
DEPARTMENT OF INFORMATION

AND COMMUNICATIONS TECHNOLOGIES

Query Scheduling Techniques and Power/Latency

Trade-off Model for Large-Scale Search Engines

PHD THESIS

Ana Maŕıa Freire Veiga

PhD Supervisor: Dr. Fidel Cacheda Seijo

2014

PHD THESIS

Query Scheduling Techniques and Power/Latency Trade-off

Model for Large-Scale Search Engines

Ana Maŕıa Freire Veiga

PhD supervisor:

Dr. Fidel Cacheda Seijo

Thesis committee:

Dr. Mart́ın Llamas Nistal

Dr. Raffaele Perego

Dr. Sergio Guilherme Aleixo de Matos

Dr. Juan Manuel Fernández Luna

Dr. Manuel Álvarez D́ıaz

D. Fidel Cacheda Seijo, Doctor by the University of A Coruña

D. Fidel Cacheda Seijo, Doctor por la Universidad de A Coruña

CERTIFIES

CERTIFICA

That this thesis report titled Query Scheduling Techniques and Power/Latency

Trade-off Model for Large-Scale Search Engines was developed by Da. Ana Maŕıa

Freire Veiga under his direction in order to obtain the International Doctor mention

by the University of A Coruña.

Que la presente memoria titulada Query Scheduling Techniques and Power/Latency

Trade-off Model for Large-Scale Search Engines ha sido realizada bajo su dirección

y constituye la Tesis que presenta Da. Ana Maŕıa Freire Veiga para optar al grado de

Doctor con mención Internacional por la Universidad de A Coruña.

A Coruña, 2014

Ana Maŕıa Freire Veiga Dr. Fidel Cacheda Seijo

(PhD Student) (Thesis Supervisor)

(Doctoranda) (Director de la Tesis)

A mis padres, mi constante apoyo.

Acknowledgments

This path would not have been possible without the help of my supervisor, Fidel

Cacheda, who gave me the opportunity of diving again into the Information Retrieval

field, after an unforgettable start in the Information Retrieval Lab. Thank you for

being such a great motivating person, for guiding and advising me in the best way

and, above all, for always letting me choose the next step.

All my gratitude to all the colleagues that have shared with me great moments

in the Telematic Engineering Lab. Thank you for making our office a warm place to

spend lots of hours and for building such a great friendship even out of our blind

walls.

I would like to acknowledge Iadh Ounis and the Information Retrieval Group from

the University of Glasgow. They gave me the opportunity of staying three months in

2012 in one of the leading groups in IR, where I put in touch with an impeccable

way of work. My special gratitude goes to Craig Macdonald: thank you for becoming

my best teacher and reference during all my PhD. I can’t ever forget some of your

encouraging words that became my motto: Don’t think ”is this sufficient?” but ”how

can we do better”. All this work would not have being possible without your valuable

help.

Vorrei ringraziare in modo particolare a tutti i membri del High Performance Com-

puting Lab di Pisa. Per me è stato un vero piacere condividere con voi quattro mesi, me

avete fatto sentire ogni giorno come se fossi a casa mia. Grazie Nicola Tonellotto per

invitarmi a lavorare con te e per avermi permesso di capire quanto importante è avere

un capo esigente.

A special gratitude also for Silvia Lorenzo Freire, for sharing with me her huge

knowledge and offering me her useful help.

I can not forget Roi Blanco, who was discreetly present at every milestone of my

career. Thank you also for opening me the next opportunity of learning, I will make

the most of it.

A great deal of gratitude is due to all the people that have walked with me during

this period. Your encouraging and warm-hearted words were the best incentive to

finish this work. Those who kept me out of this thesis, sharing awesome moments

and messages, have also done a good job.

Mis mayores palabras de agradecimiento son para mi familia, por haber estado siem-

pre a mi lado, incluso cuando mis obligaciones pońıan grandes distancias de por medio.

Vosotros habéis construido la base de todo esto, yo sólo he intentado aprovecharla lo

máximo posible. Os estaré agradecida siempre.

Abstract

Web search engines have to deal with a rapid increase of information, demanded by

high incoming query traffic. This situation has driven companies to build geographi-

cally distributed data centres housing thousands of computers, consuming enormous

amounts of electricity and requiring a huge infrastructure around. At this scale, even

minor efficiency improvements result in large financial savings.

This thesis represents a novel contribution to query scheduling and power con-

sumption state-of-the-art, by assisting large-scale data centres to build more efficient

search engines.

On the one hand, this thesis proposes new scheduling techniques to decrease the

response time of queries, by estimating the server that will be idle soonest.

On the other hand, this thesis defines a simple mathematical model that establi-

shes a threshold between the power and latency of a search engine. Using histori-

cal and current data, the model estimates the incoming query traffic and automati-

cally increases/decreases the necessary number of active machines in the system. We

achieve high energy savings during the whole day, without degrading the latency.

Our experiments have attested the power of both scheduling methods and the

power/latency trade-off model in improving the efficiency and achieving high energy

savings.

Resumen

Los motores de búsqueda actuales deben enfrentarse a un veloz incremento de in-

formación y a un enorme tráfico de consultas. Las grandes compañ́ıas se han visto

obligadas a construir centros de datos geográficamente distribuidos y compuestos

por miles de servidores. El suministro eléctrico supone un enorme gasto energético,

por lo que una pequeña mejora a nivel de eficiencia puede suponer grandes ventajas

económicas.

Esta tesis permitirá a grandes compañ́ıas de Recuperación de Información la cons-

trucción de motores de búsqueda dotados de mayor eficiencia.

Por una parte, esta tesis propone nuevas técnicas de distribución de consultas a

los servidores que las procesan para disminuir su tiempo de respuesta, estimando

cuál será el primer servidor disponible.

Por otra parte, esta tesis define un modelo matemático que establece un balance

entre el tiempo de respuesta de un motor de búsqueda y su consumo energético.

Basándonos en datos históricos y actuales, el modelo estima el tráfico de consultas

entrante y, de modo automático, aumenta/disminuye los servidores necesarios para

procesar las consultas. Se consigue aśı un gran porcentaje de ahorro energético sin

degradar la latencia del sistema.

Nuestros experimentos atestiguan las grandes mejoras alcanzadas en cuanto a

eficiencia y ahorro energético.

Resumo

Os motores de busca actuais deben enfrontarse a un grande incremento de infor-

mación e a un enorme tráfico de consultas. As grandes compañ́ıas v́ıronse obri-

gadas a constrúır centros de datos xeograficamente distribúıdos e compostos por

milleiros de servidores. A subministración eléctrica supón un enorme gasto ener-

xético, polo que una pequena mellora a nivel de eficiencia pode supoñer grandes

vantaxes económicas.

Esta tese permitirá a grandes compañ́ıas de Recuperación de Información a cons-

trución de motores de busca dotados de maior eficiencia.

Por una parte, esta tese propón novas técnicas de distribución de consultas aos

servidores que as procesan para diminúır su tempo de resposta, estimando cál será o

primeiro servidor dispoñible.

Por outra parte, esta tese define un modelo matemático que establece un balance

entre o tempo de resposta dun motor de busca e o seu consumo enerxético. A partir

de datos históricos e actuais, o modelo estima o tráfico de consultas entrantes e auto-

maticamente aumenta/diminúe os servidores necesarios para procesar as consultas.

Conséguese aśı unha grande porcentaxe de aforro enerxético sen degradar a latencia

do sistema.

Os nosos experimentos testemuñan as grandes melloras alcanzadas en canto a

eficiencia e aforro enerxético.

Index

Chapter 1: Thesis Outline . 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Thesis Statement . 2

1.4 Contributions . 3

1.5 Origins of the Material . 3

1.6 Thesis Outline . 4

Chapter 2: Introduction . 7

2.1 Introduction . 7

2.2 Information Retrieval . 7

2.3 Web Information Retrieval . 9

2.4 Distributed Information Retrieval . 12

2.5 Green Information Retrieval . 13

2.6 Evaluating an Information Retrieval System 15

Chapter 3: Evaluation Platforms . 17

3.1 Introduction . 17

3.2 Background . 18

3.2.1 Analytical models . 18

3.2.2 Simulation . 19

3.2.3 Virtualization . 19

3.2.4 Cloud Computing . 20

3.2.5 Real systems . 21

ii Index

3.3 Analysis . 22

3.3.1 Chronological analysis . 22

3.3.2 Real behaviour modelling . 23

3.3.2.1 Studying the suitability of virtualization models for

performing large-scale IR evaluation 24

3.3.3 Cost comparison . 26

3.3.4 Strengths and weaknesses . 27

3.4 Conclusions . 29

Chapter 4: Query Scheduling using Prediction 31

4.1 Introduction . 31

4.2 Background . 32

4.2.1 Scheduling . 32

4.2.2 Dynamic Prunning . 34

4.2.3 Query Efficiency Predictors . 34

4.3 Proposal . 35

4.4 Experimental Setup . 36

4.4.1 Datasets . 36

4.4.2 Predictors . 38

4.4.3 Comparable Algorithms . 40

4.4.4 Simulation Setup . 40

4.5 Results . 42

4.5.1 Query Set A . 42

4.5.2 Query Set B . 43

4.6 Conclusions . 45

Chapter 5: Hybrid Query Scheduling . 55

5.1 Introduction . 55

5.2 Proposal . 56

5.3 Experimental Setup . 57

5.4 Results . 59

5.4.1 1st Factor: Architecture . 59

5.4.2 2nd Factor: Query volume . 60

Index iii

5.4.3 3rd Factor: moving average window m 65

5.5 Conclusions . 66

Chapter 6: Power/Latency Trade-off Model 69

6.1 Introduction . 69

6.2 Background . 70

6.3 Proposal . 71

6.4 Mathematical Model . 71

6.4.1 Architecture . 71

6.4.2 Dynamic Optimisation Model 73

6.4.3 General Dynamic Decision Problem 74

6.4.4 Search Engine Dynamic Model 75

6.4.5 Search Engine Cost Function 76

6.4.6 Latency/Power Decision Problem 78

6.5 Deterministic Approximation . 79

6.5.1 Random variables estimation 79

6.5.2 Deterministic Problem Formulation 80

6.5.3 Deterministic Problem Solutions 81

6.6 Power Cost Function . 82

6.7 Latency Cost Function . 84

6.7.1 Queueing Theory approach . 84

6.7.1.1 Study of the viability of Queueing Theory to the cu-

rrent scenario . 86

6.7.2 Deterministic approach . 87

6.8 Experimental Setup . 88

6.8.1 Search Engine, Documents & Queries 89

6.8.2 Evaluation Measures . 90

6.8.3 Baselines . 90

6.8.4 Parameter Settings . 92

6.9 Results . 92

6.9.1 Baselines . 92

6.9.2 Queueing Theory aproaches . 93

iv Index

6.9.3 Self-adaptive Power/Latency Models 95

6.9.4 Modelling Latency Costs . 98

6.9.5 Effect of time slot length . 100

6.10 Model Generalization . 101

6.11 Conclusions . 102

Chapter 7: Conclusions and Future Work . 105

7.1 Conclusions . 105

7.1.1 Simulation platforms are reliable for large-scale IR experimen-

tation, leading to resource savings. 105

7.1.2 Query efficiency predictors improve query scheduling. 105

7.1.3 Hybrid scheduling methods avoid the overhead inherent to query

predictors and improve the state-of-the-art approaches. 106

7.1.4 Our new power/latency trade-off mathematical model contributes

to achieve high energy savings without compromising the effi-

ciency of the system. 106

7.1.5 M/M/s Queueing Theory model is not suitable for represent-

ing the latency of a large-scale search engine. 107

7.2 Directions for Future Work . 107

7.2.1 IR Evaluation Platforms . 108

7.2.2 Query Scheduling . 108

7.2.3 Power/Latency Trade-off Model 108

Appendix A: Summary in Spanish . 109

A.1 Motivación . 110

A.2 Objetivos . 111

A.3 Estructura . 112

A.4 Conclusiones . 114

A.4.1 Los modelos de simulación son plataformas fiables para desa-

rrollar experimentos a gran escala de Recuperación de Infor-

mación, consiguiendo un gran ahorro de recursos. 114

A.4.2 La predicción del tiempo de ejecución de las consultas mejora

la eficiencia de los motores de búsqueda. 114

Index v

A.4.3 La combinación de métodos de gestión de consultas evita la

pequeña sobrecarga de las técnicas de predicción y mejora las

aproximaciones existentes. 115

A.4.4 El modelo matemático propuesto, consigue obtener un balance

entre consumo energético y latencia de un motor de búsqueda,

proporcionando un alto ahorro energético. 116

A.4.5 El modelo M/M/s de Teoŕıa de Colas no es adecuado para es-

timar la latencia de un motor de búsqueda a gran escala. 116

A.5 Futuras ĺıneas de investigación . 117

A.5.1 Plataformas de Evaluación de RI. 117

A.5.2 Gestión de Consultas. 117

A.5.3 Modelo de Balance Latencia/Consumo Energético. 118

A.6 Publicaciones . 118

Appendix B: Summary in Galician . 121

B.1 Motivación . 122

B.2 Obxectivos . 123

B.3 Estrutura . 124

B.4 Conclusións . 126

B.4.1 Os modelos de simulación son plataformas fiables para desen-

volver experimentos a grande escala de Recuperación de Infor-

mación, conseguindo un grande aforro enerxético. 126

B.4.2 A predicción do tempo de execución das consultas mellora a

eficiencia dos motores de busca. 126

B.4.3 A combinación de métodos de xestión de consultas evita a pe-

quena sobrecarga das técnicas de predición e mellora as aprox-

imacións existentes. 127

B.4.4 O modelo matemático proposto consegue obter un balance en-

tre o consumo enerxético e a latencia dun motor de busca, pro-

porcionando un alto aforro enerxético. 127

B.4.5 O modelo M/M/s de Teoŕıa de Colas non é axeitado para esti-

mar a latenza dun motor de busca a grande escala. 128

vi Index

B.5 Futuras liñas de investigación . 128

B.5.1 Plataformas de Evaluación de RI. 129

B.5.2 Xestión de Consultas. 129

B.5.3 Modelo de Balance Latenza/Consumo Enerxético. 129

B.6 Publicacións . 130

Bibliography . 131

List of Tables

3.1 IR evaluation environments used across the time 23

3.2 IR Evaluation techniques comparison 29

4.1 Processing time of queries of Figure 4.1 33

4.2 All tested query effectiveness predictors 39

4.3 ACTs and AWTs for different settings and scheduling algorithms 42

4.4 Number of replicas for which prediction is worth 44

4.5 Average Completion Times - LOW arrival rate - SET 1 49

4.6 Average Completion Times - LOW arrival rate - SET 2 50

4.7 Average Completion Times - MEDIUM arrival rate - SET 1 51

4.8 Average Completion Times - MEDIUM arrival rate - SET 2 52

4.9 Average Completion Times - HIGH arrival rate - SET 1 53

4.10 Average Completion Times - HIGH arrival rate - SET 2 54

5.1 Subsets of queries selected for experimentation. 58

5.2 ACTs and AWTs for different shard and replica configurations 60

5.3 ACTs and AWTs for different for LOW query traffic 62

5.4 ACTs and AWTs for different for MEDIUM query traffic 63

5.5 ACTs and AWTs for different for HIGH query traffic 64

5.6 ACT using different sizes of moving average window (m) 66

6.1 Notation used within our model. 74

6.2 Statistical analysis for the distribution of queries per slot 87

6.3 Statistics of the two days of the MSN 2006 query log 89

viii List of Tables

6.4 Performance comparison among the Baselines for different M and λ

values. 93

6.5 Performance comparison among QT-LONGTERM, QT-SHORTTERM and

the Baselines for different M and λ values. 94

6.6 Performance comparison among LONGTERM, SHORTTERM and the Base-

lines for different λ and M values. 96

6.7 Comparison of latency functions, while varying λ. 99

6.8 Effect of Ts using LONGTERM . 100

List of Figures

2.1 General scheme of an Information Retrieval System. 8

2.2 General scheme of a Web Information Retrieval System. 11

2.3 Distributed search architecture with shards and replicas. 14

3.1 Mapping between real and virtualized architectures. 20

3.2 Sorting and Disk Access Times for different number of Query Servers . 25

4.1 Query scheduling, where the Broker must select one replica of a Query

Server (shard) to send the incoming query. 33

4.2 Query distribution in a 24 hours time span, with batches selected for

experiments. 38

4.3 Average Waiting Time for different architectures and scheduling meth-

ods under LOW query traffic . 46

4.4 Average Waiting Time for different architectures and scheduling meth-

ods under MEDIUM query traffic . 47

4.5 Average Waiting Time for different architectures and scheduling meth-

ods under HIGH query traffic . 48

5.1 Query distribution in a 24 hours time span covering 1st May 2006. . . 58

5.2 AWTs using 2 shards and 15 replicas 65

5.3 AWTs using 5 shards and 15 replicas. 65

6.1 Our reference architecture. 72

6.2 Transition graph for a deterministic problem with 2 machines. 81

6.3 Number of queries arriving per 15 minute slot for both days. 89

x List of Figures

6.4 Number of machines used along the day by the different methods . . . 97

6.5 Illustration of latency cost function shapes. 99

Chapter 1

Thesis Outline

1.1 Introduction

The rapid evolution of Internet has turned the World Wide Web into the hugest infor-

mation repository ever: the indexed Web by Google contains nearly 20 billion pages1

and the users rise 2.4 billions of people (34% of the world population)2.

This great amount of information is managed by Web Search Engines, that have

evolved their infrastructures into large-scale data centers in order to solve the queries

rapidly. This ambitious objective usually confront two important factors in Informa-

tion Retrieval (IR) systems: latency and power consumption. Typically, when the

queries need to be answered faster, more machines are added to the system in or-

der to decrease waiting time before entering the query servers. On the other hand,

decreasing power consumption comes with an increasing of query response time.

The main objective of this thesis is, on the one hand, proposing novel schedu-

ling techniques that improve the state-of-the-art approaches and reduce the response

time of the queries and, on the other hand, defining a new mathematical model that

automatically establishes a trade-off between latency and power consumption of a

large-scale data center. This way, the novel mathematical model aims to save energy

consumption (with the corresponding financial savings) without compromising the

efficiency of the system. The duel between efficiency and energy consumption seems

to become an agreement.

1http://worldwidewebsize.com - Last update: 2014.
2http://internetworldstats.com - Last update: 2012.

http://worldwidewebsize.com
http://internetworldstats.com

2 Chapter 1. Thesis Outline

1.2 Motivation

Our research is mainly motivated by the following facts:

• There is not so much query scheduling related state-of-the art, and many of the

published techniques assume some inadequate conditions that give rise to an

inefficient scheduling.

• Some IR companies are strongly taking care about their energy consumption.

They are increasing the use of renewable energy and more efficient systems in

order to save energy, reduce carbon and cut IT costs, following Green IR advices.

• It would be really interesting to expand this green behavior to more IR compa-

nies to address environmental challenges and achieve sustainability.

• To the best of our knowledge, there is no previous work in the state-of-the-art

in charge of managing the number of active query servers into a search engine.

• Reducing the waiting time of queries as well as the power consumption also

has an effect on the financial costs of the companies, and this constitutes a

great incentive.

1.3 Thesis Statement

The statements of this thesis are the following:

• The efficiency of distributed and replicated Information Retrieval system can be

improved by means of query efficiency predictors for performing the scheduling.

• Power consumption of large-scale search engines can be reduced without com-

promising their efficiency.

These issues are addressed separately on this thesis, but both of them are oriented

to the same objective: improve the efficiency of the whole system. The first issue

focuses on selecting the most appropriate replica to serve each query, in order to

improve the efficiency of the system. The second issue aims to reduce the number of

replicas used by a data center to answer the incoming queries, based on query traffic

estimations, without degrading the latency of the search engine.

1.4. Contributions 3

1.4 Contributions

The main contributions of this work are the following:

• We attest that simulation platforms are reliable for IR experimentation, leading

to resource savings. We support this conclusion by establishing a complete

analysis of the current IR evaluation platforms.

• We introduce query efficiency predictors as suitable estimators to improve query

scheduling. We develop a new scheduling method for choosing the replica with

the fastest queue to process a query. This method estimates the processing time

of the queued queries and it calculates an approximate time that a new query

must spend in the queue of each replica. Based on this estimation, our method

selects the more suitable replica.

• We also combine the previous method with more simpler scheduling techniques,

developing a new hybrid scheduling method that avoids the overhead inherent

to query predictors calculation and improves the state-of-the art.

• Once we have developed new methods to improve the response time of a search

engine, we focus on reducing the power consumption of the whole system. We

propose a mathematical model that establishes a trade-off between latency and

power consumption. This model attempts to automatically adapt the number

of active replicas in the system based on incoming query traffic. Results attest

that our model allows to achieve high energy savings without compromising

the efficiency of the system.

• We prove the limitation of M/M/s Queueing Theory model for estimating the

latency in search engines. As a consequence, we develop the previous model by

predicting the latency using historical data, attesting the good performance of

this approach.

1.5 Origins of the Material

The material that forms parts of this thesis has found their origins in various con-

ference papers that have been published during the course of the PhD research. In

4 Chapter 1. Thesis Outline

particular:

• Contents in Chapter 3 about the comparison among different IR evaluation plat-

forms have been published as a contribution to a workshop: Analysis of per-

formance evaluation techniques for Large Scale Information Retrieval[41]. Ana

Freire, Fidel Cacheda, Vreixo Formoso and V́ıctor Carneiro. In Proceedings of

LSDS-IR 2013.

• The query scheduling method based on predictors and presented in Chapter 4

has been published in one of the leading IR conferences (A*): Scheduling Queries

Across Replicas [42]. Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ou-

nis and Fidel Cacheda. In Proceedings of SIGIR 2012. (36.5% acceptance).

• The Hybrid query scheduling technique writen in Chapter 5 have been publi-

shed as a full paper: Hybrid query scheduling for a replicated search engine [43].

Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis and Fidel Cacheda.

In Proceedings of ECIR 2013. (29% acceptance).

• The last part of the thesis, that constitutes the Chapter 6 has been recently ac-

cepted as the following full paper: A Self-Adapting Latency/Power Tradeoff Model

for Replicated Search Engines. Ana Freire, Craig Macdonald, Nicola Tonellotto,

Iadh Ounis and Fidel Cacheda. In Proceedings of WSDM 2014. (18% accep-

tance).

1.6 Thesis Outline

The novel contributions of this thesis are presented in chapters 3, 4, 5 and 6. Chapter

2 introduces basic concepts of Information Retrieval for a non Information Retrieval

expert. The organization of the following chapters is as follows:

• Chapter 2 introduces the concepts from IR that this thesis relies on. In parti-

cular, concepts from the general IR process as indexing and retrieval are intro-

duced. We describe how IR systems were evolved into the advent of the Web

and how the distributed systems become necessary to manage all the available

information. This chapter ends by introducing the task of IR evaluation and

1.6. Thesis Outline 5

presents the IR test collections used by the community to evaluate and easily

compare the implemented systems.

• Chapter 3 examines the state-of-the-art IR evaluation platforms and establishes

an exhaustive comparison among them, considering financial costs, difficulty in

developing the evaluation platform and reliability of the results. We develop

and detail some experimentation in order to compare the suitability of the eva-

luated platforms for representing a real search engine.

• Chapter 4 investigates in detail how query efficiency predictors can be used to

propose a new query scheduling method, namely Least Loaded, that improves

the current state-of-the art techniques. We firstly introduce the tasks of query

scheduling and dynamic pruning to later explain the function of query effi-

ciency predictors, that constitute the key concept of the first part of this thesis.

Experimentation is carried out using two datasets in order to test the behavior

of the proposed method under different number of queries, variable incoming

query flow, synthetic and also real query logs. An exhaustive study of the results

and some critical conclusions form the end of this chapter and give way to the

following one.

• Chapter 5 deals with the drawbacks of the Least Loaded method and propose a

new Hybrid scheduling method that combines Least Loaded with previous exist-

ing techniques, as Round Robin, with the aim of exploiting the main advantages

of each methods. In particular, we develop a hybrid scheduling method that

performs as Least Loaded when the incoming query traffic is high, and imitates

a lighter method as Round Robin when the contention is low. This way, the me-

thod takes advantage of the efficient features of query time prediction, but uses

a simpler method that does not include any delay for calculating predictors.

• Chapter 6 is motivated by the concept of Green IR, that refers to the environ-

ment sustainability in large IR data centers. We define a power/latency trade-

off mathematical model whose aim is to save power consumption when there is

low contention in the system and not all the query servers need to be activated.

Therefore, the system automatically turns query servers on or standby depend-

6 Chapter 1. Thesis Outline

ing on the incoming query traffic. Experiments with a real daily query log allow

to conclude the percentages of energy savings into a data centre.

• Chapter 7 closes this thesis with the conclusions drawn from this work, as well

as possible directions of future work across the investigated tasks.

Chapter 2

Introduction

2.1 Introduction

This chapter introduces the reader to the field of Information Retrieval (IR). Sec-

tion 2.2 starts with a brief explanation about the Information Retrieval process, in-

cluding indexing and searching tasks. The evolution of the World Wide Web incurs the

application of IR techniques to retrieve information from on-line repositories, and this

fact cause the birth of the term Web Information Retrieval, described in Section 2.3.

The rapid growth of the Web forces to deploy the IR systems upon large infrastruc-

tures, described in Section 2.4. Such distributed architectures entail high energy

consumption that leads to financial cost raising. Green IR is an arising field that is in

charge of promoting good habits into IR datacentres. This term and some state-of-the

art works that tackle with power consumption are presented in Section 2.5. Finally,

section 2.6 introduces the task of IR evaluation, and gives way to Chapter 3.

2.2 Information Retrieval

The confusion between data and information retrieval is a general perception. In

data retrieval we usually want to check if an item is or is not present in the file. In

information retrieval we normally want to find those items which partially match a

user request and then select the best matching ones [84].

Information Retrieval deals with the representation, storage, organization of and

8 Chapter 2. Introduction

Document
Collection

Indexer

?
User's query

term 1 [1,2[5,6]] -- [2,1[11]] -- [4,3[1,5,8]]...
term 2 [2,1[5]] -- [4,4[2,8,9,15]] -- ...
...

Inverted Index

Retrieval and Ranking

1. Document 2
2. Document 10
3. Document 25
...

Results

Parser and Query Expansion

INDEXING PROCESS RETRIEVAL PROCESS

Parser

Figure 2.1: General scheme of an Information Retrieval System.

access to information items [9]. The whole process aims to solve a user information

need, that she/he manifests in the form of a query (bag of keywords). The IR system

is in charge of retrieving the items that are relevant to the user’s information need.

The user satisfaction is measured in terms of the relevance of the retrieved items and

the time that the system spends in retrieving them. This way, if some non-relevant

items are ranked higher than the relevant ones, the answer is unsatisfactory [64].

Accordingly, we can state the objective of an IR system as follows: to retrieve

relevant items to satisfy the user’s information need and rank these items higher than

non-relevant ones.

These pieces of information that we refer to as items are usually in the form

of documents [84], but these documents can represent web pages, book chapters,

emails, and even non-textual information such as multimedia data (images, videos

and music).

The general process of Information Retrieval is represented in figure 2.1.

The first task is processing the documents that will be indexed, i.e., stopwords

(common terms with low semantic content, such as prepositions) are filtered out and

some verbs are reduced to their stem (stemming). The resulting indexing terms will be

used to build an index of the collection. An index is a critical data structure because

2.3. Web Information Retrieval 9

it allows fast searching over large volumes of data. The most popular index structure

is an inverted index [10]. Its basic structure is composed by the vocabulary and the

occurrences. The vocabulary corresponds to the set of words previously obtained after

the processing of the documents. The occurrences correspond to the documents that

contain each word of the vocabulary. If we refer to a full inverted index, the structure

also includes the positions of the tems of the vocabulary into each document (see

Figure 2.1).

Once the indices are built (indexing process), the retrieval process can be started.

When a query arrives at the system, it is parsed in the same way the documents were

(stopwords, stemming...). Additionally, the query expansion process is applied to the

incoming query. This process reformulates the query using synonyms or correcting

errors to improve the retrieval process.

Subsequently, the retrieval process is performed, by searching the terms of the re-

formulated query across the indices. Different term-weighting schemes derived from

different models of retrieval can be followed to compute a score of each document

(i.e. BM-25 [85], derived from the probabilistic model).

The system sorts the documents based on the estimated importance to the user

(score) and straightaway it presents the ranking of final documents.

Two key terms are defined in the retrieval process: efficiency and effectiveness.

Efficiency is mostly concerned with resources used to answer the query, and it is

usually related to the time spent in giving an answer to the user. Effectiveness refers

to the quality of the retrieved documents regarding their appropriateness to the user’s

information need. This thesis is concerned with the term efficiency, in the sense that

we try to reduce the response time of the search engines at the same time we propose

to save resources, specially in the field fo Web Information Retrieval.

2.3 Web Information Retrieval

The World Wide Web (Web) was created by Berners-Lee [12] in the early 90’s at

CERN1 for sharing research documents. From this modest purpose, the Web has

become the largest repository ever, making our life unthinkable without it.

