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1.- INTRODUCTION 

The spiny spider crab Maja brachydactyla Balss, 1922, 

is a decapod crustacean which belongs to the family 

Majidae (Ng et al., 2008). It can be found in the north-

eastern Atlantic, from the British Isles and Ireland to 

the coasts of Senegal (Picture 1), reaching the 

archipelagos of Azores, Madeira, Canary Islands and 

Cape Verde (Sotelo et al., 2008a). It was initially 

classified as Maja squinado Herbst, 1788, but it has 

recently been clarified that they are in fact two 

different species; morphological characteristics were 

used at first (Neumann, 1998) and then the difference 

was confirmed on the basis of molecular characteristics 

(Sotelo et al., 2008a). 

 

 The life cycle of Maja brachydactyla (Picture 2) can be divided into three main stages: larval 

stage, juvenile stage and adult or reproductive stage (Corgos, 2004). Larvae are released in 

coastal areas, where they become juveniles in two to three weeks. During this period of time, 

they go through three larval stages separated by moults (two zoea stages and one megalopa 

stage). Once settlement has occurred, at the end of planktonic stage, juveniles remain in 

shallow waters (<15m) for two or three years (depending on the moment of the year when 

settlement takes place), until they undergo the terminal moult and reach sexual maturity to 

become adults. This usually happens at the end of summer or the beginning of autumn. Recent 

studies suggest that juvenile individuals frequently migrate between rocky and sandy bottoms, 

basically at night, in order to get food and refugees, respectively. 

Once they have reached adulthood, spider crabs migrate to deeper waters (30-100m) to 

reproduce. Reproductive migrations begin in the autumn and ovigerous females return to 

shallow waters during the following spring to incubate their first spawning of the annual cycle. 

Incubation period lasts between 30 and 74 days, varying with water temperature, and sperm 

storage in spermathecae allows females to fertilize as many as three broods without mating in 

between (Corgos, 2004; González-Gurriarán et al., 1998). Fertility is really high and each 

spawning can consist in more than 500.000 eggs in the largest females. As well, adults can live 

from two to three years, and that is the reason why spiny spider crab populations consist of 

several overlapping cohorts (Sotelo et al., 2008b). 

 

Picture 1. Spatial distribution of the spiny 

spider crab Maja brachydactyla 
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Verde 
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Spiny spider crab is an economically important fishing resource and it suffers an intensive 

exploitation pressure, especially in France and the United Kingdom (Freire et al., 2002). In 

Galicia (north-west of Spain), a 90% of the new production of the population is annually 

extracted so the spiny spider crab has been classified as an overexploited resource. 

Nevertheless, genetic studies which have been carried out up to now do not show evidences of 

overexploitation. On the other hand, they do indicate the need to increase sampling sizes and 

include a higher number of sampling localities (Sotelo et al., 2008b). 

The intensive fishing activity for this resource could affect the genetic structure of its natural 

populations in two distinct ways: 

1. Extraction and reduction of local genetic variants, which have associated genetic drift 

effects. 

2. Export of spiny spider crabs to markets placed in other geographical localities, 

something which represents an artificial mechanism of genetic flow. This phenomenon 

could be occurring in Galicia as a consequence of the import and temporary storage of 

Eggs 

Zoea 

Megalopa Juvenile 

Adult 

Picture 2. Life cycle of the spiny spider crab Maja brachydactyla 
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spawning females in fisheries until sale. Eggs in an advanced developmental stage 

could hatch in the fishery and larvae could join local populations. 

This study aims to contribute novel information on the possible homogenizing effect of the 

activity of fisheries on the genetic variability of population groups from different geographical 

localities. 
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2.- OBJECTIVES 

This project has the objective of studying the effect of commercial activity on the genetic 

variability of the spiny spider crab Maja brachydactyla Balss, 1922, by means of molecular 

analysis of the mitochondrial genes for cytochrome c oxidase subunit I (COI) and 16S ribosomal 

subunit (16S). 
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3.- MATERIALS AND METHODS 

3.1.- Sampling 

Forty individuals from 3 localities in the north-eastern Atlantic region were analysed (Picture 

3). Twenty five of them were from Lorient (France, 47°44’45’’N 3°21’59’’W), 13 were from 

Saint-Malo (France, 48°38’50’’N 2°00’32’’W) and 2 were from Cedeira (Spain, 43°39’00’’N 

8°03’00’’W). A pereiopod or a pleopod (Picture 4) was obtained from each one and preserved 

in absolute ethanol until processing. 

