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Introduction

In this work we study some mathematical models for pricing specific financial deriva-

tives. More precisely, the study covers the modeling, mathematical analysis and

numerical solution of the ratchet cap, spread option and stock loan pricing problems.

The ratchet cap consists of an interest rate derivative product that can be de-

composed in ratchet caplet contracts, for which the associated strike is recursively

defined in terms of a set of forward LIBOR rates. In the spread option contract the

payoff depends on the relation between the difference of two LIBOR rates and a fixed

strike, so that call and put versions can be considered. In the stock loan contract

mainly the borrower of a loan owns shares on a stock that are used as collateral of the

loan, so that it can be framed as a derivative on the stock. In both cases, the usual

methodology in mathematical finance for option pricing also allows to obtain differ-

ent models that can be formulated in terms of partial differential equations problems.

After stating these models, their mathematical analysis allows to obtain existence

and uniqueness of solution, as well as some qualitative and/or regularity properties.

Furthermore, having in view the practical pricing requirements, we develop different

numerical methods to solve the models and provide the fair prices of the financial

products here treated.

Financial derivatives are a type of financial instruments, the price of which de-

pends on other underlying products. The most classical example appears in option

markets on assets. The starting point of trading these financial derivatives in orga-

nized markets dates back to early 1970s with the Chicago Board of Options Exchange

(CBOE) in Chicago (USA). Almost at the same time, the seminal papers by Black and
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Scholes [11] and Merton [42] provided the dynamic hedging methodology to obtain

the popular Black-Scholes partial differential equation model and Black-Scholes for-

mula for European vanilla options. Since then, the complexity of option-like products

and other derivatives has greatly increased and different partial differential equation

models have been proposed accordingly to price them [66, 65]. Among the different

mathematical tools involved in the statement of the model, the consideration of a

geometric Brownian motion that governs the dynamics of the underlying (asset price,

in this case) results to be a key point. Also notice that the short maturity of option

contracts allows the use of either constant or deterministic time dependent interest

rates, however this is not the case for long term products, such as bonds.

Among the large variety of derivatives, when the underlying is a particular interest

rate or a set of them, the class of interest rate derivatives arises. Thus, the benefits or

payoffs associated to an interest rate derivative depend on the level of certain interest

rates. One of the most simple examples of this kind of derivatives consists of a bond

periodically paying coupons that depend on certain floating rate. As in the case of

options, when trying to solve the associated pricing problem, the question about the

suitable models for the dynamics of the involved interest rates arises. Unlike in the

case of options, the long term of contracts and the behavior of the involved rates

motivates the consideration of stochastic interest rate models. In the literature a

lot of effort has been devoted to develop such models, that nowadays can be mainly

classified into two classes: short rate models and market models. In the book by Brigo

and Mercurio [13] a comprehensive presentation of the different families of interest

rates and their modeling can be obtained.

Short rate models are mainly based in one-factor dynamics for the spot rate pro-

cess, rt, that is

drt = u(t, rt) dt + w(t, rt) dWt ,

where the different particular expressions for the functions u and w give rise to a

variety of models and Wt denotes a Brownian motion (see [66, 13], for example). The

popular models of Vasicek (1977) [63], Dothan (1978) [20] and Cox-Ingersoll-Ross
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(1985) [16] can be framed in this setting. One advantage of these models comes from

the possibility of obtaining analytical formulas for pricing zero coupon bonds or even

coupon bearing bonds. Furthermore, they are an easy first step to explain more ge-

neral and convenient models. Nevertheless, these models result to be endogenous in

the sense that they provide the term structure as an output and the calibration of

their constant parameters to the current market term structure results to be almost

impossible in practice. A first attempt to overcome this drawback is provided by

the inclusion of time dependency in the involved functions u and w, as it is pro-

posed in Hull-White model (1990) [33], or the consideration of two factor models

[13]. Nevertheless, as it is also based on the unobservable values in the market of the

instantaneous short rates and its variance, the drawbacks related to the difficulty of

calibration to the initial curve of discount factors still remain.

The general Heath-Jarrow-Morton model [32], that appears in 1992, constitutes

the first alternative to short rate models in continuous time. In this general model,

the instantaneous forward rates are modeled and an arbitrage-free methodology for

the stochastic evolution of the entire yield curve is proposed, so that the forward-rate

dynamics is appropriately defined in terms of their instantaneous volatility structure.

Heath-Jarrow-Morton model is also considered as the starting point of market models.

Among a large variety of interest rates, the LIBOR (London Interbank Offer

Rate) represents the most important interbank rate usually considered as reference

for contracts and also the rate at which large international banks lend money to

each other. Moreover, forward rates are a class of interest rates which are valid for

future periods. They can be locked in today for an investment in a future period (for

example, from one to two years from now). In the LIBOR Market Model, the forward

LIBOR rates and their dynamics are chosen as the underlying interest rates in the

ratchet cap and spread option contracts.

Since the seminal papers by Brace, Gatarek and Musiela [12], Jashmidian [35]

and Miltersen, Sandmann and Sondermann [44], the LIBOR Market Model has been

widely used to model the evolution of forward LIBOR rates. It is based in the
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general Heath-Jarrow-Morton framework and has become one of the most popular

interest rate market models, mainly due to its agreement with analytical Black pricing

formulas used in the market for caps and floors, which are the most traded interest

derivatives. Moreover, its parameters can be calibrated with market data and liquid

products.

From the numerical point of view, in the LIBOR Market Model framework most

of the pricing of interest rate derivatives is carried out by means of Monte Carlo

simulation, taking advantage of its general applicability to almost all interest rate

derivatives. More precisely, the most traded interest rate derivatives, such as vanilla

caps and floors, discrete barrier caps and floors, discrete barrier digital caps and floors,

spread options and ratchets can be priced (see Brigo and Mercurio [13] or Pelsser [53],

for example). As soon as the derivative depends on a set of LIBOR rates, a common

measure has to be used in the formulation of the stochastic differential equations

for the dynamics of the different involved rates, thus giving rise to the appearance

of drift terms. In this case, by introducing appropriate auxiliary martingales, some

drift-free simulation techniques have been recently introduced (see [31, 10, 22], for

example). However, the main limitation of Monte Carlo simulation comes from the

excessively long computational times, specially when the prices of a lot of derivatives

in a portfolio are required.

Sometimes, as in the pricing of many other financial derivatives, an alternative

and more efficient numerical technique in LIBOR Market Model setting turns out

from the formulation of the pricing problem in terms of partial differential equations.

This approach for pricing derivatives is more classically addressed in option pricing

(see, for instance, Pascucci [50] and Wilmott [65]). Feynman-Kàc theorem allows

to obtain a representation formula of the price of many financial derivatives as the

solution of Cauchy problem associated to parabolic (sometimes degenerated) partial

differential equations (see [50], for example). In case of the ratchet cap contract, as

the payoff depends on a set of forward LIBOR rates, the price of each ratchet caplet is

obtained from the solution of a sequence of Cauchy problems, with increasing spatial
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dimension for decreasing time intervals. The rigorous statement of this complex PDE

model and its mathematical analysis represents an original part of this work, as in

the literature we have only found the reference [55] where a simpler case is posed and

numerically solved. In this thesis also this particular case is framed in the general one

and mathematically analyzed. In the case of the call (put) spread option on LIBOR

rates also the PDE methodology can be carried out.

The first attempt to pose a rigorous pricing model for stock loans appears in [67],

in which the stock dividends are collected by the lender until redemption so that a

PDE model analogous to the American vanilla call option with time dependent strike

is posed. The pricing of American vanilla call options can be formulated in terms of

complementarity problems associated to classical Black-Scholes equations (see [66],

for example), so that their mathematical analysis can be framed in the theory of

degenerated parabolic variational inequalities (see, [18] or [34], for example). It is well-

known the interpretation of the American pricing model as a free boundary problem

in which not only the option price but also the exercise region has to be determined.

Although usually free boundary problems are associated to linear parabolic equations,

the consideration of transaction costs in vanilla European options, for example, gives

rise to (double obstacle) free boundary problems associated to nonlinear equations

[2]. In [67] the stock loan with infinite maturity is related to the American perpetual

option to obtain an analytical formula. More recently, in [17] different possible regimes

of dividend yield distribution lead to the corresponding free boundary problems in

the finite maturity setting for the stock loan contract. Those ones corresponding to

dividend yield gained by the lender before redemption, reinvested dividend returned to

borrower on redemption and dividend always delivered to borrower lead to parabolic

variational inequalities in one spatial dimension very similar to the one governing

American vanilla options. Nevertheless, the most interesting case arises when the

accumulative dividend yield is returned to the borrower on redemption. Under this

specification of the stock loan contract, the introduction of an auxiliary stochastic

process and the use of dynamic hedging methodology allows to represent the stock
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loan price as the solution of an obstacle problem associated to a Kolmogorov equation.

This model is posed in [17] and the existence of a free boundary (redemption boundary

in the case of stock loans) is analyzed, assuming that existence of solution has been

obtained. An original part of the present work is the proof of existence of solution and

its uniqueness in the set of functions with polynomial growth by using the techniques

recently applied in [45] for Asian options with arithmetic averaging and early exercise

opportunity. Furthermore, the anisotropic regularity of solution is analyzed by means

of the techniques developed in [26] for hypoelliptic parabolic equations.

Having in view the application in practice of the here considered models, their

mathematical analysis needs to be completed with their numerical solution. These

numerical methods can be implemented as software toolboxes in appropriate program-

ming languages to be handled by practitioners. Generally, the numerical methods to

price financial derivatives can be classified into Monte Carlo simulation, binomial

trees and the numerical or analytical solution of the PDE models.

As it has been indicated before, in LIBOR Market Model the most used in the

literature is Monte Carlo simulation. Binomial trees can also be used and some

examples of pricing interest rate derivatives for the very close Swap Market Model

are included in [15].

In quantitative finance, initially the most extended methods for the numerical solu-

tion of PDE models were the classical ones of finite differences for parabolic equations

governing European derivatives prices, with some additional projection techniques for

the products with early exercise opportunity, such as American options or callable

bonds [66]. However, other numerical techniques already used in computational fluid

dynamics have been also applied to computational finance, such as finite volumes [68],

finite elements [41, 57] or characteristics methods (semilagrangian schemes) for time

discretization [64, 5, 21, 29]. A rigorous presentation of finite differences and finite

elements methods in option pricing problems can be found in the text [1].

In the particular setting of the numerical solution of PDE problems for the ratchet

cap pricing based on LIBOR Market Model, we have only found the work of Pietersz
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[55], in which a parabolic PDE on two spatial dimensions is posed and a comparison

between Monte Carlo simulation and an explicit finite differences scheme is presented.