1CERN: European Organization for Nuclear Research (http://home.web.cern.ch/)

http://home.web.cern.ch/

10 Chapter 2. Introduction

The incredible leap of the Web has created an explosion in the field of Informa-

tion Retrieval. The diversity of the web and the fact that everyone can generate

content leads to the necessity of efficiently manage the on-line information, but the

fast-changing of this kind of material makes it very different from the traditional col-

lections. Web search engines have been (and continue) adapting their platforms to

this such amount of information. Yahoo2, Google3 or Yandex4 are examples of wold

famous search engines (the third one is stomping in Russia) that answer millions of

queries daily - Google was reported to answer more than one billion queries per day 5.

The nature of the Web incurs several challenges for IR systems [10, 25]:

• Distributed data: web pages are stored in geographically distributed servers,

what makes the access of information an arduous task.

• Huge data volume: thousands of documents are stored and increase everyday.

• Constant change of data: electronic documents are subject to changes with

more or less frequency and they can also be deleted.

• Unstructured data: web pages do not follow an unique structure.

• Quality of data: in most of the cases there is not an editorial process, and this

lack of control causes lots of errors: false information, typing mistakes, etc.

• Heterogeneous data: different kind of files (i.e. videos, photos or text), different

languages and encodings make the web an heterogeneous data source.

In order to deal with many of these obstacles, a crucial module is included at the

beginning of the IR process: crawler (see Figure 2.2). A Web Crawler, Web Spider or

Web Robot is a software for downloading pages from the Web automatically [10]. Web

Crawlers collect web pages by sending requests to Web Servers across the network.

Later, these web pages will be used as the collection to index and search by an IR

system.

If we add the crawling module to Figure 2.1, we obtain the general scheme for

Web IR (Figure 2.2).
2http://www.yahoo.com
3http://www.google.com
4http://www.yandex.com
5http://www.google.com/competition/howgooglesearchworks.html.

http://www.yahoo.com
http://www.google.com
http://www.yandex.com
http://www.google.com/competition/howgooglesearchworks.html

2.3. Web Information Retrieval 11

Document
Collection

Indexer

?
User's query

term 1 [1,2[5,6]] -- [2,1[11]] -- [4,3[1,5,8]]...
term 2 [2,1[5]] -- [4,4[2,8,9,15]] -- ...
...

Inverted Index

Retrieval and Ranking

1. Document 2
2. Document 10
3. Document 25
...

Results

Parser and Query Expansion

INDEXING PROCESS RETRIEVAL PROCESS

Parser

Internet

Crawler

CRAWLING PROCESS

Figure 2.2: General scheme of a Web Information Retrieval System.

Crawlers need to tackle with several issues such as hidden pages (they can not

be reached through links), duplicates (various URLs referring to the same content)

or Soft-404 pages (custom error pages), that make the crawling process a non-trivial

task, that is why efficient crawling has become essential to cope with the fast change

of the Web content.

Apart from the crawling process, at retrieval time, web search engines perform in

a different way as the classical IR systems. Current world famous search engines have

developed extraordinary formulas to place the most useful web pages on top of the

results set. Page Rank [14], the core of Google, is one of these world famous formulas

for web retrieval. Instead of calculating the relevance of a web page considering only

the content of the pages, Page Rank also adds to the equation the external links that

reference those pages. A wide IR community is working in improving the current

ranking formulas to achieve the best document ranking.

Nevertheless, apart from the quality of the results, a web search engine must ans-

12 Chapter 2. Introduction

wer the queries with sub-second response times. Users have the freedom of choosing

their web searcher, and the speed in finding their answers is a key point to be consid-

ered. Next section is in charge of introducing how these large-scale search engines

can serve thousands of queries in less than a second.

2.4 Distributed Information Retrieval

To answer queries with sub-second response times, large Information Retrieval sys-

tems such as Web search engines typically deploy distributed architectures [35]. In

such architectures, when new queries arrive at a broker, it broadcasts them to the

query servers, that contain a subindex of the collection, before collating and merging

the results and producing the final top K retrieved set for presentation to the user.

There are two basic ways of partitioning an index into several shards:

• Term Partitioning: each partition holds a subset of the global vocabulary. There-

fore, each query server contains all the information related to the terms present

in its vocabulary subset. This Document Partitioning approach can also be found

in the literature as System Index [91] or Global Index [83] organization. When

a new query arrives, the broker must split and send their terms to the query

server containing the information related to each of them. In a document parti-

tioning organization with k parts, a query of |q| terms requires k · |q| disk reads,

regarding the |q| reads needed by term partitioning. The main disadvantages

of this organization are as follows: the heaviest process is carried out by the

broker, and this can result in a bottleneck; the query servers send the inverted

lists to the broker, and this may cause bandwidth saturation. Term partitioning

can also lead to load imbalance, as the distribution of term occurrences in both

collections and query streams is highly skewed [91].

• Document Partitioning: this approach assigns a subset of the documents in the

collection to each subindex (also called shard). Partitioning can be performed

by splitting a monolithic index into the designated subsets by document ids.

Alternatively, subcollections of the full document collection can be created, and

a separate subindex built for each subcollection. Whichever way partitioning is

2.5. Green Information Retrieval 13

performed, the resulting subindexes are largely autonomous, capable by them-

selves of answering queries upon the subcollections they manage [96]. This

Document Partitioning approach can also be found in the literature as Host In-

dex [91] or Local Index [83] organization. In this approach, all queries must

be sent by the broker to all query servers, as each of them contains a different

subset of the collection. The advantages of Document Partitioning are the fol-

lowing: it is easy to build and maintain and queries are processed in a highly

parallelized way, resulting in good average response time. The main disadvan-

tage is the following: as each query server process each query in an entirely

autonomous way, the use of local statistics can lead to a degradation in re-

trieval effectiveness, as local statistics may not represent the global ones in the

full collection. Alternatively, global statistics can be distributed by the broker to

all query servers. Document partitioning will be the organization used in this

thesis for index distribution.

To ensure high throughput rates, shards are often replicated, so that one of mul-

tiple query servers can provide the results for a single shard [24]. Indeed, with

multiple replicas of the same shard, more queries can be processed in parallel on

identical shard copies, thus reducing the waiting time of incoming queries. In this

way, a cluster of machines operating a large IR system is often arranged according to

two orthogonal dimensions [35], as shown in Figure 2.3: the first dimension depends

on the number of shards, to improve the processing time of single queries, while the

second dimension determines the number of replicas of each shard, to improve the

query throughput of the whole system.

These large infrastructures achieve great response time and thoughtput, at the

cost of generating some negative consequences that will be detailed in next section.

2.5 Green Information Retrieval

Commercial web search engines are expected to process queries under tight response

time constraints and be able to operate under heavy query traffic loads. Operating

under these conditions requires building a very large infrastructure involving thou-

sands of computers, with corresponding continuous operating costs. In particular,

14 Chapter 2. Introduction

Query
Stream

Shards

Replicas

Query
Server

Query
Server

Query
Server

Query
Broker

Figure 2.3: Distributed search architecture with shards and replicas.

electricity costs (including power and cooling) form an important part of the opera-

tional costs of search engine companies [50]. Indeed, in 2011, Google’s overall power

consumption was reported6 to be 2.68 million MWh.

In recent years, the consciousness of environmental problems tied to Green-House

Gases has increased. In 2007, analyst Gartner estimated that Information and Com-

munication Technology is responsible for 2% of the total emissions [1]. Much re-

search effort has been oriented to achieve power savings for data centres or Internet

servers [38, 55, 59, 74, 95] taking into account different factors such as the devices’

power consumption and/or cooling systems. Moreover, large IT companies such as

Microsoft7 and Google8 are making efforts in reducing their carbon emissions, while

also publishing their carbon footprints and goals.

Some directions on how to proceed in order to save power consumption in data

centres are given in [59], where Lin et al. showed that the most effective and aggres-

6http://www.google.com/green/.
7http://www.microsoft.com/environment/
8http://www.google.com/green/

http://www.google.com/green/
http://www.microsoft.com/environment/
http://www.google.com/green/

2.6. Evaluating an Information Retrieval System 15

sive power saving comes from turning off components that are not used, such as CPU,

disk, and memory, which consume substantial power when they are turned on, even

with no active workload. Nevertheless, they remark on several challenges regarding

this technique: the workload scheduling of the remaining active systems to preserve

performance and the cost of waking up a sleeping component.

Chowdhury [32] recently introduced the term Green IR, that maps this concern

into the Information Retrieval field. His road-map for improving environmental im-

pact of Information Retrieval systems addresses the power efficiency of end-user de-

vices as well as within the search engine itself.

Green behaviour must be adopted by IR systems deployers not only at retrieval

process, but also during previous tasks such as evaluation.

2.6 Evaluating an Information Retrieval System

After reading the previous sections, we can conclude that a continuous and ambitious

aim in IR research is the improvement of IR systems behavior [25]: search engines

compete for satisfying user’s search needs and offering the better results to a query.

If we want to establish a comparison among different IR systems, we must be able to

quantify their quality. Current search engines offer lots of aspects to be considering

for user evaluation, as the usability of the system, the simplicity of the interface, the

quality and speed of the result set or even the possibility of refine a search. As this

thesis is not concerned with physical aspects of the search engine, we will mainly

focus in the evaluation of the following factor: efficiency.

Evaluation is a major area of research in Information Retrieval. To ensure the re-

peatability of the IR experiments, researchers re-use shared test collections composed

of the following items: a standard document collection; a standard set of queries or

topics to be run against that document collection and a standard set of judgments,

created by human assessors, that indicates which documents in the collection are

relevant to each query. The latter are sometimes known as qrels.

This standardization allows to easily reproduce other’s experiments and suitably

compare results among different studies. Some important test collections are listed

bellow [69]:

16 Chapter 2. Introduction

• The Text REtrieval Conference (TREC)9 consists of a series of workshops cover-

ing different IR areas called tracks. Each track is provided with the necessary

infrastructure (i.e.: datasets, topics) for large-scale evaluation, concerning the

topic of the track. These are the most used test collections for IR evaluation.

• The Cranfield collection was the first test collection for measuring IR effective-

ness (late 1950s) but it size is not large enough to evaluate the current large-

scale IR systems.

• Cross Language Evaluation Forum (CLEF): focused on cross-language Informa-

tion Retrieval.

• NII Test Collections for IR Systems (NTCIR): this is a project that built several test

collections of similar sizes to the TREC ones. It is also related to cross-language

but mainly focused on East Asian language.

In this thesis GOV2 and ClueWeb09 TREC collections will be used. The former is

composed of 25 million pages crawled from the .gov domain to use in the Terabyte

Track. The latter represents a larger web collection for IR evaluation - 1 billion pages

- and it was used by several tracks of the TREC conference. A subset of this collection

(ClueWeb09 Category B) has been separated by filtering only the first 50 million

English pages.

An important factor to be considered in large-scale IR evaluation is the platform

on which the experiments will be carried out. A wide discussion can be made about

this topic, so next Chapter will be in charge of discussing the different alternatives

we have at our disposal for running our experiments.

9http://trec.nist.gov/

http://trec.nist.gov/

Chapter 3

Evaluation Platforms

3.1 Introduction

The performance evaluation of large-scale IR systems is challenging. Big companies of

web search engines can afford to have many computers (probably thousands) devoted

to the development and testing of the IR systems. Unfortunately, this is not the case

for most of the research groups. In this case, analytical, simulation or virtualization

models are used instead (or even a combination of them [83]). When using a model,

independently of its type, one of the first tasks is to compare its performance with a

real system in order to verify that both systems present a similar behavior.

This chapter aims to perform a complete study about the most useful large-scale

IR evaluation platforms. The main objectives of this study is as follows:

1. On one hand, establishing some recommendations for IR researchers in order to

make them easier to choose the most suitable large-scale IR evaluation platform

for their necessities.

2. On the other hand, selecting the most suitable IR evaluation platform for the

experiments we will perform in the remainder of this thesis.

This chapter is structured as follows: Section 3.2 presents a state-of-the-art review

across the different distributed IR evaluation environments, by indicating some pu-

blished examples over time. Then, in Section 3.3 we compare the different options,

by analysing their reliability and cost and detailing their strengths and weaknesses.

18 Chapter 3. Evaluation Platforms

Finally, Section 3.4 summarizes the main conclusions, which allow us to choose the

most suitable evaluation platform for performing our experiments.

3.2 Background

In this section we analyse the available options to evaluate IR systems, mainly dis-

tributed and parallel, in terms of efficiency. We introduce each approach and make a

compilation of some works that published their results using the following platforms:

1. Analytical models

2. Simulation

3. Virtualization

4. Cloud Computing

5. Real Systems

3.2.1 Analytical models

This approach consists in developing a mathematical model to represent the behavior

of a search engine: queuing theory, average times estimation, etc. Usually some

features (i.e.: network delays or seek time for disk) are removed to keep the model

simpler and easy to define and manage. However, as the number of modelled features

increases, so does the accuracy.

Several works are based on this models, such as [31], where the authors use the

queueing network theory to model a distributed search engine. The processing time

in a query server is modeled as a function of the number of documents indexed. They

build a framework in order to analyse distributed architectures for search engines

in terms of response time, throughput and utilization. They also introduced a new

cost-based analysis model that finds an optimal set of solutions to consider when

constructing a search system.

Another analytical model is used in [83] to study how query performance is af-

fected by the index organization, the network speed, and the disk transfer rate. Their

model represents the following retrieval steps: seeking disks, reading inverted lists

3.2. Background 19

from disk and processing weights according to the vector model, local ranking of

retrieved documents, transferring ranked documents to the central broker, and final

ranking at the central broker. This whole retrieval process is replicated for a batch of

queries by using a small simulator written in C++. Some of the analytical parameters

are checked against a real system.

3.2.2 Simulation

Simulation recreates a set of conditions artificially to represent the search process. It

represents more complex behaviors than an analytical model. This is a widely used

technique for distributed IR experiments.

A simulation environment called DeNet [60] is used in [91] for comparing the per-

formance impact on query processing of various physical organizations for inverted

list. Some simulation parameters as disk bandwidth and I/O settings are extracted

from [30]. Lu et al. [61] use simulation to represent a simple peer-to-peer network.

Cacheda et al. [23] simulate a distributed IR system using document partitioning by

using JavaSim1, which lies in a simulation package written in Java that allows to rep-

resent simulation processes (i.e.: broker, query servers), events (i.e.: query arrivals),

queueing algorithms and even statistical routines (you can simulate different query

arrival distributions, such as exponential). This platform allows not only the repre-

sentation of the different components in a distributed and replicated IR system, but

also the characteristics of the network that connects them. Another recent approach

[71] uses a simulator implemented using C++ and the LibCppSim library [73] for

evaluating a new cache hierarchy for web search engines.

3.2.3 Virtualization

Virtualization is a technique that allows the user to run several virtual environments

into one physical machine, which is called host. The user can configure each virtual

environment on a different way, using different operative systems or setting param-

eters, quite similar to a real machine. This technology is based on methodologies

like hardware and software partitioning, partial or complete machine simulation and

1http://javasim.codehaus.org

http://javasim.codehaus.org

20 Chapter 3. Evaluation Platforms

others [11]. Some well-known commercial PC emulators are KVM2, VMware3, Virtu-

alBox4 or Virtual PC5.

Typical virtualization scheme is shown in Figure 3.1, which shows how the virtual

servers that represent the physical ones are hosted into a more powerful machine.

Figure 3.1: Mapping between real and virtualized architectures.

3.2.4 Cloud Computing

The term Cloud Computing has grown in interest. It refers to a modern approach

that gives users access to virtual servers, by avoiding the maintenance of physical

hardware and reducing the cost and development process. These services are broadly

divided into several categories:

• SaaS (Software as a Service): gives the user access to software and its related

data hosted on the cloud.

• STaaS (STorage as a Service): cloud approach that works as a remote disk

where the user can store his data (i.e.: Dropbox6 or Google Drive7).

• PaaS (Platform as a Service): gives user a deployment environment for creating

software by using the provider’s tools.

2http://http://www.linux-kvm.org/
3http://www.vmware.com/
4http://www.virtualbox.org/
5http://www.microsoft.com/windows/virtual-pc/
6http://www.dropbox.com
7http://drive.google.com

http://http://www.linux-kvm.org/
http://www.vmware.com/
http://www.virtualbox.org/
http://www.microsoft.com/windows/virtual-pc/
http://www.dropbox.com
http://drive.google.com

3.2. Background 21

• IaaS (Infrastructure as a Service): the user takes control over the cloud, since

he manages all the resources (sometimes also physical resources), installs his

own operative systems and applications, manage the storage system and the

network.

Cloud computing services are sold on demand, typically by the minute or the

hour. It is elastic, in the sense that a user can have as much or as little of a service as

they want at any given time. The services are fully managed by the provider, so the

consumer needs nothing but a personal computer and Internet access.

Internet offers an increasing number of cloud computing solutions as Amazon

Elastic Compute Cloud (Amazon EC2)8, IBM Smart Cloud9, Google Compute En-

gine10 and HP Cloud Compute11.

Authors of [81] present a set of techonologies to run large scale distributed IR

systems using both virtualization and cloud computing. This work consitutes an im-

portant step forward in using Grid infrastructures for IR purposes.

3.2.5 Real systems

An example of this kind of systems is [7], where authors implement a real distributed

architecture and compare the impact of global vs. local partitioning on system per-

formance. A more recent approach [70] describes and evaluates an efficient method

for performing parallel query processing upon distributed inverted files. The expe-

riments were performed on a cluster with dual processors (2.8 GHz) that uses NFS

mounted directories. This system has 2 racks of 6 shelves each with 10 blades to

achieve 120 processors. In [8], the authors investigate and analyse the (im)balance

among homogeneous index servers in a cluster for parallel query processing. They

configure the cluster with 2 and 7 local inverted indexes.

8http://aws.amazon.com/ec2/
9http://www.ibm.com/cloud-computing

10http://cloud.google.com/products/compute-engine
11http://www.hpcloud.com

http://aws.amazon.com/ec2/
http://www.ibm.com/cloud-computing
http://cloud.google.com/products/compute-engine
http://www.hpcloud.com

22 Chapter 3. Evaluation Platforms

3.3 Analysis

This section is in charge of studying in depth the different evaluation platforms pre-

sented in previous section. Several factors must be considered to establish a compar-

ison among the different options we have, and each subsection handles one of them.

This way, Section 3.3.1 analyses the use of the different platforms across time. Sec-

tion 3.3.2 aims to conclude which option is more faithful to a real platform. Financial

costs are analysed in Section 3.3.3 and a summary of the strengths and weaknesses

is presented in Section 3.3.4.

3.3.1 Chronological analysis

In order to study the chronological evaluation of the IR evaluation platforms, we

have collected some published works that specify what platforms they use. Table 3.1

shows interesting data: the platform used (Type), the year of publication (Year), how

many computers they use (UH) and how many they represent (MEH) (in real systems,

UH=MEH). Our conclusions are as follows:

• Regarding Analytical approach, few examples of these platforms were found,

and their use is not recent (encountered examples were performed in 1998 and

2003).

• Simulation is a widely used option across time. The first studies we have found

using this approach come from 1990, and we can also find many examples

nowadays.

• The architectures with the maximum number of machines were implemented

by simulation: 2048 machines in [71] and 1024 machines in [23] and [26].

• Real Systems limit the scale of the experiments (most of them use less than 8

machines), unless in case of big companies with high amount of resources [70].

• Also in case of big companies, they use to build their systems upon simulation

platforms, such as in [71] and [6].

3.3. Analysis 23

Table 3.1: IR evaluation environments used across the time. UH = Number of hosts
used for evaluation; MEH = Maximum number of evaluated hosts. (Blanks = UH is
not indicated in the paper).

Paper Year Type UH MEH
[21] 1990 Simulation 16
[91] 1993 Simulation 16
[51] 1993 Simulation 30
[27] 1997 Simulation 128
[83] 1998 Analytical 64
[62] 2000 Simulation 32
[68] 2000 Real 8 8
[7] 2001 Real 5 5

[31] 2003 Analytical 24
[26] 2005 Simulation 1 1024
[75] 2006 Real 8 8
[76] 2007 Real 8 8
[8] 2007 Real 7 7

[23] 2007 Simulation 1 1024
[70] 2007 Real 120 120
[71] 2010 Simulation 2048
[6] 2012 Simulation 512

3.3.2 Real behaviour modelling

The evaluation platforms presented in Section 3.2 fit the real systems behaviour to a

greater or lesser extent. This section aims to study the level of accuracy of analytical,

simulation and virtualization models (in the case of cloud computing, if we chose

IAAS approach, it would behave as a real system; otherwise, it can be considered a

virtualization platform).

Analytical approaches used to be the least reliable solutions, due to the difficulty

of mapping all the features of a real system into an analytical model. Each model is

inherently dependent on the system we want to represent.

With regard to simulation models, Cacheda et al. [23] designed a simulation plat-

form to represent a distributed IR architecture and they clearly accepted the equiva-

lence between both systems (with p-values higher than 0.889 – A high p-value means

that there is no statistically significant difference between the two populations –).

Usually, virtualization platforms are thought to reproduce closely the behaviour

24 Chapter 3. Evaluation Platforms

of a real system. However, to the best of our knowledge, there are not previous

studies in charge of attesting the level of accuracy of the virtualization platforms, so

we decided to perform our own tests to validate this behaviour.

3.3.2.1 Studying the suitability of virtualization models for performing large-

scale IR evaluation

These experiments allowed us to know not only the different parameters that must

be taken into account for achieving similar performance than in real systems, but also

the limitations of the virtualization platforms. The experimental setup consisted on

the following characteristics:

• We developed a real distributed IR system, and afterwards, the same system

was implemented in Kernel-based Virtual Machine (KVM) [57].

• The architecture we employed consisted of IR-Components [63] for the distri-

bution of brokers and query servers and Managing Gigabytes for Java [40] for

query solving.

• Both physical and virtual experiments use the same topology (see Figure 3.2).

It consists of a broker which manages several query servers. The number of

these query servers is the variable factor in this topology: 2, 3, 5.

• In the real environment, each query server has the following characteristics:

Processor Intel(R) Pentium 4 with 2.6 GHz, 512 MB RAM and Ubuntu Server

Operating System. We did not use high performance resources, as the chosen

data set was smaller than the ones used in real systems. This way, we selected

machines with features according to our work load, which is a common practice

in IR research [8].

• In the virtualized environment, the guests were configured as the real comput-

ers. The main specifications of the host are the following: Processor Inter(R)

Xeon(R) CPU X3450 2.7 GHz with 16GB RAM and 2x4 processors.

• The dataset used for the experiments was GOV2 Test Collection from the Ter-

abyte Track.

3.3. Analysis 25

Figure 3.2: Sorting and Disk Access Times for different number of Query Servers: 2
(a), 3 (b) and 5 (c).

26 Chapter 3. Evaluation Platforms

The first experiment dealt with the query servers sorting times. We compared the

real and virtual times, as it can be seen in Figure 3.2. Outliers were removed from

the study. A linear correlation can be clearly established, that explains the 98% of

the variability (correlation coefficient (R2) over 98%). It presents a slope around 2.3,

being the virtual query servers faster than the real ones. This is reasonable by consid-

ering that the virtual host has more processing capacity than the real query servers.

However, as the number of query servers increases, the difference between the real

and virtual times is reduced (and so is the slope), due to the higher load of the host.

This factor is a limitation of virtualization platforms: as the number of query servers

is increased, the host resources for each machine are reduced, reaching a point where

they are exhausted and the virtualized system begins to perform worse than the real

one. It would be very interesting to find this threshold (number of query servers) and

test other approaches for solving this drawback, as the one proposed in [22]. They

suggest the building of a scaled-down version of a search engine using virtualization

tools in order to create a real distributed system. Following this approach, scaling-

down a distributed IR system would maintain the behavior of the whole system and

allow the saving of computer resources.

The second experiment is regarding the disk access time of the query servers. In

case of 3 and 5 query servers, it can be seen clearly the typical behavior of systems

with disk cache (some values are moved away from the main linear correlation).

The host maintains a disk cache that improves the response time in the virtual query

servers. This problem can be avoided by disabling the disk cache in the host, but the

chosen virtualization tool did not allow us to configure the cache. Future experiments

include using a more complete virtualization tool to get an even better correlation.

3.3.3 Cost comparison

A crucial factor for deciding our evaluation platform is the cost it will incur in or-

der to finish the experimentation process under a fixed budget. Some aspects to be

considered regarding financial costs are the following:

• Obviously, the construction of an analytical or simulation model only concerns

the time spent and the machine used to construct the model. This way, these

3.3. Analysis 27

simulation and analytical platforms constitute the cheapest options. Besides,

they contribute to the Green IR behaviour, by avoiding the use of many real

servers.

• The cost of using virtualization software on a single machine is determined by

the virtualization tool, as it can be commercial or free software. Some compa-

nies offer free trials or low-functional software for free. This way, we should

only consider the number of hosts and their power consumption.

• The cost of cloud computing services changes depending on the hosting com-

pany. These companies consider different factors to make the budget, as the

user location, the kind of physical resources the user want to use (RAM, CPU...),

the number of computing hours, or the quantity of transferred data. While Ama-

zon EC2 is targeting technology-reliant businesses that are turning to the cloud

to host their websites, databases and storage, Google is focused initially on

research and development teams that may have a need for high-performance

computing. The strategy is seen in the pricing models: Amazon EC2 offers re-

served instance pricing discounts, in which customers agree to use a compute

instance for months or even years. Google’s cloud is priced by smaller time

chunks and therefore aimed at shorter-lived projects. Once the user has de-

cided to use cloud computing to develop his experiments, there are several web

pages [2, 3] that compare the existing cloud computing platforms and they can

help the user to choose the most suitable host depending on his research and

budget.

• The cost related to a real environment is directly proportional to the number of

machines of our architecture. Factors as power consumption and air condition-

ing must be considered apart from hardware costs.

3.3.4 Strengths and weaknesses

In order to find the best scenario for the evaluation, in terms of efficiency of IR sys-

tems, we summarize in this section the advantages and drawbacks of the approaches

described previously:

28 Chapter 3. Evaluation Platforms

• Regarding the analytical model, its main drawback is that it cannot represent all

the characteristics of a real IR system. Although this approach offers high sav-

ings, it usually involves the development of complex models and some features

have to be dropped to keep the model simple and easy to implement.

• Using a simulation model, we can represent more complex behaviors than with

an analytical one. For example, instead of assuming a fixed transfer time for

the network, we can simulate its behavior (e.g. we could detect a network sat-

uration). Besides, some works have attested the high reliability of these models

if they are designing in detail [23, 26]. That is maybe the reason why simula-

tion has been widely used across time, non only in academical context or small

research labs, but also in big companies with enough resources. Besides, this

approach, together with the analytical one, are the two platforms that respect

the most the Green IR behaviour.

• Virtualization machines can be configured with really similar settings as real

ones, but we must be careful with phenomena such as caching and network

settings, that may cause unreliable results (see Section 3.3.2). Besides, previ-

ous experiments we performed, comparing real vs. virtual distributed IR sys-

tems, showed another limitation of virtualization platforms: as the number of

virtual query servers launched on the host is increased, the host resources for

each of them are reduced, reaching a point where they are exhausted and the

virtualized system begins to perform worse than the real one.

• If we focus on cloud computing virtualization, some works [72] identify the

strengths, weaknesses, opportunities and threats for the cloud computing in-

dustry. As strengths of cloud computing we can emphasize the saving of re-

sources by the user. This also allows the time saving with regard to the hard-

ware maintenance an software updating, as this tasks are usually performed by

the host company. The main disadvantage regarding cloud computing is the

risk of storing your data outside of your company, on external servers. Besides,

this demands high security on data interchanging, which is not always satisfied.

• The reliability of real systems is indisputable; however, if we have not enough

3.4. Conclusions 29

resources, some problems can be hidden (i.e.: network saturation) and the

systems may have low capacity for big data collections.

3.4 Conclusions

After analysing analytical, simulation, virtualization, cloud computing and real solu-

tions considering different aspects, we summarize our conclusions in table 3.2.

Table 3.2: IR Evaluation techniques comparison

Approach Finaltial Cost Setup Difficulty Reliability
Analytical models Low High Low
Simulation models Low High Medium

Virtualization Medium High Medium
Cloud Computing Medium Low Medium/High

Real Systems High Low High

Although Cloud Computing seems to be a good candidate to perform large-scale

IR systems, its problems relying on security data interchange make it a controversial

approach. Besides, cloud computing servers usually share their resources among dif-

ferent tasks and users, and this can alter their results. Virtualization is not a widely

used tool for evaluation, maybe due to the difficulty for controlling some crucial pa-

rameters or just due to expensive licences in some specifical distributions. Neverthe-

less, simulation is a really economical approach used largely for IR evaluation, also

for big companies, as we could see in table 3.1. This reason, the lack of real resources,

the fact that some works [23] had developed a high reliable simulation environment

for distributed IR architectures and the desired Green IR behaviour, make us to chose

simulation for the evaluation processes of this thesis.

