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1. Application of nonparametric regression methods 
1.1. Introduction 

An important topic in thermal analysis is the statistical analysis. There are 
several works in the thermal analysis literature that use regression models to account for 
the relationship between the variables of interest in this field. Many of them are based 
on the Arrhenius equation modified by Sestak and Berggren [27] and were discussed by 
Vyazovkin [29] and compared by many authors [3]. 

The response variable is often heat flow or sample mass along the experiment, 
while typical explanatory variables are temperature or time. Some important properties 
of the materials can be directly measured or easily calculated from the response 
variables. They include characteristic temperatures of different processes, i. e. melting 
and glass transition temperatures, thermal stability, specific heat at different 
temperatures, enthalpy associated to chemical reactions and physical changes. In 
addition, kinetic analysis of the processes can be performed from the thermal analysis 
data. The study of these data gives useful insight for materials characterization. 

It is relevant to point out that the estimation of the first two derivatives is also an 
important issue. In the case of weight loss processes, the TGA first derivative (DTG) 
can be compared to the DSC trace. The DTG trace is sharper and more accurate to 
detect the onset and end points of the processes. It is especially interesting when 
studying overlapped processes. This higher quality of DTG compared to DSC comes 
from two differences between the both techniques: 

1. The TGA response is almost instantaneous and immediately reflects the 
weight changes, while the DSC signal is affected by a thermal lag (the heat from the 
sample takes some time to travel through the crucible to the detector). 

2. The heat diffusion in the crucible smoothes the signal before reaching the 
detector.

TGA and DSC, therefore, give direct mass and calorimetric measurements for 
whose a good estimation accuracy is desired. 

The main aim of this work is to accurately estimate the functional relationship 
between an explanatory variable X, typically time or temperature, and a response 
variable Y, often weight (for TGA curves) or heat flow (for DSC curves). The following 
nonparametric regression model is assumed to hold: 

.,,2,1,)( niXmY iii =+= ε  with .0)( =iE ε                                                  (1) 

where m is the regression function of Y given X and iε  is a term accounting for the 
measurement error (for instance that of the calorimeter). Throughout the paper it will be 
assumed that the design is fixed (most of the time the iX  are equally spaced in 
practice), and the error is homoscedastic, i. e., 2)( σε =iVar  for i=1,2,…,n.
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The methods used in practice to smooth DSC or TGA curves by means of 
nonparametric weights do not incorporate any automatic optimal smoothing parameter 
selection. In some cases they are even based in moving average procedures, going back 
to the early work by Savitzky and Golay [25]. For this reason the bad fitting is very 
evident in many cases, specially in the first and second derivative estimation. 
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Figure  1. TGA curve for the calcium oxalate sample (dashed line) and first derivative 
(solid line) using the RSI Orchestrator 

Figure 1 shows a fit of a TGA curve of calcium oxalato and its first derivative 
using one of the standard computer packages in this field, the Orchestrator® by 
Rheometric Scientific Incorporation®. The smoothing software incorporated to this 
package enables selection of the amount of smoothing "by hand" but not any automatic 
estimated optimal smoothing parameter that takes into account the non negligible error 
dependence. The aim of this paper is precisely to provide an automatic selection of the 
amount of smoothing to be used in these contexts. 

1.2. Technical background 
Nonparametric regression methods will be used to estimate the function m

without specifying any a priori parametric model. The key idea is to assume that m is a 
smooth function and approximate m(x) by averaging the Y-observations in a 
neighbourhood of x:
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where )(xWni is the weight that the i-th observation gives to the point x. Typically these 
weights depend on some smoothing parameter h and some kernel function K. The 
choice of the smoothing parameter is crucial since it controls the amount of smoothing 
used in the estimation. Among the great deal of nonparametric estimators for m we 
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mention the Nadaraya-Watson estimator (see [18]), Priestley-Chao estimator (see [21]), 
Gasser-Müller estimator (see [16]) and the local polynomial estimator (see [9]). 

Since our aim is to estimate the regression function as well as its first two 
derivatives it is very natural to use local polynomial estimators, which additionally have 
good properties for estimating at the boundary. 

1.3. Local polynomial estimator 
The local polynomial estimator was introduced by Stone [28] and Cleveland [5] 

but it has not been extensively used until the ninenties, after publication of the papers by 
Ruppert and Wand [23] and Fan and Gijbels [9]. 

