with q = 3 categories (employed, unemployed and inactive
people) and we choose inactive people as reference (third) category. The multinomial
size is νd = nd, where nd is the size of the domain sample Sd. The target variable is
yd = (yd1, yd2)

′, where ydk is the sample total

ydk =
∑
j∈Sd

ydkj,

ydkj = 1 if individual j is in category k (k = 1, 2) and ydkj = 0 otherwise.
The explanatory variables are the domain means of the indicators of the categories of

SEX, AGE, SS and REG. Their values are taken from the SLFS and from administrative
registers. The model is firstly fitted to the complete data set. An analysis of residuals is
then carried out and two counties are marked as outliers. These two counties correspond
to the largest cities in Galicia (A Coruña and Vigo) where the relationships between
the auxiliary variables SS and REG with the employment and unemployment status are
typically weaker than in less populated counties. The model is finally fitted to the reduced
(excluding the two marked counties) data set. The rest of the statistical analysis is carried
out under the model fitted to the reduced data set. On the other hand, the sample sizes
of the excluded counties are large enough to produce reliable direct estimates. Therefore,
no model estimates are given for the excluded counties. Instead, direct estimates are used
for them.

Concerning Figure 4.3.2, we would like to say that by taking out few dots from the right
and left plots we would obtain much more linear clouds. The linearity of these clouds of
dots can also be measure via the estimated Pearson correlations of variables. They are 0.71
(left) and 0.41 (right) respectively. Further, the corresponding 95% confidence intervals
are (0.58, 0.79) and (0.21,0.59) respectively. Therefore, the proportions of people in the
social security system and registered as unemployed could probably be good covariates
for modeling the two probabilities. Indeed, after fitting the multinomial mixed model,
tests of significance for the regression parameters and diagnosis of residuals confirmed the
explanatory power of the auxiliary variables that were selected for each model.

For each category and data set, Table 4.3.1 presents the estimates of the regression
parameters and their standard deviations. It also presents the p-values for testing the
hypothesis H0 : βkr = 0. The estimates of the model variances and their standard
deviations (in parentheses) are ϕ̂1 = 0.17 (0.03) and ϕ̂2 = 0.50 (0.13) for the model fitted
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to the complete data set and they are ϕ̂1 = 0.17 (0.04) and ϕ̂2 = 0.59 (0.10) for the model
fitted to the reduced data set.

Employed people Unemployed people

Variable β̂kr Std.Dev. p-value Variable β̂kr Std.Dev. p-value

Constant -1.979 0.196 0.000 CONSTANT -5.450 0.408 0.000

SS 1.146 0.669 0.087 REG 13.105 3.830 0.001

AGE=1 2.750 0.369 0.000 AGE=1 3.315 1.601 0.038

AGE=2 -0.317 0.068 0.000 AGE=2 4.356 0.754 0.000

SEX=1 1.684 0.510 0.001 SEX=1 -0.394 0.138 0.004

Constant -1.972 0.215 0.000 CONSTANT -5.254 0.429 0.000

SS 1.217 0.679 0.073 REG 11.907 4.102 0.004

AGE=1 2.741 0.378 0.000 AGE=1 3.959 1.640 0.016

AGE=2 -0.356 0.073 0.000 AGE=2 3.832 0.806 0.000

SEX=1 1.696 0.537 0.002 SEX=1 -0.370 0.151 0.014

Table 4.3.1: Estimates β̂kr for the full (top) and reduced (bottom) data set.

Figure 4.3.3 presents the boxplots of the domain standardized residuals of models
fitted to the full (left) and to the reduced (right) data set. The four dots outside the
interval (-3,3) correspond to the men and women counts in marked counties (A Coruña
and Vigo). The remaining model-based statistical analysis is carried out for the reduced
data set.

Figure 4.3.4 plots the domain standardized residuals of employment (left) and un-
employment (right) categories versus the proportions of people registered in the social
security system (SS) and registered as unemployed (REG). The residuals are randomly
distributed above and below zero and no rare pattern is observed. Therefore no diagnostics
problems are found for the two main explanatory variables: SS and REG.

4.3.3 Model diagnostics

Figure 4.3.5 plots the domain residuals

rdk =
ydk − ŷdk
ŷdk

, d = 1, . . . , 96, k = 1, 2,

versus the predicted sample totals of employed and unemployed people. We observe that
the relative difference of the predicted values (ŷdk = ndp̂dk) with respect to the observed
ones (ydk) is below 2% in the case of employed people and below 4% in the case of
unemployed people.

Figure 4.3.6 plots the direct (Ŷ dir
dk ) versus the model-based estimates (N̂dir

d p̂dk) of the
totals of employed and unemployed people. We observe that both type of estimates be-
have quite similarly for employed people. This is because there are enough observations
for these estimates. However, their behavior presents slightly greater differences for un-
employed people, which are due to the lower number of observations. We also observe
that the model-based estimates are in general smother than the direct ones.
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Figure 4.3.3: Boxplots of standardized residuals of models fitted to the full (left) and
reduced (right) data set.
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Figure 4.3.4: Domain standardized residuals of employment (left) and unemployment
(right) categories versus proportions of people registered in the social security system
(SS) and registered as unemployed (REG).

4.3.4 Small area estimates and RMSE

Figures 4.3.7 and 4.3.8 plot the estimated employment totals and unemployment rates
respectively for men (left) and women (right), with the counties sorted by sample size.
We observe that both estimates (direct and model-based) tend to be closer as soon as the
sample size increases.

Tables 4.3.2 and 4.3.3 present some condensed numerical results for men and women
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Figure 4.3.5: Domain residuals versus predicted values of employed people (left) and
unemployed people (right).
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Figure 4.3.6: Direct versus model-based estimates of the total of employed people (left)
and unemployed people (right).

respectively. The tables has been constructed in two steps. We sort the domains by
province and after that, in each province, we sort the domains by sample size, starting
by the domain with smallest sample size. We present the results of the direct and the
model-based estimates (labeled by “dir” and “mod” respectively) and the corresponding
RMSE estimates for five domains in each province. The chosen domains correspond to the
quintiles. The provinces are labeled by p and the sample sizes by n. Table 4.3.2 and 4.3.3
are partitioned in three vertical sections dealing with the estimation of totals of employed
and unemployed people and with unemployment rates. The RMSEs of the model-based
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Figure 4.3.7: Men (left) and women (right) employment totals.
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Figure 4.3.8: Men (left) and women (right) unemployment rates.

estimators are calculated by using the parametric bootstrap method 1 (mse∗1). The
RMSEs of the corresponding direct estimates are estimated by using (4.3.2) and they are
much greater than their counterparts. By observing the columns of RMSEs we conclude
that model-based estimators are preferred to the direct estimates.

In domains d with nd = 0, direct estimates cannot be calculated. In those cases,
model-based estimates are calculated by using the synthetic part of the linear predictor,
i.e. η̂synthdk = xdkβ̂k. Tables 4.3.2 and 4.3.3 present blank spaces in domains where ydk =
0, k = 1, 2.
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Employed people Unemployed people Unemployment rates

estimate rmse estimate rmse estimate rmse

p n dir mod dir mod dir mod dir mod dir mod dir mod

1 13 2383 2259 24.2 17.0 223 354 100.3 43.2 8.6 13.5 239.0 38.6

1 21 4246 3836 18.0 16.2 634 598 68.1 42.3 13.0 13.5 108.6 41.3

1 27 3676 3771 20.8 15.6 256 324 98.5 31.4 6.5 7.9 281.1 32.2

1 79 13998 13687 9.9 8.7 1233 1321 48.8 20.6 8.1 8.8 104.6 19.6

1 213 34425 31052 6.7 6.4 2939 3172 31.5 14.4 7.9 9.3 72.9 14.4

2 11 814 764 47.1 28.8 48 54.3 5.9 46.2

2 32 2776 2890 21.3 15.7 101 43.2 3.4 40.5

2 41 6707 6121 11.8 10.9 697 499 72.5 32.3 9.4 7.5 106.4 32.4

2 70 7525 6901 11.3 10.5 392 474 69.7 23.8 5.0 6.4 205.9 22.9

2 300 30266 28235 4.8 4.6 1397 1787 31.6 13.7 4.4 6.0 99.4 12.8

3 8 1104 840 43.9 33.4 44 67.1 5.0 62.7

3 33 5649 4759 15.0 16.0 327 236 98.1 37.4 5.5 4.7 245.8 38.1

3 42 1657 2422 37.9 17.6 510 476 69.7 31.4 23.5 16.4 97.1 30.2

3 70 7852 7304 12.7 11.6 139 344 100.3 26.8 1.7 4.5 704.7 30.0

3 356 35758 32181 4.7 4.4 2190 2867 25.1 11.7 5.8 8.2 71.9 11.6

4 17 2500 2158 22.6 18.1 303 298 96.3 44.6 10.8 12.1 170.0 42.2

4 41 7150 6231 11.4 13.1 483 478 69.3 33.0 6.3 7.1 159.0 29.9

4 90 12984 12223 9.1 8.2 1937 1838 34.8 19.7 13.0 13.1 54.8 19.6

4 123 17499 16593 8.3 7.5 2555 2081 34.4 18.5 12.7 11.1 51.7 17.8

4 291 35624 32801 5.0 4.6 4871 4585 21.7 10.9 12.0 12.3 33.6 11.1

Table 4.3.2: Estimated men totals and rates with their estimated RMSE’s.

The Spanish Statistics Institute (INE) publishes LFS estimates of employed and un-
employed totals at province level. In the case of extending these publications to the more
disaggregated levels, Ugarte et al. (2009b) point out that Statistical Offices might be
interested in publishing data with the property that the sum of the estimated totals in all
the domains within a province coincide with the official province total estimate. In order
to fullfil this consistency criterion, we propose a modification of all the considered small
area estimators. Let Ŷ dir

p be the SLFS estimator of the total Yp in province p. Assume

that province p is partitioned in Dp domains. Let Ŷ1, . . . , ŶDp be some given estimators
of totals Y1, . . . , YDp . In general, the consistency property

Ŷ dir
p =

Dp∑
d=1

Ŷd

does not hold. In such cases, Ŷ1, . . . , ŶDp can be transformed into consistent estimators
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by

Ŷ c
d = λpŶd, λp =

Ŷ dir
p∑Dp

d=1 Ŷd
.

Table 4.3.4 presents the direct and model-based estimators for employed and unem-
ployed people at the province level for men (top) and women (bottom) in the SLFS. Table
4.3.4 also gives the consistency factors λp. We observe that the deviations from the SLFS
estimation at province level are at most of 10% for employed people. This is something
expected as the amount of people in the category of employed is large. However, the de-
viations from the SLFS estimation at the province level goes up over 20% for unemployed
people in the two provinces with lower sample sizes.

Employed people Unemployed people Unemployment rates

estimate rmse estimate rmse estimate rmse

p n dir mod dir mod dir mod dir mod dir mod dir mod

1 10 964 1300 47.5 27.2 223 263 99.4 48.2 18.8 16.8 171.0 41.1

1 22 2804 2571 25.0 19.8 909 638 53.6 40.0 24.5 19.9 64.4 35.6

1 48 8653 6954 13.7 15.5 332 30.5 4.6 28.0

1 90 7435 7810 17.5 12.2 1583 1566 43.8 22.0 17.6 16.7 69.6 22.2

1 237 23884 22243 9.7 7.9 5553 4759 24.5 12.9 18.9 17.6 35.1 13.3

2 18 645 866 52.7 27.7 52 41.5 5.6 39.6

2 42 2120 1910 27.4 20.3 69 33.6 3.5 30.5

2 47 2894 2836 23.2 17.1 136 37.3 4.6 38.1

2 78 5996 5372 14.7 14.4 464 422 69.7 24.3 7.2 7.3 176.7 23.4

2 350 24190 23401 6.4 6.0 2851 2797 23.3 11.0 10.5 10.7 49.3 11.4

3 15 293 693 96.9 32.6 72 51.0 9.4 42.2

3 41 2661 2466 25.8 23.1 769 381 55.8 32.0 22.4 13.4 72.7 30.9

3 46 1483 1952 41.1 20.2 307 462 72.6 28.7 17.1 19.1 166.1 24.7

3 79 4967 4941 16.1 11.6 181 355 99.1 25.6 3.5 6.7 425.1 24.6

3 375 32114 30875 5.2 5.5 2394 2166 29.6 11.7 6.9 6.6 65.4 12.5

4 22 2951 3221 22.0 18.2 323 571 96.9 28.5 9.9 15.1 184.0 27.4

4 47 4033 4379 22.1 16.6 1140 854 48.0 29.2 22.0 16.3 63.7 26.6

4 97 10445 9754 12.1 11.9 893 682 56.9 27.0 7.9 6.5 131.1 23.6

4 129 12524 11414 11.8 10.5 2208 2100 34.7 17.7 15.0 15.5 58.2 17.2

4 362 31100 30473 6.5 5.7 5615 4426 22.2 9.8 15.3 12.7 31.5 9.4

Table 4.3.3: Estimated women totals and rates with their estimated RMSE’s.
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Employed people Unemployed people
Sex Province n dir mod λp dir mod λp
Men 1 1503 274405 262422 1.05 25593 26581 0.96

2 756 80538 76662 1.05 4142 4801 0.86
3 700 72563 69664 1.04 4370 5635 0.78
4 1641 231585 220953 1.05 29228 28493 1.03

Total 4600 659091 629701 1.05 63333 65510 0.97
Women 1 1700 233245 225775 1.03 27379 25374 1.08

2 860 61575 60658 1.02 5896 5560 1.06
3 757 58816 59231 0.99 4942 4931 1.00
4 1834 182339 178435 1.02 27442 25808 1.06

Total 5151 535975 524100 1.02 65658 61674 1.06
Table 4.3.4: Estimated men and women province totals.

Figures 4.3.9 plots the RMSEs for employed and unemployed men under the proposed
multinomial mixed model (Model A), under the two separate independent logit mixed
models (Model B) and under model proposed by Molina et al. (2007) (Model C). The
counties are sorted by sample size. We observe that the Model A estimates are generally
better (lower RMSEs) for unemployed men totals than the corresponding ones based on
the models B and C. This is the case where the direct estimates are the worst. For
employed men totals all the models give good results. This is because there are more
employed than unemployed men and therefore it is easier to obtain estimates with RMSEs
bellow 20%. We also observe that the employment category dominates the unique random
effect in Model C, so that model produce good estimates of employment totals and bad
estimates of unemployment totals. These results are also coherent with the simulation
experiment. As similar conclusion are obtained here for women, we skip the corresponding
figures.

The three candidate models (models A, B and C) can also be compared with the
usual measures for model comparison such as the loglikelihood or the AIC. The resulting
values of these measures are listed in Table 4.3.5. We can see that model A has the best
Loglikelihood and AIC. Therefore we recommend model A.

Model A Model B Model C
Loglikelihood -469.4 -490.35 -493.65

AIC 962.81 1004.7 1011.3
Table 4.3.5: Measures for model comparison.

The key point when comparing the multinomial models A and C is that model C has
only one common random effect for the two modeled multinomial categories. In the case of
labour data, it is hard to find examples where the categories of employed and unemployed
people could be modeled with the same random effect. As the range of values of totals of
employed and unemployed people and their variabilities are in general quite different, it
is more intuitive to use one random effect for each category.

Further simulations analysis could be done by bootstrapping the sample registers to
create population data files, or by using census data files, and later by carrying out design-
based simulation studies. As can be seen in Salvati et al. (2010), this approach is quite
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Figure 4.3.9: RMSE’s for employed and unemployed men under model A, B and C.

useful when implementing model-based methodologies in official surveys by Statistical
Offices.
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Chapter 5

Multinomial mixed model with
independent time and area effects

Like in the model of Chapter 4 traditional small area estimators borrow strength either
from similar small areas or from the same area across time. Nevertheless some authors
have developed contributions borrowing strength simultaneously across sections and time.
Estimators provided by Ghosh et al. (1996), Datta et al. (1999), Datta et al. (2002) and
You et al. (2001) exploit the two dimensions to produce estimates with good properties
for small areas. It is possible to take advantage from the availability of survey data from
different time periods by introducing in the model independent time effects. This ap-
proach has been implemented in other works that use linear models, see e.g. Pfeffermann
and Burck (1990), Rao and Yu (1994), Saei and Chambers (2003), Ugarte et al. (2009a)
and Esteban et al. (2012).

Unlike the work by Molina et al. (2007), we employ a multinomial model with two
random effects, one associated with the category of employed people and the other as-
sociated with the category of unemployed people. This is due to the different modeling
requirements for each labour category in the Galician data. Indeed, to take advantage
from the availability of survey data from different time periods we propose a multinomial
model with independent time and domain random effects.

This chapter is organized as follows. Section 5.1 introduces the multinomial logit mixed
model with time and domain random effects. Section 5.2 introduces the fitting algorithm.
Section 5.3 develops the proposed model-based estimators and the corresponding MSE
estimation procedures. Section 5.4 presents two simulation experiments. The first sim-
ulation studies the behavior of the estimates of the regression parameters, the variance
components and the target population indicators. The second simulation studies the per-
formance of the three introduced MSE estimation methods. Finally, Section 5.5 applies
the proposed methodology to data from the SLFS in Galicia.
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5.1 The model

In this section we introduce the multinomial mixed model with independent random ef-
fects that will be used on the estimation of domain totals of employed, unemployed and
inactive people and of unemployment rates.

Let us first observe that at the unit level ydktj, k = 1, 2, 3, are binary 0-1 vari-
ables such that yd1tj + yd2tj + yd3tj = 1. Therefore an adequate probability distribu-
tion for ydtj = (yd1tj, yd2tj) is multi-Bernoulli with unknown probability vector parameter
pdtj = (pd1tj, pd2tj), such that pd1tj > 0, pd2tj > 0 and pd1tj + pd2tj < 1. If we assume
that the random vectors ydtj are independent and that the corresponding probability
vectors pdtj are constant within domain d at time t (i.e. pdtj = pdt for all j ∈ Pdt),
then ydt =

∑
j∈Sdt

ydtj is multinomially distributed with size parameter ndt = #(Sdt) and
probability vector pdt. This is because we introduce a multinomial logit mixed model
for estimating the domain totals of employed, unemployed and inactive people and the
unemployment rates. The multinomial models guarantee that the sum of estimated totals
of employed and unemployed people is lower than the total of people. This is a desirable
property that allows estimating the total of inactive people in a coherent way.

Let us start by giving some notation and assumptions for the more general problem
with q categories. Let us use indexes d = 1, . . . , D, k = 1, . . . , q − 1 and t = 1, . . . , T
for the D domains, for the q − 1 model categories of the target variable and for the T
time periods, respectively. We recall that there are q = 3 categories in the real data
presented in Section 5.2, i.e. employed, unemployed and inactive people. However, there
are only q − 1 = 2 categories in the multinomial model, i.e. employed and unemployed
people and we considered the third category as the reference. Let u1,dk and u2,dkt be
the random effects associated to category k, domain d and time t. We suppose that the
random effects u1,d = col

1≤k≤q−1
(u1,dk) ∼ N(0, diag

1≤k≤q−1
(ϕ1k)) and u2,dt = col

1≤k≤q−1
(u2,dkt) ∼

N(0, diag
1≤k≤q−1

(ϕ2k)), d = 1, . . . , D, t = 1, . . . , T , are independent. We also assume that the

response vectors ydt = col
1≤k≤q−1

(ydkt), conditioned to u1,d and u2,dt, are independent with

multinomial distributions

ydt|u1,d,u2,dt
∼ M(νdt, pd1t, . . . , pdqt−1), d = 1, . . . , D, t = 1, . . . , T, (5.1.1)

where the νdt’s are known integer numbers which are equal to ndt in the considered real
data case. The covariance matrix of ydt conditioned to u1,d and u2,dt is var(ydt|u1,d,u2,dt) =
W dt = νdt[diag(pdt) − pdtp′dt], where pdt = col

1≤k≤q−1
(pdkt) and diag(pdt) = diag

1≤k≤q−1
(pdkt).

For the natural parameters ηdkt = log pdkt
pdqt

, k = 1, . . . , q − 1, we assume the model

ηdkt = xdktβk + u1,dk + u2,dkt, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T, (5.1.2)

where xdkt = col′
1≤r≤lk

(xdktr), βk = col
1≤r≤lk

(βkr) and l =
∑q−1

k=1 lk. The mean and the variance

of ydkt, conditioned to u1,d and u2,dt, are µdkt = νdtpdkt and wdkt = νdtpdkt(1 − pdkt),
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respectively. The probability of the multinomial category k at the domain d and the time
instant t is

pdkt =
exp{ηdkt}

1 +
∑q−1

`=1 exp{ηd`t}
, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T.

In matrix notation, the model is

ηdt = Xdtβ +Z1dtu1,d +Z2dtu2,dt, d = 1, . . . , D, t = 1, . . . , T, (5.1.3)

where ηdt = col
1≤k≤q−1

(ηdkt), Xdt = col
1≤k≤q−1

(xdkt), β = col
1≤k≤q−1

(βk), Z1dt = Z2dt = Iq−1

with Iq−1 being the (q−1)×(q−1) unit matrix. If we introduce the additional notation η =
col

1≤d≤D
(ηd), ηd = col

1≤t≤T
(ηdt), X = col

1≤d≤D
(Xd), Xd = col

1≤t≤T
(Xdt), u1 = col

1≤d≤D
(u1,d), u2 =

col
1≤d≤D

( col
1≤t≤T

(u2,dt)), Z = (Z1,Z2), u = (u′1,u
′
2)
′, Z1 = diag

1≤d≤D
(Z1d), Z1d = col

1≤t≤T
(Z1dt),

Z2 = diag
1≤d≤D

(Z2d), Z2d = diag
1≤t≤T

(Z2dt), then (5.1.3) can be represented in the matrix form

η = Xβ +Z1u1 +Z2u2 = Xβ +Zu. (5.1.4)

Alternatively the model (5.1.3) can be expressed as

ηdt = Xdtβ + Z1,dtu1 + Z2,dtu2 = Xdtβ + Zdtu, d = 1, . . . , D, t = 1, . . . , T, (5.1.5)

where u = (u′1, u
′
2)
′, u1 = col

1≤k≤q−1
(u1,k), u2 = col

1≤k≤q−1
(u2,k), Zdt = (Z1,dt,Z2,dt), Z1,dt =

diag
1≤k≤q−1

( col′
1≤`≤D

(δ`d)) and Z2,dt = diag
1≤k≤q−1

( col′
1≤`≤D

( col′
1≤t≤T

(δ`dδst))). We further assume that

u1,k = col
1≤d≤D

(u1,dk) ∼ N(0, ϕ1kID) and u2,k = col
1≤d≤D

( col
1≤t≤T

(u2,dk)) ∼ N(0, ϕ2kIDT ) are

independent. In matrix notation (5.1.5) can be expressed as

η = Xβ + Z1u1 + Z2u2 = Xβ + Zu, (5.1.6)

where Zr = col
1≤d≤D

( col
1≤t≤T

(Zr,dt)), r = 1, 2, and Z = (Z1,Z2). It should be remembered that

(5.1.4) and (5.1.6) are the same model.

5.2 The PQL-REML fitting algorithm

To fit the model we combine the PQL method, described by Breslow and Clayton (1996)
for estimating and predicting the βk’s, the u1d’s and the u2d’s, with the REML method for
estimating the variance components ϕ1 and ϕ2. The presented method was described in
Section 3.2. It is based on a normal approximation to the joint probability distribution of
the vector (y,u). The combined algorithm was first introduced by Schall (1991) and later
used by Saei and Chambers (2003) and Molina et al. (2007) in applications of generalized
linear mixed models to small area estimation problems. In this chapter, we adapt the
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combined algorithm to the multinomial logit mixed model defined by (5.1.1) and (5.1.2).
The log-likelihood of y conditioned to u is

l1(y|u) =
D∑
d=1

T∑
t=1

{
q−1∑
k=1

ydkt log
pdkt
pdqt

+ νdt log pdqt + log
νdt

yd1t! · · · ydqt!

}

=
D∑
d=1

T∑
t=1

{
q−1∑
k=1

ydktηdkt − νdt log
(
1 +

q−1∑
k=1

exp{ηdkt}
)

+ log
νdt

yd1t! · · · ydqt!

}
.

The partial derivatives of

ηdkt =

p∑
r=1

xdktrβr + u1,dk + u2,dkt, d = 1, . . . , D, t = 1, . . . , T, k = 1, . . . , q − 1,

with respect to βr, u1,dk and u2,dkt are

∂ηdkt
∂βr

= xdktr,
∂ηdkt
∂u1,dk

= 1,
∂ηdkt
∂u2,dkt

= 1.

The first order partial derivatives of l1 are

S1,βr =
∂l1(y|u)

∂βr
=

D∑
d=1

T∑
t=1

{
q−1∑
k=1

xdktrydkt −
νdt
∑q−1

k=1 xdktr exp{ηdkt}
1 +

∑q−1
k=1 exp{ηdkt}

}

=
D∑
d=1

T∑
t=1

q−1∑
k=1

xdktr(ydkt − µdkt),

S1,u1,dk =
∂l1(y|u)

∂u1,dk
=

T∑
t=1

(ydkt − µdkt), S1,u2,dkt =
∂l1(y|u)

∂u2,dkt
= (ydkt − µdkt).

The vector expressions of the first order partial derivatives of l1 are

S1,β =
∂l1(y|u)

∂β
=

D∑
d=1

T∑
t=1

q−1∑
k=1

x′dkt(ydkt − µdkt) = col
1≤r≤p

(S1,βr),

S1,u1 =
∂l1(y|u)

∂u1

= col
1≤d≤D

( col
1≤k≤q−1

(S1,u1,dk)),

S1,u2 =
∂l1(y|u)

∂u2

= col
1≤d≤D

( col
1≤k≤q−1

( col
1≤t≤T

(S1,u2,dkt))).
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The second order partial derivatives of l1 are

H1,βkrβks =
∂2l1(y|u)

∂βkr∂βks
= −

D∑
d=1

T∑
t=1

νdtxdktrxdktspdkt(1− pdkt),

H1,u1,dkβkr =
∂2l1(y|u)

∂u1,dk∂βkr
= −

T∑
t=1

νdtxdktrpdkt(1− pdkt),

H1,u2,dktβkr =
∂2l1(y|u)

∂u2,dkt∂βkr
= −νdtxdktrpdkt(1− pdkt),

H1,u1,dk,u1,dk =
∂2l1(y|u)

∂u1,dk∂u1,dk
= −

T∑
t=1

νdtpdkt(1− pdkt)

H1,u2,dkt,u2,dkt =
∂2l1(y|u)

∂u2,dkt∂u2,dkt
= −νdtpdkt(1− pdkt),

H1,u1,dk,u2,dkt =
∂2l1(y|u)

∂u1,dk∂u2,dkt
= −νdtpdkt(1− pdkt),

and for the case k1 6= k2, we have

H1,βk1rβk2s
=

∂2l1(y|u)

∂βk1r∂βk2s
=

D∑
d=1

T∑
t=1

νdtxdk1trxdk2spdk1tpdk2t,

H1,u1,dk1βk2s
=

∂2l1(y|u)

∂u1,dk1∂βk2s
=

T∑
t=1

νdtxdk2tspdk1tpdk2t,

H1,u2,dkt1βk2s
=

∂2l1(y|u)

∂u2,dk1t∂βk2s
= νdtxdk2tspd1ktpdk2t,

H1,u1,dk1 ,u1,dk2
=

∂2l1(y|u)

∂u1,dk1∂u1,dk2
=

T∑
t=1

νdtpdk1tpdk2t,

H1,u2,dk1t,u2,dk2t
=

∂2l1(y|u)

∂u2,dk1t∂u2dk2t
= νdtpdkt1pdkt2 ,

H1,u1,dk1u2,dkt2
=

∂2l1(y|u)

∂u1,dk1∂u2,dk2t
= νdtpdk1tpdk2t.

The second order partial derivatives of l1 are

H1,u1,d1k1 ,u1,d2,k2
=

∂2l1(y|u)

∂u1,d1k1∂u1,d2,k2
= 0, d1 6= d2,

H1,u2,d1k1t1 ,u2,d2k2t2
=

∂2l1(y|u)

∂u2,d1k1t1∂u2,d2k2t2
= 0, d1 6= d2 or t1 6= t2,

H1,u1,d1k1u2k2,d2t
=

∂2l1(y|u)

∂u1,d1k1∂u2,d2k2t
= 0, d1 6= d2.

78



The matrix expressions of the second order partial derivatives of l1 are

H1,βk1βk2
=
(
H1,βk1rβk2s

)
r = 1, . . . , pk1

s = 1, . . . , pk2

, H1,ββ =
(
H1,βk1βk2

)
k1 = 1, . . . , q − 1
k2 = 1, . . . , q − 1

,

H1,u1,dβk2
=
(
H1,u1,dk1βk2s

)
k1 = 1, . . . , q − 1
s = 1, . . . , pk2

, H1,uβ =
(
H1,udβk2

)
d = 1, . . . , D
k2 = 1, . . . , q − 1

,

H1,u2,dtβk2
=
(
H1,u2,dk1tβk2s

)
k1 = 1, . . . , q − 1
s = 1, . . . , pk2

, H1,u2,dβ =
(
H1,u2,dtβk2

)
t = 1, . . . , T
k2 = 1, . . . , q − 1

,

H1,u2β = col
1≤d≤D

(
H1,u2,dβ

)
, H1,u1,d1u2,d2t

=
(
H1,u1,d1k1 ,u2,d2k2t

)
k1 = 1, . . . , q − 1
k2 = 1, . . . , q − 1

,

H1,u1,d1 ,u2,d2
= col′

1≤t≤T

(
H1,u1,d1u2,d2t

)
, H1,u1u2 =

(
H1,u1,d1 ,u2,d2

)
d1 = 1, . . . , D
d2 = 1, . . . , D

.

Equivalently, we can write

H1,ββ =
(
H1,βk1rβk2s

)
r = 1, . . . , pk1

; k1 = 1, . . . , q − 1
s = 1, . . . , pk2

; k2 = 1, . . . , q − 1

,

H1,βu1 =
(
H1,βk1ru1,dk2

)
k1 = 1, . . . , q − 1; r = 1, . . . , pk1

d = 1, . . . , D; k2 = 1, . . . , q − 1

,

H1,βu2 =
(
H1,βk1ru2,dkt2

)
k1 = 1, . . . , q − 1; r = 1, . . . , pk1

d = 1, . . . , D; k2 = 1, . . . , q − 1; t = 1, . . . , T

,

H1,u1u1 =
(
H1,u1,d1k1 ,u1,d2k2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1

,

H1,u2u2 =
(
H1,u2,d1k1t1 ,u2,d2k2t2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1; t1 = 1, . . . , T
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t2 = 1, . . . , T

,

H1,u1u2 =
(
H1,u1d1k1 ,u2,d2k2t

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t = 1, . . . , T

.