Chapter 4

Query Scheduling using Prediction

4.1 Introduction

As it was introduced in Chapter 2 a distributed and replicated information retrieval

system consists of several query servers, each of them storing a subset of the collec-

tion, and several replicas for each query server in order to increase the throughput of

the whole system.

When the broker of a distributed IR system receives a query, it must obtain results

for that query from each shard, before returning the merged list to the user. Hence,

for each shard, it must select the replica that will process the query. The selected

replica queues the query until it is ready to process it and return the results to the

broker. There are advantages to the user experience1 and overall system throughput

if each query is scheduled such that the time it spends waiting in a replica’s queue is

minimized. Hence, replica selection is carried out by a scheduling method, such that

the replica selected will permit the query to be answered in as little time as possible.

The problem tackled in this chapter is how a broker should select (schedule) the

most suitable replica of a given shard in order to reduce the queue waiting time. For

example, the replica with the minimum number of queued queries can be selected.

However, the response time for different queries can vary widely, particularly if

dynamic pruning is employed [92], such as WAND [17], which aims to avoid the scor-

ing of postings for documents that cannot make the top K retrieved set. Hence, the

1Indeed, users exhibit preferences for faster search engines [18].

32 Chapter 4. Query Scheduling using Prediction

accurate choice of replica is made more difficult, as the number of queries queued by a

given query server does not accurately predict the processing backlog of the server. A

recently proposed technique for query efficiency prediction [92] offers a plausible man-

ner to estimate the workload of a replica. Hence, we hypothesise that query efficiency

prediction [67] can permit accurate query scheduling in a distributed/replicated IR

system. Indeed, to the best of our knowledge, there are no other studies that apply

query efficiency predictors for scheduling in a distributed/replicated IR system.

4.2 Background

4.2.1 Scheduling

Historically, the scheduling of queries to replicas has not seen much examination in

the IR literature. Here, we show three scheduling methods that can be adopted to

select the replica for a new query:

• Random (RD): the replica is chosen randomly.

• Round Robin (RR): aims to balance the query traffic across the available repli-

cas. In particular, modulo the number of replicas, if replica i was selected for

the previous query, replica i+ 1 is used for the current query.

• Queue Length (QL): schedules the query to the replica with the minimum

number of queries waiting. However, as queries have different response times,

one query may be held up behind a slow query, when another replica with

shorter queries was available.

Such simple scheduling methods minimize queueing time only when each query

has an equal response time [58]. But this is clearly far from reality: all search en-

gines are based on the inverted index data structure [35], which permits the efficient

lookup of all documents that contain occurrences of each term in a query. The traver-

sal of postings lists in the inverted index represents a large contribution to the time

for a search engine to retrieve documents in response to a query. Indeed, Moffat et

al. [76] stated that the response time of a query is related to the posting list lengths

of its constituent query terms.

4.2. Background 33

q1 q4Replica 1

q2 q5Replica 2

q3Replica 3

SHARD 1

?
Scheduling

BROKER

Queues

Incoming Queries

 q6

Figure 4.1: Query scheduling, where the Broker must select one replica of a Query
Server (shard) to send the incoming query.

Figure 4.1 represents a scenario where a Broker must select one replica of a query

server for processing the new query q6. This decision is made based on the scheduling

method used. In example:

• Random would select a random replica amongReplica1,Replica2 andReplica3.

• Round Robin would select Replica3, as q5 was scheduled to Replica2. We as-

sume that Round Robin was the method used to scheduled the queries presen-

ted in the Figure.

• Queue Length would also select Replica3, as that is the low loaded replica.

If we assume the next query processing times (PT) of table 4.1 for the enqueued

queries, it is easy to see that: PT (q3) > PT (q1) + PT (q4) and also PT (q3) >

PT (q2) + PT (q5). The fastest queue would be Replica2, with a waiting time around

PT (q2) + PT (q5) = 4ms.

Query Processing Time
q1 2 ms
q2 3 ms
q3 6 ms
q4 3 ms
q5 1 ms

Table 4.1: Processing time of queries of Figure 4.1

34 Chapter 4. Query Scheduling using Prediction

4.2.2 Dynamic Prunning

As we stated in previous section, not all the queries submitted to a search engine

take the same time to complete. The number of postings scored has a high impact

on the retrieval time. Dynamic Pruning Strategies improve efficiency by shortcutting

or omitting the scoring of the postings of documents that will not be retrieved in

the top k documents [92]. Such postings are said to have been pruned. All state-

of-the-art works [17, 80, 93] avoid scoring parts of the posting lists, to save disk

access, decompression and score computation cost. This mechanism is implemented

by maintaining additional information during retrieval: a threshold that represents

the minimum score that documents must achieve to have a chance to be present in

the final top k results; and a term upper bound, for each query term, that represents

the maximal contribution of that particular term to any document score.

While some techniques are based on the pre-sorting of inverted index posting lists

by the impact (e.g. [5]), in this work, we focus on the WAND dynamic pruning strate-

gies where the inverted index posting lists remain in ascending document-identifier

order, as deployed by at least one major search engine [35].

In the WAND dynamic pruning strategy, the posting lists of all query terms are pro-

cessed in parallel, in a document-at-a-time fashion, such that all postings for a given

document are scored before processing moves onto the next document. WAND works

by repeatedly calculating a pivot term, which the next document to be fully scored

must contain. The next document containing the pivot term is the pivot document

– only if the document contains sufficient query terms to be retrieved in the top K

will it be scored. A major benefit of WAND is that it can use skipping [77] forward

in posting lists, which reduces posting list decompression overheads, and can reduce

IO, with resulting improvements in efficiency [39, 66].

4.2.3 Query Efficiency Predictors

The notion of predicting query difficulty refers to techniques that infer the (effec-

tiveness) performance of a given query, without knowing the relevance assessment

information [92].

For WAND, the length of the posting lists has been shown to be insufficient to ac-

4.3. Proposal 35

curately predict the response time of a query [67]. In fact, the response time of WAND

depends also on the number of postings that are actually scored, as well as the prun-

ing difficulty of the query, i.e. the number of postings that overlap for the constituent

query terms, and the extent to which high-scoring documents occur towards the start

of the posting lists. Tonelloto et al. [92] proposes the notion of query efficiency pre-

dictors for estimating the responste time of a query. Various term-level statistics are

computed for each term off-line. These are pre-retrieval predictors and have the

advantage of allowing changes in the retrieval strategy before retrieval starts [47].

When a new query arrives, the term-level features (i.e. frequency, number of post-

ings, Inverse Document Frequency – IDF) are aggregated into query-level statistics,

which are used as input to a learned regression model. The regression model can

then produce accurate response time estimations for unseen queries.

Several works have attested the power of these query efficiency predictors. Daniele

et al. [15] use query efficiency predictors to feed a load-sensitive selective pruning

framework and they also demonstrate that a mutiple feature predictor using DAAT

is more accurate than a single feature one. In [16], authors use predictors to intro-

duce a novel dropping strategy for maintaining the response times under a specified

threshold.

4.3 Proposal

We have studied on the previous section the problem that arise with the most useful

query scheduling techniques. The main contribution of this section is to present a new

query scheduling method named Least Loaded (LL), that addresses the inefficiencies

of previous approaches, by estimating the workload of a replica more accurately than

simply the length of its queue. Using a simulated distributed/replicated search envi-

ronment, based on actual query response times, we experiment to determine how this

new proposal performs for replica selection in comparison with existing scheduling

techniques.

We hypothesise that using predicted response times can increase overall efficiency

compared to other scheduling algorithms. We propose a new scheduling method,

Least Loaded, that sums the predicted response times of the queued queries for each

36 Chapter 4. Query Scheduling using Prediction

replica. The least loaded replica in terms of predicted availability is selected. Next

sections are in charge of presenting the experimental setup and results obtained by

comparing our proposal with state-of-the-art scheduling methods.

4.4 Experimental Setup

4.4.1 Datasets

To address our hypothesis, we must obtain the actual and predicted processing times

of a set of queries in order to feed later the simulation platform and perform the

experiments. With this purpose, we index TREC GOV2 corpus using Terrier2, applying

Porter’s English stemmer and removing standard stopwords. For this task we use a

quad-core Intel Xeon 2.4GHz, with 8GB RAM, with inverted indices are stored on a

160GB SATA drive.

We conduct experiments by defining two different query sets:

• Query Set A: constitutes the first batch of experiments. For retrieval on each

query server, we use a set of 2200 queries of the TREC 2005 Terabyte track

Efficiency task. We sample real arrival times of a set of queries from an Excite

query log and assign them to our TREC queries. We perform the training on a

separate subset of 2500 Efficiency task queries.

• Query Set B: Best practices in efficiency experiments demand a large number

of queries, however the number of queries used can vary largely, from the 50-

150 TREC topics used in [94] to thousands of queries from commercial search

engines used in [28]. Besides, the volume of queries experienced by a search

engine changes dynamically throughout the day3, with busy periods during the

daytime, quiet periods early in the morning and at night, and periods of rising

and falling traffic in between [88]. The search engine must be provisioned with

sufficient shards and replicas such that the desired level of efficiency can be

attained at peak periods. However, during quiet periods there is excess capacity

within the search engine, with no contention for replicas, and hence no waiting
2http://terrier.org
3Search data centres are typically geographically distributed, and hence a data centre is likely serving

traffic mostly originating from its continent.

http://terrier.org

4.4. Experimental Setup 37

time for queries. That is the reason why we decided to use a larger sample

of consecutive user queries from a publicly available real search engine log,

thereby measuring the mean query response time for retrieval. In particular,

we select two batches of 10,000 consecutive queries from the MSN 2006 query

log [34]. Figure 4.2 shows the query arrivals in a day of activity (sampling rate

120 seconds) and the two representative batches selected for experiment. The

first batch (called Set 1) contains 10,000 queries in a low traffic time window,

i.e. large inter-arrival times, running from 00:00 to 03:30 roughly. The second

batch (called Set 2) contains 10,000 queries in an high traffic time window, i.e.

small inter-arrival times, running from 11:00 to 11:15 roughly. Moreover, these

queries exhibit all of the expected properties of a query log, such as frequently

repeated ‘head’ queries and a tail of infrequent queries. For training/testing

purposes, each query set is split in two chronologically, half for training, and

half for testing. After studying the query arrival times of both sets of queries,

we could know that low frequency query arrival time distribution fits Poisson

(with mean=0.75 queries/second) and high frequency distribution fits Poisson

(with mean=11.5 queries/second). With the aim of comparing the behaviour

of the system facing each set of queries with interchanged arrival frequencies,

we generated a Poisson distribution with mean=0.75 queries/second and we

assigned those arrival times to Set 2 in order to simulate low query traffic. In the

same way, we generated a Poisson distribution with mean=11.5 queries/second

for simulating high query traffic in Set 1. In order to take into account an

intermediate scenario, we also simulate a medium frequency query arrival time

distribution following a Poisson with mean=0.5 queries/second and we use this

distribution for setting query arrival times in both sets.

In order to calculate the processing times of queries, we perform the retrieval

process of all sets of queries. We apply WAND [17] dynamic pruning strategy, which

selects K = 1000 documents, where each document has been scored for each query

using the parameter-free DPH Divergence from Randomness weighting model [4].

DPH is a parameter-free model, which exhibits similar effectiveness to BM25 [85].

As we experiment with three different index configurations (i.e. 2, 5 and 10

shards) we perform the indexing and retrieval process three times in order to get the

38 Chapter 4. Query Scheduling using Prediction

Figure 4.2: Query distribution in a 24 hours time span, with batches selected for
experiments.

actual and predicted processing times of queries for all settings.

4.4.2 Predictors

As we explain on previous sections, we obtain the response time prediction following

Tonellotto et al. [92], by calculating various term-level statistics and its aggregations

to form a total of 113 features. Table 4.2 shows the statistics used. From this table

we highlight some representative term statistics:

• # Postings: the number of postings in a term’s posting list.

• Maxima: a term that has fewer maxima in the score distribution may be easier

to prune.

• Promotions into k: if this query term was the only query term, how many docu-

ments containing this term would make it into the top k retrieved. A term with

a low number of promotions probably has its highest value documents towards

the start of the posting list.

4.4. Experimental Setup 39

• IDF (Inverse Document Frequency): describes the informative amount that a

term carries.

• AvICTF [48]: Average ICTF (Inverse Collection Term Frequency). ICTF is like

the IDF except that it also accounts for term frequencies, not just binay.

• γ1 [48]: the standard deviation of the IDF of the terms in the query.

• γ2 [48]: the quotient between the maximum and minimum IDF among the

terms in the query.

• SCQ [97]: the Similarity score between the Query and the Collection.

Predictor #
Predictors from Term-Based Statistics

Arithmetic, geometric, harmonic means of score 24
Max Score 8
Approximation of max score 8
Variance of score 8
Postings 8
Maxima 8
Maxima > avg score 8
Postings with max score 8
Postings with 5% of max score 8
Postings with score within 5% of final k threshold 8
Promotions into k 8
IDF 8

Query Performance (Effectiveness) Predictors
AvICTF [48] 1
AvIDF [48] 1
γ1, γ2 [48] 2
SCQ [97] 1
TOTAL 113

Table 4.2: All tested query effectiveness predictors. Term-based statistics are aggre-
gated into efficiency predictors using 8 different functions: sum, max, min, mean,
median, range, variance and standard deviation.

Some performance (effectiveness) predictors are also used for indicating effi-

ciency as they attempt to measure how well covered the query is in the corpus.

Predicted response times are obtained by gradient boosted regression trees [44] -

we use the Jforests implementation of gradient boosted regression trees [46]4.
4http://code.google.com/p/jforests/

http://code.google.com/p/jforests/

40 Chapter 4. Query Scheduling using Prediction

The good performance of multiple feature predictors with regard to a simple fea-

ture one has been attested by several works ([92, 15]), and they have encouraged us

to use the combination of all the previous statistics.

4.4.3 Comparable Algorithms

In order to test the performance of our algorithm, we also implement the three sche-

duling methods presented in section 4.2.1: Random, Round Robin and Queue Length.

As the selection of replicas is based on predicted response times, we additionally

implement an Oracle scheduling algorithm, which knows the actual response time of

a query before it is executed, but still accounts for calculating the predicted response

time. This way, Oracle represents a best-case scenario for Least Loaded scheduling.

Finally, to compare the five scheduling algorithms, we use two measures: Average

Waiting Time (AWT) and Average Completion Time (ACT) over all the queries, in

milliseconds (ms). Note that the Average Completion Time is inclusive of the Average

Waiting Time. Some tables also include the 90th Percentile (the value below which

the 90% of the observations can be found, denoted as 90thPC).

4.4.4 Simulation Setup

In comparing the different scheduling algorithms, we experiment with a various num-

bers of shards and replicas. To facilitate such experiments without exhaustive hard-

ware resources, we build a simulation framework that supports different distributed

settings. Indeed, as we concluded in Chapter 3, a simulation framework can accu-

rately model the efficiency of a real distributed IR system, including the network

delays, the queue waiting and processing time for queries and the time for merging

the results.

The simulation framework defined in this work represents a distributed IR system

encapsulating the roles of a single query broker and multiple query servers, with a

local area network interconnect. This is constructed following the simulation frame-

work described by Cacheda et al. [23], with the addition of replicas, and appropriate

query scheduling. Our simulation framework is implemented on top of the JavaSim5

5http://javasim.codehaus.org

http://javasim.codehaus.org

4.4. Experimental Setup 41

platform.

Input to the simulation framework takes the form of a stream of queries, with

a corresponding arrival time, as well as, for each shard, the predicted and actual

response times observed from a real IR system.

When the broker sends the query to the selected replica of each shard, there is a

network delay (in secs) that depends on the query size ql (in MB):

Loh +
ql
Lbw

(4.1)

where Loh refers to the network overhead (in secs) for each packet that has been

sent and Lbw represents the network speed (in MB/s). The values used in [23] are

assumed for the network conditions: network delay Loh = 0.1ms, network speed Lbw

= 100 Mbps = 12.5 MB/s. The return of the K = 1000 document results from a

query server is Kl = 8KB in size (consisting of one integer and one single float for

each result).

Each replicated query server maintains a queue of queries. This queue is processed

by waiting for the actual response time observed for the real IR system for that query

on that shard. Finally, when the query server returns the results to the broker, a

network delay (measured in secs) occurs, which is calculated in terms of Kl, i.e. the

size, in MB, of the K returned documents.

For the scheduling methods, we assume that Random, Round Robin and Queue

Length methods have a negligible processing time. However, in the Least Loaded

method, the time required for computing the query predicted response time has to be

taken into account. We extracted a linear correlation between the query length ql and

the time spent for calculating the predictors dpred (in ms). This is used for simulating

the delay that this scheduling method adds to the system:

dpred = 6.50815 · ql (4.2)

Indeed, over the 5,000 training queries, the average time to make an efficiency

prediction is 13.52ms.

42 Chapter 4. Query Scheduling using Prediction

Replicas
Random Round Robin Queue Length Least Loaded Oracle

ACT AWT ACT AWT ACT AWT ACT AWT ACT AWT
2 Shards

2 9,617 9,382 10,061 9,826 8,897 8,662 613 362 610 359
4 902 667 409 174 434 199 253 3 253 3
8 410 175 263 28 428 193 250 0 250 0

5 Shards
2 375 237 241 103 247 109 158 4 159 5
4 265 126 155 16 231 93 154 0 154 0
8 192 54 140 2 231 93 154 0 154 0

10 Shards
2 168 69 120 22 145 47 114 1 114 1
4 139 41 101 3 144 46 114 0 114 0
8 123 25 98 0 144 46 114 0 114 0

Table 4.3: ACTs and AWTs (in milliseconds) for different settings and scheduling
algorithms.

4.5 Results

In this section we present the results obtained after running the five scheduling meth-

ods introduced on previous sections. We divide our result analysis into two subsec-

tions related to Query Set A and Query Set B respectively.

4.5.1 Query Set A

Results regarding Query Set A are shown in Table 4.3, where we present ACT and

AWT for all the scheduling algorithms. From Table 4.3, we note that increasing

both the number of shards and the number of replicas reduces both ACTs and AWTs.

Indeed, in general, 2 shards with only 2 replicas is insufficient for a low completion

time for this query workload, as queries can spend 8 seconds waiting for an available

query server. For 5 or more shards, more than 4 replicas is sufficient for eliminating

any contention for query servers (i.e. AWTs close to 0).

In general, a fixed query volume can be serviced by a larger number of replicas

for a smaller number of shards, or a large number of shards with a smaller number

of replicas. As the number of shards increases, the number of predictions that are

required for each query rises. However, as the contact to each query server occurs in

parallel to obtain the efficiency predictions, the overhead of increasing the number

of shards should be minimized.

4.5. Results 43

Comparing the scheduling algorithms, we note that Random obtains the highest

ACTs and AWTs, because it can choose replicas that are busy, whist other replicas for

that shard are idle. Queue Length is superior to Round Robin under high contention

(i.e. 2 shards, 2 replicas). In other settings, Round Robin appears to better balance

load than Queue Length. However, across different numbers of shards and replicas,

Least Loaded always achieves the smallest AWT. For instance, with 4 replicas of the

2 shard index, Least Loaded can reduce AWT to 3ms, compared to 199ms for Queue

Length and 174ms for Round Robin. Under settings with very little contention (e.g.

10 shards, 4 or 8 replicas), Round Robin has slightly lower ACTs than Least Loaded

and even Oracle, due to the expense of predicting the response time (typically 6-

40ms, depending on query length). Finally, Least Loaded obtains ACTs and AWTs

that are almost identical to the best-case Oracle algorithm, based on actual response

times.

Overall, we find that using predicted response times to select the suitable replica

for each query results in improved efficiency.

4.5.2 Query Set B

In order to examine the effect of a larger number of queries and different query

traffic flows, we study the results using Query Set B. Tables 4.5 - 4.10 (at the end of

the chapter) show average completion times (in milliseconds) and 90th Percentile for

both sets of queries and different architectures. These experiments also include more

number of replicas (from 2 to 10).

We start studying query traffic influence. In order to analyse this factor, we must

focus on tables 4.5 - 4.10. Best ACT are in bold, and the second best method is in

brackets. Results in tables 4.5 and 4.6 attest that Least Loaded is not always the

best method for scheduling. Round Robin achieves better ACT for most configu-

rations. Nevertheless, medium query traffic scenario (Tables 4.7 and 4.8) presents

different behaviour: except for one configuration of set 1 (10 shards, 9 replicas) and

the configurations of set 2 corresponding to 10 shards and more than 7 replicas, all

the configurations perform better by using Least Loaded as the scheduling method.

Tables 4.9 and 4.10 highlight the good performance of query efficiency predictors

under high query contention scenarios: Least Loaded achieves the best ACT with all

44 Chapter 4. Query Scheduling using Prediction

the tested architectures. For instance, the configuration Set 1, 2 shards, 10 replicas

reduces the ACT by 68% with respect to Queue Length.

To fully investigate this influence factor, we present complementary results in

terms of AWT. Figures 4.3 - 4.5 represent the AWT obtained for all the scheduling

methods after running query Set 2 under the three query traffic conditions. The

difference between Least Loaded and the other methods is higher as the query traffic

increases. Graphics for high query traffic show how only Least Loaded (for more than

2 shards) is able to process all the incoming queries under acceptable waiting times.

All these results attest that the higher query traffic is, the best Least Loaded per-

forms comparing to the other scheduling methods. This way, under high contention

scenarios, Least Loaded leads to better ACT and AWT.

Table 4.4: Number of replicas for which prediction is worth for different number of
shards and query traffic

#Shards Query Set 1 Query Set 2
Low Query Arrival Times

2 <6 <4
5 <4 <4

10 <4 <4
Medium Query Arrival Times

2 always always
5 always always

10 always <8
High Query Arrival Times

2 always always
5 always always

10 always always

With the aim of summarizing previous results, we present Table 4.4, which recom-

mends the number of replicas that we should use if we want to use prediction without

prediction calculation delay penalty, that is, the best configurations for achieving the

best performance with Least Loaded method. It is easy to deduce how the architec-

ture affects the results: as the number of shards increases, Least Loaded seems to be

a less suitable scheduling method. The same correlation exists regarding the num-

ber of replicas. However, Least Loaded is the best option when query traffic is high,

independently of the architecture.

In Table 4.4 we can also prove that the behaviour of both query sets is different

4.6. Conclusions 45

under different scenarios. If we study in depth the average processing time (APT =

ACT-AWT) for each set of queries, we can deduce that Set 1 contains more difficult

queries than Set 2: APT(Set1) = 10555ms vs APT(Set2) = 7721ms, considering low

query traffic. With medium query arrival rates, the difference decreases: APT(Set1)

= 6960ms vs APT(Set2) = 6961ms and for high arrival rates, the APT of both sets is

almost the same (difference concerns decimals).

This fact can explain the difference between the behaviour of both query sets: as

Set 1 contains more difficult queries than Set 2, prediction method performs better

than the other scheduling methods under more configurations (i.e.: medium query

arrival rates and 10 shards).

4.6 Conclusions

In this chapter we have proposed that using the predicted response time (obtained

using query efficiency predictors) could enhance replica selection within a distributed

and replicated IR system, compared to other scheduling algorithms.

Indeed, experiments using the GOV2 corpus showed that the proposed Least

Loaded algorithm could attain marked reductions in the query waiting times, across

different number of shards and replicas. We have performed the experiments using

different architectures in order to study the effect of the number of shards and repli-

cas. The experiments were also driven using different query sets. The use of the

second query set provides the experiments with a larger set of queries and different

query traffic rates. Some arrival rates were generated synthetically, while others were

extracted from real query logs. For the first query set, using predicted response time

to select between 4 replicas of a 2 shard index results in a 42% reduction in mean

completion time compared to selecting replicas by considering only the length of

their queues. Nevertheless, when there is low contention in the system, Least Loaded

introduces a delay in the system caused by the time spent in predictors calculation.

Next chapter analyses this problem in depth and offers a novel solution.

46 Chapter 4. Query Scheduling using Prediction

 1

 10

 100

 1000

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

2 Shards
Random

Round Robin
Queue Length
Least Loaded

(a)

 1

 10

 100

 1000

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

5 Shards
Random

Round Robin
Queue Length
Least Loaded

(b)

 1

 10

 100

 1000

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

10 Shards
Random

Round Robin
Queue Length
Least Loaded

(c)

Figure 4.3: Average Waiting Time for different architectures and scheduling methods
under LOW query traffic

4.6. Conclusions 47

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

2 Shards
Random

Round Robin
Queue Length
Least Loaded

(a)

 1

 10

 100

 1000

 10000

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

5 Shards
Random

Round Robin
Queue Length
Least Loaded

(b)

 1

 10

 100

 1000

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

10 Shards
Random

Round Robin
Queue Length
Least Loaded

(c)

Figure 4.4: Average Waiting Time for different architectures and scheduling methods
under MEDIUM query traffic

48 Chapter 4. Query Scheduling using Prediction

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

2 Shards
Random

Round Robin
Queue Length
Least Loaded

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

5 Shards
Random

Round Robin
Queue Length
Least Loaded

(b)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 8

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(m

s)
 -

 lo
g

sc
al

e

Number of Replicas

10 Shards
Random

Round Robin
Queue Length
Least Loaded

(c)

Figure 4.5: Average Waiting Time for different architectures and scheduling methods
under HIGH query traffic

