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Manuel Francisco González Penedo for letting me have the opportunity to do this

PhD thesis. Thanks for all the help, suggestions and supervision during these years

that have made this work possible.

I especially thank my colleagues Marcos, Noelia, José, Vero, Cas, Marta, Bea
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Preface

Object localization and segmentation are tasks that have been growing in relevance

in the last years. The automatic detection and extraction of possible objects of

interest is a important step for a higher level reasoning, like the detection of tumors

or other pathologies in medical imaging or the detection of the region of interest in

fingerprints or faces for biometrics.

There are many different ways of facing this problem in the literature, but in

this Phd thesis we selected a particular deformable model called Topological Active

Model. This model was especially designed for 2D and 3D image segmentation.

It integrates features of region-based and boundary-based segmentation methods

in order to perform a correct segmentation and, this way, fit the contours of the

objects and model their inner topology. The main problem is the optimization of

the structure to obtain the best possible segmentation. Previous works proposed a

greedy local search method that presented different drawbacks, especially with noisy

images, situation quite often in image segmentation.

This Phd thesis proposes optimization approaches based on global search meth-

ods like evolutionary algorithms, with the aim of overcoming the main drawbacks of

the previous local search method, especially with noisy images or rough contours.

Moreover, hybrid approaches between the evolutionary methods and the greedy local

search were developed to integrate the advantages of both approaches. Additionally,

the hybrid combination allows the possibility of topological changes in the segmen-

tation model, providing flexibility to the mesh to perform better adjustments in

complex surfaces or also to detect several objects in the scene.

The suitability and accuracy of the proposed model and segmentation methodolo-

gies were tested in both synthetic and real images with different levels of complexity.

Finally, the proposed evolutionary approaches were applied to a specific task in a

real domain: The localization and extraction of the optic disc in retinal images.
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Chapter 1

Introduction

In the recent years, the automatic processing of 2D and 3D image datasets became

a relevant task in the way the datasets to be processed and analyzed were extremely

increased in many professional areas. For example, in the medical domain, novelty

technologies such as Computed Tomography (CT), Magnetic Resonance Imaging

(MRI), or more specifically in ophthalmology, Optic Coherence Tomography (OCT)

or retinal images, provide new information and points of view of real structures of

the patient. All this information has to be processed and analyzed by the specialists

for medical treatment. Figure 1.1 shows some examples of the different medical

images mentioned.

Despite the fact that it is a relatively recent area, the digital image processing

has demonstrated its great usefulness in the automatic treatment of image datasets.

Some of the tasks involved can be, for instance, the morphological image processing,

the image recognition or the interpretation systems. Thus, digital image processing

can help the specialists to process large datasets, replacing manual procedures which

(a) (b) (c) (d)

Figure 1.1: Examples of medical images. (a) CT slice. (b) MRI scan: a short axis mid

ventricular cardiac magnetic resonance for heart analysis. (c) OCT image. (d) Retinal

image.

1



2 1. Introduction

require long time.

The relevance acquired by the different methods of digital image processing is

due to two main areas of application:

Improvement in the image characteristics for human comprehension The

aim is the improvement of the quality of the image to be analyzed by a spe-

cialist. This kind of techniques are used in different areas, like communication

systems or military intelligence.

Processing of the data in a scene The aim is the autonomous interpretation by

the machine. That is, the machine can understand what is processing as input

information, and to extract the relevant information in the images of interest

that corresponds with a real scene and give it a meaning.

Therefore, for this second issue, computer vision techniques can be applied in

order to extract and analyze the features of interest in the scene. This issue needs

a procedure of different levels of complexity. This implies:

• Detection and segmentation of the objects or regions of interest in the scene.

• Extraction of the characteristics or topological and morphological parameters

of these objects or regions.

• Identification and classification of the objects or regions.

• Image understanding of the scene once the objects or regions have been iden-

tified.

In this sense, image segmentation and object extraction are crucial tasks in the

image understanding process in several domains. One of the most important is

medical imaging, where the image understanding is a relevant issue for different

tasks: computer-aided diagnosis, surgery planning and simulation or radiotherapy

planning, among others. However, these processes normally are complicated because

the images are not as ideal as desired. Most of the times, the machines capture the

images of interest not perfectly, acquiring the data with different artifacts or noise,

making the understanding process more difficult. For that reason, as a crucial task,

the segmentation process needs to be as robust as possible, under any possible

circumstance.

This thesis proposes new methodologies for object extraction and segmentation,

being the main advantage the robustness of the methods and techniques proposed.

We used a deformable model called Topological Active Model for the segmentation
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and we applied different evolutionary methods for its optimization. This chapter

details a general review about the different issues related with such tasks, beginning

with an explanation about image segmentation, following with the main principles

and works related with deformable models and ending, more specifically, with the

related work in the literature that used evolutionary computation to deformable

models.

1.1 Image segmentation

As we described before, one of the first steps in the process of image understanding

consists of segmenting the image of interest. This segmentation subdivides the image

in different parts or regions that constitute the entire scene. The level of subdivision

depends on the desired characteristics to be analyzed.

The efficiency of the segmentation is crucial for a process of image understanding,

because it is the task responsible of extracting the regions of interest. Due to the

data size and the possible variability of the features, the different levels of noise in

the images, sampling artifacts or spatial aliasing that can sometimes cause blurred

or disconnected boundaries, under all these possible situations the segmentation can

be a challenging problem. For that reason, as we explained before, the segmentation

technique has to be as much robust as possible to extract the desired objects or

regions as better as possible, depending on that the success of any computer vision

technique.

The principles of segmentation have their origin in the psychological works of

the Gestalt [59], that studied the preferences of the human beings in the organi-

zation of groups of shapes in the vision field. These principles indicated that the

human being has some specific preferences in the way they organize the perception,

based on certain characteristics like proximity (objects near among them tend to

be grouped together), similarity (objects that are similar among them tend to be

grouped together) and continuity (objects that conform a close entity tend to be

grouped together). This is the way the perception of the human being works. How-

ever, these principles are highly difficult to implement in a machine process and

different authors in the literature had to develop many different approximations to

perform the segmentation.

There are plenty of methodologies developed, based on different principles, that

can be applied to 2D and 3D image segmentation. All the methodologies can be

organized in different groups depending on different characteristics. For example,

based on the image characteristics that are used to detect regions or objects we have
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[38]:

Segmentation based on regions The main idea consists of dividing the entire

image in different regions, grouping the pixels that belong to one object to-

gether. The criteria to group the different points is normally a similarity

measure based on properties of a given point and its neighborhood. Examples

are clustering methods or region-growing methods.

One of the most used methodologies regarding this category are the graph

cuts methods [15]. The main idea consists of formulating the segmentation

problem as a energy minimization. Representing our problem as a graph, the

energy minimization problem can be reduced to instances of the maximum

flow problem in the given graph, defining the minimal cut of the graph as well

(as detailed by the max-flow min-cut theorem [75]), that represents the best

contour of the object to be segmented. There are different versions based on

graph cuts, becoming very famous segmentation methods.

Segmentation based on contours or edges They are normally based on the

principle that a change in intensity (an edge) points out the separation of

two different objects. Thus, the detection of different objects or regions uses

the information of edges in the image of interest. An example of this kind of

methods are edge detectors. One of the most famous techniques under this

category are the level sets method. It is explained later in Subsection 1.2.2.

There are different organizations based on different characteristics. Additionally

to the previous categorization, one of the simplest and most used classifications is

based on the complexity of the method, having that way low-level and high-level

techniques [104, 76]. The main principles are:

Low-level techniques These methods are based on simple characteristics of the

image, like levels of intensity or the extraction or edges. The simplest are the

thresholding methods. They basically turn a grey-scale image into a binary one

using a threshold value. There are other methods in this category like histogram

based methods or classifiers. The main characteristics of these methods are their

simplicity and the efficiency, but they have many problems in the achievement of

accurate results in complex images, like noisy images, objects with fuzzy contours

or discontinuities, etc.

High-level techniques These methods imply more complex procedures, inte-

grating different characteristics in the images to extract the objects. Moreover,



1.2. Deformable models 5

they normally extract a model related with the objects or regions of interest. As

they integrate different features to perform the localization and segmentation, these

methods are more robust to the possible complications in the segmentation process

and normally obtain better results than the low-level techniques. They also provide

structural information of the objects of interest. However, these methods are pe-

nalized in efficiency, normally having higher complexities than the low-level ones.

Under this category we can find segmentation techniques like deformable models

[51], Bayesian methods [79] or atlas-guided techniques [4]. These methods are nor-

mally more suitable for image segmentation because they provide better results in

complex domains and also provide topological and morphological information about

the segmentations achieved.

Regarding image segmentation, one of the most used paradigms is deformable

models, where is enclosed the proposed work is enclosed. In the next section, we will

explain the main basis and related work about the deformable models field.

1.2 Deformable models

One of the most used high-level technique is deformable models. Given the limi-

tations of the low-level techniques, Kass et al. proposed a deformable contour in

2D [51] that was also extended to 3D by Terzopoulos et al. [97], providing a global

solution to the segmentation problem based on the localization of contours. This

new way of approaching the image segmentation task implied an improvement with

respect to the classic approaches previously defined. Thus, deformable models pre-

sented a better way of dealing with the difficult task of segmentation in images with

noise or sampling artifacts, or the presence of objects with fuzzy or discontinuous

contours. In addition to that, the aim of the segmentation process is not only the

extraction of the points that belong to a given object or region, but also to extract

its relevant characteristics. Thus, deformable models extract the boundary of the

objects and also provide their main features, reconstructing a representation of the

structure.

They have been used for several different tasks, like pattern recognition [2, 30],

computer animation [95], geometric modelling [47], surgery simulation [29], tracking

[13] or image segmentation [50, 67, 108], among others. One of the specific domains

where they were widely used is the medical image analysis. Some surveys detail the

work related in this field [63, 85].

Deformable models consist of curves, surfaces or solids defined in a given domain

(in our case in a given image or set of images). These models are deformed inside
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the given domain by a set of forces, both internals and externals. These forces can

be described from two different points of view. In a physical point of view, the

characteristics of the image determine the external forces, meanwhile the internal

forces control the smoothness of the model during the deformations. Moreover,

from a mathematical point of view, a deformable model is moved under its dynamic

equations, trying to minimize an energy function associated to the model. This

energy function represents the correctness of the adjustment, that is, the better the

model fits the objects, the lower is the energy.

There is an entire world of deformable models based on different characteristics.

In the survey of Montagnat et al. [68] the authors explain the main ideas of several

deformable models developed. According to their classification, we can organize all

the variety of deformable models regarding some relevant characteristics.

1.2.1 Features used as the energy function

As we indicated, the deformable models are deformed according to a set of forces.

These forces are represented by different characteristics like image features -for ex-

ample image intensity or proximity to edges- and model features -like smoothness

and contraction-. Most of the deformable models use these forces as a summed en-

ergy term that represents the correctness of the adjustment to the objects, that is

called the energy function.

One of the first models in the literature was the snake [51]. This model is a

parametrized model that evolves according to the minimization of an energy func-

tion. This energy function includes internal forces, controlling the smoothness and

rigidity of the structure, and also external forces, represented by the image features

that attract the model to the contour of interest. This approach is simple but robust

against noise and missing data. Nevertheless, it is highly dependent on the contour

parametrization and the initialization of the model in the image.

After this first approximation, other different models were developed, including

different characteristics. For instance, Cohen [24] proposed a model called balloon,

that is basically an approximation of the model to a sphere by means of polygons.

This model can be inflated or deflated until the contour is reaching a contour.

Other different approximations using boundary information are the geodesic ac-

tive contours, proposed by Caselles et al. [18] and Kichenassamy et al. [52], that

are based on a curve evolution approach, opposite to the previous ones that used an

energy minimization strategy, and the solution of the model is given by a geodesic

curve. As the main drawback, this method has the difficulties to be deformed in

complex surfaces like large concavities and, as a solution, Xu and Price developed
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a new model called gradient vector flows [105], that uses the same principles but it

is based on smoothing the gradient field of an image edge map with a non–linear

partial differential equation. This way, the attraction range of the image boundaries

is extended to the whole image domain.

There is other way of using the image information to perform the segmentation.

Thus, instead of using the boundary information, we can use region information.

Chan and Vese proposed a new method called active contours without edges [19]

that mainly performed the minimization of the Mumford-Shad functional [69] with

a level set based technique.

Regarding the energy function in all the models, any characteristic with useful

information added to the energy function is desired. Thus, if we are working in

a given domain, some domain knowledge can be included in the energy function.

Thanks to that, the model is more robust to complications in the images, obtaining

better results. An example of this kind of models are the active shape models [41, 26]

and active appearance models [32, 25] that use statistical information from a training

set of images that contain the features of interest.

1.2.2 Deformable models geometry

One of the main characteristics remains in the fact that a deformable model can

be characterized by its surface representation, according to the shape description

(the model is restricted to represent simple shapes, shapes of restricted topology

or shapes with different topologies) and the deformation description (by deforming

directly the shape or deforming its embedding space, for instance, applying global

transformations to the model).

Continuous and discrete representations As a first differentiation regarding

geometry, we can have deformable models that present continuous and discrete repre-

sentations. With a continuous representation we can compute differential quantities,

such as surface normals and curvatures, almost everywhere on the surface. Mean-

while, with discrete ones, the surface is only known in a specific set of points. The

main problem of the continuous representations is the computational requirements,

needing most of the time to be discretized.

Explicit and implicit representations Basically, explicit models are repre-

sented by a set of parameters or coordinates, meanwhile implicit models involve

an implicit equation to locate the surface points.

Among the explicit models we can find the polynomial finite support function,
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from where the B-snakes [65], which basically is a B–spline representation of a snake,

and its improved version that allows topological changes [56, 55] are the most fa-

mous ones. One of the most used ones are the superquadrics [94, 8], which basically

represents closed surfaces. Such models only allow the representation of symmetric

shapes discarding complex surfaces. We also have other types like deformable tem-

plates, that basically use a set of allowed templates for a specific segmentation, like

in the work of Yuille et al. [109], or modal decompositions, that use a set of different

frequency harmonics [86, 89].

Regarding implicit models, we can find algebraic surfaces [92, 93], superquadrics,

that, in addition to the explicit representation, they can also being formulated in an

implicit way [8], or hyperquadrics, which is an extension of the superquadric models

[23, 22, 39].

Nowadays, one of the most used techniques under implicit representation mod-

els is the level sets method, technique that was proposed by Osher and Sethian

[74] and fully described in [84]. At the first moment, it was proposed for tracking

moving interfaces, but then its use spread to other imaging domains, like medi-

cal applications [62]. The procedure mainly represents the deformable model as a

higher-dimensional scalar function. The contour or surface of the object is the zero-

level set of points, where each point is represented as the distance from this point

to the higher-dimensional model. Thus, the distance is positive for all the points

outside the surface and negative for those that are inside, meanwhile the contour of

the segmentation is composed by the set of points with values equal to zero. The

evolution of the surface is guided by a partial differential equation regarding the

higher-dimensional scalar function that represents the model. The main advantage

of this approach is that changes in the topology are allowed easily and implicitly

to the model. On the contrary, the main drawback consists of the computational

requirements, that is, the numerical solution of the level set equation requires so-

phisticated techniques, representing the main challenge of the method.

1.2.3 Deformable models evolution

Other relevant aspect of the deformable models is the definition of how the model

evolves to reach the desired results. All the deformable models have to be modified

to fit the required object, considering the characteristics and restrictions of the

model. Most deformable models have an energy function associated. This energy

term allows the quantification of the accuracy represented by a given segmentation.

This energy term takes low values for correct adjustments meanwhile it increases for

worse segmentations. For that reason, we need a mechanism of modification of the
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models in terms of reducing the associated energy function.

There are many different techniques to develop this task. One of the easiest way is

using a greedy strategy like in the work of [103]. The main idea consists of modifying

locally the model in a way of reducing the energy until no further modification

implies a reduction in terms of energy. As an advantage, these methods are fast in

reaching the results, but they are also sensitive to possible noise or complications in

the images.

Considering all the complications that can be presented in the datasets, the

localization of the global minimum, or at least one acceptable local minimum, is not

a trivial issue. There were some approximations like the Bayesian approach that uses

a statistical framework to do the minimization [88, 109]. Along this line, Terzopoulos

and Szeliski [96] depicted a “Kalman snake”, based on a probabilistic modelling by

adding a Kalman filter to prior models and data with a Bayesian method.

Other global search techniques were developed that become popular and provide

acceptable results with a minimum of guarantees. Some of the most used methods

are related with the simulated annealing [87], dynamic programming [3] or graph

cuts [14], that have been widely used in the literature.

The global search methods minimize the problem of falling in local minima.

Among them, we used evolutionary methods as searching algorithms or minimization

methods for our deformable model.

1.2.4 Evolutionary approaches and deformable models. Related

work

There are few works using evolutionary techniques such as Genetic Algorithms (GA)

for the optimization of deformable models. In the case of snake deformable contours,

one of the first works which used genetic algorithms was the concept of “genetic

snakes” by Ballerini [6, 7], that mainly proposed a GA for the optimization of a

snake. Following the same idea, MacEachern and Manku [61] were also among the

first to apply GAs for optimizing snakes. Fan et al. [33] applied a parallel GA

to optimize active contours in a specific domain, to segment the lateral ventricles

from magnetic resonance brain images. Basically, one instance surface was extracted

using an active model optimized by finite-differences and used to initialize the first

generation of a parallel genetic algorithm that refines the final result. Ooi and

Liatsis [72] developed a procedure to perform object tracking in real world scenarios.

Different subpopulations of the GA corresponded with different subcontours and all

of them evolved in a cooperative manner to achieve the best contour that segmented

the object.
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Tanatipanond and Covavisaruch [90, 91] also applied a GA to optimize snakes

in brain MR images. They used a multiscale approach, beginning at coarser scales

to extract rough contours. Then, the best deformable contours at this stage were

the parent chromosomes at finer scales. Séguier and Cladel [82] used genetic snakes

in a speech recognition application that integrates information from audio and the

visual processing of the mouth. In their approach, there were two snakes that define

the lips contours and converge in parallel.

Tohka and Mykkänen [100] improved the results of deformable surface meshes by

means of a dual contour method in Positron Emission Tomography (PET) brain im-

ages. Tohka also used a hybrid approach in [99], where a GA globally minimized the

energy of a deformable surface mesh. The minimum obtained was further strength-

ened by a greedy algorithm. The GA detected roughly the target objects and then

the greedy search was used for precise surface extraction.

In other works it was proved the superiority of a global search method by means

of a genetic algorithm ([37]) in the optimization of the Topological Active Nets in

2D images ([45, 81]). The results showed that the GA is less sensitive to noise than

the greedy algorithm and does not depend on the parameter set or the mesh size.

In the case of 3D segmentation contours, Bro-Nielsen [16] used 3D “active cubes”

to segment medical images, where the automatic net division was a key issue. How-

ever, they did not use GAs, only an improved greedy algorithm inspired by a simu-

lated annealing procedure to overcome the noise problems.

1.3 Objectives

This PhD thesis proposes new approaches regarding the image segmentation field.

Different evolutionary methods are proposed for the optimization of a deformable

model called Topological Active Models (TAM). The Topological Active Models are

composed by two different versions that were proposed for 2D and 3D images. In par-

ticular, two models were developed: The Topological Active Nets (TAN) [101, 16] for

segmentation in 2D images and the extension to 3D, the Topological Active Volumes

(TAV) [9]. Both models integrate features of region–based and boundary–based seg-

mentation techniques. To this end, the models are defined as squared or volumetric

meshes composed by a set of different nodes. The nodes can be of two different

types: external nodes, with the aim of the extraction of the surface, and internal

nodes, that model the inner of the objects of interest. The former use boundary

information, whereas the latter are related to the region information. The use of

both properties presents a good advantage with respect to other approximations to
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deformable models because they allow the extraction of the surfaces and also the

analysis of the features of the inner of the objects. In both approximations, the

nodes are organized as a mesh that has to be deformed under the influence of differ-

ent functions that conform the energy of the model. Moreover, as other advantage of

these deformable models, we can perform topological changes in the model structure

to provide flexibility to the mesh, and to perform better adjustments in the presence

of holes, concavities or even the segmentation of several objects in the scene.

As explained for other deformable models, the Topological Active Models are

governed by an energy function that weights the correctness of the segmentation

developed by the model, in such a way that the lower is the energy the better is

considered the segmentation performed. As we explained before, the images can

present different complications (noise, artifacts captured, boundary discontinuities,

etc., ...), that makes the process of segmentation (minimization of the mesh energy)

a complex issue.

A previous segmentation technique [9] was developed to minimize the energy

using a greedy method. As an advantage, a greedy approach is fast, but it has

many problems to reach acceptable results under the detailed complications that can

appear in a given dataset. For that reason, global search methods are more suitable

for the problem, especially if we focus the properties of the method on the robustness.

Thus, in this work, different global search methods using evolutionary approaches

were developed trying to overcome the limitations of the previous technique, that

is, the greedy local search. Moreover, some hybridizations using the evolutionary

global search methods and the greedy local search were performed with the aim of

integrate the properties and advantages of both ways of facing the adjustment of

the models.

1.3.1 Organization of the thesis

This thesis describes all the evolutionary approaches developed for the image seg-

mentation task, detailing the characteristics of all the methods and the results ob-

tained for each of them.

Chapter 2 discusses all the characteristics of the Topological Active Models (both

TAN and TAV models) regarding the topology and the composition of the energy

function associated. Moreover, the chapter includes the description of the greedy

local search previously developed for the adjustment of the model and also the

mechanisms used to perform the changes in the topology.

In chapter 3 the adaptation of a classic GA to the minimization problem of the

energy of the model is described. The classic genetic operators were adapted to



12 1. Introduction

the domain and also new ad hoc genetic ones were proposed. In the chapter, the

entire evolutionary process is described. Moreover, an entire set of experiments are

shown to demonstrate the advantages of the global search approach with respect to

the greedy local search previously defined. Different difficulties like noise or fuzzy

boundaries were used in the experiments. A hybridization of both methodologies is

also shown with the corresponding results.

The adapted GA approach presents several limitations. One of them is the slow

convergence of the method over the desired results. Chapter 4 describes one of

the improvements. A new evolutionary approach, and also the hybridization with

the greedy local search, based on Differential Evolution, is used. Representative

results are shown and also a comparison between the new evolutionary method and

the GA approach was performed, to demonstrate the advantages of the alternative

evolutionary method.

One of the important drawbacks of all the single-objective methods, including

the proposed evolutionary approaches, in this particular problem, consists of tuning

all the energy parameter set. The energy of the model used is defined by different

components, weighted by different parameters that measure the relevance of each

component in the entire energy function. This parameter tuning has to be devel-

oped for each image segmentation, trying to obtain the best possible results in each

situation. Chapter 5 explains all the basis of the alternative methodology based

on multiobjective optimization. This technique overcomes the limitation of the pa-

rameter tuning. Different results and the comparison with the GA approach are

shown.

Moreover, in Chapter 6, we include a practical application in which the segmen-

tation techniques developed were used: We used the methods in the task of detecting

and segmenting the optic disc in retinal images. A large set of tests was developed

to validate and show the robustness of the approximations.

Finally, in Chapter 7 we summarize the main conclusions, together with ideas

about possible future research lines related with the work of this thesis.



Chapter 2

Topological Active Models

The Topological Active Net (TAN) [5] and its 3D extension, the Topological Active

Volume (TAV) [9] are discrete implementations of an elastic n−dimensional mesh

with interrelated nodes that integrates features of region–based and boundary–based

segmentation techniques, generally called Topological Active Model (TAM).

As other deformable models, the state of the model is governed by an energy

function composed by different energy terms related to the mesh nodes. This func-

tion weights the correctness of the segmentation so the adjustment process is based

on its minimization.

This chapter details the mesh topology and the energy formulation in the TAN

model and explains how the 2D model is extended to 3D, emphasizing on the en-

ergy terms that represent the objectives to be optimized with the evolutionary ap-

proaches. The chapter ends with the description of the initial strategy used for the

minimization of the energy of the mesh, a greedy method which incorporates the

possibility of changes in the topology of the initial mesh.

2.1 Topological Active Nets

Topological Active Nets are a 2D deformable model based on the Active Nets model

proposed by Tsumiyama et al. [101] and developed by Bro-Nielsen [16]. The TAN

model shares with those approaches the mesh topology as well as the base energy def-

initions. However, the TAN model proposes different energy functions and performs

different segmentation stages that widen the application fields of the model.

This section explains the bases of the TAN model regarding the initial mesh

configuration and the related energy functions.

13
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2.1.1 Topology

A Topological Active Net is a two–dimensional mesh formed by interrelated nodes.

The model distinguishes two types of mesh nodes: internal, inside the mesh, and

external, on the boundaries. Each type of node represents different features of the

objects. The external nodes fit the object surfaces, whereas the internal nodes model

the inner object features. This way, the segmentation process integrates boundary

and region information in the segmentation process [5, 9]. Figure 2.1 shows a TAN

mesh that contains both types of nodes.

Figure 2.1: A 6 × 6 TAN mesh. The external nodes are on the boundaries (in blue),

whereas the internal nodes are inside the mesh (in green).

As figure 2.1 shows, the TAN nodes are arranged in a polygonal grid formed

by squares or rectangles. The edges of these polygons define the neighboring re-

lationships between nodes. Hence, the internal nodes have 4 neighbors, whereas

the external ones only have 2 or 3 neighbors regarding their position on the mesh

boundaries. The mesh connectivity has influence on the deformation process as well

as on the segmentation results, as it will be explained later.

2.1.2 Energies

The TAN model is defined parametrically as v(r, s) = (x(r, s), y(r, s)) where (r, s) ∈

([0, 1]× [0, 1]). The mesh deformations are guided by the following energy function:

E(v(r, s)) =

∫ 1

0

∫ 1

0
Eint(v(r, s)) + Eext(v(r, s))drds (2.1)

where Eint stands for the internal energy and Eext is the energy due to external

forces. The former controls the contraction and bending, whereas the later represents
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the features of the scene that guide the adjustment process.

Internal energy objectives The calculus of the internal energy term depends

on first and second order derivatives:

Eint(v(r, s)) = α(|vr(r, s)|
2 + |vs(r, s)|

2)

+ β(|vrr(r, s)|
2 + 2|vrs(r, s)|

2 + |vss(r, s)|
2)

(2.2)

where the subscripts represent the partial derivatives and α, β are weighting terms

that control the contraction and bending, respectively. On one hand, large values

of α increase the mesh contraction, whereas small values of α restrict the mesh

contraction. On the other hand, large values of β produce smooth curves in the

mesh, whereas small values of β allow sharp edges.