 

 

Cedeira 

Lorient 
Saint-Malo 

Picture 3. Sampling localities 
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3.2.- DNA extraction 

Genomic DNA of the individuals was extracted from pereiopods muscle tissue (with the 

exception of the individuals from Cedeira, in which the extraction was performed on pleopods) 

using RealPure extraction kit (REAL). Approximately 20mg of muscle tissue were dissected 

from each sample. They were added 600μl of lysis solution and were mechanically 

homogenized before the addition of 3μl of K proteinase in order to increase the surface 

exposed to enzymatic activity. After being inversion-mixed, samples were incubated overnight 

at 55°C with mechanical shaking. 

Once cooled at room temperature, lysates were added 3μl of RNase, mixed by inversion and 

incubated at 37°C during 30min. Afterwards, 360μl of protein precipitation solution were 

added to the samples, which were also vigorously mixed by vortex and centrifuged at 14000g 

during 8min. This treatment resulted in the precipitation of a thick protein pellet at the bottom 

of the Eppendorf tubes. 

While samples were being centrifuged, new Eppendorf tubes were disposed with 600μl of 

isopropanol, in which the supernatants containing the DNA were then poured. Later, samples 

were inversion-mixed and centrifuged again at 14000g during 3min. As a result, DNA formed a 

Picture 4. Anatomy of decapod crustaceans. Pereiopods and pleopods are highlighted. 

PEREIOPODS 

PEREIOPODS 

PLEOPODS 

Images were taken and modified from www.arthursclipart.org and www.pictospin.com  

http://www.arthursclipart.org/
http://www.pictospin.com/
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thin pellet at the bottom of the tubes. Supernatants were discarded and DNA pellets were 

washed with 600μl of 70% ethanol. Then, samples were centrifuged at 14000g during 2min 

and ethanol was carefully removed. Tubes were inverted on clean absorbent paper and 

allowed to air-dry. Finally, DNA was re-suspended in 100μl of hydration solution and it was 

incubated overnight at room temperature to favour re-hydration. 

3.3.- Quantification and quality assessment of the obtained DNA 

The success of the DNA extraction procedure was assessed by means of a 1% agarose gel 

electrophoresis stained with RedSafe (Chembio). Once checking was done, the DNA quantity 

obtained in each case and its quality were determined with NanoDrop 1000 (Thermo 

scientific). Dilutions adjusted at 10ng/μl of concentration were then prepared (in the cases in 

which this was necessary) and stored at 4°C until they were used in the following molecular 

analysis. Original DNA extractions were preserved as a stock for future analysis at -80°C. 

3.4.- PCR amplification 

Amplification of 16S and COI mitochondrial genes was started as soon as genomic DNA 

samples were available. Primers 16Sar and 16Sbr employed in the studies of Sotelo et al. 

(2008a, b) and Palumbi et al. (1991) were used at first to amplify 16S gene, whereas LCO1490 

and HCO2198 primers used in the studies of Sotelo et al. (2008a, b; 2009a, b) and Folmer et al. 

(1994) were used to amplify COI gene (Table 1). 

 

A temperature gradient from 43°C to 54°C and two magnesium concentrations (1.5mM and 

3mM) were tested to determine the best amplification conditions for each gene. Reactions 

were carried out in a final volume of 25μl, containing 25ng of DNA, PCR buffer (10mM HCl, 

1.5mM MgCl2, 50mM KCl, pH 8.3), dNTP mix (200μM), 0.5μM of each primer and 0.25U of 

BIOTAQ polymerase (Roche Applied Science). To test the 3mM magnesium concentration, 

3.57μg of MgCl2 were additionally added from a 25mM stock solution. Thermocycler (MyCycler 

Thermal Cycler, Bio-Rad Laboratories) was programmed as follows: 5min at 95°C; 35 cycles of 

30s at 95°C, 30s at 43°C-54°C and 45s at 72°C; 5min at 72°C and 30min at 4°C (Picture 5). PCR 

products were visualized by being run in 1% agarose gels stained with RedSafe. 