Concerning the stock loan problem, to our knowledge only the reference [17] addresses

the numerical solution by means of a forward shooting method proposed in [4] for

Asian options of American style.

In the present work, we propose the use of an unified methodology for the time-

space discretization in all PDE problems, which is based on the higher order Crank-

Nicolson Lagrange-Galerkin method initially proposed in [60] for a convection-diffusion

equation with constant coefficients, and extended in [6, 7] to a wider framework of

convection-diffusion-reaction (possibly degenerated) PDE problems. Moreover, these

methods have been also successfully applied to the pricing of Asian options without

early exercise opportunity in [8]. The advantage of the characteristics methods for

time discretization arises in the case of convection dominated problems, in which spu-

rious oscillations can appear when unsuitable numerical methods are applied. In the

case of ratchet cap and spread option contracts, an original semianalytical technique

is proposed and compared with the previous one and a crude Monte Carlo simula-

tion. In the case of stock loans, the Lagrange-Galerkin technique is combined with

the augmented Lagrangian active set technique proposed in [37] to treat the unilateral

constraint in a mixed formulation setting. This method has been successfully used in

[9] to price Asian options with arithmetic averaging and early exercise opportunity.

In the case of stock loans, the application of the numerical methods allows not only

to obtain their price but also the redemption and no redemption regions, as well as

the optimal redee-ming boundary separating both regions. Also the theoretical pro-

perties proved in [17] about these regions contribute to validate the performance of

the numerical methods.

The outline of the thesis memoir is as follows.

Chapter 1 is devoted to the presentation of the functional framework about

parabolic partial differential equations with variable coefficients to be used in the

mathematical analysis of the forthcoming models of ratchet cap and spread options
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on forward LIBOR rates. It mainly contains the definitions and main results con-

cerning existence and uniqueness of solutions.

In Chapter 2 the rigorous formulation of an original PDE model for pricing the

ratchet cap contract is posed. Next, the mathematical analysis of the general model

to obtain the existence of solution is developed. A particular simpler case is also

mathematically analyzed. For this case, different numerical techniques to obtain the

ratchet cap price are based on semianalytical solutions, Lagrange-Galerkin methods

and Monte Carlo simulation are described. Next, different numerical examples are

presented to illustrate the performance of the numerical methods.

In Chapter 3 a PDE model for pricing call and put spread options on forward

LIBOR rates is rigorously posed, mathematically analyzed and numerically solved

with the same techniques of Chapter 2. Furthermore, some numerical examples are

presented.

In Chapter 4 the mathematical analysis of the model for pricing stock loan con-

tracts, when the accumulative dividend yield associated to the stock is returned by the

lender to the borrower on redemption, is carried out. More precisely, the model can

be framed as an obstacle problem associated to a Kolmogorov equation, so that exis-

tence and uniqueness in the set of solutions with polynomial growth can be obtained.

Next, for the numerical solution of the problem the combination of Crank-Nicolson

Lagrange-Galerkin with the augmented Lagrangian active set method is described.

Some numerical examples illustrate the theoretical properties of the optimal redeem-

ing boundary.

In Chapter 5 the main conclusions of this work are summarized.

In Annexe A some intermediate calculus related to the analytical approximation

proposed in chapter 2 for the pricing of ratchet caplets are included. The same kind

of computations are required for the spread option in chapter 3.
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Chapter 1

Functional framework

1.1 Introduction

It is well-known that the price of financial contracts, such as options or interest rate

derivatives, could be defined in terms of the solutions of Cauchy problems associated

to partial differential equations. Throughout this work several interest rate derivatives

will be described in order to get their price via the numerical solution of partial

differential equations, the use of some fundamental solutions and the development

of suitable Monte Carlo simulation techniques. Therefore, mainly due to the first

two approaches, it is necessary to introduce a functional framework and some results

of classical theory of partial differential equations. In particular, the results for the

mathematical analysis of Black-Scholes models are based on the classical theory for

parabolic equations with constant and variable coefficients. Furthermore, as long as

the new financial products get more complex, the theory and techniques required to

deal with them become more sophisticated.

In this chapter we introduce the main notations and results related to the classi-

cal theory of parabolic partial differential equations that constitute the basis of the

mathematical analysis of the models appearing in next chapters. However, taking

into account that this is not a guide neither a text book about this topic, the reader

is addressed to the more specific literature, such as [28] or [50], for example.
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1.2 Parabolic PDE problems with variable coeffi-

cients

In the literature, some pricing problems in finance can be formulated as problems

associated to general parabolic operators with variable coefficients taking the form

L =
1

2

n∑
i,j=1

aij∂xixj +
n∑
j=1

bj∂xj − a0 − ∂t, in (0, T )× Rn, (1.1)

where aij, bj and a0 are given real functions defined in (0, T )× Rn.

This is also the case of the PDE models associated to the interest rate derivatives

pricing problems appearing in this thesis. We point out that sometimes in the present

work it results convenient to rewrite the operator L in divergence form, so that for a

given function φ, defined in (0, T )× Rn, we can write

Lφ = ∂tφ−Div(A∇φ) + ~v · ∇φ+ lφ. (1.2)

Clearly, the functional coefficients appearing in expressions (1.1) and (1.2) can be

related by the following identities:

Aii = aii, Aji = aji, vj = ∂xjajj +
n∑
i=1

∂xiaij − bj, l = a0. (1.3)

Note that (1.2) represents a linear convection-diffusion-reaction operator with diffu-

sion tensor A, velocity vector ~v and reaction coefficient l.

Thus, in many financial situations appearing in the present work, the pricing

model can be formulated in terms of a Cauchy problem associated to the operator L
in the form Lu = f, in (0, T )× Rn,

u(0, ·) = ϕ, on Rn,
(1.4)

where f and ϕ are given functions defined in (0, T )× Rn and Rn, respectively.

In the financial setting, it is classical to prove that the solution of problem (1.4)

represents the value of a self-financing strategy and the non-negativity of the solution

avoids arbitrage opportunities (see [50], for example).
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In the present chapter, mainly following the text [50], the main notations, defi-

nitions and some conditions that guarantee the existence and uniqueness of solution

for the Cauchy problem (1.4) are presented. Also the results for the corresponding

Cauchy-Dirichlet problem in bounded domains are summarized.

For this purpose, let us introduce some hypotheses about the regularity and growth

on the coefficients involved in the operator, which will be necessary later on:

(H1) The coefficients aij, bj and a0 are real-valued functions. The matrix A = (aij)

is symmetric and positive semi-definite for any point of the considered domain.

Moreover, the coefficient a0 is bounded from below.

(H2) There exists a constant M such that

| aij(t, x) |≤M, | bj(t, x) |≤M(1+ | x |), | a0(t, x) |≤M(1+ | x |2)

for all (t, x) ∈ (0, T )× Rn and i, j,= 1, · · · , n.

More precisely, in the case of a bounded domain Ω ⊂ Rn, under hypothesis (H1)

the weak maximum principle can be obtained, that in turn implies the uniqueness of

solution. For the unbounded domain case, hypothesis (H2) is additionally required.

We note that the assumption of both hypotheses is not enough to obtain the existence

of solution.

Furthermore, under the much stronger assumption of existence of fundamental

solution, another uniqueness result can be obtained.

1.2.1 Uniqueness of solution

First, we present some results concerning the uniqueness of solution for the case of

the following Cauchy-Dirichlet problem posed on a bounded domain:Lu = f, in (0, T )× Ω,

u(0, ·) = ϕ, in Σ,
(1.5)

where Ω is a bounded set in Rn and Σ = ∂((0, T )× Ω)− ({T} × Ω).
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At this point it is important to recall the concept of classical solution of the

Cauchy-Dirichlet problem (1.5).

Definition 1.2.1. Let f ∈ C((0, T ) × Ω) and ϕ ∈ C(Σ). A classical solution of the

Cauchy-Dirichlet problem (1.5) is a function u ∈ C1,2((0, T )×Ω)∩C(((0, T )×Ω)∪Σ)

satisfying (1.5).

Remark 1.2.1. In the previous definition we use the notation C1,2((0, T ) × Ω) for

the space of functions with continuous first order derivatives in the first variable and

continuous second order derivatives in the second variable.

In this setting we have the following weak maximum principle and comparison

results, the proof of which can be found in [50].

Theorem 1.2.2. Let u ∈ C1,2((0, T ) × Ω) ∩ C(((0, T ) × Ω) ∪ Σ) such that Lu ≥ 0

on (0, T ) × Ω and assume that hypothesis (H1) holds. If u ≤ 0 on Σ, then u ≤ 0 in

(0, T )× Ω.

Corollary 1.2.1. Let u, v ∈ C1,2((0, T )×Ω)∩C(((0, T )×Ω)∪Σ) such that Lu ≤ Lv
on (0, T ) × Ω and u ≥ v on Σ, then u ≥ v in (0, T ) × Ω. Particularly, in this case

there exists at most one classical solution of the Cauchy-Dirichlet problem (1.5).

Once the Cauchy-Dirichlet problem has been previously treated, we present the

results for the Cauchy problem (1.4).

Theorem 1.2.3. Let u ∈ C1,2((0, T ) × Rn) ∩ C([0, T ] × Rn) such that Lu ≤ 0 on

(0, T ) × Rn, u ≥ 0 on Rn and assume that hypotheses (H1) and (H2) hold. If u

satisfies that

u(t, x) ≥ −C exp(C | x |2), (t, x) ∈ (0, T )× Rn (1.6)

for some positive constant C, then u ≥ 0 in (0, T )× Rn.

From the previous theorem, the following uniqueness result follows.
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Theorem 1.2.4. Under the hypotheses of the previous theorem, there exists at most

one classical solution u ∈ C1,2((0, T ) × Rn) ∩ C([0, T ] × Rn) of the Cauchy problem

(1.4) such that condition

| u(t, x) |≤ C exp(C | x |2), (t, x) ∈ (0, T )× Rn (1.7)

holds for some positive constant C.

In order to obtain uniqueness of solution under stronger assumptions, it is conve-

nient to introduce the definition of fundamental solution.

Definition 1.2.2. A fundamental solution of the operator L, with a pole in (s, y) ∈
Rn, is a function Γ(·, ·; s, y) defined on (s,∞) × Rn such that for every ϕ ∈ C(Rn)

and bounded, the function

u(t, x) =

∫
Rn

Γ(t, x; s, y)ϕ(y)dy (1.8)

is a classical solution of the Cauchy problemLu = 0, in (s,+∞)× Rn,

u(s, ·) = ϕ, on Rn.
(1.9)

Next, for a fixed λ > 0, we introduce the function

Γλ(t, x) =
1

(2πλt)n/2
exp

(
−| x |

2

2tλ

)
, (t, x) ∈ (0,+∞)× Rn. (1.10)

Remark 1.2.5. Notice that Γλ is the fundamental solution, with pole at s = 0 and

y = 0, of the operator λ
2
∆− ∂t.