It holds that

H1,ββ = −
D∑
d=1

q−1∑
k=1

T∑
t=1

νdtpdkt(1− pdkt)x′dktxdkt,

H1,u1β = col
1≤d≤D

(
col

1≤k≤q−1

(
−

T∑
t=1

νdtpdkt(1− pdkt)xdkt
))
,

H1,u2β = col
1≤d≤D

(
col

1≤k≤q−1

(
col

1≤t≤T

(
− νdtpdkt(1− pdkt)xdkt

)))
.

The log-likelihood of u is

f2(u) =
1

(
√

2π)(M+D)(q−1)|V u|1/2
exp

{
−1

2
u′V −1u u

}
,

where M = DT . The log-likelihood of u is

l2(u) = κ−
q−1∑
k=1

{
D

2
logϕ1k +

M

2
logϕ2k +

1

2

D∑
d=1

log T +
1

2

u′1ku1k

ϕ1k

+
1

2

D∑
d=1

u′2,dku2,dk

ϕ2k

}
,
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where κ = − (M+D)(q−1)
2

log 2π. The first order partial derivatives of l2 are

S2,u1,dk =
∂l2(u)

∂u1,dk
= − 1

ϕ1k

u1,dk, S2,u2,dkt =
∂l2(u)

∂u2,dkt
= − 1

ϕ2k

u2,dkt.

The vector expressions of the partial derivatives of l2 are

S2,u1 = col
1≤d≤D

(
col

1≤k≤q−1

(
S2,u1,dk

))
, S2,u2 = col

1≤d≤D

(
col

1≤k≤q−1

(
col

1≤t≤T

(
S2,u2,dkt

)))
.

The second order partial derivatives of l2 are

H2,u1,dku1,dk = − 1

ϕ1k

, H2,u2,dktu2,dkt = − 1

ϕ2k

,

H2,u1,d1k1u1,d2k2
= 0, H2,u2,d1k1t1u2,d2k2t2

= 0, k1 6= k2 or d1 6= d2.

The matrix expressions of the second order partial derivatives of l2 are H2,u1u2 = 0

H2,u1u1 =
(
H2,u1,d1k1 ,u1,d2k1

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1

,

H2,u2u2 =
(
H2,u2,d1k1t1 ,u2,d2t2k1

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1; t1 = 1, . . . , T
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t2 = 1, . . . , T

,

H2,u1u2 =
(
H2,u1,d1k1 ,u2,d2t2k1

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t2 = 1, . . . , T

.

The log-likelihood of (y,u) is

l(y,u) = l1(y|u) + l2(u).

The first order partial derivatives of l are

Sβ = S1,β =
D∑
d=1

q−1∑
k=1

T∑
t=1

x′dkt(ydkt − µdkt),

Su1 = S1,u1 + S2,u1 = col
1≤d≤D

(
col

1≤k≤q−1

( T∑
t=1

(ydkt − µdkt)−
1

ϕ1k

u1,dk
))
,

Su2 = S1,u2 + S2,u2 = col
1≤d≤D

(
col

1≤k≤q−1

(
col

1≤t≤T

(
(ydkt − µdkt)−

1

ϕ2k

u2,dkt
)))

.

The blocks of the Fisher information matrix associated to l are

F β,β = −H1,ββ, F u1,β = −H1,u1β, F β,u1 = F ′u1,β, F u2,β = −H1,u2β, F β,u2 = F ′u2,β,

F u1,u1 = −H1,u1u1 −H2,u1u1 ,F u2,u2 = −H1,u2u2 −H2,u2u2 ,F u1,u2 = −H1,u1u2 ,F u2,u1 = F ′u1,u2 .

We define

S =

(
Sβ
Su

)
, Su =

(
Su1
Su2

)
, F uu =

(
F u1u1 F u1u2

F u2u1 F u2u2

)
, F uβ =

(
F u1β

F u2β

)
, F βu = F ′uβ,
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F =

(
F ββ F βu

F uβ F uu

)
, F−1 =

(
F ββ F βu

F uβ F uu

)
, F−1uu =

(
F u1u1 F u1u2

F u2u1 F u2u2

)
.

It holds that

F ββ = (F ββ − F βuF
−1
uuF uβ)−1, F βu = −F ββF βuF

−1
uu ,

F uβ = (F βu)′, F uu = F−1uu + F−1uuF uβF
ββF βuF

−1
uu ,

F u1u1 = (F u1u1 − F u1u2F
−1
u2u2

F u2u1)
−1, F u1u2 = −F u1u1F u1u2F

−1
u2u2

,

F u2u1 = (F u1u2)′, F u2u2 = F−1u2u2 + F−1u2u2F u2u1F
u1u1F u1u2F

−1
u2u2

.

The algorithm has two parts: A and B. In the first part the algorithm updates the
values of βk, u1 and u2. In the second part it updates the variance components. Algo-
rithm A maximizes the joint log-likelihood l(y,u) = l1(y|u) + l2(u), with known vector
of variances ϕ.

Algorithm A.

(A.1) Beginning: Assign the initial values l = 0, β(0) = βinitial and u(0) = uinitial.

(A.2) Iteration l+1: For d = 1, . . . , D, k = 1, . . . , q−1, t = 1, . . . , T calculate F (β(l),u(l))
and S(β(l),u(l)) and update β(l) and u(l) by using the equation[

β(l+1)

u(l+1)

]
=

[
β(l)

u(l)

]
+ F−1(β(l),u(l))S(β(l),u(l)), (5.2.1)

where S and F are the vector of scores (first order partial derivatives) and the
Fisher information matrix (minus expectation of second order partial derivatives) of
the joint log-likelihood of (y,u).

(A.3) End: Repeat the step (A.2) until convergence of β(l) and u(l) and obtain the final
values β̂ and û.

Algorithm A maximizes l(y,u) in β and u for fixed values of ϕ. To update the values of
the variance components, we assume that β and u are known and we adapt the ideas of
Schall (1991) to a multivariate setting. We consider a Taylor expansion of

ξdkt = gk(ydt) = log
ydkt

νdt −
∑q−1

`=1 yd`t

around the point µdt = νdtpdt. We obtain

ξdt ≈Xdtβ +Z1dtu1d +Z2dtu2d + edt, (5.2.2)

where ξdt = col
1≤k≤q−1

(ξdkt), edt = W−1
d (yd −µd). By assuming equality in (5.2.2), it holds

that E[ξ] = Xβ and V = var(ξ) = ZV uZ
′ +W−1. Schall (1991) proposed to update

the variance components by maximizing the normal approximation to the distribution
of ξ, with β and u fixed. This proposal assumes the approximation of l1(y) by the
log-likelihood l1(ξ) of the cited multivariate normal distribution. The basic idea is thus
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maximizing l(ξ,u) instead of l(y,u), where ξ is assumed to follow model (5.2.2) under
normality. The approximating REML log-likelihood is

lreml(ξ) = −1

2
(DT (q − 1)− l) log 2π − 1

2
log |KtV K| − 1

2
ξtPξ,

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1 and K = W −WX(X ′WX)−1X ′W .

Algorithm B update the variance components. This can be done by applying the
Fisher-Scoring algorithm to the REML log-likelihood. The algorithm is described below.

Algorithm B.

(B.1) Do ` = 1. Initiate the values β(0), u(0) and ϕ(0).

(B.2) Run the Algorithm A by using ϕ(`) as known value of the vector of variances and
β(`−1) and u(`−1) as initial values. Let β(`) and u(`) be the obtained estimates and
predictors.

(B.3) For d = 1, . . . , D, t = 1, . . . , T calculate η
(`)
dt = Xdtβ

(`) + Z1dtu
(`)
1d + Z2dtu

(`)
2dt and

apply the updating equation

ϕ(`+1) = ϕ(`) + F−1(ϕ(`))S(ϕ(`)),

where S and F are the vector of scores and the Fisher information matrix of the
log-likelihood lreml(ξ).

(B.4) Repeat the steps (B.2)-(B.3) until the convergence of β(`), u(`) and ϕ(`).

The variance components ϕrk, r = 1, 2, k = 1, . . . , q− 1, can also be updated by using
the formula

ϕ̂rk =
û′rkΣ

−1
urk
ûrk

dim(urk)− τrk
=
û′rkûrk
Ar − τrk

,

where Σu1k = ID, Σu2k = IDT , A1 = D, A2 = DT , τrk = 1
ϕ̂rk

tr
(
Σ−1urkT̂

rml

rkk

)
= 1

ϕ̂rk
tr
(
T̂
rml

rkk

)
and Trmlrkk is the block (k, k) of dimension Ar of the matrix

T̂
rml

r = T̂r + T̂rZ
′
rWX(X ′V̂

−1
X)−1X ′WZrT̂r,

where T̂r = (ZrWZ′r + Σ̂
−1
ur )−1, Σ̂ur = diag(ϕr1IAr , . . . , ϕrq−1IAr), V̂ = ZΣ̂uZ

′ + W−1

and Σu = diag(Σu1 ,Σu2). Then, we have an alternative Algorithm B.

Algorithm B (alternative).

(B.1) Do ` = 1. Initiate the values β(0), u(0) and ϕ(0).

(B.2) Run the Algorithm A. by using ϕ(`) as known value of the vector of variance com-
ponents, and β(`−1) and u(`−1) as initial values. Let β(`) and u(`) be the obtained
estimates and predictors.
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(B.3) Calculate η
(`)
dt = Xdtβ

(`) + Z1dtu
(`)
1 + Z2dtu

(`)
2 , d = 1, . . . , D, t = 1, . . . , T . Calculate

p
(`)
dkt =

exp(η
(`)
dkt)

1 +
∑q−1

k=1 exp(η
(`)
dkt)

, p
(`)
dt = col

1≤k≤q−1
(p

(`)
dkt), W

(`) = diag
1≤d≤D

(W d),

W d = diag
1≤t≤T

(νdt[diag(p
(`)
dt )− p(`)dt p

(`)′
dt ])), Σ(`)

ur = diag
(
ϕ
(`)
r1 IAr , . . . , ϕ

(`)
rq−1IAr),

T(`)
r = (Z′rWZr + Σ(`)−1

ur )−1, V (`) = ZΣ(`)
u Z′ +W (`)−1,

Trml(`)r = T(`)
r + T(`)

r Z′rW
(`)X(X ′V (`)−1X)−1X ′W (`)ZrT

(`)
r , τ

(`)
rk =

(
ϕ
(`)
rk

)−1
tr
(
T
rml(`)
rkk

)
(B.4) Update ϕrk using the equations

ϕ̂
(`+1)
rk =

û
(`)′
rk û

(`)
rk

Ar − τ (`)rk

, r = 1, 2, k = 1, . . . , q − 1.

(B.5) Repeat the steps (B.2)-(B.4) until the convergence of β(`), u(`) (or u(`)) and ϕ(`).

Like in the previous chapter, the difference between this algoritms is that Algorithm B
(alternative) is a fixed-point algorithm and the Algorithm B is an iterative Fisher-Scoring
algorithm.

The above described algorithms requires initial values for β, u and ϕ. A simple
possibility is u(0) = 0 and β(0) = β̃, where β̃ is obtained by fitting the non mixed variant
of the model (5.1.1)-(5.1.2) without the random effect u. The non mixed model is also
used for calculating ϕ(0) by means of the formula

ϕ̂rk =
1

2(D − 1)

D∑
d=1

T∑
t=1

(η̃
(dir)
dkt − η̃dkt)

2, k = 1, . . . , q − 1, r = 1, 2, (5.2.3)

where

η̃dkt = β̃kxdkt, η̃
(dir)
dkt = log

ydkt
ydqt

, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T.

Under regularity conditions the asymptotic distribution of the REML-PQL estimator β̂
is multivariate normal N(β,F ββ), where F ββ = (qrr)r=1,...,lk is the block sub-matrix of
the Fisher information matrix in the output of Algorithm A. Therefore, an approximate
(1− α)-level confidence interval for βkr is

β̂kr ± zα/2qrr, r = 1, . . . , lk,

where zα is the α-quantile of the normal distribution N(0, 1). If we use β̂kr to test
H0 : βkr = 0 and we observe the realization β̂kr = β0, the approximate p-value is

p = 2PH0(β̂kr > |β0|) = 2P (Z > |β0| /
√
qrr)

where Z follows a standard normal distribution.
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5.3 Model-based small area estimation

Let us consider the population quantity m0dt = Ndtpdt, where Ndt = #(Pdt). In practice
Ndt is unknown and it is estimated by combining administrative registers and population
projections models, so we are more rigorously interested in estimating mdt = Ndtpdt. In
the case of the SLFS, we use Ndt = N̂dir

dt because the sample weights are calibrated to
population projections by sex and age groups at the province level. We estimate mdt by
means of m̂dt = Ndtp̂dt, where

p̂dt = col
1≤k≤q−1

(p̂dkt), p̂dkt =
exp{η̂dkt}

1 +
∑q−1

`=1 exp{η̂d`t}
, η̂dkt = xdktβ̂k + û1,dk + û2,dkt,

and β̂k, û1,dk and û2,dkt are obtained from the output of the fitting algorithm A. We are
further interested in estimating the domain totals

Ydkt =
∑
j∈Pdt

ydktj, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T.

A synthetic model-based estimator of Ydkt is Ŷdkt = m̂dkt = N̂dtp̂dkt. Estimates of rates
can be obtained by plugging the corresponding estimators of totals.

For deriving an approximation to the mean squared error of m̂dkt, we treat N̂dt as a
known constant. Let us write

mdkt = hdkt(ηdt) = N̂dtpdkt = N̂dt
exp{ηdkt}

1 +
∑q−1

`=1 exp{ηd`t}
.

The partial derivatives of hdkt are

∂hdkt
∂ηdkt

= N̂dtpdkt(1− pdkt),
∂hdk1t
∂ηdk2t

= −N̂dtpdk1tpdk2t, k1 6= k2.

We define

h(η) = (h1(η), . . . , hq−1(η))′, hdt(ηdt) = (hd1t(ηdt), . . . , hdqt−1(ηdt))
′,

Hdt =

(
∂hdk1t
∂ηdk2t

)
k1,k2=1,...,q−1

= N̂dt[diag(pdt)− pdtp′dt].

A Taylor expansion of hdkt(η̂dt) around ηdt yields to

hdkt(η̂dt)− hdkt(ηdt) ≈
q−1∑
`=1

∂hdkt
∂ηd`t

(η̂d`t − ηd`t), hdt(η̂dt)− hdt(ηdt) ≈Hdt(η̂dt − ηdt).

In matrix notation, we have

h(η̂)− h(η) ≈H(η̂ − η), H = diag
1≤d1≤D

( diag
1≤t1≤md1

(Hd1t1)).

As m̂d = AHη̂, with A = col′
1≤d1≤D

( col′
1≤t1≤md1

(δtt1δdd1Iq−1)), η̂ can be viewed as a vector

of EBLUPs in the lineal mixed model (5.2.2), we propose applying the methodology of
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Prasad and Rao (1990) to approximate the MSE of m̂dt. For this sake, we first define the
variance matrices

V = ZV uZ
′ +W−1, W = diag

1≤d≤D
(W d), W d = diag

1≤t≤T
(W dt),

V u = var(u) = diag(V u1 ,V u2), V u1 = diag
1≤d≤D

(V u1d), V u1d = diag
1≤k≤q−1

(ϕ1k),

V u2 = diag
1≤d≤D

(V u2d), V u2d = diag
1≤t≤T

(V u2dt), V u2dt = diag
1≤k≤q−1

(ϕ2k).

The MSE is approximated by

MSE(m̂dkt) ≈ G1(ϕ) + G2(ϕ) + G3(ϕ),

where

G1(ϕ) = AHZTZ ′H ′A′,

G2(ϕ) = [AHX −AHZTZ ′WX]Q[X ′H ′A′ −X ′WZTZ ′H ′A′],

G3(ϕ) ≈
2(q−1)∑
k1=1

2(q−1)∑
k2=1

cov(ϕ̂k1 , ϕ̂k2)AHL
(k1)V L(k2)′H ′A′,

ϕk = ϕ1k if k ≤ q − 1, ϕk = ϕ2k otherwise and

Q = (X ′V −1X)−1, T = V u − V uZ
′V −1ZV u,

L(k) = (I −R1)W kV
−1, W k =

∂V

∂ϕk
, R1 = Z1V u1Z

′
1V
−1, k = 1, . . . , q − 1,

L(k) = (I −R2)W kV
−1, W k =

∂V

∂ϕk
, R2 = V u2V

−1, k = q, . . . , 2(q − 1).

The covariance cov(ϕ̂k1 , ϕ̂k2) is obtained from the inverse of the Fisher information matrix
F at the output of the algorithm B. The analytic MSE estimator is

mse(m̂dkt) = G1(ϕ̂) + G2(ϕ̂) + 2G3(ϕ̂).

where ϕ̂ is also obtained from algorithm B.

The elements of the formula G1(ϕ) = AHZTZ ′H ′A′ are

A = col′
1≤d1≤D

( col′
1≤t1≤md1

(δtt1δdd1Iq−1)), H = diag
1≤d1≤D

( diag
1≤t1≤md1

(Hd1t1)),

T = V u − V uZ
′V −1ZV u =

(
T 11 T 12

T 21 T 22

)
, T 12 = −V u1Z

′
1V
−1Z2V u2 = T ′21,

T 11 = V u1 − V u1Z
′
1V
−1Z2V u1 , T 22 = V u2 − V u2Z

′
2V
−1Z2V u2 .
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We have T ab = diag
1≤d1≤D

(T abd), a, b = 1, 2, where

T 11d = diag
1≤k≤q−1

(ϕ1k)− diag
1≤k≤q−1

(ϕ1k)Z
′
1dV

−1
d Z1d diag

1≤k≤q−1
(ϕ1k),

T 12d = − diag
1≤k≤q−1

(ϕ1k)Z
′
1dV

−1
d Z1d diag

1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k)),

T 22d = diag
1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k))− diag
1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k))Z
′
2dV

−1
d Z2d diag

1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k)).

We calculate this product ZTZ ′

ZTZ ′ = Z1T 11Z
′
1 +Z1T 12Z

′
2 +Z2T 21Z

′
1 +Z2T 22Z

′
2 = M 11 +M 12 +M ′

12 +M 22.

We have M ab = diag
1≤d1≤D

(M abd1), where M abd1 = Zad1T abd1Z
′
bd1

, a, b = 1, 2. Finally

G1(ϕ) = AH [M 11 +M 12 +M ′
12 +M 22]H

′A′ = G11 +G12 +G′12 +G22,

where

G11 = Hdt

[
diag

1≤k≤q−1
(ϕ1k)− diag

1≤k≤q−1
(ϕ1k)Z

′
1dV

−1
d Z1d diag

1≤k≤q−1
(ϕ1k)

]
H ′dt,

G12 = −Hdt diag
1≤k≤q−1

(ϕ1k)Z
′
1dV

−1
d Z1d diag

1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k)) col
1≤t1≤md1

(δtt1Hdt1),

G22 = col′
1≤t1≤md1

(δtt1Hdt1)
[

diag
1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k))− diag
1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k))Z
′
2dV

−1
d Z2d

· diag
1≤t1≤md1

( diag
1≤k≤q−1

(ϕ2k))
]

col
1≤t1≤md1

(δtt1Hdt1).

The expression of G2(ϕ) is

G2(ϕ) = [AHX−AHZTZ ′WX]Q[X ′H ′A′−X ′WZTZ ′H ′A′] = [A21−A22]Q[A′21−A′22],

where

A21 = AHX = col′
1≤d1≤D

( col′
1≤t1≤md1

(δdd1δtt1Iq−1)) diag
1≤d1≤D

( diag
1≤t1≤md1

(Hd1t1))

· col
1≤d1≤D

( col
1≤t1≤md1

(Xd1dt1)) = Iq−1HdtXdt = HdtXdt,

A22 = AHZTZ ′WX = col′
1≤d1≤D

( col′
1≤t1≤md1

(δdd1δtt1Iq−1Hd1t1))

· diag
1≤d1≤D

(M 11d1 +M 12d1 +M 21d1 +M 22d1) col
1≤d1≤D

( col
1≤t1≤md1

(δdd1δtt1W d1t1Xd1dt1)

= col′
1≤t1≤md1

(δtt1Hdt1))(M 11d +M 12d +M 21d +M 22d) col
1≤t1≤md1

(W dt1Xdt1).

For the calculation of G3(ϕ), we have

L(k) = (I −R1)W kV
−1, W k =

∂V

∂ϕk
, R1 = Z1V u1Z

′
1V
−1, k = 1, . . . , q − 1.
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L(k) = (I −R2)W kV
−1, W k =

∂V

∂ϕk
, R2 = V u2V

−1, k = q, . . . , 2(q − 1).

Concerning the estimation of the MSE of m̂dkt, we can also use the approach of
González-Manteiga et al. (2008a, 2008b) by introducing the following parametric boot-
strap method.

1. Fit the model (5.1.1)-(5.1.2) and calculate ϕ̂1k, ϕ̂2k and β̂k, k = 1, . . . , q − 1.

2. For d = 1, . . . , D, t = 1, . . . , T , generate the random effects u∗1,d ∼ N(0, diag
1≤k≤q−1

(ϕ̂1k))

and u∗2,dt ∼ N(0, diag
1≤k≤q−1

(ϕ̂2k)), and the target variable y∗dt ∼ M(νdt, p
∗
d1t, . . . , p

∗
dqt−1),

where

p∗dkt =
exp{η∗dkt}

1 +
∑q−1

`=1 exp{η∗d`}
, η∗dkt = β̂kxdkt + u∗1,dk + u∗2,dkt, m∗dkt = N̂dtp

∗
dkt.

3. For d = 1, . . . , D, k = 1, . . . , q − 1, t = 1 . . . , T , calculate ϕ̂∗1k, ϕ̂
∗
2k, β̂

∗
k,

p̂∗dkt =
exp{η̂∗dkt}

1 +
∑q−1

`=1 exp{η̂∗d`}
, η̂∗dkt = β̂

∗
kxdkt + û∗1,dk + û∗2,dkt, m̂∗dkt = N̂dtp̂

∗
dkt.

4. Repeat B times steps 2-3 and calculate the bootstrap mean square error estimator

mse∗1dkt =
1

B

B∑
b=1

(m̂∗dkt −m∗dkt)2, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1 . . . , T.

We also propose two other estimators. The second bootstrap MSE estimator is based on
the analytic one and follows the ideas of bagging from Breiman (1996). The bootstrap
approximation of MSE(m̂dkt) is

mse∗2(m̂dkt) = E∗[G1(ϕ̂∗) + G2(ϕ̂∗) + 2G3(ϕ̂∗)],

with the Monte Carlo approximation

mse∗2(m̂dkt) =
1

B

B∑
b=1

(G∗b1 (ϕ̂∗) + G∗b2 (ϕ̂∗) + 2G∗b3 (ϕ̂∗)).

5.4 Simulation study

In this section we present two simulation experiments. The first experiment is designed
to analyze the behavior of the estimators β̂k, ϕ̂1k, ϕ̂2k and m̂dkt = N̂dtpdkt. The second
simulation studies the behavior of the proposed MSE estimators.
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5.4.1 Sample simulation

We take N̂dt = 1000 and we consider a multinomial logit mixed model with three model
categories (q − 1 = 2). For d = 1, . . . , D, k = 1, 2 and t = 1, . . . , T , we generate the
explanatory variables

Udkt =
1

3

(
d−D
D

+
k

q − 1
+
t

T

)
, xd1t = µ1+σ

1/2
x11Ud1t, xd2t = µ2+σ

1/2
x22

[
ρxUd1+

√
1− ρ2xUd2t

]
,

where µ1 = µ2 = 1, σx11 = 1, σx22 = 2 and ρx = 0. The random effects are u1,dk ∼
N(0, ϕ1k) with ϕ11 = 1, ϕ12 = 2 and u2,dkt ∼ N(0, ϕ2k) with ϕ21 = 0.25, ϕ22 = 0.5. The
target variable is ydt = (yd1t, yd2t)

′ ∼ M(νdt, pd1t, pd2t), where

pdkt =
exp{ηdkt}

1 + exp{ηd1t}+ exp{ηd2t}
, ηdkt = β0k + β1kxdkt + u1,dk + u2,dkt, (5.4.1)

νdt = 100, β01 = 1.3, β02 = −1, β11 = −1.6 and β12 = 1. We can write the model (5.4.1)
in the matrix form

η111
η121
η112
η122

...
ηD11

ηD21

ηD12

ηD22


=



1 x111 0 0
0 0 1 x121
1 x112 0 0
0 0 1 x122
...
1 xD11 0 0
0 0 1 xD21

1 xD12 0 0
0 0 1 xD22




β01
β11
β02
β12

+



u1,11
u1,12
u1,11
u1,12

...
u1,D1

u1,D2

u1,D1

u1,D2


+



u2,111
u2,121
u2,112
u2,122

...
u2,D11

u2,D21

u2,D12

u2,D22


,

or, more concisely, in the form
η11

η12
...
ηD1

ηD2

 =


X11

X12
...

XD1

XD2

β +Z1u1 +Z2u2,

where Z1 = diag
1≤d≤D

(Z1d), Z2 = I2D,

ηdt =

(
ηd1t
ηd2t

)
, Xdt =

(
1 xd1t 0 0
0 0 1 xd2t

)
, I2D =

 I2 0
. . .

0 I2

 , Z1d =

(
Z1d1

Z1d2

)
,

Z1dt = I2 =

(
1 0
0 1

)
, u1 ∼ N(0,ϕ1I2D), u2dt ∼ N(0,ϕ2I2).
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5.4.2 Simulation experiment 1

The objective of this experiment is to analyze the behavior of the estimators of βk, ϕ1k,
ϕ2k and mdkt. As efficiency measures, we use the relative empirical bias (RBIAS) and the
relative mean squared error (RMSE). The simulation is described below.

1. Repeat I = 1000 times (i = 1, . . . , 1000)

1.1. For d = 1, . . . , D, k = 1, 2, t = 1, . . . , T , generate (ydkt, xdkt).

1.2 For d = 1, . . . , D, k = 1, 2, t = 1, . . . , T , j = 0, 1, r = 1, 2, calculate β̂
(i)
jk ,ϕ̂

(i)
rk ,

m̂dkt.

2. For j = 0, 1, k = 1, 2, r = 1, 2, (d, t) = (1, 1), (D/2, T ), (D,T ), calculate

BIAS(β̂jk) =
1

I

I∑
i=1

(β̂
(i)
jk − βjk), BIAS(ϕ̂rk) =

1

I

I∑
i=1

(ϕ̂
(i)
rk − ϕk),

MSE(β̂jk) =
1

I

I∑
i=1

(β̂
(i)
jk − βk)

2, MSE(ϕ̂rk) =
1

I

I∑
i=1

(ϕ̂
(i)
rk − ϕk)

2,

BIASdkt =
1

I

I∑
i=1

(m̂
(i)
dkt −m

(i)
dkt), MSEdkt =

1

I

I∑
i=1

(m̂
(i)
dkt −m

(i)
dkt)

2,

RBIAS(β̂jk) =
BIAS(β̂jk)

|βjk|
, RBIAS(ϕ̂rk) =

BIAS(ϕ̂rk)

ϕk
,

RMSE(β̂jk) =

√
MSE(β̂jk)

|βjk|
, RMSE(ϕ̂rk) =

√
MSE(ϕ̂rk)

ϕk
,

MEANdkt =
1

I

I∑
i=1

m
(i)
dkt, RBIASdkt =

BIASdkt
|MEANdkt|

, RMSEdkt =

√
MSEdkt

|MEANdkt|
.

Table 5.4.1 and Table 5.4.2 present the RMSE-values of the model parameter estimators
for T = 2 time periods and for D = 100 domains respectively. In the first case (T = 2),
as D increases from 50 to 200 we observe a reduction in RMSE of approximately 50%
for the βk’s and around 40% for ϕ1, but there is no reduction in ϕ2. In the second
case (D = 100), as T increases from 2 to 8, Table 5.4.2 shows that RMSE decreases by
approximately 70% for ϕ2, but there is no reduction for ϕ1. This simulation suggests that
the proposed multinomial mixed model should be used with more than two time periods.
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D 50 100 200 D 50 100 200

RMSE(β̂01) 0.61 0.46 0.33 RBIAS(β̂01) -0.04 0.01 -0.04

RMSE(β̂02) 0.63 0.47 0.33 RBIAS(β̂02) 0.05 0.00 0.05

RMSE(β̂11) 0.62 0.44 0.32 RBIAS(β̂11) 0.05 0.06 0.06

RMSE(β̂12) 0.62 0.43 0.31 RBIAS(β̂12) -0.04 -0.05 -0.05

RMSE(ϕ̂11) 0.24 0.17 0.12 RBIAS(ϕ̂11) -0.05 -0.04 -0.03

RMSE(ϕ̂12) 0.23 0.17 0.14 RBIAS(ϕ̂12) -0.07 -0.08 -0.08

RMSE(ϕ̂21) 0.56 0.60 0.62 RBIAS(ϕ̂21) -0.54 -0.60 -0.62

RMSE(ϕ̂22) 0.51 0.55 0.57 RBIAS(ϕ̂22) -0.49 -0.54 -0.57

Table 5.4.1: RMSE and RBIAS for T = 2.

T 2 4 8 T 2 4 8

RMSE(β̂01) 0.43 0.30 0.20 RBIAS(β̂01) -0.07 -0.05 -0.03

RMSE(β̂02) 0.45 0.31 0.21 RBIAS(β̂02) 0.08 -0.06 0.03

RMSE(β̂11) 0.42 0.28 0.21 RBIAS(β̂11) 0.09 0.06 0.07

RMSE(β̂12) 0.41 0.28 0.20 RBIAS(β̂12) 0.08 -0.05 -0.05

RMSE(ϕ̂11) 0.16 0.16 0.14 RBIAS(ϕ̂11) -0.01 -0.01 -0.01

RMSE(ϕ̂12) 0.18 0.18 0.16 RBIAS(ϕ̂12) -0.1 -0.11 -0.09

RMSE(ϕ̂21) 0.60 0.31 0.16 RBIAS(ϕ̂21) -0.59 -0.31 -0.15

RMSE(ϕ̂22) 0.56 0.30 0.17 RBIAS(ϕ̂22) -0.55 -0.29 -0.16

Table 5.4.2: RMSE and RBIAS for D = 100.