 

 

Name Name

16Sar 16Sbr

LCO1490 GGT CAA CAA ATC ATA AAG ATA TTG G HCO2198 TAA ACT TCA GGG TGA CCA AAA AAT CA

CGC CTG TTT ATC AAA AAC AT CCG GTC TGA ACT CAG ATC ACG T

Table 1. Sequences of the initial primers for the amplification of 16S and COI genes

Forward primers Reverse primers

Sequence (5'→3') Sequence (5'→3')

95°C 5min

35 cycles of: 95°C 30s

43°C-54°C 30s

72°C 45s

72°C 5min

4°C

Picture 5. Initial PCR profile for the 

amplification of 16S and COI genes 



Final Project – Lucía Gato Calvo 

2013 

 

 9 

Another pair of primers employed by Sotelo et al. (2009a, b) was decided to be tested in the 

cases in which 16S gene amplification was not successful: 16L29 and 16HLeu (Schubart, 2009). 

Amplification conditions were the same as in the initial experiment; that is, a temperature 

gradient from 43°C to 54°C and magnesium concentrations of 1.5mM and 3mM were tested 

with the described PCR profile. PCR products were visualized in a 1% agarose gel 

electrophoresis and then they were sequenced. In the cases in which there was no 

amplification success, it was decided to request for 16L29 and 16HLeu primers again, but 

modified: M13 tails were added with the purpose of obtaining a proper sequence reading 

(Table 2). 

 

Furthermore, a touchdown PCR was programmed as to improve the specificity of the 

amplification reaction: 5min at 94°C; 5 cycles of 30s at 94°C, 90s at 45°C and 60s at 72°C; 5 

cycles of 30s at 94°C, 90s at 65°C-60°C (with a decrease in temperature of 1°C per cycle) and 

60s at 72°C; a final extension of 5min at 72°C and a cooling step at 4°C (Picture 6). Just as in the 

previous cases, PCR products were run in 1% agarose gels stained with RedSafe and they were 

sequenced when successfully amplified. Given the good performance which was obtained with 

this protocol, it was used in all the following amplifications of 16S gene. 

 

 

On the other hand, COI gene PCR products for which it was no possible to obtain the sequence 

were tried to be cloned by using the kit StrataClone PCR Cloning Kit (Agilent Technologies): 

1.5μl of cloning buffer StrataClone were mixed with 1μl of PCR product and 0.5μl of vector mix 

StrataClone and the ligation reaction mixture was incubated at room temperature during 

5min. Meanwhile, a tube of competent cells StrataClone SoloPack was thawed on ice. The 

ligation reaction was placed on ice when completed and 1μl of it was then mixed with half of 

the competent cells (25μl) without repeated pipetting. The resultant transformation mixture 

Name Sequence (5'→3') Name Sequence (5'→3')

Table 2. Sequences of the primers for the amplification of 16S gene

16L29M13
GTA AAA CGA CGG CCA GTY 

GCC TGT TTA TCA AAA AC
16HLeuM13

CAG GAA ACA GCT ATG ACC 

ATA TTA TCT GCC AAA AT

Forward primer Reverse primer

94°C 5min

5 cycles of: 94°C 30s

45°C 90s

72°C 60s

5 cycles of: 94°C 30s

65°C-60°C 90s (↓1°C/cycle)

72°C 60s

30 cycles of: 94°C 30s

60°C 90s

72°C 60s

72°C 5min

4°C

Picture 6. Touchdown PCR designed for the amplification of 

16S gene with 16L29M13 and 16HLeuM13 primers 
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was incubated on ice during 20min. Over this period of time, liquid LB medium was pre-

warmed at 42°C (it had previously been prepared with 10g of NaCl, 10g of tryptone, 5g of yeast 

extract and distilled water in a final volume of 1 litre; pH had been adjusted to 7.0 with 5N 

NaOH and the mixture had been autoclave-sterilized). Once the incubation was finished, cells 

were heat-shocked at 42°C during 45s and they were then incubated on ice during 2min. 

Eventually, 250μl of pre-warmed LB medium were added to the transformation reaction 

mixture and 90μl of the resultant mixture were then plated on LB-ampicillin plates (they had 

previously been prepared following the same steps as with liquid LB medium, but adding 20g 

of agar and 100g ampicillin, too), over which it had previously been spread 40μl of 2% Xgal. 