Now, let us introduce the following hypothesis:

(H3) The operator L has a fundamental solution Γ. Furthermore, there exists λ > 0

such that for every T > 0, t ∈ (s, s + T ), x, y ∈ Rn, the following estimates

hold:

1

M
Γ 1
λ
(t− s, x− y) ≤ Γ(t, x; s, y) ≤MΓλ(t− s, x− y),

| ∂ykΓ(t, x; s, y) | ≤ M√
t− s

Γλ(t− s, x− y),

with M a positive constant depending on T .
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Let us recall that uniqueness results have already been obtained by assuming

hypotheses (H1) and (H2). However, as stated in [50], if we additionally assume that

(H3) is satisfied, then L has a fundamental solution Γ, such that the function

u(t, x) =

∫
Rn

Γ(t, x; 0, y)ϕ(y)dy, (t, x) ∈ (0, T )× Rn (1.11)

is a classical solution of the Cauchy problem (1.4) for a given ϕ ∈ C(Rn) such that

| ϕ(y) |≤ c exp(c | y |γ), y ∈ Rn

with c, γ positive constants and γ < 2.

Finally, we state a result that guarantees the existence of a unique solution which

is bounded from below by a constant. In particular, the result allows to state the

uniqueness of a positive solution. For this purpose, we introduce the following hy-

pothesis:

(H4) The operator L admits an adjoint operator given by

L∗ =
1

2

n∑
i,j=1

aij∂xixj +
n∑
j=1

b∗j − a∗0 + ∂t,

with the coefficients

b∗i = −bi +
n∑
j=1

∂xiaij

a∗0 = a0 −
1

2

n∑
i,j=1

∂xixjaij +
n∑
j=1

∂xjbj

verifying analogous growth conditions to the ones in hypothesis (H2).

Theorem 1.2.6. If we assume hypotheses (H1), (H2), (H3) and (H4), then there

exists at most one function u ∈ C1,2((0, T ) × Rn) ∩ C([0, T ] × Rn) that is bounded

from below and is the classical solution of problem (1.4).

The proof of the previous theorem is based on the following one, which in turn is

a generalization of Theorem 1.2.4.
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Theorem 1.2.7. If we assume hypotheses (H1), (H2), (H3) and (H4), then there

exists at most one classical solution u ∈ C1,2((0, T )×Rn)∩C([0, T ]×Rn) of problem

(1.4). Furthermore, for this solution, there exists a constant C such that∫
Rn
| u(t, x) | exp(−C | x |2) dx <∞, (1.12)

for every 0 ≤ t ≤ T

Finally, next theorem states that non-negative solutions of problem (1.4) satisfy

the estimate (1.12), so that uniqueness of non-negative solutions is obtained.

Theorem 1.2.8. If we assume hypotheses (H1), (H2) and (H4) and u ∈ C1,2((0, T )×
Rn) is a non-negative function such that Lu ≤ 0, then∫

Rn
Γ(t, x; s, y)u(s, y) dy ≤ u(t, x), (1.13)

for every x ∈ Rn and 0 < s < t < T .

1.2.2 Existence of solution

As in the case of uniqueness, also analogous results to the ones related to existence of

solution for parabolic operators with constant and variable coefficients are required in

order to ensure the existence of solution for the models which are considered through-

out this work.

In order to present these results, some definitions concerning to specific functional

spaces are first introduced (see [50], for example).

Definition 1.2.3. Let M be a compact subset of Rn. A function f : M ⊂ Rn → R is

Hölder continuous of exponent α (0 < α < 1) in M if there exists a constant C such

that:

| f(x)− f(y) |≤ C | x− y |α, x, y ∈M. (1.14)

Definition 1.2.4. A function f : (0, T ) × Rn → R is locally Hölder continuous in

variable x, uniformly in variable t, with exponent α (0 < α < 1) if for every compact

set M in Rn there exists a constant C, such that:

| f(t, x)− f(t, y) |≤ C | x− y |α, x, y ∈M, t ∈ (0, T ). (1.15)
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Both previous definitions motivate the corresponding norms to introduce the as-

sociated normed spaces. However, as we are dealing with parabolic equations, we

introduce the more useful definition of the parabolic Hölder spaces, which result

to be more natural for these equations as they give to the time variable a different

exponent from the spatial variable.

Definition 1.2.5. For the exponent α (0 < α < 1) and the domain O = (0, T )×Rn,

with T > 0, we denote by Cα
P (O) the space of bounded functions u, such that there

exists a constant C satisfying:

| u(t, x)− u(s, y) |≤ C
(
| t− s |α/2 + | x− y |α

)
, t, s ∈ (, T ), x, y ∈ Rn. (1.16)

Therefore, the space Cα
P (O) can be equipped with the norm

|| u ||CαP (O)= sup
(t,x)∈O

| u(t, x) | + sup
(t,x)∈O,(t,x)6=(s,y)

| u(t, x)− u(s, y) |
| t− s |α/2 + | x− y |α

(1.17)

Moreover, the function u is said to be locally parabolic Hölder continuous of exponent

α, which is denoted by u ∈ Cα
P,loc(O), if u ∈ Cα

P (M) for any compact M such that

M ⊂ O.

In order to state a result for the existence of solution to the Cauchy problem

(1.4), we introduce a first hypothesis that assumes that the operator L is uniformly

parabolic.

(H5) L is a uniformly parabolic operator. More precisely, there exists a positive

constant λ such that

λ−2 | ψ |2≤
n∑

i,j=1

aij(t, x)ψiψj ≤ λ2 | ψ |2, t ∈ R, x, ψ ∈ Rn.

Next, we introduce hypothesis (H6), that mainly assumes that the coefficients involved

in the expression of the operator (1.1) are bounded and parabolic Hölder continuous

functions.
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(H6) The coefficients are bounded and parabolic Hölder continuous functions with

exponent α ∈ (0, 1), that is:

aij, bj, a0 ∈ CαP (Rn+1), 1 ≤ i, j ≤ n.

The forthcoming hypothesis (H7) concerns to the growth and regularity conditions

on the functions defining the second member of the equation and the initial datum.

They are similar to the ones imposed in the case of the Cauchy problem associated

to the heat operator.

(H7) The functions ϕ and f are continuous and there exist some positive constants

c and γ < 2, such that

| ϕ(x) |≤ c exp(c | x |γ), x ∈ Rn, (1.18)

| f(t, x) |≤ c exp(c | x |γ), (t, x) ∈ (0, T )× Rn. (1.19)

Furthermore, f is locally Hölder continuous in x and uniformly in t.

Then, under hypotheses (H5), (H6) and (H7), we can state the following theorem

that guarantees the existence of solution to problem (1.4).

Theorem 1.2.9. If hypotheses (H5), (H6) and (H7) are satisfied, then the operator

L has a positive fundamental solution Γ = Γ(t, x; s, y), which is defined for x, y ∈ Rn

and t > s. Furthermore, for every functions ϕ and f satisfying (H7), the function u

defined by

u(t, x) =

∫
Rn

Γ(t, x; 0, y)ϕ(y)dy −
∫ t

0

∫
Rn

Γ(t, x; s, y)f(s, y)dyds, (1.20)

with (t, x) ∈ (0, T )× Rn and by u(0, x) = ϕ(x), is a classical solution of the Cauchy

problem (1.4).

Note that if the conditions of the previous theorem are satisfied, then Theorem

1.2.4 implies that the function defined by expression (1.20) is the unique solution of

(1.4) such that condition (1.7) is satisfied.

In reference [50] an alternative hypothesis weaker than (H7) jointly with a lo-

cally integrable initial datum can be assumed to obtain the corresponding results of

existence of solution.
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Chapter 2

Ratchet cap

2.1 Introduction

Since the seminal papers by Brace, Gatarek and Musiela [12], Jashmidian [35] and

Miltersen, Sandmann and Sondermann [44], the LIBOR Market Model (LMM) has

become one of the more popular interest rate market models due to its agreement

with market pricing formulas. Also it is referred as Lognormal Forward LIBOR Model

(LFM) in the book of Brigo and Mercurio [13].

As indicated in [12], LMM provides a class of term structure model with lognormal

volatility so that market forward rates do not explode, are positive and mean rever-

ting. More precisely, it models the dynamics of LIBOR forward rates so that pricing

caps and floors is consistent with Black formulas used in the market. Moreover, their

parameters can be calibrated with market data and liquid products. Nevertheless,

an exact calibration of the initial curve of discount factors and a clear covariances

structure of forwards rates is difficult to achieve, specially for models which are not

analytically tractable.

Also notice that LMM results to be not compatible with the Swap Market Model

(also referred in [13] as lognormal forward-swap model (LSM)) as forward swap rates

cannot be lognormal under their own measure in LMM.

In the LMM framework most of the pricing is carried out by means of Monte
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Carlo simulation taking advantage of its general applicability to almost all interest

rate financial derivatives. However, the main limitation comes from the long com-

putational times, specially when a lot of prices are required. Alternative numerical

techniques in LMM setting arise from the pricing problem formulation in terms of

partial differential equations (PDE). This approach is more classically addressed in

option pricing (see Pascucci [50] and Wilmott [65], for example).

In the present chapter we first pose the appropriate PDE model for pricing the

interest rate derivative known as ratchet cap (compounded of ratchet caplets), which

is described, for example, in [13]. The ratchet caplet payoff depends on a variable

strike in terms of the reset value of all previous forward LIBOR rates. The number

of involved rates increases as the time interval approaches to ratchet cap maturity.

In the work of Pietersz [54], the particular choice of some parameter reduces this

dependence to only the last two previous LIBOR rates. In this particular setting

a parabolic PDE on two spatial dimensions (the two LIBOR rates) is obtained and

a comparison between Monte Carlo simulation and explicit finite differences for the

PDE model is presented in [54].

In this chapter we address the general case where the strike depends on all previous

LIBOR rates so that the dimension of the PDE domain increases. In this setting we

obtain the existence and uniqueness of classical solution for the PDE problem. More-

over, this solution is expressed in terms of the fundamental solution of each associated

operator and provides a numerical algorithm to compute the solution. Then, for the

particular case of Pietersz [54], the results obtained with a new numerical method

based on an analytical approximation by using the fundamental solution associated to

a constant coefficient operator, the proposed Crank-Nicolson-characteristics method

combined with finite elements and the more classical Monte Carlo simulation are

compared.