Table 5.4.3 and Table 5.4.4 present the RMSE and RBIAS values of m̂dkt for T = 2
and D = 100 respectively. We observe that all the RMSE values are below 14%, which
indicates a good behavior.

D 50 100 200 D 50 100 200

(d, t) (d, t)

RMSEd1t (1,1) 0.09 0.10 0.10 RBIASd1t (1,1) -0.0027 0.0001 -0.0044

(D/2, 2) 0.14 0.13 0.12 (D/2, 2) 0.0087 0.0032 -0.0012

(D, 2) 0.14 0.14 0.14 (D, 2) -0.0032 0.0007 0.0076

RMSEd2t (1,1) 0,13 0,13 0,13 RBIASd2t (1,1) -0.0043 -0.0004 0.0060

(D/2, 2) 0.09 0.10 0.10 (D/2, 2) -0.0187 -0.0050 0.0001

(D, 2) 0.08 0.09 0.08 (D, 2) -0.0049 0.0023 -0.0032

Table 5.4.3: RMSEdkt and RBIASdkt for T = 2.
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T 2 4 8 T 2 4 8

(d, t) (d, t)

RMSEd1t (1,1) 0.10 0.09 0.08 RBIASd1t (1,1) 0.001 0.004 0.003

(D/2, T ) 0.14 0.12 0.13 (D/2, T ) -0.002 -0.0003 0.002

(D,T ) 0.14 0.12 0.12 (D,T ) -0.003 -0.0003 0.002

RMSEd2t (1,1) 0.13 0.12 0.13 RBIASd1t (1,1) -0.003 -0,004 -0,001

(D/2, T ) 0.09 0.08 0.09 (D/2, T ) 0.001 -0.0005 -0.0004

(D,T ) 0.09 0.08 0.09 (D,T ) 0.004 -0.0005 -0.0004

Table 5.4.4: RMSEdkt and RBIASdkt for D = 100.

5.4.3 Simulation experiment 2

The second simulation experiment is designed to study the behavior of the three mean
square error estimators (analytic and bootstrap). In this case we take D = 50 and T = 2.
The steps of the simulation are

1. Repeat I = 500 times (i = 1, . . . , 500)

1.1. For d = 1, . . . , 50, k = 1, 2, t = 1, 2, generate (y
(i)
dkt, x

(i)
dkt).

1.2. For d = 1, . . . , D, k = 1, 2, t = 1, 2, calculate p̂
(i)
dkt, m̂

(i)
dkt, ϕ̂

(i), β̂
(i)

and

mse
(i)
dkt = G(i)1dkt(ϕ̂

(i)) + G(i)2dkt(ϕ̂
(i)) + 2G(i)dkt(ϕ̂

(i)).

1.3. Repeat B = 500 times (b = 1, . . . , B)

1.3.1. For d = 1, . . . , D, k = 1, 2, t = 1, 2, generate u
∗(ib)
1,d , u

∗(ib)
2,dt ,

y
∗(ib)
dt = (y

∗(ib)
1dkt , y

∗(ib)
2dkt )

′ ∼ M(νdt, p
∗(ib)
d1t , p

∗(ib)
d2t ),

where

p
∗(ib)
dkt =

exp{η∗(ib)dkt }
1 + exp{η∗(ib)d1t }+ exp{η∗(ib)d2t }

, η
∗(ib)
dkt = β̂

(i)
0k + β̂

(i)
1kx

(i)
dkt+u

∗(ib)
1,dk +u

∗(ib)
2,dkt.

1.3.2. For d = 1, . . . , D, k = 1, 2, t = 1, 2, calculate ϕ̂∗(ib), β̂
∗(ib)

, p̂
∗(ib)
dkt , p̃

∗(ib)
dkt ,

m̂
∗(ib)
dkt , m̃

∗(ib)
dkt .

1.4 For d = 1, . . . , D, k = 1, 2, t = 1, 2, calculate

mse
∗1(i)
dkt =

1

B

B∑
b=1

(m̂
∗(ib)
dkt −m

∗(ib)
dkt )2,

mse
∗2(i)
dkt =

1

B

B∑
b=1

{
G(∗ib)1dkt (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 ) + G∗(ib)2dkt (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 ) + 2G∗(ib)3dkt (ϕ̂

∗(ib)
1 , ϕ̂

∗(ib)
2 )

}
.

91



2. Calculate

B0
dkt =

1

I

I∑
i=1

(mse
(i)
dkt −MSEdkt), B

`
dkt =

1

I

I∑
i=1

(mse
∗`(i)
dkt −MSEdkt), ` = 1, 2,

E0
dkt =

1

I

I∑
i=1

(mse
(i)
dkt −MSEdkt)

2, E`
dkt =

1

I

I∑
i=1

(mse
∗`(i)
dkt −MSEdkt)

2, ` = 1, 2,

RB`
dkt =

B∗`dkt
MSEdkt

, RE`
dkt =

√
E∗`dkt

MSEdkt
, ` = 0, 1, 2,

where the MSEdkt are taken from the output of the first simulation.

Figure 5.4.1 presents the box-plots of the values of the mse
(i)
dkt,mse

∗`(i)
dkt , k = 1, 2,

` = 1, 2, i = 1, . . . , 500, in (d, t) = (1, 1), (25, 2), (50, 2). The true MSE is plotted in a
horizontal line. We observe that mse have the largest variability and that the estimators
behaving best are mse∗1 and mse∗2.
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Figure 5.4.1: Boxplots of Simulation 2 for (d, t) = (1, 1), (25, 2), (50, 2).
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5.5 Application to real data

5.5.1 Data description

We are interested in estimating the totals of employed and unemployed people, and the
unemployment rates per sex in the counties of Galicia. We deal with data from the SLFS
of Galicia from the third quarter of 2009 to the fourth quarter of 2011.

As there are 51 counties in the SLFS of Galicia in this time period, we have D = 102
domains, denoted by Pdt at time t, and they are partitioned in the subsets Pd1t, Pd2t and
Pdt3 of employed, unemployed and inactive people. Our target population parameters are
the totals of employed and unemployed people and the unemployment rate, this is to say

Ydkt =
∑
j∈Pdkt

ydktj, Rdt =
Yd2t

Yd1t + Yd2t
, k = 1, 2,

where ydktj = 1 if individual j of domain d at period t is in labour category k and ydktj = 0
otherwise.

The SLFS does not produce official estimates at the domain level, but the analogous
direct estimators of the total Ydkt, the mean Ȳdkt = Ydkt/Ndt, the size Ndt and the rate Rdt

are

Ŷ dir
dkt =

∑
j∈Sdt

wdtj ydktj,
ˆ̄Y dir
dkt = Ŷ dir

dkt /N̂
dir
dt , N̂

dir
dt =

∑
j∈Sdt

wdtj, R̂
dir
dt =

Ŷ dir
d2t

Ŷ dir
d1t + Ŷ dir

d2t

, k = 1, 2,

(5.5.1)
where Sdt is the domain sample at time period t and the wdtj’s are the official calibrated

sampling weights. The design-based covariance covπ(Ŷ dir
dkt1

, Ŷ dir
dkt2

), k1, k2 = 1, 2, can be
estimated by

ˆcovπ(Ŷ dir
dkt1

, Ŷ dir
dkt2

) =
∑
j∈Sdt

wdtj(wdtj − 1)(ydkt1j − ˆ̄Y dir
dkt1

)(ydkt2j − ˆ̄Y dir
dkt2

), (5.5.2)

where the case k1 = k2 = k denotes estimated variance, i.e. V̂π(Ŷ dir
dkt ) = ˆcovπ(Ŷ dir

dkt , Ŷ
dir
dkt ).

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with
the simplifications wdtj = 1/πdtj, πdtj,dtj = πdtj and πdti,dtj = πdtiπdtj, i 6= j in the second

order inclusion probabilities. The design-based variance of R̂dir
dt can be approximated by

Taylor linearization, i.e.

V̂π(R̂dir
dt ) =

(Ŷ dir
d1t )2

(Ŷ dir
d1t + Ŷ dir

d2t )4
V̂π(Ŷ dir

d2t )+
Ŷ 2
d2t

(Ŷ dir
d2t + Ŷ dir

d1t )4
V̂π(Ŷ dir

d1t )− 2Ŷ dir
d1t Ŷ

dir
d2t

(Ŷ dir
d1t + Ŷ dir

d2t )4
ˆcovπ(Ŷ dir

d1t , Ŷ
dir
d2t ).

In the fourth quarter of 2011 the domain sample sizes lie all in the interval (13, 1554),
with median 97. Therefore, the direct estimates in (5.5.1) and (5.5.2) are not reliable and
small area estimation methods are needed.

In this chapter we employ area-level models using auxiliary information from admin-
istrative registers. More concretely, we use as auxiliary variables the domain proportions
of individuals within the categories of the following grouping variables.
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• SEXAGE: Combinations of sex and age groups, with 6 values. SEX is coded 1 for
men and 2 for women and AGE is categorized in 3 groups with codes 1 for 16-24,
2 for 25-54 and 3 for ≥55. The codes 1, 2, . . . , 6 are used for the pairs of sex -age
(1, 1), (1, 2), . . . , (2, 3).

• STUD: This variable describes the achieved education level, with values 1-3 for the
illiterate and the primary, the secondary and the higher education level respectively.

• REG: This variable indicates if an individual is registered or not as unemployed in
the administrative register of employment claimants.

• SS: This variable indicates if an individual is registered or not in the social security
system.

The last two variables (REG and SS) are the same as those used in the previous chapter.
Table 5.5.1 shows the variability of the proportions of employed and unemployed people
over the SEXAGE and STUD categories in the fourth quarter of 2011. Figure 5.5.1 shows
the scatterplots of the log-rates of employed over inactive people against the proportions
of people in social security system (left) and the log-rates of unemployed over inactive
people against the proportions of people registered as unemployed (right). We observe
that, despite the large variability observed in both plots, the log-rates of the two considered
proportions seem to increase linearly with the proportions of people in the social security
system and registered as unemployed respectively.

SEXAGE STUD
1 2 3 4 5 6 1 2 3

Employed 0.250 0.754 0.214 0.222 0.657 0.143 0.158 0.541 0.720
Unemployed 0.169 0.153 0.026 0.121 0.156 0.018 0.055 0.137 0.104
Table 5.5.1: Proportions of employed and unemployed people by SEXAGE and

STUD categories in the fourth quarter of 2011.

Concerning Figure 5.5.1, we would like to say that the linearity of these clouds of dots
can also be measure via the estimated Pearson correlations of variables. They are 0.78
(left) and 0.42 (right) respectively. Further, the corresponding 95% confidence intervals
are (0.78, 0.81) and (0.36,0.47) respectively. Therefore, the proportions of people in the
social security system and registered as unemployed could probably be good covariates
for modeling the two probabilities. Indeed, after fitting the multinomial mixed model,
tests of significance for the regression parameters and diagnosis of residuals confirmed the
explanatory power of the auxiliary variables that were selected for each model.

5.5.2 Model estimation

We consider the multinomial mixed model (5.1.1)-(5.1.2) with q = 3 categories (employed,
unemployed and inactive people) and we choose inactive people as reference (third) cate-
gory. The multinomial size is νdt = ndt, where ndt is the size of the domain sample Sdt in
time t. The target variable is ydt = (yd1t, yd2t)

′, where ydkt is the sample total

ydkt =
∑
j∈Sd

ydktj,
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Figure 5.5.1: Proportions of employed (left) and unemployed (right) over inactive people
versus the proportion of people registered as unemployed.

ydktj = 1 if individual j is in category k (k = 1, 2) and ydktj = 0 otherwise.

The explanatory variables are the domain means of the indicators of the categories of
SEXAGE, REG, SS and STUD. Their values have been taken from the SLFS and from
administrative registers. The model is firstly fitted to the complete data set. An analysis
of residuals is then carried out and six counties are marked as outliers. These six counties
correspond with the counties of A Coruña, Eume, Ferrol, Noia, Pontevedra and Vigo. A
Coruña, Ferrol, Pontevedra and Vigo are four of the most populous cities of Galicia where
the relationships between the auxiliary variables SS and REG with the employment and
unemployment status are typically weaker than in less populated counties. The model is
finally fitted to reduced data set. The sample sizes of A Coruña, Ferrol, Pontevedra and
Vigo are large enough to produce reliable direct estimates, then no model estimates are
given for this counties and direct estimates are used for them. For Eume and Noia we use
the synthetic estimator.

For each category, Table 5.5.1 and 5.5.2 presents the estimates of the regression param-
eters and their standard deviations. It also presents the p-values for testing the hypothesis
H0 : βkr = 0. The estimates of the model variances and their standard deviations are
presented at the bottom of Tables 5.5.1 and 5.5.2.
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Employed people Unemployed people

Variable Estimate p−value Variable Estimate p−value

CONSTANT -1.43 0.00 CONSTANT -3.87 0.00

SEXAGE=1 0.92 0.02 SEXAGE=1 1.88 0.01

SEXAGE=2 2.05 0.00 SEXAGE=2 2.35 0.00

SEXAGE=3 0.15 0.38 SEXAGE=3 -0.48 0.11

SEXAGE=4 0.48 0.28 SEXAGE=4 1.57 0.07

SEXAGE=5 1.68 0.00 SEXAGE=5 1.51 0.00

STUD=1 -0.82 0.00 STUD=1 -0.49 0.12

SS 1.49 0.00 REG 11.84 0.00

σ Estimate Std.Dev. Estimate Std.Dev.

ϕ1 0.031 0.0032 0.086 0.0186

ϕ2 0.013 0.0002 0.104 0.011

Table 5.5.2: Model parameter estimates for the full data set.

Employed people Unemployed people

Variable Estimate p−value Variable Estimate p−value

CONSTANT -1.48 0.00 CONSTANT -3.84 0.00

SEXAGE=1 0.93 0.02 SEXAGE=1 1.83 0.02

SEXAGE=2 2.04 0.00 SEXAGE=2 2.33 0.00

SEXAGE=3 0.20 0.26 SEXAGE=3 -0.51 0.10

SEXAGE=4 0.79 0.08 SEXAGE=4 1.53 0.10

SEXAGE=5 1.69 0.00 SEXAGE=5 1.46 0.01

STUD=1 -0.82 0.00 STUD=1 -0.50 0.14

SS 1.59 0.00 REG 11.84 0.00

σ Estimate Std.Dev. Estimate Std.Dev.

ϕ1 0.033 0.0055 0.091 0.017

ϕ2 0.014 0.0021 0.108 0.012

Table 5.5.2: Model parameter estimates for the reduced data set.

Figure 5.5.2 plots the domain standardized residuals of models fitted to the full (left)
and reduced (right) data set. The dots outside the interval (-3,3) correspond to the men
and women counts in marked counties (A Coruña, Eume, Ferrol, Noia, Pontevedra and
Vigo). The remaining model-based statistical analysis is carried out for the reduced data
set.

Figure 5.5.3 plots the domain standardized residuals of employment (left) and un-
employment (right) categories versus the proportions of people registered in the social
security system (SS) and registered as unemployed (REG). The residuals are randomly
distributed above and below zero and no rare pattern is observed. Therefore no diagnostics
problems are found for the two main explanatory variables: SS and REG.
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Figure 5.5.2: Boxplots of standardized residuals of models fitted to the full (left) and
reduced (right) data set.
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Figure 5.5.3: Domain standardized residuals of employment (left) and unemployment
(right) categories versus proportions of people registered in the social security system
(SS) and registered as unemployed (REG).

5.5.3 Model diagnostics

For carrying out the diagnosis of the model, we calculate the predicted sample totals
ŷdkt = ndtp̂dkt and the domain residuals

rdkt =
ydkt − ŷdkt

ydkt
, d = 1, . . . , 102, k = 1, 2, t = 1, . . . , 4.
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Figure 5.5.4 plots the domain residuals versus the predicted sample totals of employed and
unemployed people. We observe that the model residuals are symmetrically situated above
and below zero, so there is no prediction bias. Further, the variability of the residuals
decreases as predicted employed or unemployed sample totals increase. This pattern is
due to the fact that domains with greater amount of employed and unemployed people
also have greater sample sizes. We also observe that there are no high residuals in absolute
value or any other unusual pattern. Therefore, the fitted model seems to properly describe
the data.
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Figure 5.5.4: Domain residuals versus predicted sample totals

Figure 5.5.5 plots the direct estimates (Ŷ dir
dkt ) versus the model-based estimates (m̂dkt =

Ndtp̂dkt) of the population totals of employed and unemployed people (in a logarithmic
scale). We observe that both type of estimates behave quite similarly for employed people.
This is because the population of employed people is quite large and there are plenty of
sampled observations within this category. However, the direct and model-based estimates
behave slightly different for unemployed people, which is due to the lower number of
sampled observations within the category. We also observe that the model-based estimates
are lower than the direct ones for large values of the direct estimates. This is a typical
and desirable smoothing effect of model-based estimators.

5.5.4 Small area estimates and RMSE

Figures 5.5.6 and 5.5.7 plot the estimated women employment totals and women unem-
ployment rates respectively for all quarters of 2011, with the counties sorted by sample
size. We observe that the direct and the model-based estimators tend to be closer as soon
as the sample size increases. The same pattern is observe in the case of men. For the sake
of brevity we skip the corresponding figures.

Figures 5.5.8 and 5.5.9 plot the parametric bootstrap estimates (based on mse∗1)
of the relative mean squared errors (RMSE) of the model-based estimators of totals of
employed women and of women unemployment rates. The RMSEs of the corresponding
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Figure 5.5.5: Direct versus model-based estimates.
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Figure 5.5.6: Direct (◦) and model-based (∗) estimates of totals of employed women in
each quarter of 2011.

direct estimates are much higher than their model-based counterparts. This is the reason
why they have not been plotted in Figure 5.5.9.

Tables 5.5.3 and 5.5.4 present some condensed numerical results for men and women
respectively and for the fourth quarter of 2011. The tables has been constructed in two
steps. We sort the domains by province and after that, in each province, we sort the do-
mains by sample size, starting by the domain with smallest sample size. We present the
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Figure 5.5.7: Direct (◦) and model-based (∗) estimates of women unemployment rates in
each quarter of 2011.
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Figure 5.5.8: RMSEs of direct (◦) and model-based (∗) estimates of women employment
totals in each quarter of 2011.
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Figure 5.5.9: RMSEs of model-based estimates of women unemployment rates in each
quarter of 2011.

results of the direct and the model-based estimates (labeled by n, dir, mod, reD and reM
respectively) and the corresponding RMSE estimates for five domains in each province.
The chosen domains correspond to the quintiles. The provinces are labeled by p and the
sample sizes by n. Table 5.5.3 and 5.5.4 are partitioned in three vertical sections dealing
with the estimation of totals of employed and unemployed people and with unemployment
rates. The RMSEs of the model-based estimators are calculated by using the parametric
bootstrap method 1 (mse∗1). The RMSEs of the corresponding direct estimates are esti-
mated by using (5.5.2) and they are much greater than their counterparts. By observing
the columns of RMSEs we conclude that model-based estimators are preferred to the di-
rect ones. At this point it is good to keep in mind that the Office for National Statistics
(ONS) in the United Kingdom considers that an estimate is publishable in the labour
force statistics, and therefore official, if the coefficient of variation is less than 20% (ONS,
2004).

In domains d with nd = 0, direct estimates cannot be calculated. In those cases,
model-based estimates are calculated by using the synthetic part of the linear predictor,
i.e. η̂synthdkt = xdktβ̂k. Tables 5.5.3 and 5.5.4 present blank spaces in domains where
ydk = 0, k = 1, 2.
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Employed people Unemployed people Unemployment rates

p n dir mod reD reM dir mod reD reM dir mod reD reM
1 21 2638 2151 12.44 11.02 155 273 97.82 28.67 5.55 15.95 201.87 27.81
1 37 2602 2518 18.18 7.54 328 299 68.98 27.07 11.21 14.32 129.74 25.52
1 56 3515 3406 16.31 8.00 1316 1104 32.56 20.30 27.25 12.44 34.83 18.85
1 100 8994 8746 8.96 6.05 948 921 43.61 17.61 9.54 9.01 78.16 13.22
1 503 48106 45676 3.90 2.86 8005 7094 15.30 11.68 14.27 3.65 21.03 7.30

2 12 410 176 40.10 11.21 93 57 95.60 31.24 18.62 25.61 146.41 26.72
2 62 2613 2524 14.78 6.39 206 285 69.15 26.30 7.32 11.67 174.27 25.96
2 79 4315 3962 11.28 6.62 623 590 44.38 19.01 12.63 10.80 70.06 18.50
2 95 4243 4054 11.06 5.67 447 371 50.17 19.59 9.54 9.98 96.01 18.74
2 592 28402 27214 3.91 2.83 4661 4444 14.14 8.97 14.10 3.49 21.18 8.63

3 17 394 408 51.03 11.27 406 33 50.45 30.19 50.73 25.48 31.04 28.59
3 58 2784 2863 16.55 6.84 687 596 45.51 21.33 19.80 12.74 56.39 19.51
3 58 1993 2088 21.43 6.41 733 595 39.38 23.94 26.90 14.83 44.93 22.62
3 107 4276 4137 13.54 4.97 1705 1551 25.21 19.63 28.51 10.74 26.48 19.00
3 184 6739 6231 9.74 5.30 2124 2006 21.46 13.92 23.97 7.67 25.11 11.76

4 47 2593 1188 18.64 7.57 572 522 50.66 22.79 18.09 17.28 71.93 21.67
4 94 6271 5650 8.84 6.26 383 533 57.27 17.26 5.76 10.45 137.13 18.80
4 138 8114 7767 9.89 4.80 2690 2453 21.75 16.95 24.90 8.40 24.44 14.23
4 262 17193 16390 6.58 4.04 5985 5392 14.59 13.03 25.82 5.75 15.68 13.38
4 413 24814 23767 4.93 3.53 6578 5600 14.06 9.94 20.95 4.56 16.08 7.65

Table 5.5.3: Estimated totals and rates with their RMSE’s in the fourth quarter of 2011 for men.

Employed people Unemployed people Unemployment rates

p n dir mod reD reM dir mod reD reM dir mod reD reM
1 20 1652 1512 23.55 7.05 170 113 97.23 35.59 9.37 20.60 208.55 28.60
1 32 1859 1957 22.86 6.10 162 265 97.99 30.45 8.04 17.34 241.60 27.03
1 56 3397 3004 16.97 5.65 691 517 48.55 25.41 16.92 14.39 71.25 23.57
1 79 3277 3051 18.21 5.44 1135 1086 36.36 21.09 25.72 12.41 41.00 18.44
1 149 7272 7219 12.36 3.78 2396 1958 27.05 17.59 24.78 9.77 29.87 15.70

2 13 291 311 50.55 9.59 172 123 65.95 33.19 37.20 26.66 58.99 25.73
2 54 1127 1105 25.37 6.41 98 80 98.45 26.72 8.03 15.28 267.95 28.61
2 97 3339 3068 14.12 4.09 190 277 70.05 23.29 5.40 11.51 234.42 22.60
2 107 4061 3839 11.99 3.91 977 687 37.24 24.25 19.39 10.09 42.52 22.87
2 643 26735 25852 4.24 1.73 3936 3533 15.64 12.98 12.84 4.10 25.65 12.48

3 14 644 555 35.94 10.52 45 30.07 27.62 22.46
3 54 1511 1576 24.87 6.27 311 350 72.13 23.33 17.09 17.05 101.72 20.31
3 69 2474 2137 19.46 6.29 586 620 43.60 21.69 19.17 14.78 67.89 19.98
3 108 3594 3586 12.42 3.78 1054 832 29.80 20.19 22.68 10.38 34.85 18.56
3 193 4616 4818 12.68 3.85 1760 1746 22.57 14.92 27.61 9.22 25.20 14.18

4 40 1428 1475 29.24 7.52 473 493 55.94 22.51 24.90 17.05 68.63 21.68
4 115 4586 5030 15.49 4.05 2887 2188 23.22 15.51 38.63 11.64 17.74 13.55
4 144 4803 5040 14.76 3.62 2968 2420 20.75 15.20 38.20 9.70 16.72 14.73
4 311 14887 14724 7.76 2.60 4113 3686 17.61 11.94 21.65 6.59 22.97 12.70
4 324 12342 11984 8.55 2.51 3139 2943 19.75 11.42 20.28 7.03 27.59 10.76

Table 5.5.4: Estimated totals and rates with their RMSE’s in the fourth quarter of 2011 for women.

The Spanish Statistics Institute (INE) publishes LFS estimates of employed and un-
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employed totals at province level. In the case of extending these publications to the more
disaggregated levels, the Statistical Offices might be interested in publishing data with the
property that the sum of the estimated totals in all the domains within a province coincide
with the official province total estimate. In order to fulfil this consistency criterion, we
propose a modification of all the considered small area estimators for this model. Let Ŷ dir

pt

be the SLFS estimator of the total Ypt of a variable y in the province p and the time period
t. Assume that the province p is partitioned in Dp domains, labelled by d = 1, . . . , Dp.

Let Ŷp,1t, . . . , Ŷp,Dpt be some given estimators of the totals Yp,1t, . . . , Yp,Dpt of the variable
y in the domains d = 1, . . . , Dp and the period t. In general, the consistency property

Ŷ dir
pt =

Dp∑
d=1

Ŷp,dt

does not hold. In such cases, Ŷp,1t, . . . , Ŷp,Dpt can be transformed into consistent estimators
by

Ŷ c
p,dt = λptŶp,dt, λpt =

Ŷ dir
pt∑Dp

d=1 Ŷp,dt
.

Table 5.5.5 presents the direct and model-based estimator for employed and unemployed
people at the province level for men (top) and women (bottom) for the fourth quarter of
2011 in the SLFS. In this table we can see also the consistency factors λp. We observe that
the deviations from the SLFS estimation at province level are at most of 6% for employed
people. However, the deviations from the SLFS estimation are bigger but under 14%.

Employed people Unemployed people
Sex Province n dir mod λp dir mod λp
Men 1 2874 248516 234541 1.06 45969 40280 1.14

2 1541 72917 68457 1.07 9307 9448 0.99
3 1336 59824 57573 1.04 13883 12432 1.12
4 2988 192842 181464 1.06 53477 47165 1.13

Women 1 3258 225489 220277 1.02 44696 41029 1.09
2 1659 63163 60034 1.05 9304 8494 1.10
3 1479 51726 50497 1.02 12418 11847 1.05
4 3427 158415 157926 1.00 51303 48157 1.07

Table 5.5.5: Estimated men and women province totals for IV/2011.

Figure 5.5.10 maps the estimates of unemployment rates per sex in each county of
Galicia for the fourth quarter of 2011. The colors are more intense in areas with higher
unemployment rates. We observe that the counties of the west coast are those that, in
general terms, have higher unemployment rates. That area is the most dynamic part of
Galicia and the least aged. In that area live the 75% of the Galician population and the
unemployment rates are also high because companies can not absorb as many workers. In
these figures we also observe that the unemployment rates for women are higher than for
men. More than half of the Galician counties have higher unemployment rates for women
than for men. Even in 14 counties there are more than five points of difference. This leads
us to conclude that we are still far from being close to equality in the labour market.
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Unemployment rate − women − IV/2011

<=10 (8)
10 − 15 (15)
15 − 20 (15)
>20 (15)

Unemployment rate − men − IV/2011

<=10 (10)
10 − 15 (18)
15 − 20 (12)
>20 (13)

Figure 5.5.10: Estimates of women (left) and man (right) unemployment rates in Galician
counties in the last quarter of 2011.

We further investigate if there are improvements in the estimates due to the inclusion
of all the quarters in the model. Figure 5.5.11 compares the RMSEs of the unemployment
rate estimates for the fourth quarter of 2011 based on the proposed model (Model A, de-
fined by (5.1.1)-(5.1.2), using the samples of the ten time periods) with the corresponding
ones based on the model that only uses the last time period (Model B). As the RMSEs are
lower for the Model A, we conclude that it is worthwhile to use the past data to improve
the estimates for the fourth quarter of 2011.

Another way of measuring the benefits of using Model A is to check the stability of the
estimates along the ten time periods. For this sake we also consider a multinomial mixed
model using data from only one time period, and we apply this model to the ten considered
quarters (Model B) in the small domains. Figure 5.5.12 plots the women unemployment
rates for six selected counties under the Model B and under the Model A. For this purpose,
we select the domains that divide the sample size distribution below its median into six
equal parts. In the considered counties, especially those with smaller sample size, we
observe that the results of Model A are much more stable than the results of the ten
separate models for each quarter. Stability is a property highly valued by the Statistical
Offices when publishing the survey results. For Statistical Offices it is hard to justify that
there are more than three points (in %) of difference between the unemployment rates of
two consecutive quarters in a given county. Therefore, stability is an important property
in public statistics.
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Figure 5.5.11: RMSEs of unemployment rates for models A and B in the fourth quarter
of 2011
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Figure 5.5.12: Women unemployment rates for models A and B and for all the periods
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Chapter 6

Multinomial logit mixed model with
correlated time and area effects

This chapter introduces a multinomial logit mixed model with correlated time and area
effects. Like in the model of Chapter 5 we employ a multinomial model with two random
effects, one associated with the category of employed people and the other associated with
the category of unemployed people. This is due to the different modeling requirements
for each labour category in the Galician data. Indeed, to take advantage from the avail-
ability of survey data from different time periods we propose a multinomial model with
correlated time and domain random effects.

The chapter is organized as follows. Section 6.1 introduces the multinomial logit mixed
model with correlated time and domain random effects. Section 6.2 develops the proposed
model-based estimators and the corresponding MSE estimation procedures and Section
6.3 presents two simulation experiments. The first simulation studies the behavior of the
estimates of the regression parameters, the variance components and the target population
indicators. The second simulation studies the performance of the two introduced MSE
estimation methods. Finally, Section 6.4 applies the proposed methodology to data from
the LFS in Galicia.

6.1 The model

The multinomial models guarantee that the sum of estimated totals of employed and
unemployed people is lower than the total of people. This is because we introduce a
multinomial logit mixed model for estimating the domain totals of employed, unemployed
and inactive people in a coherent way.