4.6. Conclusions 49

Table 4.5: Average Completion Times - LOW arrival rate - SET 1

SET 1

R LL 90thPC 2nd Best 90thPC

2 Shards

2 922 2,919 1,096 (RR) 3,280

3 1,665 3,711 6,004 (QL) 12,496

4 798 2,658 836 (RR) 2,796

5 696 1888 1142 (QL) 2,843

6 793 2,657 790 (RR) 2,651

7 626 1,682 865 (RR) 2,463

8 792 2,657 779 (RR) 2,645

9 617 1,666 736 (RR) 2,231

10 792 2,657 778 (RR) 2,645

5 Shards

2 492 1,013 553 (RR) 1,415

3 400 1,111 724 (QL) 1,624

4 470 1,292 469 (RR) 1,287

5 361 1,082 471 (RR) 1,206

6 469 1,292 457 (RR) 1,275

7 360 1,082 394(RR) 1,120

8 469 1,292 453 (RR) 1,275

9 360 1,082 369 (RR) 1,083

10 469 1,292 453 (RR) 1,275

10 Shards

2 304 714 321 (RR) 740

3 249 671 380 (RR) 847

4 301 711 289 (RR) 704

5 247 665 279 (RR) 688

6 301 711 285 (RR) 694

7 247 665 247 (RR) 676

8 301 711 285 (RR) 692

9 247 665 236 (RR) 659

10 301 711 285 (RR) 692

50 Chapter 4. Query Scheduling using Prediction

Table 4.6: Average Completion Times - LOW arrival rate - SET 2

SET 2

R LL 90thPC 2nd Best 90thPC

2 Shards

2 667 1835 726 (RR) 2202

3 1665 3711 6004 (QL) 12496

4 616 1668 611 (RR) 1671

5 696 1888 1142 (QL) 2843

6 616 1666 601 (RR) 1639

7 626 1682 865 (RR) 2463

8 616 1666 600 (RR) 1636

9 617 1666 736 (RR) 2231

10 616 1666 600 (RR) 1636

5 Shards

2 370 1094 382 (RR) 1121

3 400 1111 724 (QL) 1624

4 361 1,082 348 (RR) 1,067

5 361 1082 471 (RR) 1,206

6 361 1,082 345 (RR) 1,062

7 360 1082 394(RR) 1,120

8 361 1,082 345 (RR) 1,062

9 360 1082 369 (RR) 1,083

10 361 1,082 345 (RR) 1,062

10 Shards

2 249 670 251 (RR) 684

3 249 671 380 (RR) 847

4 247 665 232 (RR) 649

5 247 665 279 (RR) 688

6 247 665 231 (RR) 646

7 247 665 247 (RR) 676

8 247 665 231 (RR) 646

9 247 665 236 (RR) 659

10 247 665 231 (RR) 646

4.6. Conclusions 51

Table 4.7: Average Completion Times - MEDIUM arrival rate - SET 1

SET 1

R LL 90thPC 2nd Best 90thPC

2 Shards

2 261,760 541,895 340,467 (RR) 672,288

3 1,665 3,711 6,004 (QL) 12,496

4 1,708 3,934 6,648 (QL) 14,511

5 696 1,888 1,142 (QL) 2,843

6 864 2,696 1,619 (QL) 3,966

7 626 1,682 865 (RR) 2,463

8 800 2,658 1,404 (RR) 3,695

9 617 1,666 736 (RR) 2,231

10 792 2,658 1,129 (RR) 3,238

5 Shards

2 1,170 3,037 6,082 (QL) 15,225

3 400 1,111 724 (QL) 1,624

4 490 1,225 954 (QL) 2,347

5 361 1,082 471 (RR) 1,206

6 470 1,293 729 (RR) 1,935

7 360 1,082 394(RR) 1,120

8 469 1,293 615 (RR) 1,493

9 360 1,082 369 (RR) 1,083

10 469 1,293 550 (RR) 1,410

10 Shards

2 357 774 966 (QL) 2,548

3 249 671 380 (RR) 847

4 301 711 503 (QL) 1,104

5 247 665 279 (RR) 688

6 301 711 379 (RR) 874

7 247 665 247 (RR) 676

8 301 711 335 (RR) 744

9 247 665 236 (RR) 659

10 301 711 312 (RR) 721

52 Chapter 4. Query Scheduling using Prediction

Table 4.8: Average Completion Times - MEDIUM arrival rate - SET 2

SET 2

R LL 90thPC 2nd Best 90thPC

2 Shards

2 130,316 236,367 205,329 (QL) 370,826

3 1,665 3,711 6,004 (QL) 12,496

4 859 2,305 1,455 (QL) 3,309

5 696 1,888 1,142 (QL) 2,843

6 644 1690 980 (RR) 2,648

7 626 1682 865 (RR) 2,463

8 619 1671 791 (RR) 2,304

9 617 1666 736 (RR) 2,231

10 616 1666 701 (RR) 2,136

5 Shards

2 592 1,354 1,265 (QL) 2,658

3 400 1,111 724 (QL) 1,624

4 368 1,088 545 (RR) 1,306

5 361 1,082 471 (RR) 1,206

6 360 1,082 427 (RR) 1,163

7 360 1,082 394(RR) 1,120

8 360 1,082 379 (RR) 1,101

9 360 1,082 369 (RR) 1,083

10 360 1,082 362 (RR) 1,079

10 Shards

2 270 691 536 (QL/RR) 1,144/1,137

3 249 671 380 (RR) 847

4 247 665 313 (RR) 751

5 247 665 279 (RR) 688

6 247 665 259 (RR) 684

7 247 665 247 (RR) 676

8 247 665 240 (RR) 667

9 247 665 236 (RR) 659

10 247 665 235 (RR) 656

4.6. Conclusions 53

Table 4.9: Average Completion Times - HIGH arrival rate - SET 1

SET 1

R LL 90thPC 2nd Best 90thPC

2 Shards

2 537,184 1,023,619 616,092 (RR) 1,161,649

3 163,671 299,093 238,846 (QL) 435,607

4 127,450 255,331 206,368 (RR) 396,222

5 2,164 4,331 57,493 (QL) 104,604

6 9,269 22,735 70,653 (QL) 142,159

7 778 2,069 2094 (QL) 4,326

8 1,231 3,224 12,818 (QL) 28,878

9 644 1,687 1,254 (QL) 3,022

10 866 2694 2,675 (QL) 6,167

5 Shards

2 24,603 48,737 201,014 (RR) 372,250

3 471 1,111 13,631 (QL) 24,092

4 575 1,410 13,117 (QL) 26,744

5 364 1,082 863 (QL) 1,855

6 473 1,293 1561 (QL) 3,743

7 360 1,082 621 (RR) 1,450

8 469 1,293 1,038 (QL) 2,539

9 360 1,082 493 (RR) 1,259

10 469 1,293 875 (QL) 2,062

10 Shards

2 416 929 62,678 (QL) 117,476

3 250 671 765 (QL) 1,536

4 302 711 1,071 (QL) 2,496

5 247 665 431 (RR) 952

6 301 711 646 (QL) 1,594

7 247 665 340 (RR) 792

8 301 711 551 (QL) 1,146

9 247 665 290 (RR) 721

10 301 711 443 (RR) 1,053

54 Chapter 4. Query Scheduling using Prediction

Table 4.10: Average Completion Times - HIGH arrival rate - SET 2

SET 2

R LL 90thPC 2nd Best 90thPC

2 Shards

2 390,769 710,141 465,891 (QL) 844,484

3 163,671 299,093 238,846 (QL) 435,607

4 50,325 93,172 125,480 (QL) 227,770

5 2,164 4,331 57,493 (QL) 104,604

6 1,028 2,545 14,842 (QL) 27,172

7 778 2,069 2,094 (QL) 4,326

8 683 1,808 1,502 (QL) 3,370

9 644 1,687 1,254 (QL) 3,022

10 628 1,673 1,162 (QL) 2,890

5 Shards

2 1,184 1,354 122,056 (QL) 26,945

3 471 1,111 13,631 (QL) 24,092

4 381 1,088 1254 (QL) 2,481

5 364 1,082 863 (QL) 1,855

6 361 1,082 711 (RR) 160

7 360 1,082 621 (RR) 1,450

8 360 1,082 545 (RR) 1,328

9 360 1,082 493 (RR) 1,259

10 360 1,082 460 (RR) 1,217

10 Shards

2 281 691 14,630 (QL/RR) 1,144/1,137

3 250 671 765 (QL) 1,536

4 247 665 530 (RR) 1,129

5 247 665 431 (RR) 952

6 247 665 373 (RR) 854

7 247 665 340 (RR) 792

8 247 665 311 (RR) 759

9 247 665 290 (RR) 721

10 247 665 276 (RR) 698

Chapter 5

Hybrid Query Scheduling

5.1 Introduction

Chapter 4 has shown that, by making use of query efficiency predictors, a broker

can appropriately schedule queries to the replicas most likely to be ready first, based

on the expected duration of queries currently queued on each replica for processing.

Indeed, Least Loaded was shown to improve over Queue Length and Round Robin and

to be extremely similar to an oracle that has a priori knowledge of the actual response

time for each query. This way, LL reduces the time that a query must spend waiting

in a queue until it can be processed, with resulting benefits in query throughput.

However, where the contention for replicas is low, previous chapter has suggested

that scheduling using efficiency predictions is unnecessary. LL introduces an overhead

in the calculation of the predicted time for each query that can exceed the time that

the query would have spent in a replica’s queue while waiting to be processed. This is

more likely to happen for query volumes that are adequately handed by the number

of available replicas. Indeed, for large numbers of shards and replicas or low query

traffic, we have noted no benefit in applying LL for query scheduling. This means

that prediction is not always the best option to schedule the queries.

For this reason, a hybrid scheduling method is proposed, that brings the advan-

tages of scheduling using query efficiency prediction under high load, whilst retains

simplicity and speed under low load. In doing so, it adapts to the current query

volume being experienced by the search engine.

56 Chapter 5. Hybrid Query Scheduling

Therefore, in this chapter we perform an exhaustive analysis of query scheduling

methods, by comparing their performance under not only different numbers of shards

and replicas but also under different query traffic flows. Indeed, as the volume of

query traffic varies throughout the day [88], it is important to attain efficient retrieval

with the minimum of resources.

Experiments are conducted using a proven simulation framework [23], prepared

with the actual and predicted response times for 500,000 queries. Indeed, compared

to previous chapter, these new experiments are conducted using a much larger corpus

(ClueWeb09), and with a larger query set, issued to a Web search engine over the

course of an entire day.

The remainder of this chapter is structured as follows: in Section 5.2, we discuss

how queries can be scheduled among replicated query servers and propose a hybrid

scheduling method that can adapt to changing query traffic conditions; Section 5.3

and 5.4 present the experimental setup and results, respectively; concluding remarks

follow in Section 5.5.

5.2 Proposal

We hypothesize that due to the varying nature of the query traffic, one scheduling

method is not appropriate for all times. Hence, we propose a hybrid approach that

changes the scheduling method applied based on the current loading of the system.

For measuring the current loading of the system, we use the moving average waiting

time experienced by queries. In particular, if the current waiting time of queries is

greater than the average cost of making an efficiency prediction, then we hypothesize

that there is benefit in using LL over the simpler RR or QL methods. For instance,

when combining RR for low traffic with LL for high traffic (which we denote RR/LL),

the scheduling decision is:

scheduleRR/LL(q) =

 RR if WT < PT ;

LL otherwise.

5.3. Experimental Setup 57

The same for Queue Length (QL/LL):

scheduleQL/LL(q) =

 QL if WT < PT ;

LL otherwise.

In practice, PT , the average time to make a prediction, can be estimated using train-

ing data, while WT , the average time that queries are waiting at query servers to be

processed, is computed using the moving average of the maximum time that a query

spends queued for any shard, calculated over the last m minutes. The use of the m

minute moving average prevents changes to the scheduling method for small bursts

of query traffic. Increasing m has the effect of “smoothing out” the impact of larger

variations on the choice of scheduling method, but can delay the onset of LL when

appropriate.

To investigate the appropriateness of our proposed hybrid scheduling method, we

conduct experiments using a real daily query flow comprising varying query volume

throughout the day. These experiments are conducted within the context of a simu-

lation framework, such as the one used in Chapter 4, which permits the varying of

different number of shards and replicas, without the need for repeated large-scale

distributed experiments.

In the following section, we define the experimental setup of the real IR system

for which the various parameters of the simulated IR system are determined.

5.3 Experimental Setup

The experiments in the following sections are conducted using the large TREC Clue-

Web09 category B corpus, which consists of 50 million Web documents, and aims

to represent the first tier index of a commercial Web search engine. We index Clue-

Web09 using the Terrier IR platform [65]1, using different numbers of shards, namely

2 and 5. Documents are partitioned across shards as per their ordering in Clue-

Web09, which approximates crawl order. For each index, we apply Porter’s English

stemmer and removing standard stopwords. We also build skip lists for the inverted

indices [77], with a skip pointer every 1,000 postings.

1http://terrier.org/

http://terrier.org/

58 Chapter 5. Hybrid Query Scheduling

Figure 5.1: Query distribution in a 24 hours time span covering 1st May 2006.

Table 5.1: Subsets of queries selected for experimentation.

Subset Frequency Time interval
Low Volume 1.64 queries/sec 3:30am - 4:30am

Medium Volume 7.25 queries/sec 6:00am - 7:00am
High Volume 11.72 queries/sec 11:30am - 12:30pm

Best practices in efficiency experiments demand a large number of queries. In

this work, we use a large sample of consecutive user queries from a publicly available

real search engine log. In particular, we select roughly 500,000 consecutive queries

from the MSN 2006 query log [34]. The selected queries exhibit all of the expected

properties of a query log, such as frequently repeated ‘head’ queries and a tail of

infrequent queries. Moreover, the query volume varies throughout the course of the

(US west-coast) day - indeed Figure 5.1 shows the query arrivals in a day of activity

(sampling rate 120 seconds).

We split these queries as follows: we use the first 5,000 queries (equating to the

period 0:00am - 3:14am) as training for the efficiency predictors, while remaining

queries are used for testing purposes. Moreover, to permit analyses of the schedu-

ling accuracy under different query volumes, we select three subsets we indicate in

Table 5.1. Each of these subsets are denoted in Figure 5.1.

We measure the response time for this setup for each index shard. Timing are

made using a quad-core Intel Xeon 2.4GHz, with 8GB RAM, with inverted indices are

5.4. Results 59

stored on a 160GB SATA drive.

To compare the five scheduling methods, we use the same measures as in previous

Chapter: average waiting time (AWT) and average completion time (ACT) for all the

queries, in milliseconds (ms).

5.4 Results

In this section, we experiment to validate the hypothesis defined in Section 5.2 con-

cerning hybrid scheduling. With this purpose, this section is structured into three

subsections: Section 5.4.1 analyses the effect of the number of shard and replicas

over the behaviour of the hybrid methods; Section 5.4.2 attests the influence of the

incoming query traffic and Section 5.4.3 studies the importance of the moving aver-

age window value (m).

5.4.1 1st Factor: Architecture

In particular, Table 5.2 reports the Average Completion Time (ACT) and Average

Waiting Time (AWT) of the three known scheduling methods – namely Round Robin

(RR), Queue Length (QL), and Least Loaded (LL) (this includes the prediction costs)

– for different configurations of shards and replicas. In addition, results for the

proposed hybrid scheduling methods, Round Robin with Least Loaded (RR/LL) and

Queue Length with Least Loaded (QL/LL), using a default moving window size of

m = 8 minutes, are reported. We have not considered Random method into the ex-

periments due to the low quality of the results experienced in previous chapter. The

best scheduling method for each configuration is highlighted.

Firstly, we consider only the three non-hybrid scheduling methods. We observe

that for settings with more contention for resources (i.e., small number of replicas and

shards), RR and QL scheduling methods result in AWTs and ACTs somewhat worse

than those obtained by LL, as well as the hybrid scheduling methods. When there is

very little contention for query server resources (e.g., with 5 shards and 15 or more

replicas), we obtain very low AWTs for RR and QL and broadly similar completion

times. Nevertheless, LL presents slightly higher ACTs and AWTs due to the cost of

making response time predictions.

60 Chapter 5. Hybrid Query Scheduling

Table 5.2: ACTs and AWTs for different shard and replica configurations, in ms. RR
and QL times for 2 shards, 5 replicas are omitted, as this configuration cannot service
the peak time query load. Prediction delay is included in the waiting time.

ACT AWT
Rep RR QL LL RR/LL QL/LL RR QL LL RR/LL QL/LL

2 Shards
5 - - 908 908 908 - - 388 388 388
10 683 650 550 555 554 162 130 30 34 34
15 564 559 535 542 541 44 39 14 21 21
20 537 536 534 534 534 16 15 14 14 13

5 Shards
5 716 636 417 417 417 346 303 47 47 47
10 424 421 383 384 392 54 51 14 14 22
15 380 379 383 379 379 10 10 14 9 9
20 372 372 537 372 372 3 2 14 3 2

Next, we consider the results for the hybrid methods (RR/LL and QL/LL), and

observe that – as expected – the hybrid scheduling methods present an intermediate

behavior, in the sense that they perform closer to LL in high contention settings, and

they improve on LL’s results in low contention settings. The behavior of the two

hybrid methods, RR/LL and QL/LL, is similar across the various configurations of

shards and replicas.

5.4.2 2nd Factor: Query volume

In order to analyse the effect of query volume across the different scheduling meth-

ods, Tables 5.3, 5.4 and 5.5 report the ACTs and the AWTs obtained in different

scenarios during the low, medium and high query volume subsets respectively. In-

deed, while for low query volumes all scheduling methods perform quite well (with

the exception of LL, where the prediction cost of 13 ms is dominant), the benefits of

LL and relative hybrid methods show up when the query traffic rises to medium and

high volumes. In particular, the hybrid methods obtain better performance than LL

when the prediction delay is significant (e.g., low contention). In this way, the hybrid

scheduling methods are shown to be adapting to the current query volume.

More specifically, looking at table 5.3, it is clear to see the identical behaviour of

RR, QL and the hybrid methods. For example, if we focus in configuration of 2 shards

5.4. Results 61

and 15 replicas, all the afore mentioned achieve an ACT of 472 ms, while LL exceeds

this value with 485 ms. For 5 shards and 15 replicas, this behavior is kept – 349 ms

of LL versus 336 ms achieved by the other approaches.

In case of medium query traffic, table 5.4 attests the behaviour of the hybrid

methods: for a lower number of machines, hybrid methods imitates the performance

of LL (i.e. 390 ms using 5 shards and 5 replicas, while the simplest methods expend

more than 500 ms in answering the queries. Nevertheless, for a higher number of

machines, hybrid methods shift to the simplest methods behaviour (i.e. with 5 shards

and 20 replicas LL presents an ACT of 369 ms, meanwhile the rest of approaches

reduce the ACT to 357 ms).

When the contention of the system increases (see table 5.5), the elastic behaviour

of the hybrid methods continues, but in this case, RR/LL and QL/LL also imitate LL

for some configurations with high number of machines as the one with 2 shards and

20 replicas.

To further aid analysis, this adaptive behavior of the QL/LL hybrid scheduling me-

thod is shown in Figures 5.2 and 5.3 (RR/LL produce results very similar to QL/LL,

confirming earlier observations that QL insufficiently accounts for the varying res-

ponse times of different queries when calculating the backlog of replicated query

servers). In particular, in Figure 5.2 the QL/LL scheduling method clearly reproduces

the scheduling method with the lowest AWT values, i.e. QL before 06:00 and af-

ter 16:00, and LL during peak daytime periods. In this scenario, the hybrid method

achieves a total improvement in AWT of 68% over QL. On the other hand, in Figure

5.3, for high query load and small contention, this behavior is not evident, as both LL

and QL have similar performance (less than 5ms difference in AWT, which is lower

than the mean prediction delay of 13.52 ms). Hence, as there is little benefit for the

hybrid method to switch to LL scheduling even under relatively high traffic load, it

only does so for two very busy periods: mid-morning, from 10:40 to 11:10 and mid-

day, from 11:40 to 12:50. In this case, the achieved total improvement in AWT is 7%

with respect to QL.

62 Chapter 5. Hybrid Query Scheduling

Table 5.3: ACTs and AWTs for different for LOW query traffic, in different configu-
rations. RR and QL times for 2 shards 5 replicas are omitted, as this configuration
cannot service the peak time query load. Prediction delay is included in the waiting
time.

ACT

#Rep RR QL LL RR/LL QL/LL

2 Shards

5 - - 487 483 483

10 473 473 485 473 473

15 472 472 485 472 472

20 472 472 485 472 472

5 Shards

5 340 340 349 340 340

10 336 336 349 336 336

15 336 336 349 336 336

20 336 336 349 336 336

AWT

2 Shards

5 - - 2 10 10

10 0 0 13 0 0

15 0 0 13 0 0

20 0 0 13 0 0

5 Shards

5 4 4 13 4 4

10 0 0 13 0 0

15 0 0 13 0 0

20 0 0 13 0 0

5.4. Results 63

Table 5.4: ACTs and AWTs for different for MEDIUM query traffic, in different config-
urations. RR and QL times for 2 shards 5 replicas are omitted, as this configuration
cannot service the peak time query load. Prediction delay is included in the waiting
time.

ACT

#Rep RR QL LL RR/LL QL/LL

2 Shards

5 - - 684 684 684

10 585 575 523 523 523

15 525 523 518 519 519

20 511 510 518 511 510

5 Shards

5 550 533 390 390 390

10 380 379 369 372 372

15 359 359 369 359 359

20 357 357 369 357 357

AWT

2 Shards

5 - - 166 179 179

10 81 70 18 18 18

15 20 19 13 15 14

20 6 6 13 6 6

5 Shards

5 194 177 21 34 34

10 24 23 13 16 16

15 4 3 13 4 3

20 1 1 13 1 1

64 Chapter 5. Hybrid Query Scheduling

Table 5.5: ACTs and AWTs for different for HIGH query traffic, in different configu-
rations. RR and QL times for 2 shards 5 replicas are omitted, as this configuration
cannot service the peak time query load. Prediction delay is included in the waiting
time.

ACT

#Rep RR QL LL RR/LL QL/LL

2 Shards

5 - - 1214 1214 1214

10 780 741 565 565 565

15 593 585 485 534 534

20 547 545 533 533 533

5 Shards

5 959 877 433 433 433

10 467 462 383 383 383

15 389 388 383 385 385

20 374 373 383 374 373

AWT

2 Shards

5 - - 681 695 695

10 280 221 46 46 46

15 74 66 15 15 15

20 28 26 14 14 14

5 Shards

5 589 507 50 63 63

10 98 93 14 14 14

15 19 18 14 15 15

20 4 4 14 4 4

5.4. Results 65

 0

 10

 20

 30

 40

 50

 60

 70

 80

04:00 08:00 12:00 16:00 20:00 24:00

A
v
e

ra
g

e
 W

a
it
in

g
 T

im
e

 (
m

s
)

Time (hh:mm)

QL/LL
QL
LL

Figure 5.2: AWTs using 2 shards and 15 replicas. RR and RR/LL are omitted, as they
produce results very similar to QL and QL/LL respectively.

 0

 5

 10

 15

 20

 25

04:00 08:00 12:00 16:00 20:00 24:00

A
v
e

ra
g

e
 W

a
it
in

g
 T

im
e

 (
m

s
)

Time (hh:mm)

QL/LL
QL
LL

Figure 5.3: AWTs using 5 shards and 15 replicas. RR and RR/LL are omitted, as they
produce results very similar to QL and QL/LL respectively.

5.4.3 3rd Factor: moving average window m

Finally, Table 5.6 includes the ACTs for the two hybrid methods under different sce-

narios, but according to a new parameter: the value (in minutes) of the width m

of the moving average window used to compute the ACTs, presented in Section 5.2.

We experimented using several values for this parameter: 1, 2, 4, 8 and 16 minutes.

66 Chapter 5. Hybrid Query Scheduling

For many configurations, m has no effect in the results. Under periods of medium

contention (e.g. 15-20 replicas for 2 shards, and 10-15 replicas for 5 shards), results

show benefit in ACTs by increasing m. Indeed, by increasing m, the scheduling me-

thod does not oscillate between scheduling methods for short bursts of high query

volume.

Table 5.6: ACT (in milliseconds) using different sizes of moving average window (m)
for both hybrid methods and combination of shards and replicas.

RR/LL QL/LL
m 1 2 4 8 16 1 2 4 8 16

#Rep 2 Shards
5 908 908 908 908 908 908 908 908 908 908

10 550 550 550 550 550 550 550 550 550 550
15 537 535 533 533 533 536 534 533 533 530
20 533 532 531 531 531 532 531 531 530 530

#Rep 5 Shards
5 417 417 417 417 417 417 417 417 417 417

10 393 389 386 384 383 392 388 386 383 383
15 379 379 379 379 379 379 379 379 379 378
20 372 372 372 372 372 372 372 372 372 372

5.5 Conclusions

Query scheduling addresses the need for a distributed IR system to select the repli-

cated query server for a new query that will be available to process it. Previous

chapter has shown the advantages of query scheduling while making use of query

efficiency predictors to accurately estimate the workload of a replicated query server.

However, the use of query efficiency predictors introduces an overhead that can hin-

der on scheduling accuracy during periods of low contention for query server re-

sources (e.g. low query traffic times, such as at night). In this chapter, we addressed

this limitation by proposing a new hybrid scheduling method, which adopts the be-

havior of prediction query scheduling for high query traffic, but resorts to a light-

weight scheduling method – such as Round Robin – when there is less contention. In

this way, the scheduling can adapt as the query volume varies throughout a typical

day whilst minimizing the waiting times experienced by queries.

Our experiments compare the proposed hybrid query methods with lightweight

5.5. Conclusions 67

scheduling methods. This is performed using a realistic Web search setting, involv-

ing ClueWeb09 and 500,000 queries submitted to a real Web search engine over the

course of an entire day. Our results show that hybrid scheduling can reduce the wait-

ing time experienced by search engines across varying traffic conditions, by reducing

delays when there is low contention (up to 7% AWT reduction), and by choosing a

more complex but highly efficient scheduler for the busiest periods of the day (up to

68% AWT reduction).

Once we have achieved a great improvement regarding the latency of a search

engine, next chapter aims to address IR system resource provisioning [89], such that

the desired efficiency can be attained at all periods while minimizing the number of

powered on query servers, with potential power consumption savings.

Chapter 6

Power/Latency Trade-off Model

6.1 Introduction

Previous chapters have shown that user query volume typically received by a Web

search engine varies through the course of the day [88]. In order to guarantee that

each query is processed with sub-second response times, the computing/communication

infrastructure has to support worst-case query volume, which typically reaches its

maximum during the day time. Hence, the typical approach taken by Web search en-

gines is to deploy a distributed search architecture relying on a very large data centre

to deal with the worst-case query volumes [11]. The main goal of this high-level ap-

proach is to maximise the query throughput of a search engine, providing users with

effective query results in a timely manner. Supporting worst-case query volumes in

large data centres has the obvious drawback that the power consumption/electricity

costs are not taken into account, resulting in a potential waste of power and money

when the query volume is low.

We argue that a trade-off can be enforced between the machines devoted to pro-

cessing queries and query processing deadlines, and that this trade-off can be adapted

during the operational cycle of a Web search engine, in order to minimise the number

of machines processing the queries while ensuring acceptable latencies. Moreover, we

contend that this trade-off can be adapted dynamically to changing query volumes in

very short times.

The machines that are not used when the query volume is low could be used to

70 Chapter 6. Power/Latency Trade-off Model

execute different tasks, involved in the generation and management of search results,

such as batch data processing, ads/recommendations generation, indexing, and so

on.

To the best of our knowledge, no previous work has presented an intra-data centre

model that turns the servers on or off depending on the incoming query traffic needs.

Indeed, our framework can examine the historical and current query traffic patterns

to predict the number of query server replicas now needed, and obtain power savings

within a single data centre by eliminating query servers that are not currently needed.

Moreover, we provide thorough experiments using 1 million queries submitted to a

real Web search engine over the course of 2 days, to demonstrate the power savings

that can be obtained without marked impact on the efficiency of the search engine.

Our results show that our proposed self-adapting model can achieve an energy saving

of 33% while only degrading mean query completion time by 10ms compared to a

baseline that provisions replicas based on a previous day’s traffic.

The remainder of this chapter is structured as follows: Section 6.2 presents the

lack of previous works concerning power consumption of IR systems, and this con-

stitutes the main motivation of our work. In Section 6.3 we concretely state our

proposal and research questions. In Section 6.4, we introduce our model, by describ-

ing the dynamic system and the general cost function, while Section 6.5 presents the

deterministic approach that considers the previous and also the current state of the

system for predicting query traffic. Sections 6.6 and 6.7 propose power and latency

cost functions, respectively. Section 6.8 details the baselines and experimental setup.

Our experimental results are reported in Section 6.9. Section 6.10 presents the gener-

alization of the model for distributed and replicated architectures, as well as different

scheduling methods. Finally, concluding remarks are summarised in Section 6.11.

6.2 Background

Many of the works mentioned in Chapter 2 (Section 2.5) are focused on achieving

power savings in data centre for general Internet services (e.g. [59, 74]). However,

few works have addressed this problem within search engines, where user queries

equate to (short-lived) jobs. Within the roadmap proposed by Chowdhury [32],

6.3. Proposal 71

which introduced the term Green IR, our work is clearly focused on the intra-data

centre efficiency of the search engine. In contrast, the work of [53] addressed power

efficiency at the inter-data centre level, by distributing query volume between geo-

graphically distant data centres based on workload and electricity prices. Recently,

Sazoglu et al. [86] propose a novel metric for result caching that considers the finan-

cial cost of a cache miss.

Nevertheless, to the best of our knowledge, no previous work has presented an

intra-search engine model for managing the powering of the servers depending on

the incoming query traffic needs.

6.3 Proposal

To attain the problem shown in previous section, we start our research by stating the

following hypothesis: It is possible to dynamically adapt the behaviour of the search

engine – according to the variations of the query load – while providing acceptable query

latencies and minimising the number of machines used to process the queries.

We propose a mathematical model of a replicated search engine with a query bro-

ker and many independent query processors, each managing a replica of the index.

This model permits the number of query processors to be dynamically changed ac-

cording to the query arrivals and proposed latency and power consumption cost func-

tions. By estimating the arrival times and processing requirements of future queries,

we derive self-adapting mechanisms for the search engine model that can reduce

power consumption without negatively impacting efficiency, by means of dynamic

optimisation schemes [13].

6.4 Mathematical Model

6.4.1 Architecture

As we could see in previous sections, increasing the parallelism of a search engine

through distributed architectures offers a route to increased per-request efficiency

without loss of effectiveness. In such document-partitioned architectures, a query

server stores the index shard for a subset of the documents in the corpus. Indeed,

72 Chapter 6. Power/Latency Trade-off Model

Query
Broker

1) Incoming queries

Replica 1
q1processing q2processing

Replica 2
qMprocessing

Replica M

qM+1qM+2

2) FIFO queue

3) Scheduling to the
 first available replica

Figure 6.1: Our reference architecture.

with multiple replicas of the same shard, more queries can be processed in parallel on

identical shard copies, thus reducing the waiting time of incoming queries, as well as

providing fault tolerance properties. For simplicity, in this section we focus on a sin-

gle broker, single-shard environment with multiple replicas on different query server

machines. Indeed, as the replicated query servers allocated to a single shard rep-

resent independent partitions of the search engine’s index, the techniques proposed

in this section could easily be applied for multiple shard environments, by indepen-

dent application on each shard individually (as it will be attested in section 6.10).

Nevertheless, for simplicity, we are formulating the model assuming a one-shard ar-

chitecture.

Our reference architecture assumes a single-shard search engine implemented by

a query broker and M independent replicas that manage a copy of the index (see

Figure 6.1). User queries are received by the broker and are queued up in a buffer.

The queries stored in the buffer retain their positions until they are completed. While

complex queue re-ordering strategies can benefit overall response times [43, 67],

for simplicity, in our architecture the query processing nodes serve from the front

of the queue: at any given time if the search engine has less than M queries, some

processing nodes are idle, while if the search engine has more than M queries, some

queries are queued in the buffer.

6.4. Mathematical Model 73

6.4.2 Dynamic Optimisation Model

We consider a replicated search engine processing user queries, with a single query

broker and M independent identical query processors each serving a replica of the in-

dex (as explained above with reference to Figure 6.1). As in previous chapters, each

query submitted to the search engine experiences a completion time defined as the

sum of its waiting time (the time that the query has spent enqueued), its processing

time (the time spent processing the query by a query processor) and any network

delays between the broker and the corresponding replica. Assuming identical query

processors, the processing time of a query is independent of the node actually pro-

cessing the query: the same query will be processed in the same amount of time on

each node.