The definition of the internal energy in 2.2 is continuous. However, the image is

a discrete domain. For this reason, the parameter domain [0, 1]× [0, 1] is discretized

as a regular grid defined by the internode spacing (k, l) and the partial derivatives

are computed using the finite difference technique. In this technique, the derivatives

are approximated by finite difference formulae based on values of the function at

discrete points.

The first order derivatives can be computed using the following approximations:

d+r (r, s) =
v(r + k, s)− v(r, s)

k

dor(r, s) =
v(r + k, s)− v(r − k, s)

2k

d−r (r, s) =
v(r, s)− v(r − k, s)

k

d+s (r, s) =
v(r, s+ l)− v(r, s)

l

dos(r, s) =
v(r, s+ l)− v(r, s− l)

2l

d−s (r, s) =
v(r, s+ l)− v(r, s− l)

l

(2.3)

where d+, do and d− are the forward, centered and backward differences, respectively.

In the TAN case, the central difference formula cannot be used for the estima-

tion because it only takes into account the contribution of the neighboring nodes.

Note that the segmentation process is an energy minimization task and the min-

imization process is based on changing the position of one or several mesh nodes

and comparing the energy values. If the first derivatives are computed by means

of the central estimator, when a node changes its position, the first derivative term

remains unchanged unless its neighboring nodes have been also updated. Therefore,

the central estimator does not allow the evaluation of the quality of the new node

position in these cases.

Thus, the first order derivatives are approximated using the backward and for-
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ward differences as follows:

|vr(r, s)|
2 =

‖d+r (r, s)‖
2 + ‖d−r (r, s)‖

2

2

|vs(r, s)|
2 =

‖d+s (r, s)‖
2 + ‖d−s (r, s)‖

2

2

(2.4)

On the contrary, the second order derivatives are estimated using the standard

finite difference technique since it takes into account the position of the current node:

vrr =
v(r − k, s)− 2v(r, s) + v(r + k, s)

k2

vss =
v(r, s− l)− 2v(r, s) + v(r, s+ l)

l2

vrs =
v(r − k, s)− v(r − k, s+ l)− v(r, s) + v(r, s+ l)

kl

(2.5)

External energy objectives While the internal energy term controls the con-

traction and bending of the TAN, the external energy term represents the features

of the scene that guide the adjustment process. This term is defined in such a way

that local minima coincide with the image features to segment.

In the TAN model, the external energy of a node is defined as a function of

the image intensity and takes into account the neighborhood in the computation.

This way, the external energy of a node not only depends on the node itself, but

also on the information provided by its neighboring nodes in order to increase the

robustness of the segmentation process and avoid local minima caused by noise or

intensity inhomogeneities. Hence, the external energy term is defined as follows:

Eext(v(r, s)) = ωf [I(r, s)] +
ρ

|ℵ(r, s)|

∑

p∈ℵ(r,s)

1

‖v(r, s)− v(p)‖
f [I(v(p))] (2.6)

where ω and ρ are weights, I(v(r, s)) is the intensity value of the original image in

the position v(r, s), f is a function related to the image intensity, and ℵ(r, s) is the

mesh neighborhood of the node (r, s). Thereby, the mesh topology has influence

in the energy computation. Note that the contribution of each neighboring node is

inversely proportional to its distance to the current node so that the information

provided by the closest neighbors has more relevance. This fact ensures a more

stable mesh deformation.

The function f reflects the object features that guide the TAN deformation.

Since internal and external nodes model different parts of the object, the function f
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should be defined in such a way that the internal nodes will remain in the interior of

the objects, whereas the external nodes will be attracted by the object boundaries.

Also, the color of the objects of interest influences the definition of the function f .

So, if the objects are light and the background is dark, the internal nodes should

be attracted by light image areas, whereas the external nodes should be attracted

by dark areas near the object boundaries. In this case, the function f is defined as

follows:

f [I(v(r, s))] =



















h[Imax − I(v(r, s))n] + τIODi(v(r, s)) for internal nodes

h[I(v(r, s))n + ξ(Gmax −G(v(r, s))]

+̺GD(v(r, s)) + τIODe(v(r, s)) for external nodes

(2.7)

where I(v(r, s))n is the mean image intensity in a n × n window centered at posi-

tion v(r, s), G(v(r, s)) is the gradient image at the position v(r, s), Imax and Gmax

are the maximum values of the image intensity and the gradient image respectively.

GD(v(r, s)) is the gradient distance, i.e., the distance from the node position v(r, s)

to its nearest gradient, ξ and ̺ weight the contribution of the gradient image and

the gradient distance term and h is an appropriate scaling factor. The term multi-

plied by h is called In-Out (IO) because it is the energy term that tend to put the

external nodes in background intensities and the internal ones in object intensities.

Finally, the terms Distance In-Out (IOD), weighted by a factor τ , act as gradients

to desirable positions for each kind of nodes: for the internal nodes, IODi points

towards values of the object to segment, whereas for the external nodes IODe points

towards background intensities. Basically, the IOD energy terms are calculated as

the sum of the distances from the position of each node of the mesh to the nearest

desirable position, that is, the inner of the object for the internal nodes, and the

background for the external nodes, respectively.

The expression I(v(r, s))n is actually a n×n mean filter so that the input image

is smoothed to compute the external energy term. Therefore, the sensitivity to noise

is reduced. Also, the function f uses the gradient image and the gradient distance

term to check if an external node is over the object boundaries. The minimization of

this energy function guides the internal nodes towards the lightest areas of the image,

whereas the external nodes are attracted by the darkest pixels near boundaries. For

example, in grayscale, the maximum intensity value is 255 and represents a light

pixel. Hence, the function f has a minimum for an internal node when the node

is on a light pixel (Imax − I(v(r, s))n = 255 − 255 = 0). On the other hand, the

function f has a minimum for an external node when the node is on a dark pixel and

near boundaries (I(v(r, s))n + ξ(Gmax −G(v(r, s)) = 0 + ξ(255− 255) = 0+ 0 = 0).
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On the contrary, if the objects to detect are dark and the background is light,

the function f is defined as follows:

f [I(v(r, s))] =



















h[I(v(r, s))n] + τIODi(v(r, s)) for internal nodes

h[Imax − I(v(r, s))n + ξ(Gmax −G(v(r, s))] for external nodes

+̺GD(v(r, s)) + τIODe(v(r, s))

(2.8)

where the symbols have the same meaning as in equation 2.7. Basically, the

main difference is related to the term called IO.

This combination of gradient terms and intensity values in an area allows the

integration of both boundary and region information in the external energy term.

2.2 Topological Active Volumes

The objective of the TAN meshes is the 2D image segmentation, that is, the identi-

fication of the object boundaries by means of the external nodes and the definition

of the interior of the object by means of the internal nodes. In 3D, the segmentation

becomes a volumetric task so that the external nodes should fit the object surfaces,

whereas the internal nodes should be enclosed inside the object.

The 3D extension of the TAN model is practically straightforward, although

there are several issues regarding the mesh topology and the calculus of the energy

functions as it will be explained next.

2.2.1 Cubic topology

The cubic topology is the straightforward extension of a 2D topology formed by

squares or rectangles [10, 9]. Figure 2.2 shows a 4× 4× 3 TAV with cubic topology.

In 3D, the external nodes are on the mesh surface, whereas the internal holes are

inside the mesh.

The cubic mesh defines a neighborhood where an internal node has 6 neighbors,

whereas an external node has 3, 4 or 5 neighbors according to its location on the

corner, edge or face of the mesh, respectively.

2.2.2 Energies

Independently of the mesh topology, the TAV model is defined parametrically as

v(r, s, t) = (x(r, s, t), y(r, s, t), z(r, s, t)) where (r, s, t) ∈ ([0, 1] × [0, 1] × [0, 1]). The

state of the model is governed by an energy function defined as follows:

E(v(r, s, t)) =

∫ 1

0

∫ 1

0

∫ 1

0
Eint(v(r, s, t)) + Eext(v(r, s, t))drdsdt (2.9)
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Figure 2.2: A 4× 4× 3 cubic mesh. The blue nodes represent the external nodes and the

green nodes are the internal nodes.

where Eint stands for the internal energy and Eext is the external energy.

Internal energy objectives Like the 2D model, the internal energy controls the

shape and the structure of the net and its calculus depends on first and second order

derivatives, which control contraction and bending, respectively. In 3D, the internal

energy is defined by:

Eint(v(r, s, t)) = α(|vr(r, s, t)|
2 + |vs(r, s, t)|

2 + |vt(r, s, t)|
2)+

β(|vrr(r, s, t)|
2 + |vss(r, s, t)|

2 + |vtt(r, s, t)|
2)+

2γ(|vrs(r, s, t)|
2 + |vrt(r, s, t)|

2 + |vst(r, s, t)|
2)

(2.10)

where subscripts represent partial derivatives and α, β and γ are coefficients that

control the smoothness of the mesh.

In order to compute the energy, the parameter domain [0, 1] × [0, 1] × [0, 1] is

discretized as a regular grid defined by the internode spacing (k, l,m) and the first

and second derivatives are estimated using the finite difference technique in 3D.

Specifically, the first order derivatives are computed using the forward and backward

differences as follows:

|vr|
2 =

‖d+r ‖
2 + ‖d−r ‖

2

2

|vs|
2 =

‖d+s ‖
2 + ‖d−s ‖

2

2

|vt|
2 =

‖d+t ‖
2 + ‖d−t ‖

2

2

(2.11)
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where d+ and d− are defined by:

d+r =
v(r + k, s, t)− v(r, s, t)

k

d+s =
v(r, s+ l, t)− v(r, s, t)

l

d+t =
v(r, s, t+m)− v(r, s, t)

m

d−r =
v(r, s, t)− v(r − k, s, t)

k

d−s =
v(r, s, t)− v(r, s− l, t)

l

d−t =
v(r, s, t)− v(r, s, t−m)

m

(2.12)

The finite difference technique is also used for computing the second order deriva-

tives:

vrr =
v(r − k, s, t)− 2v(r, s, t) + v(r + k, s, t)

k2

vss =
v(r, s− l, t)− 2v(r, s, t) + v(r, s+ l, t)

l2

vtt =
v(r, s, t−m)− 2v(r, s, t) + v(r, s, t+m)

m2

vrs =
v(r − k, s, t) + v(r, s+ l, t)− v(r − k, s+ l, t)− v(r, s, t)

kl

vrt =
v(r − k, s, t) + v(r, s, t+m)− v(r − k, s, t+m)− v(r, s, t)

km

vst =
v(r, s− l, t) + v(r, s, t+m)− v(r, s− l, t+m)− v(r, s, t)

lm

(2.13)

External energy objectives Eext represents the features of the scene that guide

the adjustment process and is defined as follows:

Eext(v(r, s, t)) = ωf [I(v(r, s, t))]+
ρ

|ℵ(r, s, t)|

∑

p∈ℵ(r,s,t)

1

‖v(r, s, t)− v(p)‖
f [I(v(p))]

(2.14)

where ω and ρ are weights, I(v(r, s, t)) is the intensity value of the original image

in the position v(r, s, t), f is a function related to the image intensity, and ℵ(r, s, t)

is the neighborhood of the node (r, s, t). Thus, given that the repeated polyhedron

in the mesh defines the node neighborhood, the shape of the polyhedron influences

not only the flexibility of the mesh, but also the way the nodes are adjusted to the

objects.

The function f is defined exactly as in the 2D case; when the objects are light

and the background dark:
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f [I(v(r, s, t))] =



















h[Imax − I(v(r, s, t))n] + τIODi(v(r, s, t)) for internal nodes

h[I(v(r, s, t))n + ξ(Gmax −G(v(r, s, t)))]

+̺GD(v(r, s, t)) + τIODe(v(r, s, t)) for external nodes

(2.15)

where, again: ξ,̺ are weighting terms, Imax and Gmax are the maximum intensity

values of image I and the gradient image G, respectively, I(v(r, s, t)) and G(v(r, s, t))

are the intensity values of the original image and the gradient image in the node

position v(r, s, t), I(v(r, s, t))n is the mean intensity in a n×n×n voxel neighborhood,

h is an appropriate scaling function multiplying once again the energy term IO, and

GD(v(r, s, t)) is the gradient distance, i.e., the distance from the node position

v(r, s, t) to its nearest edge, and the components IOD are defined as in the 2D case.

Otherwise, if the objects to detect are dark and the background is light, the

energy of an internal node will be minimum when it is on a point with a low grey

level. On the other hand, the energy of an external node will be minimum when it

is on a discontinuity and on a light point outside the object. In this situation, the

function f is defined as:

f [I(v(r, s, t))] =



















h[I(v(r, s, t))n] + τIODi(v(r, s, t)) for internal nodes

h[Imax − I(v(r, s, t))n + ξ(Gmax −G(v(r, s, t)))]+

̺GD(v(r, s, t)) + τIODe(v(r, s, t)) for external nodes

(2.16)

where the symbols have the same meaning as in equation 2.15.

2.3 Greedy methodology

Most of the minimization techniques are based on performing several steps with a set

of choices in each step. The gradient methods [71], the dynamic programming [12]

or the simulated annealing [53] techniques are examples of algorithms that explore

the search space iteratively. In this sense, a Greedy algorithm selects the best local

solution at each step of the minimization process.

The local choices provide a compromise that produces acceptable approximations

and, sometimes, leads to the global minimum solution [27].

A greedy algorithm is a simple minimization method, usually quite efficient and

suitable for problems where the choice at every step can produce an optimal solution,

i.e., a solution that minimizes the objective function.

The greedy optimization for the topological model is automatic, so a first step is

to establish a suitable initialization of the mesh in order to avoid any human interac-

tion as other deformable models. The greedy strategy implies that successive local
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optimizations should converge to an optimal solution. Also, since the external nodes

should be on the surfaces, whereas the internal nodes should be inside the objects,

a simple initialization strategy is to create a mesh with a homogeneous distribution

of nodes within the limits of the whole image. This way, the minimization process

will shrink the mesh and will lead the nodes towards the objects of interest.

Then, the energy of the model is minimized using the greedy strategy. At each

step, this algorithm tries to minimize the energy functions locally. The mesh energy

is computed as the sum of the node energies. Since the greedy strategy performs

a local search, the node energy is computed in the current node position within

the image and in its neighboring positions. After that, the image position with the

lowest energy value is selected as the next node position. The new mesh energy is

the sum of the lowest local node energies. These steps are repeated until the mesh

energy remains unchanged.

2.3.1 Topological changes. Link cutting procedure

The size and shape of the mesh are established at the beginning of the segmenta-

tion process. However, the shape of the object could vary drastically and the final

segmentation results could not be as good as possible. Topological changes could be

performed in particular areas of the shape with special concavities or irregularities

where a better segmentation can be obtained.

The greedy method introduces a mechanism called link cutting procedure that

is applied to the model when the segmentation cannot be improved. It is based

on removing a connection between two wrongly located nodes in the mesh by a

previous identification of the external nodes wrongly located. Hence, the flexibility

of the mesh in this areas will be increased, and the net will be able to improve the

adjustment. These nodes wrongly located are the nodes more distant to the object

edges. To this aim we use the Tchebycheff’s theorem. This way, an external node

vext is wrongly placed if its gradient distance fulfills the following inequality:

GD(vext) > µGD + 3σGD (2.17)

where µGD is the average gradient distance of the whole set of external nodes and

σGD is their standard deviation.

After the identification of the outlier set, the link to remove is selected. It is the

link between the node with the highest gradient distance and its worst neighbor in

the outlier set. Once the link is cut, some internal nodes become external since they

are on the boundaries of the mesh. The increase of the number of external nodes

allows a better adjustment to the object boundaries. An example of the breaking
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(a) (b)

Figure 2.3: 3D link cutting example. Conversion of internal nodes in external ones. (a)

Before the breaking and connection to be removed. (b) Result after the breaking. Green

and blue nodes represent the internal and the external nodes, respectively.

of a connection is shown in Figure 2.3, where some internal nodes become external

ones after the breaking.

The process of breaking implies a restriction: the squared structure in 2D and

the cubic one in 3D of the model has to be preserved, that is, all the nodes and

connections has to perform squares or cubes, respectively. The situation of nodes

and connections isolated is not allowed. Under this circumstance, sometimes a

breaking of a connection implies breaking the topology of the model, that is leaving

connections and nodes isolated, but several simultaneous breaking can preserve the

topology of the mesh. For example, in Figure 2.4 we can see an example of a breaking

that implies the breaking of other connections.

It also can be used to identify internal nodes wrong located. That could be

possible in the case the object has a hole inside of the object. Using the same

mechanism we can remove some links to create an internal hole and obtain a better

adjustment in this part of the object. This mechanism detailed in [11], was not used

in the current work, where we only used the link cutting procedure in the external

nodes, together with the automatic net division explained next.

2.3.2 Automatic mesh division

Since the link cutting process breaks the topology to improve the adjustment, when

the image has several objects the net should be divided to segment them. To this

end, a reconfiguration mechanism was developed in order to perform multiple object

detection and segmentation.
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b

a

b

a

c

d

(a) (b)

Figure 2.4: 3D multiple breaking example. The marked connections has to be removed

because: (a) The breaking of connection a implies that connection b does not belong to any

cube. (b) If any of these connection is removed, the other has to be removed as well, because

they do not belong to any cube anymore.

The mesh division is performed by the link cutting procedure. However, this

algorithm cannot be applied directly to the automatic division. Since the topology

must be preserved, problems arise when cutting a link implies leaving isolated links

or planes. In such case, these links cannot be cut so a “thread” composed by squares

in 2D or cubes in 3D will appear between two submodels. If one connection in one

of these squares or cubes is broken, the topology is not preserved. Figure 2.5 shows

these ideas in 2D for a better visualization. Figure 2.5(a) presents an example with

a “thread”. Figure 2.5(b) depicts a case that leads to threads. If the labeled link is

removed, there will be two threads since no other link can be cut. The 3D case is

equivalent.

However, this problem can be overcome if we consider a direction in the cutting

process [16]. Thus, a cutting priority is associated to each node whose connection is

removed. A higher priority is assigned to the nodes in the cutting direction whereas

a lower priority is assigned to the nodes involved in the cut. Figure 2.5(c) shows the

recomputation of the node priorities after several cuts in the 2D case. The extension

for the 3D case is straightforward. Figure 2.6 also shows a 3D example about how

to deal with the link cutting procedure, using priority or not. As we can see, the

version that uses priority is able to divide the mesh (Figure 2.6 (d)), meanwhile the

one without priority gets stacked leaving threads between both sub-meshes (Figure

2.6 (c)).

The cutting priority weights the gradient distance of each node. Thus, once the

set of badly placed external nodes is obtained using equation 2.17, the link to be
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Figure 2.5: Threads and cutting priorities in 2D. (a) Image segmentation with threads.

(b) If link “a” is removed, no other link can be removed in order to preserve the TAN

topology. (c) Recomputation of cutting priorities. When a link is broken in a direction, the

neighborhood in this direction increases its priorities.
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Figure 2.6: Threads and cutting priorities in 3D. (a) (b) Next connections to be removed

without priority and with it, respectively. (c) (d) Examples of final results without using

priority and with it.
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removed consist of two neighboring nodes within this set, n1 and n2, that fulfill:

GDvext(n1)× Pcut(n1) > GD(n)× Pcut(n), ∀n 6= n1

GDvext(n2)× Pcut(n2) > GDvext(m)× Pcut(m), ∀m 6= n2,m ∈ ℵ(n1),
(2.18)

where Pcut(x) is the cutting priority of node x, GDvext(x) is the distance from the

position of the external node x to the nearest edge, and ℵ(n1) is the set of neighboring

nodes of n1.

Summarizing, the entire segmentation process including the possible topological

changes can be seen in Figure 2.7.
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Figure 2.7: Segmentation process using a greedy strategy diagram.

2.3.3 Advantages and disadvantages

This minimization technique has as the main advantage the speed in the segmenta-

tion process because it moves progressively the nodes in the neighboring pixels while

the energy is decreased, until no further energy minimization is possible. This way,

the method is fast and direct, and it is capable to reach good results in low time

under good image conditions. Moreover, the introduction of topological changes is

easy. When no further movement in all the nodes can be done, we can analyze all

the links to locate which ones are not well placed.
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Figure 2.8: Wrong 2D segmentations using the greedy methodology.

However, this method has difficulties in providing acceptable results under com-

plex conditions, like noisy images or objects with fuzzy or discontinuous contours.

As the method moves the nodes locally to the best neighboring pixel, it is easy to

get stacked in noisy regions of the images, falling in local minima. Figure 2.8 shows

some results obtained with the greedy local search in some real CT images that

presented some artifacts captured that cannot be overcome by the method. The

results are not acceptable.

These limitations motivated the search of more robust methodologies that can

reach acceptable results under any possible complication in the images, situation

quite common in many image processing areas, like the medical domain. Evolu-

tionary computation demonstrated to be suitable global search methods to find

acceptable results working in very complex optimization problems.





Chapter 3

Optimization of Topological

Active Models by means of

Genetic Algorithms

3.1 Introduction

The greedy strategy is a deterministic local search method. Beginning from the same

conditions, the method always converge to the same results. The main advantage

is that the method provides a result quite fast and direct and requires low memory.

However, the method is not capable to reach acceptable results in complex and

noisy images. Most of the possible situations in a real domain presents this kind of

conditions.

Given the variability of the objects and conditions in the images, it is recom-

mended to use a global search method to be able to reach global correct solutions

in all the possible situations. There are several global minimization approaches in

literature such as the branch and bound algorithms [40], simulated annealing [53],

tabu search [36] or evolutionary strategies [37]. The branch and bound algorithms

consist of a systematic enumeration of the whole set of candidate solutions by using

super and lower estimated bounds of the quantity to optimize. Typically, these tech-

niques rely on some a priori structural knowledge about the problem. The simulated

annealing approach considers, at each step, some neighbors of the current state and

decides, given a probability, if the system is moved to the new state or not. It allows

non optimal states in the search. This strategy finds a good approximation of the

global minimum, but it does not guarantee the global optimum. The tabu search for-

bids states already visited in the search space at least for the upcoming few events.

29
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It is similar to the simulated annealing since it accepts new inferior solutions tem-

porarily to avoid paths already investigated. Nevertheless, the tabu search selects

new states based on their quality, not at random like the previous technique. The

evolutionary techniques are based on biological evolution and natural selection laws.

The candidate solutions are coded as a population of individuals that are combined

and mutated into new individuals (solutions) whose quality is evaluated by means

of a fitness function.

In the TAM minimization problem, given that there is no a priori knowledge

about the minimum of the energy functions, the use of a branch and bound algo-

rithms is not suitable. Moreover, other optimization techniques such as the simulated

annealing or the tabu search are based on a probabilistic local search and could not

reach the global minimum. Therefore, an evolutionary technique, with a simultane-

ous search over the points of the search space represented by the individuals of the

population, may be a complementary approach to find the global minimum in the

segmentation process we are dealing with.

3.2 Adapted Genetic Algorithm

Genetic Algorithms (GA) [42, 37] are a particular type of evolutionary techniques

broadly applied to optimization problems. The use of a GA in a minimization

process requires the definition of a set of characteristics that are defined below.

Genotypic encoding The genetic algorithms require that the set of variables or

parameters to be optimized in a specific problem have to be coded in a chro-

mosome. Each chromosome, genotype or individual represents a candidate

solution of the problem and consists of a set of genes that encodes the opti-

mization parameters. Thus, we can represent possible solutions in the entire

search space as individuals that compose a genetic population. In our method,

each genotype is represented by the list of the coordinates of all the nodes of

the mesh. Thus, the chromosome is composed by a list of integers:

x1, y1, z1, x2, y2, z2, ..., xn, yn, zn (3.1)

where n is the number of nodes in the mesh, and z is the third coordinate only

considered in 3D segmentations.

Fitness function We also need the definition of a fitness function to evaluate the

quality of each of the individuals, that is, the correctness of the solution that
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is represented by a given individual. As we explained before, the model has

an energy associated that represents how good or bad is the adjustment with

respect to the objects in the scene. Thus, the fitness function is the inverse of

this energy:

F = 1/E(v) (3.2)

where E(v) is the energy of the mesh described in Equations 2.1 and 2.9.

3.2.1 Evolutionary process

After the definition of the two main terms of an evolutionary method, that is, the

genotypic encoding and the fitness function, we can proceed with the definition of

the evolutionary segmentation process.

The main steps in a standard GA evolutionary process are depicted in Figure

3.1, and basically consist of the following:

Initial population The first step is the production of the initial chromosomes.

These chromosomes are randomly initialized in the search space, conforming

the initial population of the evolutionary process. In our application, it means

that each individual would be placed in a random part of the image, having

all the nodes equidistant among them, as shown for instance in Figure 3.2.

Fitness assignment The quality of the individuals is evaluated using the fitness

function. This fitness represents the quality of the possible solution that rep-

resents the individual. As we said, the inverse of the energy is used as the

fitness function.

Termination condition It is checked to determine the end of the evolutionary

process. In particular, if we reach a desirable segmentation or the maximum

number of generations is reached, the process finishes.

Selection of individuals for reproduction Two individuals from the popula-

tion are selected from the entire population, normally depending on their

fitness. There are plenty of possibilities for the selection. We use tourna-

ment window selection, that selects a random set of individuals and picks the

best individual within this set.

Crossover and genetic operators We produce the offspring by crossing the two

parent chromosomes and applying other genetic operators such as mutation
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and other ad hoc operators. The offspring are introduced in the new generation

of the population. Both steps of selecting and producing new individuals are

repeated, until the population is filled (using a constant size of the population).

Finally, we go to the fitness assignment step, starting again the procedure.

Maximum

Generations or

Optimum 

Result? 

No

Yes
End

Generation of Initial Population

Assign Fitness to All Individuals

Selection of Two Parents

Crossover and Genetic Operators

New Population

Figure 3.1: Standard genetic algorithm process.

Other important issue in an evolutionary algorithm is the population size. It

has to be high enough to preserve the genetic diversity, that is, to cover properly

the search space, but it has also not to be too high in terms of computational

requirements. Elitism is also introduced in the method. It means that the best

individual of each generation is directly copied to the next generation. With elitism,

we guarantee the preservation of the best temporal result over the generations.

3.2.2 Genetic operators

One of the main aspects of an evolutionary method is the definition of the genetic

operators that produce the new individuals. As we explained, we apply a set of

operators to produce new individuals for the next generation. These operators have

to be as much useful as possible because they determine the way the population

evolves towards the optimal solution.
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The classic operators in a GA, crossover and mutation, were adapted to our spe-

cific domain, but also new ad hoc ones were designed according to the characteristics

of the model to help the convergence towards the optimum. The genetic operator

examples are shown in the 3D domain, being equivalent to the 2D case.