Like in the previous chapter, let us use indexes d = 1, . . . , D, k = 1, . . . , q − 1 and
t = 1, . . . , T for the D domains, for the T time periods and for the categories of the
target variable respectively. In the real data there are q = 3 categories, i.e. employed,
unemployed and inactive people. However, there are only q − 1 = 2 categories in the
multinomial model, i.e. employed and unemployed people. We take inactive people as
the reference. Let u1,dk and u2,dkt be the random effects associated to category k, domain
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d and time t. In vector notation, the random effects

u1 = col
1≤d≤D

(u1,d), u1,d = col
1≤k≤q−1

(u1,dk),

u2 = col
1≤d≤D

(u2,d), u2,d = col
1≤k≤q−1

(u2,dk), u2,dk = col
1≤t≤T

(u2,dkt).

We suppose that

1. u1 and u2 are independent,

2. u1 ∼ N(0,V u1), where V u1 = diag
1≤d≤D

( diag
1≤k≤q−1

(ϕ1k)), k = 1, . . . , q − 1.

3. u2,dk ∼ N(0,V u2,dk), d = 1, . . . , D, k = 1, . . . , q−1, are independent with covariance
matrix AR(1); ie, V u2,dk = ϕ2kΩd(φk) and

Ωd(φk) = Ωd,k =
1

1− φ2
k


1 φk . . . φT−2k φT−1k

φk 1
. . . φT−2k

...
. . . . . . . . .

...

φT−2k

. . . 1 φk
φT−1k φT−2k . . . φk 1


T×T

.

It holds that V u = var(u) = diag(V u1 ,V u2), where V u2 = var(u2) = diag
1≤d≤D

( diag
1≤k≤q−1

(V u2,dk)).

We also assume that the response vectors ydt = col
1≤k≤q−1

(ydkt), conditioned to u1 and u2,

are independent with multinomial distributions

ydt|u1,u2
∼ M(νdt, pd1t, . . . , pdqt−1), d = 1, . . . , D, t = 1, . . . , T. (6.1.1)

where the νdt’s are known integer numbers which are equal to ndt in the considered real
data case. The covariance matrix of ydt conditioned to u1,d and u2,dt is var(ydt|u1,d,u2,dt) =
W dt = νdt[diag(pdt) − pdtp′dt], where pdt = col

1≤k≤q−1
(pdkt) and diag(pdt) = diag

1≤k≤q−1
(pdkt).

For the natural parameters ηdkt = log pdkt
pdqt

, k = 1, . . . , q − 1, we assume the model

ηdkt = xdktβk + u1,dk + u2,dkt, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T, (6.1.2)

where xdkt = col′
1≤r≤pr

(xdktr), βk = col
1≤r≤pk

(βkr) and p =
∑q−1

k=1 pk.

In matrix notation, the model is

η = Xβ +Z1u1 +Z2u2 = Xβ +Zu,

where Z = (Z ′1,Z
′
2)
′, η = col

1≤d≤D
(ηd), X = col

1≤d≤D
(Xd), Z1 = diag

1≤d≤D
(Z1d), Z2 =

diag
1≤d≤D

(Z2d),

ηd = col
1≤t≤T

( col
1≤k≤q−1

(ηdkt)), Xd = diag
1≤k≤q−1

( col
1≤t≤T

(xdkt)),

Z1d = diag
1≤k≤q−1

(1T ), Z2d = diag
1≤t≤T

( diag
1≤k≤q−1

(1)) = IT (q−1), 1T = col
1≤t≤T

(1).

107



Alternatively the model (6.1.2) can be expressed as

ηdt = Xdtβ + Z1,dtu1 + Z2,dtu2 = Xdtβ + Zdtu, d = 1, . . . , D, t = 1, . . . , T, (6.1.3)

where u = (u′1, u
′
2)
′, u1 = col

1≤k≤q−1
(u1,k), u2 = col

1≤k≤q−1
(u2,k), the u1,k = col

1≤d≤D
(u1,dk) ∼

N(0, ϕ1kID) and the u2,dk ∼ N(0,V u2,dk) where V u2,dk = ϕ2kΩd(φk), Zdt = (Z1,dt,Z2,dt),
Z1,dt = diag

1≤k≤q−1
( col′
1≤`≤D

(δ`d)), Z2,dt = diag
1≤k≤q−1

( col′
1≤`≤D

( col′
1≤t≤T

(δ`dδst))). In matrix notation

(6.1.3) can be expressed as

η = Xβ + Z1u1 + Z2u2 = Xβ + Zu, (6.1.4)

where Zr = col
1≤d≤D

( col
1≤t≤T

(Zr,dt)), r = 1, 2, and Z = (Z1,Z2). (6.1.2) and (6.1.4) are the

same model. The difference is only in the management of vector elements u (or u) of
random effects.

6.2 The PQL-REML fitting algorithm

To fit the model we combine the PQL method, described by Breslow and Clayton (1996)
for estimating and predicting the βk’s, the u1d’s,the u2d’s and the φk’s, with the REML
method for estimating the variance components ϕ1, ϕ2 and φ. The presented method
was described in Section 3.2. It is based on a normal approximation to the joint proba-
bility distribution of the vector (y,u). The combined algorithm was first introduced by
Schall (1991) and later used by Saei and Chambers (2003) and Molina et al. (2007) in
applications of generalized linear mixed models to small area estimation problems. In this
chapter, we adapt the combined algorithm to the multinomial logit mixed model defined
by (6.1.1) and (6.1.2). The loglikelihood of y conditioned to u is

l1(y|u) =
D∑
d=1

T∑
t=1

{
q−1∑
k=1

ydkt log
pdkt
pdqt

+ νdt log pdqt + log
νdt

yd1t! · · · ydqt!

}

=
D∑
d=1

T∑
t=1

{
q−1∑
k=1

ydktηdkt − νdt log
(
1 +

q−1∑
k=1

exp{ηdkt}
)

+ log
νdt

yd1t! · · · ydqt!

}
.

The partial derivatives of

ηdkt =

pk∑
r=1

xdktrβkr + u1,dk + u2,dkt, d = 1, . . . , D, t = 1, . . . , T, k = 1, . . . , q − 1,

with respect to βkr, u1,dk and u2,dkt are

∂ηdkt
∂βkr

= xdktr,
∂ηdkt
∂u1,dk

= 1,
∂ηdkt
∂u2,dkt

= 1.
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The first order partial derivatives of l1 are

S1,βkr =
∂l1(y|u)

∂βkr
=

D∑
d=1

T∑
t=1

{
xdktrydkt −

νdtxdktr exp{ηdkt}
1 +

∑q−1
`=1 exp{ηd`t}

}

=
D∑
d=1

T∑
t=1

xdktr(ydkt − µdkt),

S1,u1,dk =
∂l1(y|u)

∂u1,dk
=

T∑
t=1

(ydkt − µdkt), S1,u2,dkt =
∂l1(y|u)

∂u2,dkt
= (ydkt − µdkt),

The vector expressions of the first order partial derivatives of l1 are

S1,β = col
1≤k≤q−1

( col
1≤r≤pk

(S1,βkr)) = col
1≤k≤q−1

(
D∑
d=1

T∑
t=1

x′dkt(ydkt − µdkt)

)
,

S1,u1 = col
1≤d≤D

( col
1≤k≤q−1

(S1,u1,dk)), S1,u2 = col
1≤d≤D

( col
1≤k≤q−1

( col
1≤t≤T

(S1,u2,dkt))).

The second order partial derivatives of l1 are

H1,βkrβks =
∂2l1(y|u)

∂βkr∂βks
= −

D∑
d=1

T∑
t=1

νdtxdktrxdktspdkt(1− pdkt),

H1,u1,dkβkr =
∂2l1(y|u)

∂u1,dk∂βkr
= −

T∑
t=1

νdtxdktrpdkt(1− pdkt),

H1,u2,dktβkr =
∂2l1(y|u)

∂u2,dkt∂βkr
= −νdtxdktrpdkt(1− pdkt),

H1,u1,dku1,dk =
∂2l1(y|u)

∂u1,dk∂u1,dk
= −

T∑
t=1

νdtpdkt(1− pdkt),

H1,u2,dktu2,dkt =
∂2l1(y|u)

∂u2,dkt∂u2,dkt
= −νdtpdkt(1− pdkt),

H1,u1,dku2,dkt =
∂2l1(y|u)

∂u1,dk∂u2,dkt
= −νdtpdkt(1− pdkt).

For the case k1 6= k2, we have that

H1,βk1rβk2s
=

∂2l1(y|u)

∂βk1r∂βk2s
=

D∑
d=1

T∑
t=1

νdtxdk1trxdk2spdk1tpdk2t,

H1,u1,dk1βk2s
=

∂2l1(y|u)

∂u1,dk1∂βk2s
=

T∑
t=1

νdtxdk2tspdk1tpdk2t,

H1,u2,dk1tβk2s
=

∂2l1(y|u)

∂u2,dk1t∂βk2s
= νdtxdk2tspdk1tpdk2t,
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and that

H1,u1,dk1u1,dk2
=

∂2l1(y|u)

∂u1,dk1∂u1,dk2
=

T∑
t=1

νdtpdk1tpdk2t,

H1,u2,dk1tu2,dk2t
=

∂2l1(y|u)

∂u2,dk1t∂u2dk2t
= νdtpdk1tpdk2t,

H1,u1,dk1u2,dk2t
=

∂2l1(y|u)

∂u1,dk1∂u2,dk2t
= νdtpdk1tpdk2t.

Finally, for the case d1 6= d2, we have

H1,u1,d1k1u1,d2k2
=

∂2l1(y|u)

∂u1,d1k1∂u1,d2,k2
= 0, d1 6= d2,

H1,u2,d1k1t1u2,d2k2t2
=

∂2l1(y|u)

∂u2,d1k1t1∂u2,d2k2t2
= 0, d1 6= d2 or t1 6= t2,

H1,u1,d1k1u2,d2k2t
=

∂2l1(y|u)

∂u1,d1k1∂u2,d2k2t
= 0, d1 6= d2.

The matrix of the second order partial derivatives of l1 are

H1,ββ =
(
H1,βk1rβk2s

)
k1 = 1, . . . , q − 1; r = 1, . . . , pk1

k2 = 1, . . . , q − 1; s = 1, . . . , pk2

,

H1,βu1 =
(
H1,βk1ru1,dk2

)
k1 = 1, . . . , q − 1; r = 1, . . . , pk1

d = 1, . . . , D; k2 = 1, . . . , q − 1

,

H1,βu2 =
(
H1,βk1ru2,dk2t

)
k1 = 1, . . . , q − 1; r = 1, . . . , pk1

d = 1, . . . , D; k2 = 1, . . . , q − 1; t = 1, . . . , T

,

H1,u1u1 =
(
H1,u1,d1k1u1,d2k2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1

,

H1,u2u2 =
(
H1,u2,d1k1t1u2,d2k2t2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1; t1 = 1, . . . , T
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t2 = 1, . . . , T

,

H1,u1u2 =
(
H1,u1,d1k1u2,d2k2t

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t = 1, . . . , T

.

The likelihood of u is

f2(u) =
1

(
√

2π)M(q−1)|V u|1/2
exp

{
−1

2
u′V −1u u

}
,

where M = DT . The loglikelihood of u is

l2(u) = κ−
q−1∑
k=1

{
D

2
logϕ1k +

M

2
logϕ2k +

1

2

D∑
d=1

log |Ωdk|+
u′1,·ku1,·k

2ϕ1k

+
D∑
d=1

u′2,dkΩ
−1
dk u2,dk

2ϕ2k

}
,

where κ = −M(q−1)
2

log 2π and u1,·k = col
1≤d≤D

(u1,dk).
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The first order partial derivatives of l2 are

S2,u1,dk =
∂l2(u)

∂u1,dk
= − 1

ϕ1k

u1,dk, S2,u2,dkt = − 1

ϕ2k

col′
1≤`≤T

(δt`)Ω
−1
dk u2,dk.

The vector expressions of the partial derivatives of l2 are

S2,u1 = col
1≤d≤D

(
col

1≤k≤q−1

(
S2,u1,dk

))
, S2,u2 = col

1≤d≤D

(
col

1≤k≤q−1

(
col

1≤t≤T

(
S2,u2,dkt

)))
.

The second order partial derivatives of l2 are

H2,u1,dku1,dk = − 1

ϕ1k

, H2,u2,dkt1u2,dkt2
= − 1

ϕ2k

col′
1≤`≤T

(δt1`)Ω
−1
dk col

1≤`≤T
(δt2`) = −

νdkt1t2
ϕ2k

,

H2,u1,d1k1u1,d2k2
= H2,u2,d1k1t1u2,d2k2t2

= 0, k1 6= k2 or d1 6= d2,

H2,u1,d1k1 ,u2,d2k2t
= 0, d1, d2 = 1, . . . , D, k1, k2 = 1, . . . , q − 1, t = 1, . . . , T,

where νdkt1t2 is the element (t1, t2) of the matrix Ω−1dk .
The matrix expressions of the second order partial derivatives of l2 are

H2,u1u1 =
(
H2,u1,d1k1u1,d2k2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1;
d2 = 1, . . . , D; k2 = 1, . . . , q − 1

H2,u2u2 =
(
H2,u2,d1k1t1u2,d2k2t2

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1; t1 = 1, . . . , T
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t2 = 1, . . . , T

H2,u1u2 =
(
H2,u1,d1k1u2,d2k2t

)
d1 = 1, . . . , D; k1 = 1, . . . , q − 1
d2 = 1, . . . , D; k2 = 1, . . . , q − 1; t = 1, . . . , T

= 0.

The loglikelihood of (y,u) is

l(y,u) = l1(y|u) + l2(u).

The first order partial derivatives of l are

Sβ = S1,β, Su1 = S1,u1 + S2,u1 , Su2 = S1,u2 + S2,u2 .

The blocks of the Fisher information matrix associated to l are

F ββ = −H1,ββ, F u1u1 = −H1,u1u1 −H2,u1u1 , F u2u2 = −H1,u2u2 −H2,u2u2 ,

F u1β = −H1,u1β, F βu1 = F ′u1,β, F u2β = −H1,u2β, F βu2 = F ′u2β,

F u1u2 = −H1,u1u2 , F u2u1 = F ′u1u2 .

We define

S =

(
Sβ
Su

)
, Su =

(
Su1
Su1

)
, F uu =

(
F u1u1 F u1u2

F u2u1 F u2u2

)
, F uβ =

(
F u1β

F u2β

)
, F βu = F ′uβ,

F =

(
F ββ F βu

F uβ F uu

)
, F−1 =

(
F ββ F βu

F uβ F uu

)
, F−1uu =

(
F u1u1 F u1u2

F u2u1 F u2u2

)
.
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It holds that

F ββ = (F ββ − F βuF
−1
uuF uβ)−1, F βu = −F ββF βuF

−1
uu ,

F uβ = (F βu)′, F u = F−1uu + F−1uuF uβF
ββF βuF

−1
uu ,

F u1u1 = (F u1u1 − F u1u2F
−1
u2u2

F u2u1)
−1, F u1u2 = −F u1u1F u1u2F

−1
u2u2

,

F u2u1 = (F u1u2)′, F u2u2 = F−1u2u2 + F−1u2u2F u2u1F
u1u1F u1u2F

−1
u2u2

.

The algorithm has two parts. In the first part it updates the values of βk, u1 and u2. In
the second part it updates the variance components.

Algorithm A. Let ϕ1k, ϕ2k, φk, k = 1, . . . , q− 1, known. The PQL estimator of β and u
are calculated by using the Fisher-scoring algorithm, which is described below.

(A1) Beginning: Assign the initial values β(0) = βinitial and u(0) = uinitial.

(A2) Iteration r + 1: For d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T , calculate

η(r) = Xβ(r) +Z1u
(r)
1 +Z2u

(r)
2 , p

(r)
dkt =

exp{η(r)dkt}
1 + exp{η(r)dkt}

, µ
(r)
dkt = νdtp

(r)
dkt.

Update the values of β(r) and u(r) by using the equation[
β(r+1)

u(r+1)

]
=

[
β(r)

u(r)

]
+ F−1(β(r),u(r))S(β(r),u(r)).

(A3) End: Repeat the step (A.2) until convergence of β(r) and u(r).

The updated variance components are obtained by applying the Fisher-scoring algorithm
to the REML loglikelihood of η = Xβ+Zu+e, where e ∼ N(0,W−1) and u ∼ N(0,V u)
are independent with

V = var(η) = ZV uZ
′ +W−1 = Z1V u1Z

′
1 +Z2V u2Z

′
2 +W−1,

W = W (η) = var(y|u) = diag
1≤d≤D

(W d), W d = W d1 +W d2,

W d1 = diag
1≤k≤q−1

( diag
1≤t≤T

(νdtpdkt)), W d2 = matrix
1≤k1,k2≤q−1

( diag
1≤t≤T

(−νdtpdk1tpdk2t)).

The REML loglikelihood is

lreml(η) = −1

2
(n− p) log 2π − 1

2
log |K ′V K| − 1

2
η′P η,

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1 and K = W −WX(X ′WX)−1X ′W .
We define

V 1k =
∂V

∂ϕ1k

= Z1
∂V u1

∂ϕ1k

Z ′1 = diag
1≤d≤D

(V 1dk), V 1dk = diag
1≤`≤q−1

(1T ) diag
1≤`≤q−1

(δ`k) diag
1≤`≤q−1

(1′T ),

V 1dk = diag
1≤`≤q−1

(δ`k1T1′T ),

V 2k =
∂V

∂ϕ2k

= Z2
∂V u2

∂ϕ2k

Z ′2 = diag
1≤d≤D

(V 2dk), V 2dk = diag
1≤`≤q−1

(δ`kΩd(φ`)),

V 3k =
∂V

∂φk
= Z2

∂V u2

∂φk
Z ′2 = diag

1≤d≤D
(V 3dk), V 3dk = diag

1≤`≤q−1
(δ`kϕ2`Ω̇d(φ`)).
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We also define

S1k =
∂lreml
∂ϕ1k

, S2k =
∂lreml
∂ϕ2k

, S2k =
∂lreml
∂φk

.

The elements of the vector of scores are

Sak = −1

2
tr{PV ak}+

1

2
η′PV akPη, a = 1, 2, 3, k = 1, . . . , q − 1.

We define

Fak1,1k2 = −E
[
∂Sak1
∂ϕ1k2

]
, Fak1,2k2 = −E

[
∂Sak1
∂ϕ2k2

]
, Fak1,3k2 = −E

[
∂Sak1
∂φk2

]
, a = 1, 2, 3.

The elements of the Fisher information matrix are

Fak1,bk2 =
1

2
tr{PV ak1PV bk2}, a, b = 1, 2, 3, k1, k2 = 1, . . . , q − 1.

The Fisher-scoring method use this updating formula

σ(`+1) = σ(`) + F−1(σ(`))S(σ(`)).

where σ(`) is the actual version of vector σ = (ϕ11, . . . , ϕ1q−1, ϕ21, . . . , ϕ2q−1, φ1, . . . , φq−1),
S = col

1≤a≤3
( col
1≤k≤q−1

(Sak)) is the vector of scores and F = matrix
1≤a,b≤3

(F ab) is the Fisher infor-

mation matrix, with components F ab = matrix
1≤k1,k2≤q−1

(F ak1,bk2).

The update of the variance components can be done by applying the Fisher-Scoring
algorithm to the REML log-likelihood. The algorithm is described below.

Algorithm B.

(B1) Do ` = 1. Initiate the values β(0), u(0) and σ(1).

(B2) Run the Algorithm A by using σ(`) as known value of the vector of variance com-
ponents, and β(`−1), u(`−1) as initial values. Let β(`) and u(`) be the obtained
estimators and predictors.

(B3) Calculate η(`) = Xβ(`) +Z1u
(`)
1 +Z2u

(`)
2 . Apply the updating equation

σ(`+1) = σ(`) + F−1(σ(`))S(σ(`)).

(B4) Repeat the steps (B.2)-(B.3) until the convergence of β(`), u(`) and σ(`).

The updated variance components ϕrk, r = 1, 2, k = 1, . . . , q − 1, can also be calculated
by applying the formula

ϕ̂rk =
û′rkΣ

−1
urk
ûrk

dim(urk)− τrk
, r = 1, 2,

i.e.

ϕ̂1k =
û′1kû1k

A1 − τ1k
, ϕ̂2k =

û′2kΣ
−1
u2k
û2k

dim(u2k)− τ2k
,
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where Σu1k = ID, Σu2k = diag
1≤d≤D

(Ωd(φk)), A1 = D, A2 = DT , τrk = 1
ϕ̂rk

tr
(
Σ−1urkT̂

rml

rkk

)
and

Trmlrkk is the block (k, k) of dimension Ar of the matrix

T̂
rml

r = T̂r + T̂rZ
′
rWX(X ′V̂

−1
X)−1X ′WZrT̂r,

with V̂ = ZΣ̂uZ
′ +W−1, Σu = diag(Σu1 ,Σu2), T̂r = (ZrWZ′r + Σ̂

−1
ur )−1 and

Σ̂u1 = diag(ϕ11IA1 , . . . , ϕ1q−1IA1), Σ̂u2 = diag( diag
1≤d≤D

(ϕ21Ωd(φ1)), . . . , diag
1≤d≤D

(ϕ2q−1Ωd(φq−1))).

The update of φk, k = 1, . . . , q − 1, can be calculated by applying the formula

φ̂k = − ϕ̂−12k (tr(T̂
rml

2kkF ) + û′2kF û2k)

2

1−φ̂2k
+ 2ϕ̂−12k (tr(T̂

rml

2kkE) + û′2kEû2k)
.

The following calculations are useful.

Ω̇d(φk) =
1

1− φ2
k


0 1 . . . . . . (T − 1)φT−2k

1 0
. . . (T − 2)φT−3k

...
. . . . . . . . .

...

(T − 2)φT−3k

. . . 0 1
(T − 1)φT−2k . . . . . . 1 0

+
2φkΩd(φk)

1− φ2
k

,

Ω−1d (φk) =



1 −φk 0 . . . . . . 0
−φk 1 + φ2

k −φk 0 0

0 −φk 1 + φ2
k −φk

. . .
...

...
. . . . . . . . . . . . 0

0
. . . −φk 1 + φ2

k −φk
0 . . . . . . 0 −φk 1


= IT + φ2

kE − φkF ,

where IT is the identity matrix of dimension T , E is a diagonal matrix with diagonal
elements 0, 1, . . . , 1, 0, and F is a matrix with the diagonal elements immediately above
and below the main diagonal equal to -1 and the rest of elements equal to 0.

Algorithm B (alternative).

(B.1) Do ` = 1. Initiate the values β(0), u(0) and σ(1).

(B.2) Run the Algorithm A by using σ(`) as known value of the vector of variance com-
ponents, and β(`−1) and u(`−1) as initial values. Let β(`) and u(`) be the obtained
estimators and predictors.

(B.3) Calculate η
(`)
dt = Xdtβ

(`) + Z1dtu
(`)
1 + Z2dtu

(`)
2 , d = 1, . . . , D, t = 1, . . . , T . Calculate

p
(`)
dkt =

exp(η
(`)
dkt)

1 +
∑q−1

k=1 exp(η
(`)
dkt)

, p
(`)
dt = col

1≤k≤q−1
(p

(`)
dkt), W

(`) = diag
1≤d≤D

(W d),
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W d = diag
1≤t≤T

(νdt[diag(p
(`)
dt )− p(`)dt p

(`)′
dt ])), Σ(`)

u1
= diag

(
ϕ
(`)
11 IA1 , . . . , ϕ

(`)
1q−1IA1),

Σ(`)
u2

= diag
(

diag
1≤d≤D

(ϕ
(`)
21 Ωd(φ

(`)
1 )), . . . , diag

1≤d≤D
(ϕ

(`)
2q−1Ωd(φ

(`)
q−1))),

T(`)
r = (Z′rWZr + Σ(`)−1

ur )−1, V (`) = ZΣ(`)
u Z′ +W (`)−1,

Trml(`)r = T(`)
r +T(`)

r Z′rW
(`)X(X ′V (`)−1X)−1X ′W (`)ZrT

(`)
r , τ

(`)
rk =

(
ϕ
(`)
rk

)−1
tr
(
Σ−1(`)urk

T
rml(`)
rkk

)
.

(B.4) Update ϕrk and φk using the equations

ϕ̂
(`+1)
rk =

û
(`)′
rk Σ−1(`)urk

û
(`)
rk

Ar − τ (`)rk

, r = 1, 2, k = 1, . . . , q − 1,

φ̂
(`)
k = − ϕ̂

−1(`)
2k (tr(T̂

rml(`)

2kk F ) + û
(`)′
2k F û

`
2k)

2

1−φ̂2(`−1)
k

+ 2ϕ̂
−1(`)
2k (tr(T̂

rml(`)

2kk E) + û
(`)′
2k Eû

`
2k)
, k = 1, . . . , q − 1.

(B.5) Repeat the steps (B.2)-(B.4) until the convergence of β(`), u(`) (o u(`)) y σ(`).

Like in chapter 4 and 5 the difference between this algorithm and the previous is that th
last is a fixed-point algorithm and the previous is an iterative Fisher-Scoring algorithm.

The above described algorithms requires initial values of β, u1, u2 and σ. We suggest
employing some easy-to-calculate estimates. More concretely, we use u

(0)
1 = u

(0)
2 = 0,

φ1 = . . . = φq−1 = 0 and β(0) = β̃, where β̃ is obtained by fitting the non mixed variant
of the model without the random effects u1 and u2. The non mixed model is also used
for calculating ϕrk, by means of the formula

ϕrk =
1

2(D − 1)

D∑
d=1

T∑
t=1

(η̃
(dir)
dkt − η̃dkt)

2, k = 1, . . . , q − 1, r = 1, 2, (6.2.1)

where

η̃dkt = β̃kxdkt, η̃
(dir)
dkt = log

ydkt
ydqt

, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T.

We also propose using as initial values for φ1, . . . ,φq−1 a consistent moment estimator
proposed in Rao and Yu (1994) that is given by

φk =

∑D
i=1

∑T
t=1 ôdt(ôd,t+1 − ôd,t+2)∑D

i=1

∑T−2
t=1 ôdt(ôd,t − ôd,t+1)

, k = 1, . . . , q − 1,

where
ôdt = η̃

(dir)
dt − η̃dt.

Under regularity conditions the asymptotic distribution of the REML-PQL estimators β̂
is multivariate normal N(β,F ββ), where F ββ = (qrr)r=1,...,lk is the block sub-matrix of
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the Fisher information matrix in the output of Algorithm A. Therefore, an approximate
(1− α)-level confidence interval for βkr is

β̂kr ± zα/2qrr, r = 1, . . . , lk,

where zα is the α-quantile of the normal distribution N(0, 1). If we use β̂kr to test
H0 : βkr = 0 and we observe the realization β̂kr = β0, the approximate p-value is

p = 2PH0(β̂kr > |β0|) = 2P (Z > |β0| /
√
qrr)

where Z follows a standard normal distribution..

6.3 Model-based small area estimation

Let us consider the population quantity m0dt = Ndtpdt, where Ndt = #(Pdt). In practice
Ndt is unknown and it is estimated by combining administrative registers and population
projections models, so we are more rigorously interested in estimating mdt = N̂dtpdt. In
the case of the SLFS, we use N̂dt = N̂dir

dt because the sample weights are calibrated to
population projections by sex and age groups at the province level. We estimate mdt by
means of m̂dt = N̂dtp̂dt, where

p̂dt = col
1≤k≤q−1

(p̂dkt), p̂dkt =
exp{η̂dkt}

1 +
∑q−1

`=1 exp{η̂d`t}
, η̂dkt = xdktβ̂k + û1,dk + û2,dkt,

and β̂k, û1,d and û2,dt. are obtained from the output of the fitting algorithm.

For deriving an approximation to the mean squared error of m̂dkt, we treat N̂dt as a
know constant. Let us write

mdkt = hdkt(ηdt) = N̂dtpdkt = N̂dt
exp{ηdkt}

1 +
∑q−1

`=1 exp{ηd`t}
.

The partial derivatives of hdkt are

∂hdkt
∂ηdkt

= νdtpdkt(1− pdkt),
∂hdt1k
∂ηdt2k

= −νdtpdt1kpdt2k, k1 6= k2.

We define

µ = h(η) = col
1≤d≤D

( col
1≤t≤T

( col
1≤k≤q−1

(hdkt))),

H = W = W (η) = diag
1≤d≤D

(W d), W d = W d1 +W d2,

W d1 = diag
1≤k≤q−1

( diag
1≤t≤T

(νdtpdkt)), W d2 = matrix
1≤k1,k2≤q−1

( diag
1≤t≤T

(−νdtpdk1tpdk2t)).

In matrix notation, we have

h(η̂)− h(η) ≈H(η̂ − η).
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Let σ = (ϕ11, . . . , ϕ1q−1, ϕ21, . . . , ϕ2q−1, φ1, . . . , φq−1) = diag
1≤k≤3(q−1)

(θk) the vector of vari-

ance components. As md·t = Adtm, where Adt = col′
1≤d1≤D

( diag
1≤k≤q−1

( col′
1≤t1≤T

(δtt1δdd1))), η̂ can

be viewed as a vector of EBLUPs in the lineal mixed model (6.1.2), we propose applying
the methodology of Prasad and Rao (1990) to approximate the MSE of m̂d·t. Then the
MSE of m̂d·t is approximated by

MSE(m̂dkt) = G1dt(σ) + G2dt(σ) + G3dt(σ),

where

G1dt(σ) = AdtHZTZ
′H ′A′dt,

G2dt(σ) = [AdtHX −AdtHZTZ
′WX]Q[X ′H ′A′dt −X ′WZTZ ′H ′A′dt],

G3dt(σ) ≈
3(q−1)∑
k1=1

3(q−1)∑
k2=1

cov(θ̂k1 , θ̂k2)AdtHL
(k1)V L(k2)′H ′A′dt.

The covariance cov(θ̂k1 , θ̂k2) is obtained from the inverse of the Fisher information matrix
F at the output of the algorithm B.

V = var(η) = ZV uZ
′ +W−1, T = V u − V uZ

′V −1ZV u, Q = (X ′V −1X)−1

L(k) = (I −R1)V 1kV
−1, V 1k =

∂V

∂ϕ1k

, R1 = Z1V u1Z
′
1V
−1, k = 1, . . . , q − 1,

L(k) = (I −R2)V 2kV
−1, V 2k =

∂V

∂ϕ2k

, R2 = V u2V
−1, k = q, . . . , 2(q − 1),

L(k) = (I −R2)V 3kV
−1, V 3k =

∂V

∂φk
, R2 = V u2V

−1, k = 2q − 1, . . . , 3(q − 1).