Most of the original results in this chapter are included in references [51] and [62].
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2.2 Some basics on LIBOR Market Model for for-

ward rates

As it has been indicated in the preface, we can find in the market loads of interest rate

derivatives. In the present chapter, we first describe the characteristics and pricing

formulas for the simplest ones, the caps, and mainly focus on the ratchet cap that

depends on a set of forward LIBOR rates.

First of all, when dealing with a set of LIBOR forward rates, we need a time

structure (tenor) to introduce some important definitions and notations to be handled

in the LIBOR Market Model. As different forward rates associated to LMM are

involved, for N ∈ Z+ let us consider the following tenor T = {T0, T1, ..., TN}, with

0 < T0 < Ti < Tk, 1 ≤ i < k ≤ N.

Thus, we can consider N LIBOR forward rates, L1, L2, . . . , LN associated to the

previous tenor. More precisely, the i-th forward rate Li is fixed at time Ti−1 and

accounts for the period [Ti−1, Ti]. We denote by (Lit)t≤Ti−1
the value process of the

i-th forward LIBOR rate. In general, forward LIBOR rates are characterized by the

time instant at which the rate is fixed (expiry) and the maturity.

In an arbitrage free-market, the price of any attainable claim is uniquely given,

either by the value of the associated replicating strategy, or by the risk neutral ex-

pectation of the discounted claim payoff under any of the equivalent (risk-neutral)

martingale measures. The computation of such expectation under stochastic inter-

est rates is very complex so that a change of measure could be useful. For that, a

reference asset (which is known as numeraire) is chosen to normalize the asset prices

with respect to it. In general, a numeraire is the reference financial instrument with

positive price in terms of which relative prices are expressed and it is identifiable with

a self-financing strategy (see [13], for example).

It is well-known that a zero coupon bond is a contract that guarantees its holder

the payment of a unit of currency at a future and fixed time (maturity date), without
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intermediate payments. Let us denote by Bi the zero coupon bond that matures at

time Ti and let Bi
t denote its value at time t < Ti.

If we consider Bi as numeraire, then the usual no arbitrage hypothesis in finan-

cial pricing guarantees the existence of a martingale measure Qi associated with the

numeraire Bi, such that the process (Lit) is a martingale under Qi. This measure

Qi is often called the forward measure for the maturity Ti. Note that all probability

measures are considered in the space (Ω,F), where Ω denotes the sample space and

F represents the filtration spanned by the Wiener process W .

Note that LIBOR forward rates can be related to zero coupon bonds by the

following relation [13]:

1 + δiL
i
t =

Bi−1
t

Bi
t

, i = 1, . . . N.

In the standard LIBOR market model, the dynamics of the forward rate Li under

the probability measure Qi are given by the stochastic differential equation

dLit = Litσ
i(t) dW i

t , (2.1)

where

• W =
(
W1, . . . ,WN

)
is a N -dimensional Brownian motion with instantaneous

covariance matrix ρ = (ρi,j), that is

dW i
tdW

j
t = ρi,jdt.

• σi is the deterministic volatility of the i-th forward LIBOR rate. We assume

that it is bounded to guarantee the existence and uniqueness of solution for the

stochastic differential equation (2.1).

• δi = Ti − Ti−1 denotes the i-th accrual factor.

Thus, LIBOR market model can be set up by specifying the dynamics of each

forward LIBOR rate with respect to the corresponding terminal probability measure.

This results to be enough when pricing interest rate derivatives that only depend on

one of the forward LIBOR rates, as it is the case of a caplet, for example.
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Nevertheless, when we try to price interest rate derivatives depending on a set of

forward LIBOR rates we need to express the dynamics of all the underlying forward

LIBOR rates under the same probability measure. For this purpose, we can apply

a change of numeraire technique by using the Radon-Nykodim Theorem and Itô′s

Lemma (see [50] more details). These techniques can be applied to our setting, so

that from (2.1) we get

dLjt = −Ljtσj(t)
i∑

h=j+1

ρj,hδhσ
h(t)Lht

1 + δhLht
dt + Ljtσ

j(t) dWj
t , (2.2)

for j < i.

Remark 2.2.1. We highlight that when pricing interest derivatives depending on the

set of forwards {L1, . . . , Li} in this work, we will use the measure Qi. This is the

reason why we do not include the expression of the dynamics of Lj for j > i that can

be found in [13], for example.

The above dynamics, either in the different particular measures (2.1) or in the

common one (2.2), constitute the LIBOR market model, which is also known as

lognormal forward-LIBOR model in [13]. The second name comes from the fact that

the distribution of the process (Lit) is lognormal under the measure Qi. Notice that

this martingale property is lost for j < i when using the common probability measure

Qi.

The role of terms ρi,j becomes important when pricing derivatives depending on a

set of forward LIBOR rates. It denotes the correlation between the forward LIBOR

rates Li and Lj at time t, with both t < Ti−1 and t < Tj−1.

Taking into account financial products depending on several rates, prices will de-

pend on the terminal correlation between different forward rates. The instantaneous

correlation summarizes the degree of dependence between changes of different for-

ward rates and instead, the terminal correlation summarizes the dependence between

changes of different forward rates at a given terminal time-instant.
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2.3 Financial derivatives: cap and ratchet cap con-

tracts

2.3.1 Cap and caplets. Black formula

Interest rate derivatives are financial instruments whose payoffs depend on the level of

certain interest rates. Due to this dependence, its pricing in Black-Scholes framework

results to be more complex than for equities. In fact, the behavior of the underlying,

forward LIBOR interest rates, is more complex than the dynamics of shares prices,

usually assumed to be lognormal.

Cap and swaption markets are the two main markets in the interest rate derivatives

world, so that the compatibility with market formulas is a very desirable property.

That is, in order to price some financial contracts quoting in the market, it is im-

portant to match the prices obtained throughout different techniques and the ones

quoted in the market.

In this section we introduce one of the simplest interest rates derivatives: the cap

contracts. A cap contract is a financial product that can be additively decomposed

into several caplet contracts. We can say that a caplet is an example of an European

claim which only depends on one forward rate. Due to that, it is clear that we must

use the martingale measure associated to the underlying rate in order to price the

product.

First of all, we describe more precisely the cap contract. Assuming the previous

notation for the tenor, the cap contract is signed at time T0 and the last caplet payoff

is fixed at time TN−1 and paid at time TN . Thus, for i = 1, . . . , N , let us consider the

caplet i as the contract that fixes the forward rate Lit at time t = Ti−1 to the value

L̄i = LiTi−1
and pays at time Ti the amount

M δi (L̄
i −Ki)

+ ,

where M denotes the notional and Ki is the constant fixed strike associated to caplet

i. Figure 2.1 sketches the i-th caplet time structure.
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If we denote by Li the spatial variable corresponding to the i-th forward LIBOR

rate, the caplet payoff at time Ti is given by:

ϕi(Li) = M δi (Li −Ki)
+ (2.3)

Figure 2.1: Time structure for the caplet i

For the time t < Ti−1 let us introduce the (absolute) price of caplet i, Ci
t . Taking

into account the payoff expression (2.3), clearly the price of caplet i only depends on

the forward LIBOR Li. If we use the bond Bi as numeraire, we can define the relative

(or discounted) price of caplet i as Πi
t =

Cit
Bit

.

The fundamental results of pricing theory state that the price of any attainable

financial product divided by the numeraire is a martingale. So, for each time t < Ti−1,

we have:

Πi
t =

Ci
t

Bi
t

=

= EQi
[
ϕi(L

i
Ti−1

)

Bi(Ti)
| Ft

]
= EQi

[
ϕi(L

i
Ti−1

) | Ft
]

= EQi
[
(L̄i −Ki)

+ | Ft
]
. (2.4)

Once we can express the relative caplet price Πi
t as an expectation, it is straight-

forward to obtain the partial differential equation (PDE) model. For this purpose,
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we assume that there exists a function ui such that Πi
t = ui(t, Lit) and we use the

Feynman-Kâc theorem (see [13], for example). This theorem is the link between the

solutions of PDEs and their expressions in terms of expectations. Thus, applying

Feynman-Kâc theorem we get the following PDE model for the function ui:

Find ui : [0, Ti−1]× [0,∞)→ R such that

∂tu
i +

1

2
(σi)2(t)L2

i∂LiLiu
i = 0, in (0, Ti−1)× R+

ui(Ti−1, Li) = M δi (Li −Ki)
+, in R+.

The well-known solution of the previous problem provides the Black formula for

caplets, just by taking into account that

Ci
t = Bi

t Πi
t = Bi

t u
i(t, Lit) (2.5)

and that

ui(t, Li) = Mδi(LiN (d+(t, Li))−KiN (d−(t, Li))), t ∈ (0, Ti−1) (2.6)

d±(t, Li) =
log( Li

Ki
)±1

2
(σ̄i)2(t, Ti−1)

σ̄i(t, Ti−1)
, (2.7)

σ̄i(t, Ti−1) =

√∫ Ti−1

t

(σi(s))2ds, (2.8)

where N denotes the standard normal distribution and σ̄i(t, Ti−1) is the integrated

instantaneous variance multiplied by the time interval length. Notice that it is diffe-

rent from the quantity 1
Ti−1−t σ̄

i(t, Ti−1) which is termed as Ti−1-caplet volatility and

it is always standardized with respect to time, that is, it is understood as an average

instantaneous variance over time.

We notice that correlations between different rates have no impact on the caplet

price as the caplet payoff only involves one of the forward LIBOR rates, so that the

expectations do not affect two or more forward rates.
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Once the prices of all caplets have been obtained, the price of the cap can be

computed by the formula:

C(t, L1
t , . . . , L

N
t ) =

N∑
i=1

Bi
t Πi

t, t ≤ T0.

Remark 2.3.1. Analogously to caps and caplets, floors and floorlets could be defined

and priced, the only difference being that the payoff function for the floorlet is given

by the expression:

ϕi(Li) = M δi (Ki − Li)+.

Moreover, a Black formula for floorlets is available.

In financial markets, it is a extended practice to price caps by using the Black

formula and to quote, instead of the price, the volatility parameter that enters such

formula. The market cap volatility is then simply defined as a parameter that must

be plugged into the Black formula to recover the right market cap price.

Analogously, we can do the same for caplets but there is an important difference.

Cap volatilities assume that caplets concurring to same cap share the same volatility,

while caplet volatilities are allowed to be different for caplets concurring to the same

cap.

2.3.2 Ratchet cap and ratchet caplet contracts

In the same way as the previously described cap contract can be additively decom-

posed into caplets, the ratchet cap is a contract that can be additively decomposed

into simpler contracts, called ratchet caplets, and the payments associated to each

ratchet caplet are similar to caplet payments. However, while in the case of caplets

the strike is a fixed rate, in the case of ratchet caplets the strike is variable and

depends on earlier LIBOR resets (see [53], for example).