Crossover

One of the classic operators is crossover. It consists of interchanging the informa-

tion between a pair of parent chromosomes that were previously selected. The same

parent chromosome can be selected several times to produce offspring, but guaran-

teeing that this situation does not happen too often, because, in that case the entire

population can converge too fast over the same individuals, that is, focusing too fast

in the same search area. In that case we loose genetic diversity, taking the risk of

falling in local minima. The “selective pressure” should not be high, which can be

controlled by the size of the tournament. Once we have selected the two parents, we

apply the crossover with a given probability. Otherwise, the parents are preserved

directly.

The scheme theorem is based on the idea of good construction blocks [42, 43]. A

good solution of the problem is composed by good blocks. The crossover operator is

the responsible to merge good blocks coming from different parents. The selective

pressure has the relevance in order to pick good individuals from the population,

but taking care in preserving the diversity in the population. The crossover has the

potential to produce new good individuals after taking appropriate parents from the

population.

There are several ways of merging the genotype of two parents, the most common

are:

Crossover by a point The simplest way of merging two parents is selecting one

random middle point of the chromosome, dividing it in two groups, and in-

terchanging both parts between the parents to produce the genes of the new

individuals.

Crossover by n points or uniform Following the same idea as the previous one,

but dividing the chromosome in n + 1 groups and also interchanging these

subgroups of genes. A particular crossover of this one is the uniform crossover.

It consists of doing the same but at the level of the gene. Each gene of the

resultant individuals is randomly selected from one of the parents.

Arithmetical crossover Other possibility consists of producing the new genes as
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the weighted mean of the corresponding genes of the parents. For instance,

considering x1 and x2 the two parents, a new gene xi is calculated as:

xi = α× x1i + (1− α)× x2i

where α is a random value between 0 and 1, and weights the relevance of the

value coming from each parent. This value is calculated for each gene i in the

chromosome.

The development of the crossover operation in the used model is more difficult

due to the mesh features. One of the main characteristics of the model we have

to preserve consists of avoiding possible crossings in the links of the mesh or the

same location for several nodes. For that reason, we had to discard the classical

crossover by a point or by n points. With these operators, we could have so many

individuals that do not preserve these properties. Even in this case, the evolutionary

process would progressively avoid these solutions, because these individuals normally

have higher energies, but having a part of the population in that situation would

complicate or slow down the process.

On the contrary, the arithmetical crossover guarantees that property. If two

individuals are correct (no crossings), the weighted mean of the coordinates of all

the nodes will be correct. For that reason, this is the crossover we used in the

evolutionary processes. As we said, an individual is the list of the coordinates of all

the nodes. Thus, the coordinates of each node of the offspring is:

Child1 =











x = {α× xparent1 + (1− α)× xparent2
y = {α× yparent1 + (1− α)× yparent2
z = {α× zparent1 + (1− α)× zparent2

(3.3)

Child2 =











x = {α× xparent2 + (1− α)× xparent1
y = {α× yparent2 + (1− α)× yparent1
z = {α× zparent2 + (1− α)× zparent1

(3.4)

where z is the third dimension and it is only applied in the case of 3D segmen-

tations. This crossover operator is not ideal, because the child does not contains

exactly the genes of the parents, but the new coordinates are inspired on them, car-

rying that way the information about the correctness of the parents. However, this

operator will preserve the integrity of the mesh and also contributes to the diversity

in the population, thanks to the generation of a couple of new individuals which are

“intermediate” of both parents. An example of arithmetical crossover can be seen

in Figure 3.2.
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(a) (b)

Figure 3.2: Arithmetical crossover operator. (a) Selected parents. (b) Offspring after the

crossover.

Mutation

The other basic genetic operator in an evolutionary process is the mutation operator.

Its main purpose is the exploration of the search space. The main idea consists of

randomly change the value of a gene, that is, in our case, mutate the position of a

given node. Thus, one node can reach new good positions in the search space that

were not reached before.

With this operator we have the same problem as in the case of the crossover

operator. Basically, we have to guarantee the integrity of the mesh. Therefore,

we cannot mutate the position of the node to other random position in the entire

image. Instead of this, we have to restrict the possibilities to a given subspace that

guarantees the mentioned properties of the mesh.

We developed a mutation operator that avoids crossings in the model (Figure

3.3). The operator computes the limits of the node mutation, taking into account its

8 neighbor nodes in 2D and the 26 in 3D. The movements of the nodes are restrictive

in order to avoid crossings. For example, in the 3D domain, the bottom limit is set

by the coordinates of the northernmost neighbor of the 9 lower neighbors, and so on

for each limit. Once the limits are computed, the node’s coordinates are mutated

at random positions within them. In the case of external nodes, virtual nodes are

defined at mirrored distances of the opposite nodes in the same axis. This restrictive

way of calculate the possible subspace where a node can mutate does not represents

all the possible positions but represents most of them and also is faster than other

possibilities to calculate the entire subspace to mutate.

Ad hoc operators

As well as the classical or standard genetic operators, that were adapted to our

specific domain, other specific operators were developed, designed according to the
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(a) (b) (c)

Figure 3.3: Mutation operator. (a) Representation of the 26-neighborhood of a node. (b)

Delimitation of the mutation space in a 2D frame represented in dark grey. (c) Mutation of

a node in an initial individual with a cubic topology.

characteristics of the mesh. They were developed to complement the classic opera-

tors and to obtain better modifications in the generation of new individuals.

Spread operator Operator that in some specific moments can have its relevance.

The arithmetical crossover operator used generates new individuals of the same or

intermediate sizes of the parents. We commented the advantages of the operator in

our application. Nevertheless, this implies that the evolutionary process is restricting

the search space over the generations, having progressively smaller individuals. For

that reason, we need an operator that sometimes takes an individual and produces

other bigger.

The mechanism of the operator is simple. It stretches the mesh in a given

direction and, therefore, the new mesh increases its size. Figure 3.4 shows an example

of the application of the spread operator.

Group mutation operator Sometimes there is a mutation of a node to a good

position in the image, but in terms of the global energy of the mesh it is not worth,

which complicates its survival over the generations. That happens, for instance,

when the mesh is quite far from an edge of the object. In this situation, one external

node, with a simple mutation, is able to reach this edge. The problem is that,

sometimes, the reduction of the external energy in that node, thanks to the right

location of the node, is penalized by the increase of the internal energy, because the

node is now farther from its neighbors.

Following this idea, we created the group mutation operator. The basic idea

consists of randomly selecting a group of neighboring nodes which are mutated



3.2. Adapted Genetic Algorithm 37

(a) (b)

Figure 3.4: Spread operator. (a) Original mesh. (b) Individual generated after spreading

the mesh.

simultaneously in the same direction and with the same value. Performing a group

mutation is generally more useful thanks to the better placement of a group of

nodes instead of a single one. Figure 3.5 shows an example of the application of the

operator.

Shift operator Operator that is useful in the exploration of the search space. It

moves the mesh to another position in the image. This movement allows that the

external and the internal nodes can get into the object to segment at the same time

approximately. This way, the position of the objects in the image does not affect

the final node distribution.

This operator has its relevance especially in the first generations, where the

individuals are trying to locate or cover the objects to be segmented. In Figure 3.6

it is shown a couple of individuals, the original one and the same after being moved

by the shift operator.

3.2.3 Segmentation phases

The objective of the evolutionary process is to progressively obtain a set of individ-

uals with the nodes better adjusted to the object. The internal energy terms try

to produce individuals with a high level of smoothness and contraction. Thus, the

segmentation of complex objects can be complicated because we take the risk that

the individuals focus on parts of the object, falling the entire segmentation in local

minima.

For that reason, we defined different stages or phases in the evolutionary process
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(a) (b)

Figure 3.5: Group mutation operator. (a) Original mesh. (b) Individual generated after

the group mutation.

Figure 3.6: Shift operator. Original and shifted mesh after the application of the operator.



3.2. Adapted Genetic Algorithm 39

Algorithm 3.2.1: GA Minimization()

g ← 0 // Generation number

Pg ← InitializePopulation()

SetParameters(explorationParameters)

fitnessg ← EvaluatePopulation(Pg)

while g < maxGenerations1stPhase // First evolutionary phase

do























Pg+1 ← ApplyGeneticOperators(Pg)

Pg+1 ← Pg+1 + Elitism(Pg, fitnessg)

fitnessg+1 ← EvaluatePopulation(Pg+1)

g ← g + 1

SetParameters(adjustmentParameters)

fitnessg ← EvaluatePopulation(Pg)

while error < targetError // Second evolutionary phase

do























Pg+1 ← ApplyGeneticOperators(Pg)

Pg+1 ← Pg+1 + Elitism(Pg, fitnessg)

fitnessg+1 ← EvaluatePopulation(Pg+1)

g ← g + 1

SetParameters(refinementParameters)

fitnessg ← EvaluatePopulation(Pg)

while g < maxGenerations3rdPhase // Third evolutionary phase

do























Pg+1 ← ApplyGeneticOperators(Pg)

Pg+1 ← Pg+1 + Elitism(Pg, fitnessg)

fitnessg+1 ← EvaluatePopulation(Pg+1)

g ← g + 1

with different purposes. Algorithm 3.2.1 summarizes the steps in the GA minimiza-

tion process, including all this phases. For each one of them the parameter set

were modified to focus on those parameters that reproduce the desirable behaviour.

We defined three phases in the evolutionary process in order to cover the object or

objects in the first generations and then to improve the adjustment progressively.

First phase It is an exploration phase. Its objective is to localize where the object

is, producing an entire population of individuals surrounding it.

The energy parameters allow the nodes to be outside the object to segment, so

individuals initialized inside the object are penalized. Thus, these individuals

cannot survive in next generations. To do that, we mainly used the energy
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terms In-Out (IO), that makes the internal nodes to be in the object and

the external ones outside, and Gradient Distance (DG), that potentiate the

individuals with the external nodes inside the object boundary. The shift

operator is adequate in this aim, so it is only applied in this evolutionary

phase.

Second phase It is an adjustment phase. Given a population of individuals with

the external nodes surrounding the contour of the object, the purpose of this

phase is to progressively obtain a correct segmentation. The parameter values

are changed in order to search for a more homogeneous distribution of the

nodes, reduce the size of the model, and adapt it to the image. This way,

exploration predominates in the first phase while exploitation dominates the

second one. The energy parameters in this phase vary depending on each

segmentation process. The probability of application of the spread operator

is decreased because it is not as necessary as in the first evolutionary phase.

This phase finishes when the best individual cannot improve the fitness, or a

given number of generations is reached.

Third phase It is a refinement phase. This phase is less relevant and optional.

In this phase, the parameters of the internal energy terms (Eqs. 2.2 and

2.10) increase their values to obtain homogeneous distributions of the nodes.

Also, the mutation probability of the external nodes is increased with a factor

directly proportional to the gradient distance of the external nodes. This

behavior is especially important in noise images, letting the external nodes

improve the adjustment to the image boundaries.

In Figure 3.7, the results at the end of each phase are shown, for a specific 3D

segmentation.

Regarding topological changes, it is complicated to define the possibility of topo-

logical changes in the individuals. The idea would be to insert in the genotype some

information of the presence of each of the connections. However, the complexity of

the methodology would be highly increased, having to deal with a large population

that would cover different possible topologies and individuals to explore each sub-

space represented by a given topology. For that reason, the inclusion of topological

changes is not allowed in this evolutionary approach.
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  First Phase

(Localization)

Second Phase

 (Adjustment)

 Third Phase

(Refinement)

Figure 3.7: Results at the end of each phase of the segmentation process.

3.3 Results and comparison between the Genetic and

Greedy Algorithms

This section presents some representative segmentation examples of several images

to show the capabilities and main difficulties of the different optimization methods.

Especially, most of the examples were designed to contrast the advantages of the

genetic global search method that were developed against the greedy local search

previously defined. Images with different characteristics and complications were

used. In particular we designed some artificial images that included some difficulties

like fuzzy contours, uniform noise and local noise. Thus, we want to demonstrate

that the greedy local search falls in local minima meanwhile the genetic global search

is capable to overcome the complications and reach an acceptable result.

In all the examples, the same image was used as the external energy for both

internal and external nodes, and all the test images had 256 gray levels. As the

capabilities of the different optimization algorithms are equivalent in the 2D and 3D

domains, we concentrate here the analysis using examples from the 3D domain.

As we mentioned, the TAV parameters in the evolutionary algorithm are different

in each phase. Table 3.1 depicts the parameters used in the first phase of the

evolutionary processes, that were always the same in the different examples. These

values were tuned to obtain the aim of this phase in most of the images: covering

the objects to detect (using ω and ρ), with emphasis in the GD objective (high value

of δ).

For the second phase of the evolutionary processes, Table 3.2 includes the TAV

parameters used in the segmentation examples. The TAV parameters were exper-
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Table 3.1: TAV parameter sets of the 1st evolutionary phase in the segmentation processes

of the examples.

α β γ ω ρ ξ δ

0.00001 0.00001 0.0 1.0 1.0 0.0 10.0

Table 3.2: TAV parameter sets of the 2nd evolutionary phase in the segmentation processes

of the examples.

Figure Size α β γ ω ρ ξ δ

3.8 6× 6× 5 2.5 0.5 1.0 10.0 4.5 4.0 4.0

3.9 6× 6× 5 2.0 0.5 0.5 10.0 4.5 4.0 8.0

3.10 6× 6× 5 2.5 0.5 0.5 10.0 4.5 4.0 9.0

3.13 8× 8× 7 8.5 0.5 0.8 10.0 6.5 4.0 10.0

3.14 8× 8× 7 8.5 0.5 0.8 10.0 6.5 4.0 10.0

3.15 8× 8× 7 8.5 0.5 0.8 10.0 6.5 4.0 10.0

3.16 8× 8× 8 8.0 0.5 0.5 10.0 2.0 3.0 3.0

3.17 8× 8× 8 9.0 0.1 0.1 10.0 2.5 3.0 4.0

imentally adjusted, although the GA is less sensitive to changes in the parameter

set than the greedy approach. Table 3.3 shows the GA main parameters used in

the GA segmentations. We used a tournament selection with a size of 3% of the

population and elitism of the best individual. The probabilities of the operators

were experimentally set, too, taking values in the range where the best test results

were obtained. Finally, the number of generations of the first evolutionary phase

was around 100. The second phase is finished when there is not improvement in the

best individual (around 1200 generations in the examples) and the third evolution-

ary phase includes few generations, about 100, and it is not applied in the hybrid

case.

The execution time of the GA, with around 1600 individuals and a 8 × 8 × 8

TAV, was usually between 5 and 6 hours in an Intel Core 2 2.4 GHz. Nevertheless,

the process can be faster maintaining acceptable results if the number of generations

is reduced. The processing time of the GA process in one generation depends only

on the size of the net and the population, whereas the image size is not relevant.

Moreover, this could be easily parallelized in several cores to speed up the process,

sharing the population and the production of individuals in each generation.
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Table 3.3: GA parameters used in the evolutionary processes.

Population p.crossover p.mutation p.spread p.shift p.group

mutation

1600 0.5 0.0005 0.01 0.05 0.001

(a)

(b) (c) (d)

Figure 3.8: Results obtained in an image with fuzzy contours. (a) A 2D slice of the

image. (b) The gradient image of the slice showed in (a). (c) Segmentation with the greedy

algorithm. (d) Result with the GA.

3.3.1 Segmentation of images with fuzzy contours

The genetic algorithm can optimize the segmentation in images with fuzzy contours.

Figure 3.8 shows an example with fuzzy contours. Figure 3.8 (a) represents a 2D

slice of the image in the same point of view of the rest of the images. Note that the

input to the algorithm, in the 3D case, is a set of consecutive 2D slices that define the

3D object, that are used to calculate the different energy terms. The number of CT

slices varies from 90 to 110 in the examples, being 90 in this Figure. Figure 3.8 (b)

corresponds to the gradient image of the previous slice. Note the gradual transition

of external contours. The greedy algorithm does not achieve a fine adjustment to

the object edges, as Figure 3.8 (c) shows, and is not able to perform a segmentation

as smooth as the one obtained by the GA (Figure 3.8 (d)).

3.3.2 Segmentation of noisy images

One of the main drawbacks of the greedy search is the fall in local minima in images

with noise. On the contrary, the GA, thanks to the global search, is less sensitive

to the local minima problem as Figures 3.9 and 3.10 show. In the first case (Figure

3.9) a medium level of Gaussian noise was added to the original image. The greedy
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(a) (b) (c)

Figure 3.9: Results obtained in an image with Gaussian noise. (a) Image to segment. The

inset represents a 2D section of the image with the added Gaussian noise. (b) Segmentation

with the greedy approach. (c) Segmentation with the genetic algorithm.

(a) (b) (c)

Figure 3.10: Results obtained with irregular noise. (a) A 2D slice of the original image

with noise. (b) Segmentation with the greedy approach. (c) Segmentation with the genetic

algorithm.

method is very sensitive to noise since it can prevent the mesh contraction so the final

shape would not adequately reflect the desired segmentation. The genetic algorithm

explores globally the search space so it can avoid the local minima due to noise and

it can provide a correct final segmentation with a smooth node distribution of the

external nodes.

In the second example (Figure 3.10), we added different spots in the background

of the image of Figure 3.8, in order to test the capabilities of the GA to overcome

this kind of noise. Again, the greedy algorithm stops the mesh minimization in local

minima whereas the GA avoids the local minima due to noise and obtains a correct

and homogeneous distribution of the external nodes of the final TAV.
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3.4 Hybridization of the genetic algorithm with the lo-

cal search procedures

One of the main drawbacks of the GA is the number of generations needed to

converge to an acceptable result. As we said, the method needs some generations to

localize the object in the scene and also needs many others to progressively adjust

all the nodes to correct positions. Moreover, sometimes there are some objects

that present complex surfaces, whereas other images present more than one object.

With the original topology, the model has many restrictions to provide a correct

adjustment to all the characteristics of the segmentations required. For that reasons,

we need to introduce in the process some mechanism, firstly, to fasten the process

and, secondly, to allow the mesh more flexibility to perform better adjustments in

complex segmentations.

We combined the GA global search and the greedy local search (explained in

Chapter 2), by means of a Lamarckian strategy. This is, the greedy search is applied

to each individual of the genetic population, typically a short number of greedy steps.

A step is defined as the application of the greedy minimization to all the nodes of

the mesh. As a result, the fitness of the individuals changes. A combination using

a Lamarckian strategy means that the changes in the structures provided by the

greedy search revert to the original genotypes. Thus, all the advances performed by

the greedy method are kept in the population so the convergence is faster. Algorithm

3.4.1 describes the main process of the hybrid combination.

Other advantage of the hybrid approach is that it overcomes the limitation of

the GA implemented related to its inability to perform topological changes in the

mesh, provided by the greedy method. The combined model uses the procedures of

the local search to cut links between adjacent external nodes after the minimization

process. Figure 3.11 shows an example where the link cutting procedure is applied

to an individual of the genetic population. The object in the image contains a hole

that crosses the entire object from one side to the other. As it is shown in the

images, the method progressively cuts connections until a correct detection of the

hole is obtained.

As we explained in Chapter 2, the link cutting mechanism performs the cuts

with coherence to obtain an homogeneous process of breaking a group of links. This

is useful in images like Figure 3.11, to be able to detect the entire hole, or also to

perform the division of the mesh if we have more than one object. In this case, the

method has to be able to divide the mesh and perform the segmentation for each

one of them. Figure 3.12 shows other examples where the net division procedure
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Algorithm 3.4.1: GA-greedy algorithm hybridization(Population)

for each Individual ∈ Population

do



































































































































































steps← GenerateRandom()// between 0 and max number of steps

for i← 0 to steps

do















































































































































updatedIndividual← false

for each node ∈Model // Greedy step

do







































































































newPosition← false

Elocal ← ComputeLocalEnergy(node)

neighborP ixels← GetNeighborPixels(node)

for each pixel ∈ neighborP ixels

do































newElocal ← ComputeLocalEnergy(pixel)

if newElocal < Elocal

then











Elocal ← newElocal

newPixel← pixel

newPosition← true

if newPosition

then

{

SetCoordinates(node, newPixel)

updatedIndividual← true

if not updatedIndividual

then TopologicalChanges()
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(a) (b)

(c) (d)

Figure 3.11: Example of segmentation with a breaking sequence. (a) Individual before

breaking. (b) and (c) Intermediate steps. (d) Final result after breaking.
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(a) (b)

Figure 3.12: Example of segmentation with several objects in the scene. (a) Segmentation

of a synthetic image with two objects.(b) Segmentation of a CT image with two feet.

is needed, so it acts over the individuals of the population. In both examples,

corresponding to a synthetic and a real CT image, the hybrid method was capable

to divide the mesh and perform the simultaneous segmentation of both objects in

the scene.

Throughout the generations, the topology of the best individual is considered in

the rest of the population of the next generation. It means that, if the topology of an

individual changes by the application of the link cutting or automatic division pro-

cedures, and it is the best individual, then such topology is “exported” to the other

individuals. Additionally, in our implementation, the iterations of the greedy search

(with the associated link cutting and net division procedures) are only performed

in particular generations of the evolutionary process, beginning in the second evo-

lutionary phase. That number was typically a random value between 1 and 6. The

reason is to incorporate all the advantages of the local search procedures avoiding a

high level of exploitation provided by such methods.

3.5 Results with the hybrid approach

The hybrid method was also tested using examples that require topological changes

through the link cutting and automatic net division procedures. We tested the

advantages of the hybrid algorithm that combines the GA with these procedures.

The combination with the local procedures occurs only in the second evolu-

tionary phase. Moreover, as we explained, these procedures are not applied in all

generations. We used them every 25 generations. When the procedures were applied
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to each individual of the genetic population, a small number of steps was used, a

random number between 1 and 6. Remember that a greedy step is defined as the

application of the greedy movements to all the nodes of the mesh. Therefore, we

did not use a great level of exploitation with the local search, which can contribute

to fall in local minima.

We also compared the hybrid approach with the greedy local search, following

the same idea as used with the GA approach. Once again, we designed some specific

images that present difficulties for the segmentation process, that is, fuzzy contours,

uniform noise and local noise. In this case we introduce a hole in the objects,

requiring topological changes. This experiments were designed to demonstrate if

the different approaches are capable to overcome the different complications in the

image and, at the same time, if the hole is correctly detected. Finally, we tested

the methods with some CT images taken from the medical domain that require all

the described characteristics. Thus, the images has different levels of noise and also

require topological changes or the division of the mesh to detect different objects.

The experiments were done under the same characteristics as depicted in Section

3.3. Regarding the energy terms, Tables 3.1 and 3.2 also include the TAV param-

eters used in these segmentation examples whereas Table 3.3 shows the GA main

parameters used in the GA segmentations.

3.5.1 Segmentation of images with fuzzy contours which require

topological changes

The first example is an image with an inner hole (Figure 3.13). Additionally, its

external contour is fuzzy as the slice of the original image inset shows. The greedy

search begins the link cutting but it gets stuck in local minima and does not obtain

an accurate final segmentation due to the fuzzy contours (Figure 3.13 (b)). The

hybrid approach combines the advantages of both global and local strategies, since

the global search avoids the fuzzy or noisy contours and the local search allows the

link cutting procedure. This way, the final TAV delimits perfectly the hole as Figure

3.13 (c) shows.

3.5.2 Segmentation of images with noise which require topological

changes

We also tested the hybrid method in images with different kinds of noise. Figure

3.14 shows the results obtained with the same image as in the previous subsection.

In this case, a medium level of Gaussian noise was added to the original image. It is

clear that the greedy method is very sensitive to noise, whereas the hybrid method
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(a) (b) (c)

Figure 3.13: (a) Image with fuzzy external contours. (b) Segmentation with the greedy

approach. (c) Segmentation with the hybrid algorithm.

(a) (b) (c)

Figure 3.14: (a) Results obtained with an image with Gaussian noise. (b) Segmentation

with the greedy approach. (c) Segmentation with the hybrid algorithm.

overcomes the noise problem. The example in Figure 3.15 includes several spots in

the original image. Once again, the results indicate that the greedy method cannot

achieve the desired segmentation. Nevertheless, the hybrid combination overcomes

this type of noise at the same time that performs correctly the topology adaptation

through the link cutting procedure.

Figure 3.16 presents an example in the medical domain. In this case, the hybrid

process is tested with a humerus composed by CT slices, as the one shown in Figure

3.16 (a). Note the high level of noise of the CT slice. As the aim is the segmen-

tation of the bone, the optimization algorithm must overcome the external contour

corresponding to the flesh, in addition to the noise surrounding the bone. Figure

3.16 (b) is a 3D reconstruction from the 2D slices. Once again, the greedy algorithm

is not able to achieve a fine segmentation (Figure 3.16 (c)) meanwhile the hybrid

algorithm obtains a correct result in this type of real images with noise and fuzzy

contours (Figure 3.16 (d)).
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(a) (b) (c)

Figure 3.15: (a) Image with irregular noise. (b) Segmentation with the greedy approach.

(c) Segmentation with the hybrid algorithm.

(a) (b)

(c) (d)

Figure 3.16: (a) Slice of the CT images set. (b) 3D representation of the humerus. (c)

Segmentation with the greedy approach. (d) Segmentation with the hybrid algorithm.
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3.5.3 Segmentation of images with several objects

One particular case in the segmentations which require topological changes is the net

division in subnets to segment several objects in the image. We tested the hybrid

version in artificial and real images with several objects. Figure 3.17 shows an

example of segmentation in a real domain. The image is composed with a sequence

of CT images that contain two bones, a tibia and a fibula. Figure 3.17(a) represents

a slice of this CT image set. Figure 3.17(b) shows the 3D reconstruction from

the 2D slices. In addition of the fuzziness of the contours of the two bones, the

external contour of the leg introduces a contrast in the background gray level that

the algorithms must overcome. Due to this, the greedy approach cannot achieve

a correct segmentation (Figure 3.17(c)) meanwhile the hybrid algorithm overcomes

the external contour and the image noise to provide a correct division of the subnets

(Figure 3.17(d)). Note that the bigger bone requires the link cutting procedure to

segment the hole of its internal part. The other bone is very small for a perfect

representation and would require a mesh with a higher node density.

3.6 Discussion

We presented new approaches to the energy minimization task in the Topological

Active Models. Genetic algorithms were used in conjunction with the TAV and

TAN models in order to find the lowest mesh energy, this is, the best fit to the scene

objects. We proposed new operators, whereas the classic ones, such as the crossover

or the mutation operator, were adapted to the problem. In addition, we used a

hybrid Lamarckian combination of the greedy local search with the global search of

the genetic algorithm.