The estimator of the MSE is

mse(m̂dkt) = G1dt(σ̂) + G2dt(σ̂) + 2G3dt(σ̂).

The elements of the formula G1dt(σ) = AdtHZTZ
′H ′A′dt are

Adt = col′
1≤d1≤D

( diag
1≤k≤q−1

( col′
1≤t1≤T

(δtt1δdd1))), H = W ,

T = V u − V uZ
′V −1ZV u =

(
T 11 T 12

T 21 T 22

)
, T 12 = −V u1Z

′
1V
−1Z2V u2 = T ′21,

T 11 = V u1 − V u1Z
′
1V
−1Z2V u1 , T 22 = V u2 − V u2Z

′
2V
−1Z2V u2 .

We have that T ab = diag
1≤d≤D

(T abd), a, b = 1, 2, where

T 11d = diag
1≤k≤q−1

(ϕ1k)− diag
1≤k≤q−1

(ϕ1k)Z
′
1dV

−1
d Z1d diag

1≤k≤q−1
(ϕ1k),

T 12d = − diag
1≤k≤q−1

(ϕ1k)Z
′
1dV

−1
d Z1d diag

1≤k≤q−1
(V u2,dk),

T 22d = diag
1≤k≤q−1

(V u2,dk)− diag
1≤k≤q−1

(V u2,dk)Z ′2dV
−1
d Z2d diag

1≤k≤q−1
(V u2,dk),
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We calculate this product ZTZ ′

ZTZ ′ = Z1T 11Z
′
1 +Z1T 12Z

′
2 +Z2T 21Z

′
1 +Z2T 22Z

′
2 = M 11 +M 12 +M ′

12 +M 22.

We have M ab = diag
1≤d1≤D

(M abd1), where M abd1 = Zad1T abd1Z
′
bd1

, a, b = 1, 2;

M 11d = diag
1≤k≤q−1

(ϕ1k1T1′T )− diag
1≤k≤q−1

(ϕ1k1T )Z ′1dV
−1
d Z1d diag

1≤k≤q−1
(ϕ1k1

′
T ),

M 12d = diag
1≤k≤q−1

(ϕ1k1T )Z ′1dV
−1
d Z1d diag

1≤k≤q−1
(V u2,dk),

M 22d = diag
1≤k≤q−1

(V u2,dk)− diag
1≤k≤q−1

(V u2,dk)Z ′2dV
−1
d Z2d diag

1≤k≤q−1
(V u2,dk),

Finally

G1dt(σ) = AdtH [M 11 +M 12 +M ′
12 +M 22]H

′A′dt = G11 +G12 +G′12 +G22,

where

Gab = AdtHM abH
′A′dt = col′

1≤d1≤D
(δdd1 diag

1≤k≤q−1
( col′
1≤t1≤T

(δtt1)))

· diag
1≤d1≤D

(W d1M abd1W
′
d1

) col
1≤d1≤D

(δdd1 diag
1≤k≤q−1

( col
1≤t1≤T

(δtt1)))

= diag
1≤k≤q−1

( col′
1≤t1≤T

(δtt1))W dM abdW
′
d diag
1≤k≤q−1

( col
1≤t1≤T

(δtt1)).

The expression of G2dt(σ) is

G2dt(σ) = [AdtHX −AdtHZTZ
′WX]Q[X ′H ′A′dt −X ′WZTZ ′H ′A′dt]

= [A21 −A22]Q[A′21 −A′22],

where

A21 = AdtHX = diag
1≤k≤q−1

( col′
1≤t1≤T

(δtt1))Xd,

A22 = AdtHZTZ
′WX = diag

1≤k≤q−1
( col′
1≤t1≤T

(δtt1))W d(M 11d +M 12d +M 21d +M 22d)W dXd.

For the calculation of G3dt(σ) are

L(k) = (I −R1)V 1kV
−1, V 1k =

∂V

∂ϕ1k

, R1 = Z1V u1Z
′
1V
−1, k = 1, . . . , q − 1,

L(k) = (I −R2)V 2kV
−1, V 2k =

∂V

∂ϕ2k

, R2 = V u2V
−1, k = q, . . . , 2(q − 1),

L(k) = (I −R2)V 3kV
−1, V 3k =

∂V

∂φk
, R2 = V u2V

−1, k = 2q − 1, . . . , 3(q − 1).

The covariance cov(θ̂k1 , θ̂k2) are obtained from the inverse of the Fisher information ma-
trix at the output of the algorithm B.

Concerning the estimation of the MSE of m̂dkt, we can also use the approach of
González-Manteiga et al. (2008a, 2008b) by introducing the following parametric boot-
strap method.
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1. Fit the model (6.1.1)-(6.1.2) and calculate ϕ̂1k, ϕ̂2k, φ̂k and β̂k, k = 1, . . . , q − 1.

2. For d = 1, . . . , D, t = 1, . . . , T , generate the random effects u∗1,d ∼ N(0, diag
1≤k≤q−1

(ϕ̂1k))

and u∗2,dk ∼ N(0, ϕ2kΩd(φk)), and the response variable y∗dt ∼ M(νdt, p
∗
d1t, . . . , p

∗
dqt−1),

where

p∗dkt =
exp{η∗dkt}

1 +
∑q−1

`=1 exp{η∗d`t}
, η∗dkt = β̂kxdkt + u∗1,dk + u∗2,dkt, m∗dkt = N̂dtp

∗
dkt.

3. For d = 1, . . . , D, t = 1 . . . , T , k = 1, . . . , q − 1, calculate ϕ̂∗1k, ϕ̂
∗
2k, φ̂

∗
k, β̂

∗
k,

p̂∗dkt =
exp{η̂∗dkt}

1 +
∑q−1

`=1 exp{η̂∗d`t}
, η̂∗dkt = β̂

∗
kxdkt + û∗1,dk + û∗2,dkt, m̂∗dkt = N̂dtp̂

∗
dkt.

4. Repeat B times steps 2-3 and calculate the bootstrap mean square error estimator

mse∗1dkt =
1

B

B∑
b=1

(m̂∗dkt −m∗dkt)2, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1 . . . , T.

In this chapter we only use one bootstrap estimates for the MSE because in previous
chapters we check that the parametric bootstrap has better performance.

6.4 Simulation study

In this section we present two simulation experiments. The first experiment is designed
to analyze the behavior of the estimators β̂k, ϕ̂1k, ϕ̂2k and m̂dkt = N̂dtpdkt. The second
simulation studies the behavior of the proposed MSE estimators.

6.4.1 Sample simulation

We take N̂dt = 1000 and we consider a multinomial logit mixed model with three model
categories (q − 1 = 2). For d = 1, . . . , D, k = 1, 2 and t = 1, . . . , T , we generate the
explanatory variables

Udkt =
1

3

(
d−D
D

+
k

q − 1
+
t

T

)
, xd1t = µ1+σ

1/2
x11Ud1t, xd2t = µ2+σ

1/2
x22

[
ρxUd1+

√
1− ρ2xUd2t

]
,

where µ1 = µ2 = 1, σx11 = 1, σx22 = 2 and ρx = 0. The random effects are u1,dk ∼
N(0, ϕ1k) with ϕ11 = 1, ϕ12 = 2 and u2,dk ∼ N(0,V u2,dk) with ϕ21 = 0.25, ϕ22 = 0.5 and

Ωd(φk) = Ωd,k =
1

1− φ2
k


1 φk . . . φT−2k φT−1k

φk 1
. . . φT−2k

...
. . . . . . . . .

...

φT−2k

. . . 1 φk
φT−1k φT−2k . . . φk 1


T×T

.
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We take φ1 = 0.5 and φ2 = 0.75.
The target variable is ydt = (yd1t, yd2t)

′ ∼ M(νdt, pd1t, pd2t), where

pdkt =
exp{ηdkt}

1 + exp{ηd1t}+ exp{ηd2t}
, ηdkt = β0k + β1kxdkt + u1,dk + u2,dkt, (6.4.1)

νdt = 100, β01 = 1.3, β02 = −1, β11 = −1.6 and β12 = 1.
If T = 2, we can write the model (6.4.1) in the matrix form

η111
η121
η112
η122

...
ηD11

ηD21

ηD12

ηD22


=



1 x111 0 0
0 0 1 x121
1 x112 0 0
0 0 1 x122
...
1 xD11 0 0
0 0 1 xD21

1 xD12 0 0
0 0 1 xD22




β01
β11
β02
β12

+



u1,11
u1,12
u1,11
u1,12

...
u1,D1

u1,D2

u1,D1

u1,D2


+



u2,111
u2,121
u2,112
u2,122

...
u2,D11

u2,D21

u2,D12

u2,D22


,

or, equivalently, in the more concise notation
η11

η12
...
ηD1

ηD2

 =


X11

X12
...

XD1

XD2

β +Z1u1 +Z2u2,

where Z1 = diag
1≤d≤D

(Z1d), Z2 = I2D,

ηdt =

(
ηd1t
ηd2t

)
, Xdt =

(
1 xd1t 0 0
0 0 1 xd2t

)
, I2D =

 I2 0
. . .

0 I2

 , Z1d =

(
Z1d1

Z1d2

)
,

Z1dt = I2 =

(
1 0
0 1

)
, u1 ∼ N(0,ϕ1I2D), u2dk ∼ N(0,ϕ2kΩd(φk)).

6.4.2 Simulation experiment 1

The objective of this experiment is to analyze the behavior of the estimators of βk, ϕ1k,
ϕ2k, φk and mdkt. As efficiency measures, we use the relative empirical bias (RBIAS) and
the relative mean squared error (RMSE). The simulation is described below.

1. Repeat I = 1000 times (i = 1, . . . , 1000)

1.1. Generate (ydkt, xdkt), d = 1, . . . , D, k = 1, 2, t = 1, 2.

1.2 Calculate µdkt = νdtpdkt, µdt = (µd1t, µd2t)
′.
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1.3. Calculate β̂
(i)
jk , ϕ̂

(i)
rk , j = 0, 1, k = 1, 2, r = 1, 2, and µ̂dkt = νdtpdkt, µ̂dt =

(µ̂d1t, µ̂d2t)
′.

2. Output:

BIAS(β̂jk) =
1

I

I∑
i=1

(β̂
(i)
jk−βjk), BIAS(ϕ̂rk) =

1

I

I∑
i=1

(ϕ̂
(i)
rk−ϕk), j = 0, 1, k = 1, 2, r = 1, 2.

MSE(β̂jk) =
1

I

I∑
i=1

(β̂
(i)
jk−βk)

2, MSE(ϕ̂rk) =
1

I

I∑
i=1

(ϕ̂
(i)
rk−ϕk)

2, j = 0, 1, k = 1, 2, r = 1, 2.

MSEdt =
1

I

I∑
i=1

(µ̂
(i)
dt − µ

(i)
dt )(µ̂

(i)
dt − µ

(i)
dt )′, d = 1, D/2, D, t = 2.

RBIAS(β̂jk) =
BIAS(β̂jk)

|βjk|
, RBIAS(ϕ̂rk) =

BIAS(ϕ̂rk)

ϕk
, j = 0, 1, k = 1, 2, r = 1, 2.

RMSE(β̂jk) =

√
MSE(β̂jk)

|βjk|
, RMSE(ϕ̂rk) =

√
MSE(ϕ̂rk)

ϕk
, j = 0, 1, k = 1, 2, r = 1, 2.

MEANdt =
1

I

I∑
i=1

µ̂
(i)
dt RMSEdt =

√
MSEdt

|MEANdt|
, d = 1, D/2, D, t = 2.

Table 6.4.1 gives the RMSE-values of the model parameter estimators for D = 100. As T
increases from 4 to 12 we observe a reduction in RMSE for the βk’s. This reduction is much
higher for ϕk’s and for the φk. This simulation suggests that the proposed multinomial
mixed model should be used when the number of time periods is greater than eight.

T 4 8 12 T 4 8 12

RMSE(β̂01) 0.33 0.28 0.22 RBIAS(β̂01) -0.04 -0.03 0.01

RMSE(β̂02) 0.34 0.28 0.23 RBIAS(β̂02) -0.05 -0.02 0.01

RMSE(β̂11) 0.34 0.36 0.31 RBIAS(β̂11) -0.04 -0.06 -0.06

RMSE(β̂12) 0.34 0.35 0.32 RBIAS(β̂12) -0.03 -0.05 -0.05

RMSE(ϕ̂11) 0.17 0.17 0.15 RBIAS(ϕ̂11) 0.02 -0.04 -0.05

RMSE(ϕ̂12) 0.25 0.18 0.18 RBIAS(ϕ̂12) 0.15 0.07 -0.05

RMSE(ϕ̂21) 0.39 0.19 0.13 RBIAS(ϕ̂21) -0.39 -0.18 -0.11

RMSE(ϕ̂22) 0.39 0.18 0.12 RBIAS(ϕ̂22) -0.39 -0.17 -0.11

RMSE(φ̂11) 0.94 0.50 0.30 RBIAS(φ̂11) -0.57 -0.50 -0.29

RMSE(φ̂12) 0.79 0.39 0.24 RBIAS(φ̂12) -0.38 -0.33 -0.19

Table 6.4.1. MSE, RMSE, BIAS and RBIAS for D = 100.

Table 6.4.2 shows the RMSE and RBIAS values of m̂dkt for D = 100 in different periods
of time. We give the behaviour for three particular small area d = 1, D/2, D. We observe
that all the RMSE values are below 13%, which indicates a good behavior.
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T 4 8 12 T 4 8 12

RMSE1d1t 1 0.09 0.09 0.09 RBIAS1d1t 1 0.004 -0.018 0.004

D/2 0.11 0.11 0.11 D/2 -0.008 0.001 0.005

D 0.13 0.14 0.12 D 0.002 0.015 0.010

RMSE2d2t 1 0.12 0.12 0.13 RBIAS1d1t 1 0.004 0.017 0.012

D/2 0.09 0.10 0.10 D/2 0.005 0.009 -0.011

D 0.09 0.08 0.08 D -0.002 0.005 -0.003

Table 6.4.2. MSE, RMSE, BIAS and RBIAS for D = 100.

6.4.3 Simulation experiment 2

The simulation experiment is designed to study the behavior of the two mean square error
estimators (analytic and bootstrap). In this case we take D = 50 and T = 2, 4, 6. We take
Ndt = 1000 and we consider a multinomial logit mixed model with three model categories
and the last as the reference (q − 1 = 2). For d = 1, . . . , D, k = 1, 2 and t = 1 . . . , T , we
generate the explanatory variables

Udkt =
1

3

(
d−D
D

+
k

q − 1
+
t

T

)
, xd1t = µ1+σ

1/2
x11Ud1t, xd2t = µ2+σ

1/2
x22

[
ρxUd1+

√
1− ρ2xUd2t

]
,

where µ1 = µ2 = 1, σx11 = 1, σx22 = 2 and ρx = 0. The random effects are u1,dk ∼
N(0, ϕ1k) with ϕ11 = 1, ϕ12 = 2 and u2,dk ∼ N(0,V u2,dk) with ϕ21 = 0.25, ϕ22 = 0.5 and

Ωd(φk) = Ωd,k =
1

1− φ2
k



1 φk . . . φT−2k φT−1k

φk 1
. . . φT−2k

...
. . . . . . . . .

...

φT−2k

. . . 1 φk

φT−1k φT−2k . . . φk 1


T×T

.

We take φ1 = 0.5 and φ2 = 0.75
The target variable is ydt = (yd1t, yd2t)

′ ∼ M(νdt, pd1t, pd2t), where

pdkt =
exp{ηdkt}

1 + exp{ηd1t}+ exp{ηd2t}
, ηdkt = β0k + β1kxdkt + u1,dk + u2,dkt. (6.4.2)

νdt = 100, β01 = 1.3, β02 = −1, β11 = −1.6 and β12 = 1.

The steps of the simulation are

1. Repeat I = 500 times (i = 1, . . . , 500)

1.1. For d = 1, . . . , 50, k = 1, 2, t = 1 . . . , T , generate (y
(i)
dkt, x

(i)
dkt).

1.2. For d = 1, . . . , D, k = 1, 2, t = 1 . . . , T , calculate p̂
(i)
dkt, m̂

(i)
dkt, σ̂

(i), β̂
(i)

and

mse
(i)
dkt = G(i)1dkt(σ̂

(i)) + G(i)2dkt(σ̂
(i)) + 2G(i)dkt(σ̂

(i)).
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1.3. Repeat B = 500 times (b = 1, . . . , B)

1.3.1. For d = 1, . . . , D, k = 1, 2, t = 1 . . . , T , generate u
∗(ib)
1,d , u

∗(ib)
2,dt ,

y
∗(ib)
dt = (y

∗(ib)
1dkt , y

∗(ib)
2dkt )

′ ∼ M(νdt, p
∗(ib)
d1t , p

∗(ib)
d2t ),

where

p
∗(ib)
dkt =

exp{η∗(ib)dkt }
1 + exp{η∗(ib)d1t }+ exp{η∗(ib)d2t }

, η
∗(ib)
dkt = β̂

(i)
0k + β̂

(i)
1kx

(i)
dkt+u

∗(ib)
1,dk +u

∗(ib)
2,dkt.

1.3.2. For d = 1, . . . , D, k = 1, 2, t = 1 . . . , T , calculate m
∗(ib)
dkt , σ̂∗(ib), β̂

∗(ib)
,

m̂
∗(ib)
dkt .

1.4 For d = 1, . . . , D, k = 1, 2, t = 1 . . . , T , calculate

mse
∗(i)
dkt =

1

B

B∑
b=1

(m̂
∗(ib)
dkt −m

∗(ib)
dkt )2,

2. Output: msedkt, mse
∗
dkt, d = 1, . . . , 50, k = 1, 2, t = 1, 2, i = 1, . . . , 500.

Figure 6.4.1 presents the box-plots of the values of the two simulated estimators
mse

(i)
dkt,mse

1(i)
dkt , k = 1, 2, i = 1, . . . , 500, for d = 25 and t = T , with T = 2, 4, 6 and

D = 50. The first column is for T = 2, second column is for T = 4 and the last column
is for T = 6. The true MSE is plotted in a horizontal line. It has been calculated by the
Monte Carlo formula

MSEdkt =
1

I

I∑
i=1

(m̂
(i)
dkt −m

(i)
dkt)

2,

under I = 1000 iterations of the simulation experiment, excluding the bootstrap step. We
observe that the analytic estimator mse has larger variability than bootstrap estimator
mse∗ and the best estimator is mse∗.
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Figure 6.4.1: Boxplots of MSE estimates for d = 25 and t = T , with T = 2, 4, 6 and
D = 50.

6.5 Application to real data

6.5.1 Data description

The objective of this chapter is to estimate the totals of employed, unemployed and
inactive people and unemployment rates in Galician counties. We deal with data from
the SLFS of Galicia from the third quarter of 2009 to the fourth quarter of 2011. Our
domains of interest are the counties crossed with sex for each time period. As there are
51 counties in the SLFS of Galicia in this period of time, we have D = 102 domains,
denoted by Pdt at time t, and they are partitioned in the subsets Pd1t, Pd2t and Pd3t of
employed, unemployed and inactive people. Our target population parameters are the
totals of employed and unemployed people and the unemployment rate, this is to say

Ydkt =
∑
j∈Pdkt

ydktj, Rdt =
Yd2t

Yd1t + Yd2t
, k = 1, 2,

where ydktj = 1 if individual j of domain d at period t is in labour category k and
ydktj = 0 otherwise. The LFS does not produce official estimates at the domain level, but
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the analogous direct estimators of the total Ydkt, the mean Ȳdkt = Ydkt/Ndt, the size Ndt

and the rate Rdt are

Ŷ dir
dkt =

∑
j∈Sdt

wdtj ydktj,
ˆ̄Y dir
dkt = Ŷ dir

dkt /N̂
dir
dt , N̂

dir
dt =

∑
j∈Sdt

wdtj, R̂
dir
dt =

Ŷ dir
d2t

Ŷ dir
d1t + Ŷ dir

d2t

, k = 1, 2,

(6.5.1)
where Sdt is the domain sample at time period t and the wdtj’s are the official calibrated
sampling weights.

The target variable is ydt = (yd1t, yd2t)
′, where ydkt is the sample total

ydkt =
∑
j∈Sd

ydktj,

ydktj = 1 if individual j is in category k (k = 1, 2) and ydktj = 0 otherwise.

We employ area-level models using auxiliary information from administrative registers.
We use the same auxiliary variables as in the previous chapter. More concretely, we use
the domain proportions of individuals within the categories of the following grouping
variables.

• SEXAGE: Combinations of sex and age groups, with 6 values. SEX is coded 1 for
men and 2 for women and AGE is categorized in 3 groups with codes 1 for 16-24,
2 for 25-54 and 3 for ≥55. The codes 1, 2, . . . , 6 are used for the pairs of sex -age
(1, 1), (1, 2), . . . , (2, 3).

• STUD: This variable describes the achieved education level, with values 1-3 for the
illiterate and the primary, the secondary and the higher education level respectively.

• REG: This variable indicates if an individual is registered or not as unemployed in
the administrative register of employment claimants.

• SS: This variable indicates if an individual is registered or not in the social security
system. Figure 6.5.1 shows the scatterplots of the log-rates of employed over inactive
people against the proportions of people in social security system (left) and the log-
rates of unemployed over inactive people against the proportions of people registered
as unemployed (right).We observe that, despite the large variability observed in both
plots, the log-rates of the two considered proportions seem to increase linearly with
the proportions of people in the social security system and registered as unemployed
respectively.

In the fourth quarter of 2011 the domain sample sizes lie all in the interval (13, 1554),
with median 97. Therefore, the direct estimates in (A.0.1) are not reliable and small area
estimation methods are needed, as in previous chapter.
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Figure 6.5.1: Log-rates of employed and unemployed over inactive people versus propor-
tions of people in the social security system (left) and registered as unemployed (right)
respectively.

6.5.2 Model estimation

We consider the Model 3 defined in (6.1.1)-(6.1.2), the Model 2 defined in (5.1.1)-(5.1.2),
the Model 1 defined in (4.1.1)-(4.1.2). We also consider the Model 0 obtained by making
u1,d1 = . . . = u1,dq−1 in the Model 1. Model 0 is the model studied by Molina et al.
(2007). In the application to real data we apply the non temporal Models 1 and 0 to all
the considered periods. We consider q = 3 categories (employed, unemployed and inactive
people) and we choose inactive people as reference (third) category. The multinomial size
is νdt = ndt, where ndt is the size of the domain sample Sdt in time t.

Model 3 is firstly fitted to the complete data set. An analysis of residuals is then
carried out and nine counties are marked as outliers. These nine counties correspond
with the counties of A Coruña, Ferrol, Santiago de Compostela, Ourense, O Condado,
O Morrazo, Pontevedra, O Salnés and Vigo. A Coruña, Ferrol, Santiago de Compostela,
Ourense, Pontevedra and Vigo are six of the most populous cities of Galicia where the
relationships between the auxiliary variables SS and REG with the employment and un-
employment status are typically weaker than in less populated counties. The model is
finally fitted to reduced data set. The sample sizes of A Coruña, Ferrol, Santiago de Com-
postela, Ourense, Pontevedra and Vigo are large enought to produce reliable estimates,
then no model estimates are give for this counties and direct estimates are used. For O
Condado, O Morrazo and O Salnés we use the synthetic estimator. For Model 3 and for
each category, Table 6.5.1 presents the estimates of the regression parameters and their
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standard deviations with the complete data set and Table 6.5.5 with the reduced dataset.

Employed Unemployed
Variable Estimate p-value Variable Estimate p-value
CONSTANT -1.47 0.00 CONSTANT -4.40 0.00
SEXAGE=1 0.69 0.07 SEXAGE=1 2.26 0.00
SEXAGE=2 2.14 0.00 SEXAGE=2 2.98 0.00
SEXAGE=3 0.16 0.33 SEXAGE=3 -0.45 0.06
SEXAGE=4 0.56 0.18 SEXAGE=4 2.62 0.00
SEXAGE=5 1.71 0.00 SEXAGE=5 2.13 0.00
STUD=1 -0.78 0.00 STUD=1 -0.27 0.29
SS 1.50 0.00 REG 12.40 0.00

Estimate Std.Dev. Estimate Std.Dev.
ϕ1 0.024 0.017 0.081 0.010
ϕ2 0.013 0.017 0.098 0.010
φ 0.58 0.099 0.29 0.084

Table 6.5.1: Parameter estimates of Model 3 with the full data set.

Figure 6.5.2 plots the domain standardized residuals of model 3 fitted to the full (left)
and reduced (right) data set. The dots outside the interval (-3,3) correspond to the men
and women counts in marked counties (A Coruña, Ferrol, Santiago, Ourense, O Condado,
O Morrazo, Pontevedra and Vigo). The remaining model-based statistical analysis is
carried out for the reduced data set.

Figure 6.5.3 plots the domain standardized residuals of employment (left) and un-
employment (right) categories versus the proportions of people registered in the social
security system (SS) and registered as unemployed (REG). The residuals are randomly
distributed above and below zero and no rare pattern is observed. Therefore no diagnostics
problems are found for the two main explanatory variables: SS and REG.

For Models 0-3, the estimated regression coefficients and their corresponding p-values
for testing the hypothesis H0 : βkr = 0 are presented in Tables 6.5.2-6.5.5. The estimates
of the model variances and their standard deviations are presented at the bottom of Tables
6.5.1-6.5.4. The 95% confidence intervals for φ1 and φ2 are 0.58 ± 0.19 and 0.29 ± 0.16
respectively. These intervals do not contain zero. Then we may recommend Model 3, i.e.
the model with time-correlated random effects.

6.5.3 Model diagnostics

For carrying out the diagnosis of the models, we calculate the predicted sample totals
ŷdkt = ndtp̂dkt and the domain residuals

rdkt =
ydkt − ŷdkt

ŷdkt
, d = 1, . . . , 102, k = 1, 2, t = 1, . . . , 4.

Figure 6.5.4 plots the domain residuals versus the predicted sample totals of employed
and unemployed people for the four models. We observe that the model residuals are
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Figure 6.5.2: Boxplots of standardized residuals of models fitted to the full (left) and
reduced (right) data set.
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Figure 6.5.3: Domain standardized residuals of employment (left) and unemployment
(right) categories versus proportions of people registered in the social security system
(SS) and registered as unemployed (REG).

symmetrically situated above and below zero, so there is no prediction bias. Further, the
variability of the residuals decreases as predicted employed or unemployed sample totals
increase. This pattern is due to the fact that domains with greater amount of employed
and unemployed people also have greater sample sizes. We also observe that there are no
high residuals in absolute value or any other unusual pattern. Therefore, the fitted model
seems to properly describe the data.

Figure 6.5.5 plots the direct estimates (Ŷ dir
dkt ) versus the model-based estimates (m̂dkt =
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Employed Unemployed

Variable Estimate p-value Variable Estimate p-value

CONSTANT -1.44 0.00 CONSTANT -5.25 0.00

SEXAGE=1 -0.66 0.49 SEXAGE=1 1.62 0.36

SEXAGE=2 1.85 0.00 SEXAGE=2 3.86 0.00

SEXAGE=3 0.27 0.39 SEXAGE=3 0.79 0.19

SEXAGE=4 -0.46 0.75 SEXAGE=4 4.02 0.15

SEXAGE=5 1.64 0.00 SEXAGE=5 3.75 0.00

STUD=1 -0.80 0.04 STUD=1 0.79 0.24

SS 1.96 0.00 REG 9.33 0.00

Estimate Std.Dev.

ϕ 0.06 0.0055

Table 6.5.2: Parameter estimates of Model 0 for the fourth quarter of 2011.

Employed Unemployed

Variable Estimate p-value Variable Estimate p-value

CONSTANT -1.44 0.00 CONSTANT -5.39 0.00

SEXAGE=1 -0.66 0.49 SEXAGE=1 1.73 0.36

SEXAGE=2 1.84 0.00 SEXAGE=2 4.00 0.00

SEXAGE=3 0.26 0.41 SEXAGE=3 0.81 0.22

SEXAGE=4 -0.41 0.78 SEXAGE=4 3.71 0.22

SEXAGE=5 1.62 0.01 SEXAGE=5 3.99 0.00

STUD=1 -0.80 0.04 STUD=1 0.91 0.24

SS 1.98 0.00 REG 9.27 0.00

Estimate Std.Dev. Estimate Std.Dev.

ϕ1 0.010 0.007 0.096 0.037

Table 6.5.3: Parameter estimates of Model 1 for the fourth quarter of 2011.

Ndtp̂dkt) of the population totals of employed (top line) and unemployed people (bottom
line) in logarithmic scale in the three models. We observe, in all the models, that the
direct and the model-based estimates behave quite similarly for employed people. This is
because the population of employed people is quite large and there are plenty of sampled
observations within this category. However, the direct and model-based estimates behave
slightly different for unemployed people, which is due to the lower number of sampled
observations within the category. We also observe that the model-based estimates are
lower than the direct ones for large values of the direct estimates. This is a typical and
desirable smoothing effect of model-based estimators.
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Employed Unemployed
Variable Estimate p-value Variable Estimate p-value
CONSTANT -1.41 0.00 CONSTANT -4.01 0.00
SEXAGE=1 0.83 0.04 SEXAGE=1 1.92 0.02
SEXAGE=2 2.01 0.00 SEXAGE=2 2.46 0.00
SEXAGE=3 0.16 0.38 SEXAGE=3 -0.43 0.20
SEXAGE=4 0.60 0.21 SEXAGE=4 1.84 0.06
SEXAGE=5 1.66 0.00 SEXAGE=5 1.69 0.00
STUD=1 -0.92 0.00 STUD=1 -0.43 0.23
SS 1.63 0.00 REG 12.19 0.00

Estimate Std.Dev. Estimate Std.Dev.
ϕ1 0.034 0.006 0.096 0.019
ϕ2 0.015 0.003 0.119 0.014

Table 6.5.4: Parameter estimates of Model 2.

Employed Unemployed

Variable Estimate p-value Variable Estimate p-value

CONSTANT -1.42 0.000 CONSTANT -3.83 0.000

SEXAGE=1 0.89 0.027 SEXAGE=1 1.98 0.005

SEXAGE=2 1.99 0.000 SEXAGE=2 2.26 0.000

SEXAGE=3 0.15 0.398 SEXAGE=3 -0.43 0.121

SEXAGE=4 0.58 0.209 SEXAGE=4 1.39 0.117

SEXAGE=5 1.66 0.000 SEXAGE=5 1.54 0.002

STUD=1 -0.92 0.000 STUD=1 -0.47 0.114

SS 1.67 0.000 REG 11.66 0.000

Estimate Std.Dev. Estimate Std.Dev.