More precisely, the ratchet caplet payoff, which is paid at time Ti, is given by

Mδi(L̄
i −Ki)

+, (2.9)
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where L̄i = LiTi−1
, δi denotes the accrual, M represents the notional and the strike Ki

is recursively defined as follows:K1 is given,

Kj+1 =
(
aL̄j + bKj + c

)+
for 1 < j < i,

(2.10)

with a, b and c real parameters. So, we can see a ratchet cap as a cap where the

strike is updated at each caplet, based on the previous ”realization” of the relevant

interest rate.

In particular, we remark that Kj+1 is a function of L̄1, . . . , L̄j. This feature of

the product gives rise to a numerical difficulty because when b 6= 0 the dimension of

the PDE model increases, as well as the number of underlying forward LIBOR rates,

when time goes by.

Figure 2.2 sketches the i-th caplet time structure.

Figure 2.2: Time structure for the ratchet caplet i

As in the case of caplets, by usual no-arbitrage arguments, the relative or dis-

counted price of the i-th ratchet caplet is given by

Πi
t = EQi

[
Mδi(L̄

i −Ki)
+ | Ft

]
, t ≤ Ti−1,

and the corresponding absolute price is equal to Ri
t = Bi

tΠ
i
t.



41

2.4 PDE models for the ratchet caplets pricing

In this section the PDE model and the main results concerning the existence and

uniqueness of solution for the PDE model governing a ratchet caplet price are pre-

sented.

Since we are in a Markovian framework, by using Feynman-Kâc theorem, we can

obtain a representation of the relative price of the i-th ratchet caplet in terms of

solutions of a sequence of Cauchy problems. This specific representation leads us to

a scheme which will be suitable and useful to solve numerically the PDE model.

Analogously as the PDE model to price a caplet, we denote by Li the real variable

corresponding to the i-th forward LIBOR rate for i = 1, . . . , N and we set T−1 = 0

by convention.

For simplicity, in this section we consider the notional M = 1 and the accrual

δi = 1. In the general case, due to linearity, we just need to multiply the here

obtained ratchet caplet price by the amount Mδi.

Theorem 2.4.1. For a fixed index i ∈ {1, . . . , N}, assume that for j = 1, . . . , i the

matrix (ρh,kσ
h(t)σk(t))h,k=j,...,i is bounded and uniformly positive definite. Then we

have

Πi
t = ui,j(t, Ljt , L

j+1
t , . . . , Lit;Kj), t ∈ [Tj−2, Tj−1], j = 1, . . . , i, (2.11)

where Kj = Kj

(
L̄1, . . . , L̄j−1

)
is defined in (2.10) and the function

ui,j = ui,j(t, Lj, Lj+1, . . . , Li;K), t ∈ [Tj−2, Tj−1], Lj, Lj+1, . . . , Li > 0, K ≥ 0,

is uniquely defined by the following backward recursion starting from j = i:

• ui,i is the unique non-negative solution to the Cauchy problemLi,iui,i = 0, in (Ti−2, Ti−1)× R+,

ui,i(Ti−1, Li;K) = (Li −K)+, in R+

(2.12)
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where Li,i is the two-dimensional operator

Li,i =
(σi(t)Li)

2

2
∂LiLi + ∂t (2.13)

• ui,j, with j < i, is the unique non-negative solution to the Cauchy problem
Li,jui,j = 0, in (Tj−2, Tj−1)× Ri−j+1

+ ,

ui,j(Tj−1, Lj, Lj+1, . . . , Li;K)

= ui,j+1(Tj−1, Lj+1, Lj+2, . . . , Li; (aLj + bK + c)+), in Ri−j+1
+ ,

(2.14)

where Li,j is the following (i−j+2)-dimensional operator acting in the variables

t, Lj, Lj+1, . . . , Li:

Li,j =
1

2

i∑
h,k=j

ρh,kσ
h(t)σk(t)LhLk∂LhLk

−
i−1∑
h=j

i∑
k=h+1

ρh,kσ
h(t)σk(t)

δkLk
1 + δkLk

Lh∂Lh + ∂t. (2.15)

Proof. Throughout the proof we will use results from Chapter 1 in the thesis taken

from [50].

First step. We show that the functions {ui,j}j=1,...,i are well defined recursively as

the solutions of problems (2.12)-(2.15).

First, in the case i = j, by the change of variable xi = logLi, i.e. setting

ūi,i (t, xi;K) = ui,i(t, exi ;K), xi ∈ R, (2.16)

problem (2.12) becomesL̄i,iūi,i = 0, in (Ti−2, Ti−1)× R,

ūi,i(Ti−1, xi;K) = (exi −K)+, in R,
(2.17)

where L̄i,i is the backward heat operator

L̄i,i =
(σi(t))2

2
(∂xixi − ∂xi) + ∂t. (2.18)
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Since by assumption (σi)2 is bounded from above and below by positive constants,

standard results of the theory of parabolic PDEs, previously indicated in chapter 1,

ensure that problem (2.17) has a unique non-negative classical solution given by

ūi,i(t, xi;K) =

∫
R

Γ̄i,i(t, xi;Ti−1, yi) (eyi −K)+ dyi, (2.19)

where Γ̄i,i denotes the Gaussian fundamental solution of L̄i,i:

Γ̄i,i(t, x;T, y) =
1

σ̄i(t, T )
√

2π
exp

−1

2

(
y − x+ 1

2
(σ̄i(t, T ))

2

σ̄i(t, T )

)2
 , (2.20)

for x, y ∈ R and t < T, with

σ̄i(t, T ) =

√∫ T

t

(σi(s))2 ds . (2.21)

From the representation formula (2.19) we also get the following estimate:∣∣ūi,i(t, xi;K)
∣∣ ≤ CeC|xi|

2

, (t, xi) ∈ [Ti−2, Ti−1]× R, K ≥ 0, (2.22)

for some positive constant C.

Next, by backward induction we show existence and uniqueness of ui,j for j < i.

First, by the change of variables xj = logLj, that is, by setting

ūi,j (t, xj, xj+1, . . . , xi;K) = ui,j(t, exj , exj+1 , . . . , exi ;K), xj, xj+1, . . . , xi ∈ R,

problem (2.14) can be rewritten as follows:
L̄i,jūi,j = 0, in (Tj−2, Tj−1)× Ri−j+1,

ūi,j(Tj−1, xj, xj+1, . . . , xi;K)

= ūi,j+1
(
Tj−1, xj+1, xj+2, . . . , xi; (aexj + bK + c)+) , in Ri−j+1

(2.23)

where

L̄i,j =
1

2

i∑
h,k=j

ρh,kσ
h(t)σk(t)∂xhxk −

1

2

i∑
k=j

(σk(t))2∂xk

−
i−1∑
h=j

i∑
k=h+1

ρh,kσ
h(t)σk(t)

δke
xk

1 + δkexk
∂xh + ∂t
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is a second order differential operator that, by assumption, is uniformly parabolic and

has bounded coefficients. Note in particular, that δke
xk

1+δke
xk
∈ (0, 1) for xk ∈ R. Then

we recall that L̄i,j has a fundamental solution Γ̄i,j satisfying the following Gaussian

upper bound:

Γ̄i,j(t, xj, xj+1, . . . , xi;T, yj, yj+1, . . . , yi)

≤ CΓi,jheat(t, xj, xj+1, . . . , xi;T, yj, yj+1, . . . , yi) (2.24)

for xj, yj, . . . , xi, yi ∈ R, where C is a positive constant only dependent on T − t

and Γi,jheat is the Gaussian fundamental solution of a suitable parabolic operator with

constant coefficients.

Now let us assume that ūi,j+1 is a continuous and non-negative function satisfying

the growth condition∣∣ūi,j+1 (t, xj+1, . . . , xi;K)
∣∣ ≤ CeC|(xj+1,...,xi)|2 (2.25)

for (t, xj+1, . . . , xi) ∈ [Tj−1, Tj] × Ri−j and K ≥ 0, with C some positive constant.

Then problem (2.23) has unique non-negative classical solution given by

ūi,j(t, xj, . . . , xi;K) :=

∫
Ri−j+1

Γ̄i,j(t, xj, . . . , xi;T, yj, . . . , yi)

× ūi,j+1
(
Tj−1, yj+1, . . . , yi; (aeyj + bK + c)+) dyj · · · dyi (2.26)

for K ≥ 0 and (t, xj, . . . , xi) ∈ [Tj−2, Tj−1] × Ri−j+1. Moreover, combining estimates

(2.24) and (2.25) with formula (2.26), we also deduce∣∣ūi,j(t, xj, . . . , xi;K)
∣∣ ≤ CeC|(xj ,...,xi)|

2

,

for (t, xj, . . . , xi) ∈ [Tj−2, Tj−1] × Ri−j+1 and K ≥ 0, with some positive constant

C. From the above results, a simple backward inductive argument shows that the

functions {ui,j}j=1,...,i are well defined as in the statement, in a unique way.

Second step.

We prove formula (2.11) by backward induction on j. Since ui,i(t, Li;K) is a

classical solution to problem (2.12), by Feynman-Kâc theorem we have

ui,i(t, Li;Ki) = EQi
[
(LiTi−1

−Ki)
+ | Ft

]
= Πi

t, t ∈ [Ti−2, Ti−1]
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and this proves the thesis for j = i.

Now we assume that (2.11) is valid for a generic j+1 and we prove it for j. Hence

we assume that

Πi
t = ui,j+1(t, Lj+1

t , Lj+2
t , . . . , Lit;Kj+1), t ∈ [Tj−1, Tj].

Since the process Πi
t is a Qi-martingale, we have for t ∈ [Tj−2, Tj−1]

Πi
t = EQi

[
Πi
Tj−1
| Ft
]

= EQi
[
ui,j+1(Tj−1, L

j+1
Tj−1

, Lj+2
Tj−1

, . . . , LiTj−1
;Kj+1) | Ft

]
= EQi

[
ui,j+1

(
Tj−1, L

j+1
Tj−1

, Lj+2
Tj−1

, . . . , LiTj−1
;
(
aLjTj−1

+ bKj + c
)+
)
| Ft
]

= ui,j(t, Ljt , L
j+1
t , . . . , Lit;Kj),

where we have sequentially used the induction hypothesis, the expression of Kj+1 in

(2.10) and the Feynman-Kâc theorem, since ui,j is the unique non-negative classical

solution to problem (2.14). 2

As we mentioned at the beginning of this section, Theorem 2.4.1 provides an

algorithm for the computation of the ratchet price via PDEs techniques. Indeed,

according to formula (2.11), Πi
t can be computed by solving recursively the Cauchy

problems (2.12)-(2.14) starting from the last period [Ti−2, Ti−1] back to the first period

[0, T0].