The genetic algorithm developed was tested with several images. The set of

images used presented different difficulties to demonstrate the robustness of the

global search method that was proposed, especially in comparison with the greedy

local search that falls in local minima as soon as complications arise in the image to

be processed. In all the examples, the new approach achieved a correct adjustment to

the objects and improved the results of the greedy algorithm. The genetic algorithm

was not sensitive to noise and it obtained correct segmentations in images with fuzzy

contours. The hybrid approach was useful in images that require the use of the

topological changes provided by the local search, together with the advantages of

the global search. The approach obtained correct segmentation results in images

with several objects or complex surfaces.

Table 3.4 compares the main characteristics of the proposed genetic approaches
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(a) (b)

(c) (d)

Figure 3.17: Image with several objects. (a) Slice of the CT images set. (b) 3D represen-

tation of the tibia and fibula. (c) Segmentation with the greedy approach. (d) Segmentation

with the hybrid algorithm.

Table 3.4: Comparison between the greedy local search and the GA approaches.

Greedy

method

GA method Hybrid GA-

Greedy

Boundary detection Good Very good Very good

Sensitivity to fuzzy

boundary

Very high Very low Very low

Sensitivity to noise Very high Very low Very low

Topological

Changes

Yes No Yes

Execution time Very low High Medium
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and the greedy method previously implemented.

The main advantage of the proposed GA approaches remains in the robustness,

as we could see in the segmentations in complex images. The proposed methods can

reach acceptable results working with different complications in the image, like noise

or fuzzy contours. However, the proposed methods presents some drawbacks. The

most important one is the complexity of the method. We have to use a large set of

genetic operators that evolve a population during a large number of generations until

we can reach an acceptable result. Moreover, as other single-objective minimization

techniques, we need to tune the energy parameters to choose those ones that provide

the desirable results. The approaches presented in next chapters are introduced to

solve or minimize these problems.



Chapter 4

Optimization of Topological

Active Models by means of

Differential Evolution

4.1 Introduction

The proposed GA provides correct results working under different kind of conditions,

as we explained in Chapter 3 using images with the presence of fuzzy contours

or different kinds of noise. However, the proposed method presents some specific

drawbacks. One of the main problems comes from the set of genetic operators that

were proposed in the method. Each of the operators has a probability associated

that needs to be tuned for each possible segmentation. Moreover, it is desirable to

obtain faster convergences in the segmentations with respect to the slow convergence

of the GA. For that reason, we developed different improvements in the evolutionary

approaches used.

One of these improvements was the use of Differential Evolution as an optimiza-

tion method of the segmentation model. Differential Evolution is an alternative

evolutionary method [77, 78] that minimizes the decisions of the designer with re-

spect to others such as genetic algorithms. This new approach substitutes the entire

set of genetic operators of a GA for the new one defined in Differential Evolution.

The rest of the steps of application of the evolutionary algorithm to the optimiza-

tion of the segmentation model are the same as the ones proposed in the basic GA

already explained.

Furthermore, we hybridized Differential Evolution with the greedy search to

integrate the advantages of global and local searches at the same time that the seg-
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Figure 4.1: Example of 2D calculation of a candidate solution (Xcandidate) to replace a

given individual X.

mentation speed is improved, following the same idea as the hybridization proposed

with the genetic algorithm. We also included in the local search the possibility of

topological changes to perform a better adjustment in complex surfaces, topological

changes that introduce the necessary mechanism to divide the mesh in the case of

the presence of several objects in the scene.

4.2 Differential Evolution

Differential Evolution (DE) [77, 78] is a population-based search method. DE creates

new candidate solutions by combining existing ones according to a simple formula

of vector crossover and mutation, and then keeping whichever candidate solution

has the best score or fitness on the optimization problem at hand. The central idea

of the algorithm is the use of difference vectors for generating perturbations in a

population of vectors. This algorithm is especially suited for optimization problems

where possible solutions are defined by a real-valued vector. The basic DE algorithm

is summarized in the pseudo-code of Algorithm 4.2.1. For each individual x of the

population, DE determines a candidate y, using the difference vector between two

different vectors x2 and x3 (randomly chosen, which is summed to a base vector x1).

If the new vector is the best in terms of fitness, then it replaces the x vector. So, the

population converges progressively to the best optimums found. Figure 4.1 shows a

2D example that illustrates the different vectors that are involved in the production

of a given candidate Xcandidate for each individual X.
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Algorithm 4.2.1: Differential Evolution(Population)

for each Individual ∈ Population

do
{

Individual← InitializeRandomPositions()

repeat

for each Individual x ∈ Population

do



















































































x1, x2, x3 ← GetRandomIndividual(Population)

// must be distinct from each other and x

R← GetRandom(1, n) // the highest possible value n is the

// dimensionality of the problem to be optimized

for each i ∈ 1 : n

// Compute individual’s potentially new position y = [y1, ..., yn]

do











ri ← GetRandom(0, 1) // uniformly in open range (0,1)

if ((i = R) || (ri < CR)) yi = x1i + F (x2i − x3i)

else yi = xi

if (f(y) < f(x)) x = y // replace x with y in Population

until TerminationCriterion()

return (GetLowestFitness(Population)) // candidate solution
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One of the reasons why Differential Evolution is an interesting method in many

optimization or search problems is the reduced number of parameters that are needed

to define its implementation. The parameters are F or differential weight and CR

or crossover probability. The weight factor F (usually in [0, 2]) is applied over the

vector resulting from the difference between pairs of vectors (x2 and x3). CR is the

probability of crossing over a given vector (individual) of the population (x) and

the candidate vector y. Finally, the index R guarantees that at least one of the

parameters (genes) will be changed in such generation of the candidate solution.

As Feoktistov [34] indicates, the fundamental idea of the algorithm is to adapt

the step length (F (x2 − x3)) intrinsically along the evolutionary process. At the

beginning of generations the step length is large, because individuals are far away

from each other. As the evolution goes on, the population converges and the step

length becomes smaller and smaller.

In our application each individual encodes a topological model. The genotypes

code the Cartesian coordinates of the nodes. If a component of a mutant vector

(candidate solution) goes off its limits, then the component is set to the bound limit.

In this application it means that, in order to avoid crossings in the net structure,

each node coordinate cannot overcome the limits established by its neighbors.

Moreover, the usual implementation of DE chooses the base vector x1 randomly

or as the individual with the best fitness found up to the moment (xbest). To avoid

the high selective pressure of the latter, the usual strategy is to interchange the two

possibilities across generations. Instead of this, we used a tournament to pick the

vector x1, which allows us to easily establish the selective pressure by means of the

tournament size.

4.3 Differential evolution results and comparison with

a genetic algorithm

This section presents some representative segmentation examples of several images.

The examples were selected to show the capabilities of the proposed method and

also to compare it with respect to the previous GA approach. In all the examples,

the same image was used as the external energy for both internal and external

nodes, and all the test images had 256 gray levels. In the 3D case, the input to the

algorithms is a set of consecutive slices with such properties. In the 3D examples we

used between 90 and 200 slices in the different examples. The selected 2D and 3D

segmentation examples show the capabilities and advantages of the DE approach and

its hybridization with a greedy local search, including noisy images, segmentations
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with necessary topological changes and with the need of the division of the mesh.

All the processes used a population of 1000 individuals and took a number of

generations between 400 and 2000. Regarding the DE algorithm, the tournament size

to select the base individual x1 in the DE runs was 3% of the population. We used a

fixed value for the CR parameter (1.0), whereas we used a maximum value of 0.6 for

the F parameter. In the different applications of the equation which determines a

candidate solution (Algorithm 4.2.1), we used a random value for F between 0.2 and

such maximum value (for each node), parameters that were experimentally tuned

to provide the best results in most of the images. This allows that each node can

move its position in a different intensity, although in the direction imposed by the

difference vector (x2 − x3), which facilitates that each node can independently fall

in its best location, such as the object boundaries in the case of the external nodes.

This strategy provided us with the best results in all the images.

Table 4.1 includes the energy parameters used in the segmentation examples.

Those were experimentally set as the ones in which the corresponding algorithm

gave the best results for each kind of image. If two evolutionary phases are used (as

explained next), these parameters correspond to the second evolutionary phase.

First, we tested the advantages of DE in our application compared with a classic

Genetic Algorithm (GA). In the previous chapter we defined the genetic operators

used with a GA: arithmetic crossover, mutation of a node, mutation of a group of

neighboring nodes, shift of a mesh and spread of a mesh. We also reasoned about

the definition of two evolutionary phases that are necessary to obtain correct results

in any image. The two phases are: a first one, whose aim is to produce a population

of individuals that cover the object in the image, and a second one, with a different

set of energy parameters, to refine the adjustment. So, the first phase provides a

rough boundary detection meanwhile the second phase provides a better boundary

segmentation and a better distribution of nodes. In the first phase, to obtain a

rough boundary detection, the parameters were tuned giving high importance to

the gradient distance energy term meanwhile the internal energy parameters took

low values. These two phases are necessary as with only one phase it is easy to

fall in local minima because the internal energy parameters tend to compress the

mesh. This problem can be seen in Figure 4.2, 1strow, with an example in the 2D

domain for a better comprehension, where the best individuals only cover a part of

the object. Meanwhile, the classic GA process with the two phases, can firstly cover

the object and secondly refine a final correct result, as shown in Figure 4.2, 3rd row.

The problem of falling in local minima, as shown in Figure 4.2, 1strow, can

be solved with the initialization of the population with individuals with a minimum
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Table 4.1: TAN and TAV parameter sets used for the segmentation of the image examples

(γ is only used in 3D cases).

Figure Size α β γ ω ρ ξ δ τ

4.2 10× 8 1 2.5 - 10 4 5 10 20

4.3 8× 8 3.5 5 - 10 4 5.5 8 10

4.4,4.5 5× 5× 5 0.5 10 0.1 10 4.5 5.0 8 20

4.6 8× 8 2 5 - 10 4 5 6 40

4.7 5× 5× 10 2 5.5 1 10 4 5 10 10

4.8 (a) 10× 10 5 1 - 10 4 1 20 10

4.8 (b) 10× 10 3 5 - 1 4 0 5 30

4.8 (c) 8× 8 5 2 - 20 4 0 10 10

4.8 (d) 8× 8 1.5 2.5 - 10 4 1 5 5

4.9 12× 12× 12 5.5 2.5 2.5 10 4.5 1 10 5

4.10 (a) 14× 11 10 1 - 10 4 5 2 0

4.10 (b) 9× 9 10 1 - 10 4 5 10 4

4.10 (c) 18× 17 7 2 - 10 4 2 10 4

4.11 1st row 9× 7× 6 0.1 2.5 0.1 10 2 1 20 5

4.11 2nd row 10× 10× 5 5 4 2.5 10 4.5 0.1 10 0

4.12 (a),(b) 15× 15 10 1 - 10 4 5 2 0

4.12 (c) 15× 15 10 1 - 10 4 0 10 10

4.13 1st row 16× 6× 8 0.5 1.5 0.5 10 4.5 0.1 10 2

4.13 2nd row 8× 8× 6 10 0.0001 0.0001 10 2.5 1 5 0
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Figure 4.2: Comparison of evolutionary methodologies in 2D. The four figures in each row

correspond with the best individual at different generations, from the initial generation to

the best found result at the end of the evolutionary process. 1st row, classic GA process,

one evolutionary phase and initial random individual sizes. 2nd row, classic GA process,

one evolutionary phase and initial large individual sizes. 3rdrow, classic GA process, two

evolutionary phases. 4th row, differential evolution process.
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Figure 4.3: Best individual fitness (energy) and average fitness of the population with

the different evolutionary processes in 2D. The curves are an average of 20 different runs

with different initial populations. Insets: Best temporal result after the given number of

generations.

large size. Thus, these individuals can cover the possible objects present in the scene

avoiding the possible falls in parts of them. An example of this solution with the GA

process with only one phase can be seen in Figure 4.2, 2ndrow, where the individuals

cover the entire object and, thanks to the mutation and group mutation operators,

converge progressively to the object contour. However, this solution implies a very

slow convergence, as we show later. Nevertheless, the same idea is useful with the

proposed differential evolution process. Hence, we can tune only one set of energy

parameters to be used with only one evolutionary phase. An example of evolution

of the best individual with DE is shown in Figure 4.2, 4throw.

We simplified the genetic process with the proposed DE methodology because

the set of genetic operators (crossover, mutation, group mutation, spread and shift

of the GA) was avoided. Moreover, the convergence was faster. An example of

comparison in 2D is shown in Figure 4.3. This Figure compares the evolution of the

best energy (fitness) and the average energy of the population over the generations

using DE, a GA with only one phase and a GA with two evolutionary phases, using

the initializations explained before and using a simple artificial image. In the last

case, the graph shows only the evolution of the second phase, from generation 100,

as the energy of the first phase is not comparable because of the different energy

parameters. Moreover, these fitness evolutions were the result of an average of 20

different evolutionary processes with different initial populations.

As it can be seen, the convergence of the GA process with one phase (dashed

lines) is the worst because the large initial individuals have to be progressively
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Figure 4.4: Best individual fitness and average fitness of the population with the different

evolutionary processes in 3D. The curves are an average of 20 different runs with different

initial populations.

approximated to the boundary of the object. As explained before, this is solved

with the definition of the two different evolutionary phases in the GA process with

different tasks (dotted lines). However, with the DE process, with only one phase

and initial large individuals we obtain a significant faster convergence (solid lines).

We performed the comparison of the evolutionary methodologies in the 3D do-

main following the same idea of the 2D case. Figure 4.4 compares the evolution of

the energy of the best individual and the average energy of the population over the

generations, using again DE, a GA with only one evolutionary phase and a GA with

two phases. As in the 2D case, we performed 20 different runs of the algorithms

to obtain the average quality evolutions shown in the Figure. This comparison was

made testing the different approaches in the object of Figure 4.5, using the same

energy parameter set in all cases.

In Figure 4.5 the best individual at different generations with all the mentioned

processes is shown. We can see intermediate results in generations 50 and 200

(1st and 2nd columns) and the final result (3rd column). As it can be seen in

the intermediate results, the GA with only one phase and large initial individuals

(1st row) moves slowly the external nodes to the object boundary, situation that

is overcome with the GA with 2 phases (2nd row). In this case, the first phase is

focused on surrounding the contour of the object so we obtain the external nodes

well placed in less generations. However, the DE approach, with only one phase and

large initial individuals (3rd row), thanks to the way that it produces new individuals

can quickly obtain a population surrounding the object, producing a faster correct

segmentation with a correct distribution of nodes.
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Figure 4.5: Best individual across generations (50, 200 and final generation) in different

evolutionary processes in 3D. Inset in 2nd row: slice of the original image. 1st row, classic

GA process, one evolutionary phase. 2nd row, classic GA process, two evolutionary phases.

3rdrow, differential evolution process.
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4.4 Hybridization of the evolutionary and local search

algorithms

Once we demonstrated the faster convergence of the new evolutionary approach, we

proceeded to hybridize the DE method with the greedy local search, following the

same methodology as the combination performed with the GA. As we explained in

the previous chapter, the main idea was to integrate the advantages of global and

local searches, and to obtain faster segmentations. A number of greedy steps was

applied in all the genotypes of the population used by the DE process. A greedy

step implies the application of the greedy movements in all the nodes of the encoded

model. The number of steps was a small number (randomly between 0 and 4) to

minimize the falling in local minima. Moreover, with this aim, the greedy algorithm

was applied only in particular generations of the evolutionary process, typically every

10 generations.

Once again, this combination also introduces, thanks to the greedy approach, the

link cutting procedure and the automatic division of a mesh. As explained before,

it gives flexibility to the segmentations by breaking connections to perform better

adjustments. In particular, the link cutting procedure is applied to the best indi-

vidual of the population when the greedy method cannot perform more movements.

The resulting topology is extrapolated to the entire population.

4.5 Hybridization of differential evolution and the greedy

search results

We combined DE with the greedy local search procedures, detailed in the previous

chapter, with two aims: to integrate the advantages of global and local searches,

and to obtain faster segmentations. As in the hybridization with a GA, the hybrid

approach followed a Lamarckian strategy since the results of the greedy search re-

vert in the original genotypes used by DE. The characteristics and parameters of

the segmentation examples are following the same idea as depicted in Section 4.3.

Regarding the energy terms, Table 4.1 also include the different TAM parameters

used in these segmentation examples.

Figure 4.6(a) shows different evolutions of the best individual over the genera-

tions using different configurations of the hybrid approach and compared with the

DE and the greedy approach, in the 2D domain. In this case, the greedy steps were

applied to the individuals each 10 generations. The graphs of fitness evolution were

an average of 10 evolutionary runs of the corresponding algorithm with different
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(a)

(b)

(c)

Figure 4.6: (a) Best individual evolution comparing the DE approach with different hybrid

approaches and the greedy method in 2D. (b) Best final result with the greedy method. (c)

Best final result of the hybrid approach with greedy steps between 0 and 4.

initial populations. As the graphic shows, the more greedy steps are used, the faster

the energy minimization is, but the higher is the predominance of the greedy mini-

mization with respect to the DE minimization. So, we can use a hybrid combination

that uses a relative small number of greedy steps to speed up the process without

penalizing the robustness of the DE methodology. Finally, we point out the poor

segmentation provided by the greedy approach that gave a result with several nodes

stuck in the local noise included in the image used (Figure 4.6(b)). This is a CT

image of the knee with external noise, where the internal nodes must escape from the

internal knee bones. Meanwhile, the hybrid approach (with greedy steps between 0

and 4 in this case) was able to overcome these difficulties (Figure 4.6(c)).

The same comparison was performed in the 3D case. Figure 4.7, upper graph,

shows different evolutions following the same methodology as in the 2D case applying

the greedy steps every 10 generations. The example corresponds to a 3D image of

a humerus composed by CT slices, where the nodes have to overcome the flesh

surrounding the bone. The greedy approach provided a poor segmentation with

all the nodes stuck in the flesh contour (Figure 4.7(b)). Meanwhile, the hybrid

approach (Figure 4.7(d), with greedy steps between 0 and 4 in this case) was able

to overcome these difficulties, obtaining even a better segmentation than DE alone

(Figure 4.7(c)). The greedy method, incorporated in the hybrid approach, also helps

to obtain a more homogeneous internodal distribution and even to find a better

adjustment through the external nodes with respect to the DE method. This can

be seen in Figure 4.7, upper part, where the hybrid combinations reached a lower

energy value.
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(a) (b) (c) (d)

Figure 4.7: Upper graph, best individual evolution comparing the DE approach with

different hybrid approaches and the greedy method in the 3D case. Bottom part, (a) CT

slice of the humerus, (b) final result with the greedy method, (c) final result with DE, (d)

final result with the hybridized DE, greedy steps between 0 and 4.
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(a) (b) (c) (d)

Figure 4.8: Best final results obtained using the hybridized DE in noisy 2D images. (a)

Uniform Gaussian noise added. (c) Spots added as noise. (c) CT noisy image. (d) Segmen-

tation of an optic disc.

(a) (b) (c)

Figure 4.9: Final result obtained using the hybridized DE in a CT noisy 3D image. (a)

Slice of the CT image of feet. (b)(c) Different points of view of the optimized mesh.

Figures 4.8 and 4.9 show different representative segmentation examples with a

high level of difficulty. In this case, we used the depicted hybrid method, applying

a random number of greedy steps between 0 and 4 to all the individuals each 10

generations. In Figure 4.8, the 1st and 2nd examples are images with uniform Gaus-

sian noise and spots added as local noise over an artificial image with a hole, the

3rd is an original CT image of the skull with real noise produced by the scanner in

the bone contour and the 4th is a segmentation of the optic disc in a retinal image.

Moreover, Figure 4.9 shows an example of segmentation of a real 3D noisy image. It

consists of a medical CT image containing two feet. The greedy search was not able

to segment these images, whereas the hybrid method overcame the noise problems

providing correct segmentations.
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(a) (b) (c)

Figure 4.10: 2D image segmentations that require topological changes.

4.5.1 Segmentations that require topological changes

We included the possibility of topological changes provided by the greedy method,

as explained previously in Section 2.3.1. Hence, the models present the capability

of a better adjustment to complex objects with holes or concavities. Examples in

the 2D case are shown in Figure 4.10, with an artificial image and with two CT real

images, in particular two slices of two feet. The segmentation process with the cut

of the links in the deep concavities was performed correctly even with the high levels

of noise in such CT images.

Regarding 3D images, Figure 4.11 shows different representative medical exam-

ples with objects that require topological changes. Figure 4.11, 1st row, shows the

segmentation of a vertebra meanwhile Figure 4.11, 2nd row, the segmentation of a

humerus, both composed by CT slices. In both cases, the link cutting allows the

delimitation of the hole of the segmented objects. We can point out the correct

detection of the internal hole of the bone, even in this image where the bone is

surrounded by flesh.

4.5.2 Segmentations that require the division of the mesh

The other case that requires topological changes is the automatic division of the

initial mesh. The mechanism, associated with the link cutting procedure, was ex-

plained in Section 2.3.2, and incorporated in the hybridized DE (Section 4.4). In

this case, we used a random value for the F parameter in DE between 0.2 and 0.4.

We reduced the maximum value for F with the aim of moving the nodes slower,

avoiding the possibility of ignoring any possible object in the scene.

Thus, in Figures 4.12 and 4.13, different segmentation examples in 2D and 3D

are shown. These are different artificial and real examples taken from the medical
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(a) (b)

Figure 4.11: 3D image segmentations that require topological changes. (a) Original image.

(b) Final results.
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(a) (b) (c)

Figure 4.12: 2D image segmentations that require division of the mesh.

domain which present different levels of noise (especially the CT images). In all

the situations the method provided correct results. Note that the segmentation

overcomes the noise problem of the external contour of the flesh in the CT images

as well as the high levels of noise around the bones to be segmented. In the second

example of Figure 4.13 (2nd row), the two procedures of the link cutting performed

simultaneously the division of the 3D mesh and the delimitation of the internal hole

of the largest bone, acting in different parts of the initial mesh and reaching a correct

segmentation of the two objects.

Regarding computation times, the algorithms were run in an Intel Core 2 at 2.83

GHz. For example, regarding 2D and the representative example of Figure 4.6, the

evolution of the DE approach across the 250 generations (1000 individuals) required

an average time of 8 minutes, whereas the hybrid combination (with steps between

0 and 4) required an average time of 4 minutes to obtain the same fitness as the DE

alternative (in generation 100).

Regarding 3D and Figure 4.7, the evolution of the DE approach across the 600

generations (1000 individuals used in this example) required an average of 95 min-

utes, whereas the hybrid combination (steps between 0 and 4) required an average

time of 8 minutes to obtain the same fitness as the best value of the DE alternative

(in generation 50).

4.6 Discussion

As we explained, the proposed GA approach presented some important disadvan-

tages we tried to overcome. In this chapter, an alternative evolutionary method for

the optimization of the Topological Active Model was proposed. The DE approach

we implemented introduced some important advantages with respect to the classic
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(a) (b)

Figure 4.13: 3D image segmentations that require division of the mesh. (a) Upper figure:

3D reconstruction of the original image; Bottom figure: 2d CT slice of the humerus. (b)

Final results.
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Table 4.2: Comparison between the GA and DE approaches.

GA method Hybrid GA-

Greedy

DE method Hybrid DE-

Greedy

Number of genetic

operators

5 5 1 1

Number of genera-

tions needed

High Medium Medium Low

Topological

Changes

No Yes No Yes

Phases needed 2 2 1 1

Execution time High Medium Medium Medium - low

GA algorithm. Table 4.2 details the main differences of the proposed DE approaches

with respect to the previous GA ones. In particular, the set of genetic operators

of the GA was replaced by a single one, which implied more simplicity in order to

minimize the decisions that have to be made by the designer. Moreover, the GA

method required different evolutionary phases with different objectives and weights

of the energy parameters. Both phases were integrated in a single one using DE.

The proposed method also provided a faster convergence and better results, as it

was shown in the graphics of quality evolution.

Moreover, it was developed a hybrid combination of the DE approach with the

greedy local search, following the same methodology previously used with the GA

method, integrating the advantages of both strategies: the global search of DE over-

come the possible presence of noise in the images, whereas the greedy search helped

to speed up the segmentation. Additionally, the hybrid combination introduced the

possibility of topological changes to perform better adjustments and segmentations

in complex surfaces or even the detection and segmentation of several objects in the

scene.





Chapter 5

Evolutionary Multiobjective

Optimization as an alternative

approach to the optimization of

the Topological Active Model

5.1 Introduction

One of the main drawbacks of the genetic algorithm was improved with the use of

Differential Evolution (DE). However, the GA or DE approaches present other im-

portant drawback that should be overcome. As explained before, those evolutionary

algorithms assign a fitness to each individual according to the energy associated

to the model. This energy is composed by different energy components that are

weighted by different energy parameters. Thus, in order to obtain correct segmenta-

tions, an experimental tuning of the weights of the energy components was necessary

when a greedy local search algorithm or global search methods such as the proposed

GA and DE algorithms were used in the minimization task. So, we needed to per-

form a parameter tuning in each segmentation process to select those ones that

provided a correct result, and such tuning usually depended on the kind of image

to segment.

Multiobjective Optimization Algorithms (MOAs) give a solution to this problem

by considering the optimization of several objectives in parallel. The MOAs usually

work with conflicting objectives trying to identify a set of optimal trade-off solutions

which is called the Pareto Set. This set is formed by the nondominated solutions,

that is, those solutions that have no other with equal values, and at least one better,

75
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in the different objectives. Multiobjective Optimization Evolutionary Algorithms

(MOEAs) [48][28] use the principles of evolutionary computing to the search of

the Pareto Set. We used one of the best established algorithms of this type, the

SPEA2 algorithm [110]. We tested in this chapter the improvements and problems

between the use of a multiobjective optimization technique versus the use of a genetic

algorithm or the DE algorithm (single-objective optimization) in our application of

the optimization of the deformable model.

To our knowledge, the only work that used a MO approach to the optimization of

deformable models was the work of Séguier and Cladel [83], where a multiobjective

optimization of different energy components was developed to the optimization of

snakes in an audio-visual speech recognition task. The authors optimized two snakes

to fit the external and interior lips contours, using only a small limited number of

contour points for each snake. After the evaluation of the snakes energy components,

the chromosomes were ranked and, this way, the Pareto optimal solutions were

searched. According to the authors, the multiobjective optimization required less

iterations than an usual genetic optimization.

In the following sections we detail the main characteristics of the different evolu-

tionary multiobjective approaches that were developed. We also show the results and

comparisons to justify the advantages and improvements of the proposed methods

with respect to the previous single-objective ones.