The idea behind the local polynomial regression estimator is to use weighted 
least squares to perform a local fit to a polynomial of degree specified in advance. More 
precisely the regression function (j=0) and its derivatives  (j=1,2,…,p) at a given point x 
are estimated by 

)(!)(ˆ )( xjxm j
j β= j = 0,1,2,…,p,                                                                       (3) 
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and ( ){ }xxW i −= hKdiag  is the n×n matrix that contains the weights that every datum 
in the sample gives to the point of interest. An explicit expression for the vector  is: 

( ) .1 WYXWXX tt −=β                                                                                          (5) 

1.3.1. Practical choice of the kernel and the order of the local polynomial 
In order to use the local polynomial estimator we need to choose the kernel 

function, K, the degree of the polynomial, p, and the bandwidth, h. The choice of K and 
p is of secondary importance with respect to the smoothing parameter h. Fan and 
Gijbels [10] recommend using the Epanechnikov kernel, since it minimizes the 
asymptotic mean squared error for an optimal bandwidth. They also suggest to choose p
as any integer larger than the order of derivative of interest, j, such that p-j is odd. For 
instance we could take p=1 for estimating the regression function itself, while p=3 could 
be used for estimating the second derivative of the regression function. In general, based 
on the bias decreasing and variance increasing with p, an advisable practical choice is to 
set p-j=1,3.

Some drawback of the local polynomial estimator is that its conditional variance 
tends to infinity when the neighbourhood of the interest point (using a compact support 
kernel) contains no more than p+3 data points. This problem, pointed out by Seifert and 
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Gasser [26], can be solved performing a local increasing of the smoothing parameter 
whenever it occurs. 

For dependent data, as those we are dealing with, the classical local polynomial 
regression estimator can still be used, although its asymptotic mean squared error 
depends now on the sum of covariances of the error process. An alternative approach 
has been proposed by Francisco and Vilar-Fernández [13], by using generalized least 
squares ideas to account for the dependence structure. 

1.3.2. Bandwidth selection criteria 
Typical bandwidth selection procedures are based on minimizing the empirical 

version of some criterion that accounts for the error between the nonparametric -th
derivative regression estimation and its underlying counterpart. For instance, using the 
mean squared error at a given point x:

( )2)()(ˆ)( xmxmEhMSE hx −= ,                                                                            (6) 

we obtain local optimal bandwidths. Global criteria, as the MISE, can be obtained by 
considering global distances between the estimator and the true curve. Most of the times 
these measures can be written as integrated versions of the some local criterion (Eq. 6). 
For instance the mean integrated squared error can be written as: 

( ) ,)()()(ˆ)( 2−= dxxwxmxmEhMISE hx                                                             (7) 
for some weight function w. This measure can be easily decomposed as a sum of the 
integrated variance and the integrated squared bias. 

Under independence in the error structure and assuming that +p is odd, Fan and 
Gijbels [10] give asymptotic expressions for the bias and the variance of the local 
polynomial estimator: 
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where, in (8), f is the design density and the values B  and V  depend on the kernel 
function (see Ruppert, Sheather and Wand [24] for details). Using the smoothing 
parameter minimizing the asymptotic expression of MISE can be easily found to be: 
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where the constants )(, KC pυ  can be computed as follows: 
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In the dependent error case similar formulas can be obtained based on parallel 

expressions to bias and varianza (Eq. 8). For the asymptotic mean integrated squared 
error (see Francisco and Vilar-Fernández [13] for details) the following expression 
gives some approximation of a reasonable criterion to select h. Therefore, an 
asymptotically optimal bandwidth (in the sense of AMSE) to estimate the -th 
derivative of the regression function is: 

( )

( )
32

1

21,,

32
1

21,,

)()()(
)()(

)()()(
)()(

+

+

+

+

=

=

p

ppGopt

p

ppLopt

dxxfxwxmn
cKCh

xfxwxmn
cKCh

ε

ε

υ

υ

                                             (10) 

where = )()( kcc ε  and c(k) is the lag k autocovariance of the errors iε .