Afterwards, these plates were incubated overnight at 37°C. 

Later, white-coloured colonies were selected (they should contain a PCR product insert) and 

cell lines were plated on a new LB-ampicillin plate, which was subsequently incubated 

overnight at 37°C. Finally, several colonies of each cell line were randomly selected and they 

were individually placed into PCR tubes containing 10μl of sterile MilliQ water to induce cell 

lysis and then assess cloning success through PCR. Each tube was added PCR buffer (10mM 

Tris-HCl, 1.5mM MgCl2, 50mM KCl, pH 8.3), dNTP mix (200mM), 0.8μM of each primer (M13F 

and M13R) and 0.25U of BIOTAQ polymerase (Roche Applied Science) in a final volume of 25μl. 

PCR was programmed as follows: 5min at 94°C; 35 cycles of 1min at 94°C, 1min at 55°C and 

1min at 72°C; a final extension of 5min at 72°C and a cooling step at 4°C (Picture 7). PCR 

products were visualized in a RedSafe-stained 1% agarose gel electrophoresis. 

 

 

A literature search on PCR primers used up to now to amplify fragments of COI mitochondrial 

gene in decapod crustaceans was performed at last. The suitability of four primer pairs (Table 

3) was decided to be tested. 

 

Each primer pair was tested at a temperature gradient of 50°C-56°C and two different 

magnesium concentrations (1.5mM and 3mM). The PCR profile was the same as initially 

94°C 5min

35 cycles of: 94°C 60s

55°C 60s

72°C 60s

72°C 5min

4°C

Name Name

GTA AAA CGA CGG CCA GTG GTC AAC AAA 

TCA TAA AGA TAT TGG

GTA AAA CGA CGG CCA GTT TTT CTA CAA ATC 

ATA AAG ACA TTG G
CrustF1M13

Forward primers

LCO1490M13

CrustDF1

COL6

GGT CWA CAA AYC ATA AAG AYA TTG G

ACA AAT CAT AAA GAT ATY GG

GTA AAA CGA CGG CCA GTG GTC AAC AAA TCA 

TAA AGA TAT TGG

Sequence (5'→3')

Table 3. Sequences of the tested primer pairs for the amplification of COI gene

[1]: Matzen da Silva et al., 2011; [2]: Radulovici et al., 2009; [3]: Schubart, 2009; [4]: Costa et al., 2007

References

[1]

[2]

[3]

[1], [4]

Sequence (5'→3')

Reverse primers

HCO2198M13

CrustDR1

COH6

HCO2198M13

GTA AAA CGA CGG CCA GTG GTC AAC AAA 

TCA TAA AGA TAT TGG

GGT CWA CAA AYC ATA AAG AYA TTG G

ACA AAT CAT AAA GAT ATY GG

Picture 7. PCR profile for the 

amplification of the inserts 
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described and PCR products were run in a 1% agarose gel. COL6/COH6 was selected and a 

touchdown PCR was designed in order to improve specificity and guarantee a proper 

amplification of all samples, just as in the case of 16S gene. PCR profile was as follows: 5min at 

94°C; 5 cycles of 30s at 94°C, 90s at 45°C and 60s at 72°C; 6 cycles of 30s at 94°C, 90s at 61°C-

56°C (with a decrease in temperature of 1°C per cycle) and 60s at 72°C; 29 cycles of 30s at 

94°C, 90s at 56°C and 60s at 72°C; a final extension of 5min at 72°C and a cooling step at 4°C 

(Picture 8). PCR products were run in 1% agarose gels and then they were sequenced. This 

procedure was used to amplify COI gene in all the following samples. 

 

 

3.5.- Sequencing and analysis of the obtained data 

Automatic sequencing of PCR products was carried out by the Molecular Biology Unit of the 

Research Support Services of the University of A Coruña. The genetic analysis system CEQTM 

8000 (Beckman Coulter) and the genetic analysis system 3130xl (Applied Biosystems) were 

used for that purpose. The technique of automatic sequencing is based on the traditional 

Sanger sequencing method, but it employs fluorescent marking instead of radioactive marking; 

this allows the simultaneous reading of the products of four different reaction mixtures (a 

different reaction mixture is usually prepared for each triphosphate nucleotide, and each of 

them is marked with a different fluorochrome). 