5.2 Evolutionary multiobjective optimization

Optimization problems with multiple objectives, often conflicting, arise in a natural

fashion in most real-world applications. Multiobjective Optimization Algorithms

(MOAs) try to identify a set of optimal trade-off solutions, the Pareto Set, between

the conflicting objectives. If we consider k objectives to be maximized/minimized,

and all are equally important, a solution to the problem can be specified in terms

of a decision vector (x1, x2, . . . , xn) in the decision space X. To each solution is as-

signed an objective vector (y1, y2, . . . , yn) in the objective space Y . MOAs apply the

concept of Pareto dominance to search for the solutions of the Pareto set: supposing

we want to minimizes the objectives, an objective vector y1 dominates another ob-

jective vector y2 (y1 ≻ y2) if no component of y1 is greater than the corresponding

component of y2 and at least one component is smaller. The optimal solutions of

the Pareto Front are those nondominated by any other solution, so there may exist

different optimal solutions that represent different trade-offs between the objectives.

Figure 5.1 shows an example of Pareto Set considering two objectives.
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Figure 5.1: Example of Pareto Set using 2 objectives.

Multiobjective Optimization Evolutionary Algorithms (MOEAs) [48][28] use the

principles of evolutionary computing to the search of the Pareto Set. As indicated by

Deb [28], using evolutionary algorithms is a highly effective way of finding multiple

effective solutions in a single simulation run, so several MOEAs have emerged in

the last years adapted to the multiobjective optimization purpose. We used in this

work one of the best established algorithms, SPEA2 [110]. It was not our purpose

the comparison of the capabilities of these algorithms, as our aim was to compare

the advantages and problems that add the multiobjective optimization techniques

in our application.

5.2.1 The SPEA2 algorithm

SPEA2 [110] is an improved version of the Strength Pareto Evolutionary Algorithm

(SPEA) [111]. The new version incorporates a fine-grained fitness assignment strat-

egy, a density estimation technique, and an enhanced archive truncation method.

Algorithm 5.2.1 includes the description of the steps of the SPEA2 procedure as

described in [110].

The algorithm considers, in each generation t, a regular population Pt and an

archive P t (external set). This archive represents the set that will contain the

nondominated solutions and possibly some dominated solutions if the number of
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Algorithm 5.2.1: SPEA2 main loop()

N ← 0 // Population size

N ← 0 // Archive size

T ← 0 // Maximum number of generations

A(Output)← 0 // Nondominated set

Step 1 : Initialization()// Generate an initial population P0 of size N and create the empty

// archive P 0 = ∅ of size N . Set t = 0.

while No Termination criterion satisfied

do































































































































































Step 2 : Fitness assignment()// Calculation of fitness of Pt and P t individuals

Step 3 : Environmental Selection()

// Copy all nondominated individuals in Pt and P t to P t+1.

if size of P t+1 > N

then reduce P t+1 by means of the truncation operator.

if size of P t+1 < N

then fill P t+1 with dominated individuals in Pt and P t.

Step 4 : // Termination

if t > T (or any other stopping criterion)

then

{

Set A to the set of decision vectors represented by the nondominated

individuals in P t+1. Stop().

Step 5 : Mating Selection()

// Perform binary tournament selection with replacement on P t+1 in order to fill

// the mating tool.

Step 6 : Variation()

// Apply recombination and mutation operators to the mating pool and set Pt+1

// to the resulting population.

// t← t+ 1. Go to Step 2.
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nondominated solutions is less than its size. The size of the archive (N) is fixed and

initially the archive is empty (P 0 = ∅). Here we describe the main aspects of the

algorithm steps:

Step 2: Fitness assignment. In this step, the fitness assignment takes into ac-

count both dominating and dominated solutions and incorporates density in-

formation into its calculation. First, each individual i is assigned a strength

value:

S(i) = |{j|jǫPt + P t ∧ i ≻ j}| (5.1)

Where |.| denotes the cardinality of the set and the symbol ≻ corresponds to

the Pareto dominance relation. Thereafter, a raw fitness R(i) is calculated

based on the strength value for each individual:

R(i) =
∑

j∈Pt+P t,j≻i

S(j) (5.2)

This raw fitness of an individual i is calculated using the strengths of its

dominators in both the archive and population set. This use of both sets is a

distinguishing difference between SPEA and SPEA2. This way, the individuals

of the Pareto set have a value R = 0, whereas a high value of R means that

the individual is dominated by many other individuals.

If the individuals have the same raw fitness values a density estimation tech-

nique is incorporated to discriminate between them. The specific estimation

technique is an inverse distance of the k − th nearest neighbor. This is im-

plemented by calculating the distance of each individual to each member of

the archive set and population. This distance is calculated in objective space

and the results are stored in a list that is sorted in increasing order. The

k − th element gives the distance sought and is represented by σk
i , where k is

equal to the square root of the sum of the population size and the archive size.

Thereafter, a density D(i) is then calculated using the equation:

D(i) =
1

σk
i + 2

(5.3)

The sum considered in the denominator is used to ensure that its value is

greater than zero and D(i) < 1.

Finally, adding the density metric to the raw fitness, the individual fitness

value is calculated as:
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F (i) = R(i) +D(i) (5.4)

As explained in [110], the run-time of the fitness assignment procedure is

O(M2logM), while the calculation of S and R values is of complexity O(M2),

where M = N +N .

Step 3: Environmental selection. This step incorporates the environmental se-

lection, that defines how the archive maintains the Pareto Front. In contrast

to SPEA, the archive set size is fixed, so SPEA2 uses a truncation method

that preserves boundary points. In this step all nondominated individuals in

Pt and P t are copied to P t+1. The archive size constraint (N), chosen by the

user, is checked for P t+1. This is done using the truncation operator.

The archive update operation is performed as follows. First, all the nondom-

inated individuals are copied into the archive set. If the nondominated set is

equal in size to the predetermined archive set size the archive update operation

is complete. Otherwise, there can be two situations: Either the archive is too

big or it is too small. For the former, the best N − |P t+1| dominated indi-

viduals in the previous archive and population are copied to the new archive.

For the latter case an archive truncation procedure is employed that itera-

tively removes individuals from P t+1 until |P t+1| = N . At each iteration that

individual i is chosen for removal for which i ≤d j for all j ∈ P t+1 with

i ≤d j :⇔ ∀0 < k < |P t+1| : σ
k
i = σk

j ∨

∃0 < k < |P t+1| : [
(

∀0 < l < k : σl
i = σl

j

)

∧ σk
i < σk

j ]
(5.5)

where σk
i is the distance of individual i to its k− th nearest neighbor in P t+1.

This procedure can be summarized as follows: The individual which has the

minimum distance to another individual is chosen at each stage; if there is more

than one individual with minimum distance the tie is broken by considering

the second smallest distances and so on and so forth.

Steps 4-6 The termination condition check is next (Step 4). If t > T (where T is the

maximum number of generations) or some other stopping criteria is satisfied,

then set A to the set of decision vectors represented by the nondominated

individuals in P t+1 and then stop.

In Step 5, if the stopping condition is not met, then mating selection is per-

formed. Binary tournament selection with replacement on P t+1 is used to fill

the mating pool.
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Finally, in Step 6, recombination and mutation operators are applied to the

mating pool and set Pt+1 to the resulting population. Increment the generation

counter and go to Step 2.

5.2.2 Changes incorporated for our application

First of all, we developed the adaptation using the characteristics of the proposed

GA method. Additionally, once again, we replaced the GA with the proposed DE,

adaptation that will be explained in Section 5.4.

There are some simple adaptations of the previous algorithm for our application.

For example, in the initialization step we used the same method applied for the GA

to define the initial TAMs of the genetic population. In step 5, we incorporated the

possibility of a window of individuals to perform the tournament operator instead

of the binary tournament used in the original SPEA2. In step 6, we applied to the

mating pool our arithmetical crossover and mutation operators, as well as the other

ad hoc operators, that is, the whole set of genetic operators described in Chapter 3.

In addition, we refined the use of the k-distance used in SPEA2 to discrimi-

nate the individuals with the same raw fitness (step number 2). SPEA2 algorithm

calculates the distance of each individual i to all the individuals in archive and pop-

ulation. The results are sorted in increasing order and then the k− th element gives

a distance σk
i . The authors in [110] used a value of k equal to the square root of the

sum of the population size and the archive size. The value is used to finally calculate

the density D(i) and the final fitness value (Equations 5.3 and 5.4).

We found that this value of k is a bit arbitrary to establish the level of clustering

in an area of the Pareto Front, that is, how many close neighbors an individual of

the Pareto Front has. For a close group of individuals, the k value can correspond

to an isolated individual so that value can deceive the aim of the density estimation

technique. Instead of this, we calculated an average k-distance. First, after sorting

the list of distances for each individual in increasing order, we consider only a window

of the list represented by the 8th part of the closest individuals. Finally, the distance

σk
i is an average over the k-distances that represent the 25%, 50%, 75% and 100%

positions on that window. That way, the distance σk
i gives a more accurate view

of the level of neighborhood of an individual, and with emphasis in the immediate

neighborhood. Figure 5.2 shows an example of the neighborhood considered for the

calculation of the k-distance of the central node.

We also changed the idea of which individuals are taken into account to calcu-

late the distances. As we explained, the density weights the isolation level of the

individual inside the population. The authors in [110] took into account the dis-
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Figure 5.2: Example of the neighborhood considered for the calculation of the k-distance

of the central node.

tance between each individual and the whole population, including the external set.

However, we only considered the individuals from the Pareto Front to calculate this

density because these are the individuals that mainly perform the archive and play

the role of producing new ones for the new population. Moreover, we gained speed

because we only considered the nondominated set of individuals.

Moreover, Zitzler et al. [110] calculated the distances in objective space, whereas

we calculated the distances in the genotypic space. Zitzler et al. [110] applied

the algorithm to benchmark functions where the intervals of the different objective

functions are clearly delimited, usually the same for the different objectives. This is

not the case of our application, where the values of the different objectives (energy

components) can vary in a great interval and even different scales, and it is not clear

how to normalize the different energy components. Nevertheless, the distances taken

over the genotypic space give us the required level of clustering of individuals in a

specific area of the search space and especially in the Pareto Front. Additionally,

it is clear that two individuals close in the genotypic space (their coordinates) also

have a similar level of neighborhood in the objective space, that is, in their energy

values.

Finally, we incorporated elitism, now defined over each of the individual objec-
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tives. This means that we maintain in the next generation (in the external archive)

the best individuals that minimize each one of the objectives. That manner, we

maintain these best individuals of the extremes of the Pareto Front. We use this

option with the objectives that the user can consider as the most important to mini-

mize, as can be the case of the gradient distance that optimizes the external contour

segmentation of objects.

5.2.3 Evolutionary phases

In the case of the segmentations with GAs, as we mentioned, we used two evolu-

tionary phases (avoiding the 3rd that is less relevant). A first one was focused on

exploration with the aim of covering or centering the individuals around the objects,

and a second one focused on exploitation in order to obtain better adjustments and

internal distribution of nodes. The two phases require different energy parameters,

and the two parameter sets were experimentally tuned. In addition, these parame-

ters depend on the particular image to segment.

In the case of the evolutionary multiobjective optimization methodology, and

in order to obtain a better behavior in the segmentation process with the adapted

SPEA2 algorithm, we defined again two evolutionary phases focused on the same

specific tasks. Firstly, the population must cover the object to progressively improve

the adjustment and node distribution. The main difference with respect to the GA

case is that, now, the two phases are performed with the use of different objectives.

First phase. The objectives are the gradient distance (GD) and the In-Out (IO)

energy terms. Therefore, we obtain individuals with the internal nodes inside

the object and the external ones in the background. Moreover, the external

nodes will be close to the boundaries because of the gradient distance energy

term. The shift operator is only applied in this phase. We set the end of this

phase in generation 100.

Second phase. Exploration predominates in the first phase while exploitation dom-

inates this second one. The objectives now are gradient distance (GD), dis-

tance In-Out (IOD) and internal energy terms. We search for a better ad-

justment to the boundaries as well as a more homogeneous distribution of the

internal nodes. We even add more objectives, depending on the application, as

shown later. The probability of application of the spread operator is decreased

because it is not as necessary as in the first evolutionary phase. This phase

also finishes after a given number of generations.
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(a) (b) (c)

Figure 5.3: Results obtained in the segmentation of a circle. (a) Image to segment. (b)

Pareto Front individual at the end of the first evolutionary phase. (c) Pareto Front individual

at the end of the second evolutionary phase.

In some segmentations, we synthesized the two external objectives in only one,

called IODi/GD, that is, summing both energy terms. With the sum of both

energy terms we try to locate the internal nodes in object intensities and the

external nodes in the edges of the object in the scene. Thus, we synthesize in

only one objective the desired behavior of the all the nodes with respect to the

extraction of the objects. Moreover, we gain simplicity reducing one objective

in the Pareto Front.

In Figure 5.3 we can see the results obtained with both phases. Figure 5.3(b)

shows one of the nondominated individuals at the end of the first evolutionary phase

and 5.3(c) shows one of the nondominated individuals at the end of the second

phase (generation 5000, population size = 1000 individuals). These individuals were

chosen from the middle area of the Pareto Front only to show the purpose of the

two evolutionary phases.

5.3 Results obtained with the classic multiobjective ap-

proach

This section presents some representative segmentation examples using different

images. We used for the segmentations the GA developed and the adapted multi-

objective algorithm previously explained. Some of the images are artificial and were

designed to show the capabilities of the MO methodology. Other images were taken

from the medical domain to test the process with real ones, mainly CT medical

images. Firstly, we show some results and comparisons in 2D, and after that, some

results in the 3D domain.

All the processes used a population of 1000 individuals in 2D and 2000 in 3D



5.3. Results obtained with the classic multiobjective approach 85

images. The window size of the tournament selection operator in the GA processes

was 3% of the population. As we mentioned, the parameters in the GA case are

different in the two evolutionary phases. The parameters used in the first phase of

the GA processes were always the same. The values employed are depicted in Table

5.1. These values were tuned to obtain the aim of this phase in most of the images.

For the second phase of the GA, Table 5.2 includes the TAM parameters used

in the segmentation examples. The energy parameters were experimentally set as

the ones in which the genetic algorithm gave the best results for each kind of image.

Table 5.3 shows the probabilities of the genetic operators used in both GA phases of

the segmentations processes. Also, these probabilities of the genetic operators were

experimentally tuned to obtain the best possible segmentations.

In the multiobjective processes we used an archive size of 5% and 30% of the

population size in the first and second phases, respectively. The tournament window

size used in both phases was 3% of the archive size. The reason of the smaller size of

the archive set in the first phase is because this phase uses only two objectives (and

not very conflicting), so the individuals in the Pareto Front are less than in the case

of the second phase, that uses a minimum of three objectives. The probabilities of

the genetic operators, in both phases of the multiobjective optimization, were the

same as in the GA case. Finally, in the second phase, we used the explained elitism

of two individual objectives: the gradient distance and the distance In-Out energy

terms (Section 5.2.2). This means that the individuals with the best minimum values

in those terms are maintained in the archive.

In the case of 3D segmentations, the input to the algorithms is a set of consecutive

slices with such properties. In the 3D examples we used between 90 and 200 slices in

the different examples. We synthesized the two external objectives in only one called

IODi/GD, that is, summing both energy terms. With this new objective, we try to

locate the internal nodes in object intensities and the external nodes in the contour

of the object. Moreover, we gain simplicity reducing one objective. Regarding the

internal energy, from the 3 energy terms (α, β and γ), we picked only the β energy

term, that is, the one that provides smoothness to the mesh.

All the results obtained with the GA or the multiobjective optimization were

taken about generation 5000, given the complexity that is necessary for progressively

improving a Pareto Front given the different objectives. Using a bigger number of

generations did not provide significant improvements.
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Table 5.1: TAM parameter set of the GA first phase in the segmentation processes of the

examples. (γ only used in 3D segmentations).

α β γ ω ρ ξ δ τ

0.00001 0.00001 0.0 1.0 1.0 0.0 10.0 0.0

Table 5.2: TAM parameter sets of the GA second phase in the segmentation processes of

the examples (γ only used in 3D segmentations).

Figure Size α β γ ω ρ ξ δ τ

5.3 8× 8 3.0 1.5 - 1.0 4.0 5.0 10.0 1.0

5.5 1st row 10× 10 3.5 1.5 - 1.0 4.0 5.0 10.0 1.0

5.5 2nd row 10× 10 4.0 1.0 - 1.0 4.0 5.0 8.0 1.0

5.5 3rd row 10× 8 3.0 1.5 - 1.0 4.0 5.0 10.0 2.0

5.5 4th row 10× 8 3.5 2.0 - 1.0 3.0 5.0 8.0 2.0

5.7 1st row (b) 10× 10 4.0 2.0 - 1.0 4.0 5.0 8.0 1.0

5.7 1st row (c) 10× 10 4.0 2.0 - 10.0 4.0 5.0 8.0 50.0

5.7 2nd row (b) 12× 12 3.5 2.0 - 1.0 4.0 5.0 10.0 1.0

5.7 2nd row (c) 12× 12 3.5 2.0 - 10.0 4.0 5.0 10.0 10.0

5.8 2nd row (a) 7× 7× 5 2.0 1.5 1.0 1.0 4.5 5.0 10.0 1.0

5.8 3rd row (a) 7× 7× 5 2.0 1.5 1.0 10.0 4.5 5.0 10.0 10.0

5.8 2nd row (b) 9× 9× 6 2.0 1.5 0.5 1.0 4.5 5.0 10.0 1.0

5.8 3rd row (b) 9× 9× 6 2.0 1.5 0.5 10.0 4.5 5.0 10.0 10.0

5.9 1st row (b) 12× 12 3.5 2.0 - 1.0 4.0 5.0 10.0 1.0

5.9 1st row (c) 12× 12 3.5 1.5 - 10.0 4.0 5.0 10.0 10.0

5.9 2nd row (b) 12× 12 3.5 2.0 - 1.0 4.0 5.0 10.0 1.0

5.9 2nd row (c) 12× 12 3.5 2.0 - 10.0 4.0 5.0 10.0 10.0

Table 5.3: Genetic operators probabilities used in the evolutionary processes.

Phase p.crossover p.mutation p.spread p.shift p.group

mutation

1 0.5 0.001 0.01 0.05 0.002

2 0.5 0.005 0.005 0.0 0.01
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Figure 5.4: Representation of the Pareto Front in a segmentation process, in a generation

of the second evolutionary phase.

5.3.1 Analysis of the Pareto Front

One of the main advantages of the evolutionary multiobjective optimization is that

it provides an entire set of possible solutions for our segmentation task depending on

the different trade-offs among the objectives considered. These possible solutions are

the members of the Pareto Front. In Figure 5.4, we show the 3D representation of the

Pareto Front in a 2D segmentation process of a retinal image. This representation

was taken from a generation (3000) of the second phase, when we considered 3

objectives: gradient distance, distance In-Out and internal energy terms. In this

example, the two internal energy terms (Equation 2.2) were considered as a summed

objective (α = 1, β = 1). In most cases we considered the internal energies as only

one objective, because the relevance of each energy component (contraction and

bending) is equally important. Additionally, we do not increment the number of

individual objectives the algorithm must consider. In the figure it is also shown

the individual of the Pareto Front that minimizes each of the three objectives. We

used elitism of the best individual regarding gradient distance and distance In-Out

objectives and the averaged k to calculate the distances, as previously explained.

5.3.2 Segmentation results obtained in artificial images

Firstly, we tested the methodology with some artificial images. We present 2D seg-

mentations in Figure 5.5, where some different examples are shown. The results
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shown in column (b) correspond to the GA case and those of column (c) correspond

to the multiobjective approach. In all the results with the multiobjective optimiza-

tion we can point out the correct boundary detection as well as an homogeneous

distribution of the nodes.

The results of column (b), in second, third and fourth rows in Figure 5.5, with

the classic GA methodology developed, indicate that the GA method have some

problems in dealing with stretched objects. In the second row, the GA performed a

correct segmentation, but the multiobjective algorithm obtained a correct segmen-

tation with a more homogeneous distribution of the external nodes, which provided

a better detection of the concavity. In the third and fourth rows, the GA falled

in local minima with a not very homogeneous distribution of the internal nodes,

together with the previous problem in concavities.

With the multiobjective optimization we can extract individuals from the Pareto

Front that performed correct segmentations in these special situations. The results

obtained in Figure 5.5, for the multiobjective processes, were selected as the indi-

viduals from the Pareto Front that minimized the global summed energy -according

to the parameter set used in the corresponding GA process-. It is interesting to

highlight that, although the nondominated individuals were chosen with the same

minimization criterion of the GA (the parameter set), these nondominated individ-

uals have better values in the different objectives, as it can be visually guessed.

The reason is the parallel progression of the Pareto Front to progressively better

individuals with better individual energy components.

Regarding 3D images, firstly, we tested the method with some artificial images.

In Figure 5.6 the results obtained with different images are shown. The 1st row shows

the original image to be segmented or a composing slice (first column), the 3rd row

shows an intermediate individual taken from the Pareto Front and 2nd and 4th rows

correspond to the extremes of the Pareto Front for objectives β and IODi/GD,

respectively. These meshes shown in Figure 5.6, 2nd row, correspond to the best

segmentations regarding the β objective (smoothness), with the optimum values

(best possible smoothness), because the procedure creates the initial random TAVs

with cubic and regular distributions of the nodes. Nevertheless, although the best

individual regarding such objective is present from the beginning, it acts as a point

that delimits and forces the progression of the trade-offs nondominated individuals

of the Pareto Front. As we can see in the results, the individual that optimizes the

IODi/GD objective, provided the best adjustment to the contour that the process

could obtain. In all the trade-offs obtained from the middle of the Pareto Front. we

can point out the compromise obtained between the smoothness and the contour
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(a) (b) (c)

Figure 5.5: Results obtained in the segmentation of different stretched objects. (a) Image

to segment. (b) Result obtained with the GA method. (c) Examples of nondominated

individuals at the end of the segmentation process.
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detection searched in the extremes of the Pareto Front.

We also tested the algorithm to segment images with objects with a high level

of complexity, in particular objects with deep concavities and holes. Regarding

2D segmentations, in Figure 5.7, we can see two segmentation examples. The GA

method, with a usual set of parameters, cannot obtain a good detection of the holes

and concavities (Figure 5.7 (b)). This parameter set corresponds to the intervals of

the tuned parameters for not very complex images as the previous ones of Figure

5.3 and 5.5. In this case, we had to perform a special tuning of the parameters to

detect them (Figure 5.7 (c)), forcing the weight parameters ω and especially τ to

high values (Equations 2.6 and 2.8), in order to obtain acceptable segmentations.

Meanwhile, the multiobjective process provided several good TAN segmentations

because of the IOD acting as an individual objective. It can be seen in Figure 5.7

(d). These individuals in column (d) were selected from the nondominated individ-

uals of the Pareto Front as the ones that minimized the IOD objective. Although

they minimize this particular objective, they maintain a correct adjustment to the

object boundaries as well as a homogeneous distribution of nodes (the other objec-

tives). This is again because of the evolution of the Pareto Front to individuals that

progressively improve all the objectives.

Regarding 3D segmentation, we also included some results to show the same

problem of a single-objective optimization procedure. The GA method, using a

typical parameter configuration, cannot obtain a correct detection of the holes and

concavities. This is shown, for example, in Figure 5.8, 2nd row, where some internal

nodes fall in the hole, which is not correctly delimited. In this case, it is necessary

to perform a specific tuning of the parameters to detect them (forcing the weight

parameters ω and τ to high values), as shown in Figure 5.8, 3rd row. However, the

multiobjective method, due to the IODi/GD objective, preserved individuals of the

Pareto Front that perform a correct detection in these complex areas. This can be

seen in Figure 5.8, 4th row, representing the best individual from the Pareto Front

considering the mentioned objective, IODi/GD.

5.3.3 Segmentation results obtained in real images

We used CT images taken from the medical domain. Thus, we can analyze the

segmentation results in a real domain. Regarding 2D segmentations, in Figure 5.9

two representative examples are shown. The images correspond to CT slices of the

leg. In these images the internal holes indicate the bone area. Once again, the

GA method had many problems to perform a correct detection of the internal holes

(5.9(b)) with the use of typical energy parameters, so we had to take a special set of
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Figure 5.6: Results obtained in the segmentation of artificial images. 1st row, original

image. 2nd row, best individual by β objective. 3rd row, intermediate nondominated indi-

vidual. 4th row, best individual by IODi/GD objective.



92 5. Optimization of TAMs by means of MO approaches

(a) (b) (c) (d)

Figure 5.7: Results obtained in the segmentation of complex objects. (a) Image to segment.

(b) Final results with the GA method and usual parameters. (c) Final results with the GA

method and specific parameters for these images. (d) Nondominated individuals at the end

of the evolutionary multiobjective process (with the best IOD objective).

parameters to be able to detect this kind of internal holes (5.9(c)). On the contrary,

the multiobjective optimization approach presents several individuals that perform

an adequate detection of these internal holes. The ones shown in Figure 5.9(d)

were selected as they minimize the IOD objective. As in the previous case, these

segmentations present correct boundary detections and distribution of nodes.

Regarding 3D segmentations, we also tested the proposed method in CT images.

In Figure 5.10 three representative examples are shown presenting a high level of

complexity or a significant level of noise surrounding the surface of the objects. The

proposed method provided a correct segmentation of the objects in these difficult

situations. The nondominated individuals correspond to those which minimize the

IODi/GD objective. Figure 5.10, 1st row, corresponds to a foot. The input images

are noisy CT images of different slices of such foot. Due to the complex surface of this

object, we performed a previous stage in this segmentation to obtain a population

of individuals that firstly identify the boundary of the foot.

The second example corresponds to the reconstruction of a vertebra, taken from

CT slices. The selected nondominated individual delimits correctly the internal

hole, performing a reasonable boundary detection. The third one corresponds to

the segmentation of a humerus. In this case, the CT images are very noisy, with

an additional external contour (the flesh of the leg) that the optimization method

must avoid. Moreover, the boundary of the bone is fuzzy. This can be seen in the

final nondominated and selected individual, where a group of external nodes stretch

the mesh in a extreme to delimit the brighter area of the bone boundary, as the CT
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(a) (b)

Figure 5.8: Results obtained in the segmentation of complex objects. 1st row, slice of

the original image. 2nd row, final results with the GA method and typical parameters. 3rd

row, final results with the GA method and specific parameters. 4th row, nondominated

individuals at the end of the evolutionary process.
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(a) (b) (c) (d)

Figure 5.9: Results obtained in segmentations with CT images. (a) Image to segment.

(b) Final results with the GA method and usual parameters. (c) Final results with the

GA method and specific parameters for these images. (d) Examples of final Pareto Front

individuals that minimize the distance In-Out with the multiobjective approach.

images of such extreme indicate.

5.4 The adapted SPEA2 algorithm combined with Dif-

ferential Evolution

As we proved in Chapter 4, Differential Evolution (DE) [77, 78] introduces more

simplicity in the evolutionary process, because it replaces the production of new

individuals, using the whole set of GA operators, with the single operator of Differ-

ential Evolution. Moreover, with the DE approach, we obtained a faster convergence

of the population over the desired results.