The previous formulas are valid if +p is odd. If +p is even the expressions for 
the optimal bandwidths are 
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1.3.3. Two-stage plug-in bandwidth selector 
Some of the most popular procedures for bandwidth selection in nonparametric 

curve estimation are the plug-in methods. These methods estimate the minimizer of 
either the AMSE or AMISE. For the local polynomial estimator under dependence, the 
plug-in local and global bandwidth selectors are some estimators of expressions (Eq. 10 
and 11). Therefore some estimators of )(εc , the sum of autocovariances, and the (p+1)-
th derivative of the regression function are needed. 

Estimating the autocovariances sum 

Although )(εc can be estimated through the spectral density of the iε  our 
approach will be somewhat simpler. Let us assume that the iε  follow an autoregressive 
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process of order 1 (AR(1)) with first order autocorrelation . Then )(εc can be written 
in terms of the error variance and the autocorrelation coefficient: 
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Pilot bandwidths choice 
The plug-in method requires to estimate the unknown quantities in (Eq. 10 and 

11) and by some values LPIh ,  and GPIh , . For a fixed integer, , the method is used to 

estimate υm  using local polynomials of degree p. Estimation of )(εc , already 
considered in the previous subsection, requires the choice of a preliminary bandwidth 

1h , needed to compute the residuals.  
Plug-in bandwidth selectors also need to estimate the (p+1)-th derivative of the 

regression function, m. This may be done, once more, by means of local polynomial 
fitting for estimating the  derivative ( =p+1) using local polynomials of degree p+2. 
This requires the choice of a preliminary pilot bandwidth, )1(

2h . To determine some 
automatic method for selecting )1(

2h  we face similar problems when looking at the 
expression for the optimal (local or global) smoothing parameter in this context. More 
specifically, there are two unknown terms to be estimated: )(εc  already considered 
above, and the (p+1)-th derivative of m. The idea behind the two-stage plug-in method 
is to propose some prepilot bandwidth, )0(

2h , by looking at the expression for the 
asymptotically optimal bandwidth for this new problem: 

72
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where  is some estimator of the scale and 2C  is some constant that does not depend on 
the data. Since in the thermogravimetric experiments the design is equispaced, or nearly 
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equispaced, we made the choice )1/()( 1 −−= nxxnδ . The value of 2C  has been 
adjusted by some heuristic approach to be detailed later. 

Parallel problems appear when selecting 1h . In practice we used a local linear 
estimator and a single-stage plug-in procedure leading to: 

5
1

11

−
= nCh δ                                                                                                         (15) 

 for some constant 1C  that has been obtained by heuristic arguments. 
In order to obtain some practical value for the constants 1C  and 2C we use a 

calibration sample of a DSC curve. This sample of n=950 equally spaced data 
corresponds to calcium oxalate monohydrate. Using the initial bandwidth 1h =6 to 
compute the residuals for estimating the autocovariances sum, we have selected several 
possible values for the prepilot bandwidth )0(

2h for which the final bandwidths of the 
two-stage plug-in procedure have been computed. The results are collected in Table 1. 
This table shows how the sensitivity of PIh  to the choice of the prepilot bandwidth, 

)0(
2h , is very low. When estimating the regression function, a factor of 10 in the prepilot 

bandwidth gives a factor of 4 in the pilot bandwidth and finally a factor of 1.5 in the 
plug-in bandwidth.

For estimating the first and second derivatives, the plug-in bandwidth selector is 
rather stable with respect to the choice of the prepilot bandwidth, although not so much 
as for estimating m. Direct inspection of the results obtained (not reported here) show 
that 1h =6 is a reasonable choice. On the other hand, the values )0(

2h =30, for m, )0(
2h =28,

for m  and )0(
2h =30, for m  seem to be reasonable choices for the prepilot bandwidth 

)0(
2h

Table 1. Pilot and final bandwidths of the two stage global plug-in procedure for 
estimating m, =0,1,2.

m m 'm 'm ''m ''m
)0(

2h )1(
2h GPIh ,

)1(
2h GPIh ,

)1(
2h GPIh ,

3,2 == pυ 1,0 == pυ 4,3 == pυ 4,3 == pυ 5,4 == pυ 3,2 == pυ
10 6.860839 1.01116 4.56602 2.6356 4.3589 2.7163 
20 9.592215 1.07833 7.61298 3.2715 9.0604 4.6653 
30 11.928195 1.13428 9.67675 3.5414 11.9025 5.3950 
40 14.038808 1.18431 11.5646 3.7621 13.7104 5.7591 
50 16.379445 1.23940 12.8962 3.9113 16.0595 6.2005 
100 26.760712 1.47904 22.5909 4.9377 28.3775 8.3594 

Having these bandwidths in mind Table 2 contains the proposed choices for the 
pilot bandwidth 1h  and the prepilot bandwidth )0(

2h .