By formula (2.11) the discounted price Πi
t of the i-th ratchet caplet in the last

period [Ti−2, Ti−1] is given in terms of the solution ui,i of problem (2.17) and this

corresponds to the price of a standard caplet with strike Ki. More precisely, by the

Black formula, we have

Πi
t = ui,i(t, Lit;Ki) = LitN (d+(t, Lit))−KiN (d−(t, Lit)) t ∈ (Ti−2, Ti−1), (2.27)

where N denotes the normal cumulative distribution function and

d±(t, Li) =
log( Li

Ki
)± 1

2
(σ̄i(t, Ti−1))

2

σ̄i(t, Ti−1)
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with σ̄i(t, Ti−1) as in (2.21).

Note that at each step the dimension of the Cauchy problems increases by one

due to the dependence of an additional forward rate.

We emphasize that the problems (2.12) and (2.14) depend on the parameter K.

Moreover, at each step it must be solved for any value of K since the solution

ui,j+1(Tj, Lj+1, Lj+2, . . . , Li;K) enters as final condition of the subsequent Cauchy

problem posed on (Tj−2, Tj−1)×Ri−j+1
+ as a function of Lj+1, Lj+2, . . . , Li and K. This

fact puts severe restrictions on the applicability of standard numerical techniques for

PDEs and the use of sparse grids seems an appropriate numerical technique when

the constraint b 6= 0 in order to cope with the increasing of spatial dimensions of the

PDE associated to the subsequent ratchet caplets.

2.5 Ratchet caplet pricing with b = 0

The ratchet caplet pricing problem turns out to be definitely easier when the parame-

ter b is null since in this case the strike Ki depends only on the forward rate Li−1 and

not on the previous ones. More precisely, in this case the payoff of the i-th ratchet

caplet given by (2.10) is equal to

(L̄i −Ki)
+, with Ki = (aL̄i−1 + c)+,

so that it only depends on two LIBOR rates.

Remark 2.5.1. Also as in previous section, for simplicity we consider the notional

M = 1 and the accrual δi = 1. Notice that in the formulas and numerical approxi-

mations appearing in this section, the derivative prices for the different values taken

by M and δi can be obtained just by multiplying the ratchet caplet price by these

quantities.

Then, the discounted price Πi
t is given by the Black formula (2.27) for t ∈

[Ti−2, Ti−1] and by

Πi
t = EQi

[(
LiTi−1

− (aLi−1
Ti−2

+ c)+
)+

| Ft
]

= ui,i−1(t, Li−1
t , Lit), t ∈ [0, Ti−2], (2.28)
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where ui,i−1 is the non-negative solution of the Cauchy problemLi,i−1ui,i−1 = 0, in (0, Ti−2)× R2
+,

ui,i−1(Ti−2, Li−1, Li) = ui,i(Ti−2, Li; (aLi−1 + c)+), in R2
+,

(2.29)

with ui,i is given by (2.27) and

Li,i−1 =
1

2

(
σi−1(t)Li−1

)2
∂Li−1Li−1

+ ρi−1,iσ
i−1(t)σi(t)Li−1Li∂Li−1Li

+
1

2

(
σi(t)Li

)2
∂LiLi − ρi−1,iσ

i−1(t)σi(t)
δiLi

1 + δiLi
Li−1∂Li−1

+ ∂t. (2.30)

Note that in this particular case, as the strike only depends on Li−1, the definition

of Πi
t in (2.11) written in terms of ui,j in [Tj−2, Tj−1], actually does not depend on j.

This is taken in account in (2.28) where notation ui,i−1 is used for the large interval

[0, Ti−2].

Therefore, the final condition for ratchet caplet i is posed on the (Li−1, Li)-plane

at time Ti−2 and the price is computed for t < Ti−2 at each point of the plane (see

Figure 2.3).

Figure 2.3: Sketch of the final condition for the ratchet caplet i.

Once the relative ratchet caplet prices are obtained, the absolute price of the
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ratchet cap is given by:

R(t, L1
t , . . . , L

N
t ) =

N∑
i=1

Bi
tΠi(t, L

i−1
t , Lit), t ≤ T0 (2.31)

for a set of LIBOR rates (L1
t , . . . , L

N
t ) at the pricing date t ≤ T0.

In order to price ratchet caplet i, by using the change of variables

ūi,i−1 (t, xi−1, xi;K) = ui,i−1(t, exi−1 , exi ;K), xi−1, xi ∈ R, t < Ti−2 ,

problem (2.14) can be rewritten as follows:L̄i,i−1ūi,i−1 = 0, in (0, Ti−2)× R2,

ūi,i−1(Ti−2, xi−1, xi;K) = ui,i
(
Ti−2, e

xi ; (aexi−1 + c)+) , in R2,

(2.32)

where

L̄i,i−1 =
(σi−1(t))

2

2

(
∂xi−1xi−1

− ∂xi−1

)
+

(σi(t))
2

2
(∂xixi − ∂xi)

+ ρi−1,iσ
i−1(t)σi(t)∂xi−1xi − ρi−1,iσ

i−1(t)σi(t)
δie

xi

1 + δiexi
∂xi−1

+ ∂t.

(2.33)

In terms of the representation formulas (2.19)-(2.26), we have

ūi,i−1(t, xi−1, xi;K)

=

∫
R2

Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) · ui,i
(
Ti−2, e

yi ; (aeyi−1 + c)+) dyidyi−1

=

∫
R2

Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)

×
∫
R

Γ̄i,i(Ti−2, yi;Ti−1, ηi)
(
eηi − (aeyi−1 + c)+)+

dηidyidyi−1 ,

(2.34)

where Γ̄i,i is the Gaussian fundamental solution of L̄i,i, whose explicit expression is

given in (2.20) and Γ̄i−1,i is the (unknown) fundamental solution of L̄i,i−1.

In the forthcoming sections, we consider three different methods for pricing the

ratchet caplet in the case that the parameter b is equal to zero in the expression

(2.10): a semi-analytical formula, a characteristics-finite elements based numerical

method and a Monte Carlo simulation technique.
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For the sake of simplicity, throughout this section we consider constant volatilities

in time, the extension to time dependent volatilities resulting very easy.

2.5.1 Analytical approximation

In the previous section, the ratchet caplet price, ūi,i−1, was given in terms of the solu-

tion of the Cauchy problem (2.32). In order to obtain an analytical approximation of

the ratchet caplet price, we will use classical theory of fundamental solutions because

we have a representation in terms of solutions of a sequence of Cauchy problems.

We get an analytical approximation of the ratchet caplet price by starting from

the integral representation for ūi,i−1, that is:

ūi,i−1(t, xi−1, xi;K)

=

∫
R2

Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) · ui,i
(
Ti−2, e

yi ; (aeyi−1 + c)+) dyidyi−1

=

∫
R2

Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)

×
∫
R

Γ̄i,i(Ti−2, yi;Ti−1, ηi)
(
eηi − (aeyi−1 + c)+)+

dηidyidyi−1 ,

(2.35)

for K ≥ 0 and t ∈ (0, Ti−2).

We first recall the expression of the Gaussian fundamental solution Γ̄i,i of the one

dimensional heat operator

L̄i,i =
(σi)2

2
(∂yiyi − ∂yi) + ∂t,

given by (2.20) with σ̄i(t, Ti−1) = σi
√
Ti−1 − t, so that

Γ̄i,i(Ti−2, yi;Ti−1, ηi) =
1

σi
√

2πδi−1

exp

−1

2

(
2(ηi − yi) + (σi)2δi−1

2σi
√
δi−1

)2
 , (2.36)

for yi, ηi ∈ R and Ti−2 < Ti−1, δi−1 = Ti−1 − Ti−2.

An expression of Γ̄i,i−1 is not possible to compute explicitly because it has got

non constant coefficients. Thus, we approximate the fundamental solution Γ̄i,i−1 by
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means of the fundamental solution Γ̃i,i−1 of the constant coefficients operator

L̃i,i−1 :=
(σi−1)

2

2

(
∂xi−1xi−1

− ∂xi−1

)
+

(σi)
2

2
(∂xixi − ∂xi)

+ ρi−1,i σ
i−1σi ∂xi−1xi − c̄i ρi−1,i σ

i−1σi∂xi−1
+ ∂t,

which is obtained by freezing the variable coefficient δie
xi(1 + δie

xi)−1 appearing in

(2.33) to the value defined by the spot, i.e:

c̄i =
δiL

0
i

1 + δiL0
i

. (2.37)

Now, its fundamental solution Γ̃i,i−1 is given by

Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) =
exp(F (t, xi−1, xi;Ti−2, yi−1, yi))

2πσiσi−1(Ti−2 − t)
√

1− ρ2
i−1,i

, (2.38)

for xi−1, xi, yi−1, yi ∈ R, t < Ti−2, where:

F (t, xi−1, xi;Ti−2, yi−1, yi) =

=
1

8
(
1− ρ2

i−1,i

) [(σi−1)2(t− Ti−2) + 4(xi−1 + xi − yi − yi−1)

+ 8c̄i ρ
2
i−1,i (yi−1 − xi−1) + (σi)2(t− Ti−2)

(
1 + 4(−1 + c̄i) c̄i ρ

2
i−1,i

)
+

4(xi − yi)2

(σi−1)2(t− Ti−2)
+

4(xi−1 − yi−1)2

(σi)2(t− Ti−2)

+
2σi(−1 + 2c̄i) ((σi−1)2(t− Ti−2) + 2(xi − yi)) ρi−1,i

σi−1

− 4 ((σi−1)2(t− Ti−2) + 2(xi − yi)) (xi−1 − yi−1)ρi−1,i

σiσi−1(t− Ti−2)

]
. (2.39)

Thus we get the following analytical approximation formula:

ūi,i−1(t, xi−1, xi;K)

=

∫
R2

Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)

×
∫
R

Γ̄i,i(Ti−2, yi;Ti−1, ηi)
(
eηi − (aeyi−1 + c)+)+

dηidyidyi−1

≈
∫
R2

Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)

×
∫
R

Γ̄i,i(Ti−2, yi;Ti−1, ηi)
(
eηi − (aeyi−1 + c)+)+

dηidyidyi−1

(2.40)
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Notice that formula (2.40) involves a triple integral but two of them can be com-

puted analytically. We defer all the explicit formulas to the Appendix A.

Finally, the approximation of the relative price is given by

Πi
t ≡ ui,i−1(t, Li−1

t , Lit;K) = ūi,i−1(t, log Li−1
t , log Lit;K).