We consider a daily-based operational cycle of the search engine, in that we ana-

lyse the behaviour of the search engine during a single day. Periodically during the

day, we observe the state of the search engine and we decide how to change it, with

the objective of minimising a certain cost, i.e., an undesirable behaviour. In our sce-

nario, this behaviour is represented by the unnecessary usage of machines that are

not necessary to service the query load with acceptable timeliness. In doing so, we

must take into account that the outcome of each decision cannot be fully predicted,

due to some random unknown parameters – such as the number of queries that will

be received. Moreover, each decision cannot be taken in isolation, since we want to

balance lowering the present cost with potentially higher future costs – for instance,

turning off currently unused machines that might be needed shortly. To achieve these

aims, we model the search engine as an optimal decision problem of a discrete dy-

namic system over a finite number of stages [13]. Computing systems have been

previously modelled as dynamic systems in order to leverage automatic control the-

ory to address the dynamics of resource management [49], such as email server [79]

and web servers [36]. However, this work represents the first instantiation of a dy-

namic decision problem within search engine power/latency modelling.

In the remainder of this section, we provide a short introduction to the general

dynamic decision problem [13] (Section 6.4.3), a dynamic model of a replicated

search engine with multiple query processors (Section 6.4.4), a discussion on the

74 Chapter 6. Power/Latency Trade-off Model

Table 6.1: Notation used within our model.

Symbol Explanation
N number of time slots (per day)
Ts length of a time slot (in secs)
M number of available machines
xk queued queries at the beginning of time slot k
uk processing nodes during time slot k
wk incoming queries during time slot k
yk processed queries at the end of time slot k
w̄k estimated incoming queries during time slot k
vk mean query processing time during time slot k
v̄k estimated mean average query processing time during time slot k
fk(·) generic state update function
gk(·) generic cost function
Pk(·) power cost function
Lk(·) latency cost function
hk(·) query processing function

cost function for our dynamic model (Section 6.4.5), and a summary of the resulting

decision problem (Section 6.4.6).

6.4.3 General Dynamic Decision Problem

A dynamic decision problem model must be composed by: (1) an underlying discrete-

time dynamic system and (2) a cost function that is additive over time [13]. In the

following, we introduce the notation necessary to describe a general decision prob-

lem model, which we later instantiate for our proposed search engine model. All

notation used in our instantiation for a search engine problem model is summarised

in Table 6.1. Firstly, we assume that time is slotted and indexed by k = 0, 1, 2, . . . , N .

Time slots are sampled every Ts seconds. The dynamic system has the form:

xk+1 = fk(xk, uk, wk) k = 0, 1, . . . , N − 1 (6.1)

where k indexes discrete time, xk represents the state of the system that is relevant

for its future operation, uk is the decision variable to be selected at time k and wk is

a random parameter. In general, we deal with a finite time horizon, i.e., we observe

and optimise the system during a fixed number of time slots, indexed from 0 to N –

for instance, over a 24 hour period. The random parameter (or noise, or disturbance,

6.4. Mathematical Model 75

or exogenous input) wk is characterised by a probability distribution that may de-

pend explicitly on xk and uk but not on the values of prior disturbances w0, . . . , wk−1.

Given an initial state x0 and a sequence of decisions u0, . . . , uN−1, the states xk and

the disturbances wk are random variables with distributions defined through Equa-

tion (6.1).

The cost function defines the expected cost of the decision at time k, and is addi-

tive in the sense that the cost incurred at k, denoted by gk(xk, uk, wk), accumulates

over time. Note that gk is a random variable, since it depends on xk and wk. Hence

the expected total cost J(x0) is:

J(x0) = E

[
gN (xN) +

N−1∑
k=0

gk
(
xk, uk, wk

)]
(6.2)

where the expectation is taken over the random variables xk and wk and gN (xN) is a

terminal cost incurred at the end of the process, depending on the final state. Hence,

an optimal decision sequence u∗0, . . . , u
∗
N−1 is the decision sequence that minimises the

cost J(x0).

6.4.4 Search Engine Dynamic Model

Following the above formulation of a general dynamic decision problem, we now

instantiate a dynamic decision model for a search engine. In each time slot k, de-

pending on the number of pending queries in the buffer, the search engine allocates

a number of processing nodes among the M available. Increasing the number of

processing nodes decreases the overall waiting time for the queries in the buffer but

increases the service cost and power consumption associated with the system.

At the beginning of each time slot, a decision must be taken regarding the number

of processing nodes to be used in that slot. Decisions cannot be viewed in isolation

since we want to balance two conflicting goals: minimising the power consumption

of the search engine, and maximising the search engine’s efficiency. We denote by:

• xk: the number of queries waiting to be processed (i.e., currently enqueued) at

the start of the kth time slot.

• uk: the number of active processing nodes at the start of the kth time slot.

76 Chapter 6. Power/Latency Trade-off Model

• yk: the number of queries processed by the search engine during the kth time

slot (with a given probability distribution).

• wk: the number of queries arriving to the search engine during the kth time slot

(with a given probability distribution).

We assume that any incoming query is queued, and that if there are waiting queries,

any processing node that finishes to process a query immediately starts processing a

waiting query. Thus, the number of queries waiting to be processed evolves according

to the following discrete-time equation:

xk+1 = xk − yk + wk (6.3)

The dynamic equation (6.3) does not explicitly depend on the number of active

processing nodes uk. However, the number of queries processed by the search en-

gine during the kth time slot yk depends explicitly on uk, according to the following

general equation:

yk = hk(xk, uk, vk) (6.4)

This models the fact that, in a given time slot, the number of processed queries de-

pends on three quantities: the number of queries waiting to be processed xk, the

number of processing nodes uk, and a random component vk modelling the mean

service time of the queries. To summarise, the complete model for the search engine

under examination is:

xk+1 = xk − hk(xk, uk, vk) + wk (6.5)

where we leave to later in Section 6.5 the specification of the query processing func-

tion hk(xk, uk, vk), which defines how many queries of xk can be processed by uk

machines with a given service time pattern of vk.

6.4.5 Search Engine Cost Function

A public software service such as a search engine has two main stakeholders: the

service provider and the service user. In general, the service provider aims to max-

imise the revenue from the service, increasing the income and reducing its operating

6.4. Mathematical Model 77

expenditure. One of the main costs of a running service is the expenditure on power

required to run the machines hosting the service. From the point of view of the

user, a search service is desired to be efficient (timely), i.e., the latency between the

submission of a query and the display of the first search results should be minimised.

Clearly, the operating cost of a search infrastructure depends on the number of

machines operating the service, and the final revenue depends on the number of sa-

tisfied users, i.e. how many users receive their search results with acceptable latency.

Indeed, search engines users have less tolerance for slower search engines [87], and

may abandon their search request [56]. Such abandonment can lead to the loss of

users to other search services, leading to a loss of potential revenue from these users.

Given that the number of queries submitted to a search engine varies during the

day [88], the number of processing nodes can be varied according to the demand.

At the start of each time slot, a decision regarding the number of processing nodes

to be used must be taken. Decisions need to balance two conflicting goals: minimise

the search engine power consumption and maximise the search engine efficiency (by

reducing latency). Hence, we have two types of costs that should both be considered:

1. Power cost Pk(xk, uk, vk, wk), increasing in the number of processing nodes

used;

2. Latency cost Lk(xk, uk, vk, wk), increasing in the number of queries waiting to

be processed and decreasing in the number of processing nodes used.

As the latency costs increase, the model aims to minimise the overall cost by

emptying the query queue faster. On the other hand, as the power costs increase, the

system will attempt to trade higher latencies for lower power. In order to model this

power/latency trade-off, we propose cost combinations of the following type:

gk(·) = λPk(·) + (1− λ)Lk(·) (6.6)

for various values of λ ∈ [0, 1). For λ = 0, the cost function represented by Equa-

tion (6.6) ignores any power cost, and leads to the maximum number of available

processing nodes being used in every time slot, as this achieves the minimum possible

queueing delay. If λ = 1 is allowed, the cost function would ignore any latency cost,

78 Chapter 6. Power/Latency Trade-off Model

leading to the limit case of no processing nodes being used for processing, thereby

maximising power savings but leading to infinite waiting times. Varying λ in [0, 1), we

can achieve any average query latency from infinite to the minimum possible traded

off against the corresponding power consumption of the search system. We note

that both cost functions assume values in the same range. Without loss of generality,

later in Sections 6.6 and 6.7, we devise particular cost functions ranging in the [0,1]

interval, where 0 means no cost and 1 means maximum cost.

6.4.6 Latency/Power Decision Problem

We now formulate the general dynamic decision problem by adapting Equations (6.1)

& (6.2) to our search engine and cost models:

minimise
uk

E

[
N−1∑
k=0

λPk(xk, uk, vk, wk)+

(1− λ)Lk(xk, uk, vk, wk)

]
subject to xk+1 = xk − hk(xk, uk, vk) + wk,

k = 0, 1, . . . , N − 1

(6.7)

As described above, λ is an exploratory parameter that must be fixed at the begin-

ning, while wk and vk are random variables describing the number of incoming and

processed queries at the kth time slot respectively. The state variables xk are com-

puted through N instances of Equation (6.5), depending on these two random vari-

ables and the query processing functions hk(·). Given these dependencies, the state

variables are random variables as well, hence the expectation in the cost function

must be computed over these three sets of random variables, in a stochastic manner.

The query processing functions hk(·) will be defined in the next section, where we

describe some approximations that allow the stochastic decision problem (6.7) to be

sub-optimally solved in a deterministic manner.

6.5. Deterministic Approximation 79

6.5 Deterministic Approximation

Problems like (6.7) cannot typically be solved analytically, and their solution algo-

rithms are computationally very intensive [13]. For these reasons, these problems,

where the exact value of all variables are unknown deterministically, are solved sub-

optimally in practice. In order to deal with the stochastic decision problem (6.7),

we propose to solve a suboptimal scheme that consists of computing, at each stage,

a decision that would be optimal if the uncertain quantities were fixed at some typ-

ical values. In doing so, we replace the stochastic nature of the decision problem

with a simpler deterministic version at each stage and then we solve the deterministic

problem. Within this section we discuss:

1. how to estimate the ‘typical’ value of the random variables, which we denote

by w̄k and v̄k, representing the estimated number of queries arriving during

the kth time slot and the estimated mean service time during the kth time slot

(Section 6.5.1);

2. how to derive a deterministic approximation for problem (6.7) with query pro-

cessing functions hk(·) depending on our estimations (Section 6.5.2);

3. how to solve the deterministic problem using dynamic programming, if we

know all the estimates of the random variables for the whole day, and how to

solve the deterministic problem with simple subsequent steps, if we know the

estimates of the random variables for the next time slot only (Section 6.5.3).

6.5.1 Random variables estimation

In order to compute the estimated values of the random variables wk and vk, we

adopt the following estimation schemes, based on historical data.

For the service times of queries, the typical assumption is that these are indepen-

dent and identically distributed random variables [19]. However, we assume that the

service times exhibit a seasonal trend among days, hence the mean service time of the

queries in the k-th time slot is equal to the mean service time of queries in the same

time slot of a previous day, i.e., v̄k = vk−JN , where J defines the number of previous

days, and N is the total number of time slots in a day. For instance, J = 1 means

80 Chapter 6. Power/Latency Trade-off Model

that v̄k is estimated using data from the previous day, while J = 7 means that v̄k is

estimated using data from the same day in the previous week.

For the number of queries arriving during the kth time slot, we will assume two

different estimation schemes:

• In the seasonal estimator, we estimate the number of incoming queries with the

actual number of incoming queries in the same time slot of a previous day, i.e.:

w̄k = wk−JN

• In the seasonal estimator with drift, the previous day value is adjusted with the

current trend of arrivals [82] experienced in the last two time slots, such that:

w̄k = wk−JN + (wk−1 − wk−2)

While the seasonal estimator is a viable solution for days exhibiting the same query

submission and execution patterns (e.g., two subsequent weekdays or the same day

in two subsequent weeks), the seasonal estimator with drift takes into account po-

tential and unpredictable changes in query volume patterns, such as reduced query

volumes during holidays or increased query volumes during major events (e.g., dis-

asters, breaking news, or sport events). However, for this estimator, the value of w̄k

is known for only the next time slot ahead.

6.5.2 Deterministic Problem Formulation

Given the mean query service time vk, it is straightforward to model the processing

of queries in our search engine model. If a single node can process Ts/vk queries in

the Ts seconds duration of the kth time slot, then uk identical processing nodes can

serve uk ·Ts/vk queries during the same slot, resulting in the following expression for

hk:

hk(·) = uk · Ts/vk (6.8)

Since we use the estimated mean service time v̄k instead of the actual mean ser-

vice time vk, the approximation of the stochastic decision problem (6.7) with the

6.5. Deterministic Approximation 81

stage x0 stage x1 stage x2 stage xN

g0(x0, 1)

g0(x0, 2)

0

0

x0

g1(f0(x0, 1), 1)

g1(f0(x0, 2), 1)

g1(f0(x0, 1), 2)

g1(f0(x0, 2), 2)

Figure 6.2: Transition graph for a deterministic problem with 2 machines.

random variables’ estimated values leads to the following deterministic problem for-

mulation:

minimise
uk

N−1∑
k=0

λPk(xk, uk, v̄k, w̄k)+

(1− λ)Lk(xk, uk, v̄k, w̄k)

subject to xk+1 = max{0, xk − uk · Ts/v̄k + w̄k}

k = 0, 1, . . . , N − 1

(6.9)

where the max{·} function avoids to process more queries than the number of queries

available to process. In contrast to problem (6.7), problem (6.9) is deterministic as

there is no longer any probability distributions associated with vk and wk (and hence

xk). Such deterministic formulation can be tractably solved [13], as described next.

6.5.3 Deterministic Problem Solutions

Consider the deterministic problem formulation defined in Equation (6.9) where each

state xk can assume a finite set of values. Then, at any state xk, a decision uk can be

associated with a transition from state xk to state fk(xk, uk) = xk − uk · Ts/v̄k + w̄k

at a cost gk(xk, uk) = λPk(xk, uk, v̄k, w̄k) + (1 − λ)Lk(xk, uk, v̄k, w̄k). As illustrated

in Figure 6.2, the deterministic problem can be equivalently represented by a graph,

where the arcs correspond to transitions between states at successive stages and each

arc has an associated cost corresponding to gk(·). Decision sequences correspond to

paths across the graph, originating at the initial state (node at stage 0, where x0 = 0),

and terminating at a final node linked to all terminal states (nodes at stage N − 1)

with no associated transition cost or, alternatively, with a cost proportional to the

82 Chapter 6. Power/Latency Trade-off Model

number of remaining unprocessed queries. If we view the cost of an arc as its length,

we see that the deterministic problem of Equation (6.9) is equivalent to finding a

minimum length path from the initial node (at stage x0) to the artificial terminal

node with no transition costs of the graph.

If the service times and the number of arriving queries are estimated using only

historical data (e.g. based on a previous day, the seasonal estimator), then the tran-

sition costs of the whole graph for the current day can be computed a priori. Hence,

it is possible to use dynamic programming to solve the general shortest path prob-

lem [13], but also algorithms specifically designed for the shortest path problem

solution, such as the Dijkstra algorithm [37]. We denote this solution algorithm as

LONGTERM.

On the other hand, if we estimate the number of arriving queries with the sea-

sonal drift approach, the estimates of the number of queries wk depend not just on

the historical data, but also on the current load being experienced by the search en-

gine. Hence, it is not possible to compute all the transition costs in the graph at the

start of the day [13]. Instead, at each step we truncate the estimation horizon (i.e.

how ahead the costs are calculated) to the next step only and resort to a one step

limited lookahead strategy, where, at each stage, we select the next stage reachable

with minimum cost from current stage1. We will denote this solution algorithm with

SHORTTERM. Moreover, as discussed in Section 6.5.1, we expect SHORTTERM to im-

prove LONGTERM, as it consider the query volume being currently experienced by the

search engine in addition to the volume experienced on a previous day.

6.6 Power Cost Function

The power cost function Pk(xk, uk, v̄k, w̄k) represents the electric power consumption

of the whole search engine and it is directly proportional to the energy costs of op-

erating the search engine. Firstly, we discuss the power usage of a single processing

node. We distinguish between three states that a node can be in:

1. ON. The node is fully operational and busy processing a query. The node con-

sumes power at a rate of Pon.
1We leave an examination of strategies with larger lookaheads to future work.

6.6. Power Cost Function 83

2. STANDBY. The node is available, but is currently sleeping. The node consumes

power at a rate of Pstandby.

3. OFF. The node is off, and it consumes no power.

Switching a node between two states is associated with a switching cost. The switch-

ing cost typically consists of two components: a time component and a power com-

ponent. The time component depends on node characteristics and the search engine

implementation, while the power component depends on the power consumed by

the node during setup time (typically coinciding with Pon). While the switching time

on ↔ standby is almost instantaneous, the time required to switch between on and

off and vice-versa is not negligible: for most data centres [45], this switching time

can reach 200 seconds. This setup time can negatively impact on the latency of the

queries to be processed by the node, and must be avoided. As the modelling of switch-

ing times is not considered in our cost functions, we limit our machine operational

states to on and standby.

Given these costs, we assume that a fully operational node is consuming Pon Watts

per Ts seconds, while a standby node is not turned off but consuming Pstandby Watts

per Ts seconds. So, at a given time slot k, the total energy consumed by a search

engine with uk active processing nodes out of a possible M is:

PonTsuk + PstandbyTs(M − uk)

Please note that this power consumption is an upper bound approximation of the ac-

tual power costs, because we are implicitly assuming that all active node will always

be processing queries. By normalising this quantity by the maximum consumable

power for M machines, we obtain the following expression for the power cost func-

tion Pk(·):

Pk(·) = P (uk) =
1

MPon

[
Ponuk + Pstandby(M − uk)

]
(6.10)

Note that the power cost function does not depend on k, xk, v̄k or w̄k, and that it

varies between Pstandby/Pon and 1.

84 Chapter 6. Power/Latency Trade-off Model

6.7 Latency Cost Function

At this point, we must define a function to represent the latency cost in order to make

it comparable with the power consumption function. While searching for a represen-

tation of the time that a query has to spend waiting in a queue, it is naturally to think

about queueing theory, as it provide us the value of two interesting variables: the

average time that a query must spend in the system and also the estimated number

of incoming queries. On the other hand, a more practical, less formal, but easier to

estimate approach is also considered.

The remainder of this section is structured as follows: section 6.7.1 presents basic

concepts on Queueing Theory and check its suitability into our scenario and sec-

tion 6.7.2 builds a latency function using a deterministic approach based on histor-

ical/current data. Later in Results Section (6.9) we prove the suitability of these

approaches.

6.7.1 Queueing Theory approach

In general, a queue can be defined as a waiting line (like customers waiting at a

bank office) [33]. Queueing Theory deals with the analysis of waiting lines where

customers wait to receive a service [29], [20]. More generally, Queueing Theory

is concerned with the mathematical modeling and analysis of systems that provide

service to random demands. A queueing model is an abstract description of such a

system. Typically, a queueing model represents the following aspects [33]:

• The system’s physical configuration, by specifying the number and arrangement

of the servers, which provide service to the customers.

• The stochastic (that is, probabilistic or statistical) nature of the demands, by

specifying the variability regarding the arrival and services processes.

Queueing theory is considered to be one of the standard methodologies (together

with linear programming, simulation, etc.) of operations research and management

science and is standard fare in academic programs in industrial engineering, telecom-

munications or computer science. There is huge research material on queueing the-

ory, and it continues to be published at an increasing rate. But, despite its apparent

6.7. Latency Cost Function 85

simplicity, complexity and rigour are inborn characteristics.

A queueing model can be mainly characterized by the following parameters:

• Arrival rate (λ): mean number of arrivals per time unit. Interarrival rate: 1
λ .

• Service rate (µ): mean number of clients that are served per time unit.

• Service capacity (s): number of servers helping the customers.

• Service discipline: First Come First Served (FCFS), Random, Last Come First

Served (LCFS), etc.

Kendall [54] introduced a shorthand notation to characterize a range of these

queueing models. Its simplest form consists in a three-part code a/b/c. The first

letter specifies the interarrival rate distribution and the second one the service rate

distribution. For example, for a general distribution the letter G is used, M for the ex-

ponential distribution and D for deterministic times. The third and last letter specifies

the number of servers. Some examples are M/M/1, M/G/1, G/M/1 and M/D/1.

We are using the model M/M/s (on section 6.7.1.1 we test the availability of this

model for solving our problem).

The universal notation of queueing theory also includes the following parameters:

• Service time:

ρ =
λ

s · µ
(6.11)

If ρ < 1 the system is said to be stationary and the model is able to calculate a

solution based on the following formulas.

• Probability of n clients to be in the system (in an stationary state) (Pn).

p0 =
1∑s−1

n=0

(λ
µ

)n

n! +
(λ
µ

)s

s!(1−ρ)

(6.12)

pn =
(λµ)n · p0

n!
, 0 ≤ n ≤ s (6.13)

pn =
(λµ)n · p0

s!sn−s
, n > s (6.14)

86 Chapter 6. Power/Latency Trade-off Model

• Estimated number of clients in the queue (Lq).

Lq =
(λµ)s · p0 · ρ
s! · (1− ρ)2

(6.15)

• Mean waiting time in the system (W).

W = Wq +
1

µ
(6.16)

• Mean waiting time in the queue (Wq).

Wq =
Lq
λ

(6.17)

• Estimated number of clients in the system (L).

L = λ ·W = Lq +
λ

µ
(6.18)

6.7.1.1 Study of the viability of Queueing Theory to the current scenario

Before applying Queueing Theory to our scenario, we must previously test if our sce-

nario satisfies the conditions to apply a M/M/s model: we must check that the query

interarrival times and also the query servers processing times follow an exponential

distribution.

Regarding the interarrival times, our scenario differs from the one that uses the

whole daily query times. We are applying one different M/M/s model on each time

slot (in this study, each 15 minutes), so we must test if the interarrival times be-

longing to a slot follows an exponential distribution. For this purpose, we have used

SPSS software2 to check the distributions of the 96 slots. If the number of queries

per second follows a Poisson distribution, we can assume that the interarrival times

follow a exponential distribution. Table 6.2 shows the parameters and results of the

Hypothesis test. Based on these results we assume that the interarrival times of each

slot follow an exponential distribution, so we can apply the M/M/s model.

2http://www-01.ibm.com/software/analytics/spss/

http://www-01.ibm.com/software/analytics/spss/

6.7. Latency Cost Function 87

Table 6.2: Results of the statistical analysis for the distribution of the number of
queries per slot

Test Kolmogorov-Smirnov
α (Significance Level) 0.05

#Contrasts (slots) 96
H0 #Queries per slot fits a Poisson distribution
H1 #Queries per slot does not fit a Poisson distribution

#Contrasts that accept H0 92

After this statistical analysis we assume that QT can be applied to our scenario.

The basic parameters λ and µ are estimated as follows:

λ = w̄k (6.19)

µ =
Ts
v̄k

(6.20)

In Eq. 6.20 Ts represents the length of the slot.

M/M/s model gives us a formula to calculate the mean waiting time in the sys-

tem (Eq. 6.16) based on the values of λ and µ. The latency function represents the

time that the system will spend in solving all the queries within a slot. This way,

we calculate the latency following Equation 6.21. Remember that s represents the

number of replicas. This equation includes the negative exponential normalization.

Lk = 1− e−(W ·Ts·w̄k/s) (6.21)

6.7.2 Deterministic approach

The latency cost function Lk(xk, uk, v̄k, w̄k) represents the cost incurred when the

time required to process queries increases. In order to provide a simple analytic

expression for this cost, consider the following situation. At the beginning of time

slot k, we have xk queued queries, waiting to be processed by uk nodes with an

average service time per node of v̄k seconds. During the k-th time slot, we receive w̄k

new queries to process. We want to compute the average latency of xk + w̄k queries.

The first batch of uk queries can be processed by a single replica after v̄k seconds,

88 Chapter 6. Power/Latency Trade-off Model

the second batch of uk queries is processed after 2v̄k seconds, and so on. We have a

total of B = (xk + w̄k)/uk batches of queries, so the last batch of at most uk queries

is processed after Bv̄k seconds. Hence, at a given time slot k, the query completion

time Tk of xk + w̄k queries by uk replicas can be computed by:

Tk =
xk + w̄k
uk

v̄k (6.22)

While this definition of completion time assumes that queries arrive such that the

query processors are always busy during the time slot, it behaves as expected: Tk

decreases when the number of processing nodes increases, and increases when the

number of queued queries, the number of arriving queries or the average query pro-

cessing time increases.

6.8 Experimental Setup

In the next section, we experimentally investigate to determine the potential of our

proposed model for reducing the power consumption of a search engine without

negatively impacting on its efficiency.

In particular, five research questions are addressed, as follows:

1. Do our proposed self-adaptive models using seasonal data and current query

traffic achieve comparable latency values compared to reasonable baselines

while achieving savings in power consumption?

2. Can we improve the modelling of the latency using the deterministic approach

instead of queueing theory?

3. How do power and efficiency properties of LONGTERM and SHORTTERM differ?

4. How should the latency cost function be modelled within our self-adaptive mod-

els?

5. How does the length of slot Ts impact upon latency and power consumption?

In the remainder of this section, we define the experimental setup to address these

research questions, covering the search engine (Section 6.8.1), evaluation measures

6.8. Experimental Setup 89

Table 6.3: Statistics of the two days of the MSN 2006 query log used within these
experiments.

Query length
Total

1 2 3 4 5 ≥ 5

Prev. Day 110,706 199,721 136,667 56,183 20,954 10,981 535,212
Curr. Day 115,160 195,483 127,849 53,713 21,411 28,107 545,723

 0

 2000

 4000

 6000

 8000

 10000

 12000

00:00 04:00 08:00 12:00 16:00 20:00 24:00

N
um

be
r

of
 Q

ue
rie

s

Time (hh:mm)

Previous Day
Current Day

Figure 6.3: Number of queries arriving per 15 minute slot for both days.

(Section 6.8.2), baselines (Section 6.8.3), and parameter settings (Section 6.8.4).

6.8.1 Search Engine, Documents & Queries

To evaluate the proposed model, we determine the processing times for real user

queries submitted to a search engine platform built upon a simulation platform. In

particular, we index 50M Web documents from the TREC ClueWeb09 corpus (cate-

gory B) using the Terrier IR platform3 [78] – ClueWeb09 cat. B is intended to reflect

the first tier of a commercial Web search engine index. While indexing the corpus,

standard stopwords are removed and Porter stemming applied.

For queries, we use two days of queries (approx. one million queries) from the

MSN 2006 query log4. In particular, we use queries from two days of two consecutive

weeks of May 2006. Figure 6.3 presents the number of queries over the course of

3http://terrier.org/
4http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

http://terrier.org/
http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

90 Chapter 6. Power/Latency Trade-off Model

each day and table 6.3 classifies the queries based on its length (number of terms).

During retrieval, we use the WAND dynamic pruning technique applying BM25 [85]

to rank 1000 documents for each query, recording the processing time of the query

by a single replica. All efficiency experiments are made with a quad-core Intel Xeon

2.4GHz, with 8GB RAM and inverted indices stored on a 160GB SATA drive.

6.8.2 Evaluation Measures

As our work concerns balancing the trade-off between search engine efficiency and

power consumption, we measure both aspects within our work. In particular, we

measure the mean and 90th Percentile (the value below which the 90% of the ob-

servations can be found) response time for queries as the configuration of the search

engine is varied across the evaluation period (denoted ACT and 90thPC, respectively).

Response times are measured in milliseconds (ms).

Concurrently, we measure the power usage of the search engine for the same

period based on the number of machines active at any point (denoted E and measured

in kWh), as well as the maximum number of machines that were active (denoted

Max Mch). We note that with some configurations of the search engine when there

are insufficient replicas available, the search engine will become backlogged with

excessive number of queued queries. To prevent any skew in the results, we drop

queries that are not answered within 5 seconds, thereby returning an error page to

the user of that query. Clearly this is an undesirable scenario, and hence, we count

the number of unanswered queries (denoted %UQ).

To summarise, we consider as a success when, compared to a baseline approach

(described in the next section), the maximum number of active query server repli-

cas and resulting power consumption of the search engine can be reduced, without

marked negative impact upon the experience of the search engine users, as portrayed

by increased response times and higher rates of unanswered queries.

6.8.3 Baselines

To evaluate our proposed model, we define two reasonable baselines for determining

uk for i = 0, . . . , N − 1, in other words for defining how many machines are active at

6.8. Experimental Setup 91

any slot.

The first baseline – which we call Näıve – is motivated by the provisioning of

search engines to cope with worst-case query volume [11], and consists in choosing

the maximum number M of machines in each time slot, ignoring completely any

power consumption. In this case, we assume maximum power cost, to reflect the fact

that the M machines are will continue to be allocated queries, e.g. by round-robin.