272 RICARDO CAO AND SALVADOR NAYA

Table 2. Values suggested for 1C , 2C , 1h  and )0(
2h  for estimating υm . 

 0 1 2 
1C 24 24 24 

2C 64 52 51 

1h
5
1

1

−
nC δ 5

1

1

−
nC δ 5

1
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−
nC δ

)0(
2h 9
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−
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2

−
nC δ 13

1

2

−
nC δ

1.3.4. Computational issues 
One of the problems that may appear in practice when using the local 

polynomial estimator is the fact that the matrix WXX t  is singular or close to be 
singular. This occurs very often when the kernel has compact support, the design is 
equispaced and the bandwidth is small. Let consider a fixed point, 0x , where the 
estimation will be performed using a bandwidth h. Assume that the support of the kernel 
is [-1,1], then only the ix 's falling in the interval [ 0x -h, 0x  +h] will be used to obtain the 
value of the estimator at 0x . Seifert and Gasser [26] have studied the case 
det( WXX t )=0 as well as conditions for finite variance of the local polynomial estimator 
reaching to the following conclusions. 

1. Estimation at the point 0x  requires, at least, p+1 points in the interval [ 0x -h,

0x  +h]. This condition is more and more restrictive as p increases. 
2. In order to warranty that the variance of the estimator is finite, at least p+3

data points should fall within the interval [ 0x -h, 0x  +h].
For both reasons whenever the final two-stage plug-in bandwidth or any 

auxiliary bandwidth is not large enough such that the interval interval [ 0x -h, 0x  +h]
contains p+3 points, the bandwidth is increased up to a value that meets this condition. 

Along this unit, both the plug-in local and global bandwidth selectors have been 
considered. However, sometimes the global bandwidth may suffer of numerical 
problems, as those mentioned above, in the boundary of the support. In such cases, the 
global bandwidth has turned to be a local one in the boundary. In principle, the local 
plug-in bandwidth seems to be a more accurate smoothing parameter for estimating the 
regression derivatives in a grid of points. However it is clear that the algorithm becomes 
computationally much more time consuming. 

It is evident that using a single smoothing parameter instead of a different one 
for every point in a grid makes a difference in terms of computations. However, there 
are some aspects that make the global bandwidth algorithm even much more efficient 
for an equispaced design. In that case, the matrix ( ) 1−WXX t does not change when the 
estimator is evaluated at any design point, x, such that 0x <x-h and x+h< nx . The reason 
is that the distances between x and the ix 's falling within the interval [x-h,x+h] do not 

change when ( )hxhxx n −+∈ ,1 . This means that the matrix ( ) 1−WXX t  used to compute 
the local polynomial estimator at ix  does not change for i= , +1,…,u-1,u where  
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[ ] 2/ += δhl  and [ ] 1/ −−= δhnu . For those i outside this range the matrix ( ) 1−WXX t

has to be explicitly computed at every different point. 
In order to save calculations for computing the estimators at the point pxx = , let 

us write the (i,j)-th element of the matrix ( )WXX t :
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It is clear that these implementation reduces the number of calculations for 

computing the estimator at a given point from O(n) to O((h/ )). This reduction is 
specially important for moderate bandwidths. In practice, for many of the 
thermogravimetric data sets we used, the computer time could be reduced by a factor of 
10 to 20. 

1.4. Conclusions
In this section we include the results obtained using the local polynomial 

estimator with two-stage plug-in bandwidth with covariances sum estimated for a 
sample of calcium oxalate. For comparison purposes we show the results obtained, for 
the same sample, using one of the smoothing routines incorporated to one of the 
standard software packages in calorimetry, the RSI Orchestrator. 

This adaptive smoothing method was thought for TGA experiments at constant 
heating rate, but should perform identically well in curves from other thermal analysis 
experiments where the explanatory variable is time (for cases of constant heating rate or 
isothermal experiments) or temperature (in the case of constant heating rate). 
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Figure  2. The automatic smoothing obtained using the two-stage global plug-in 
bandwidth.