As we detailed in Section 5.2.2, we used the characteristics of the proposed GA to

implement steps 5 and 6 of the SPEA2 algorithm (Algorithm 5.2.1). Following the

same idea, we modified the implementation of the SPEA2 algorithm to introduce

DE in the production of new individuals. Thus, in Algorithm 5.4.1, the change

introduced in the SPEA2 main loop is shown, replacing previous steps 5 and 6 by

this new one. The rest of steps remains the same.

Step 5 We introduced the DE approach in the multiobjective algorithm. In the ba-

sic SPEA2 algorithm (using the GA operators), if the stopping condition is not

met, then mating selection was performed using binary tournament selection

with replacement on P t+1 to fill the mating pool. After that, recombination
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Figure 5.10: Results obtained in the segmentation with real images. First column, CT slice

or 3D reconstruction of the object to segment. Second column, example of nondominated

individual at the end of the evolutionary process.

Algorithm 5.4.1: Modification with the hybridized SPEA2-DE main loop()

Step 5 : Differential Evolution()// Generation of next population

// Generation of new population according to DE : candidate solutions

// are defined from the individuals in P t+1. Go to Step 2.
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and mutation operators were applied to the mating pool and set Pt+1 to the

resulting population.

In the hybridization with DE, this step defines again how the next population

(Pt+1) is obtained. A candidate solution y is defined according to the DE

algorithm (Algorithm 4.2.1), where individual x1 is chosen by tournament

only from the archive (P t+1), whereas x2 and x3 are randomly chosen from

the entire population.

Moreover, in the DE method, the candidate solution replaces the original one

if it is better in terms of fitness. So, we have to deal with another question, that

is, when to replace the original individual with the candidate solution. In single-

objective optimization, the decision is easy: the candidate replaces the original one

only when the candidate is better. In MOAs, on the other hand, the decision is not

so straightforward. We could use the concept of dominance (the candidate replaces

the original individual only if it dominates it), but, as indicated by Robič and Filipič

[80], this would make the greedy selection scheme of DE even greedier. Because of

that, in our proposed hybridization, the candidate solution is introduced directly

into the new population. Note that the fitness comparison is implicitly performed

by SPEA2 in Step 3, as only the best individuals (in terms of the fitness explained

in Step 2), being nondominated most of them, are stored in the external archive

(P t+1).

In this multiobjective optimization hybridization with DE, we merged the two

phases in only one. We initialized the individuals of the population with a mini-

mum size, enough to guarantee that the meshes will cover the entire object to be

segmented. We will use the following energy terms as independent objectives: inter-

nal energy using the second derivative (with value of β different of 0) that provides

smoothness in the mesh, and the merged IODi/GD objective (explained in Section

5.2.3) that provides adjustment to the object.

5.5 Results obtained with the hybridized SPEA2-DE

approach

We selected some representative segmentation examples to show the capabilities and

advantages of the hybridization of the Multiobjective Optimization (MO) approach

with the explained DE method.

Most of the processes used a population of 1000 individuals, especially in the 2D

segmentations. In the 3D segmentations, some examples used 2000 individuals. We
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also required between 300 and 2000 generations in most of the 2D segmentations

and between 4000 and 5000 in the case of 3D ones. Regarding the DE algorithm,

the tournament size to select the base individual x1 in the DE runs was 10% of the

population. As explained in Chapter 4, we used a fixed value for the CR parameter

(1.0), whereas we used a maximum value of 0.4 for the F parameter. In the differ-

ent applications of the equation which determines a candidate solution (Algorithm

4.2.1), we used a random value for F between 0.2 and such maximum value (for

each node), parameters that were experimentally tuned to provide the best results

in most of the images.

5.5.1 Comparison between the alternatives implemented

Firstly, we performed a comparison of both methodologies, that is, the multiobjective

optimization method of SPEA2 using the classic genetic operators defined for a GA

and the hybridized SPEA2 using differential evolution (SPEA2-DE).

In the examples presented we used only one evolutionary phase, with a minimum

approximated size of the active nets of the initial population. This guarantees that

the object presented in the image can be covered by the initial meshes, avoiding

the possible falls in parts of them (that is mainly the objective of the first phase

previously used). Thus, it is easier to show the difference between the two ways of

producing new populations in the MO algorithms, that is, the use of the classic GA

operators and differential evolution.

Figure 5.11 shows a comparison of the evolution of one of the objectives (IODi/GD)

using both implemented versions of the SPEA2 algorithm. That is, we extracted

from the Pareto Set, in each generation, the individual with the best (minimum)

IODi/GD objective. This comparison was performed using the object shown in

Figure 5.12. Given the stochastic nature of evolutionary algorithms, the graphs are

an average of different runs (20) with different initial populations. Figure 5.13 shows

the same comparison in the 3D case, and using the object in Figure 5.14. Both com-

parisons used the initializations of individuals (TANs and TAVs) explained before.

We selected the IODi/GD objective to show the comparison because is the most

relevant one, that is, the objective that represents the best adjustment to the object

in the scene.

Thanks to the inclusion of the DE technique in the production of new individ-

uals, we simplified the evolutionary process because the set of genetic operators

(crossover, mutation, group mutation, spread and shift of the GA), together with

their corresponding frequencies of application, were avoided. Moreover, we obtained

a faster convergence. This can be seen in Figures 5.11 and 5.13, with the faster evolu-
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Figure 5.11: Best value of the IODi/GD objective of the population with the different

MO processes in 2D. The curves are an average of 20 different runs with different initial

populations.

tion of the IODi/GD objective across generations using the hybridized SPEA2-DE

with respect to the basic SPEA2 algorithm (with the classic genetic operators). The

faster segmentation is also shown in Figures 5.12 and 5.14, where we can see the

faster adjustment of the external nodes to the external contour of the objects.

Moreover, we performed a comparison between the hybridized method and the

basic DE procedure (single-objective) to emphasize the advantage of the multiob-

jective methodology. In Figure 5.15 the results with both methodologies are shown

using a representative example, a CT slice of a knee. Note that this CT image has

a noisy neighborhood in the surrounding of the object contour we want to segment

(the flesh of the leg) and two internal holes that correspond to the internal bones

of the knee. The first image (Figure 5.15, a) is the final result obtained using the

single-objective DE approach (using 1000 individuals and 300 generations). We had

to establish specific energy parameters (that define the summed energy or fitness)

to obtain a correct detection of the inner hole, parameters that were experimentally

tuned. The energy parameters used are depicted in Table 5.4.

Meanwhile, with the hybridized MO approach, we could extract different final

segmentations. In particular, in this Figure, the best individuals according the

IODi/GD and β objectives are shown (after 500 generations using 1000 individuals

in the evolutionary population). In the minimization of the first one we obtained

the best external adjustment to the object (Figure 5.15, b), meanwhile with the

minimization of the second one we obtained individuals with the smoothest distri-

bution of nodes (Figure 5.15, c). The best by the β objective is not perfectly squared

(ideally the best possible smoothness) because we only introduced elitism over the

IODi/GD objective, so the initial squared individuals were lost over the genera-
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Gen. 0 Gen. 50 Gen. 100 Gen. 300

Figure 5.12: 2D sequence of the best individual (according IODi/GD objective) in gen-

erations 0, 50, 100 and 300. 1st row, classic SPEA2. 2nd row, hybridized SPEA2 with

DE.

Figure 5.13: Best value of the IODi/GD objective of the population with the different

MO processes in 3D. The curves are an average of 20 different runs with different initial

populations.
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Gen. 0 Gen. 50 Gen. 400 Gen. 4000

Figure 5.14: 3D sequence of the best individual of the Pareto Set according the IODi/GD

objective. The figures correspond to generations 0, 50, 400 and final generation (4000). 1st

row, classic SPEA2. 2nd row, hybridized SPEA2 with DE. The inset in 1st figure of 2nd row

is an artificial reconstruction of the object.

Table 5.4: TAN parameter set used for the segmentation of the image of Figure 5.15, using

DE (single-objective).

Figure Size α β ω ρ ξ δ τ

5.15 (a) 8 × 8 2.0 3.5 10.0 4.0 5.0 6.0 30.0

tions. Note that, although the best β objective corresponds to the perfect squared

meshes, its use as an independent objective allows the search of the diversity of non-

dominated individuals between the two basic objectives. One of these intermediate

individuals is also extracted (Figure 5.15, d), taking a correct external adjustment

and also a smooth node distribution, thanks to the simultaneous minimization of

both objectives in the progression of the Pareto Front across the evolutionary gener-

ations. This “intermediate” solution taken from the Pareto Front corresponds to the

individual of the Pareto Front that minimizes a single-objective energy, using the

same weights or energy parameters of Table 5.4. Note that, once we obtain the final

Pareto Front, we could select other different individuals corresponding to different

criteria.

Regarding computation times, the algorithms used in Figure 5.15 were run in an

Intel Core 2 at 2.83 GHz. The hybridized SPEA2-DE took an average time of 12

minutes to complete the 500 generations necessary to achieve the results shown in

Figures 5.15 (b),(c) and (d), meanwhile the DE approach needed between 6 and 7
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(a) (b)

(c) (d)

Figure 5.15: Results of the comparison between the hybridized SPEA2-DE and single-

objective DE using a CT image of the knee. (a), Result obtained using DE with a partic-

ular parameter set. (b), (c) and (d), individuals taken from the final Pareto Set: best by

IODi/GD, best by β and a final active model taken from the middle of the Pareto Front,

respectively.
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minutes to reach the final result shown in Figure 5.15 (a), ending in approximately

the 300 generations applied. This is the main disadvantage of the MO approach with

respect to the single-objective optimization using DE alone, given the computational

complexity of the former (commented in Section 5.2). Nevertheless, as we are work-

ing with off-line segmentations, the computational times in both methodologies are

acceptable.

5.5.2 Results of the hybridized multiobjective method with differ-

ential evolution

Finally, to show the capabilities of the hybridized approach in more detail, in this

section different representative examples in 2D and 3D domain are presented. In

Figure 5.16, the examples correspond to some CT slices from different parts of

the body: a slice of the head, of the body (at the level of the shoulders) and a

leg, respectively. All the images present a significant level of noise surrounding

the objects, produced by the CT scanner, which complicates the detection of the

contour. Moreover, the contour of the objects to be segmented present different

levels of complexity, such as a simple round contour of the leg (Figure 5.16, c), a

stretched one as in the body at the level of the shoulders (Figure 5.16, b) and the

difficult contour of Figure 5.16 (a), which includes a small part of one shoulder,

which makes more complex a correct detection of all the flesh. The topological

active nets of these figures correspond to the individuals of the Pareto Front that

minimize IODi/GD, obtained using 1000 individuals after 2000 generations.

Moreover, we also tested the methodology in 3D images. In Figures 5.17 and

5.18 representative segmentations are shown. The examples in Figure 5.17 are an

artificial object and a vertebra. The artificial object was created as the intersection

of a couple of cones that configure a good example to test the method, with smooth

and rough parts in the contour. The vertebra was defined from CT slices that were

preprocessed to isolate the bone, configuring an object to segment with a complex

surface, including a hole. The final segmentations in the Figures correspond to the

individuals of the final Pareto Front that minimize again the IODi/GD objective,

using a total number of 2000 individuals and 4000 generations, in Figure 5.17, and

5000 generations in Figure 5.18. In both cases, the best individual that minimizes the

IODi/GD objective provided correct segmentations. Moreover, Figure 5.18 presents

the segmentation of the humerus in medical CT images. This example presents a

high complexity because the bone is surrounded by the flex and has an internal

hole so it has a high level of noise. These complications have to be overcome to

reach the bone contour. Despite the noise, as a global search method, the SPEA2-
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(a) (b) (c)

Figure 5.16: Results obtained in the segmentation of 2D examples. (a) CT slice of the

head, (b) CT slice of the body, at the level of the shoulders, (c) CT slice of a leg. The TANs

correspond to individuals taken from the Pareto Set that minimize the IODi/GD objective.

(a) (b) (c) (d)

Figure 5.17: Results obtained in the segmentation of 3D examples. (a) Snapshot of the

artificial object. (b) Best result according the IODi/GD objective. (c) 3D reconstruction

of the vertebra composed of 2D CT slices. (d) Best final result according the minimization

of the IODi/GD objective.

DE approach overcomes the difficulties related with the noise (flesh contour and

different gray levels surrounding the bone we want to segment). And, thanks to the

MO methodology, we obtain the desired individual of Figure 5.18 (c) (minimizing

the IODi/GD objective) without the experimental tuning of the weight parameters

necessary in a single-objective minimization.

5.6 Discussion

As another improvement of the adapted GA that was proposed in this work, we

designed a multiobjective methodology that used the SPEA2 algorithm, adapted

to our application, using different evolutionary phases with different aims, and in-

corporating modifications in the density estimation technique to define the fitness

of an individual. As a first approach, we used the characteristics of the proposed

adapted GA, integrating them in the SPEA2 algorithm, especially regarding the
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(a) (b) (c)

Figure 5.18: Results obtained in the segmentation of the humerus in medical CT images.

(a) Example of the CT slices used. (b) Artificial reconstruction of the bone. (c) Best final

result according the minimization of the IODi/GD objective.

production of new individuals using the classic operators and the new ad-hoc ones,

and also taking the definition of different evolutionary phases with different aims.

As a demonstration of the improvements, we compared the multiobjective approach

with the classic GA for the same task.

In not very complex images the two approaches can obtain correct segmentations.

The main problem of the GA approach is that it requires different parameter sets

for the model in the two evolutionary phases defined. These parameters define the

weights that the user considers for each of the objectives or energy terms, as the

GA uses as fitness value of an individual a summed global energy that weights the

different energy components. In the second GA evolutionary phase, these energy

parameters must even be tuned for each image to obtain correct segmentations.

That way, the process with the GA turns into an experimental tuning of the adequate

weights for each image from multiple executions of the evolutionary processes.

In the multiobjective approach the previous problems are directly solved. Firstly,

the aim of the two phases is obtained with the simple definition of the objectives

that requires each phase. For example, the designer only needs to consider the IO

and GD energy terms in the first phase to obtain the desired purpose of covering

the objects to segment, which is a more natural decision. Secondly, the required

experimental tuning of the weights in the GA case (or DE case) disappears, as the

multiobjective optimization tries to optimize individually each one of the particular

objectives. We also integrated two energy terms in the IODi/GD objective to join

the characteristics of the adjustment to the object in this single objective. We also

simplified the evolutionary process with the use of only one evolutionary phase in

some segmentations.

The results with selected images to show the capabilities of the multiobjective
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Table 5.5: Comparison between the single-objective methods (GA and DE) and the SPEA2

approaches.

GA method DE method SPEA2-GA

approach

SPEA2-DE

approach

TAM Parameter

tuning

Always Always Never Never

Detection of irregu-

larities (concavities,

etc.)

Need specific

parameters

Need specific

parameters

Correct Correct

Execution time High Medium Very high High

approach indicated that this approach outperforms the GA in several cases. For

example, in objects with concavities or holes, the tuning required by the GA is

critical to obtain correct results. The holes must be delimited by the distribution of

the internal nodes, so the designer had to tune the weights of the objectives to obtain

that delimitation aim (mainly the IOD weight). In the multiobjective approach, the

designer can select a trade-off solution or nondominated individual form the Pareto

Set depending on his main interest. For example, selecting those individuals that

minimize the IOD objective to provide the best delimitations of the holes.

Additionally, we incorporated the DE approach in the SPEA2 algorithm, as an

improved version of the multiobjective method, working as a genetic operator to

generate the next population based on the individuals of the external file. This

new version incorporates all the advantages of the previous MO approach, and also

presents some new improvements. The integration of both methods allowed a min-

imization of the designer decisions because, as in the previous case of the basic

SPEA2 algorithm, there is no need of the experimental tuning of the parameters or

weights of the different energy components or individual objectives. Additionally,

there is a simplification of the generation process of the next population, as only

the DE operator is required, an advantage with respect to the use of a complete set

of genetic operators with their tuned probabilities of application. Moreover, with

respect to an evolutionary single-objective optimization, there is no need of different

evolutionary phases focused on different segmentation aspects. Finally, the combi-

nation allowed a faster convergence of the image segmentations in the 2D and 3D

domains.

The main drawback of the multiobjective approach was the complexity of the

algorithm, compared with the single-objective optimizations of a GA or DE. As

we mentioned, the calculation of S and R values in the SPEA2 algorithm (5.2.1),
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used to establish the final fitness of an individual, is of complexity O(M2), where

M = N +N (population size + archive size). With the inclusion of the density esti-

mation technique in the final fitness, the final complexity increases to O(M2logM)

[110]. The adapted calculation of k-distances mitigates this last term, as we only

calculate the distances among the nondominated individuals of the Pareto Front

maintained in the external archive (≤ N). Nevertheless, this drawback is clear and

must be taken into consideration in the comparison with the use of a GA or DE for

a single-objective optimization. Table 5.5 summarizes the main differences among

the SPEA2 approaches and the single-objective ones (GA and DE methods).



Chapter 6

Practical application:

Localization of the optic disc by

means of evolutionary-optimized

Topological Active Nets

6.1 Introduction

As a practical application, we used the evolutionary approaches in a specific domain,

with the purpose to localize and extract the optic disc in retinal images. Firstly,

we will explain the basic concepts and methodology of the use of retinal images

considering the Genetic Algorithm (GA) developed, because in the timeline it was

the first method used in this domain. After that, we will show some results with

other evolutionary approaches useful for this type of images.

The retinal fundus photographs are widely used in the diagnosis of eye, cere-

brovascular and other diseases. Automatically processing a large number of retinal

images can help ophthalmologists to increase the efficiency in the medical environ-

ment. Figure 6.1 shows an example of a retinal image detailing the main character-

istic structures, that is, the macula, the vessel tree and the optic disc. The optic

disc is the entrance region of the blood vessels and also where the nerve axons enter

and leave the eye. It is the brightest area in the image, it is a slightly oval disc and

its detection is very important since it is used for blood vessel tracking and it works

as a landmark to measure distances and identifying anatomical parts in the retina

like the fovea.

The localization and segmentation of the optic disc have been previously per-

107



108 6. Localization of the OD by means of Topological Active Nets

Figure 6.1: Example of retinal image focus on the macula including the main characteristic

structures.

formed through several approaches, as we will explain in the next section. Some

methods are focused on the localization of the optic disc center and others addition-

ally segment the disc. Deformable models, concretely different snake models, have

also been used in this application. The main problems are the noise presence in the

areas in which the optic disc is located, the presence of blood vessels that cross the

optic disc and that greatly difficult the segmentation, and the possible presence of

lesions that could be associated with the optic disc.

In section 6.2 we detail the application of the TAN model to the localization of

the optic disc. The modifications of the GA method (and, for extension, the rest of

the evolutionary approaches) are depicted. The global search of the evolutionary ap-

proaches, together with new energy terms useful to the problem, allow the reduction

of the commented problems such as the noise presence or the blood vessels internal

to the disc. As we will explain, the methodology does not need pre-processing for

the localization of the optic disc. Moreover, a segmentation of the boundary can

be performed. In section 6.3 the results of the adapted evolutionary approaches are

shown.

6.1.1 Previous work

There are several previous works on optic disc localization. Lalonde et al. [54] used

pyramidal decomposition on the green channel to identify the potential regions con-

taining the optic disc, and then extracted possible optic discs using Hausdorff based

template matching, deleting the wrong results according to a confidence level. The
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algorithm provided good results but depended on the completeness of the thresh-

olded edge map. This task was accomplished by removing noisy edges and preserving

the optic disc contour.

In the work of Li and Chutatape [57] the authors proposed a new method to

automatically locate the optic disc. The candidate regions were first determined

by clustering the brightest pixels in intensity image. For instance, if the number of

pixels in a cluster was less than 100, the cluster was abandoned. Principal component

analysis (PCA) was then applied to the remaining candidate regions. The minimum

distance between the original retinal image and its projection onto disc space was

located as the center of the optic disc.

There are other works that perform optic disc localization based on the use of

vessel cues with proven robust methods. Niemeijer et al. [70] presented an automatic

system to find the localization of the major anatomical structures: the optic disc,

the macula, and the vascular arch. The structures were found by fitting a single

point-distribution-model to the image which contains points on each structure. The

method of Foracchia et al. [35] was based on a geometrical model of the direction of

main retinal vessels (two parabolas with a common vertex). Hoover and Goldbaum

[44] used a novel algorithm they called fuzzy convergence to determine the origination

of the blood vessel network. It mainly tried to detect the blood vessels and then

identify the convergence of all the vessels, that is considered the center of the optic

disc. Their method uses brightness as a secondary feature for optic nerve detection.

Using the results provided by ophthalmologists as the testing criterion, the authors

reported a 100% of correct localizations in a set of 31 healthy retinas and 82% of

correct detections in a set of 50 diseased retinas. The method of Tobin et al. [98]

relied on the accurate segmentation of the vasculature of the retina followed by

the determination of spatial features describing the density, average thickness, and

average orientation of the vasculature in relation to the position of the optic nerve.

These features were used to train and apply a Bayesian classifier which determined

the likelihood of an image location being associated with the optic nerve.

Regarding segmentation, Chrástek et al. [21] used an automated method for

the optic disc segmentation which consisted of 4 steps: Localization of the optic

disc, nonlinear filtering, Canny edge detection and Hough transform. The nonlinear

filtering was used as a method for noise reduction, which at the same time preserved

the edges. Since the optic disc is a circular structure, the authors used the Hough

transform as a method of circle detection. The transform gave them the center

and radius of a circle approximating the border of the optic disc. The authors

reported results with 97% successful localization and 82% successful segmentation.
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The criterion of correctness was visual inspection in both cases. In the work of

Abdel-Ghafar and Morris [1] the boundary of the optic disc was also estimated using

a simple edge detector and the circular Hough transform. To simplify the detection,

the blood vessels in the image were previously suppressed by morphological methods.

A 24 radial vector set was defined to approximate the center of the optic disc as

their origin, and then the image was resampled along these vectors to form a good

representation.

The difficulty of the problem can be summarized in the work of Jelinek et al.

[49]. The authors applied different steps for an integrated automated analyzer of

the retinal blood vessels in the vicinity of the optic disc. First, they detected the

optic disc using a combination of Butterworth filtering, Canny edge detection and

morphological filters. The initial red plane image was first reduced in size using

bilinear interpolation for efficiency. The image was then normalized using a high

pass Butterworth filter. The local intensity standard deviation filter was then used

to locate the optic disc as the region of greatest variation. In the next step the

authors applied a greyscale morphological closing with a flat, disc-shaped structuring

element to remove the edge of the blood vessels. Canny edge detection was then

applied followed by a morphological closing with a disc structuring element to close

any gaps in the perimeter of the optic disc. With this methodology the optic disc

was well located in 13 of 20 images.

There are fewer works that have used active contours in the segmentation of the

optic disc. Mendels et al. [64] used a two stage method. In a first stage, the image

was processed using grey-level mathematical morphology to remove blood vessels

regions, replacing them by pixels representative of the optic disc background. Then,

a snake was manually placed around the optic disc and allowed to evolve onto its

boundary. This snake [105] was an improved version including a Gradient Vector

Flow (GVF) external energy force, which was calculated as a diffusion of the gradient

vectors of a gray-level or a binary edge map derived from the image. The authors

indicated that the accuracy of the method is highly sensitive to initialization together

with the sensitivity of the snake to energy minima.

Osareh et al. [73] reported improvements on this previous work. They used

a simple template matching approach to estimate the position of the disc center,

which allowed the initialization of a snake automatically. First, they pre-processed

the image through a closing operation (a dilation to remove the blood vessels followed

by an erosion to restore the boundaries to their former position) to create a fairly

constant region before applying a snake method. Then, a GVF-based snake was

used to perform the segmentation. Moreover, the authors showed how the boundary
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localization can be drastically improved using color mathematical morphology on

the original color image.

Chanwimaluang and Fan [20] introduced methods for the automatic detection

and extraction of blood vessels and the optic disc. The optic disc detection was

performed with a two-step initialization for a snake active model. The authors used

the local window based variance to select the initial center of the disc. Then they

initialized the size and the number of contour points by estimating the local contrast

and variance around the center. The authors also indicated that the initialization

of size and shape of the snake model was critical to the final result. In the work of

Lowell et al. [60] the optic disc localization was achieved using template matching (a

specialized correlation filter) whereas the segmentation was performed with a snake

model. According to the authors, no intervention was required as the algorithm

automatically selected the general location of the center of the optic nerve head,

and then fitted a contour to the optic nerve head rim. Comparing their results

with the localizations obtained by ophthalmologists, they reported a 96% of correct

localizations in a set of 100 fundus images.

As indicated by Xu et al. [107], deformable models can be roughly classified into

free-form deformable models (snakes) and parametrically deformable models (ASM).

The latter was used by Li and Chutatape [58], since they first used the previously

mentioned PCA method to locate the optic disc and then a modified active shape

model (ASM) to refine the optic disc boundary based on the point distribution model

defined from the training sets.

In (Xu and Chutatape [106]; Xu et al. [107]) the authors used a deformable model

which was modified and extended in two aspects. First, after each deformation,

the contour points were classified into edge-point cluster or uncertain-point cluster

by unsupervised learning, k-means algorithm. Second, the contour was updated

by variable updating sample numbers. The clustering process self-extracted the

uncertain contour points (typically points belonging to noise or vessels) from the

correct edge points. The variable updating sample number combined global and

local information of only the correct edge points to update the contour points after

each radial deformation. The authors reported a better success rate of 94% on 100

testing images when compared to the results obtained by GVF-snake and modified

ASM method. For the calculation of this rate, the groundtruth of the boundary was

manually labeled under the supervision of ophthalmologists.

With a similar philosophy of detecting contour points, Carmona et al. [17]

proposed a method which consisted of three stages. In the first phase, the eye fundus

image was pre-processed. After that, they obtained a set of hypothesis points, which
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were candidates to be in the optic disc boundary. Finally, the last stage consisted of

selecting the most suitable points from the previous set and joining them properly

with an ellipse to form the solution papillary contour. Inspired on this methods,

Molina and Carmona [66] also proposed a new method for the detection of the optic

disc contour. In this case, they used a Gaussian pyramid representation of the

input image to obtain a subwindow centered at a point of the papillary area. In

this subwindow they used a Laplacian pyramid to obtain a set of interest points

(IPs) in two pyramid levels. Finally, a two-phase genetic algorithm is used in each

pyramid level to find an ellipse containing the maximum number of IPs in an offset

of its perimeter and, in this way, to achieve a progressive solution to the optic disc

contour.