The second baseline, that we call Threshold, consists in fixing a time threshold

for the query completion times, and using the previous day average arrival times, the

average processing times and the number of queued queries in the same time slot in

Equation (6.22). In doing this, we can derive the decisions uk for i = 0, . . . , N − 1

that, based on the previous day behaviour, will be applied to the current day. In this

case, we assume that each of the selected uk processing nodes for a specific time slot

consume maximum power, as they may be allocated queries in a round robin basis,

even if the current query load is lower than the previous day query load. On the

other hand, the other M − uk nodes in a STANDBY state consume Pstandby power

each. Then, if we consider the definition of latency as per Equation (6.22), and fix

the time threshold to T ∗, we can compute uk as:

uk =
w̄k
T ∗ v̄k

where we assume that in each time slot the choice of uk was able to process all the

incoming queries, so that xk = 0. The value of T ∗ is determined by the length of the

time slot, as we want all the queries of a slot to be processed before proceeding to

the next slot.

Of these two baselines, it is clear that the power consumption of Threshold will

be less than Näıve, as Threshold affords the opportunity to save power for nodes

that are not expected to be required. However, compared to LONGTERM, Threshold

may disable nodes that would soon be required, as it cannot examine the impact of a

power decision across the remainder of the day.

92 Chapter 6. Power/Latency Trade-off Model

6.8.4 Parameter Settings

To instantiate our model, we invoke various parameter settings as follows. Firstly, to

calculate the power consumption of a replicated processing node, we use the energy

ratings from the EU Energy Star programme [90] for a small server as follows: Pon =

62W , Pstandby = 2W , following the reported use of commodity-sized servers within

commercial search engines [11]. Within latency costs functions (Equations (6.23)-

(6.25)), we follow Wang et al. [94] and use α = −0.01 for the ClueWeb09 cat. B

corpus. For slot duration, we set Ts = 15 minutes, reflecting an interval that identifies

general changing trends in query volumes that the model can quickly respond to,

rather than random fluctuations that might be detected by shorter slot durations.

Finally, as queries arrive on average at 15 per second, we use M = 15, 20 as the

number of replica query processors. The remaining parameter of our model, namely

the power/latency trade-off λ are experimental variables that we vary within the next

section.

6.9 Results

In this section, we aim to determine if our proposed self-adapting model allows

the system to markedly reduce power consumption with latency comparable to that

achieved by the baselines. This section drives us towards the answers to the research

questions presented in section 6.8. In particular, Section 6.9.1 firstly determines the

efficiency and power properties of our two baselines to present later in Section 6.9.2

the performance of our model using Queueing Theory. Section 6.9.3 finally answers

our first, second and third research questions, by comparing LONGTERM and SHORT-

TERM approaches with the baselines and with the Queueing Theory approaches. In

Section 6.9.4, we address our fourth research question concerning the choice of la-

tency cost function within the model. Finally, Section 6.9.5 studies the influence of

choice of the slot length Ts .

6.9.1 Baselines

The top part of Table 6.6 reports, for M = 15, 20 replicas, the various evaluation

measures achieved by the two baselines in this paper, namely Näıve, which keeps the

6.9. Results 93

maximal number of replicas active, and Threshold, which uses the number of replicas

active that would have sustained the traffic of the previous day. Within the table, we

report efficiency measures (average and 90th percentile response times, measured

in milliseconds), the number of unanswered queries, the peak number of machines

used, and the total energy consumption over the course of the day (kWh). The time

slot size is maintained at Ts = 15 minutes.

Analysing the response times for the baselines within Table 6.4, we note that mean

response times around 850ms are achievable by both approaches. Moreover, while

the Threshold approach can reduce the energy consumption compared to Näıve by

putting machines into standby mode (by 47% for M = 15 and 57% for M = 20), this

comes at the expense of marginally increased response times (approx. 6ms). To sum-

marise, we find that, as expect the Threshold approach results in markedly decreased

energy consumption compared to Näıve, with little marked impact on response times.

Table 6.4: Performance comparison among the Baselines for different M and λ val-
ues.

λ ACT(ms) 90thPC % UQ Max Mch E(kWh)

M = 15

Baselines

Näıve 847 1,349 0 15 22.3

Threshold 853 1,354 0.03 15 12.0

M = 20

Baselines

Näıve 846 1,349 0 20 29.8

Threshold 853 1,354 0.03 19 12.9

6.9.2 Queueing Theory aproaches

In section 6.7 we presented two different ways of defining the latency cost function.

The first one 6.7.1 is based on Queueing Theory, meanwhile the second one 6.7.2

uses a deterministic approach. This section analyses the performance of the Queue-

ing Theory modelled latency function and its particular behaviour. We compare the

results obtained with the two implemented baselines in table 6.5. QT-LONGTERM

94 Chapter 6. Power/Latency Trade-off Model

Table 6.5: Performance comparison among QT-LONGTERM, QT-SHORTTERM and the
Baselines for different M and λ values.

λ ACT(ms) 90thPC % UQ Max Mch E(kWh)
M = 15

Baselines
Näıve 847 1,349 0 15 22.3

Threshold 853 1,354 0.03 15 12.0
QT-LONGTERM

0.25 847 1,348 0 15 11.3
0.5 847 1,348 0 15 11.1

0.75 847 1,349 0 15 10.9
QT-SHORTTERM

0.25 849 1,349 0.02 15 11.2
0.5 849 1,349 0.02 15 11.1

0.75 849 1,350 0.02 15 10.6
M = 20

Baselines
Näıve 846 1,349 0 20 29.8

Threshold 853 1,354 0.03 19 12.9
QT-LONGTERM

0.25 847 1,348 0 20 14.4
0.5 847 1,348 0 20 13.6

0.75 847 1,349 0 20 13.2
QT-SHORTTERM

0.25 847 1,348 0 20 14.62
0.5 848 1,349 0.02 20 13.7

0.75 849 1,350 0.02 20 13.1

refers to the LONGTERM approach based on Queueing Theory and QT-SHORTTERM is

based on SHORTTERM approach.

Comparing QT-LONGTERM with Näıve, latency values are substantially equal –

847 ms for M = 15 –, but QT-LONGTERM achieves an energy saving up to 51%, due

to the reduction of powered-on machines on the lowest contention slots of the day.

Similar behaviour occurs for M = 20. Regarding Threshold, for M = 15, the re-

sults are quite similar with regard to QT-LONGTERM. Looking at M = 20 machines,

QT-LONGTERM improves the average completion time by only a 0.7%, at the cost of

increasing the energy consumption by an 11%. This behaviour has an easy explana-

tion: Queueing Theory methods are at a disadvantage regarding Threshold: when

the contention of the system increases, configurations with low number of machines

6.9. Results 95

become non-stationary (ρ ≥ 1). This means that the model can not calculate a value

for the mean waiting time (W), although some of those configurations would be

valid (queries have to wait more time, but in any case they will be solved). In this

cases, the system can consider only the configurations with higher number of ma-

chines, reaching a point where none of the configurations are stationary, so we select

the maximum number of available machines. QT-SHORTTERM evidences analogous

results to QT-LONGTERM.

6.9.3 Self-adaptive Power/Latency Models

The bottom two parts of Table 6.6 report the evaluation measures for the LONGTERM

and SHORTTERM approaches. For both approaches and both M = 15, 20 replicas, we

vary the power/latency trade-off parameter λ, to determine its impact on both effi-

ciency and energy consumption. In this section, the L1 latency cost function (Equa-

tion (6.23)) is applied.

Firstly, we discuss the LONGTERM approach, which estimates the expected number

of queries solely based on the query volume in the same time slot of the previous day.

Overall, for some values of λ, this approach provides completion times generally

comparable with the baselines, i.e. less than 900ms. However, such values can be

obtained with marked reductions in energy use. For instance, compared to Threshold,

the setting of M = 20, λ = 0.5 produces a 5% increase in mean completion times and

4% in 90th percentile completion time; this is achieved with a 42% reduction in

consumed energy, and a peak usage of 7 replicas – down from 19. For M = 15,

λ = 0.5 the query load can be serviced with only 6.3 kWh of energy use and only 6

replicas, at the cost of 14% increase in mean completion time compared to Threshold,

and a small increase in the number of unanswered queries.

Such results demonstrate the promise of the proposed LONGTERM approach: given

enough replicas to service peak demands (M = 20), it can achieve marked energy

savings compared to the Threshold baseline. Indeed, LONGTERM has the advantage

that by being able to derive the cost of a decision until the end of the day, com-

pared to Threshold it has less tendency to overfit to any fluctuations in query volume

experienced by the search engine on the previous day.

Next, we examine the results for the SHORTTERM approach in the bottom part of

96 Chapter 6. Power/Latency Trade-off Model

Table 6.6: Performance comparison among LONGTERM, SHORTTERM and the Base-
lines for different λ and M values.

M = 15

λ ACT(ms) 90thPC % UQ Max Mch E(kWh)
Baselines

Näıve 847 1,349 0 15 22.3
Threshold 853 1,354 0.03 15 12.0

LONGTERM

0.25 848 1,350 0 15 12.0
0.5 969 1,394 1.35 6 6.3

0.75 3,194 3,886 19.19 2 2.7
SHORTTERM

0.25 857 1,356 0.03 8 8.0
0.5 1,536 2,260 1.36 4 4.8

0.75 3,225 3,724 11.84 2 2.9
M = 20

λ ACT(ms) 90thPC % UQ Max Mch E(kWh)
Baselines

Näıve 846 1,349 0 20 29.8
Threshold 853 1,354 0.03 19 12.9

LONGTERM

0.25 848 1,349 0 17 12.1
0.5 896 1,409 0.08 7 7.4

0.75 2,299 3,049 4.68 3 4.2
SHORTTERM

0.25 854 1,354 0.02 10 9.5
0.5 1,007 1,567 0.31 5 5.7

0.75 2,956 3,700 10.69 2 3.4

Table 6.6. Recall, as explained in Section 6.5, that compared to LONGTERM, SHORT-

TERM also takes into account the actual number of arrived queries during the previous

slot, while LONGTERM only considers the query traffic from the previous day. In gen-

eral, we find that for λ = 0.25, SHORTTERM exhibits an improved power/latency trade

over the results exhibited by the LONGTERM approach. In particular, with mean res-

ponse times that are only a few milliseconds different from the results of the Thresh-

old and Näıve baselines, SHORTTERM achieves marked energy savings (33% and 64%

respectively for M = 15; 26% and 68% for M = 20).

This further marked reduction in energy consumption shows that the SHORTTERM

method can more accurately predict the query load in the next slot by considering

the query load in the previous slot. This way, as LONGTERM makes the estimation

6.9. Results 97

based on previous query volume alone, it selects a higher number of machines, while

SHORTTERM can reduce the necessary number of replicas, with corresponding en-

ergy savings. This is clearly illustrated in Figure 6.4, which shows the number of

machines used by each approach for M = 20 and λ = 0.5, as well as the two base-

lines. LONGTERM and SHORTTERM clearly reduce the number of active machines, but

are less sensitive than Threshold to the sudden decrease in query traffic at approx.

13:00 on the training day. Moreover, SHORTTERM uses less query processors than

LONGTERM over the day, confirming the power results in Table 6.6.

 0

 5

 10

 15

 20

00:00 04:00 08:00 12:00 16:00 20:00

N
u

m
b

e
r

o
f

M
a

c
h

in
e

s

Time (hh:mm)

Naive
Theshold

LongTerm
ShortTerm

Figure 6.4: Number of machines used along the day by LONGTERM and SHORTTERM

(λ = 0.5, M = 20) and the two baselines, namely Näıve and Threshold.

In summary, in answer to our first research question, we find that our proposed

self-adapting models for adapting the number of available query processors to query

demand can markedly reduce power consumption, without marked impact on effi-

ciency.

Regarding our second research question, we have attested that the deterministic

approach is more suitable to represent the latency of a search engine than theM/M/s

model.

With respect to the third research question, of the proposed LONGTERM and

SHORTTERM instantiations, SHORTTERM demonstrates the highest promise, as by

considering recent query traffic conditions, it is able to reduce the number of required

query processors, without marked degradations in query response time. Indeed, with

98 Chapter 6. Power/Latency Trade-off Model

λ = 0.25 and M = 15 SHORTTERM achieves a 33% of power improvement by pro-

ducing only a 1% increasing in latency; with λ = 0.5 and M = 20 SHORTTERM

achieves around mean completion times of 1 second but attains a 24% power saving

and maintains the percentage of unanswered queries under 0.05%. In the remainder

of this section, we analyse the impact of some parameters of the model: the choice of

latency cost function and time slot length on the achieved efficiency and power con-

sumption. As the performance of LONGTERM and SHORTTERM is more desirable than

QT-LONGTERM and QT-SHORTTERM, next sections are focused on the deterministic

approaches.

6.9.4 Modelling Latency Costs

In this section, we address our fourth research question, examining how the latency

of the search engine should be modelled within our proposed approach. Firstly, re-

call that Wang et al. [94] proposed three different efficiency metrics. In particular,

the latency of the search engine can be modelled with an exponential decay func-

tion (Equation (6.23), denoted L1), a step function with a fixed penalty after a time

threshold has expired (Equation (6.24), L2) or a step function followed by an ex-

ponential decay (Equations (6.25), L3). Figure 6.5 illustrates each of the latency

cost functions. The exponential parameter α > 0 controls how rapidly the latency

cost increases as a function of query completion time. As we consider the processing

of queries within a time slot, we set the time threshold as the slot length Ts = 15

minutes.

L1
k(·) = 1− exp(αTk) (6.23)

L2
k(·) =

 0 if Tk ≤ Ts
1 otherwise

(6.24)

L3
k(·) =

 0 if Tk ≤ Ts
1− exp(α(Tk − Ts)) otherwise

(6.25)

6.9. Results 99

While all metrics consider processing of all queries in the time slot, in contrast to

L1
k, the L2

k and L3
k model a certain tolerance level for query execution time, based on

the processing of all queries in the time slot.

 0

1

0

Processing Time

Co
st

L1 L3L2

Tk

Figure 6.5: Illustration of latency cost function shapes.

Table 6.7: Comparison of latency functions, while varying λ.

ACT(ms) 90thPC % UQ Max Mch E(kWh)
λ = 0.25

L1 848 1,349 0 17 12.1
L2 869 1,380 0.04 20 14.2
L3 880 1,401 0.07 19 12.0

λ = 0.5

L1 896 1,409 0.07 7 7.4
L2 849 1,350 0.01 20 14.2
L3 860 1,357 0.03 7 7.6

λ = 0.75

L1 2,299 3,049 4.68 3 4.2
L2 3,544 4,113 22.77 9 3.9
L3 2,235 3,030 4.5 3 4.3

Table 6.7 shows the comparison between the chosen latency functions for the

LONGTERM approach for M = 20. We also vary λ, in case the choice of λ can impact

upon the choice of the latency function. On a first inspection of Table 6.7, we observe

that latency function L1 achieves the lowest response times and energy consump-

tions. This can be explained with reference to Figure 6.5: For L2, the cost function

100 Chapter 6. Power/Latency Trade-off Model

Table 6.8: Effect of Ts using LONGTERM

Ts (min) ACT(ms) 90thPC % UQ Max Mch E(kWh)
LONGTERM

5 1,551 2,276 1.28 5 4.95
15 896 1,409 0.08 7 7.425
30 851 1,351 0.01 9 9.39
60 1,894 1,780 12.38 13 8.7

becomes 1 as soon as queries cannot be completed on time. Hence, if the latency

exceeds the time threshold even by a small amount, the latency cost is 1, and the

model resorts to the power function to decide between options. As it is power conser-

vative in nature, a smaller number of machines will be chosen. In contrast, by using

the exponential decay, L1 and L3 represent ‘softer’ latency cost function, and hence

can permit small inefficiencies for power savings. Of these, the simpler L1 is more

appropriate than L3, for the same reasoning as for L2. In summary, in addressing

our fourth research question concerning how the latency cost should be modelled,

we find that the exponential increase of cost as latency increases represents the most

promising function, as per Equation (6.23).

6.9.5 Effect of time slot length

We now address the final research question concerning the effect of time slot length

on the efficiency and power consumption. Table 6.8 shows the results obtained with

LONGTERM using different lengths for the time slot Ts: 5, 15, 30 and 60 minutes.

On analysing the table, we can confirm the expected behaviour. Small Ts values

such as 5 minutes can be altered by small peaks of traffic that would not have im-

portance at all if they would be considered on a larger interval. In addition, this lead

to suppose the continue changing of the state of the query servers, with consequent

reconfiguration time loss.

On the opposite case, 60 minutes interval is probably avoiding some important

peaks as the one of the previous day after midday (see Figure 6.3). 15 and 30 minutes

intervals are more approapiate to this kind of scenario, as they bring the opportunity

to react to important changes on query traffic and avoid changes the system due to

trifling peaks of queries.

6.10. Model Generalization 101

6.10 Model Generalization

This chapter has presented a new latency-power trade-off model for a single-shard

configuration (see Figure 6.1). Note that the scheduling is performed by using a

FIFO approach and none of the methods we have presented in previous chapters,

such as Queue Length, Least Loaded or the Hybrid approach.

The aim of this section is to demonstrate that the presented model can easily be

adapted to more than one shard and different scheduling methods.

The general idea is to apply Equation 6.6 on every shard, from 1 to S, being S the

total number of shards.

Consider Equations 6.10 and 6.22. Power function (Eq. 6.10) depends on uk (the

number of active replicas on slot k), and nothing changes regarding one-shard archi-

tecture. If we study the latency function and its deterministic approach (Eq. 6.22),

we must care about the following parameters:

• xk: number of queries waiting in the queues at the beginning of slot k. Up

until now we have considered a unique FIFO queue for all the replicas of one

shard. Some other scheduling methods can be used, as the ones we work with

in Chapter 4. These scheduling methods (Round Robin, Queue Length, Least

Loaded and also Hybrid approach) work with one queue on each replica, and

not with a general queue. If we implement these models, we must sum up the

number of queries waiting on each active replica xkr:

xk =

uk∑
r=1

xkr (6.26)

• w̄k: number of queries that will arrive during slot k. This parameter has the

same value for all the shards, due to the document partitioning approach. No-

thing changes regarding presented one-shard architecture.

• v̄k: average processing time of queries during slot k. Nothing changes regarding

presented one-shard architecture, each shard have its own v̄k value that can be

estimated based on previous query log.

• uk: number of machines (replicas) used during slot k. Once more, nothing

102 Chapter 6. Power/Latency Trade-off Model

changes regarding presented one-shard architecture (considering the same num-

ber of replicas for all shards).

An important problem of considering distributed queues is how to proceed with

the queries that are enqueued if we decide to switch-off/standby its replica [59]. Two

options are possible:

1. Re-scheduling the queries over the remained active replicas.

2. Changing the power state of the replica when it finishes processing the en-

queued queries. If the enqueued workload is low, this option is worth, otherwise

the first approach is more suitable.

6.11 Conclusions

While various research efforts have been dedicated to reduce power consumption re-

garding IT systems, few works apply this concept to the Information Retrieval field. In

this chapter we have proposed a mathematical model for a replicated search engine

that allows the establishment of a trade-off between latency and power consump-

tion. Based on the query traffic from a previous day, the system predicts the incoming

query flow and increases, decreases or maintains the number of available replicated

query processors to answer the queries under acceptable latencies. Experiments are

conducted in comparison to two baselines: Näıve (always uses the maximum number

of machines) and Threshold (establishes a maximum latency value and calculate the

number of necessary machines to ensure latency values under a threshold), using the

processing times of 1 million queries submitted to a real commercial search engine.

Our results show that our proposed self-adapting model can achieve an energy sav-

ings of 33% while only degrading mean query completion time by 10 ms compared to

a baseline that provisions replicas based on a previous day’s traffic, while more sub-

stantial energy savings can be attained while accepting marginally larger efficiency

degradations.

We focused on the power savings achievable when switching replicated query

servers between standby and actively processing search queries. There are advan-

tages to such a scenario, because during off-peak times standby query servers may be

6.11. Conclusions 103

re-purposed to other offline tasks, such as indexing, ads/recommendations genera-

tion, and pre-caching of result lists [52].

Chapter 7

Conclusions and Future Work

This chapter discusses the conclusions achieved from this thesis and proposes some

directions on how to continue researching on each addressed topic.

7.1 Conclusions

7.1.1 Simulation platforms are reliable for large-scale IR experimenta-

tion, leading to resource savings.

Chapter 3 mainly constitutes a survey of the main evaluation platforms that have been

used to test the efficiency of search engines. The choice depends on different factors

we detailed, as the difficulty of mapping the system into an analytical or simulation

model, the dimensions of the architecture or the financial and physical resources at

our disposal. After studying in depth all the approaches we concluded that simulation

constitutes a good alternative for representing an IR system, due to its accuracy in

representing a real search engine. Besides, it contributes to the Green IR behaviour,

as it allows high energy and resource savings. This conclusion has encouraged us to

use simulation for our experimentation.

7.1.2 Query efficiency predictors improve query scheduling.

Few published works are based on query scheduling methods. Round Robin, Ran-

dom or First-In-First-Out are the most used approaches. Nevertheless, on Chapter 4

we have detailed how these methods consider that all the queries have the same res-

106 Chapter 7. Conclusions and Future Work

ponse time. After explaining the widely used dynamic pruning techniques, it was easy

to demonstrate that the previous assumption about the queries was really far form

reality. We proposed a new method, namely Least Loaded, that uses query efficiency

predictors for summing up the processing times of the previously enqueued queries.

This way, we calculate the estimated time that a query must be waiting before be-

ing processed on each query server. We select the replica with the lowest estimated

waiting time. Experiments were driven using different query sets (synthetic and real

data and different query traffic conditions) and several distributed architectures with

different number of shards and replicas. We have demonstrated that query efficiency

predictors are able to reduce query waiting time of queries and increase the efficiency

of large-scale search engines.

7.1.3 Hybrid scheduling methods avoid the overhead inherent to query

predictors and improve the state-of-the-art approaches.

Chapter 5 identified the drawback of Least Loaded and proposed a new hybrid me-

thod that gathers the benefits of Least Loaded and combines it with the lighter Queue

Length and Round Robin approaches. Experiments using ClueWeb category B dataset,

different query traffic conditions as well as several architectures, have demonstrate

the power of this approach to increase the efficiency of the system.

7.1.4 Our new power/latency trade-off mathematical model contributes

to achieve high energy savings without compromising the effi-

ciency of the system.

The mathematical model presented in Chapter 6 is the main contribution of this the-

sis. We proposed a self-adapting model for large-scale search systems that establishes

a trade-off between latency and power consumption in terms of the number of repli-

cated query servers required as query load varies throughout the day. At the begin-

ning and at the end of the day, the system reduces automatically the number of active

machines in order to save energy, meanwhile during midday the number of active

machines reaches its maximum. We showed how this model can be instantiated for

different methods of forecasting the query traffic at a given time – based on current

7.2. Directions for Future Work 107

and historical query loads – as well as with a variety of latency functions. We tho-

roughly demonstrated experimentally how the proposed model can reduce the power

consumption of a search engine by 33% with little decrease in the overall efficiency of

the search engine. We generalized the proposed one-shard model for a multiple-shard

architecture and different scheduling methods.

This model is a contribution to the Green IR behavior that is being increasingly

introduced by big companies. Either if the system turns off/standby the machines

or uses them for solving other tasks, it contributes to increase financial savings in IR

companies.

7.1.5 M/M/s Queueing Theory model is not suitable for representing

the latency of a large-scale search engine.

Chapter 6, and more specifically, Section 6.7.1, applied the M/M/s queueing the-

ory model to estimate the waiting time that a queue must be waiting on a queue.

We wanted to check the suitability of this kind of models to implement the latency

function into the power/latency trade-off model. Our experiments showed that when

the contention of the system is low, its performance is similar to the baselines. Ne-

vertheless, when the incoming query traffic rises, the system becomes not-stationary,

and M/M/s is not able to provide a solution. We decided to use the maximum

number of available machines in the system, but this approach does not achieve any

improvement regarding the Threshold baseline. The deterministic approach used ins-

tead solved this problem.

7.2 Directions for Future Work

This section discusses several directions for future work related to, or stemming from

this thesis. We categorize them into three subsections: IR evaluation platforms, query

scheduling techniques and power/latency trade-off model.

108 Chapter 7. Conclusions and Future Work

7.2.1 IR Evaluation Platforms

The experiments carried out in Chapter 3 regarding virtualization, only tested the

power of KVM, a widely used virtualization platform, in order to study its accuracy

regarding real systems. Nevertheless, we consider that it would be interesting to

experiment more virtualization platforms. They usually offer different configuration

options with diverse fitting parameters. This way, maybe we could find a more suit-

able virtualization platform to represent a real scenario.

7.2.2 Query Scheduling

In order to make our method more realistic it would be interesting to consider caching.

In our experiments, we have considered that a query is always enqueued into a query

server to be solved, but we have not implemented the caching of queries, that allows

to answer them without being sent to the query server, just by using the results stored

from a previous search of the same query.

7.2.3 Power/Latency Trade-off Model

We have represented an scenario where the servers are powered on and standby

depending on the incoming query traffic rates. We have considered that a server

does not spend time in turning itself on from standby state. For future work, we will

consider a more complex scenario where servers are fully powered down when not

required, but incur delay on startup.

It would be also interesting to make a financial savings study, such as in some

other published works as [86] and [53]. The power cost can be mapped to financial

cost in terms of electricity price and the cost functions can take various properties of

this cost into account, such as temporal or regional variations of the electricity price.

Including hardware parameters in the model would make it even more realistic.

Variables such as memory or CPU usage are interesting factors to be considered when

making the decision of changing the state of a query server. Nevertheless, this would

lead to increase the complexity of the model.

Appendix A

Resumen

In accordance with the Regulations of the

Ph.D. studies passed by the Governing Coun-

cil of the University of A Coruña at its meet-

ing of July 17th 2012, it is reproduced below

a summary of this thesis in Spanish.

La web se ha convertido en el mayor repositorio de información de todos los

tiempos. Los motores de búsqueda actuales deben enfrentarse y saber responder ade-

cuadamente ante este veloz incremento de información y a un enorme y dinámico

tráfico de consultas. El éxito y los ingresos recibidos por parte de las empresas de

Recuperación de Información (RI) Web dependen de la rapidez de respuesta de las

consultas que reciben y de la calidad de los resultados ofrecidos. Para controlar esta

situación, las grandes compañ́ıas se han visto obligadas a construir grandes centros

de datos, geográficamente distribuidos, y compuestos por miles de servidores. El su-

ministro eléctrico de estas inmensas infraestructuras supone un enorme gasto ener-

gético, y una pequeña mejora a nivel de eficiencia puede suponer grandes ventajas

económicas.

Esta tesis representa una nueva aportación al estado del arte actual referido a

gestión de consultas y consumo energético de grandes centros de datos, lo que permi-

tirá a grandes compañ́ıas de Recuperación de Información la construcción de motores

de búsqueda dotados de mayor eficiencia y su integración en el concepto de Green

Information Retrieval.

Por una parte, esta tesis propone nuevas técnicas de distribución de consultas a los

servidores que las procesan para disminuir su tiempo de respuesta. Mediante técnicas

de predicción del tiempo de ejecución de las consultas que están en cola, esperando

a ser procesadas por un servidor, es posible estimar cuál será el que procesará la

consulta con el menor tiempo de espera.

110 Appendix A. Summary in Spanish

Por otra parte, esta tesis define un modelo matemático simple que establece un

balance entre la latencia (tiempo de respuesta) que ofrece un motor de búsqueda

y el consumo eléctrico que genera. Habitualmente estos son parámetros opuestos,

de modo que intentar mejorar uno de ellos va en detrimento del otro. Las fluctua-

ciones de tráfico de consultas a lo largo de todo el d́ıa son la clave en torno a la

que gira este modelo: cuando el sistema recibe un número de consultas muy elevado,

que puede ocasionar mayores tiempos de espera, el modelo automáticamente incre-

menta el número de máquinas activas en el sistema para mantener unos valores de

latencia adecuados. Del mismo modo, cuando la carga del sistema es baja, el modelo

reduce el número de servidores activos, lo que genera grandes porcentajes de ahorro

energético, especialmente en intervalos horarios de baja actividad.

Experimentos sobre diferentes conjuntos de datos, diversas tasas de tráfico e his-

toriales de consultas reales y sintéticos, atestiguan el gran poder, tanto de los méto-

dos de distribución de consultas como del modelo matemático, para lograr grandes

mejoras en cuanto a eficiencia y a ahorro energético, con respecto a los métodos de

referencia.

A.1 Motivación

La investigación de esta tesis está motivada por diferentes carencias en el campo de

la Recuperación de Información, para las que esta tesis propone diversas soluciones.

En primer lugar, no existe un copioso estado del arte en lo que se refiere a la

gestión de consultas en los motores de búsqueda a gran escala. Con gestionar una

consulta nos referimos a enviarla al servidor adecuado para que la procese y genere

los resultados correspondientes. Las aproximaciones ya existentes antes de la reali-

zación de esta tesis son verdaderamente sencillas, pero asumen condiciones inade-

cuadas, lo que genera una gestión ineficiente con un correspondiente aumento en el

tiempo de respuesta de las consultas.