The identity of the sequences was confirmed using BLAST computer service, which is 

implemented in the National Centre for Biotechnology Information (NCBI). This means that 

each obtained sequence was aligned with the available sequences from GenBank database 

(also implemented in NCBI) and a signification value was calculated for the identified local 

similarities. So, sequences were checked out with the aim of assessing whether they really 

corresponded to 16S and COI genes of the spiny spider crab Maja brachydactyla. 

COI sequences were aligned with the computer program ClustalX (Larkin et al., 2007) and 

electropherograms were revised in order to correct the sequences by hand. The resultant 

alignment was saved as a .pir format document with the aim of transferring it to BioEdit 

v7.1.11 (Hall, 1999). Modification of the mitochondrial genetic code of Escherichia coli (which 

94°C 5min

5 cycles of: 94°C 30s

45°C 90s

72°C 60s

6 cycles of: 94°C 30s

61°C-56°C 90s (↓1°C/cycle)

72°C 60s

29 cycles of: 94°C 30s

56°C 90s

72°C 60s

72°C 5min

4°C

Picture 8. Touchdown PCR designed for the amplification of 

COI gene with COL6 and COH6 primers 
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is implemented by default) to convert it into the mitochondrial genetic code of decapod 

crustaceans was required to perform data analysis with this computer program. This implied 

the determination of the mitochondrial genetic code of decapod crustaceans through 

GenDecoder (Abascal et al., 2006). The performed modifications were those represented in 

Table 4. 

 

Once the modifications were done, the start codon was determined, taking into account the 

putative proteins which would be obtained by the translation in each of the six reading frames. 

Afterwards, nucleotide sequences were transformed into amino acid sequences and the latter 

were aligned. This amended alignment was transformed again into nucleotide sequences, 

which were saved as a .pir format document to be employed in the following analyses. 

The amended alignment was analysed with DnaSP v5.10.01 (Librado & Rozas, 2009), in which 

the character of protein-coding sequence was specified and the mitochondrial genetic code of 

Drosophila was selected (previously, it had been determined to be equivalent to the 

mitochondrial genetic code of decapod crustaceans). Considering that the amplified COI region 

lacks introns, the whole length of the sequences was established as protein-coding and 3 

sequence sets were defined: Lorient, Saint-Malo and Cedeira. Several variability parameters 

were then calculated for all the populations as a whole and for each single population: number 

of polymorphic sites (S), number of segregating sites (SS), number of synonymous changes 

(SC), nucleotide diversity (π, as well as its standard deviation), number of haplotypes (k), 

haplotype diversity (h, as well as its standard deviation), number of synonymous sites, number 

of non-synonymous sites, synonymous substitution rate (Ks), non-synonymous substitution 

rate (Ka) and Tajima’s D (D, as well as its statistical significance). At last, the data file was saved 

as a .meg format document. 

Finally, sequences were analysed with MEGA5 (Tamura et al., 2011). The 3 mentioned data 

sets were defined again and the best-fit model of nucleotide substitution was estimated with 

the software designed by Posada & Crandall (1998), which is implemented in MEGA5. Inter-

group and intra-group genetic distances were determined and a maximum likelihood 

phylogeny tree was built. The nucleotide composition of the sequences was also obtained. 

On the other hand, the sequences of 16S gene were aligned with ClustalX (Larkin et al., 2007) 

and corrected by hand through electropherograms revision, too. As it is not a protein-coding 

gene, these sequences were directly analysed with DnaSP v5.10.01 (Librado & Rozas, 2009). 

Likewise, 3 sets of sequences were defined (Lorient, Saint-Malo and Cedeira) and the following 

parameters of variability were computed: number of polymorphic sites (S), number of 

segregating sites (SS), nucleotide diversity (π, as well as its standard deviation), number of 

TGA

AGG

AGA

ATA

Serine

Methionine

Codon

Table 4. Modifications performed in mitochondrial 

genetic code

Amino acid

Escherichia coli Decapod crustaceans

Stop

Arginine

Arginine

Isoleucine

Tryptophane

Serine



Final Project – Lucía Gato Calvo 

2013 

 

 13 

haplotypes (k), haplotype diversity (h, as well as its standard deviation) and Tajima’s D (D, as 

well as its statistical significance). The data file was converted into a .meg format document 

and MEGA5 was used to carry out a similar analysis to that described for 16S gene (definition 

of groups, estimation of the best-fit nucleotide substitution model, computing of inter-group 

and intra-group genetic distances, building of a maximum likelihood phylogeny tree and 

obtaining nucleotide composition). 