2.5.2 Crank-Nicolson Lagrange Galerkin method

In the literature we can find different applications of the classical method of cha-

racteristics of first order (introduced in [56]) for the numerical solution of financial

problems, as for example in Vázquez [64] for European and American vanilla options,

in D’Halluin, Forsyth and Labahn [19] for Asian options under jump-diffusion models

or in Farto and Vázquez [21] for callable bonds with notice pricing under Vasicek and

CIR interest rate models.

Other alternative finite differences numerical schemes for Kolmogorov equations

appearing in the Hobson-Rogers stochastic volatility model are proposed in Di Francesco

and Pascucci [24], Di Francesco, Foschi and Pascucci [23]. Indeed, the classical charac-

teristics method has been adapted and combined with finite differences by González-

Gaspar and Vázquez in [29] to solve this stochastic volatility model.

Recently, the here used Crank-Nicholson characteristic methods of order two for

general convection-diffusion-reaction equations (eventually degenerated) have been

proposed and analyzed numerically in Bermúdez, Nogueiras and Vázquez [6, 7]. More

precisely, in [6] the time discretization scheme is analyzed for a variable coefficient

convection-(possibly degenerate) diffusion-reaction equation with mixed Dirichlet-

Robin boundary conditions. Firstly, the proposed second order time discretization

scheme is rigorously introduced for exact and approximate characteristics. Next,

under not much restrictive hypotheses on the data, the l∞(L2) stability is proved

and l∞(L2) error estimates of order O(∆t2) are obtained. In [7], Lagrange-Galerkin

schemes using different finite elements spaces are analyzed and different quadrature

formulas are proposed for practical implementation. Furthermore, the previous meth-

ods have been applied to price Asian options in Bermúdez, Nogueiras and Vázquez
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[8].

In this section we study the numerical solution to the ratchet caplet pricing pro-

blem (2.29) by a Crank-Nicholson-characteristics method combined with finite ele-

ments. Some difficulties in the numerical solution are due to the fact that the spatial

domain is unbounded in both forwards directions. Therefore, domain truncation and

boundary conditions are proposed as a previous step to perform a finite element

numerical approximation of the solution.

On the other hand, the diffusion matrix degenerates at the axis (i.e. convection

dominates near the axes) so we propose a higher order Lagrange-Galerkin methods.

Thus, we use a combination of the Crank-Nicholson characteristics method for the

time discretization and piecewise quadratic finite elements method for the spatial

discretization.

Unbounded domain. Divergence form

In order to rewrite the problem (2.32) as an initial value problem in divergence form,

we introduce the new time variable τ = Ti−2 − t and pose the equivalent problem:

∂τu
i,i−1 + ~v · ∇ui,i−1 −Div(A∇ui,i−1) = 0 in (0, Ti−2)× R2

+ , (2.41)

ui,i−1(0, Li−1, Li) = ui,i
(
t = Ti−2, Li; (aLi−1 + c)+) in R2

+ , (2.42)

where:

A(Li−1, Li) =

(
1
2
(σi−1)2L2

i−1
1
2
ρi−1,iσ

i−1σiLi−1Li
1
2
ρi−1,iσ

i−1σiLi−1Li
1
2
(σi)2L2

i

)
, (2.43)

~v(Li−1, Li) =

(
ρi−1,iδiLi−1Li

1+δiLi
σi−1σi + (σi−1)2Li−1 + 1

2
ρi−1,iσ

i−1σiLi−1

1
2
ρi−1,iσ

i−1σiLi + (σi)2Li

)
(2.44)

Truncated domain

As in most problems arising in finance, the numerical solution with finite differences,

finite volumes or finite elements requires the approximation of the original problem
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in an unbounded domain by another one posed in a bounded computational domain.

This technique is known as localization procedure, that has to be performed so that

the truncation by the bounded domain and the associated boundary conditions do

not affect the solution in the region of financial interest. For the classical problem

of European vanilla options and Dirichlet boundary conditions, a rigorous analysis

has been carried out in [36]. In general, the required boundary conditions at the new

boundaries of the bounded domain are obtained with financial and/or mathematical

arguments.

For the localization purpose, let us consider both L∞i−1 and L∞i large enough real

numbers suitably chosen and let the bounded domain Ω = (0, L∞i−1) × (0, L∞i ) with

Lipschitz boundary Γ, such that Γ = Γ+
1

⋃
Γ+

2

⋃
Γ−1
⋃

Γ−2 , where Γ−1 = Γ ∩ {Li−1 =

0}, Γ−2 = Γ ∩ {Li = 0}, Γ+
1 = Γ ∩ {Li−1 = L∞i−1}, Γ+

2 = Γ ∩ {Li = L∞i }.
Then, problem (2.41)-(2.42) is replaced by

Find ui,i−1 : [0, Ti−2]× Ω→ R such that

∂τu
i,i−1 + ~v · ∇ui,i−1 −Div(A∇ui,i−1) = 0 in (0, Ti−2)× Ω , (2.45)

ui,i−1(0, Li−1, Li) = ui,i
(
t = Ti−2, Li; (aLi−1 + c)+) in Ω , (2.46)

where A and ~v are defined in (2.43)-(2.44).

Next, by applying the theory of second order partial differential equations with

nonnegative characteristics that can be found in [47] and taking into account the

expression of the matrix A and the vector ~v, only boundary conditions at Γ+
1 and Γ+

2

are required.

More precisely, following the ideas in [47], for simplicity let us introduce the no-

tation

x1 = Li−1, x2 = Li. (2.47)

Then, operator (2.30) associated to the Cauchy problem (2.29) can be written in

the form:

L∗ =
2∑

i,j=1

a∗ij
∂2

∂xixj
+

2∑
j=1

b∗j
∂

∂xj
+
∂

∂t
, (2.48)
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where the involved data are defined as follows

A∗(x1, x2) = (a∗ij) =

(
1
2
(σ1x1)2 1

2
ρ1,2σ

1σ2x1x2

1
2
ρ1,2σ

1σ2x1x2
1
2
(σ2x2)2

)
, (2.49)

v∗(x1, x2) = (b∗j) =

 −ρ1,2σ
1σ2 δx1x2

1 + δx2

0

 . (2.50)

Thus, in terms of the inwards normal vector to the boundary of Ω, ~m = (m1,m2),

we introduce the following subsets of Γ:

Σ1 = {(x1, x2) ∈ Γ ,

2∑
i,j=1

a∗ijmimj > 0}, (2.51)

Σ2 =

{
(x1, x2) ∈ Γ− Σ1 ,

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi < 0

}
. (2.52)

As indicated in [47], the boundary conditions at Σ1∪Σ2 for the initial boundary value

problem associated to (2.48) are required. So, when considering each boundary of Ω,

we obtain:

• On boundary Γ+
1 : x1 = x∞1 , 0 ≤ x2 ≤ x∞2 , ~m = (−1, 0)

2∑
i,j=1

a∗ijmimj =
1

2
(σ1x∞1 )2 > 0

• On boundary Γ+
2 : 0 ≤ x1 ≤ x∞1 , x2 = x∞2 , ~m = (0,−1)

2∑
i,j=1

a∗ijmimj =
1

2
(σ2x∞2 )2 > 0

• On boundary Γ−1 : x1 = 0, 0 ≤ x2 ≤ x∞2 , ~m = (1, 0)

2∑
i,j=1

a∗ijmimj = 0

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi =

−ρ1,2σ
1σ2 δx1x2

1 + δx2

− σ1x1 −
1

2
ρ1,2x1σ

1σ2 = 0
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• On boundary Γ−2 : 0 ≤ x1 ≤ x∞1 , x2 = 0, ~m = (0, 1)

2∑
i,j=1

a∗ijmimj = 0

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi = −1

2
ρ1,2x2σ

1σ2 − σ2x2 = 0

Therefore, we obtain that Σ1 = Γ+
1 ∪ Γ+

2 and Σ2 = ∅.
Next, we propose the following Dirichlet boundary conditions

ui,i−1(τ, Li−1, Li) = ui,i(t = Ti−2, Li−1, Li) on [0, Ti−2]× Γ+
1 , (2.53)

ui,i−1(τ, Li−1, Li) = ui,i(t = Ti−2, Li−1, Li) on [0, Ti−2]× Γ+
2 . (2.54)

Remark 2.5.2. These conditions are slightly different from those ones proposed in

[62], which are based on financial arguments. More precisely, in [62] we select the

bounded domain such that L∞i < aL∞i−1 and then we propose

ui,i−1(Ti−1, Li−1, Li) = 0 on Γ+
1 , (2.55)

ui,i−1(Ti−1, Li−1, Li) = Mδi(Li − aLi−1 − c)+ on Γ+
2 . (2.56)

The results are very close each other with both conditions.

Crank-Nicolson characteristics discretization

For the time discretization of the PDE problem defined by equations (2.45)-(2.46)

and (2.53)- (2.54), a method of characteristics is proposed. This method can be

framed into the more general setting of upwinding methods, which take in account

the local direction of the flux. Specifically, the method of characteristics is based on

a finite differences scheme for the discretization of the material derivative, i.e., the

time derivative along the characteristic lines of the convective part of the equation. In

this section we will also introduce the variational formulation for the time discretized

problem, for which the notation introduced in [46], for example, is followed.
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First, we define the characteristics curve through L = (Li−1, Li) at time τ̄ ,

Xe(L, τ̄ ; τ), which verifies:

∂τXe(L, τ̄ ; τ) = ~v(Xe(L, τ̄ ; τ)), Xe(L, τ̄ ; τ̄) = L . (2.57)

The final value problem (2.57) can be exactly solved and we obtain:

X1
e (L, τ̄ ; τ) = Li−1 exp

(
1

2
ρi−1,iσ

i−1σi + (σi−1)2 +
δiLiρi−1,iσ

i−1σi

1 + δiLi
(τ̄ − τ)

)

X2
e (L, τ̄ ; τ) = Li exp

(
(
1

2
ρi−1,iσ

i−1σi + (σi)2)(τ̄ − τ)

)
Now, for i = 1, ..., N , let us consider the time step ∆τ = Ti−1

N
and the time

meshpoints τn = n∆τ, n = 0, 1
2
, 1, 3

2
, . . . , N . The material derivative approximation

by characteristics method is given by:

Dui,i−1

Dτ
≈ (ui,i−1)n+1 − (ui,i−1)n ◦Xn

e

∆τ

where Xn
e (L) := Xe(L, τ

n+1; τn), the components of which are given by

Xn,1
e (L) = Li−1 exp

(
1

2
ρi−1,iσ

i−1σi + (σi−1)2 +
δiLiρi−1,iσ

i−1σi

1 + δiLi
∆τ

)

Xn,2
e (L) = Li exp

(
(
1

2
ρi−1,iσ

i−1σi + (σi)2)∆τ

)
.