La preocupación por reducir el tiempo de respuesta ofrecido por un motor de

búsqueda, hace que una de las soluciones adoptadas sea ampliar el número de servi-

dores que dan respuesta a las consultas de los usuarios. Esta medida, sin embargo,

incrementa considerablemente el consumo energético, lo que afecta no sólo a los

A.2. Objetivos 111

costes económicos de las empresas sino también a las emisiones de CO2. Actual-

mente, algunas empresas de RI están ya dedicando incontables recursos para dis-

minuir su consumo energético: situación estratégica de centros de datos para un ma-

yor aprovechamiento de enerǵıas renovables, reutilización de recursos, sistemas más

eficientes... Varias empresas como Google o Microsoft incluso publican sus emisiones

de carbono y muestran las medidas adoptadas para dar ejemplo a otras empresas que

se quieran unir a este comportamiento ya acuñado como Green IR - Green Information

Retrieval. El control del cambio climático y la sostenibilidad pasa por expandir estos

hábitos a un mayor número de empresas del sector tecnológico.

Centrándonos en los motores de búsqueda, el tráfico de consultas que reciben

vaŕıa considerablemente a lo largo del d́ıa, habiendo peŕıodos de baja carga al inicio

o final del d́ıa y otros peŕıodos de alto tráfico en las horas centrales. De este modo,

parte de los servidores que procesan consultas cuando el tráfico es elevado, no son

utilizados en peŕıodos de baja actividad, por lo que podŕıan ser apagados, puestos en

suspensión o bien asignados a otras tareas.

Existen trabajos en el campo de la RI estudiando la eficiencia energética de los

motores de búsqueda. Sin embargo, hasta donde alcanza nuestro conocimiento, no

existen trabajos previos que se encarguen de activar o desactivar servidores de un

motor de búsqueda en función de la carga de trabajo de un centro de datos.

De este modo, si en primer lugar reducimos el tiempo de respuesta de las consul-

tas, mejorando los algoritmos de gestión de las mismas, y en segundo lugar reduci-

mos el consumo energético de los motores de búsqueda, podremos conseguir sistemas

más eficientes con su correspondiente ahorro económico, lo que constituirá un gran

incentivo para las empresas de Recuperación de Información.

A.2 Objetivos

El principal objetivo de esta tesis lo constituye el estudio exhaustivo que permita

corroborar los dos enunciados o hipótesis siguientes:

• La eficiencia de un sistema de Recuperación de Información a gran escala puede

ser mejorada usando predictores del tiempo de ejecución de las consultas a la

hora de distribuirlas a los servidores adecuados para generar su respuesta.

112 Appendix A. Summary in Spanish

• El consumo energético de un motor de búsqueda a gran escala puede reducirse

sin comprometer para ello la eficiencia del sistema.

Ambos objetivos están dirigidos por la eficiencia del motor de búsqueda. El primero

de ellos persigue directamente disminuir el tiempo de respuesta que el usuario debe

esperar a que su consulta sea resuelta. El segundo punto de interés persigue disminuir

el consumo energético de un motor de búsqueda, manteniendo siempre presentes los

tiempos de respuesta de las consultas y reaccionando en base a ellos.

A.3 Estructura

Las principales contribuciones de esta tesis se presentan en los Caṕıtulos 3, 4, 5 y 6.

El Caṕıtulo 2 introduce algunos conceptos de RI para los lectores no expertos en el

campo. La organización de los caṕıtulos de la tesis es como sigue:

• El Caṕıtulo 2 presenta conceptos básicos de RI sobre los que se fundamenta esta

tesis. En particular, se definen conceptos que componen el proceso general de

Recuperación de Información, como son el proceso de indexación y crawling.

Del mismo modo, indicamos cómo los sistemas de RI han evolucionado gracias

al uso tan extendido de la Web, confirmando los sistemas de RI web. Estos

sistemas han obligado la construcción de grandes sistemas distribuidos, ante la

imposibilidad de almacenar toda la extensa colección de material on-line en un

único servidor. Estas grandes plataformas dan pie a la definición del término

Green IR, tratado en una de las secciones de este caṕıtulo. El concepto de eva-

luación de sistemas de RI pone fin a este caṕıtulo, dando paso al Caṕıtulo 3

donde se tratará más en detalle.

• El Caṕıtulo 3 es un estudio de las principales plataformas de evaluación de sis-

temas de Recuperación de Información: sistemas reales, virtualización o simula-

ción, entre otras. En este caṕıtulo se realiza una comparación considerando, no

sólo costes financieros, sino dificultad en el desarrollo de cada una de las aproxi-

maciones o incluso la fiabilidad de los resultados. Desarrollamos además una

parte experimental con el objetivo de comparar la idoneidad de las platafor-

mas de evaluación a la hora de representar un sistema de Recuperación de

A.3. Estructura 113

Información. Este caṕıtulo nos permite tomar la decisión acerca de la platafor-

ma empleada para realizar los experimentos que se detallan en los caṕıtulos

siguientes.

• El Caṕıtulo 4 propone un nuevo método, llamado Least Loaded, que mejora las

técnicas de gestión de consultas presentes en el estado del arte. Esta técnica se

basa en predecir el tiempo que una consulta estará esperando en cada uno de

los servidores disponibles, y dirigirla al que ofrezca un menor tiempo de espera.

Para ello usamos unos predictores que demuestran ser unos estimadores muy

potentes para nuestro caso de estudio. Se presentan resultados experimentales

usando dos conjuntos de datos con el objetivo de analizar el funcionamiento

del método propuesto bajo diferentes condiciones como pueden ser la arquitec-

tura del motor de búsqueda (número de servidores y réplicas) y el tráfico de

consultas.

• El Caṕıtulo 5 analiza las desventajas del método propuesto previamente, y las

combate proponiendo un método h́ıbrido de gestión de consultas que adopta

el comportamiendo de métodos sencillos cuando la carga del sistema es lo su-

ficientemente ligera como para necesitar un método tan potente como Least

Loaded, e imita a éste último en situaciones en las que los servidores se sat-

uraŕıan con los métodos tradicionales y los tiempos del respuesta no seŕıan

aceptables. Esta aproximación permite mejorar el comportamiento de las técni-

cas anteriores, y con ello, el estado del arte.

• El Caṕıtulo 6 está motivado principalmente por el concepto de Green IR, que

se refiere a la sostenibilidad energética en grandes centros de Recuperación de

Información. En este caṕıtulo definimos un modelo matemático que establece

un balance entre la latencia obtenida por el sistema y el consumo energético

que genera, con el objetivo de desactivar servidores cuando la carga del sistema

permita que estén libres de trabajo. De este modo, el modelo automáticamente

enciende o pone en suspensión a los serviores, dependiendo del tráfico entrante.

Experimentos con flujos de consultas reales permiten comprobar el gran ahorro

energético con respecto a los modelos de referencia y cómo nuestro modelo

mantiene los porcentajes de latencia.

114 Appendix A. Summary in Spanish

• El Caṕıtulo 7 cierra esta tesis enumerando las conclusiones derivadas de este

trabajo, aśı como posibles ĺıneas de trabajo que pueden ser acometidas en un

futuro.

A.4 Conclusiones

A continuación exponemos las principales conclusiones obtenidas de este trabajo de

investigación.

A.4.1 Los modelos de simulación son plataformas fiables para desarro-

llar experimentos a gran escala de Recuperación de Información,

consiguiendo un gran ahorro de recursos.

El Caṕıtulo 3 constituye un estudio de las principales plataformas de evaluación usa-

das en el campo de la Recuperación de Información a la hora de estudiar la eficiencia

de motores de búsqueda. La elección de la plataforma adecuada depende de diferen-

tes factores que hemos estudiado, tales como la complejidad de representación del

modelo real en un modelo anaĺıtico o simulado, las dimensiones de la arquitectura

elegida o bien de los recursos f́ısicos y económicos que tengamos a nuestra disposi-

ción. Después de estudiar en profundidad todas las aproximaciones, hemos concluido

que las plataformas de simulación constituyen una buena alternativa para representar

sistemas de RI, debido a que permiten representar con alta fiabilidad un sistema real.

Además, al permitir ahorro de recursos, con su correspondiente ahorro energético,

contribuye a los principios incluidos en Green IR. Este estudio nos ha impulsado a

usar simulación como nuestra plataforma de experimentación.

A.4.2 La predicción del tiempo de ejecución de las consultas mejora la

eficiencia de los motores de búsqueda.

Pocos son los trabajos encargados de estudiar cómo enviar las consultas a los servi-

dores que las procesan. Round Robin o First-In-First-Out son las aproximaciones más

usadas. Sin embargo, en el Caṕıtulo 4 explicamos cómo estos métodos consideran que

todas las consultas tienen el mismo tiempo de respuesta. Tras explicar las ampliamen-

A.4. Conclusiones 115

te usadas técnicas de pruning o poda, ha sido fácil demostrar cómo esas suposiciones

no eran correctas. Hemos propuesto un nuevo método, llamado Least Loaded, que

usa predicción del tiempo de ejecución de consultas (query efficiency predictors) para

calcular el tiempo de procesado de todas las consultas que están en cola esperando

a ser procesadas. De este modo, podemos estimar el tiempo que una consulta debe

esperar en cada uno de los servidores de consultas antes de ser procesada. Aśı, se

seleccionará el servidor que ofrezca un menor tiempo de espera. Para comprobar esta

aproximación hemos utilizado conjuntos de datos tanto sintéticos como reales, con

tráfico variable, y diferentes arquitecturas distribuidas con distinto número de servi-

dores y réplicas. Con estos experimentos hemos podido demostrar que predecir la

eficiencia de las consultas nos permite reducir en un alto porcentaje el tiempo de es-

pera de las consultas, lo que supone mejorar la eficiencia de los grandes motores de

búsqueda.

A.4.3 La combinación de métodos de gestión de consultas evita la pequeña

sobrecarga de las técnicas de predicción y mejora las aproxima-

ciones existentes.

El caṕıtulo 5 identifica la desventaja de usar predictores de la eficiencia de las con-

sultas: el tiempo empleado en el cálculo de dichas predicciones supone un pequeño

retraso en el sistema, que puede aumentar los tiempos de espera cuando el tráfico de

consultas puede ser manejado por métodos más simples como Queue Length o Round

Robin. Por ello, hemos propuesto un método de gestión de consultas h́ıbrido que

aprovecha las ventajas de la predicción de consultas cuando la carga del sistema es

alta y las combina con la simplicidad de otros métodos como Round Robin cuando el

tráfico es bajo. Los experimentos, realizados sobre la colección ClueWeb categoŕıa B

de 50 millones de documentos y usando tráfico de consultas variable y diferentes ar-

quitecturas del motor de búsqueda, han demostrado la potencia de esta aproximación

h́ıbrida para mejorar la eficiencia del sistema.

116 Appendix A. Summary in Spanish

A.4.4 El modelo matemático propuesto, consigue obtener un balance

entre consumo energético y latencia de un motor de búsqueda,

proporcionando un alto ahorro energético.

El modelo matemático presentado en el Caṕıtulo 6 es la principal contribución de

esta tesis. Hemos propuesto un modelo autoadaptativo para sistemas de búsqueda a

gran escala, que permite establecer un balance entre la latencia y el consumo ener-

gético generado. Para ello, según la carga de consultas va variando a lo largo del

d́ıa, también lo hace de un modo proporcional y automático el número de serviores

requeridos para responder a esas consultas. Al inicio y al final del d́ıa, el sistema

reduce automáticamente el número de máquinas activas con el objetivo de ahorrar

enerǵıa eléctrica. Por el contrario, en escenario de alta carga, como puede ser en las

horas centrales del d́ıa, el número de máquinas activas puede llegar a alcanzar su

máximo. El modelo estima el número de máquinas a usar en función de la carga de

consultas en d́ıas anteriores o incluso considerando el tráfico actual. El modelo acepta

diferentes fórmulas para el cálculo de la latencia del sistema, parámetro que tiene en

cuenta a la hora de tomar la decisión de activar o desactivar servidores. Los experi-

mentos han demostrado como el modelo permite alcanzar un ahorro energético de

un 33 % sin apenas degradar la latencia del sistema.

Este modelo contribuye a los principios de Green IR, que poco a poco está siendo

introducido en las empresas de Recuperación de Información.

A.4.5 El modelo M/M/s de Teoŕıa de Colas no es adecuado para estimar

la latencia de un motor de búsqueda a gran escala.

El Caṕıtulo 6, y más espećıficamente, la Sección 6.7.1, aplica el modelo M/M/s de

Teoŕıa de Colas para estimar el tiempo que una consulta debe esperar en la cola

de un servidor para ser procesada. El objetivo era comprobar la adecuación de este

modelo de Teoŕıa de Colas para estimar el valor de la latencia dentro del modelo

matemático del Caṕıtulo 6. Los experimentos han demostrado que, cuando la carga

del sistema es baja, permite alcanzar un funcionamiento similar al de los métodos

de referencia. Sin embargo, ante gran afluencia de tráfico de consultas, el sistema se

vuelve no estacionario, y el modelo M/M/s es incapaz de computar una solución.

A.5. Futuras ĺıneas de investigación 117

En estos casos, la solución adoptada ha sido utilizar el máximo número de máquinas

disponibles en el sistema, pero esta aproximación no ofrece ahorro energético con

respecto al método de referencia Threshold. Alternativamente, se ha propuesto una

solución determinista que solventa esta limitación del modelo M/M/s para motores

de búsqueda.

A.5 Futuras ĺıneas de investigación

Esta sección expone las posibles ĺıneas de trabajo que esta tesis deja abiertas para

futuros desarrollos. Estructuramos estas ĺıneas en tres secciones: Plataformas de Eva-

luación de RI, Gestión de Consultas y Modelo de Balance Latencia/Consumo Energé-

tico.

A.5.1 Plataformas de Evaluación de RI.

Los experimentos llevados a cabo en el Caṕıtulo 3 con respecto a las plataformas de

virtualización, se han realizado sobre KVM, una plataforma de virtualización amplia-

mente usada, con el objetivo de estudiar la fiabilidad de las plataformas de virtuali-

zación para representar sistemas reales de RI. Sin embargo, consideramos que seŕıa

interesante probar el comportamiento de otras plataformas de virtualización que per-

mitan mayor flexibilidad a la hora de configurarlas, para aśı poder ajustar algunos

parámetros que la plataforma usada no permit́ıa configurar. De este modo, podŕıamos

encontrar una plataforma de virtualización que representase más fielmente un esce-

nario real.

A.5.2 Gestión de Consultas.

Con el objetivo de hacer más realistas los métodos de gestión de consultas propuestos

en esta tesis, seŕıa interesante considerar el uso de una caché de consultas. En nues-

tros experimentos, hemos considerado que una consulta siempre se enviaba a un

servidor para ser procesada. Sin embargo, si hiciésemos uso de una caché, permitiŕıa

responder algunas consultas sin necesidad de enviarlas a los servidores, usando los

resultados almacenados de consultas iguales que se han respondido previamente.

118 Appendix A. Summary in Spanish

A.5.3 Modelo de Balance Latencia/Consumo Energético.

En el escenario representado en el Caṕıtulo 6, se ha considerado que los servidores

se activan o pasan a modo suspensión, dependiendo de la tasa de tráfico entrante. El

tiempo que un servidor ocupa en activarse si está en suspensión, se ha despreciado.

Una importante ĺınea de investigación seŕıa considerar un escenario más complejo

en el que los servidores fuesen totalmente apagados cuando no fuese necesario su

uso. Este caso requeriŕıa considerar el tiempo que un servidor tarda en ser encendi-

do, lo que puede generar retardos importantes que habŕıa que gestionar, pero que

permitirá un mayor ahorro energético.

Un posible estudio que completaŕıa el actual seŕıa añadir costes financieros al

modelo, como lo han hecho en otros trabajos publicados ([86] y [53]). Las fun-

ciones de coste podŕıan definirse de un modo más complejo para considerar varias

propiedades importantes como variaciones de coste espacio-temporales.

Incluir parámetros hardware en el modelo lo haŕıa incluso más realista. Variables

como el uso de memoria o de CPU son factores interesantes a considerar para activar

o desactivar un servidor.

A.6 Publicaciones

La mayor parte del contenido de esta tesis ha sido ya publicado, dejando de este

modo patente la contribución de este trabajo al ámbito cient́ıfico de la Recuperación

de Información:

• Los contenidos desarrollados en el Caṕıtulo 3 sobre el estudio comparativo de

diferentes plataformas de evaluación ha sido publicado en: Analysis of perfor-

mance evaluation techniques for Large Scale Information Retrieval. Ana Freire,

Fidel Cacheda, Vreixo Formoso and V́ıctor Carneiro. In Proceedings of LSDS-IR

2013.

• El método Least Loaded de gestión de consultas presentado en el Caṕıtulo 4

ha sido publicado en uno de los más prestigiosos congresos de Recuperación

de Información (A*): Scheduling Queries Across Replicas. Ana Freire, Craig Mac-

donald, Nicola Tonellotto, Iadh Ounis and Fidel Cacheda. In Proceedings of SIGIR

A.6. Publicaciones 119

2012. (36.5 % aceptación).

• El método h́ıbrido de gestión de consultas estudiado a lo largo del Caṕıtulo 5

dio lugar a la siguiente publicación: Hybrid query scheduling for a replicated

search engine. Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis and

Fidel Cacheda. In Proceedings of ECIR 2013. (29 % aceptación).

• Los contenidos que engloba el Caṕıtulo 6 han sido recientemente publicados:

A Self-Adapting Latency/Power Tradeoff Model for Replicated Search Engines. Ana

Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis and Fidel Cacheda. In Pro-

ceedings of WSDM 2014. (18 % aceptación).

Appendix B

Resumo

In accordance with the Regulations of the

Ph.D. studies passed by the Governing Coun-

cil of the University of A Coruña at its meet-

ing of July 17th 2012, it is reproduced below

a summary of this thesis in Galician.

A Web converteuse no maior repositorio de información de todos os tempos. Os

actuais motores de busca deben enfrontarse e saber responder axeitadamente ante

este cada vez maior incremento de información e á consecuente demanda dun ele-

vado e dinámico tráfico de consultas. O éxito e os ingresos recibidos por parte das

empresas de Recuperación de Información Web dependen da axilidade de resposta

das consultas que reciben e da calidade dos resultados ofrecidos. Para controlar esta

situación, as grandes compañ́ıas deben constrúır grandes centros de datos, xeografi-

camente distribúıdos, e compostos por milleiros de servidores. A subministración

eléctrica destas colosais infraestruturas supón un alt́ısimo gasto enerxético, e unha

pequena mellora a nivel de eficacia pode supor grandes vantaxes económicas.

Esta tese representa unha nova achega ao estado da arte actual referido á xestión

de consultas e ao consumo enerxético de grandes centros de datos. Esta investigación

permitirá a grandes compañ́ıas de Recuperación de Información a construción de

motores de busca dotados de maior eficiencia e a súa integración no concepto de

Green Information Retrieval.

Por unha parte, esta tese propón novas técnicas de distribución de consultas aos

servidores que as procesan para diminúır o seu tempo de resposta. Mediante técnicas

de predición do tempo de execución das consultas que están en cola, agardando a ser

procesadas por un servidor, é posible estimar cal será o que procesara a consulta co

menor tempo de espera.

Pola outra parte, esta tese define un modelo matemático sinxelo que establece un-

122 Appendix B. Summary in Galician

ha negociación entre o tempo de resposta que ofrece un motor de busca e o consumo

eléctrico que xera. Habitualmente, estes parámetros adoitan ser opostos, de xeito

que intentar mellorar algún deles supón o empeoramento do outro. As flutuacións

do tráfico de consultas ó longo de todo un d́ıa son a chave en torno á que xira este

modelo: cando o sistema recibe un número de consultas moi elevado, que pode oca-

sionar maiores tempos de espera, o modelo automaticamente incrementa o número

de máquinas activas no sistema e mantén aśı uns tempos de resposta axeitados. Da

mesma forma, se a carga do sistema é baixa, o modelo reduce o número de servi-

dores activos, o que xera grandes porcentaxes de aforro enerxético, especialmente en

intervalos de pouca actividade.

Experimentos con diferentes conxuntos de datos, diversas taxas de tráfico e histo-

riais de consultas reais e sintéticos, testemuñan o gran poder, tanto dos métodos de

distribución de consultas coma do modelo matemático, para obter grandes melloras

en canto a eficiencia e aforro enerxético, con respecto aos métodos de referencia.

B.1 Motivación

A investigación desta tese está motivada por diferentes carencias no campo da Recu-

peración de Información, para as que esta tese propón diversas solucións.

En primeiro lugar, non existe un amplo estado da arte referente á xestión das

consultas de usuario nos motores de busca a grande escala. Xestionar unha consulta

fai referencia a enviala ao servidor axeitado para que a procese e xere os resulta-

dos correspondentes. As aproximacións xa existentes antes da realización desta tese

son verdadeiramente sinxelas, pero asumen condicións inadecuadas, o que xera una

xestión ineficiente co correspondente incremento do tempo de resposta das consultas.

A preocupación por reducir o tempo de resposta ofrecido por un motor de bus-

ca fai que unha das solución adoptadas sexa ampliar o número de servidores que

dan reposta ás consultas dos usuarios. Esta medida, non obstante, incrementa con-

siderablemente o consumo enerxético, o que afecta non ó aos custes económicos das

empresas senón tamén ás emisións de CO2. Actualmente, algunhas empresas de RI

están dedicando incontables recursos para diminúır o consumo enerxético: situación

estratéxica dos centros de datos para aproveitar enerx́ıas renovables, reutilización de

B.2. Obxectivos 123

recursos, sistemas máis eficientes... Varias empresas como Google ou Microsoft mes-

mo publican as súas emisións de carbono e mostran as medidas adoptadas para dar

exemplo a outras empresas para que se unan a este comportamento coñecido como

Green IR - Green Information Retrieval. O control do cambio climático e a sostibili-

dade pasa por expandir estas costumes a un maior número de empresas do sector

tecnolóxico.

Centrándonos nos motores de busca, o tráfico de consultas que reciben vaŕıa con-

siderablemente ao longo de todo o d́ıa, con peŕıodos de baixa carga ao inicio e final

do d́ıa, e outros peŕıodos de alto tráfico nas horas centrais. Deste xeito, parte dos

servidores que procesan consultas cando o tráfico é elevado, non son utilizados en

peŕıodos de baixa actividade, polo que podeŕıan ser apagados, postos en suspensión

ou ben dedicados a outras tarefas.

Existen traballos no campo da RI estudando a eficiencia enerxética dos motores

de busca. Non obstante, ata onde chega o noso coñecemento, non existen traballos

previos encargados de activar ou desactivar servidores dun motor de busca en función

da carga de traballo dun centro de datos.

Deste xeito, se en primeiro lugar reducimos o tempo de resposta das consultas,

mellorando os algoritmos de xestión das mesas, e en segundo lugar reducimos o con-

sumo enerxético dos motores de busca, poderemos conseguir sistemas máis eficientes

co seu correspondente aforro económico, o que constituirá un grande incentivo para

as empresas de Recuperación de Información.

B.2 Obxectivos

O principal obxectivo desta tese constitúeo o estudo exhaustivo que permita corrobo-

rar os dous enunciados ou hipóteses seguintes:

• A eficiencia dun sistema de Recuperación de Información a grande escala pode

ser mellorada usando preditores do tempo de execución das consultas á hora

de distribúılas aos servidores axeitados para xerar a súa resposta.

• O consumo enerxético dun motor de busca a grande escala pode reducirse sen

comprometer para elo a eficiencia do sistema.

124 Appendix B. Summary in Galician

Ámbolos dous obxectivos están dirixidos pola eficiencia do motor de busca. O

primeiro persegue directamente diminúır o tempo de resposta que o usuario debe

agardar para que a súa consulta sexa resolta. O segundo punto de interese persegue

diminúır o consumo enerxético dun motor de busca, mantendo sempre presentes os

tempos de resposta das consultas, e reaccionando en base a eles.

B.3 Estrutura

As principais contribucións desta tese preséntanse nos Caṕıtulos 3, 4, 5 e 6. O Caṕıtu-

lo 2 introduce algúns conceptos de RI para os lectores non expertos no campo. A

organización dos caṕıtulos da tese é como segue:

• O Caṕıtulo 2 presenta modelos básicos de RI sobre os que se fundamenta esta

tese. En particular, def́ınense conceptos que compoñen o proceso xeral de Re-

cuperación de Información, como son o proceso de indexación e crawling. Do

mesmo xeito, indicamos como os sistemas de RI evolucionaron grazas ao uso

tan estendido da Web, dando lugar aos sistemas de RI web. Estes sistemas obri-

garon a construción de grandes sistemas distribúıdos, ante a imposibilidade de

almacenar toda a ampla colección de material on-line nun único servidor. Estas

grandes plataformas dan lugar á definición do termo Green IR, tratado nunha

das seccións deste caṕıtulo. O concepto de evaluación de sistemas de RI pon fin

a este caṕıtulo, dando paso ao seguinte (Caṕıtulo 3) onde se tratará máis en

detalle.

• O Caṕıtulo 3 constitúe un estudo das principais plataformas de evaluación de

sistemas de Recuperación de Información: sistemas reais, virtualización ou si-

mulación, entre outras. Neste caṕıtulo reaĺızase unha comparanza consideran-

do non só custos financeiros senón tamén a dificultade do desenvolvemento

destas aproximacións e mesmo a fiabilidade dos resultados. Desenvolvemos

ademais unha parte experimental co obxectivo de comparar a idoneidade das

plataformas de evaluación á hora de representar un sistema de RI. Este caṕıtu-

lo permı́tenos tomar a decisión sobre a plataforma empregada para realizar os

experimentos que se detallan nos seguintes caṕıtulos.

B.3. Estrutura 125

• O Caṕıtulo 4 propón un novo método, chamado Least Loaded, que mellora

as técnicas de xestión de consultas presentes no estado da arte. Esta técnica

está baseada en pedir o tempo que unha consulta estará agardando en cada un

dos servidores dispoñibles, e dirixila a aquel que ofreza un menor tempo de es-

pera. Para elo empregamos uns predictores que demostran ser uns estimadores

moi potentes para o noso caso de estudo. Preséntanse resultados experimentais,

usando dous conxuntos de datos, co obxectivo de analizar o funcionamento do

método proposto baixo diferentes condicións como poden ser a arquitectura do

motor de busca (número de servidores e réplicas) e o tráfico de consultas.

• O Caṕıtulo 5 analiza as desvantaxes do método proposto previamente e combáteas,

propoñendo un método h́ıbrido de xestión de consultas, que adopta o compor-

tamento de métodos máis sinxelos cando a carga do sistema é o suficientemente

lixeira como para necesitar un método tan potente como Least Loaded, e imi-

ta a este último en situacións nas que os servidores se saturaŕıan cos métodos

tradicionais, e os tempos de resposta non seŕıan aceptables. Esta aproximación

permite mellorar o comportamento das técnicas anteriores e, con elo, o estado

da arte.

• O Caṕıtulo 6 está motivado principalmente polo concepto de Green IR, que se

refire á sostibilidade enerxética en grandes centros de Recuperación de Informa-

ción. Neste caṕıtulo definimos un modelo matemático que establece un balance

entre a latencia obtida polo sistema e o consumo enerxético que xera, co obxec-

tivo de desactivar servidores cando a carga do sistema permita que estean libres

de traballo. Deste xeito, o modelo automaticamente acende ou pon en suspen-

sión aos servidores, dependendo do tráfico entrante. Experimentos con fluxos

de consultas reais permiten comprobar o grande aforro enerxético con respecto

aos modelos de referencia e como o noso modelo mantén as porcentaxes de

latenza.

• O Caṕıtulo 7 realiza o peche desta tese enumerando as conclusións derivadas

deste traballo, aśı como posibles liñas de traballo que poden ser acometidas nun

futuro.

126 Appendix B. Summary in Galician

B.4 Conclusións

A continuación expoñemos as principais conclusións obtidas neste traballo de inves-

tigación.

B.4.1 Os modelos de simulación son plataformas fiables para desen-

volver experimentos a grande escala de Recuperación de Infor-

mación, conseguindo un grande aforro enerxético.

O Caṕıtulo 3 constitúe un estudo das principais plataformas de evaluación empre-

gadas no campo da Recuperación de Información á hora de estudar a eficiencia dos

motores de busca. A elección da plataforma axeitada depende de diferentes factores

que estudamos, como a complexidade de representación do modelo real nun mode-

lo anaĺıtico ou simulado, as dimensións da arquitectura elixida ou ben dos recursos

f́ısicos e económicos que teñamos á nosa disposición. Tras estudar en profundidade

todas as aproximacións, conclúımos que as plataformas de simulación constitúen una

boa alternativa para representar sistemas de RI, xa que permiten representar con alta

fiabilidade un sistema real. Por ende, ao permitir aforro de recursos, co seu corres-

pondente aforro enerxético, contribúe aos principios inclúıdos no concepto de Green

IR. Este estudo impulsou o uso de simulación como a nosa plataforma de experi-

mentación.