Eventually, sequences of 16S and COI genes were concatenated in a new data file through 

DnaSP v5.10.01. It was saved as a .meg format document with the aim of building a phylogeny 

tree with a higher discrimination power through MEGA5. 
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4.- RESULTS 

4.1.- PCR amplification 

The primers which were initially tested for the amplification of 16S mitochondrial gene, 

namely 16Sar and 16Sbr (Palumbi et al., 1991), did not generate amplification products in any 

case. Afterwards, 16L29 and 16HLeu primers (Schubart, 2009) did generate the expected 

amplification products and they were visualized in agarose gel electrophoresis. However, 

complete sequencing was not possible in any case and sequences with variable and shorter-

than-expected lengths (approximately 700bp) were always obtained. Eventually, 16L29M13 

and 16HLeuM13 showed an excellent yield and 16S gene was amplified and sequenced in 

every case. 

On the other hand, the primers which were initially tested for the amplification of COI 

mitochondrial gene, namely LCO1490 and HCO2198 (Folmer et al., 1994), did generate 

amplification products under the described conditions in every case. This was checked through 

electrophoresis gels but sequencing was not possible in any case. For this reason, some PCR 

products were tried to be cloned, but the ligation to the vector was not achieved in any case. 

As long as sequencing and cloning turned out to be impossible, the literature search which 

resulted in the selection of COL6 and COH6 primers (Schubart, 2009) was carried out. Every 

tested primer pair (Table 3) generated amplification products but the most suitable one was 

COL6/COH6 because of the high intensity of the bands in the electrophoresis gel and the 

absence of unspecific amplification products. The efficiency of this primer pair was excellent 

and COI gene was amplified and sequenced in every case. 

4.2.- Analysis of the obtained sequences 

The length of the amplified 16S mitochondrial gene fragment varied between 671bp and 

694bp. The nucleotide composition averaged 35.5% thymine, 11.5% cytosine, 34.1% adenine 

and 18.9% guanine. The analysis with DnaSP v5.10.01 computer program resulted in the 

identification of 30 haplotypes (k) defined by 32 polymorphic sites, between which there were 

17 segregating sites (SS) and 16 parsimony informative sites (S*) (Table 5); that is, one of the 

17 segregating sites does not contribute information to the differentiation of localities. 

Likewise, nucleotide diversity (π) and haplotype diversity (h) were quite high; SD(π) and SD(h) 

respectively represent their standard deviations, which are remarkably high in the case of 

Cedeira population due to the reduced sampling size. Tajima’s test (D represents the statistical 

parameter and P(D) its significance) had no significance in every case in which it could be 

applied. This points out the selectively neutral nature of the mutations which were found in 

the different localities. The statistical test could not be applied to Cedeira population, from 

which only 2 individuals were available (the test requires 4 at least). 
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The best-fit nucleotide substitution model was T92+G+I (Tamura, 1992), which was employed 

to estimate mean genetic distances inside localities (d, intra-group distances) and between 

different localities (inter-group distances) (Table 6). The former were strongly similar and low 

through the different localities and their standard deviations (SD(d)) were really small, 

something which indicates that the individuals belonging to each sampling locality are quite 

similar between them. Furthermore, inter-group genetic distances (values under the principal 

diagonal of the matrix on the right) were also very low and similar, with equally reduced 

standard deviations (values over the principal diagonal of the matrix). Therefore, there are not 

large differences between the localities of study. 

 

T92+G+I model was also used to build a maximum likelihood phylogeny tree. In accordance 

with the obtained inter-group genetic distances, this tree did not show a clear differentiation 

between localities (data not shown). 