2. Kinetic study using the logistic model regression 
2.1. Introduction  

TG is widely used to determine kinetic parameters for polymer decomposition. 
Both isothermal and dynamic heating experiments can be used to evaluate kinetic 
parameters. Each has advantages and disadvantages. In dynamic thermogravimetric 
analysis (TGA), the mass of the sample is continuously monitored while the sample is 
subjected, in a controlled atmosphere, to a thermal program, where the temperature is 
ramped at a constant heating rate. Ideally, a single thermogram has been said to be 
equivalent to a very large family of comparable isothermal volatilization curves and, as 
such, constitutes a rich source of kinetic data for volatilization [2]. 

The classical way to study the kinetics of these processes by TGA starts from 
the assumption that the weight loss follows the Arrhenius equation: 

−⋅=
RT
EATk exp)(                                                                                                 (17) 

where k, the reaction rate depends on the temperature, T. E, the activation energy may 
be considered constant in each degradation process (that appears as a clear step in the 
mass trace) since the degradation mechanism is supposed not to change in a narrow 
range of temperatures. A is another constant that, in the case that the kinetics follow a 
reaction order model, may be calculated from n

tmA = , where n is the reaction order. 

2.2. Other models 
Many other models start from the Arrhenius equation, modified by Sesták-

Berggren [3]:  

( ) ( )[ ]pnmk
dt
d αααα −−−= 1ln1)(

where n, m and p are constants. Two of the most used derivative models based in that 
equation are Freeman and Carroll [14], and Friedman [15]. 
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There are also some integrable models, like Ozawa [19], Flyn [8] and the one 
proposed by Popescu, C. [20], that allows for calculation of n and A from TGA data 
obtained at several heating rates. The method proposed by Conesa [6] considers that 
some organic fractions of the sample decompose independently giving an organic 
residue and an inorganic fraction. This model gave good correlation with the weight 
loss derivative data for different rubbers [10]. The method proposed by Carrasco F. and 
Costa J. [3] has been successfully applied to the thermal dagradation of polystyron. 
Although the application of these models to specific cases has been checked by detailed 
statistical studies, all of them are based on the Arrhenius equation and can not be 
generally applied to material degradations following very different kinetics. Moreover, 
its methodology is sometimes unease. 

It has been said for methods based on one simple heating rate that quite different 
reaction models fit the data equally well (from the statistical point of view) whereas the 
numerical values of the corresponding Arrhenius parameters crucially differ (Vyazovkin 
[29]). Its physical meaning is obscure and no predictions can be done outside the range 
of experimental temperature (Vyazovkin). Other authors deemed the Arrhenius model 
inadecuate for the calculation of kinetic parameters from non-isothermal 
thermogravimetric curves [13]. Moreover, arising from the Kinetics Workshop, held 
during the 11th International Congress on Thermal Analysis and Calorimetry (ICTAC) 
in Philadelphia, USA, in 1996, sets of kinetic data were prepared and distributed to 
volunteer participants for their analysis using any, or several, methods they wished. The 
results obtained by each researcher were different than the ones obtained by the others, 
Brown, M. et al. [2]. All of this confirms our believing that the existing models cannot 
be generally applied and sometimes it is not clear which one is the best suitable to each 
case. That is the reason to propose an alternative model that will be described in the 
following sections.

2.3. Logistic model proposed 
This model proposes to decompose the TGA trace in several logistic functions, 

assuming that each of the functions represents the degradation kinetics of each 
component of the sample. Even in the case of homogeneous materials, it is supposed 
that several different structures may exist, each one following its specific kinetics that 
may be different from the others. In this model, it is assumed that a TGA trace may be 
fitted by a combination of logistic functions: 
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                                                                                                  (17) 

where ki ,,2,1=  represent different components from the weight loss process point of 
view, not necessarily different chemical compounds. 

In order to modelise the weight loss along the time, it is supposed that the 
candidate functions to estimate the weight along the time ( ))(, tYt i have to verify that 
when ∞→t the response )(tYi  should tend to 0. It implies that the ib  parameters have 
to be negative. When 0=t , the )(tYi  function has to tend to the mass of the original 
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sample and the )(tYi  functions have to tend to the mass of each component in the 
original sample, that is, the )(twi constants correspond to the weight loss of the sample 
in each weight loss process. These weight loss processes generally appear as clear steps 
of the TGA trace. 