B.4.2 A predicción do tempo de execución das consultas mellora a efi-

ciencia dos motores de busca.

Poucos son os traballos encargados de estudar como enviar as consultas aos servidores

que as procesan. Round Robin ou First-In-First-Out son as aproximacións máis empre-

gadas. Non obstante, o Caṕıtulo 4 explica como estes métodos consideran que todas

as consultas teñen o mesmo tempo de resposta. Tras explicar as amplamente usadas

técnicas de pruning ou poda, foi doado demostrar como estas suposicións non eran

correctas. Propoñemos un novo método, chamado Least Loaded, que pred́ı o tempo de

execución das consultas (query efficiency predictors) para calcular o tempo de proce-

samento de todas as consultas que están na cola esperando a ser procesadas. Deste

xeito, podemos estimar o tempo que unha consulta debe esperar en cada un dos servi-

B.4. Conclusións 127

dores de consultas antes de ser procesada. Aśı, seleccionarase o servidor que ofreza

un menor tempo de espera. Para comprobar esta aproximación utilizamos conxuntos

de datos tanto sintéticos como reais, con tráfico variable e diferentes arquitecturas

distribúıdas con distinto número de servidores e réplicas. Con estes experimentos

puidemos demostrar que predir a eficiencia das consultas permı́tenos reducir nunha

alta porcentaxe o tempo de espera das consultas, o que supón mellorar a eficiencia

dos grandes motores de busca.

B.4.3 A combinación de métodos de xestión de consultas evita a pe-

quena sobrecarga das técnicas de predición e mellora as aproxi-

macións existentes.

O caṕıtulo 5 identifica a desvantaxe de usar preditores de eficiencia das consultas:

o tempo empregado no cálculo de ditas predicións supón un pequeno retraso no

sistema, que pode aumentar os tempos de espera cando o traico de consultas pode

ser servido por métodos máis sinxelos como Queue Length o Round Robin. Por elo,

propomos un método de xestión de consultas h́ıbrido, que aproveita as vantaxes da

predición de consultas cando a carga do sistema é alta e comb́ınaas coa simplici-

dade de outros métodos como Round Robin cando o tráfico é baixo. Os experimentos,

realizados sobre a colección ClueWeb categoŕıa B de 50 millóns de documentos e

usando tráfico de consultas variable e diferentes arquitecturas do motor de busca,

demostraron a potencia desta aproximación h́ıbrida para mellorar a eficiencia do sis-

tema.

B.4.4 O modelo matemático proposto consegue obter un balance entre

o consumo enerxético e a latencia dun motor de busca, propor-

cionando un alto aforro enerxético.

O modelo matemático presentado no Caṕıtulo 6 é a principal contribución desta tese.

Propoñemos un modelo autoadaptativo para sistemas de busca a grande escala, que

permite establecer un balance entre a latencia e o consumo enerxético xerado. Para

elo, segundo a carga de consultas vai variando ó longo de todo o d́ıa, tamén o fai, dun

xeito proporcional e automático, o número de servidores requiridos para responder

128 Appendix B. Summary in Galician

a esas consultas. Ao inicio e ao final do d́ıa, o sistema reduce automaticamente o

número de máquinas activas co obxectivo de aforrar enerx́ıa eléctrica. Pola contra,

nun escenario de alta carga, como pode ser nas horas centrais do d́ıa, o número de

máquinas activas pode chegar a alcanzar o seu máximo. O modelo estima o número

de máquinas a usar en función da carga de consultas en d́ıas anteriores o mesmo

considerando o tráfico actual. O modelo acepta diferentes fórmulas para o cálculo da

latencia do sistema, parámetro que se ten en conta á hora de activar ou desactivar os

servidores. Os experimentos demostraron como o modelo permite alcanzar un aforro

enerxético dun 33 % sin degradar a latenza do sistema. Este modelo respecta ademais

os principios da Green IR, que pouco a pouco está a ser introducida nas empresas de

Recuperación de Información.

B.4.5 O modelo M/M/s de Teoŕıa de Colas non é axeitado para estimar

a latenza dun motor de busca a grande escala.

O Caṕıtulo 6, e máis especificamente, a Sección 6.7.1, aplica o modelo M/M/s de

Teoŕıa de Colas para estimar o tempo que una consulta debe esperar na cola dun

servidor para ser procesada. O obxectivo era comprobar la adecuación deste modelo

de Teoŕıa de Colas para estimar o valor da latencia dentro do modelo matemático

do Caṕıtulo 6. Os experimentos demostraron que, cando a carga do sistema é baixa,

permite alcanzar un funcionamento similar ao dos métodos de referencia. Non obs-

tante, ante gran afluencia de tráfico de consultas, o sistema torna non estacionario,

e o modelo M/M/s é incapaz de computar unha solución. Nestes casos, a solución

adoptada foi utilizar o máximo número de máquinas dispoñibles no sistema, pero

esta aproximación non ofrece aforro enerxético con respecto ao método de referencia

Threshold. Alternativamente, propúxose unha solución determinista que soluciona

esta limitación do modelo M/M/s para motores de busca.

B.5 Futuras liñas de investigación

Esta sección expón posibles liñas de traballo que esta tese deixa abertas para futuros

desenvolvementos. Estruturamos estas liñas en tres seccións: Plataformas de Evalua-

ción de RI, Xestión de Consultas e Modelo de Balance Latencia/Consumo Enerxético.

B.5. Futuras liñas de investigación 129

B.5.1 Plataformas de Evaluación de RI.

Os experimentos levados a cabo no Caṕıtulo 3 con respecto ás plataformas de vir-

tualización, realizáronse sobre KVM, una plataforma de virtualización amplamente

utilizada, co obxectivo de estudar a fiabilidade das plataformas de virtualización para

representar sistemas reais de RI. Non obstante, consideramos que seŕıa interesante

probar o comportamento doutras plataformas de virtualización que permitan maior

flexibilidade á hora de configuralas, para aśı poder axustar algúns parámetros que

a plataforma usada no permit́ıa configurar. Deste xeito, podeŕıamos encontrar unha

plataforma de virtualización que representase máis fielmente un escenario real.

B.5.2 Xestión de Consultas.

Co obxectivo de facer más realistas os métodos de xestión de consultas propostos

nesta tese, seŕıa interesante considerar o uso dunha caché de consultas. Nos nosos

experimentos, consideramos que una consulta sempre se enviaba a un servidor para

ser procesada. Sen embargo, si fixésemos uso dunha caché, permitiŕıa responder al-

gunhas consultas sen necesidade de envialas aos servidores, usando os resultados

almacenados de consultas iguais que se responderon previamente.

B.5.3 Modelo de Balance Latenza/Consumo Enerxético.

No escenario representado no Caṕıtulo 6, considerouse que os servidores eran ac-

tivados ou pasados a modo suspensión, dependendo da tasa de tráfico entrante. O

tempo que un servidor ocupa en activarse se está en suspensión, é desprezado. Unha

importante liña de investigación seŕıa considerar un escenario máis complexo no que

os servidores fosen totalmente apagados cando non fose necesario o seu uso. Este

caso requiriŕıa considerar o tempo que un servidor tarda en ser acendido, o que pode

xerar retardos importantes que habeŕıa que xestionar, pero que permitirá un maior

aforro enerxético.

Un posible estudo que completaŕıa o actual seŕıa engadir custos financeiros ó mo-

delo, tal e como figura noutros traballos previos ([86] e [53]). As funcións de custo

podeŕıan definirse dun modo máis complexo para considerar varias propiedades im-

portantes como variacións de custo espacio-temporais.

130 Appendix B. Summary in Galician

Inclúır parámetros hardware no modelo faŕıao mesmo máis realista. Variables

coma o uso de memoria ou de CPU son factores interesantes a considerar para activar

ou desactivar un servidor.

B.6 Publicacións

A maior parte do contido desta tese foi xa publicado, deixando patente a contribución

deste traballo ó ámbito cient́ıfico da Recuperación de Información.

• Os contidos desenvolvidos no Caṕıtulo 3 sobre o estudo comparativo de di-

ferentes plataformas de evaluación constitúe a seguinte publicación: Analysis

of performance evaluation techniques for Large Scale Information Retrieval. Ana

Freire, Fidel Cacheda, Vreixo Formoso and V́ıctor Carneiro. In Proceedings of LSDS-

IR 2013.

• O método Least Loaded de xestión de consultas presentado no Caṕıtulo 4 foi

publicado nun dos máis relevantes congresos de Recuperación de Información

(A*): Scheduling Queries Across Replicas. Ana Freire, Craig Macdonald, Nicola

Tonellotto, Iadh Ounis and Fidel Cacheda. In Proceedings of SIGIR 2012. (36.5 %

aceptación).

• O método h́ıbrido de xestión de consultas estudado ó longo do Caṕıtulo 5 deu

lugar á seguinte publicación: Hybrid query scheduling for a replicated search en-

gine. Ana Freire, Craig Macdonald, Nicola Tonellotto, Iadh Ounis and Fidel Cache-

da. In Proceedings of ECIR 2013. (29 % aceptación).

• Os contidos que engloba o Caṕıtulo 6 foron recentemente publicados: A Self-

Adapting Latency/Power Tradeoff Model for Replicated Search Engines. Ana Freire,

Craig Macdonald, Nicola Tonellotto, Iadh Ounis and Fidel Cacheda. In Proceedings

of WSDM 2014. (18 % aceptación).

Bibliography

[1] Green it: The new industry shockwave, April 2007. Gartner Inc.

[2] Cloudorado. http://www.cloudorado.com/, 2014. [Online; accessed January-

2014].

[3] Findthebest. http://cloud-computing.findthebest.com/, 2014. [Online;

accessed January-2014].

[4] G. Amati, E. Ambrosi, M. Bianchi, C. Gaibisso, and G. Gambosi. FUB, IASI-CNR

and University of Tor Vergata at TREC 2007 Blog track. In Proc. of TREC, 2007.

[5] V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts.

In Proceedings of SIGIR 2006, pages 372–379, 2006.

[6] D. Arroyuelo, V. G. Costa, S. González, M. Maŕın, and M. Oyarzún. Distributed

search based on self-indexed compressed text. Inf. Process. Manage., 48(5):819–

827, 2012.

[7] C. Badue, R. Baeza-yates, B. Ribeiro-neto, and N. Ziviani. Distributed query

processing using partitioned inverted files. In In Proc. of the 9th String Processing

and Information Retrieval Symposium (SPIRE, pages 10–20. IEEE CS Press, 2001.

[8] C. S. Badue, R. A. Baeza-Yates, B. A. Ribeiro-Neto, A. Ziviani, and N. Ziviani. An-

alyzing imbalance among homogeneous index servers in a web search system.

Inf. Process. Manage., 43(3):592–608, 2007.

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, May 1999.

 http://www.cloudorado.com/
http://cloud-computing.findthebest.com/

132 Bibliography

[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts

and Technology behind Search (2nd Edition) (ACM Press Books). Addison-Wesley

Professional, 2 edition, February 2011.

[11] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The google

cluster architecture. IEEE Micro, 23(2):22–28, mar 2003.

[12] T. Berners-Lee, R. Cailliau, and J.-F. Groff. The world-wide web. Computer

Networks and ISDN Systems, 25(4-5):454–459, 1992.

[13] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

2nd edition, 2000.

[14] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In Proc. WWW, pages 107–117, 1998.

[15] D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and

N. Tonellotto. Load-sensitive selective pruning for distributed search. In Pro-

ceedings of the 22Nd ACM International Conference on Conference on Information

& Knowledge Management, CIKM ’13, pages 379–388, New York, NY, USA,

2013.

[16] D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and

N. Tonellotto. Query processing in highly-loaded search engines. In O. Kurland,

M. Lewenstein, and E. Porat, editors, SPIRE, volume 8214 of Lecture Notes in

Computer Science, pages 49–55. Springer, 2013.

[17] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query

evaluation using a two-level retrieval process. In Proceedings of the twelfth inter-

national conference on Information and knowledge management, CIKM ’03, pages

426–434, New York, NY, USA, 2003.

[18] J. D. Brutlag, H. Hutchinson, and M. Stone. User preference and search engine

latency. In JSM Proceedings, Qualtiy and Productivity Research Section, 2008.

[19] S. Buettcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Imple-

menting and Evaluating Search Engines. The MIT Press, 1st edition, 2010.

Bibliography 133

[20] D. Bunday. An Introduction to Queueing Theory. Arnold, 1996.

[21] F. J. Burkowski. Retrieval performance of a distributed text database utilizing

a parallel processor document server. In Proceedings of the second international

symposium on Databases in parallel and distributed systems, DPDS ’90, pages

71–79, New York, NY, USA, 1990.

[22] F. Cacheda, V. Carneiro, D. Fernandez, and V. Formoso. Performance evaluation

of large-scale information retrieval systems scaling down. In Workshop on Large-

Scale Distributed Information Retrieval, 2010.

[23] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Performance analysis

of distributed information retrieval architectures using an improved network

simulation model. Inf. Process. Manage., 43(1):204–224, jan 2007.

[24] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Performance comparison of

clustered and replicated information retrieval systems. In Proceedings of the 29th

European conference on IR research, ECIR’07, pages 124–135, Berlin, Heidelberg,

2007.

[25] F. Cacheda, J. M. F. Luna, and J. F. H. Guadix. Recuperación de información: un

enfoque práctico y multidisciplinar. RA-MA editorial y Publicaciones. S.A., 2011.

[26] F. Cacheda, V. Plachouras, and I. Ounis. A case study of distributed informa-

tion retrieval architectures to index one terabyte of text. Inf. Process. Manage.,

41(5):1141–1161, 2005.

[27] B. Cahoon and K. McKinley. Evaluating the performance of distributed archi-

tectures for information retrieval using a variety of workloads. ACM Trans. on

Information Systems, 18:1–43, 1997.

[28] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. Early exit optimizations for additive machine learned ranking

systems. In Proceedings of the third ACM international conference on Web search

and data mining, WSDM ’10, pages 411–420, New York, NY, USA, 2010.

[29] R. Cao. Introducción a al Simulación y a la Teoŕıa de Colas. Carlos Iglesias,

España, 1st edition, 2002.

134 Bibliography

[30] A. L. Chervenak. Performance measurements of the first raid prototype. Techni-

cal report, Department of Computer Science, University of California, Berkeley,

1990.

[31] A. Chowdhury and G. Pass. Operational requirements for scalable search sys-

tems. In CIKM ’03: Proceedings of the twelfth international conference on Infor-

mation and knowledge management, pages 435–442, New York, NY, USA, 2003.

[32] G. Chowdhury. An agenda for green information retrieval research. Inf. Process.

Manage., 48(6):1067–1077, 2012.

[33] R. B. Cooper. Queueing theory. In Encyclopedia of Computer Science, pages

1496–1498. John Wiley and Sons Ltd., Chichester, UK, 2000.

[34] N. Craswell, R. Jones, G. Dupret, and E.Viegas, editors. Proceedings of the Web

Search Click Data Workshop at WSDM 2009, 2009.

[35] J. Dean. Challenges in building large-scale information retrieval systems: in-

vited talk. In Proceedings of the Second International Conference on Web Search

and Web Data Mining, WSDM 2009, New York, NY, USA, 2009.

[36] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury. Using mimo feed-

back control to enforce policies for interrelated metrics with application to the

apache web server. In Network Operations and Management Symposium, 2002.

NOMS 2002. 2002 IEEE/IFIP, pages 219–234, 2002.

[37] E. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[38] D. Economou, S. Rivoire, and C. Kozyrakis. Full-system power analysis and

modeling for server environments. In In Workshop on Modeling Benchmarking

and Simulation (MOBS), 2006.

[39] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation

strategies for top-k queries over memory-resident inverted indexes. Proceedings

of the VLDB Endowment, 4(12):1213–1224, August 2011.

Bibliography 135

[40] M. G. for Java. http://mg4j.dsi.unimi.it, 2014. [Online; accessed January-

2014].

[41] A. Freire, F. Cacheda, V. Formoso, and V. Carneiro. Analysis of performance

evaluation techniques for large scale information retrieval. 2013.

[42] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda. Scheduling

queries across replicas. In Proceedings of the 35th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’12, pages

1139–1140, New York, NY, USA, 2012.

[43] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda. Hybrid query

scheduling for a replicated search engine. In Advances in Information Retrieval,

volume 7814, pages 435–446, 2013.

[44] J. H. Friedman. Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29:1189–1232, 2000.

[45] A. Gandhi and M. Harchol-Balter. How data center size impacts the effectiveness

of dynamic power management. In Communication, Control, and Computing

(Allerton), 2011 49th Annual Allerton Conference on, pages 1164–1169, 2011.

[46] Y. Ganjisaffar, R. Caruana, and C. Lopes. Bagging gradient-boosted trees for

high precision, low variance ranking models. In Proceedings of the 34th interna-

tional ACM SIGIR conference on Research and development in Information, SIGIR

’11, pages 85–94, New York, NY, USA, 2011.

[47] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors.

In In Proc. Symposium on String Processing and Information Retrieval, pages 43–

54. Springer Verlag, 2004.

[48] B. He and I. Ounis. Query performance prediction. Inf. Syst., 31(7):585–594,

Nov. 2006.

[49] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of

Computing Systems. John Wiley & Sons, 2004.

136 Bibliography

[50] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st

edition, 2009.

[51] B. Jeong and E. Omiecinski. Inverted file partitioning schemes in multiple

disk systems. IEEE Transactions on Parallel and Distributed Systems, 6:142–153,

1995.

[52] S. Jonassen, B. B. Cambazoglu, and F. Silvestri. Prefetching query results and

its impact on search engines. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’12, pages

631–640, New York, NY, USA, 2012.

[53] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and C. Aykanat.

Energy-price-driven query processing in multi-center web search engines. In

Proceedings of the 34th international ACM SIGIR conference on Research and de-

velopment in Information Retrieval, SIGIR ’11, pages 983–992, New York, NY,

USA, 2011.

[54] D. G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their

Analysis by the Method of the Imbedded Markov Chain. Annals of Mathematical

Statistics, 24(3):338–354, 1953.

[55] B. Khargharia, S. Hariri, and M. S. Yousif. Autonomic power and performance

management for computing systems. Cluster Computing, 11(2):167–181, June

2008.

[56] E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. Incorporating effi-

ciency in evaluation. In Proceedings of the SIGIR 2013 Workshop on Modeling

User Behavior for Information Retrieval Evaluation (MUBE 2013), August 2013.

[57] KVM. http://www.linux-kvm.org, 2014. [Online; accessed January-2014].

[58] J. Leung. Handbook of Scheduling. Chapman & Hall, 2004.

[59] J. Liu, F. Zhao, X. Liu, and W. He. Challenges towards elastic power manage-

ment in internet data centers. 2012 32nd International Conference on Distributed

Computing Systems Workshops, 0:65–72, 2009.

Bibliography 137

[60] M. Livny. DeNet user’s guide. Technical report, University of Wisconsin, Madi-

son, 1990.

[61] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In

Proceedings of CIKM 2003, pages 199–206, 2003.

[62] Z. Lu and K. S. McKinley. Partial collection replication versus caching for in-

formation retrieval systems. In ACM International Conference on research and

development in information retrieval, pages 248–255, 2000.

[63] R. López and F. Cacheda. A Technical Approach to Information Retrieval Peda-

gogy, pages 89–105. Springer, 2011.

[64] C. Macdonald. The Voting Model for People Search. PhD thesis, University of

Glasgow, February 2009.

[65] C. Macdonald, R. McCreadie, R. Santos, and I. Ounis. From puppy to maturity:

Experiences in developing terrier. In Proc. of the OSIR at SIGIR 2012, 2012.

[66] C. Macdonald, I. Ounis, and N. Tonellotto. Upper bound approximations for

dynamic pruning. Transactions on Information Systems, 29(4), 2011.

[67] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict response times

for online query scheduling. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’12, pages

621–630, New York, NY, USA, 2012.

[68] A. Macfarlane, J. A. Mccann, and S. E. Robertson. Parallel search using parti-

tioned inverted files. In In 7th International Symposium on String Processing and

Information Retrieval, pages 209–220. IEEE Computer Society, 2000.

[69] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-

trieval. Cambridge University Press, New York, NY, USA, 2008.

[70] M. Marin and V. Gil-Costa. High-performance distributed inverted files. In Pro-

ceedings of the 16th ACM conference on Conference on information and knowledge

management, CIKM ’07, pages 935–938, New York, NY, USA, 2007.

138 Bibliography

[71] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New caching techniques for web

search engines. In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, HPDC ’10, pages 215–226, New York, NY,

USA, 2010.

[72] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud comput-

ing - the business perspective. Decis. Support Syst., 51(1):176–189, Apr. 2011.

[73] M. Marzolla and L. C. libcppsim: A simula-like, portable process-oriented sim-

ulation library in c++, 2004.

[74] L. Mastroleon, N. Bambos, C. Kozyrakis, and D. Economou. Automatic power

management schemes for internet servers and data centers. In GLOBECOM,

page 5. IEEE, 2005.

[75] A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel

retrieval. In Proceedings of the 29th annual international ACM SIGIR conference

on Research and development in IR, SIGIR ’06, pages 348–355, New York, NY,

USA, 2006.

[76] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for

distributed text query evaluation. Inf. Retr., 10:205–231, June 2007.

[77] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. Trans-

actions on Information Systems, 14(4):349–379, 1996.

[78] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier:

A high performance and scalable information retrieval platform. In Proceedings

of the OSIR Workshop 2006, pages 18–25, France, August 2006.

[79] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using

control theory to achieve service level objectives in performance management.

Real-Time Syst., 23(1/2):127–141, 2002.

[80] M. Persin. Document filtering for fast ranking. In Proceedings of the 17th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’94, pages 339–348, New York, NY, USA, 1994.

Bibliography 139

[81] R. R. Pollán and Álvaro Barreiro. Enabling the grid for experiments in dis-

tributed information retrieval. In B. M. et al., editor, Proceedings of the First

EELA-2 Conference, 2008.

[82] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E. Horvitz. Mod-

eling and predicting behavioral dynamics on the web. In Proceedings of the 21st

international conference on World Wide Web, WWW ’12, pages 599–608, New

York, NY, USA, 2012.

[83] B. Ribeiro-Neto and R. Barbosa. Query performance for tightly coupled distributed

digital libraries, pages 182–190. 1998.

[84] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979.

[85] S. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at

trec. In In Proceedings of TREC 1, pages 21–30, 1992.

[86] F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S. Altingovde, and O. Ulusoy. A

financial cost metric for result caching. In Proc. of the 36th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’13, pages 873–876, New York, NY, USA, 2013.

[87] E. Shurman and J. Brutlag. Performance related changes and their user impacts.

In Velocity: Web Performance and Operations Conference, 2009.

[88] F. Silvestri. Mining query logs: Turning search usage data into knowledge.

Foundations and Trends in Information Retrieval, 4(1-2):1–174, 2010.

[89] B. Simmons, A. McCloskey, and H. Lutfiyya. Dynamic provisioning of resources

in data centers. In Proceedings of ICAS 2007, pages 40–46, 2007.

[90] E. E. Star. Energy calculator for pc equipment. http://eu-

energystar.org/en/en 008.shtml, 2014. [Online; accessed January-2014].

[91] A. Tomasic and H. Garcia-molina. Performance of inverted indices in shared-

nothing distributed text document information retrieval systems. In In Proceed-

140 Bibliography

ings of the Second International Conference on Parallel and Distributed Informa-

tion Systems, pages 8–17, 1993.

[92] N. Tonellotto, C. Macdonald, and I. Ounis. Query efficiency prediction for dy-

namic pruning. In Proceedings of the 9th workshop on Large-scale and distributed

informational retrieval, LSDS-IR ’11, pages 3–8, New York, NY, USA, 2011.

[93] H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Inf.

Process. Manage., 31(6):831–850, 1995.

[94] L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proceeding

of the 33rd international ACM SIGIR conference on Research and development in

information retrieval, SIGIR ’10, pages 138–145, New York, NY, USA, 2010.

[95] Z. Wang, N. Tolia, and C. Bash. Opportunities and challenges to unify work-

load, power, and cooling management in data centers. SIGOPS Oper. Syst. Rev.,

44(3):41–46, Aug. 2010.

[96] W. Webber. Design and Evaluation of a Pipelined Distributed Information Retrieval

Architecture. University of Melbourne, Department of Computer Science and

Software Engineering, 2007.

[97] Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval query performance

prediction using similarity and variability evidence, 2008.

	Chapter 1: Thesis Outline
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Origins of the Material
	Thesis Outline

	Chapter 2: Introduction
	Introduction
	Information Retrieval
	Web Information Retrieval
	Distributed Information Retrieval
	Green Information Retrieval
	Evaluating an Information Retrieval System

	Chapter 3: Evaluation Platforms
	Introduction
	Background
	Analytical models
	Simulation
	Virtualization
	Cloud Computing
	Real systems

	Analysis
	Chronological analysis
	Real behaviour modelling
	Studying the suitability of virtualization models for performing large-scale IR evaluation

	Cost comparison
	Strengths and weaknesses

	Conclusions

	Chapter 4: Query Scheduling using Prediction
	Introduction
	Background
	Scheduling
	Dynamic Prunning
	Query Efficiency Predictors

	Proposal
	Experimental Setup
	Datasets
	Predictors
	Comparable Algorithms
	Simulation Setup

	Results
	Query Set A
	Query Set B

	Conclusions

	Chapter 5: Hybrid Query Scheduling
	Introduction
	Proposal
	Experimental Setup
	Results
	1st Factor: Architecture
	2nd Factor: Query volume
	3rd Factor: moving average window m

	Conclusions

	Chapter 6: Power/Latency Trade-off Model
	Introduction
	Background
	Proposal
	Mathematical Model
	Architecture
	Dynamic Optimisation Model
	General Dynamic Decision Problem
	Search Engine Dynamic Model
	Search Engine Cost Function
	Latency/Power Decision Problem

	Deterministic Approximation
	Random variables estimation
	Deterministic Problem Formulation
	Deterministic Problem Solutions

	Power Cost Function
	Latency Cost Function
	Queueing Theory approach
	Study of the viability of Queueing Theory to the current scenario

	Deterministic approach

	Experimental Setup
	Search Engine, Documents & Queries
	Evaluation Measures
	Baselines
	Parameter Settings

	Results
	Baselines
	Queueing Theory aproaches
	Self-adaptive Power/Latency Models
	Modelling Latency Costs
	Effect of time slot length

	Model Generalization
	Conclusions

	Chapter 7: Conclusions and Future Work
	Conclusions
	Simulation platforms are reliable for large-scale IR experimentation, leading to resource savings.
	Query efficiency predictors improve query scheduling.
	Hybrid scheduling methods avoid the overhead inherent to query predictors and improve the state-of-the-art approaches.
	Our new power/latency trade-off mathematical model contributes to achieve high energy savings without compromising the efficiency of the system.
	M/M/s Queueing Theory model is not suitable for representing the latency of a large-scale search engine.

	Directions for Future Work
	IR Evaluation Platforms
	Query Scheduling
	Power/Latency Trade-off Model

	Appendix A: Summary in Spanish
	Motivación
	Objetivos
	Estructura
	Conclusiones
	Los modelos de simulación son plataformas fiables para desarrollar experimentos a gran escala de Recuperación de Información, consiguiendo un gran ahorro de recursos.
	La predicción del tiempo de ejecución de las consultas mejora la eficiencia de los motores de búsqueda.
	La combinación de métodos de gestión de consultas evita la pequeña sobrecarga de las técnicas de predicción y mejora las aproximaciones existentes.
	El modelo matemático propuesto, consigue obtener un balance entre consumo energético y latencia de un motor de búsqueda, proporcionando un alto ahorro energético.
	El modelo M/M/s de Teoría de Colas no es adecuado para estimar la latencia de un motor de búsqueda a gran escala.

	Futuras líneas de investigación
	Plataformas de Evaluación de RI.
	Gestión de Consultas.
	Modelo de Balance Latencia/Consumo Energético.

	Publicaciones

	Appendix B: Summary in Galician
	Motivación
	Obxectivos
	Estrutura
	Conclusións
	Os modelos de simulación son plataformas fiables para desenvolver experimentos a grande escala de Recuperación de Información, conseguindo un grande aforro enerxético.
	A predicción do tempo de execución das consultas mellora a eficiencia dos motores de busca.
	A combinación de métodos de xestión de consultas evita a pequena sobrecarga das técnicas de predición e mellora as aproximacións existentes.
	O modelo matemático proposto consegue obter un balance entre o consumo enerxético e a latencia dun motor de busca, proporcionando un alto aforro enerxético.
	O modelo M/M/s de Teoría de Colas non é axeitado para estimar a latenza dun motor de busca a grande escala.

	Futuras liñas de investigación
	Plataformas de Evaluación de RI.
	Xestión de Consultas.
	Modelo de Balance Latenza/Consumo Enerxético.

	Publicacións

	Bibliography