On the other hand, the length of the amplified COI gene fragment varied between 555bp and 

579bp. Mean nucleotide composition was 35.1% thymine, 20.3% cytosine, 26.3% adenine and 

18.2% guanine. The analysis with DnaSP v5.10.01 resulted in the identification of 39 

haplotypes (k) defined 69 polymorphic sites, between which 47 were segregating sites (SS) and 

46 were parsimony informative sites (S*) (Table 7); this means that one out of 47 segregating 

sites does not contribute information to the differentiation of localities. Moreover, 10 out of 

47 segregating sites represented synonymous changes (SC); that is, they were generally placed 

in the third position of a codon and they did not involve any change in the amino acid 

composition of cytocrome c oxidase subunit I. Nucleotide diversity (π) and haplotype diversity 

(h) were quite high and their standard deviations (SD(π) and SD(h)) were small, just as in the 

case of 16S gene; the only exception was Cedeira locality again, in which standard deviation 

was unusually high because of the small sampling size. Tajima’s test was significant for Lorient 

locality and for all the samples taken as a whole, indicating that at least one of the identified 

mutations is not selectively neutral. The negative value of D suggests either a possible 

purifying selection or a population expansion, given the excess of low frequency 

polymorphisms which were found in relation to the expected results derived from the 

Locality n S* SS π SD(π) k h SD(h) D P(D)

Lorient 25 27 (14+13) 12 0.01075 0.00169 19 0.960 0.027 -1.528 >0.10**

Saint Malo 13 29 (16+13) 15 0.01355 0.00167 13 1.000 0.030 -1.336 >0.10**

Cedeira 2 17 (17+0) 17 0.02707 0.01354 2 1.000 0.500 n/a n/a

Total 40 32 (16+16) 17 0.00925 0.00114 30 0.962 0.020 -1.587 0.10>P>0.05**

*The number of polymorphic sites which appear only once and the number of  polymorphic sites which are parsimony 

informative are given in brackets                                                                                                                                                                                                                                     

**Not significant test for α=0.05

Table 5. Genetic variability parameters for 16S gene in the different localities

Locality d SD(d) Lorient Saint-Malo Cedeira

Lorient 0.009 0.002 0.002 0.002

Saint-Malo 0.009 0.002 0.009 0.002

Cedeira 0.010 0.004 0.010 0.009

Table 6. Intra-group and inter-group genetic distances for 16S 

gene
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hypothesis of the test. Tajima’s test could not be applied to Cedeira locality because it did not 

have the minimum required number of sequences. 

 

Likewise, pair-wise comparisons resulted in the identification of 0 to 6 synonymous differences 

and 0 to 7 non-synonymous differences. Synonymous evolution rate (Ks) and non-synonymous 

evolution rate (Ka) varied from 0 to 0.047 and between 0 and 0.0182, respectively. Therefore, 

synonymous evolution rate is higher than non-synonymous evolution rate, just as it could be 

expected of a protein that is important for the organism. 

The best-fit nucleotide substitution model was T92+G+I (Tamura, 1992), like in the case of 16S 

gene. This model was employed to estimate mean genetic distances inside localities (d, intra-

group distances) and between different localities (inter-group distances) (Table 8). The results 

were almost the same as the ones obtained for 16S gene: intra-group distances were low and 

similar through the different localities again, with reduced standard deviations. This indicates 

that individuals from each locality are very similar between them. Also, inter-group genetic 

distances (values under the principal diagonal of the matrix in the right) were equally small and 

similar and had little standard deviations (values over the principal diagonal of the matrix). This 

suggests that there are not important differences between different localities. 

 

T92+G+I model was used to build a maximum likelihood phylogeny tree for COI gene. Similarly 

to the results obtained for 16S gene and in accordance with the discussed inter-group genetic 

distances, this tree did not allow to distinguish between different localities (data not shown). 

Finally, the maximum likelihood phylogeny tree which was built with the concatenated 

sequences of 16S and COI genes did not discriminate different populations either (data not 

shown). 

 

 

Localidad n S* SS SC π SD(μ) k h SD(h) D P(D)

Lorient 25 65 (47+18) 45 10 0.01858 0.00454 25 1.000 0.011 -1.839 <0.05

Saint-Malo 13 52 (31+21) 20 1 0.02219 0.00260 13 1.000 0.030 -1.223 >0.10**

Cedeira 2 15 (15+0) 11 4 0.02273 0.01136 2 1.000 0.500 n/a n/a

Total 40 69 (46+23) 47 10 0.01631 0.00291 39 0.999 0.006 -1.851 <0.05

Table 7. Parameters of genetic variability for COI gene in the different localities