ϕ1 0.026 0.020 0.090 0.014

ϕ2 0.014 0.020 0.113 0.014

φ 0.58 0.117 0.29 0.0.095

Table 6.5.5: Parameter estimates of Model 3.

6.5.4 Small area estimates and RMSE

Figures 6.5.6 and 6.5.7 plot the estimated employment totals and unemployment rates
respectively per sex, for the fourth quarter of 2011 and for all the models, with the
counties sorted by sample size. We observe that for employed all the estimates are very
similar, this is because the population in this category is quite large. In the unemployment
rates the direct and the model-based estimators tend to be closer as soon as the sample
size increases. The same pattern is observe in the rest of quarters. For the sake of brevity
we skip the corresponding figures.
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Figure 6.5.4: Domain residuals versus predicted sample totals for the three models

Figures 6.5.8 and 6.5.9 plot the parametric bootstrap estimates of the relative mean
squared errors (RMSE) of the model-based estimators of totals of employed and of unem-
ployment rates for all the models. The RMSEs of the corresponding direct estimates are
much higher than their model-based counterparts. This is the reason why they have not
been plotted in Figures 6.5.8 and 6.5.9. We can see that the RMSE for Model 3 are, in
general terms, the best.

Tables 6.5.6 and 6.5.7 gives some condensed numerical results for the fourth quarter
of 2011, for all the models and for unemployment rates. For each sex we firstly sort the
domains by province and after that, in each province, we sort the domains by sample size,
starting by the domain with smallest sample size, and then we chose five domains in each
province. We show the results of the direct and model-based estimates (labeled by ”dir”
and ”mod” respectively) and the corresponding RMSE estimates. The sample sizes are
labeled by n. This tables present blank spaces in domains where ydk10 = 0, k = 1, 2. By
observing the columns of RMSEs we conclude that model-based estimators that include
time effects are preferred to the direct ones.

Table 6.5.8 gives the direct and model-based estimator for Model 3 and for employed
and unemployed people at the province level for men (top) and women (bottom) for the
fourth quarter of 2011 in the SLFS. In this table we can see also the consistency factors
λp, defined a in Chapter 5. We observe that the deviation from the SLFS estimation at
province level are at most of 1%.

Another way of measuring the benefits of using Model 2-3 is to check the stability of
the estimates along the time period. Figure 6.5.10 presents the unemployment rates for
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Figure 6.5.5: Direct versus model-based estimates. Total of employed in top line and total
of unemployed in bottom line.

women for six counties that divide the sample size distribution below its median into six
equal parts. In all the considered counties, we observe that the results of Model 2-3 are
much more stable than the results of the direct and Model 0-1. Stability is a property
highly valued by the Statistical Offices when publishing the survey results. For Statistical
Offices it is hard to justify that there are more than three points (in %) of difference
between the unemployment rates of two consecutive quarters in a given county.

Now, the best two models (model 2 and model 3) can be compared with the usual
measures for model comparison such as the loglikelihood or the BIC. The resulting values
of these measures are listed in Table 6.5.9. We can see that for model 3 including the φ
parameter has the better Loglikelihood and BIC. Therefore we recommend this model.

Figures 6.5.11 and 6.5.12 map the estimates of unemployment rates per sex in each
county of Galicia for the fourth quarter of 2011 and the variation of the unemployment
rates between the fourh quarter of 2009 and the fourth quarter of 2011. The colors are more
intense in areas with higher unemployment rates an higher variation. We observe that
the counties of the west coast are those that, in general terms, have higher unemployment
rates. In this figures we can also see that in that area was where most unemployment
rates increased between 2009 and 2011, this increase was much higher in men than in
women.

Figures 6.5.13 shows the model-based estimators of unemployment rates for two quar-
ters, the fourth quarter of 2009 and the fourth quarter of 2011. Like in the maps, in these
figures we can observe that the unemployment rates for women are higher than for men.
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Figure 6.5.6: Direct and model-based estimates of totals of employed men and women in
the fourth quarter of 2011.

We can also confirm that in this period there has been a general increase in unemployment
rates, but this increase was much higher in men.
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Figure 6.5.7: Direct and model-based estimates of unemployment rates for men and
women in the fourth quarter of 2011.
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Figure 6.5.8: RMSEs of direct and model-based estimator of employment totals per sex
in the fourth quarter of 2011.
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Figure 6.5.9: RMSEs of model-based estimator of unemployment rates in the fourth
quarter of 2011.
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p n dir mod0 mod1 mod2 mod3 dir mod0 mod1 mod2 mod3

1 21 5.55 11.43 9.22 11.24 10.57 201.87 10.58 39.14 30.49 23.98

1 37 11.21 17.24 14.46 10.52 10.59 129.74 16.49 28.24 24.95 20.30

1 46 10.48 20.62 11.71 11.29 11.34 106.40 16.40 22.79 21.33 20.99

1 65 19.03 19.13 17.42 17.58 17.85 51.53 28.62 17.79 21.29 20.49

1 384 15.59 15.34 16.32 15.23 15.30 24.94 9.28 10.07 11.23 9.43

2 13 18.62 19.47 20.05 15.93 15.93 146.41 23.54 39.66 31.12 24.90

2 62 7.32 12.80 10.50 10.15 10.36 174.27 14.88 26.69 25.97 18.20

2 79 12.63 15.21 13.72 12.97 12.81 70.06 9.70 24.29 21.28 16.66

2 95 9.54 13.32 10.73 8.38 8.90 96.01 14.84 22.73 19.90 16.72

2 592 14.10 13.19 15.04 13.98 14.13 21.18 8.29 8.68 10.47 8.84

3 15 50.73 24.29 36.33 33.43 36.18 31.04 27.60 40.97 25.25 25.84

3 58 19.80 16.32 18.96 17.22 17.58 56.39 13.96 25.18 22.45 17.42

3 58 26.90 17.76 25.80 22.29 23.90 44.93 16.78 25.21 21.99 18.81

3 107 28.51 17.52 27.75 27.17 28.33 26.48 15.13 21.10 18.46 16.88

3 184 23.97 23.23 24.50 24.33 24.36 25.11 12.08 14.47 12.49 10.80

4 40 18.09 23.43 22.16 20.79 22.01 71.93 24.59 27.17 22.03 19.60

4 94 5.76 17.56 8.67 8.61 8.57 137.13 11.81 19.31 17.18 16.13

4 138 24.90 23.18 24.51 23.83 23.99 24.44 13.80 13.20 15.33 12.42

4 262 25.82 22.21 25.08 24.64 24.78 15.68 10.59 9.81 11.99 9.83

4 413 20.95 19.53 19.78 19.02 18.98 16.08 7.67 8.40 10.26 9.13

Table 6.5.6: Men unemployment rates (left) and their estimated RMSEs (right).
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p n dir mod0 mod1 mod2 mod3 dir mod0 mod1 mod2 mod3

1 20 9.37 17.67 14.93 7.09 6.76 208.55 4.14 30.28 25.11 23.35

1 32 8.04 16.37 12.83 11.93 11.63 241.60 8.07 26.85 24.88 19.75

1 56 16.92 18.56 16.63 14.52 14.66 71.25 20.95 23.59 19.79 16.78

1 79 25.72 23.30 23.14 26.07 25.03 41.00 16.42 20.40 17.21 15.51

1 114 22.29 13.31 19.09 17.97 18.24 33.81 9.29 17.16 16.91 15.71

2 13 37.20 18.57 26.16 28.58 28.54 58.99 16.65 38.57 30.12 24.41

2 54 8.03 8.73 8.61 6.61 7.59 267.95 65.35 38.72 24.01 26.07

2 97 5.40 11.16 8.35 8.13 8.29 234.42 22.22 25.01 19.36 18.14

2 107 19.39 13.24 15.87 15.10 15.39 42.52 12.31 19.35 17.61 14.14

2 643 12.84 13.61 12.56 11.90 11.89 25.65 6.17 8.04 9.61 8.35

3 14 18.76 13.66 7.63 7.48 17.35 34.99 33.35 22.85

3 54 17.09 15.90 15.03 17.98 18.66 101.72 38.34 28.77 22.15 19.08

3 69 19.17 15.21 19.42 22.38 23.74 67.89 34.77 27.27 18.96 19.90

3 108 22.68 21.44 21.03 18.88 18.84 34.85 7.03 15.80 16.68 14.36

3 193 27.61 24.16 25.29 26.41 26.35 25.20 18.40 13.11 12.68 10.58

4 40 24.90 21.10 22.53 25.31 24.79 68.63 29.75 25.92 21.23 18.76

4 103 17.03 17.14 17.13 14.39 14.20 50.11 13.16 19.21 17.62 14.51

4 139 21.63 14.94 17.15 15.65 16.22 34.94 12.52 18.73 17.17 14.92

4 144 38.20 26.34 33.40 32.24 32.65 16.72 10.39 13.84 12.14 10.73

4 189 21.73 24.70 20.46 18.93 18.63 32.13 8.49 11.58 13.22 9.85

Table 6.5.7: Women unemployment rates (left) and their estimated RMSEs (right).

Employed people Unemployed people

sex Province n dir mod3 λp dir mod3 λp

Men 1 2874 248516 238993 1.04 45969 43689 1.05

2 1541 72917 69103 1.06 9307 9439 0.99

3 1336 59824 60034 1.00 13883 13481 1.03

4 2988 192842 187530 1.03 53477 50195 1.07

Women 1 3258 225489 222590 1.01 44696 42160 1.06

2 1659 63163 60697 1.04 9304 8548 1.09

3 1479 51726 50753 1.02 12418 11825 1.05

4 3427 158415 160645 0.99 51303 49675 1.03

Table 6.5.8: Estimated men and women province totals for IV/2011.
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Figure 6.5.10: Unemployment rates in some counties and all the periods.

Model 2 Model 3

Loglikelihood -5269.5 -5037.6

BIC 10593.1 10135.4

Table 6.5.9: Model comparison.
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Unemployment rate − men − IV/2011

<=10 (10)
10 − 15 (15)
15 − 20 (13)
>20 (15)

Variation unemploymet rate − men − IV/2009−IV/2011

<=1 (12)
1 − 3 (8)
3 − 5 (11)
>5 (22)

Figure 6.5.11: Estimates of men unemployment rates in Galician counties in the last
quarter of 2011 (top) and estimates of the variation between men unemployment rates in
the last quarter of 2011 in front of the last quarter of 2009 (bottom).
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Unemployment rate − women − IV/2011

<=10 (8)
10 − 15 (15)
15 − 20 (13)
>20 (17)

Variation unemploymet rate − women − IV/2009−IV/2011

<=1 (16)
1 − 3 (15)
3 − 5 (7)
>5 (15)

Figure 6.5.12: Estimates of women unemployment rates in Galician counties in the last
quarter of 2011 (top) and estimates of the variation between women unemployment rates
in the last quarter of 2011 in front of the last quarter of 2009 (bottom).
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Figure 6.5.13: Model-based estimator of unemployment rates for fourth quarter of 2009
and fourth quarter of 2011.
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Chapter 7

Conclusions and future lines

In this thesis we study the problem of estimating totals of employed and unemployed peo-
ple and unemployment rates in the counties of Galicia. The problem is how to produce
reliable estimates of this characteristics for areas (counties) where only small samples or
no samples are avaliable, and how to assess their precision. We propose three area level
multinomial mixed models with time and area effects and with independent random effects
on the two categories of the target vector. Unlike the work by Molina et al. (2007), we
employ multinomial models with two random effects, one associated with the category of
employed people and the other associated with the category of unemployed people. This
is due to the different modeling requirements for each labour category in the Galician
data. We use area-level models because they have wider scope than the unit level models
because area-level auxiliary information is more readily available than unit-level auxiliary
data. The use of auxiliary information for SAE is vital because with the small sample
sizes often encountered in practice, even the most elaborated model can be of little help
if it does not involve a set of covariates with good predictive power for the small area
quantities of interest (Pfeffermann (2012)).

The obtained model-based estimates for all the models are compared with the di-
rect ones. They have lower mean squared errors, especially for counties with small sample
size. Another advantage of the proposed model-based estimators is their property of being
consistent in the sense that estimates of domain totals of employed, unemployed and in-
active people sum up to the size of the domain. This is a desirable benchmarking property.

In two of the models we propose the use of time effects. The inclusion of time effects
allows to obtain estimates of employed, unemployed totals and of unemployment rates in
a more accurate and stable form than if separate models were fitted for each time period.
Because of these properties, the proposed methodology is very suitable for being used in
official statistical offices. Further, as estimates follow the pattern of direct estimators for
large counties and behave stably for small counties, the smoothing effect of using past
time periods seems reasonable.

We have presented an application where the temporal models are fitted to the 10 most
recent quarters. Another important issue is how the proposed models may be applied
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for repeated surveys and more concretely in the SLFS. The use of 10 quarters is the
consequence of using all our available data and therefore is arbitrary for this purpose.
The simulations suggest using at least the 5 and the 9 most recent quarters when using
Model 2 and Model 3, respectively.

By using all the data up to the last quarter, the introduced temporal models give
estimates for any of the considered quarters. Nevertheless, we suggest using these models
for obtaining only estimates in the last quarter. Because of the practical difficulties that
Statistical Offices have with revising published data and with running time consuming
computational procedures, we propose using a dynamic fixed length time “window” by
adding each time the current quarter and discarding the earliest one. If this methodology
were ever put in production, we recommend windows of 5 and 9 quarters for Models 2
and 3, respectively.

We would like to emphasize that the introduced approach to estimating labour force
indicators, and also the ones by Molina et al. (2007) and López-Vizcáıno et al. (2013),
are not adapted to the particularities of a complex sampling design. They are derived for
simple random sampling and do not take into account for potential LFS sampling-design
effects. The sampling weights are only used through N̂dir

dt when calculating the model-
based estimates of domain totals of employed and unemployed people. They are also used
in the calibration to the province totals. Many area-level small area estimation methods
introduce the complex sampling design information through the direct estimator of the

domain total or mean (Ŷ dir
dkt or ˆ̄Y dir

dkt ) and their moments. As a multinomially distributed
vector is the sum of i.i.d. multi-Bernoulli vectors, the survey domain totals of employed
and unemployed people can be modeled by means of multinomial distributions. The mod-
elization of (Ŷ dir

d1t , . . . , Ŷ
dir
dq−1t) as multinomial seems to be unrealistic.

An issue that should be taken into account is that true domain size Ndt is a known
quantity and that it is assumed to be equal to N̂dir

dt . In practice, this is not true. Therefore,
when estimating the MSE of the estimators of domain totals of employed and unemployed
people we are ignoring the uncertainty in N̂dir

dt and its correlation with p̂dkt. To proceed
in a rigorous way, the estimation of the extra variability and of the ignored correlation
is needed. This might require implementing some bootstrap or Jackknife method at the
unit-level, something that might have a high computational cost. Nevertheless, the direct
domain size estimates, N̂dir

dt , are constructed from the official calibrated sampling weights,
that are obtained after correcting the non response and after calibrating to the “known”
populations sizes. They can be considered as the official best estimates of our domain
sizes. In this sense, we may admit the simplification of assuming that the true domain
sizes are equal to the direct domain size estimates.

As calibrated weights enter in the estimation process through the direct estimators
N̂dir
dt , it is worthwhile to investigate how large is the correlation between the N̂dir

dt and the
p̂dkt values. The estimated correlations for the target period IV/2011 are 0.27 and 0.29 for
the categories of employed (k = 1) and unemployed (k = 2) people respectively, which are
rather low. From the socioeconomic perspective, this positive correlation shows something
that it is well known. The Galician rural counties tend to have lower population size and
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higher proportion of inactive people.

It is interesting to analyze if the estimation procedure uses direct estimators N̂dir
dt based

on weights that are calibrated for the model covariates. In the presented application to
real data, the multinomial models use the auxiliary variable SEXAGE at the county level.
On the one hand, SEXAGE contains the combinations of sex and age groups with 3 age
groups. On the other hand, the weights are calibrated to 11 age groups at the whole
population (Galicia), which is in strict sense a different auxiliary variable. Therefore, we
have not applied the proposed methodology by using twice the same auxiliary variables,
first in the calibration of weights and second in the multinomial models.

This work produces estimates for sex by county domains, but it does not deal with the
fact that the multinomial outcomes for males and females from the same county might be
correlated. The proposed Model 2 and Model 3 have not separate fixed effects for males
and females and so essentially handle this problem via the correlation between males and
female values of the model covariates. Further generalizations could be done by adding
a new sex index s = 1, 2 to the set of data indexes (d, k, t) and by considering possible
correlation structures between sexes.

The estimator defined in (6.3.1) is a plug-in estimator of the expected value of the
small area proportion given the small area distribution of the covariates and the random
effects in the model. It can be calculated with a low computational cost. It is a parsimo-
nious estimator. The optimal estimator is the so-called Empirical Best Predictor (EBP)
of the population proportion, which is a plug-in estimator of the conditional expectation
of the small area proportion given the small area distribution of the covariates and the
sample data. The EBP can be obtained by approximating two 2(T + 1)-variate integrals
by Monte Carlo Integration and its corresponding mean squared error can be calculated
by parametric bootstrap. The high computational cost is thus the main drawback for
using the EBP under Model 3. This is the main reason why we prefer employing the
plug-in estimator in this work.

Indeed model-based predictors permit predictions of non sampled area for which no
design-based theory exists. This is not to say that design-based estimators have no role
in model-based prediction. The design-based estimators are the input data for the models
and we use the design-based estimators to assessing the model-based predictors and for
calibrating them via benchmarking. The benchmarking has the advantage of guaranteeing
consistency of publication between the model-based small area predictors and the design-
based estimator for the aggregated area. This is often required by statistical offices. In
this case we use the ratio adjustment, but an extension of this work may be use quarterly
benchmark constraints in the model, like in the paper of Pfeffermann and Tiller (2006).

As stated in the introduction, an important aspect of SAE is the assessment of the
accuracy of the predictors. Three procedures for estimating the mean square error (MSE)
have been considered. The first one has a explicit form of the type G1 +G2 + 2G3 based on
Prasad and Rao (1990). It is based on a Taylor linearisation. The remaining procedures
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rely on bootstrap methods and they also allows the MSE estimation of non linear predic-
tors. In the simulations we have observed that the bootstrap methods present a better
behavior.

We have carried out an application to real data from the SLFS of Galicia and we have
noticed that the introduced model-based procedure gives estimates with lower RMSE
than the direct ones, in similar sense to other small area estimation studies in this context
(Esteban et al., 2012; Herrador et al., 2009; Molina et al., 2007; Ugarte et al., 2009a). In
this case, the best model in terms of RMSE is the model that has correlated time and
area effects. This is the best model in terms of AIC. Nevertheless we would like to point
out that the Akaike information criterion (AIC) is a popular, but not well established,
model selection criterion for generalized linear mixed-effects models. The conditional AIC
(cAIC) was derived for linear mixed-effects models by Vaida and Blanchard (2005). It is
an appropriate information criteria for linear mixed model selection. However, the ap-
plication of cAIC to generalized linear mixed models is not straightforward and requires
further research to obtain specific derivations. This is pointed out by Lian (2012) when
deriving the cAIC for Poisson regression models with random effects. The derivation of
the cAIC for multinomial mixed model is also not straightforward. As far as we know, this
is still a research problem that has not been treated in the literature and that deserves an
specific future research. Therefore the obtained estimates of labour indicators are useful
for policy making at county level.

An extension of these models can incorporate spatial correlations between domains.
In practice it is often reasonable to assume that the effects associated with neighboring
areas (defined, for example, by a contiguity criterion) are proportionally correlated to a
measure of distance (not necessarily geographical), with correlations decreasing to zero as
the distance increases. That is, small area models should allow for spatial correlation of
area random effects. Such models are common in spatial statistics (Cressie, 1993) and in
SAE when linear mixed models are used (Chandra and Chambers, 2009).

As for the labour market results in Galicia we can conclude that there has been a
general increase in unemployment rates in the considered period and in almost all the
counties, although this increase was greater for men. This can be conditioned, inter alia,
by the sharp fall in employment in the construction sector, which employs mainly men.
Due to the economic situation in Spain, with a fall in gross domestic product in 2012 of
1.9%, this population has not been able to find work in another field of activity. We also
conclude that the counties of the west coast of Galicia are those that, in general terms,
have higher unemployment rates. In this part was, also, where most unemployment rates
increased between 2009 and 2011. That area is the most dynamic part of Galicia and the
least aged. In that area live the 75% of the Galician population and the unemployment
rates are high because companies can not absorb as many workers.
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Chapter 8

Software: The mme package

The mme package is the result of the implementation of the models discussed through-
out this dissertation. Over the last years, the R computing environment has become
a powerful scientific tool that offers a rich collection of classical and modern statistical
modeling techniques. Motivated by its flexibility and its widely acceptance among the
scientific community, we have chosen R as programming language to develop this library
of functions.
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Package ‘mme’
February 5, 2014

Type Package

Title Multinomial Mixed Effects Models

Version 0.1-4

Date 2013-06-10

Author E. Lopez-Vizcaino, M.J. Lombardia and D. Morales

Maintainer E. Lopez-Vizcaino <mestherlv32@gmail.com>

Depends R (>= 1.8.0),mixstock,MASS,Matrix

Description mme fit Gaussian Multinomial mixed-
effects models for small area estimation: Model 1, with one
random effect in each category of the response variable; Model 2, introducing
independent time effect; Model 3, introducing correlated time effect.
mme calculates analytical and parametric bootstrap MSE estimators.

License GPL (>= 2)

LazyData yes

R topics documented:
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mme-package Multinomial Mixed Effects Models

Description

The mme package implements three multinomial area level mixed effects models for
small area estimation. The first model (Model 1) is based on the area level multino-
mial mixed model with independent random effects for each category of the response
variable (Lopez-Vizcaino et al, 2013). The second model (Model 2) takes advantage
from the availability of survey data from different time periods and uses a multinomial
mixed model with independent random effects for each category of the response vari-
able and with independent time and domain random effects. The third model (Model
3) is similar to the second one, but with correlated time random effects. To fit the mod-
els, we combine the penalized quasi-likelihood (PQL) method, introduced by Breslow
and Clayton (1993) for estimating and predicting th fixed and random effects, with
the residual maximum likelihood (REML) method for estimating the variance compo-
nents. In all models the package use two approaches to estimate the mean square error
(MSE), first through an analytical expression and second by bootstrap techniques.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Breslow, N, Clayton, D (1993). Aproximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9-25.

addtolist Add items from a list

Description

This function adds items from a list of dimension d*t, where d is the number of areas
and t is the number of times periods.

Usage

addtolist(B_d, t, d)
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Arguments

B_d a list in each area.

t number of time periods.

d number of areas.

Value

B d a list of dimension d.

See Also

Fbetaf.it, Fbetaf.ct, modelfit2, modelfit3

Examples

k=3 #number of categories for the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata2) # data

mod=2

datar=data.mme(simdata2,k,pp,mod)

##Add the time periods

l=addtolist(datar$X,datar$t,datar$d)

addtomatrix Add rows from a matrix

Description

This function adds rows from a matrix of dimension d*t*(k-1) times d*(k-1).

Usage

addtomatrix(C2, d, t, k)

Arguments

C2 a matrix of dimension d*t*(k-1) times d*(k-1).

d number of areas.

t number of time periods.

k number of categories of the response variable.
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Value

C22 a matrix of dimension d*(k-1) times d*(k-1).

See Also

Fbetaf.it, Fbetaf.ct, modelfit2,modelfit3

Examples

k=3 #number of categories of the response variable

d=15 # number of areas

t=2 # number of time periods

mat=matrix(1,d*t*(k-1),d*(k-1)) # a matrix

##Add items in the matrix

mat2=addtomatrix(mat,d,t,k)

ci Standard deviation and p-values of the estimated model param-
eters

Description

This function calculates the standard deviations and the p-values of the estimated
model parameters. The standard deviations are obtained from the asymptotic Fisher
information matrix in the fitting algorithms modelfit1, modelfit2, modelfit3, de-
pending of the current multinomial mixed model.

Usage

ci(a, F)

Arguments

a vector with the estimated parameters obtained from modelfit1, modelfit2
or modelfit3.

F inverse of the Fisher Information Matrix obtained from modelfit1,
modelfit2 or modelfit3.

Value

A list containing the following components.

Std.dev vector with the standard deviations of the parameters. The parameters
are sorted per category.

p.value vector with the p-values of the parameters for testing H0:a=0.
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References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

modelfit1, modelfit2, modelfit3.

Examples

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #Type of model

datar=data.mme(simdata,k,pp,mod)

#Model fit

result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,datar$y[,1:(k-1)],

datar$n,datar$N)

beta=result[[8]][,1] #fixed effects

Fisher=result[[3]] #Fisher information matrix

##Standard deviation and p-values

res=ci(beta,Fisher)

data.mme Function to generate matrices and the initial values

Description

Based on the input data, this function generates some matrices that are required in
subsequent calculations and the initial values obtained from the function initial.values.

Usage

data.mme(fi, k, pp, mod)

Arguments

fi input data set with (d x t) rows and 4+k+sum(pp) columns. The
first four columns of the data set are, in this order: the area indicator
(integer), the time indicator (integer), the sample size of each domain
and the population size of each domain. The following k columns are
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the categories of the response variable. Then, the auxiliary variables:
first, the auxiliary variables of the first category, second, the auxiliary
variables of the second category, and so on. Examples of input data
sets are in simdata, simdata2 and simdata3.

k number of categories of the response variable.

pp vector with the number of auxiliary variables per category.

mod a number specifying the type of models: 1=multinomial mixed model
with one independent random effect in each category of the response
variable (Model 1), 2=multinomial mixed model with two independent
random effects in each category of the response variable: one domain
random effect and another independent time and domain random effect
(Model 2) and 3= multinomial model with two independent random
effects in each category of the response variable: one domain random
effect and another correlated time and domain random effect (Model
3).

Value

A list containing the following components.

n vector with the area sample sizes.

N vector with the area population sizes.

Z design matrix of random effects.

Xk list of matrices with the auxiliary variables per category. The dimen-
sion of the list is the number of domains

X list of matrices with the auxiliary variables. The dimension of the list
is the number of categories of the response variable minus one.

y matrix with the response variable. The rows are the domains and the
columns are the categories of the response variable.

initial a list with the initial values for the fixed and the random effects ob-
tained from initial.values .

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

initial.values, wmatrix, phi.mult, prmu, Fbetaf, phi.direct, sPhikf, ci, modelfit1,
msef, mseb
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Examples

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata2) #Data

mod=2

##Needed matrix and initial values

datar=data.mme(simdata2,k,pp,mod)

Fbetaf Inverse of the Fisher information matrix of the fixed and ran-
dom effects in Model 1

Description

This function calculates the inverse of the Fisher information matrix of the fixed effects
(beta) and the random effects (u) and the score vectors S.beta and S.u, for the model
with one independent random effect in each category of the response variable (Model
1). modelfit1 uses the output of this function to estimate the fixed and random
effects by the PQL method.

Usage

Fbetaf(sigmap, X, Z, phi, y, mu, u)

Arguments

sigmap a list with the model variance-covariance matrices for each domain.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable.

Z design matrix of random effects.

phi vector with the values of the variance components obtained from modelfit1.

y matrix with the response variable except the reference category. The
rows are the domains and the columns are the categories of the response
variable minus one.

mu matrix with the estimated mean of the response variable obtained from
prmu.

u matrix with the values of random effects obtained from modelfit1.
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Value

A list containing the following components.

F.beta.beta the first diagonal element of the inverse of the Fisher information ma-
trix.

F.beta.u the element out of the diagonal of the inverse of the Fisher information
matrix.

F.u.u the second diagonal element of the inverse of the Fisher information
matrix.

S.beta beta scores.

S.u u scores.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

See Also

data.mme, initial.values, wmatrix, phi.mult, prmu, phi.direct, sPhikf, ci,
modelfit1, msef, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

datar=data.mme(simdata,k,pp,mod)

initial=datar$initial

mean=prmu(datar$n,datar$Xk,initial$beta.0,initial$u.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

#Inverse of the Fisher information matrix

Fisher=Fbetaf(sigmap,datar$X,datar$Z,initial$phi.0,datar$y[,1:(k-1)],

mean$mean,initial$u.0)
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Fbetaf.ct Inverse of the Fisher information matrix of fixed and random
effects in Model 3

Description

This function calculates the score vector S and the inverse of the Fisher information
matrix for the fixed (beta) and the random effects (u1, u2) in Model 3. This model
has two independet sets of random effects. The first one contains independent random
effects u1dk associated to each category and domain. The second set contains random
effects u2dkt associated to each category, domain and time period. Model 3 assumes
that the u2dk are AR(1) correlated across time. modelfit3 uses the output of this
function to estimate the fixed and random effect by the PQL method.

Usage

Fbetaf.ct(sigmap, X, Z, phi1, phi2, y, mu, u1, u2, rho)

Arguments

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects.

phi1 vector with the values of the variance components for the first random
effects obtained from modelfit3.

phi2 vector with the values of the variance components for the second ran-
dom effects obtained from modelfit3.

y matrix with the response variable, except the reference category. The
rows are the domains and the columns are the categories of the response
variable minus one.

mu matrix with the estimated mean of the response variable.

u1 matrix with the values of the first random effect obtained from modelfit3.

u2 matrix with the values of the second random effect obtained from
modelfit3.

rho vector with the values of the correlation parameter obtained from
modelfit3.
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Value

A list containing the following components.

F the inverse of the Fisher information matrix of (beta, u1, u2).

S (beta, u1, u2) score vectors

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

See Also

data.mme, initial.values, wmatrix, phi.mult.ct, prmu.time, phi.direct.ct, sPhikf.ct,
ci, modelfit3, msef.ct, omega, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3)

datar=data.mme(simdata3,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities) #variance-covariance

##The inverse of the Fisher information matrix and the score matrix

Fisher.beta=Fbetaf.ct(sigmap,datar$X,datar$Z,initial$phi1.0,initial$phi2.0,

datar$y[,1:(k-1)],mean$mean,initial$u1.0,initial$u2.0,initial$rho.0)

Fbetaf.it The inverse of the Fisher information matrix of the fixed and
random effects for Model 2

Description

This function calculates the score vector S and the inverse of the Fisher information
matrix for the fixed (beta) and the random effects (u1, u2) in Model 2. This model
has two independet sets of random effects. The first one contains independent random
effects u1dk associated to each category and domain. The second set contains random
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effects u2dkt associated to each category, domain and time period. Model 2 assumes
that the u2dk are independent across time. modelfit2 uses the output of this function
to estimate the fixed and random effect by the PQL method.