The function )(tY that represents the overall TGA trace may be expressed as a 
sum of )(tYi  functions like this: 

( )tbafwtY iiii +=)(                                                                                                        
The constansts ia  and ib  are calculated taking into account that the ib  values 

represent the slope of the weight steps while the change of scale comes from the ii ba /
rates. The iw  values mean the weight of each component in the sample. 
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Figure  3. Function obtained from the sum of 4 simple logistic functions. 
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2.3.1. Kinetic study using the logistic model 
Once the regression function of the TGA trace was obtained, it is inmediate to 

obtain derivatives. Thus, for example, the first derivative of the TGA trace (DTG), 
which is used by many kinetic models since it represents the weight loss rate along the 
time, may be expressed by the following equation (18): 
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                                                                                       (18) 
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Analyzing, for example, its first component, i=1,  
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Figure  4. The plots of the f function and its first and second derivatives are shown. 

Other possible interpretation of the logistic parameters is obtained aplying a 
change of scale and position. It improves equation (18) since the new values show the 
weight loss rate ib'  and the exact position in the time axis of the point corresponding to 
the half weight loss of each step ia' : 
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Anyway it simply consists in a linear transformation of the new parameters that 
may be obtained indistinctly. 
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Figure 5. The overall function, obtained from the sum of the 4 functions previously 
described (dashed curve) and the first (A) and second (B) derivatives. 

2.3.2. Logistic parametric fitting 
For the fitting of data to a logistic function it is needed the calculation of values 

for the equation parameters. This task is usually performed by using a statistical 
software. In this case, the non linear regression and derivatives packages of the S-plus 
software.

The algorithm used for the non linear regression is: 
nixmy iii ,,2,1,),( =+= εθ

A

B
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where the response variable and the independent variable values are represented by iy
and ix , respectively. θ  is the parameters vector, that is estimated by least squares and 

iε  are the errors, with normal distribution, mean zero and constant variance.  
The residuals of the model are defined as: 

nixmye iii ,,2,1),;()( =−= θθ
The parameters of the model were estimated by the non linear least squares 

method. The fundamentals of this method were described by Gay, D. M. [14] 
The Levenberg-Marquart method routine for generation of the approximation 

sequence to the minimum point, based in the “trust region” algorithm, was used for the 
calculation of the parameter values that minimize that sum. This algorithm was 
discussed by Chambers, J. M., and Hastie, T. J. [4] . Its application to the computer 
calculation was described Dennis, J. E. et al. [7]. 

One of the problems that appear when fitting is to choose some statarting points 
for the different parameters to estimate. To do this, one possibility consists in, by 
observation of the TGA trace, to try to estimate the inflexion. Since this method is not 
easy and requires previous expertise, we propose a method based in the idea of 
supposing that the data follow a logistic regression (Equation 3). So it is possible to fit 
the logit wtY /)(  function to a straight line which y origin is ia  and which slope is ib .
The reason for this linear fitting is explained as follows: 
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2.3.3. Application of the logistic regression to different cases 
In order to validate the model in extreme situations, some TGA experiments 

exhibiting very different behaviours were considered. The first one corresponds to the 
hexahydrophtalic anhydride that underwent a typical evaporative process. It consisted in 
a single weight loss step with maximum weight loss rate at the end of the step [18]. The 
second one corresponds to the analysis of wood from Eucaliptus globulus. The wood is 
a very complex material where the main components are cellulose and lignin. Its 
thermal behaviour is quite complex and overlapped processes seem to be involved. 
Apparently, it decomposes in four main steps. Other complex cases considered were 
wood from Cupressus sempervirens and plasticized poly-(vinyl chloride). 

Hexahydrophtalic anhydride case 
In the case of a hexahydrophtalic anhydride experiment, since there is only one 

weight loss step, only one logistic function is needed to modelise the TGA trace. In 
other words, the equation that describes the overall process is  

( )btawftY +=)(
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The lineal fitting of Equation (7) to the TGA data, by least squares, gives the 
values for the a and b parameters, resulting the following expression that describes the 
behaviour of the hexahydrophtalic anhydride in that experiment: 
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Figure  6. TGA trace obtained from a hexahydrophtalic anhydride experiment. 