*The number of polymorphic sites which appear only once and the number of polymorphic sites which are 

parsimony informative are given in brackets                                                                                                                                                                                                                

**Not significant test for α=0.05

Locality d SD(d) Lorient Saint-Malo Cedeira

Lorient 0.017 0.003 0.003 0.003

Saint-Malo 0.016 0.003 0.017 0.003

Cedeira 0.018 0.006 0.016 0.017

Table 8. Intra-group and inter-group genetic distances for COI 

gene
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5.- DISCUSSION 

The genetic variability of the spiny spider crab Maja brachydactyla was studied in three coastal 

localities of north-eastern Atlantic. The main conclusions which can be drawn from this study 

are, first, that the genetic variability of the spiny spider crab is quite high in spite of the high 

fishing pressure that it suffers, and, second, those localities seem to be genetically 

homogeneous. 

The range of nucleotide diversity observed values in mitochondrial DNA (π=0.00925-0.02273) 

agrees with the mean values which have been reported for other crustaceans (π>0.01). The 

same is of application to haplotype diversity, which in this study varied between 0.960 and 

1.000 and which has a mean value higher than 0.8 in other crustaceans (Khamnamtong et al., 

2009; Inoue et al., 2007; Trontelj et al., 2005; Stamatis et al., 2004; Lavery et al., 1996). This 

fact contradicts the results which were obtained in the studies of Sotelo et al. (2008b), in 

which nucleotide diversity is an order of magnitude lower (π=0.003-0.005), and implies that 

the spiny spider crab Atlantic population is quite more diverse than what was found initially. 

However, a haplotype diversity of 1.000 is too high and that could be due to the reduced 

sampling size (especially in the case of Cedeira) and/or to a random sampling mistake. 

Anyway, the two French sampled localities have an important economic activity based in the 

spiny spider crab and they export huge quantities of this organism to Spain. Therefore, the 

strong exploitation pressure does not appear to have affected the genetic diversity of Maja 

brachydactyla in these areas. It would be interesting to have further individuals and sampling 

localities from Spanish Atlantic and Cantabric coasts, as the importation of French spiny spider 

crabs may be affecting the genetic structure of local communities. Unfortunately, the available 

data are not enough to obtain conclusive results for the moment. 

On the other hand, further analysis on the geographic distribution of the identified haplotypes 

is needed. It could contradict the apparent genetic homogeneity which has been found to 

reveal some kind of population structure, just as it was reported by Sotelo et al. (2008b). 

The remarkably usefulness of pleopods for the extraction of Maja brachydactyla genomic DNA 

has to be highlighted because they are not as relevant as pereiopods to commercial activity. 

The performance of the DNA extraction protocol was very similar to that of pereiopods and 

PCR amplification was equally successful. So, it is indeed possible to sample market spiny 

spider crabs without causing neither an extensive damage nor a reduction in price (which can 

derive from the lack of some of their valuable walking legs). 

Finally, the failure of the amplification of 16S mitochondrial gene with the primers 16Sar and 

16Sbr (Palumbi et al., 1991) and the impossibility of neither sequencing nor cloning the PCR 

products of COI gene obtained with LCO1490 and HCO2198 primers (Folmer et al., 1994) could 

be explained by the universal character of these primer pairs, which were originally developed 

for the amplification of 16S and COI genes in any kind of organism. The spiny spider crab might 

have some mutation in the annealing region which could impede the association between the 

primers and the DNA template, and this will explain the lack of amplification of 16S gene. In 

the case of COI gene, it is possible that the annealing specificity is not high enough and that, 
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consequently, primers are able to become associated with several regions along the DNA 

template (even with a pseudogene) to generate amplification products of different lengths and 

sequences. These unspecific products can severely hinder sequencing and so make it 

impossible to obtain the expected results. This problem was already discussed by Schubart 

(2009), who pointed out the fact that this primer pair is not optimized for the amplification of 

COI mitochondrial gene in decapod crustaceans. 

In conclusion, the genetic variability of the spiny spider crab Maja brachydactyla seems to be 

higher than initially reported and its local populations along north-eastern Atlantic coast 

appear to be genetically homogeneous. Nevertheless, results are not conclusive and more 

detailed studies should be carried out in order to determine the effect of fishing activity on this 

resource with accuracy. 
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