Usage

Fbetaf.it(sigmap, X, Z, phi1, phi2, y, mu, u1, u2)

Arguments

sigmap a list with the model variance-covariance matrices for each domain.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects obtained from data.mme.

phi1 vector with the first variance component obtained from modelfit2.

phi2 vector with the second variance component obtained from modelfit2.

y matrix with the response variable, except the reference category ob-
tained from data.mme. The rows are the domains and the columns are
the categories of the response variable minus one.

mu matrix with the estimated mean of the response variable obtained from
prmu.time.

u1 matrix with the values of the first random effect obtained from modelfit2.

u2 matrix with the values of the second random effect obtained from
modelfit2.

Value

A list containing the following components.

F the inverse of the Fisher information matrix.

S (beta, u1, u2) scores

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

See Also

data.mme, initial.values, wmatrix, phi.mult.it, prmu.time, phi.direct.it, sPhikf.it,
ci, modelfit2, msef.it, mseb.
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Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #Type of model

data(simdata2) #data

datar=data.mme(simdata2,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

##The inverse of the Fisher information matrix of the fixed effects

Fisher=Fbetaf.it(sigmap,datar$X,datar$Z,initial$phi1.0,initial$phi2.0,

datar$y[,1:(k-1)],mean$mean,initial$u1.0,initial$u2.0)

initial.values Initial values for fitting algorithm to estimate the fixed and
random effects and the variance components

Description

This function sets the initial values. An iterative algorithm fits the multinomial mixed
models that requires initial values for the fixed effects, the random effects and the
variance components. This initial values are used in modelfit1, modelfit2 and
modelfit3.

Usage

initial.values(d, pp, datar, mod)

Arguments

d number of areas.

pp vector with the number of auxiliary variables per category.

datar output of function data.mme.

mod a number specifying the type of model: 1=multinomial mixed model
with one independent random effect for each category of the response
variable (Model 1), 2=multinomial mixed model with two independent
random effects for each category of the response variable: one domain
random effect and another independent time and domain random effect
(Model 2) and 3= multinomial mixed model with two independent
random effects for each category of the response variable: one domain
random effect and another correlated time and domain random effect
(Model 3).
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Value

A list containing the following components, depending on the chosen model.

beta.0 a list with the initial values for the fixed effects beta per category.

phi.0 vector with the initial values for the variance components phi of Model
1.

phi1.0 vector with the initial values for the variance components phi1 of Model
2 or 3.

phi2.0 vector with the initial values for the variance components phi2 of Model
2 or 3.

u matrix with the initial values for the random effect for Model 1.

u1.0 matrix with the initial values for the first random effect for Model 2 or
3.

u2.0 matrix with the initial values for the second random effect for Model
2 or 3.

rho.0 vector with the initial values for the correlation parameter for Model
3.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

See Also

data.mme, wmatrix, phi.mult.it, prmu.time, Fbetaf.it, phi.direct.it, sPhikf.it,
ci, modelfit2, msef.it, mseb

Examples

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata)

D=nrow(simdata)

mod=1 #Type of model

datar=data.mme(simdata,k,pp,mod)

## Initial values for fixed, random effects and variance components

initial=datar$initial
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mmedata Create objects of class mmedata

Description

This function creates objects of class mmedata.

Usage

mmedata(fi, k, pp)

Arguments

fi input data set with (d X t) rows and 4+k+sum(pp) columns. The
first four columns of the data set are, in this order: the area indicator
(integer), the time indicator (integer), the sample size of each domain
and the population size of each domain. The following k columns are
the categories of the response variable. Then, the auxiliary variables:
first, the auxiliary variables of the first category, second, the auxiliary
variables of the second category, and so on. Examples of input data
set are in simdata, simdata2 and simdata3.

k number of categories of the response variable.

pp vector with the number of auxiliary variables per category.

See Also

modelfit1, modelfit2, modelfit3

Examples

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata)

r=mmedata(simdata,k,pp)
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model Choose between the three models

Description

This function chooses one of the three models.

Usage

model(d, t, pp, Xk, X, Z, initial, y, M, MM, mod)

Arguments

d number of areas.

t number of time periods.

pp vector with the number of the auxiliary variables per category.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects obtained from data.mme.

initial output of the function initial.values.

y matrix with the response variable obtained from data.mme. The rows
are the domains and the columns are the categories of the response
variable.

M vector with the area sample sizes.

MM vector with the population sample sizes.

mod a number specifying the type of models: 1=multinomial mixed model
with one independent random effect in each category of the response
variable (Model 1), 2=multinomial mixed model with two independent
random effects in each category of the response variable: one domain
random effect and another independent time and domain random effect
(Model 2) and 3= multinomial model with two independent random
effects in each category of the response variable: one domain random
effect and another correlated time and domain random effect (Model
3).

Value

the output of the function modelfit1, modelfit2 or modelfit3.
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References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Examples

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #Model 1

datar=data.mme(simdata,k,pp,mod)

result=model(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N, mod)

modelfit1 Function used to fit Model 1

Description

This function fits the multinomial mixed model with one independent random effect
per category of the response variable (Model 1), like in the formulation described in
Lopez-Vizcaino et al. (2013). The fitting algorithm combines the penalized quasi-
likelihood method (PQL) for estimating and predicting the fixed and random ef-
fects with the residual maximum likelihood method (REML) for estimating the vari-
ance components. This function uses as initial values the output of the function
initial.values

Usage

modelfit1(pp, Xk, X, Z, initial, y, M, MM)

Arguments

pp vector with the number of the auxiliary variables per category.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects obtained from data.mme.
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initial output of the function initial.values.

y matrix with the response variable except the reference category ob-
tained from data.mme. The rows are the domains and the columns are
the categories of the response variable minus 1.

M vector with the area sample sizes.

MM vector with the population sample sizes.

Value

A list containing the following components.

Estimated.probabilities

matrix with the estimated probabilities for the categories of response
variable.

Fisher.information.matrix.phi

Fisher information matrix of the random effect.
Fisher.information.matrix.beta

Fisher information matrix of the fixed effect.

u matrix with the estimated random effects.

mean matrix with the estimated mean of the response variable.

warning1 0=OK,1=The model could not be fitted.

warning2 0=OK,1=The value of the variance component is negative: the initial
value is taken.

beta.Stddev.p.value

matrix with the estimated fixed effects, its standard deviations and its
p-values.

phi.Stddev.p.value

matrix with the estimated variance components, its standard devia-
tions and its p-values.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

data.mme, initial.values, wmatrix, phi.mult, prmu, phi.direct, sPhikf, ci,
Fbetaf, msef, mseb.
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Examples

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

datar=data.mme(simdata,k,pp,mod)

#Model fit

result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,datar$y[,1:(k-1)],

datar$n,datar$N)

modelfit2 Function to fit Model 2

Description

This function fits the multinomial mixed model with two independent random effects
for each category of the response variable: one domain random effect and another
independent time and domain random effect (Model 2). The formulation is described
in Lopez-Vizcaino et al. (2013). The fitting algorithm combines the penalized quasi-
likelihood method (PQL) for estimating and predicting the fixed and random effects,
respectively, with the residual maximum likelihood method (REML) for estimating the
variance components. This function uses as initial values the output of the function
initial.values.

Usage

modelfit2(d, t, pp, Xk, X, Z, initial, y, M, MM)

Arguments

d number of areas.

t number of time periods.

pp vector with the number of the auxiliary variables per category.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects data.mme.
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initial output of the function initial.values.

y matrix with the response variable obtained from data.mme, except the
reference category. The rows are the domains and the columns are the
categories of the response variable minus one.

M vector with the area sample sizes.

MM vector with the population sample sizes.

Value

A list containing the following components.

Estimated.probabilities

matrix with the estimated probabilities for the categories of response
variable.

Fisher.information.matrix.phi

Fisher information matrix of the variance components.

Fisher.information.matrix.beta

Fisher information matrix of the fixed effects.

u1 matrix with the estimated first random effect.

u2 matrix with the estimated second random effect.

mean matrix with the estimated mean of response variable.

warning1 0=OK,1=The model could not be fitted.

warning2 0=OK,1=The value of the variance component is negative: the initial
value is taken.

beta.Stddev.p.value

matrix with the estimated fixed effects, its standard deviations and its
p-values.

phi.Stddev.p.value

matrix with the estimated variance components, its standard devia-
tions and its p-values.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

See Also

data.mme, initial.values, wmatrix, phi.mult.it, prmu.time, phi.direct.it, sPhikf.it,
ci, Fbetaf.it, msef.it, mseb
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Examples

library(mixstock)

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #type of model

data(simdata2) #data

datar=data.mme(simdata2,k,pp,mod)

##Model fit

result=modelfit2(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N)

modelfit3 Function used to fit Model 3

Description

This function fits the multinomial mixed model with two independent random effects
for each category of the response variable: one domain random effect and another
correlated time and domain random effect (Model 3). The formulation is described
in Lopez-Vizcaino et al. (2013). The fitting algorithm combine the penalized quasi-
likelihood method (PQL) for estimating and predicting the fixed and random effects,
respectively, with the residual maximun likelihood method (REML) for estimating the
variance components. This function uses as initial values the output of the function
initial.values.

Usage

modelfit3(d, t, pp, Xk, X, Z, initial, y, M, MM, b)

Arguments

d number of areas.

t number of time periods.

pp vector with the number of the auxiliary variables per category.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.
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Z design matrix of random effects obtained from data.mme.

initial output of the function initial.values.

y matrix with the response variable obtained from data.mme, except the
reference category. The rows are the domains and the columns are the
categories of the response variable minus one.

M vector with the area sample sizes.

MM vector with the population sample sizes.

b parameter that indicates the bootstrap.

Value

A list containing the following components.

Estimated.probabilities

matrix with the estimated probabilities for the categories of response
variable.

Fisher.information.matrix.phi

Fisher information matrix of phi.

Fisher.information.matrix.beta

Fisher information matrix of beta.

u1 matrix with the estimated first random effect.

u2 matrix with the estimated second random effect.

mean matrix with the estimated mean of the response variable.

warning1 0=OK,1=The model could not be fitted.

warning2 0=OK,1=The value of the variance component is negative: the initial
value is taken.

beta.Stddev.p.value

matrix with the estimated fixed effects, its standard deviations and its
p-values.

phi.Stddev.p.value

matrix with the estimated variance components, its standard devia-
tions and its p-values.

rho estimated correlation parameter.

rho.Stddev.p.value

matrix with the estimated correlation parameter, its standard devia-
tions and its p-values.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.
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See Also

data.mme, initial.values, wmatrix, phi.mult.ct, prmu.time, phi.direct.ct, sPhikf.ct,
omega, ci, Fbetaf.ct, msef.ct, mseb

Examples

## Not run:

library(mixstock)

library(Matrix)

library(MASS)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp,mod)

##Model fit

result=modelfit3(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N,0)

## End(Not run)

mseb Bias and MSE using parametric bootstrap

Description

This function calculates the bias and the mse for the multinomial mixed effects models
using parametric bootstrap. Three types of multinomial mixed models are considered,
with one independent domain random effect in each category of the response variable
(Model 1), with two random effects: the first, with a domain random effect and with
independent time and domain random effect (Model 2) and the second, with a domain
random effect and with correlated time and domain random effect (Model 3). See
details of the parametric bootstrap procedure in Gonzalez-Manteiga et al. (2008)
and in Lopez-Vizcaino et al. (2013) for the adaptation to these three models. This
function uses the output of modelfit1, modelfit2 or modelfit3, depending of the
current multinomial mixed model.

Usage

mseb(pp, Xk, X, Z, M, MM, resul, B, mod)
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Arguments

pp vector with the number of the auxiliary variables per category.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects obtained from data.mme.

M vector with the area sample sizes.

MM vector with the population sample sizes.

resul output of the function modelfit1, modelfit2 or modelfit3.

B number of bootstrap replications.

mod a number specifying the type of models: 1=multinomial mixed model
with one independent random effect in each category of the response
variable (Model 1), 2=multinomial mixed model with two independent
random effects in each category of the response variable: one domain
random effect and another independent time and domain random effect
(Model 2) and 3= multinomial model with two independent random
effects in each category of the response variable: one domain random
effect and another correlated time and domain random effect (Model
3).

Value

a list containing the following components.

bias.pboot BIAS of the parametric bootstrap estimator of the mean of the response
variable

mse.pboot MSE of the parametric bootstrap estimator of the mean of the response
variable

rmse.pboot RMSE of the parametric bootstrap estimator of the mean of the re-
sponse variable

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Gonzalez-Manteiga, W, Lombardia, MJ, Molina, I, Morales, D, Santamaria, L (2008).
Estimation of the mean squared error of predictors of small area linear parameters
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under a logistic mixed model, Computational Statistics and Data Analysis, 51, 2720-
2733.

See Also

data.mme, initial.values, wmatrix, phi.mult, phi.mult.it, phi.mult.ct, prmu,
prmu.time, phi.direct, phi.direct.it, phi.direct.ct, sPhikf, sPhikf.it, sPhikf.ct,
modelfit1, modelfit2, modelfit3, omega, Fbetaf, Fbetaf.it, Fbetaf.ct, ci.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata)

mod=1 # Type of model

datar=data.mme(simdata,k,pp,mod)

##Model fit

result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N)

B=1 #Bootstrap iterations

ss=12345 #SEED

set.seed(ss)

##Bootstrap parametric BIAS and MSE

mse.pboot=mseb(pp,datar$Xk,datar$X,datar$Z,datar$n,datar$N,result,B,mod)

msef Analytic MSE for Model 1

Description

This function calculates the analytic MSE for the multinomial mixed model with one
independent random effect per category of the response variable (Model 1). See Lopez-
Vizcaino et al. (2013), section 4, for details. The formulas of Prasad and Rao (1990)
are adapted to Model 1. This function uses the output of modelfit1.

Usage

msef(pp, X, Z, resul, MM, M)
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Arguments

resul the output of the function modelfit1.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

Z design matrix of random effects obtained from data.mme.

pp vector with the number of the auxiliary variables per category.

M vector with the area sample sizes.

MM vector with the population sample sizes.

Value

mse is a matrix with the MSE estimator calculated by adapting the explicit formulas
of Prasad and Rao (1990).

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

Prasad, NGN, Rao, JNK (1990).The estimation of the mean squared error of small
area estimators. Journal of the American Statistical Association, 85, 163-171.

See Also

data.mme, initial.values, wmatrix, phi.mult, prmu, phi.direct, sPhikf, modelfit1,
Fbetaf, ci, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 # type of model

datar=data.mme(simdata,k,pp,mod)

# Model fit

result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,datar$y[,1:(k-1)],

datar$n,datar$N)

#Analytic MSE

mse=msef(pp,datar$X,datar$Z,result,datar$N,datar$n)
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msef.ct Analytic MSE for Model 3

Description

This function calculates the analytic MSE for the multinomial mixed model with two
independent random effects for each category of the response variable: one random
effect associated with the domain and another correlated random effect associated
with time and domain (Model 3). See details of the model and the expresion of mse
in Lopez-Vizcaino et al. (2013). The formulas of Prasad and Rao (1990) are adapted
to Model 3. This function uses the output of modelfit3.

Usage

msef.ct(p, X, result, M, MM)

Arguments

p vector with the number of the auxiliary variables per category.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

result the output of the function modelfit3.

M vector with the area sample sizes.

MM vector with the population sample sizes.

Value

mse.analitic is a matrix with the MSE estimator calculated by adapting the explicit
formulas of Prasad and Rao (1990).

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Prasad, NGN, Rao, JNK (1990).The estimation of the mean squared error of small
area estimators. Journal of the American Statistical Association, 85, 163-171.

See Also

data.mme, initial.values, wmatrix, phi.mult.ct, prmu.time, phi.direct.ct, sPhikf.ct,
modelfit3, Fbetaf.ct, ci, omega, mseb.
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Examples

## Not run:

library(mixstock)

library(Matrix)

library(MASS)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp,mod)

##Model fit

result=modelfit3(d,t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N,0)

##Analytic MSE

msef=msef.ct(pp,datar$X,result,datar$n,datar$N)

## End(Not run)

msef.it Analytic MSE for Model 2

Description

This function calculates the analytic MSE for the multinomial mixed model with two
independent random effects for each category of the response variable: one random
effect associated with the domain and another independent random effect associated
with time and domain (Model 2). See details of the model and the expresion of mse
in Lopez-Vizcaino et al. (2013). The formulas of Prasad and Rao (1990) are adapted
to Model 2. This function uses the output of modelfit2.

Usage

msef.it(p, X, result, M, MM)

Arguments

p vector with the number of the auxiliary variables per category.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

result the output of the function modelfit2.

M vector with the area sample sizes.

MM vector with the population sample sizes.
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Value

mse.analitic is a matrix with the MSE estimator calculated by adapting the explicit
formulas of Prasad and Rao (1990). The matrix dimension is the number of domains
multiplied by the number of categories minus 1.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Prasad, NGN, Rao, JNK (1990).The estimation of the mean squared error of small
area estimators. Journal of the American Statistical Association, 85, 163-171.

See Also

data.mme, initial.values, wmatrix, phi.mult.it, prmu.time, phi.direct.it, sPhikf.it,
modelfit2, Fbetaf.it, ci, mseb

Examples

library(mixstock)

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #type of model

data(simdata2)

datar=data.mme(simdata2,k,pp,mod)

##Model fit

result=modelfit2(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N)

##Analytic MSE

msef=msef.it(pp,datar$X,result,datar$n,datar$N)

omega Model correlation matrix for Model 3

Description

This function calculates the model correlation matrix and the first derivative of the
model correlation matrix for Model 3. Model 3 is the multinomial mixed model with
two independent random effects for each category of the response variable: one domain
random effect and another correlated time and domain random effect.
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Usage

omega(t, k, rho, phi2)

Arguments

t number of time periods.

k number of categories of the response variable.

rho vector with the correlation parameter obtained from modelfit3.

phi2 vector with the values of the second variance component obtained from
modelfit3.

Value

A list containing the following components.

Omega.d correlation matrix.

First.derivative.Omegad

Fisher derivative of the model correlation matrix.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

See Also

data.mme, initial.values, wmatrix ,phi.mult.ct, prmu.time, phi.direct.ct, Fbetaf.ct,
sPhikf.ct, ci, modelfit3, msef.ct, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

##The model correlation matrix

matrix.corr=omega(datar$t,k,initial$rho.0,initial$phi2.0)
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phi.direct Variance components for Model 1

Description

This function calculates the variance components for the multinomial mixed model
with one independent random effect in each category of the response variable (Model
1). These values are used in the second part of the fitting algorithm implemented in
modelfit1. The algorithm adapts the ideas of Schall (1991) to a multivariate model
and the variance components are estimated by the REML method.

Usage

phi.direct(sigmap, phi, X, u)

Arguments

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

phi vector with the initial values of the variance components obtained from
modelfit1.

u matrix with the values of the random effects obtained from modelfit1.

Value

a list containing the following components.

phi.new vector with the variance components.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.

See Also

data.mme, initial.values, wmatrix, phi.mult, prmu, Fbetaf, sPhikf, ci, modelfit1,
msef, mseb.
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Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

datar=data.mme(simdata,k,pp,mod)

initial=datar$initial

mean=prmu(datar$n,datar$Xk,initial$beta.0,initial$u.0)

#model variance-covariance matrix

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

##Variance components

phi=phi.direct(sigmap,initial$phi.0,datar$X,initial$u.0)

phi.direct.ct Variance components for Model 3

Description

This function calculates the variance components for the multinomial mixed model
with two independent random effects for each category of the response variable: one
domain random effect and another correlated time and domain random effect (Model
3). This variance components are used in the second part of the fitting algorithm
implemented in modelfit3. The algorithm adapts the ideas of Schall (1991) to a
multivariate model. The variance components are estimated by the REML method.

Usage

phi.direct.ct(p, sigmap, X, theta, phi1, phi2, u1, u2,

rho)

Arguments

p vector with the number of auxiliary variables per category.

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

theta matrix with the estimated log-probabilites of each category in front of
the reference category obtained from prmu.time.
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phi1 vector with the initial values of the first variance component obtained
from modelfit3.

phi2 vector with the initial values of the second variance component ob-
tained from modelfit3.

u1 matrix with the values of the first random effect obtained from modelfit3.

u2 matrix with the values of the second random effect obtained from
modelfit3.

rho vector with the initial values of the correlation parameter obtained
from modelfit3.

Value

a list containing the following components.

phi1.new vector with the values of the variance component for the first random
effect.

phi2.new vector with the values of the variance component for the second random
effect.

rho.new vector with the correlation parameter.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.

See Also

data.mme, initial.values, wmatrix, phi.mult.ct, prmu.time, Fbetaf.ct sPhikf.ct,
ci, modelfit3, msef.ct, mseb, omega

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)
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##The variance components

phi.ct=phi.direct.ct(pp,sigmap,datar$X,mean$eta,initial$phi1.0,

initial$phi2.0,initial$u1.0,initial$u2.0,initial$rho.0)

phi.direct.it Variance components for Model 2

Description

This function calculates the variance components for the multinomial mixed model
with two independent random effects for each category of the response variable: one
domain random effect and another independent time and domain random effect (Model
2). This variance components are used in the second part of the fitting algorithm
implemented in modelfit2. The algorithm adapts the ideas of Schall (1991) to a
multivariate model. The variance components are estimated by the REML method.

Usage

phi.direct.it(pp, sigmap, X, phi1, phi2, u1, u2)

Arguments

pp vector with the number of auxiliary variables per category.

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable.

phi1 vector with the initial values of the first variance component obtained
from modelfit2.

phi2 vector with the initial values of the second variance component ob-
tained from modelfit2.

u1 matrix with the values of the first random effect obtained from modelfit2.

u2 matrix with the values of the second random effect obtained from
modelfit2.

Value

a list containing the following components.

phi1.new vector with the values of the variance component for the first random
effect.

phi2.new vector with the values of the variance component for the second random
effect.
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References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.

See Also

data.mme, initial.values, wmatrix, phi.mult.it, prmu.time, Fbetaf.it sPhikf.it,
ci, modelfit2, msef.it, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

d=10 #number of areas

mod=2 #Type of model

data(simdata2) #data

datar=data.mme(simdata2,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities) #variance-covariance

## The variance components

phi.it=phi.direct.it(pp,sigmap,datar$X,initial$phi1.0,initial$phi2.0,

initial$u1.0,initial$u2.0)

phi.mult Initial values for the variance components for Model 1

Description

This function is used in initial.values to calculate the initial values for the variance
components in the multinomial mixed model with one independent random effect in
each category of the response variable (Model 1).

Usage

phi.mult(beta.0, y, Xk, M)

181



Arguments

beta.0 initial values for the fixed effects obtained in initial.values.

y matrix with the response variable obtained from data.mme. The rows
are the domains and the columns are the categories of the response
variable.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

M vector with the sample size of the areas.

Value

phi.0 vector of inicial values for the variance components

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

data.mme, initial.values, wmatrix, prmu, Fbetaf, phi.direct, sPhikf, ci, modelfit1,
msef, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

datar=data.mme(simdata,k,pp,mod)

###beta values

beta.new=list()

beta.new[[1]]=matrix(c( 1.3,-1),2,1)

beta.new[[2]]=matrix(c( -1.6,1),2,1)

##Initial variance components

phi=phi.mult(beta.new,datar$y,datar$Xk,datar$n)
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phi.mult.ct Initial values for the variance components in Model 3

Description

This function is used in initial.values to calculate the initial values for the variance
components in the multinomial mixed model with two independent random effects
for each category of the response variable: one domain random effect and another
correlated time and domain random effect (Model 3).

Usage

phi.mult.ct(beta.0, y, Xk, M, u1, u2)

Arguments

beta.0 a list with the initial values for the fixed effects per category obtained
from initial.values.

y matrix with the response variable obtained from data.mme. The rows
are the domains and the columns are the categories of the response
variable minus one.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

M vector with the sample size of the areas.

u1 matrix with the values for the first random effect obtained from initial.values.

u2 matrix with the values for the second random effect obtained from
initial.values.

Value

A list containing the following components.

phi.0 vector of the initial values for the variance components.

rho.0 vector of the initial values for the correlation parameter.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.
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See Also

data.mme, initial.values, wmatrix, prmu.time, Fbetaf.ct, phi.direct.ct, sPhikf.ct,
ci, modelfit3, msef.ct,omega, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

D=nrow(simdata3)

datar=data.mme(simdata3,k,pp,mod)

###Fixed effects values

beta.new=list()

beta.new[[1]]=matrix(c( 1.3,-1),2,1)

beta.new[[2]]=matrix(c( -1.6,1),2,1)

## Random effects values

u1.new=rep(0.01,((k-1)*datar$d))

dim(u1.new)=c(datar$d,k-1)

u2.new=rep(0.01,((k-1)*D))

dim(u2.new)=c(D,k-1)

## Initial variance components

phi=phi.mult.ct(beta.new,datar$y,datar$Xk,datar$n,u1.new,u2.new)

phi.mult.it Initial values for the variance components in Model 2

Description

This function is used in initial.values to calculate the initial values for the variance
components in the multinomial mixed model with two independent random effects for
each category of the response variable: one domain random effect (u1) and another
independent time and domain random effect (u2) (Model 2).

Usage

phi.mult.it(beta.0, y, Xk, M, u1, u2)
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Arguments

beta.0 initial values for the fixed effects obtained from initial.values.

y matrix with the response variable obtained from data.mme. The rows
are the domains and the columns are the categories of the response
variable.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

M vector with the sample size of the areas.

u1 vector with the initial values for the first random effect obtained from
initial.values.

u2 vector with the initial values for the second random effect obtained
from initial.values.

Value

phi.0 vector of the initial values for the variance components.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

data.mme, initial.values, wmatrix, prmu.time, Fbetaf.it, phi.direct.it, sPhikf.it,
ci, modelfit2, msef.it, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata2) #data

mod=2 #Type of model

datar=data.mme(simdata2,k,pp,mod)

D=nrow(simdata2)

###fixed effects values

beta.new=list()

beta.new[[1]]=matrix(c( 1.3,-1),2,1)

beta.new[[2]]=matrix(c( -1.6,1),2,1)

## random effects values

u1.new=rep(0.01,((k-1)*datar$d))

dim(u1.new)=c(datar$d,k-1)

u2.new=rep(0.01,((k-1)*D))
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dim(u2.new)=c(D,k-1)

##Initial variance components

phi=phi.mult.it(beta.new,datar$y,datar$Xk,datar$n,u1.new,u2.new)

print.mme Print objects of class mme

Description

This function prints objects of class mme.

Usage

## S3 method for class mme

print(x, ...)

Arguments

x a list with the output of modelfit1, modelfit2 or modelfit3.

... further information.

See Also

modelfit1, modelfit2, modelfit3

Examples

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=1 # Type of model

data(simdata)

datar=data.mme(simdata,k,pp,mod)

##Model fit

result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N)

result
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prmu Estimated mean and probabilities for Model 1

Description

This function calculates the estimated probabilities and the estimated mean of the
response variable, in the multinomial mixed model with one independent random
effect in each category of the response variable (Model 1).

Usage

prmu(M, Xk, beta, u)

Arguments

M vector with the area sample sizes.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

beta fixed effects obtained from modelfit1.

u values of random effects obtained from modelfit1.

Value

A list containing the following components:

Estimated.probabilities

matrix with the estimated probabilities for the categories of response
variable.

mean matrix with the estimated mean of the response variable.

eta matrix with the estimated log-rates of the probabilities of each category
over the reference category.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13, 153-178.

See Also

data.mme, initial.values, wmatrix, phi.mult, Fbetaf, phi.direct, sPhikf, ci,
modelfit1, msef, mseb.
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Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

D=nrow(simdata)

datar=data.mme(simdata,k,pp,mod)

initial=datar$initial

##Estimated mean and probabilities

mean=prmu(datar$n,datar$Xk,initial$beta.0,initial$u.0)

prmu.time Estimated mean and probabilities for Model 2 and 3

Description

This function calculates the estimated probabilities and the estimated mean of the
response variable, in the multinomial mixed models with two independent random
effects, one random effect associated with the area and the other associated with the
time, for each category of the response variable. The first model assumes independent
time and domain random effect (Model 2) and the second model assumes correlated
time and domain random effect (Model 3).

Usage

prmu.time(M, Xk, beta, u1, u2)

Arguments

M vector with the area sample sizes.

Xk list of matrices with the auxiliary variables per category obtained from
data.mme. The dimension of the list is the number of domains.

beta a list with the values for the fixed effects beta per category obtained
from modelfit2.

u1 a vector with the values of the first random effect obtained from modelfit2

or modelfit3.

u2 a vector with the values of the second random effect obtained from
modelfit2 or modelfit3.
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Value

A list containing the following components:

Estimated.probabilities

matrix with the estimated probabilities for the categories of response
variable.

mean matrix with the estimated mean of the response variable.

eta matrix with the estimated log-rates of the probabilities of each category
over the reference category.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicator under a multinomial mixed model with correlated time and
area effects. Submited for review.

See Also

data.mme, initial.values, wmatrix, phi.mult.it, Fbetaf.it, phi.direct.it, sPhikf.it,
ci, modelfit2, msef.it, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #Type of model

data(simdata2) # data

datar=data.mme(simdata2,k,pp,mod)

initial=datar$initial

## Estimated mean and estimated probabilities

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

simdata Dataset for Model 1

Description

Dataset used by the multinomial mixed effects model with one independent random
effect in each category of the response variable (Model 1). This dataset contains 15
small areas. The response variable has three categories. The last is the reference
category. The variables are as follows:
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Format

A data frame with 15 rows and 9 variables in columns

Details

• area: area indicator.

• Time: time indicator.

• sample: the sample size of each domain.

• Population: the population size of each domain.

• Y1: the first category of the response variable.

• Y2: the second category of the response variable.

• Y3: the third category of the response variable.

• X1: the covariate for the first category of the response variable.