6.2 Modifications of the GA and the Topological Active

Net

With our methodology, localization is based on the calculation of the center of

the TAN, so a good segmentation is required. Additionally to the energy terms

explained in previous chapters, we have incorporated new energy terms suitable for

this application, as with the initial ones we obtained sub-segmentations. The reason

was the high number of nodes that were located on the edges of the blood vessels.

Therefore, the best final results only segmented part of the optic disc, and we added

the next new energy components to solve these problems.

6.2.1 Circular structure

We know that the optic disc has a circular-like structure in any case. Therefore,

a new component is added to give priority, in fitness terms, to the active nets of

the genetic population with a circular structure. In order to do so we make use of

the average radius r, calculated as the average distance between the centroid of the

whole active net and the external nodes. Then accumulate the sum of the differences

between r and the distance from the net center to all the external nodes. The term

is defined as:

CS[v(r, s)] = cs
∑

| (|v(r, s)− v|)− r| for external nodes (6.1)

where v is the center of the mesh and r is the average radius to all external

nodes. Therefore, nets with a circular structure will have less energy than others.

The parameter cs weights the energy term.
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Figure 6.2: Example using the contrast of intensities. The energy of the central node

is obtained using the difference between the mean intensity of the internal and external

neighborhoods.

6.2.2 Contrast of intensities

In retinal images the optic disc has brighter intensities than the area enclosing it.

Ideally all the external nodes would be on optic disc edges and the internal ones on

the bright intensities inside. Therefore, each external node would have a contrast of

intensities between its outside and inside. With this new energy component, when

the outside intensity is dark whereas the inside intensity is bright, the energy will be

lower. We take these intensities after applying a mean filter to the image to avoid

isolated erroneous intensities. Figure 6.2 shows an example of this. For an external

node, we select its internal neighborhood and the correlative neighborhood outside

the net. We calculate the mean intensity in a given neighborhood of 400 pixels (a

square of 20× 20) to minimize the effects of noise.

C[I(v(r, s))] = ci(
∑

n∈ℵ(Ext[v(r,s)]) I[v(n))]

|ℵ| −
∑

n∈ℵ(Int[v(r,s)]) I[v(n))]

|ℵ|
) (6.2)

for external nodes.

where Int[v(r, s)] is the internal neighborhood of the node v(r, s), Ext[v(r, s)]

is the correlative in the outside, ℵ is the chosen neighborhood, and ci is the cor-

responding weight parameter of this energy component. If the external nodes are

correctly placed, the difference is negative.

The method is similar to the one used by Xu and Chutatape [106] with snakes.

These authors used three terms as the external energy for the snake: the magnitude

of the gradient, the difference of gradient orientation and the difference of intensity

value. The magnitude of the gradient can efficiently provide the boundary location.

However, as the authors comment, the point located on the edge of blood vessels

also has high gradient magnitude. Hence, the gradient orientation information was

introduced by the authors into the external energy.
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(a) (b)

Figure 6.3: The two initialization processes. Best individual after several generations of

the GA, in an evolutionary phase focused on correctly locating the TANs around the optic

disc. (a) Square initialization. (b) Circular initialization.

6.2.3 Adaptations in the evolutionary process

Individual initialization

As we mentioned before, we know that the optic disc has a circular-like structure

in all situations. The definition of the standard TAN uses initializations as squares.

This means that the individuals of the initial population are TANs situated in ran-

dom positions in the image, with random inter-distances among columns and rows

of nodes and always with a squared shape. After that, these individuals have to

be adapted to the optic disc with several deformations. In order to simplify these

adjustments we initialize the population with all the external nodes uniformly dis-

tributed in a circular way. Therefore, we will obtain individuals with fewer necessary

changes or deformations in order to reach the situation where the external nodes are

well located, that is, near or over the optic disc contour.

In Figure 6.3 we show the two ways of initialization. The two nets shown corre-

spond to the best individual in the population after few generations of the GA. In

these generations the GA is focused on correctly locating the TANs (the explained

1stphase) of its population around the optic disc. At the end of this stage, the

circular initialization provides better adjustments, which shows how right adjust-

ments are performed very quickly with the circular initialization, simplifying the

evolutionary process.
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Evolutionary phases

If we run a simple genetic process we will not obtain good results. Once again,

we need to use two different evolutionary phases as explained before, focusing on

different energy components in each phase. The general idea is that the population

can cover the optic disc in the first generations, whereas the next stage improves the

adjustment to the optic disc contour progressively.

First phase The energy parameters allow the nodes to be outside the optic disc

without a high penalization. One of the weight parameters of the energy com-

ponents that facilitates this requirement is ω, which situates internal nodes in

bright intensities and external nodes in dark pixels (Section 2.1.2). The other

parameter is ci, which weights the new energy term “contrast of intensities”

, which forbids external nodes to be situated on edges inside the optic disc.

δ (Section 2.1.2) takes some importance to guide the external nodes to edges

and also the roundness (cs) to preserve the circular-like structure. The other

energy terms have less relevance. The shift operator is only applied in this

evolutionary phase.

Second phase The parameter values are changed in order to search for a more

homogeneous distribution of the internal nodes and adapt the TAN to the optic

disc. Hence, exploration predominates in the first phase while exploitation

dominates the second one. The application of the spread operator is decreased

because it is not as necessary as in the first evolutionary phase. This phase

finishes when it cannot obtain better results. This is determined when the

fitness of the best individual in a given generation cannot beat any fitness of

the best individuals in the previous 10 generations.

6.3 Results

In this section we present representative examples to show the capability of the

methodology when dealing with retinal images with different levels of noise and

different contrasts of intensities.

We used two different kinds of retinal images, one focusing on the optic disc,

and another focusing on the macula. In all the examples the original image was

used for the calculation of the external energy for both the external and the internal

nodes. The images used in the next subsections were taken from the VARIA [102]

and DRIVE [31] public datasets. The greyscale image resolutions are 768 × 584

(images from VARIA dataset) and 565 × 584 (images from DRIVE dataset). The



116 6. Localization of the OD by means of Topological Active Nets

first sub-sections (6.3.1 to 6.3.5) explain the main characteristics of the localization

results with our methodology, whereas sub-section 6.3.6 presents a test over all the

images of those datasets. Finally, sub-section 6.3.7 shows different results obtained

with the rest of the proposed evolutionary approaches.

In the first evolutionary phase, the values of the energy parameters can vary

in a great range (and they are common to all the images), in order to obtain the

desired result, in the sense that we want all the individuals of the genetic population

covering the optic disc at the end of this phase. These used values were: α = 0.01,

β = 0.0001, cs = 5.0, ω = 2.0, ρ = 1.0, ξ = 0.0, δ = 10.0, ci = 10.0. In the second

evolutionary phase the TAN parameters were experimentally set as the ones with

which we obtained the best results. Table 6.1 shows the TAN parameters used in

the different examples in the second evolutionary phase.

Regarding the GA, we used a tournament selection with a window size of 3% of

a population between 800 and 1000 individuals and elitism of the best individual.

The probabilities of the operators were also experimentally set, taking values in the

ranges where the best test results were obtained. In first phase, these probabilities

are: 0.5 for crossover, 0.0005 for mutation, 0.01 for spread, 0.001 for group mutation

and 0.05 for the shift operator. In second phase, the probability of spread is reduced

to 0.005 and the shift operator is not used because at this time these operators are

less necessary. Finally, the number of generations of the first evolutionary phase was

around 50. The second phase is finished when there is no improvement in the best

individual (around 800 generations in most of the examples).

6.3.1 Justification of the circular structure energy term

We mentioned that the first new energy term introduced gives priority to the ac-

tive nets with a circular structure. Without it we have notice that some genetic

populations evolve losing individuals with this characteristic, even with the best

adjustments. As we show in Figure 6.4, the best individual evolves losing a good

adjustment because of the lack of this energy term. Finally, the evolutionary process

gives a sub-optimum segmentation, so the location of the center of the optic disc

is not as good as we desire. The external nodes tend to be located over the main

blood vessels, because these positions provide a local minimum as the energy terms

related with the gradient image are minimized (Eq. 2.7).

6.3.2 Justification of the energy term of the intensity contrast

The second energy component introduced is the “intensity contrast”. The mini-

mization of this term keeps individuals with external nodes on the optic disc edges,
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(a) (b)

(c) (d)

Figure 6.4: Example of GA evolution without the circular structure energy term. Best

individual in different generations of the evolutionary process. (a) Best individual at the

end of the first phase, generation 50. (b)(c) Intermediate generations. (d) Final result,

generation 5000.
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Table 6.1: TAN parameter sets in the segmentation processes of the examples (2nd evolu-

tionary phase).

Figure Size α β cs ω ρ ξ δ ci

6.7 10× 10 3.0 1.5 100.0 10.0 3.0 4.0 5.0 15.0

6.8(a) 8× 8 3.0 1.5 200.0 10.0 4.0 4.0 7.0 15.0

6.8(b) 10× 10 3.0 1.5 200.0 10.0 4.0 4.0 7.0 15.0

6.8(c) 15× 15 3.0 1.5 200.0 10.0 4.0 4.0 7.0 15.0

6.8(d) 20× 20 3.0 1.5 200.0 10.0 4.0 4.0 7.0 15.0

6.9 7× 7 1.0 0.5 100.0 10.0 4.0 4.0 7.0 10.0

6.10(a) 10× 10 3.0 1.5 10.0 10.0 3.0 4.0 7.0 15.0

6.10(b) 10× 10 1.0 0.5 100.0 10.0 4.0 4.0 7.0 15.0

6.10(c) 10× 10 3.0 1.5 100.0 10.0 4.0 4.0 7.0 15.0

6.10(d) 10× 10 1.0 0.5 100.0 10.0 4.0 4.0 7.0 15.0

6.12 10× 10 2.0 1.0 200.0 10.0 3.0 4.0 6.0 15.0

6.14(d) 10× 10 2.0 1.0 100.0 10.0 4.0 5.0 7.0 10.0

6.15(d) 10× 10 2.0 1.0 100.0 10.0 4.0 5.0 7.0 10.0

6.16(d) 10× 10 2.0 1.0 100.0 10.0 4.0 5.0 7.0 10.0

by means of checking a contrast of intensities between the inside and outside of the

external nodes. Without this energy term, the individuals or TANs of the genetic

population tend to locate their nodes on internal blood vessels obtaining wrong

boundaries. Figure 6.5 shows an example, where the external nodes are not cor-

rectly located over the surface of the optic disc. The final TANs tend to be as

contracted as possible, placing the nodes on blood vessels, although maintaining a

circular structure because of the circular energy term.

6.3.3 Images focused on the optic disc

The first kind of images we worked with has the optic disc region in their center.

In these images the optic disc section is easy to obtain because this region is bigger

than in other images we will analyze and the contrast of intensities is higher.

First, we tested a greedy process to test its performance on these images. The

adjustment process consists of minimizing the energy functions following the idea

explained in Section 2.3. Summarizing, the initial mesh is placed over the whole

image and, in each step, the energy of each node is computed in its current position

and in its nearest neighborhood. The position with the lowest energy value is selected
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(a) (b)

(c) (d)

Figure 6.5: Example of GA evolution without the energy term of the intensity contrast.

Best individual in different generations of the evolutionary process. (a) Best individual

at the end of the first phase (generation 50). (b)(c) Intermediate generations. (d) Final

segmentation, generation 5000.
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Figure 6.6: Final result obtained with the greedy segmentation process. The optic disc

boundary was not detected.

as the new position of the node. The algorithm stops when no node in the mesh can

move to a position with lower energy.

As we thought, the results obtained are unacceptable. Figure 6.6 shows the final

result obtained from an example using the greedy process. The greedy algorithm

easily falls in a local minimum because of the noise in the image, so in a few iterations

the adjustment cannot continue. The optic disc limits are not found so we obtain

wrong detections.

In the following examples we show 4 images in each row that implies one exe-

cution per row (Fig. 6.7 and Fig. 6.9): The first two images are localizations with

the original image, and the last two images are a zoom in the optic disc area, so we

can see the final adjustment in better detail. The first evolutionary phase is very

short, and the results obtained at the end of this phase, or even before, let us adjust

a circumference to the optic disc with high precision. The circumference is the best

adjusted one to the external nodes, and it is depicted to show the quality of the

localization of the optic disc with the optimized TAN. In the final segmentations,

we can see how practically all external nodes are correctly located on the optic disc

contour.

Regarding representative computation times, the execution time of the first phase

with 10 generations, with around 800 individuals, a 10×10 TAN, is usually between

20 and 30 seconds, in an Intel Core 2 2.4 GHz. Nevertheless, the process can provide

a TAN well located to adjust a good circumference in 3 or 5 generations, being even

faster. The processing time of the GA process in one generation (in both phases)

basically depends on the size of the net and the population. The image size is not

relevant.
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We present two examples with different difficulty. The first one in Figure 6.7 (top

row) shows an input image where the results were perfect, in terms of localization.

This implies the detection of the center of the optic disc and its comparison with a

center provided by ophthalmologists, as we explain in Section 6.3.6. The second one

in the next row corresponds to a noisy image and an optic disc with fuzzy edges.

However, the genetic process, even in this situation, can obtain good localizations

and the adjusted circumference encloses correctly the optic disc boundaries.

The two bottom rows in Figure 6.7 correspond to the same images but this time

using a circular initialization in the initial TANs of the genetic population. We can

notice the improvement in quality using the circular initialization, especially with

difficult localizations.

Use of internal nodes to detect blood vessels

Even though the detection of blood vessels is not the objective of the localization,

the information provided by the internal nodes can be used for this task.

One of the features of a TAN is the modeling of the internal topology of the

segmented object that can be done with the internal nodes. Inside the optic disc,

blood vessels and background have different tonalities in intensity range. These

blood vessels are the candidates to be detected by the internal nodes.

The external energy term will benefit the location of internal nodes in bright

areas avoiding the dark ones. With low resolutions of nodes (TAN size) the internal

nodes do not give useful information, because the energy term that searches for more

homogeneous distributions is more important. Nevertheless, when we increase the

size of the TAN, the internal distribution can give information about the internal

topology.

In Figure 6.8 we can see the results obtained with several TAN resolutions. As

we said before, the internal nodes tend to avoid the blood vessels. This is clearer in

the final image, with a TAN size of 20× 20. Therefore, with high TAN resolutions

we would be able to identify the regions were vessels are located.

One possible way of detecting blood vessels from the mesh information could be

an analysis of tension in the connections between the internal nodes. That is, if there

is a high tension, it could be because these nodes escaped from pixels on vessels,

and they could be placed near their boundaries. If the intensity in the pixels where

the nodes are situated is clearly brighter than in the pixels where their connection

crosses, that could indicate that exists a blood vessel flowing through that region.

In this situation, we could detect vessels and their width.
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(a) (b) (c) (d)

Figure 6.7: Segmentation results, used for localization, on images with the optic disc in

the center. The first two upper rows use the square initialization and the two bottom

rows use the circular initialization. (a) Best individual in generation number 10 (change of

evolutionary phase). (b) Optic disc segmentation adjusting a circumference to the external

nodes in (a). (c) Final segmentation. (d) Optic disc segmentation adjusting a circumference

to the external nodes in (c).
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(a) (b)

(c) (d)

Figure 6.8: Results using different TAN resolutions. (a) 8 × 8. (b) 10 × 10. (c) 15 × 15.

(d) 20× 20.
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(a) (b) (c) (d)

Figure 6.9: Segmentation results, used for localization, over images centered on the macula.

(a) Best individual in generation number 10. (b) Optic disc segmentation adjusting a cir-

cumference to the external nodes in (a). (c) Final segmentation. (d) Optic disc segmentation

adjusting a circumference to the external nodes in (c).

6.3.4 Images focused on the macula

The other kind of images we analyzed are centered on the macula, so the optic disc

is located on a side. The localizations are more difficult because the contrast of

intensities is lower with respect to the images centered on the optic disc, and also

that in this case the image of the optic disc is smaller. Moreover, the region where

the optic disc is placed is near the borders of the retina domain, so it is more difficult

to obtain individuals with the external nodes surrounding the optic disc boundary.

In this situation, the initial population would be composed with less individuals that

cover approximately the optic disc contour. Nevertheless, the GA obtains almost

perfect results. Two examples with images from the DRIVE database [31] are shown

in Figure 6.9, using the circular initialization. The correct detection on the second

image shows the robustness of the GA, as this image has a very poor level of contrast

of the optic disc.

6.3.5 Retinal images with exudates and other pathologies

The worst situations to detect the optic disc are retinal images with certain illnesses

and exudates that show several bright areas. These areas could be confused with the

optic disc. We tested our evolutionary methodology to prove its efficiency in these

special and difficult situations. The images used were provided by the Ophthal-
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Figure 6.10: Localization examples in images with exudates and other bright areas.

mologist Technological Institute of Santiago de Compostela (Spain) [46]. In Figure

6.10 we can see the good behavior, with correct detections in all cases. The GA

escapes the local minima that would correspond to other bright areas, and obtains

acceptable detections over the optic disc, even with high noise and the fuzzy edges

of the optic disc.

6.3.6 Test on public databases of retinal images

To test qualitatively our method we have performed an analysis using public databases

of retinal images.

Test on VARIA public database

The first database used for a complete test was VARIA [102], which contains 233

images of size 768× 584. These images belong to 139 different individuals, they are

centered on the optic disc and they do not have relevant pathologies. The images

were taken with a Topcon TRC-NW100 non-mydriatic retinal camera.
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(a) (b)

Figure 6.11: Analysis of differences among ophthalmologist localizations and results of the

method. (a) Histogram of all differences. (b) Cumulative histogram.

We have performed an analysis of the localization success rate. To determine a

correct localization of the optic disc we have followed the same criterion of Hoover

and Goldbaum [44]. Using this criterion, the optic disc detection is successful if the

computed point is within a 60 pixels radius from the ground truth location provided

by an ophthalmologist. Our hypothesis identifies the optic disc center as the center

of the net. Thus, the localization success rate was 100%.

Two ophthalmologists from the Ophthalmologist Institute of Santiago de Com-

postela (Spain) have identified the optic disc center in each image. The mean of

both ophthalmologists is compared to the results of our method. In Figure 6.11(a),

we present the histogram of all the differences and, in Figure 6.11(b), the cumula-

tive histogram. The OD diameter in these images usually takes a value between 100

and 220 pixels, and the maximum difference obtained was under 35 pixels (all cases

inside the OD).

In Figure 6.12 two of the most difficult examples for the localization are shown.

The TAN parameters used in all localizations were set to the same values, trying to

make the process parameter independent (Table 6.1). In these images we can see

some difficulties in the localization. In the first image (upper row), the detection

has problems due to the irregular illumination of the retinal image. The external

nodes of the final TAN do not have a perfect circular shape due to the fuzzy contour

of the disc. Nevertheless, the detection of the optic disc is perfect.

The second image in the bottom row is another difficult example with a fuzzy

optic disc contour. The localization is again correct, despite the irregular illumina-

tion in the image. Since we have used the same parameters in all the selected images

of the database, these examples show a high independence of the methodology with
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(a) (b)

Figure 6.12: Two localization examples with difficult images from the VARIA database.

(a) Final segmentations. (b) Optic disc detection adjusting a circumference to the external

nodes in (a).

respect to the used TAN parameters.

Test on DRIVE public database

We also tested our method on the DRIVE image set [31] in the same conditions as

explained on the previous dataset. The DRIVE images have been randomly selected

from a diabetic retinopathy screening program in the Netherlands. This program

consisted of 400 diabetic subjects from 25 to 90 years old. The DRIVE database

has 40 images, 33 of them do not show any sign of disease whereas 7 show signs of

mild early diabetic retinopathy. The resolution of the images is 565 × 584 and are

centered on the macula.

In this case, the localization success rate obtained was again 100% with the same

methodology and with the results provided by the ophthalmologists. The TAN pa-

rameters in all the images were set to the same values of the previous database. Fig-

ure 6.13(a) shows the histogram of all differences meanwhile Figure 6.13(b) presents

the cumulative histogram. Using this dataset, the OD diameter usually takes a
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(a) (b)

Figure 6.13: Analysis of differences among ophthalmologist localizations and results of the

method. (a) Histogram of all differences. (b) Cumulative histogram.

value between 70 and 130 pixels and the maximum difference was under 25 pixels

(all cases inside the OD).

6.3.7 Segmentation of the optic disc using multiobjective and Dif-

ferential Evolution approaches

All the optic disc detection and segmentation were developed and tested using the

proposed GA. However, we also tested the methodology using the other evolutionary

approaches proposed in the work.

The application of Differential Evolution (DE) is direct, under the same con-

ditions we explained in this chapter. We just substituted all the mechanisms of

producing individuals as explained in Chapter 4. An example of this application

was previously shown in Figure 4.8 (d). As we explained, with the use of DE, we

had less evolutionary parameters to tune and faster segmentations with respect to

a GA.

We also tested the segmentation with the proposed multiobjective approaches.

In this case, we can define the objectives we desire to obtain correct results. The

first example of segmentation of Figure 6.14 corresponds to a retinal image with the

optic disc in the center. This is a typical retinal image where the region of the optic

disc is easy to detect. In this segmentation, we used the multiobjective version using

the classic GA and two different phases with the objectives defined in sub-section

5.2.3, that is, Gradient Distance GD and In-Out (IO) objectives in the 1st phase,

and GD, Distance In-Out (IOD) and internal energy objectives in the 2nd phase.

In Figures 6.14(b) and 6.14(c) the best individuals taken from the Pareto Front

that minimizes the GD and IOD objectives are shown. Finally, in Figure 6.14(d)
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(a) (b)

(c) (d)

Figure 6.14: Results obtained in the segmentation of a typical retinal image using multi-

objective optimization. (a) Image to segment. (b) Individual from the Pareto Front that

minimizes the GD energy term. (c) Individual from the Pareto Front that minimizes the

IOD energy term. (d) Best nondominated individual according to a particular parameter

set.

we extracted the individual that performed the best adjustment according to the

parameters detailed in Table 6.1. These parameters were chosen because they were

used with the GA methodology.

In Figure 6.15 we needed to introduce the ad-hoc energy terms as new domain-

specific objectives because with only the three previous objectives the multiobjective

process had problems to detect the boundary of the optic disc. Figure 6.15(b)

minimizes the GD objective because situates some external nodes on the blood

vessels that provides a high contrast of intensity. Nevertheless, without the new

added energy terms the problem would be worse because more external nodes would

fall in the main vessel that crosses the optic disc. This effect had not occurred in

the previous example because it had a better contrast of intensities in the optic disc.
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(a) (b)

(c) (d)

Figure 6.15: Results obtained in the segmentation with the incorporation of the ad-hoc

energy terms as objectives. (a) Image to segment. (b) Individual from the Pareto Front that

minimizes the GD energy term. (c) Individual from the Pareto Front that minimizes the

IOD energy term. (d) Best nondominated individual according to a particular parameter

set.

Figure 6.15(c) situates more internal nodes on the brightest area so it minimizes the

IOD objective. Figure 6.15(d) represents the best individual of the Pareto Set that

minimizes a given energy parameter set using, for example, the values ci = 100.0

and cs = 10.0 to weight these new objectives.

In the final example of Figure 6.16 we tested the methodology with a retinal

image with special difficulties as it presents pathologies. The image has several bright

areas corresponding to pathologies in the retina. These areas can easily confuse the

segmentation process because of their bright values and contrast of intensities as the

optic disc has. The vascular tree that crosses the optic disc also provides a gradient

as the external contour, which can easily induce the fall in local minima, as in the

previous case. In this more complicated example we need again to introduce the
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Circularity and the Contrast of Intensities energy terms as two new objectives in

the second phase. These two added energy terms help to escape those possible local

minima.

In Figure 6.16, once again, the best individual of the Pareto Front that minimizes

the Gradient Distance and Distance In-Out energy terms are shown (Figures 6.16(b)

and 6.16(c)). The TAN of Figure 6.16(d)) corresponds to the individual from the

Pareto Front that minimized a summed energy according to the parameter set shown

in Table 6.1. The weights of the new energy components are the same as the previous

example (ci = 100.0, cs = 10.0).

Hence, Figure 6.16(b) has the best adjustment to the fuzzy external contour of

the optic disc. Figure 6.16(c) minimizes the IOD objective as it moves the internal

nodes to the brighter areas of the optic disc. Finally, Figure 6.16(d) performs an

acceptable trade-off segmentation, where additionally the internal node distribution

indicates the location of the vascular tree crossing the disc.

Finally, we also applied the hybridized SPEA2-DE method. We also tested the

hybridized proposed method with the aim of localizing and extracting the region

of the optic disc following the same idea as the other approaches. In this case,

once again, we used two different phases (100 generations in the first phase and

5000 generations in the second phase) to obtain better results: a first one with the

objectives IODi/GD and β, to localize the optic disc, and a second evolutionary

phase adding a 3rd objective (Circularity). In this version we added the ad-hoc

energy term Circularity (to potentiate individuals in the population with circular

shapes). In Figure 6.17 an example of segmentation using a retinal image taken from

the Varia [102] dataset is shown. In the Figure, some representative individuals were

taken from the segmentation process. Figures 6.17(a),(b) and (c) show the best

individuals from the final Pareto Front that minimize the objectives IODi/GD,

Circularity and β, presenting a correct adjustment to the edges, a quasi-perfect

circular shape and a high level of smoothness, respectively. Note that in Figure

6.17 (a) the TAN minimizes the IODi/GD objective as all the external nodes are

in the fuzzy boundary and the internal nodes tend to move to optic disc intensities,

escaping from the internal blood vessels.

Finally, an individual was taken from the middle of the final Pareto Front in

Figure 6.17 (d). This individual presents an adequate balance among the different

characteristics of the objectives, performing a correct segmentation of the optic disc.
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(a) (b)

(c) (d)

Figure 6.16: Results obtained in the segmentation of a retinal image that presents patholo-

gies. (a) Image to segment. (b) Individual from the Pareto Front that minimizes the GD

energy term. (c) Individual from the Pareto Front that minimizes the IOD energy term.

(d) Best nondominated individual according to a particular parameter set.
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(a) (b)

(c) (d)

Figure 6.17: Results obtained in the segmentation of the optic disc in retinal images. (a)

Best final result according the minimization of the IODi/GD objective. (b) Best final result

according the minimization of the Circularity objective. (c) Best final result according the

minimization of the β objective. (d) Final active model taken from the middle of the Pareto

Front.
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6.4 Discussion

Xu et al. [107] stated that “the methods of optic disk segmentation can be separated

into two steps: optic disk localization and disk boundary detection”. As a practical

application of the evolutionary segmentation methods, we developed an application

of the TAN model which integrates the two steps, focusing on the localization one,

but obtaining the segmentation of the optic disc as well. We have applied the

different evolutionary approaches for the optimization of the TANs. Some domain

information has been also incorporated in the TAN model, and the evolutionary

approaches mainly needed two evolutionary phases in order to obtain correct final

results.