The case of cupressus wood 
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Figure  7. TGA plot obtained from a cupressus wood sample. 
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Linear fitting of different parts of the curve were performed in order to find the 
parameter values: 

In order to do this, the logit(y) function is plotted versus x and a line is fitted by 
the S-Plus software:
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Figure  8. Plot of the logit (y) function versus time in the range from  0 to 700 s. 

The fitting was performed in two ranges of data. The first one is [0:700]. Since 
the neighbour values to 0 and 700 result in log 0, ten points will be suppresses in each 
end of the range. A line was fitted between 10 and 690, resulting in w1=8.5, a1=5.12, 
b1=0.012. These values were used to initiate the model. 

The next range [700:1640], that includes a step, was operated in the same way, 
resulting the following values a2=9.175879, b2=-0.004551135 with 1631 total degrees 
of freedom and residual standard error= 0.7296343 
Finally, the model was fitted with these starting values. 

Parameter Value Std. Error t value 

w1 10.53520 0.0995712 105.8060 

a1   3.79104 0.1033680 36.6750 

b1 -0.00765 0.0001785 42.8834 

w2 89.90570 0.0350401 2565.7900 

a2 12.63650  0.0331148 381.5970 

b2 -0.00571  0.0000151 378.0200 
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Fitting for the eucaliptus experiment 
In this case four logistic components were assumed: 
In this case, the fitting to obtain the starting values was performed in four 

ranges, giving the following values for the parameters of the model: 

Parameter value Std. Error t value 

w1 13.04790  0.0579730  225.0690 

a1 5.06769  0.0766370   66.1258 

b1 -0.01132  0.0001576   71.8585 

w2 41.09420  0.1888330  217.6220 

a2 15.45890  0.0789307  195.8550 

b2 -0.00851  0.0000429  198.0830 

w3 22.53420  0.1765470  127.6390 

a3 162.17000  3.3659800   48.1791 

b3 -0.08569  0.0017780   48.1930 

w4 23.19600  0.0503995  460.2440 

a4 100.28700  1.2685400   79.0574 

b4 -0.04103  0.0005184   79.1501 
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Figure  9. Plot of the original TGA trace compared to the estimated function. 
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Fitting in the case of PVC 
In this case the fitting to obtain the starting values was performed in four ranges, 

resulting in the following equation: 
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Figure  10.  Fitting in the case of PVC. 
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2.3.4. Physical meaning of the parameters 

Once the fittings were performed in different cases it is clear that the )(twi  values 
represent the magnitude of each weight loss process. The ib  parameters have the 
meaning of sample volatilization rate, while the ia  value represents the scale. 

2.4. Conclusions
1. This method allows for including at once the overall trace from a TGA experiment, 

while the classical methods can only be applied to a single step each time.  
2. Overlapped degradation processes can be explained by this method. Since the 

existing models were thought to explain single processes, they generally fit very 
badly to overlapped processes. 

3. It explains the thermal degradation of each component of the sample by a single 
function that may be easily understood from the physical point of view. 

4. This model shows the contribution of each single degradation process to the overall 
process. It is very useful in order to improve thermal stability of materials. 

5. It allows for measuring the statistical goodness of the fitting by signification 
contrast.

6. It allows applying classical kinetic models, like Arrhenius, to each of the single 
degradation functions. It is useful in order to compare with other materials in 
specific cases where some models proved to work well. Permite, para su 
comparación con materiales ya estudiados, la aplicación de modelos cinéticos 
clásicos del tipo Arrhenius a cada una de las funciones de degradación individuales. 
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7. It is easier to apply the classical kinetic models on the functions obtained by our 
method than on the row TGA data, since the row data contents noise that affect the 
derivative and integral estimations. In whose classical methods are based. 

8. The asymptoticity is perfectly reproduced at the beginning and end of each 
degradative process. 

3. Functional non-parametric model for materials discrimination by thermal 
analysis

3.1. Introduction 
An important topic in Material Science is the classification of materials. The 

information obtained by thermo gravimetric analysis can be used to this aim. In this 
work, functional regression by nonparametric methods was used for the classification of 
different polymers. The method can be extended to any kind of material that can be 
analyzed by TGA. 

Pattern recognition techniques deal with classification of observations in a finite 
number of classes (Watanabe, [30]). 