• X2: the covariate for the second category of the response variable.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 # type of model

datar=data.mme(simdata,k,pp,mod)

# Model fit

result=model(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N,mod)

#Analytic MSE

mse=msef(pp,datar$X,datar$Z,result,datar$N,datar$n)

B=1 #Bootstrap iterations

ss=12345 #SEED

set.seed(ss)

##Bootstrap parametric BIAS and MSE

mse.pboot=mseb(pp,datar$Xk,datar$X,datar$Z,datar$n,datar$N,result,B,mod)
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simdata2 Dataset for Model 2

Description

Dataset used by the multonomial mixed effects model with two independent random
effects in each category of the response variable: one domain random effect and another
independent time and domain random effect (Model 2). This dataset contains 10 small
areas and two periods. The response variable has three categories. The last is the
reference category. The variables are as follows:

Format

A data frame with 30 rows and 9 variables in columns

Details

• area: area indicator.

• Time: time indicator.

• sample: the sample size of each domain.

• Population: the population size of each domain.

• Y1: the first category of the response variable.

• Y2: the second category of the response variable.

• Y3: the third category of the response variable.

• X1: the covariate for the first category of the response variable.

• X2: the covariate for the second category of the response variable.

Examples

library(mixstock)

library(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata2)

mod=2 #type of model

datar=data.mme(simdata2,k,pp,mod)

##Model fit

result=model(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N,mod)
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##Analytic MSE

msef=msef.it(pp,datar$X,result,datar$n,datar$N)

B=1 #Bootstrap iterations

ss=12345 #SEED

set.seed(ss)

##Bootstrap parametric BIAS and MSE

mse.pboot=mseb(pp,datar$Xk,datar$X,datar$Z,datar$n,datar$N,result,B,mod)

simdata3 Dataset for Model 3

Description

Dataset used by the multonomial mixed effects model with two independent random
effects in each category of the response variable: one domain random effect and another
correlated time and domain random effect (Model 3). This dataset contains ten small
areas and four periods. The response variable has three categories. The last is the
reference category. The variables are as follows:

Format

A data frame with 40 rows and 9 variables in columns

Details

• area: area indicator.

• Time: time indicator.

• sample: the sample size of each domain.

• Population: the population size of each domain.

• Y1: the first category of the response variable.

• Y2: the second category of the response variable.

• Y3: the third category of the response variable.

• X1: the covariate for the first category of the response variable.

• X2: the covariate for the second category of the response variable.
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Examples

## Not run:

library(mixstock)

library(Matrix)

library(MASS)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp,mod)

##Model fit

result=model(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

datar$y[,1:(k-1)],datar$n,datar$N,mod)

##Analytic MSE

msef=msef.ct(pp,datar$X,result,datar$n,datar$N)

B=1 #Bootstrap iterations

ss=12345 #SEED

set.seed(ss)

##Bootstrap parametric BIAS and MSE

mse.pboot=mseb(pp,datar$Xk,datar$X,datar$Z,datar$n,datar$N,result,B,mod)

## End(Not run)

sPhikf Fisher information matrix and score vectors of the variance
components for Model 1

Description

This function computes the Fisher information matrix and the score vectors of the
variance components, for the multinomial mixed model with one independent random
effect in each category of the response variable (Model 1). These values are used in
the fitting algorithm implemented in modelfit1 to estimate the random effects. The
algorithm adatps the ideas of Schall (1991) to a multivariate model. The variance
components are estimated by the REML method.

Usage

sPhikf(pp, sigmap, X, eta, phi)
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Arguments

pp vector with the number of the auxiliary variables per category.

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

eta matrix with the estimated log-rates of probabilities of each category
over the reference category obtained from prmu.

phi vector with the values of the variance components obtained from modelfit1.

Value

A list containing the following components.

S.k phi score vector.

F Fisher information matrix of the variance component phi.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling, 13 ,153-178.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.

See Also

data.mme, initial.values, wmatrix, phi.mult, prmu, phi.direct, Fbetaf, ci,
modelfit1, msef, mseb.

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

data(simdata) #data

mod=1 #type of model

datar=data.mme(simdata,k,pp, mod)

initial=datar$initial

mean=prmu(datar$n,datar$Xk,initial$beta.0,initial$u.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

##Fisher information matrix and score vectors

Fisher.phi=sPhikf(pp,sigmap,datar$X,mean$eta,initial$phi.0)
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sPhikf.ct Fisher information matrix and score vectors of the variance
components for Model 3

Description

This function computes the Fisher information matrix and the score vectors of the
variance components, for the multinomial mixed model with two independent random
effects for each category of the response variable: one domain random effect and
another correlated time and domain random effect (Model 3). These values are used
in the fitting algorithm implemented in modelfit3 to estimate the random effects.
The algorithm adatps the ideas of Schall (1991) to a multivariate model. The variance
components are estimated by the REML method.

Usage

sPhikf.ct(d, t, pp, sigmap, X, eta, phi1, phi2, rho, pr,

M)

Arguments

d number of areas.

t number of time periods.

pp vector with the number of the auxiliary variables per category.

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

eta matrix with the estimated log-rates of probabilites of each category
over the reference category obtained from prmu.time.

phi1 vector with the values of the first variance component obtained from
modelfit3.

phi2 vector with the values of the second variance component obtained from
modelfit3.

rho vector with the correlation parameter obtained from modelfit3.

pr matrix with the estimated probabilities of the response variable ob-
tained from prmu.time.

M vector with the area sample sizes.
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Value

A list containing the following components.

S (phi1, phi2, rho) score vector.

F Fisher information matrix of the variance components (phi1, phi2, rho).

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.

See Also

data.mme, initial.values, wmatrix, phi.mult.ct, prmu.time, phi.direct.ct, Fbetaf.ct,
omega, ci, modelfit3, msef.ct, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=3 #type of model

data(simdata3) #data

datar=data.mme(simdata3,k,pp, mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

## Fisher information matrix and the score vectors

Fisher.phi.ct=sPhikf.ct(datar$d,datar$t,pp,sigmap,datar$X,mean$eta,initial$phi1.0,

initial$phi2.0,initial$rho.0,mean$estimated.probabilities,datar$n)

sPhikf.it Fisher information matrix and score vectors of the variance
components for Model 2
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Description

This function computes the Fisher information matrix and the score vectors of the
variance components, for the multinomial mixed model with two independent random
effects for each category of the response variable: one domain random effect and
another independent time and domain random effect (Model 2). These values are
used in the fitting algorithm implemented in modelfit2 to estimate the random effects.
The algorithm adatps the ideas of Schall (1991) to a multivariate model. The variance
components are estimated by the REML method.

Usage

sPhikf.it(d, t, pp, sigmap, X, eta, phi1, phi2)

Arguments

d number of areas.

t number of time periods.

pp vector with the number of the auxiliary variables per category.

sigmap a list with the model variance-covariance matrices for each domain
obtained from wmatrix.

X list of matrices with the auxiliary variables obtained from data.mme.
The dimension of the list is the number of categories of the response
variable minus one.

eta matrix with the estimated log-rates of probabilities of each category
over the reference category obtained from prmu.time.

phi1 vector with the values of the first variance component obtained from
modelfit2.

phi2 vector with the values of the second variance component obtained from
modelfit2.

Value

A list containing the following components.

S phi score vector.

F Fisher information matrix of the variance components phi1 and phi2.

References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Small area estimation
of labour force indicators under a multinomial mixed model with correlated time and
area effects. Submitted for review.

Schall, R (1991). Estimation in generalized linear models with random effects. Biometrika,
78,719-727.
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See Also

data.mme, initial.values, wmatrix, phi.mult.it, prmu.time, phi.direct.it, Fbetaf.it,
ci, modelfit2, msef.it, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #Type of model

data(simdata2) #data

datar=data.mme(simdata2,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

sigmap=wmatrix(datar$n,mean$estimated.probabilities)

##Fisher information matrix and score vectors

Fisher.phi=sPhikf.it(datar$d,datar$t,pp,sigmap,datar$X,mean$eta,initial$phi1.0,

initial$phi2.0)

wmatrix Model variance-covariance matrix of the multinomial mixed
models

Description

This function calculates the variance-covariance matrix of the multinomial mixed mod-
els. Three types of multinomial mixed model are considered. The first model (Model
1), with one random effect in each category of the response variable; Model 2, intro-
ducing independent time effect; Model 3, introducing correlated time effect.

Usage

wmatrix(M, pr)

Arguments

M vector with area sample sizes.

pr matrix with the estimated probabilities for the categories of the re-
sponse variable obtained from prmu or prmu.time.

Value

W a list with the model variance-covariance matrices for each domain.
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References

Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small
area estimation of labour force indicators. Statistical Modelling,13,153-178.

See Also

data.mme, initial.values, phi.mult, prmu, prmu.time Fbetaf, phi.direct, sPhikf,
ci, modelfit1, msef, mseb

Examples

require(Matrix)

k=3 #number of categories of the response variable

pp=c(1,1) #vector with the number of auxiliary variables in each category

mod=2 #type of model

data(simdata2)

datar=data.mme(simdata2,k,pp,mod)

initial=datar$initial

mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0)

##The model variance-covariance matrix

varcov=wmatrix(datar$n,mean$estimated.probabilities)
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Appendix A

Resumen en español

El paro es actualmente un problema de primer orden. Las encuestas sociológicas lo sitúan
habitualmente como una de las preocupaciones principales de los ciudadanos, y la lucha
contra el paro es prioritaria en la actuación poĺıtica de todos los niveles de la Adminis-
tración Pública. Es más, en el contexto de crisis en el que está inmersa la Unión Europea,
en España el impacto de esta crisis en el mercado de trabajo ha sido mucho más intenso
que en la mayoŕıa de las economı́as avanzadas, la tasa de paro en el tercer trimestre del
2013 alcanzó el 25.98%, más de 14 puntos superior a la del 2008. En Galicia la situación
del mercado de trabajo no es muy diferente, la tasa de paro está en el 21.6% y el número
de parados alcanza ya las 277 mil personas. En esta situación los poĺıticos de todos los
niveles de la administración planifican y actuan con el objetivo de reducir el paro.

En general las medidas poĺıticas de carácter global no suelen ser satisfactorias para las
entidades locales, que también pueden desarrollar sus propias estrategias de empleo. Para
ello necesitan algunas herramientas que les permitan determinar -con precisión, fiabilidad
y puntualidad aceptables- las principales variables e indicadores del mercado laboral: em-
pleo, paro, población activa, tasa de empleo y paro, y la ocupación en función de sexo,
edad y sector de actividad, entre otros, para aśı poder desarrollar sus competencias. En
España, como en otros páıses europeos, la estimación se realiza mediante la Encuesta de
Población Activa (EPA), que utiliza un diseño estratificado con el criterio principal del
tamaño del municipio (INE, 2009). La mayoŕıa de los municipios no están representados
en la muestra, y muchos de los que śı lo están tienen un tamaño muestral muy reducido,
lo que hace que las estimaciones a nivel municipal tengan una precisión inaceptable. El
problema que se plantea, entonces, es el de la insuficiencia de tamaño muestral, e incluso
ausencia total en algunos casos, para llevar a cabo tales estimaciones. Ante esta situación
se puede ampliar el tamaño muestral, pero esto, además de originar un evidente aumento
en los costes y en la carga de respuesta a los informantes, puede conllevar otras pérdidas
de calidad debidas a posibles retrasos en la obtención de los resultados y al impacto de
los errores ajenos al muestreo. Por tanto, el aumento del tamaño muestral no es siempre
aconsejable e incluso algunas veces inviable desde el punto de vista económico.

El interés por desarrollar técnicas de estimación para áreas pequeñas que permitan
resolver razonablemente estos problemas es creciente entre los investigadores de la Es-
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tad́ıstica. El término ”́area pequeña”, se utiliza frecuentemente para referirse a zonas
geográficas, pero también se puede aplicar a otros dominios de interés como ĺımites no
geográficos, grupos de edad, sectores de actividad, etc. Es el tamaño muy reducido de la
muestra en el dominio, y consecuentemente la gran varianza de los estimadores ”directos”
lo que define el área pequeña, y no el tamaño del área en śı mismo. En el contexto de la
estimación en áreas pequeñas, se dice que un estimador de un parámetro en un dominio
dado es directo si está basado solamente en los datos muestrales del dominio espećıfico. El
problema de estos estimadores es que cuando no hay observaciones muestrales en alguna
área de interés no se pueden calcular.

En este trabajo el objetivo es la estimación de las variables relacionadas con el mercado
laboral (ocupados, parados y tasa de paro) en las comarcas gallegas utilizando técnicas de
estimación en áreas pequeñas con modelos multinomiales mixtos de área. Los parados y
ocupados se pueden estimar mediante dos modelos lineales mixtos separados, relacionando
las estimaciones directas de las respectivas proporciones con otras variables auxiliares. En
esta situación nadie nos asegura que las estimaciones caigan en el intervalo [0, 1], lo cual
es una desventaja importante. Otra desventaja es que estos modelos no tienen en cuenta
la relación natural existente entre los parados, ocupados y la población inactiva, pues la
suma de las tres categoŕıas es el total poblacional de 16 y más años. Estas desventajas se
pueden superar usando modelos loǵısticos. Estos modelos se usaron en los trabajos de Saei
and Chambers (2003), Molina et al. (2007), Morales et al. (2007) y González-Manteiga
et al. (2008b).

Por tanto, para llevar a cabo nuestro objetivo usaremos estimadores EBLUP basa-
dos en modelos multinomiales mixtos a nivel de área ya introducidos por Molina et al.
(2007), en los que se asume una distribución multinomial loǵıstica conjunta con efectos
aleatorios de área para las proporciones de parados y ocupados. En el modelo descrito en
Molina et al. (2007), solo se consideraba un efecto aleatorio de área para cada una de las
áreas y, por tanto, este efecto era el mismo para las dos clases multinomiales (ocupados
y parados). En el problema que nos ocupa en este trabajo esta situación puede no ser
apropiada, motivada por las caracteŕısticas tan diferentes de estos dos colectivos en la
comunidad gallega, lo cual llevó a que consideráramos dos efectos aleatorios, uno para
cada una de las categoŕıas multinomiales. Además, la disponibilidad de series de tiempo
permite un aumento significativo de la muestra total en el dominio de estudio, lo cual
nos llevó a introducir en el modelo efectos de tiempo independientes y correlacionados
tal y como ya se ha hecho en otros trabajos de caracteŕısticas similares (Pfeffermann and
Burck, 1990; Rao and Yu, 1994; Saei and Chambers, 2003; Tiller, 1992; Ugarte et al.,
2009a). En este caso, se aplican los modelos de área a los datos muestrales y para ilustrar
el proceso se utilizan datos de la EPA de la Comunidad Autónoma de Galicia.

La finalidad principal de la EPA es conocer la actividad económica de la población en lo
relativo a su componente humano. Está orientada a dar datos de las principales categoŕıas
poblacionales en relación con el mercado de trabajo (ocupados, parados, activos, inactivos)
y a obtener clasificaciones de estas categoŕıas según diversas caracteŕısticas. La EPA está
basada en definiciones y criterios internacionales y sus resultados permiten la compara-
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bilidad con otros páıses europeos. Se trata de una encuesta trimestral que utiliza un
muestreo estratificado bietápico con estratificación de las unidades muestrales primarias
(UMP). Las UMP están constitúıdas por secciones censales que son áreas geográficas con
un máximo de 500 viviendas o aproximadamente 3000 personas. Las unidades de segunda
etapa están constitúıdas por las viviendas familiares principales y los alojamientos fijos.
Dentro de las unidades de segunda etapa no se realiza submuestreo alguno, recogiéndose
información de todas las personas que tengan su residencia en las mismas.

En este trabajo los dominios de interés son las comarcas cruzadas con el sexo. En
Galicia hay 53 comarcas pero vamos a considerar D = 96 o D = 102 dominios, obtenidos
de cruzar las 48 o 51 comarcas en las que hay muestra con los 2 sexos. Utilizaremos
datos desde el tercer trimestre del 2009 hasta el cuarto trimestre del 2011, i.e., para
T = 10 periodos. Como hay 48 o 51 comarcas en la EPA de Galicia, tenemos D = 96 o
D = 102 dominios Pdt que denotan la población del dominio d en el periodo de tiempo t.
Estos dominios los podemos particionar en los subconjuntos Pd1t, Pd2t y Pd3t de ocupados,
parados e inactivos. Nuestro parámetro poblacional objetivo es el total de ocupados
parados y las tasas de paro, esto es

Ydkt =
∑
j∈Pdt

ydktj, k = 1, 2, Rdt =
Yd2t

Yd1t + Yd2t
,

donde ydktj = 1 si el individuo j del dominio d y el periodo de tiempo t está en Pdtk y
ydktj = 0 en otro caso.

La EPA no produce estimaciones oficiales a nivel de dominio, pero los estimadores
directos análogos del total Ydkt, de la media Ȳdkt = Ydkt/Ndt, del tamaño Ndt y de la tasa
Rdt son

Ŷ dir
dkt =

∑
j∈Sdt

wdtj ydktj,
ˆ̄Y dir
dkt = Ŷ dir

dkt /N̂
dir
dt , k = 1, 2, N̂dir

dt =
∑
j∈Sdt

wdtj, R̂
dir
dt =

Ŷ dir
d2t

Ŷ dir
d1t + Ŷ dir

d2t

,

(A.0.1)
donde Sdt es el dominio muestral y los wdtj son los pesos oficiales calibrados teniendo

en cuenta la no respuesta.

En este punto describimos los modelos multinomiales mixtos empleados en este tra-
bajo. Definimos los efectos aleatorios u1,dk y u2,dkt asociados al dominio d, la cate-
goŕıa k y el periodo de tiempo t, respectivamente. Consideramos dos conjuntos de
efectos aleatorios. El primero es u1 = (u′1,1, . . . ,u

′
1,D)′, con u1,d = (u1,d1, u1,d2)

′. El
segundo es u2 = (u′2,1, . . . ,u

′
2,D)′, con u2,d = (u′2,d1,u

′
2,d2)

′, u2,dk = (u2,dk1, . . . , u2,dkT )′,
k = 1, 2, y u2,dt = (u2,d1t, u2,d2t)

′. La variable objetivo es y = (y′1, . . . ,y
′
D)′, donde

yd = (y′d1, . . . ,y
′
dT )′ and ydt = (yd1t, yd2t)

′, d = 1, . . . , D, t = 1, . . . , T . Entonces, el
modelo principal (Modelo 3) asume que

1. u1 y u2 son independientes,

2. u1 ∼ N(0,V u1), donde V u1 = diag
1≤d≤D

(diag(ϕ11, ϕ12)).
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3. u2,dk ∼ N(0,V u2,dk), d = 1, . . . , D, k = 1, 2, son independientes con matriz de
covarianzas AR(1), i.e. V u2,dk = ϕ2kΩ(φk) y

Ω(φk) =
1

1− φ2
k



1 φk . . . φT−2k φT−1k

φk 1
. . . φT−2k

...
. . . . . . . . .

...

φT−2k

. . . 1 φk

φT−1k φT−2k . . . φk 1


T×T

.

El Modelo 3 también asume que la variable respuesta ydt, condicionada a u1,d y u2,dt, es
independiente con distribución multinomial

ydt|u1,d,u2,dt
∼ M(ndt, pd1t, pd2t), d = 1, . . . , D, t = 1, . . . , T. (A.0.2)

Para los parámetros naturales ηdkt = log(pdkt/pd3t), el Model 3 asume

ηdkt = xdktβk + u1,dk + u2,dkt, d = 1, . . . , D, k = 1, 2, t = 1, . . . , T, (A.0.3)

donde xdkt = (xdkt1, . . . , xdktpk)′ and βk = (βk1, . . . , βkpk)′. Equivalentemente, podemos
escribir

pdkt =
exp{ηdkt}

1 + exp{ηd1t}+ exp{ηd2t}
, d = 1, . . . , D, k = 1, 2, t = 1, . . . , T.

Del Modelo 3, se pueden derivar los restantes dos modelos empleados en este trabajo.
El Modelo 2 se obtiene haciendo en el Model 3 φ1 = φ2 = 0 y por tanto tiene efectos
aleatorios independientes u2,dkt. El Model 1 se obtiene considerando que el Modelo 2 es
para un periodo de tiempo (T = 1) y considerando solo un efecto aleatorio u1. Este es el
modelo estudiado en López-Vizcáıno et al. (2013a). El modelo de Molina et al. (2007) se
obtiene haciendo u1,d1 = u1,d2 en el Modelo 1.

El ajuste de los modelos se llevó a cabo usando una combinación del método de máxima
verosimilitud penalizada (PQL), introducido por Breslow and Clayton (1996), para la esti-
mación de βkr’s, los u1,dk’s y los u2,dkt’s, con la máxima verosimilitud restringida (REML)
para la estimación de las componentes de la varianza ϕ1k, ϕ2k and φk, k = 1, . . . , q−1. El
método se basa en una aproximación normal de la distribución de probabilidad conjunta
del vector (y,u). Este algoritmo combinado lo introdujo Schall (1991), y posteriormente
lo utilizó Saei and Chambers (2003) en el contexto de estimación de áreas pequeñas con
modelos lineales generales mixtos. En este trabajo se adapta el método de ajuste al mod-
elo multinomial mixto introducido.

En la práctica estamos interesados en estimar los totales de los dominios

Ydkt =
∑
j∈Pdt

ydktj, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T,

203



donde Pdt es la población del dominio con tamaño Ndt. Un estimador sintético de Ydkt
es Ŷdkt = m̂dkt = N̂dtp̂dkt. Las estimaciones para las tasas se pueden obtener usando los
correspondientes estimadores de los totales con el método plugging. El interés está en
estimar mdt = N̂dtpdt, d = 1, . . . , D, t = 1, . . . , T , donde N̂dt es un estimador del tamaño
de la población que puede ser obtenido de los microdatos de la encuesta o de algún registro
administrativo. Como estamos en un contexto de un modelo de área, N̂dt se trata como
una constante. En la aplicación a datos reales, se tomará N̂dt = N̂dir

dt y se estimará mdt

por medio de m̂dt = N̂dtp̂dt, donde

p̂dt = (p̂d1t, p̂d2t)
′, p̂dkt =

exp{η̂dkt}
1 + exp{η̂d1t}+ exp{η̂d2t}

, η̂dkt = xdktβ̂k + û1,dk + û2,dkt,

(A.0.4)
y β̂k, û1,dk and û2,dkt se obtienen de la salida del algoritmo de ajuste PQL.

Estos estimadores suelen ser sesgados, por eso la acuracidad de las estimaciones es un
tema fundamental en la SAE de la que se han publicado diversas aproximaciones en la
literatura. El hecho de que los estimadores sean sesgados hay que complementarlo con
ganancia en acuracidad. De ah́ı que en este trabajo se utilicen diferentes aproximaciones
al error cuadrático medio (MSE), mediante una expresión anaĺıtica y mediante técnicas
bootstrap. En este punto es deseable tener en cuenta que en las estad́ısticas de fuerza
de trabajo la Office for National Statistics (ONS) del Reino Unido considera que una
estimación es publicable, y por tanto oficial, si su coeficiente de variación es inferior al
20% (ONS, 2004).

Una vez decididos los modelos, los estimadores y la estimación del MSE, necesitamos
obtener variables auxiliares para llevar a cabo el ajuste de los modelos. Las variables
auxiliares que se utilizaron provienen de registros administrativos y de los datos que nos
proporciona la EPA. Se utilizan las proporciones de personas en los dominios y dentro de
las categoŕıas que definen las siguientes agrupaciones.

• SEXAGE: Combinaciones de sexo y grupos de edad, con 6 valores. El sexo se
codifica 1 para hombres y 2 para mujeres y la edad está categorizada en 3 grupos
con códigos 1 para 16-24, 2 para 25-54 y 3 para ≥55. Lós códigos 1, 2, . . . , 6 se usan
para los pares sexo-edad (1, 1), (1, 2), . . . , (2, 3).

• STUD: Esta variable describe el nivel de educación alcanzado, con valores 1-3 para
los analfabetos y educación primaria, la secundaria y el nivel de educación superior,
respectivamente.

• REG: Esta variable indica si un individuo está registrado o no como desempleado
en las oficinas de empleo público. El desempleo se puede medir a través de los datos
proporcionados por las oficinas de empleo público y mediante los datos proporciona-
dos por la EPA (variable de estudio). Los datos de desempleo en estas dos fuentes
son diferentes pero correlacionados. Nosotros estamos interesados en la definición
de la EPA, pues esta es la que sigue las recomendaciones de la Organización Interna-
cional del Trabajo (OIT) y EUROSTAT; es decir mide el desempleo como el número
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de personas sin empleo que quieren trabajar, están disponibles para trabajar y están
buscando activamente empleo.

• SS: Esta variable indica si un individuo está afiliado a la Seguridad Social en alta
laboral.

Ahora los modelos se ajustan a los datos y al conjunto de variables auxiliares signi-
ficativas. La selecćıon de los modelos se hace utilizando herramientas descriptivas y de
contraste. Finalmente, se obtienen las estimaciones basadas en el modelo de los totales de
ocupados, parados y tasas de paro y sus errores cuadráticos medios. Si se comparan estas
estimaciones con las que se obtienen con los estimadores directos de la EPA, se puede ver
que se comportan mucho mejor en términos de MSE, sobre todo para las comarcas con
tamaño de muestra pequeño, constituyendo esta metodoloǵıa una alternativa para hacer
estimaciones a nivel comarcal. Otra ventaja de estos estimadores basados en el modelo es
que tiene la propiedad de que son consistentes en el sentido de que la suma de ocupados,
parados e inactivos es la población total del dominio (población de 16 y más años).

Además en este trabajo se propone el uso de dos modelos con efectos de área y de
tiempo combinados. El hecho de inclúır un efecto de tiempo hace que obtengamos unas
estimaciones de los ocupados, parados y tasas de paro con más precisión y más estables
que si se ajustaran modelos independientes para cada peŕıodo temporal. Estas caracteŕıs-
ticas hacen que esta metodoloǵıa sea atractiva para su uso en las oficinas de estad́ıstica
oficial, pues las estimaciones siguen el patrón de los estimadores directos para las comar-
cas grandes y para las comarcas pequeñas se comportan con estabilidad, con lo cual el
efecto del suavizado por el uso de varios periodos de tiempo parece razonable.

Además los predictores basados en el modelo permiten hacer predicciones para do-
minios sin muestra, para los cuales no existen los estimadores basados en el diseño. Esto
no quiere decir que los estimadores basados en el diseño no tengan ningún papel en la
predicción basada en modelos. Los estimadores basados en el diseño son los datos de
entrada para los modelos y se utilizan para la evaluación de los estimadores basados en
modelos y para la calibración de estos a los datos provinciales. La calibración tiene la
ventaja de garantizar la consistencia en la publicación de los estimadores basados en el
modelo y los estimadores basados en el diseño para áreas más grandes. Esto lo requieren
a menudo las oficinas de estad́ıstica.

También se han propuesto diferentes aproximaciones para el cálculo del error cuadrático
medio. Una de ellas se basa en la aproximación de Prasad and Rao (1990) y las restantes
están basadas en técnicas bootstrap. En las simulaciones se observa un mejor compor-
tamiento de las técnicas bootstrap.

En lo referente a los resultados del mercado de trabajo en Galicia se puede conclúır
que hubo un crecimiento general en las tasas de paro en el periodo considerado en casi
todas las comarcas, aunque este incremento fue superior en los hombres. Esto puede
estar condicionado, entre otras cosas, por la brusca cáıda del empleo en el sector de la
construcción, que emplea principalmente a hombres. Debido a la situación económica en
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España, con cáıdas del Producto Interior Bruto, este población no ha sido capaz de en-
contrar trabajo en otro sector de actividad. También se puede observar que las comarcas
de la costa oeste de Galicia son aquellas que, en términos generales, tienen mayores tasas
de desempleo. Esta área es la más dinámica de Galicia y con la población más joven. En
esta área vive aproximadamente el 75% de la población gallega y las tasas de paro son
tan altas porque las empresas no pueden absorver a tantos trabajadores.

Los modelos propuestos en esta tesis se han implementado en un paquete de R con
el nombre mme. En los últimos años el software R se ha convertido en una poderosa
herramienta cient́ıfica que ofrece una colección rica de técnicas estad́ısticas modernas y
clásicas. Motivado por su flexivilidad y su amplia aceptación en la comunidad cient́ıfica
hemos elegido R como lenguaje de programación para desarrollar la libreŕıa de funciones
necesarias para el ajuste de los modelos propuestos en este trabajo.

En el paquete mme hemos introducido una serie de nuevas funciones que pueden se
de interés para aquellos que están haciendo investigación aplicada. Las ocho funciones
principales se resumen en la tabla siguiente:
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Funcion Descripcion Referencia

data.mme Basada en los datos introducidos esta fun-
ción genera algunas matrices necesarias
para cálculos posteriores y los valores ini-
ciales de los efectos fijos y aleatorios para
el algoritmo de ajuste.

López-Vizcáıno et al (2013a)

fitmodel1 Función empleada para el ajuste del mod-
elo multinomial mixto con efectos aleato-
rios independientes para cada una de las
categoŕıas de la variable respuesta (Mod-
elo 1)

López-Vizcáıno et al (2013a)

fitmodel2 Función empleada para el ajuste del mod-
elo multinomial mixto con do efectos
aleatorios independientes por cada cate-
goŕıa de la variable respuesta: un effecto
aleatorio debido al dominio y otro efecto
aleatorio independiente debido al tiempo
y al dominio (Modelo 2)

López-Vizcáıno et al (2013b)

fitmodel3 Función empleada para el ajuste del mod-
elo multinomial mixto con do efectos
aleatorios independientes por cada cate-
goŕıa de la variable respuesta: un effecto
aleatorio debido al dominio y otro efecto
aleatorio correlado debido al tiempo y al
dominio (Modelo 3)

López-Vizcáıno et al (2013b)

msef Esta función se usa para calcular el MSE
anaĺıtico para el Modelo 1

López-Vizcáıno et al (2013a)

msef.it Esta función se usa para calcular el MSE
anaĺıtico para el Modelo 2

López-Vizcáıno et al (2013b)

msef.ct Esta función se usa para calcular el MSE
anaĺıtico para el Modelo 3

López-Vizcáıno et al (2013b)

mseb Función usada para calcular el sesgo y el
MSE para los modelos multinomiales mix-
tos utilizando bootstrap paramétrico

López-Vizcáıno et al (2013a)
and López-Vizcáıno et al
(2013b)
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Pérez, A., and Molina, I. (2009). Estimadores de áreas pequeñas basados en modelos
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