Previous works that have used snakes for the segmentation required pre-processing,

typically by the application of different filters and by removing the blood vessels, to

minimize the incorrect boundary detection, being essential steps for accurate con-

vergence. Opposite to this, the global search of the evolutionary methods provided

a high level of robustness in all situations, so we were able to use the original im-

ages without pre-processing. In addition, the deformable model provided the optic

disc contour and, moreover, the internal nodes could give us information about its

internal structure as well as the position of the blood vessels across the disc.

The proposed methods for the optimization of the TAN model were tested with

several images and with two different kinds of retinal images. In the different exam-

ples the new approach achieved a correct localization of the optic disc. Without a

detailed statistical analysis the results indicate that the genetic algorithm shows a

low sensitivity to noise or to the presence of blood vessels and it obtains remarkable

correct detections in images with fuzzy or with poor contrast in the optic disc. This

makes the methodology applicable to a high number of images and visual scenar-

ios, even on images with bright areas corresponding to different pathologies. We

performed the validation with the public datasets using only the GA method for

simplicity, but we also showed representative results using the other proposed evo-

lutionary methods.

The methodologies provided a robust behavior, although the single-objective

GA and DE approaches needed a tuning of the parameter set which weights the

different energy terms. However, as explained, this drawback is overcome with the

multiobjective approaches. Thus, we can experiment with different objectives to

obtain the desirable Pareto Front, according to the characteristics of the objectives

that were selected.
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Conclusions

The Topological Active Net (TAN) and its 3D extension, the Topological Active

Volume (TAV), are discrete implementations of an elastic n−dimensional mesh with

interrelated nodes that integrates features of region–based and boundary–based seg-

mentation techniques, generally called Topological Active Model (TAM). Their ad-

justment was previously performed by a greedy local search, segmentation technique

that presented several limitations.

In this thesis we designed and implemented new approaches for the optimiza-

tion of the Topological Active Models. All the methods used different evolutionary

techniques that overcome several drawbacks of the initial method defined. The

approaches included the characteristics of the evolutionary methodologies and also

adapted some important characteristics to the specific domain we were dealing with.

Firstly, it was designed an evolutionary approach based on classic genetic algo-

rithms (GAs). The genetic algorithm was adapted to the TAM model in order to

try to find the lowest energy of the mesh, that is, the desired segmentations. The

classic operators, such as the crossover and the mutation operators, were adapted

to the problem, and also new ad hoc operators were proposed using information of

the domain. Moreover, a hybrid method that uses the greedy local search and the

global search of the genetic algorithm, by means of a Lamarckian strategy, was also

proposed. The global search overcame the possible presence of noise in the images

whereas the greedy search helped to speed up the segmentation. The hybrid combi-

nation also introduced the possibility of topological changes, provided by the greedy

local search method, to perform better adjustments and segmentations in complex

surfaces or even the simultaneous detection and segmentation of several objects in

the scene. Both approaches were tested in several images, comparing the results with

the ones obtained by the previously proposed greedy method. The results remarked

the robustness of the proposed methods.
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The GA approaches presented several drawbacks that we tried to overcome with

other evolutionary techniques. Thus, a Differential Evolution (DE) approach was

implemented that introduced some important advantages regarding the classic GA.

With the new method, we gained more simplicity in the method, because the designer

has to make less decisions. This new approach replaced the entire set of genetic

operators by a single one included in the DE algorithm. Moreover, the GA method

required different evolutionary phases with different objectives and weights of energy

parameters. Meanwhile, the DE approach integrated both phases in a single one. In

addition to the simplicity, the proposed method also provided a faster convergence

and better results, as it was shown with representative images. As in the GA case,

a hybridization of the DE approach and the greedy local search was developed,

including the mentioned properties and advantages of the combination.

Another drawback of the evolutionary approaches that were proposed, which are

general in single-objective optimization techniques, is the parameter tuning that has

to be performed for each segmentation. We implemented a multiobjective method-

ology that used the SPEA2 algorithm, adapted to our application, and with the

incorporation of relevant modifications in the basic algorithm. Different versions

of the multiobjective method were developed: One that uses the characteristics of

the adapted GA, and another improved one that included the DE algorithm in the

production of new individuals instead of the GA operators.

In not very complex images all the approaches can obtain correct segmentations.

However, single-objective methods need different parameter sets (energy weights)

for the model in the different evolutionary phases, parameter tuning that has to be

performed for each kind of image to select those suitable parameters that provide

the desired result. That way, the process turns into an experimental tuning of

the adequate weights for each image from multiple executions of the evolutionary

processes.

That problem is overcome using the proposed multiobjective approaches. The

different energy terms were synthesized in the objectives wanted by the designer. We

used different objectives like In-Out (IO), Gradient Distance (GD), Distance In-Out

(IOD) or IODi/GD as external objectives, because those adjust the contour to the

objects of interest, and internal energy or β as objectives that provided smoothness

and compression in the mesh. The obtained results showed correct results, even

outperformed the single-objective approaches in several cases. The main drawback

of the multiobjective approaches are related with the complexity and computational

times.

Table 7.1 summarizes and details the main characteristics of the different evolu-
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Table 7.1: Comparison among the different optimization methods.

Greedy GA Hybrid

GA-

Greedy

DE Hybrid

DE-

Greedy

SPEA2-

GA

SPEA2-

DE

Boundary

detection

Good Very

good

Very

good

Very

good

Very

good

Very

good

Very

good

Sensitivity

to noise

Very high Very low Very low Very low Very low Very

low

Very

low

Parameter

tuning

Always Always Always Always Always Never Never

Detection

of irregu-

larities

Need

specific

parame-

ters

Need

specific

parame-

ters

Need

specific

parame-

ters

Need

specific

parame-

ters

Need

specific

parame-

ters

Correct Correct

Execution

time

Very low High Medium Medium Medium -

low

Very

high

High

Topological

changes

Yes No Yes No Yes No No

tionary proposed methods and also the greedy method previously defined.

Finally, we applied the different proposed approaches in a practical domain. The

methods were used to detect and extract the optic disc in eye fundus images, that

is, retinal images. We developed a large and complete set of experiments to validate

the proposed methods with public databases, and which pointed out the robustness

and correctness of the approaches in the selected task.

7.1 Future work

As future work, there are several tasks that can be developed to improve the method-

ologies.

1. One of the main drawbacks of the evolutionary approaches are the complexity

and computational requirements that are needed to perform the segmenta-

tions. To speed up the different evolutionary methods we could parallelize

them. In our application, the time needed for the computation of the fitness

of each individual is greater with respect to the other phases of an evolution-

ary algorithm (basically the application of the genetic operators), because the

fitness assignment implies the calculus of the different energy components. So,

the parallelization can be performed easily in a multicore processor platform,

with a number of threads equal to the number of cores, where each core selects
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an individual from the shared population and returns the fitness to the shared

population. The procedure requires a simple synchronization to execute the

other phases of the evolutionary process.

2. Additionally, the link cutting procedure should be included in the multiob-

jective optimization approaches. In the other hybridizations the link cutting

procedure was provided by the greedy local search. The main idea is to detect

those nodes that can be moved to better positions and also are bad placed.

This greedy local search needs a parameter set (energy weights), that implies a

contradiction with the multiobjective approaches (one of the main advantages

of the multiobjective approach was the no requirement of the experimentally

tuned parameters). In an alternative proposal, we can experiment to apply

the local search to the individuals of the Pareto Front, but using only single

components of the energy. That is, we move the nondominated individuals

in a greedy manner with the individual objectives, which repercutes in the

progression of the whole Pareto Front.

3. We used the evolutionary approaches in a practical domain. In particular, they

were used for detecting and extracting the optic disc in eye fundus images.

Other practical tasks would be suitable to test the properties of the proposed

methods like the localization and segmentation of the heart in short axis mid

ventricular Cardiac Magnetic Resonance (CMR) images, task we are involved

in and which we are performing with other segmentation techniques.

4. As a different approach to the optimization of the models, we could use Arti-

ficial Neural Networks (ANN) in the segmentation processes. The main idea

would be to provide information about the image and the deformable model

to the ANN with the purpose of learning the movements that should be taken

for each of the nodes. Thus, once we have the ANN trained (by means of an

evolutionary method), it would be considered as a “segmentation operator”

which learned how to move the nodes to reach the desired segmentation. Note

that this use of an ANN for the segmentation is different to a greedy mini-

mization, as the ANN can learn to escape from the local minima as the noise

presented in the images.
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Appendix B

Resumen de la tesis.

Optimización de Modelos

Activos Topológicos mediante

modelos evolutivos para

segmentación de imagen

B.1 Introducción

En los últimos años, el procesado de imagen se ha convertido en una disciplina en

pleno auge. El volumen de imágenes y v́ıdeos a ser tratados y procesados ha ido

creciendo considerablemente en la medida que la tecnoloǵıa ha ido extendiendo su

uso en diferentes áreas profesionales. Por ejemplo, en el campo médico, la imagen

computerizada (CT) o la imagen de fondo de ojo, han aportado nueva información

sobre los pacientes, información que debe ser correctamente analizada por los es-

pecialistas para el tratamiento y diagnóstico médico. Aunque es una disciplina

relativamente reciente, el procesado digital de imagen ha demostrado ser muy útil

en el tratamiento automático de bases de datos de imágenes. De esa manera, dicha

disciplina puede ayudar a los especialistas a procesar grandes conjuntos de datos

en tiempos asumibles, reemplazando los procedimientos manuales y rudimentarios

usados hasta ahora, que supońıan una labor larga y tediosa.

Dentro del procesamiento de imagen, la localización y segmentación de objetos y

regiones es una tarea que ha ganado importancia con los años. Dicha tarea representa

un paso crucial encuadrado dentro de un análisis y razonamiento de más alto nivel,
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como puede ser la detección de tumores u otras patoloǵıas, dentro del ámbito médico,

o la detección del área de interés en huellas dactilares o caras para análisis biométrico,

entre otras disciplinas.

Existen muy diversas maneras, desarrolladas a lo largo de los años, de abordar la

tarea de detección y extracción de objetos y regiones en imagen. En particular, en

esta tesis doctoral nos hemos centrado en una de las disciplinas más empleadas, el

uso de los modelos deformables. Los modelos deformables son técnicas ampliamente

empleadas en análisis de imagen que han sido aplicadas con éxito en varios cam-

pos, tales como la segmentación y reconstrucción de imágenes, el reconocimiento de

patrones, las simulaciones quirúrgicas o el seguimiento de estructuras en imágenes

en movimiento. Los modelos deformables fueron introducidos en imágenes bidimen-

sionales por Kass y otros [?] y generalizados a imágenes 3D por Terzopoulos y otros

[?]. Posteriormente se han definido multitud de modelos deformables con carac-

teŕısticas diversas. Concretamente en esta tesis, nos hemos enfocado en uno de los

más completos y ventajosos para abordar la tarea de segmentación de objetos, los

Modelos Activos Topológicos.

B.2 Modelos Activos Topológicos

Los Modelos Activos Topológicos (TAM), en sus 2 versiones, las Mallas Activas

Topológicas [101] en 2D (Topological Active Nets, TAN) y los Volúmenes Activos

Topológicos [9] en 3D (Topological Active Volumes, TAV) consisten en una vari-

ante de los modelos deformables que integra caracteŕısticas de las técnicas de seg-

mentación basadas en bordes y en regiones. Para ello, este modelo consta de dos

tipos distintos de nodos: nodos externos, para el ajuste a las superficies, y nodos

internos, para modelar la topoloǵıa interna de los objetos. Los primeros usan infor-

mación de bordes mientras que los segundos están relacionados con la información

de regiones. Esta dualidad es la principal ventaja de este modelo frente a otros

modelos ya que permite no solo el ajuste a las superficies sino también el análisis

de las caracteŕısticas internas de los objetos. Los nodos están organizados en una

malla poliédrica que es deformada bajo la influencia de funciones de enerǵıa.

B.2.1 Función de enerǵıa

El modelo lleva asociado una función de enerǵıa, la cual es utilizada para controlar

la evolución de la estructura de forma que el mı́nimo de la función coincide con la

segmentación deseada en la imagen. Por lo tanto, dicho proceso de segmentación,

usando este modelo, implica un proceso de minimización de la función de enerǵıa
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asociada a la estructura. Dicha función de enerǵıa está constituida, a su vez, por

diferentes componentes energéticas que implican distintas caracteŕısticas deseadas

para la segmentación. Aśı tenemos:

E(v) =

∫ 1

0
Eint(v) + Eext(v) (B.1)

donde Eint y Eext representan la enerǵıa interna y externa del modelo asociadas a

los nodos, respectivamente. Ambas componentes se descomponen internamente en

nuevas subcomponentes. A grandes rasgos, ambos bloques de términos de enerǵıa

controlan:

Enerǵıa interna Compuesta por términos que controlan la contracción y suavidad

de la malla.

Enerǵıa externa Compuesta por términos que representan las caracteŕısticas de

la imagen que gúıan el proceso de ajuste.

B.2.2 Método voraz

Previamente, se ha desarrollado un método de segmentación voraz para el ajuste

del modelo. Dicho método se basa en un principio sencillo: de forma iterativa

analizar para cada nodo la enerǵıa que tendŕıa si se moviera a cada una de sus

posiciones vecinas, moviendo dicho nodo a la mejor posición. En caso de que ninguna

posición vecina minimice la enerǵıa, dicho nodo permanece en su posición actual. De

esta manera, vamos moviendo poco a poco los nodos en su vecindad reduciendo la

enerǵıa, hasta que no podemos realizar movimientos en ningún nodo de la estructura,

finalizando de esa manera el proceso de segmentación.

La metodoloǵıa presenta, además, la opción de cambios topológicos, es decir, la

ruptura de enlaces entre nodos para dotar a la estructura de mayor flexibilidad para

un mejor ajuste en contornos complejos, como son la presencia de concavidades o

huecos, por ejemplo. Una vez que la metodoloǵıa no puede mover ningún nodo a

una posición mejor, en ese momento es cuando analiza la posible mala ubicación de

los enlaces para ver si eliminando algunos podemos realizar una mejor segmentación.

Dicho método es rápido y eficiente. Sin embargo, al ser un método de min-

imización local, es muy propenso a caer en mı́nimos locales. En los procesos de

segmentación en imagen, es frecuente que las imágenes a ser analizadas presenten

diferentes niveles de ruido producidos por el entorno o por las máquinas de captura

de imagen. Dicho ruido es dif́ıcil que sea ignorado por un método de búsqueda

local como es el método voraz, siendo altamente complicado obtener unos buenos

resultados.
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De esa manera, poniendo mayor énfasis en la robustez del método de segmentación,

un planteamiento con métodos de búsqueda global se presenta más idóneo para

obtener unos mejores resultados. La computación evolutiva ha demostrado ser un

paradigma de búsqueda global que presenta buenos resultados en dominios comple-

jos. En ese principio se basan los métodos propuestos en esta tesis, y que se detallan

a continuación.

B.3 Métodos evolutivos para la optimización de los Mod-

elos Activos Topológicos

Dadas las limitaciones comentadas del método de búsqueda local voraz para encon-

trar buenas segmentaciones en imágenes que presenten diversas complicaciones, en

esta tesis doctoral se proponen nuevas metodoloǵıas de optimización usando com-

putación evolutiva. Dichos métodos de búsqueda global presentan como mayor ven-

taja la robustez ante entornos complejos, siendo capaces de proporcionar segmenta-

ciones aceptables.

B.3.1 Método de segmentación usando algoritmos genéticos

El primero de los métodos de segmentación propuestos hace uso de los algoritmos

genéticos. Los algoritmos genéticos (AG) [37] son un método de optimización global

que usa técnicas inspiradas en la evolución de las especies, usando conceptos como

la herencia, mutación, cruce y selección, constituyendo un proceso de búsqueda del

óptimo de la función que deseamos optimizar, en nuestro caso la enerǵıa asociada al

modelo deformable.

De forma general, el proceso mediante el cual encuentra el óptimo de la función se

basa en la creación sucesiva de diversas generaciones de individuos en una población

dada. Dichos individuos representan cada uno de ellos una posible solución al prob-

lema, siendo codificadas en su genotipo las coordenadas de cada uno de los nodos

de la estructura. Para producir una generación dada de la población se hace uso

de una serie de operadores genéticos, los cuales se aplican sobre individuos de una

generación para producir la siguiente. Cada individuo conlleva un fitness, o calidad

asociada, que mide el grado de correctitud de la segmentación que representa. Para

la primera generación de la población, se inicializan los individuos de forma aleatoria

en el espacio de búsqueda, en nuestro caso, la imagen.

Todas las caracteŕısticas del algoritmo genético han sido adaptadas al dominio

concreto en el que hemos trabajado. En concreto, se han adaptado los operadores

genéticos clásicos (cruce y mutación) aśı como se han propuesto nuevos operadores
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espećıficos considerando las caracteŕısticas de las mallas, las cuales no pueden presen-

tar cruce de enlaces. Dichos nuevos operadores son mutación en bloque, expansión

y desplazamiento, los cuales complementan a los clásicos en el proceso evolutivo.

Para el proceso de segmentación se han planteado 3 fases, de diferente relevancia,

en las cuales desglosamos el proceso evolutivo de segmentación: una primera fase,

o fase de localización, donde se busca centrar la población de individuos en los

objetos de interés; una segunda fase, o fase de ajuste, donde se busca un ajuste

más detallado en la segmentación; y una tercera fase, o fase de refinamiento, de

menor relevancia donde se busca un mayor refinamiento de ajuste final y una mayor

suavidad internodal en la estructura.

Además, se ha realizado una versión h́ıbrida del método de búsqueda local voraz

y del método de búsqueda global del algoritmo genético. De esa manera, unimos las

ventajas de ambos métodos: por un lado la robustez del algoritmo genético junto con

la rapidez del método voraz. Además, el propio método voraz incluye la posibilidad

de cambios topológicos para realizar mejores segmentaciones en objetos de contornos

complejos e incluso la segmentación de diversos objetos presentes en la escena.

La principal ventaja de los métodos propuestos reside en su robustez, compro-

bada en diversas imágenes que presentaban diversas complicaciones, como la presen-

cia de ruido gaussiano, ruido local o bordes difusos. Bajo todas esas condiciones los

métodos propuestos han sido capaces de proporcionar resultados aceptables. Sin em-

bargo, los métodos propuestos presentan algunas desventajas. El más importante es

la complejidad del método. Tuvimos que diseñar y emplear un conjunto de diversos

operadores genéticos con la tarea de evolucionar la población a lo largo de un número

considerable de generaciones hasta que conseguimos alcanzar unos resultados acept-

ables. Dicho proceso, aunque ha sido acelerado por el método voraz en la versión

h́ıbrida, conlleva un tiempo considerable. Además, al igual que en otros métodos de

minimización de un solo objetivo, tuvimos que ajustar los parámetros que ponderan

las diferentes componentes de enerǵıa hasta conseguir una configuración adecuada.

Sobre esos aspectos que hemos trabajado para mejorar los métodos evolutivos prop-

uestos.

B.3.2 Método de segmentación usando differential evolution

Como hemos comentado, uno de los principales problemas que presentan los métodos

usando algoritmos genéticos que hemos propuesto es el uso de diversos operadores

genéticos, cada uno de ellos usado según una probabilidad de aplicación que debe

ser ajustada para obtener los mejores resultados posibles. Además, es conveniente

obtener una mayor velocidad de convergencia de la población hacia el óptimo de-
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seado, dada la lentitud de los métodos como hemos comentado. Por lo tanto, se han

desarrollado una serie de mejoras en el proceso evolutivo.

Una de estas mejoras es el uso de evolución diferencial para la generación de

nuevos individuos en la población del proceso evolutivo. Differential Evolution [77]

es un método evolutivo alternativo que minimiza las decisiones del diseñador con re-

specto al algoritmo genético clásico. Este nuevo algoritmo sustituye todo el conjunto

de operadores genéticos, previamente definidos, por uno único. Dicho operador se

basa en el principio de crear nuevos individuos mediante la combinación de otros

ya existentes usando una formula simple que implica cruce y mutación. Para cada

individuo existente en la población, generamos un candidato según dicho nuevo op-

erador, quedándonos en la nueva generación de la población con el mejor de ambos.

Además, al igual que lo realizado para el algoritmo genético, hemos realizado

una hibridación combinando la búsqueda global de differential evolution junto con

la búsqueda local proporcionada por el método voraz. De esa manera, además de

reducir los tiempos necesarios para la segmentación, introducimos la posibilidad de

eliminación de enlaces para un mejor ajuste en contornos complejos o la posibilidad

de segmentar varios objetos presentes en la escena.

Además de la simplificación de operadores comentada, los resultados obtenidos

han demostrado una convergencia más rápida hacia el óptimo del nuevo método

evolutivo con respecto al algoritmo genético desarrollado en un primer momento.

Dicho aspecto es relevante para obtener los resultados en un menor tiempo, dada la

lentitud comentada de dichos métodos evolutivos de optimización.

B.3.3 Método de segmentación usando optimización multiobjetivo

Una de las principales limitaciones del algoritmo genético ha sido mejorada gracias

al uso de differential evolution. Sin embargo, ambas metodoloǵıas, aśı como todos

los métodos de minimización de un único objetivo, presentan una limitación con

respecto a los parámetros de los componentes energéticos. En estos métodos evo-

lutivos se asigna una calidad a cada individuo en relación con la enerǵıa asociada

al modelo, enerǵıa cuyas componentes están ponderadas por diferentes parámetros.

Por lo tanto, para obtener unas segmentaciones adecuadas, se deben ajustar dichos

parámetros que ponderan las componentes energéticas. Dicho proceso de ajuste ex-

perimental de parámetros energéticos debe ser realizado usando cualquier método de

minimización de un solo objetivo, en concreto, en nuestro caso, por el método voraz

y los métodos evolutivos que usan algoritmos genéticos y differential evolution.

Los algoritmos de optimización multiobjetivo solucionan el problema del ajuste

de parámetros ya que consideran la optimización de diversos objetivos en paralelo.
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Dichos algoritmos normalmente trabajan en entornos con objetivos que entran en

conflicto, tratando de buscar un conjunto de soluciones óptimas de compromiso lla-

mado Frente de Pareto. Dicho conjunto está formado por soluciones no dominadas,

es decir, aquellas soluciones para las cuales no hay otra que tenga todos los valores

por lo menos iguales, y al menos un valor de entre los diferentes objetivos mejor. Los

algoritmos evolutivos de optimización multiobjetivo [48][28] usan los principios de

la computación evolutiva en la búsqueda del Frente de Pareto. En concreto, hemos

desarrollado un nuevo método de segmentación que usa uno de estos algoritmos, uno

de los mejores que han sido desarrollados de este tipo, el algoritmo SPEA2 [110].

En los métodos propuestos, dicho algoritmo SPEA2 fue implementado en un primer

lugar usando el conjunto de operadores y caracteŕısticas del algoritmo genético pre-

viamente desarrollado, siendo reemplazado posteriormente con las caracteŕısticas del

método basado en differential evolution.

Además de evitar todo el proceso de ajuste de los parámetros de los términos

energéticos, con esta nueva metodoloǵıa obtenemos un conjunto de posibles resulta-

dos finales tras el proceso de segmentación, esto es, el Frente de Pareto final respeto

a los diferentes objetivos usados. De esta manera, podemos seleccionar, a posteriori,

uno o varios individuos de dicho Frente, atendiendo a los criterios deseados por el

usuario.

B.3.4 Aplicación práctica. Detección y extracción del disco óptico

en imagen de retina

Como caso práctico, hemos empleado las técnicas evolutivas de segmentación para

la tarea de localizar y segmentar el disco óptico en imágenes de retina. Los métodos

han sido adaptados a este dominio espećıfico incluyendo información del dominio.

Los métodos fueron probados en dos tipos posibles de imágenes de retina, cen-

tradas en mácula y centradas en disco óptico, al mismo tiempo que se realizó un

estudio de resultados usando conjuntos públicos de imágenes de retina, aportando

unos resultados satisfactorios.

B.4 Conclusiones

En esta tesis hemos diseñado e implementado diferentes metodoloǵıas para seg-

mentación en imagen 2D y 3D. Todos los métodos usan diferentes técnicas evolu-

tivas que mejoran los resultados obtenidos previamente, dadas las limitaciones del

método voraz previamente diseñado. Estas nuevas técnicas incluyen caracteŕısticas

de la computación evolutiva aśı como diversas adaptaciones a los aspectos concretos
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del dominio en el que estamos trabajando.

Los métodos evolutivos aportan una serie de ventajas, siendo la principal su

robustez frente a diversas complicaciones que pueden aparecer en las imágenes, algo

habitual cuando estamos trabajando con imágenes de un dominio real. Aśı, los

métodos son capaces de proporcionar segmentaciones adecuadas trabajando con

imágenes que presentan diversos niveles de ruido o con bordes discontinuos o difusos,

como han mostrado los diversos resultados presentados en el trabajo.

En cambio, dichos métodos se caracterizan, como principal desventaja, por su

lentitud. Esto es debido a la gestión de una población entera de individuos (posibles

soluciones) que deben ser modificados en sucesivas generaciones hasta poder alcanzar

los resultados deseados. Para ello, se han realizado diversas hibridaciones entre las

técnicas evolutivas propuestas con el método voraz, el cual aporta rapidez. De esta

manera conseguimos acelerar los procesos de segmentación sin perder la robustez

aportada por los métodos evolutivos. Además, el método voraz incorpora el mecan-

ismo de rupturas de enlaces, dotando de esa manera al proceso de segmentación de la

posibilidad de realizar cambios topológicos. Dichos cambios aportan a la malla una

gran flexibilidad para un mejor ajuste en objetos de superficies complejas (presencia

de huecos o concavidades) o incluso la posibilidad de segmentar diversos objetos

presentes en la escena.

Por otro lado, los métodos multiobjetivo propuestos ofrecen unas caracteŕısticas

adicionales que no aportan los métodos de optimización de un único objetivo. El

método voraz y los métodos evolutivos basados en el algoritmo genético básico y el

basado en differential evolution necesitan ajustar los parámetros energéticos para

obtener una segmentación adecuada. Sin embargo, los métodos de optimización

multiobjetivo omiten dicho ajuste definiendo directamente una serie de objetivos a

partir de diferentes componentes de enerǵıa. Además, del Frente de Pareto final

podemos extraer una o varias segmentaciones, a criterio del usuario.

Por último, se han aplicado los métodos propuestos en un dominio real, para la

detección y segmentación del disco óptico en imágenes de retina, aportando unos

buenos resultados.

B.5 Contribuciones

De todo el trabajo realizado se han obtenido diversas publicaciones, incluyendo

publicaciones en revistas indexadas aśı como otras publicaciones en congresos inter-

nacionales y nacionales de reconocido prestigio.
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