It can be done by several parametric models, such as the discriminant analysis. 
Nevertheless, in the case of curves, the problem is functional and non parametric 
models are more suitable, since they take into account all the information from the 
sample (Ramsay and Silverman, [22]). 

The method of classification proposed in this work is based in functional 
regression by nonparametric methods. Several PVC and wood samples were classified 
by this method. Finaly, many simulated experiments were used to evaluate the accuracy 
of the method. 

3.2. Nonparametric classification method 
The nonparametric methods do not require previous estimation of any 

parameter. In this case, the kernel method was chosen. It is a nonparametric 
discrimination method that has been proved to work well in many cases (Ferraty and 
Vieu, [11]). 

The nonparametric Bayes clasification rule was used to classify the sample. It 
assigns a future observation to the highest probability class. 

The different TGA curves, iX , were taken as explanatory variable iX , and the 
classes a sample of the response iY .

Considering a new TGA curve, obtained from a material to classify, the 
estimator of the posterior probability is given by: 
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Equation (20) is a versión of the Nadaraya-Watson estimator reported by Ferraty 
and Vieu, [11]. 

The 1L  norm will be used as distance between curves and h is the bandwidth, or 
smoothing parameter. 

The classification rule is calculated from the estimator obtained in equation (20). 
This rule minimizes the probability of incorrect classification, that is: 
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where )(ˆ j
hr  represents the estimation of the probability of the sample belonging to the j

class.
The parameter smoothing h will be chosen that minimizes the probability of 

misclassifying a future observation. This bandwidth parameter will be taken as CVh ,
that minimizes the following cross-validation function: 
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where i
hd −  is the classification rule, built up without the i-th observation. 

Finally, given a new sample and its TGA trace, denoted as x, the distances from 
this trace to the others will be calculated and )(ˆ j

hr  will be estimated for each class of 
material { }Gj ,,2,1,0∈ . The material will be assigned to the k class that maximizes 

).(ˆ )( xr j
h

3.3. Application to PVC samples 
The method of classification proposed was applied to a sample of 16 PVC items, 

plasticized in different degrees. The sample weight was about 35 mg in all the cases. 
The TGA experiment consisted in a heating ramp from 25 to 600 ºC at 10 K/min 
followed by an isothermal step at 600 ºC for 15 minutes. A 50 ml/min purge of air was 
kept along the experiment. 
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Figure  11. Overlay of sixteen TGA curves obtained from PVC. 
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Figure  12.  Overlay of two TGA traces, obtained from different samples of PVC. 

Each sample was classified by keeping itself excluded from the reference 
population. A 99.4 % of correct classification was obtained by the application of the 
method proposed to the 16 PVC samples. It can be seen in Figure 13, which plots the 
cross-validation function. 

3.4. Simulated experiments 
A simulation study was performed in order to check the method. Three kinds of 

wood were chosen, since these materials are very much alike in composition and 
thermal behaviour. It is not easy to classify this kind of materials only by TGA 
experiments. From actual experiments of the three samples, two sets of experiments 
were simulated by a logistic mixture model. The simulation was performed for each of 
the three groups, using the function: 
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The parameters for the model were simulated following a rk -dimension Normal 
distribution. Two different situations were considered: parameters being independent 
and dependent. 

h

23535.2

13990.1

9785.52

7915.07

7155.75

6786.28

6611.75

6508.00

6492.98

6473.09

6432.00

6422.39

6419.15

6415.71

5050.93

197.75

8.39
1.00

C
V(

h)

1.2

1.0

.8

.6

.4

.2

0.0

Figure  13. Plot of the cross-validation function against the smoothing parameter. 
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The first set of simulated experiments consisted of 90 TGA traces, whose 
probability to belong to each of the three groups was 1/3. The cross-validation 
bandwidth and the minimum of the cross-validation function were obtained from that 
simulated traces. 

Then, a second set of 1000 traces was simulated, using the same probability than 
in the first set. Each curve was classified by the estimated non parametric rule of Bayes. 
The result of the classification was compared with the group from wich the trace was 
simulated. The percent of the 1000 traces that were correctly classified was taken as an 
estimation of the probability of correct classification. The results show that the lower 
the varianze of the model the langer the percent of correct classification, reaching 92 to 
95 % correct classification for varianzes with values of 1/8 of the original varianze. 
Generally, the percent of correct classification slightly increases in case of dependent 
data.
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