Remark 2.5.3. Figure 2.4 shows that the velocity field at the boundaries does not

point to the interior of the domain. So, for small enough time steps the points Xn
e (L)

belong to the domain.

Next, we consider a Crank-Nicolson scheme around (Xe(L, τn+1; τ), τ) for τ =

τn+ 1
2
. So, for n=0,...,N-1, the time discretized equation can be written as:

Find (ui,i−1)n+1 such that:

(ui,i−1)n+1(L)− (ui,i−1)n(Xn
e (L))

∆τ
− 1

2
Div(A∇(ui,i−1)n+1)(L)

−1

2
Div(A∇(ui,i−1)n)(Xn

e (L)) = 0 . (2.58)
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Figure 2.4: Velocity field in the domain Ω.

In order to state the weak formulation for the semidiscretizated problem, we use

the following lemma that appears in [8] for w = A∇V n and X(x) = Xn
e (x):

Lemma 2.5.4. Let X : Ω̄→ ¯X(Ω), X∈ C2(Ω̄), be an invertible vector valued function.

Let F=∇X and assume that F−1 ∈ C1(Ω̄). Then,∫
Ω

Divw(X(x))ψ(x) dx =

∫
Γ

F−T (x)n(x) ·w(X(x))ψ(x) dAx −∫
Ω

F−1(x)w(X(x)) · ∇ψ(x) dx −
∫

Ω

DivF−T ·w(X(x))ψ(x) dx,

being w∈ H1(X(Ω)) a vector valued function and ψ ∈ H1(Ω) a scalar function.

Now, multiplying equation (2.58) by a suitable test function ψ and integrating in

Ω, we have: ∫
Ω

(ui,i−1)n+1 − (ui,i−1)n ◦Xn
e

∆τ
ψ dL

−1

2

∫
Ω

Div(A∇(ui,i−1)n+1)ψ dL− 1

2

∫
Ω

(
Div(A∇(ui,i−1)n)

)
◦Xn

e ψ dL = 0 . (2.59)

Applying Lemma 3.4 that appears in [8] and the usual Green’s formula, equation

(2.59) is equivalent to:
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∫
Ω

(ui,i−1)n+1 − (ui,i−1)n ◦Xn
e

∆τ
ψdL+

1

2

∫
Ω

A∇(ui,i−1)n+1∇ψ dL

+
1

2

∫
Ω

(F n
e )−1(A∇(ui,i−1)n) ◦Xn

e∇ψ dL

+
1

2

∫
Ω

Div(F n
e )−t(A∇(ui,i−1)n) ◦Xn

e ψ dL

=
1

2

∫
Γ

~n · A∇(ui,i−1)n+1ψ dAL

+
1

2

∫
Γ

(F n
e )−t~n · (A∇(ui,i−1)n) ◦Xn

e ψ dAL . (2.60)

Notice that the tensor (F n
e )−t = (∇Xe(x, τn+1; τn))−t can be expressed in the form

(Fn
e )−t =

(
b11 0

b21 b22

)
,

with

b11(L) = exp

(
1

2
ρi−1,iσ

i−1σi + (σi−1)2 +
δiLiρi−1,iσ

i−1σi

1 + δiLi
∆τ

)
b21(L) = Li−1∆t

(
δiρi−1,iσ

i−1σi(1 + δiLi)− δ2
i ρi−1,iσ

i−1σiLi
(1 + δiLi)2

)
× exp

(
(
1

2
ρi−1,iσ

i−1σi + (σi)2)∆τ

)
b22(L) = exp

(
(
1

2
ρi−1,iσ

i−1σi + (σi)2)∆τ

)
.

Next, let us precise the boundary integrals appearing in formulation (2.60).

First, notice that we have ~n · A∇(ui,i−1)n+1 = 0 on Γ−1 ∪ Γ−2 and ψ = 0 on

Γ+
1 ∪ Γ+

2 . Therefore, the first boundary integral on the right hand side of equation

(2.60) vanishes. Moreover, for the second integral, we have∫
Γ

(F n
e )−t~n · (A∇(ui,i−1)n) ◦Xn

e ψ dAL =

∫
Γ−1 ∪Γ−2

gnψdAL, (2.61)

where gn : (0,∞)× (0,∞)→ R is given by,
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gn(L)=


−1

2
((F n

e )−t)21(σi)2L2
i

∂(ui,i−1)n

∂Li
(Xn

e (L)) on Γ−1

−1
2
((F n

e )−t)12(σi−1)2L2
i−1

∂(ui,i−1)n

∂Li−1

(Xn
e (L)) on Γ−2

Therefore, equation (2.60) becomes

∫
Ω

(ui,i−1)n+1 − (ui,i−1)n ◦Xn
e

∆t
ψ dL+

1

2

∫
Ω

A∇(ui,i−1)n+1∇ψ dL

+
1

2

∫
Ω

(F n
e )−1(A∇(ui,i−1)n) ◦Xn

e∇ψ dL

+
1

2

∫
Ω

Div(F n
e )−t(A∇(ui,i−1)n) ◦Xn

e ψ dL

=
1

2

∫
Γ−1 ∪Γ−2

gnψ dAL, (2.62)

for all ψ ∈ H1
0,ΓD

(Ω), where the involved functional sets are,

H1
ΓD

(Ω) = {ψ ∈ H1(Ω)/ψ|
Γ+

1

= 0, ψ|
Γ+

2

= Mδi(Li − aLi−1 − c)+} ,

H1
0,ΓD

(Ω) = {ψ ∈ H1(Ω)/ψ|ΓD = 0}.

Finite elements discretization

As we mention at the beginning of the section, we use the previously described

characteristics-Crank-Nicholson method for the time discretization jointly with finite

elements for spatial discretization. For this purpose, we consider {τh} a quadrangular

mesh of the domain Ω.

Let (T,Q2,ΣT ) be a family of quadratic Lagrangian finite elements, where Q2 is

the space of polynomials defined in T ∈ τh with degree less or equal than two in each

spatial variable and ΣT the subset of nodes of the element T . Now, let us define the

subset of finite elements Vh and the space of test functions Vh,ΓD :

Vh = {ϕh ∈ C0(Ω̄) : ϕhT ∈ Q2,∀T ∈ τh} ,

Vh,ΓD = {ϕh ∈ Vh : ϕh = 0, on ΓD} ,
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where C0(Ω̄) is the space of continuous functions on Ω̄. The numerical analysis of the

method for a more general equation can be found in [6, 7].

Therefore, if ui,i−1
h denotes the finite element approximation of ui,i−1, the dis-

cretized equation (2.62) is

∫
Ω

(ui,i−1
h )n+1 − (ui,i−1

h )n ◦Xn
e

∆t
ψh dL+

1

2

∫
Ω

A∇(ui,i−1
h )n+1∇ψh dL

+
1

2

∫
Ω

(F n
e )−1(A∇(ui,i−1

h )n) ◦Xn
e∇ψh dL

+
1

2

∫
Ω

Div(F n
e )−t(A∇(ui,i−1

h )n) ◦Xn
e ψh dL

=
1

2

∫
Γ−1 ∪Γ−2

gnψh dAL, ∀ψh ∈ Vh,ΓD

Then, the fully discretized problem is posed as follows

For (ui,i−1
h )0 ∈ Vh, find ui,i−1

h = {(ui,i−1
h )n}Nn=1 ∈ [Vh]

N such that for n = 0, ..., N−1

we have:

1

∆t
< Dn+1

E [ui,i−1
h ], ψh > + <Mn[ui,i−1

h ], ψh >=< N n, ψh >, ∀ψ ∈ Vh. (2.63)

where

< Dn+1
E [ui,i−1

h ], ψh > =

∫
Ω

(ui,i−1
h )n+1 − (ui,i−1

h )n ◦Xn
e

∆t
ψh dL

<Mn[ui,i−1
h ], ψh > =

1

2

∫
Ω

A∇(ui,i−1
h )n+1∇ψh dL

+
1

2

∫
Ω

(F n
e )−1(A∇(ui,i−1

h )n) ◦Xn
e∇ψh dL

+
1

2

∫
Ω

Div(F n
e )−t(A∇(ui,i−1

h )n) ◦Xn
e ψh dL

< N n, ψh > =
1

2

∫
Γ−1 ∪Γ−2

gnψh dAL

with Mn[ψh] ∈ (H1(Ω))′, for Πh ∈ C0(H1(Ω)) and N n ∈ (H1(Ω))′.



61

In [6] the convergence of the previous scheme is analyzed for a more general equa-

tion and the method is unconditionally stable in case of exact integration of the inte-

gral terms. Also, for academic cases of constant coefficients convection-diffusion and

pure convection equations the study of the different quadrature formulas to compute

the involved integral terms is carried out.

First, in this setting some stability results in one spatial dimension are obtained.

Thus, in case of trapezoidal or Simpson formulas for the case of pure convection

stability can be proved, in the presence of an additional diffusive term the stability

region is smaller for lower Peclet numbers, thus this formulas are convenient for

convection dominated problems. These results can be extended to higher spatial

dimensions when product of one dimensional finite element spaces and quadrature

formulas are considered. Notice that the piecewise quadratic finite elements over

quadrangular meshes are a particular case of product finite element spaces.

In all presented examples which are out of the scope of academic ones, we use

a product three point Gauss-Legendre quadrature formula to approximate all the

integral terms appearing in the fully discretized problem, without observing any nu-

merical instabilities and providing better results than Simpson rule.

2.5.3 Monte Carlo simulation

In this section the particular use of a Monte Carlo simulation technique to appro-

ximate the price of the ratchet caplets in the case b = 0 is briefly described. In a

forthcoming section for the case b 6= 0 is considered.

First, for the ratchet caplet i (i = 1, . . . , N) we consider the terminal probability

measure, Qi, associated to the numeraire Bi, so that in this probability measure the

stochastic differential equations governing the dynamics of forward LIBOR Li−1 and

Li (entering in the i-th ratchet caplet contract for b = 0) are given by:

dLi−1
t = −Li−1

t σi−1(t)
ρi−1,iδiσ

i(t)Lit
1 + δiLit

dt + Li−1
t σi−1(t) dW i−1

t , (2.64)

dLit = Litσ
i(t) dW i

t . (2.65)
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Note that due to the choice of the probability measure and the fact that the price of

the ratchet caplet i only depends on Li−1 and Li, then only the correlation ρi−1,i is

involved.

We assume that we are interested in the price at time t = 0 of the ratchet caplet

i which is signed up at time T0 and pays at time Ti.

For Monte Carlo simulation, we consider the uniform time grid tn, n = 0, 1, 2, . . . , Nt,

such that tNt = Ti and includes the tenor dates between T0 and Ti. So, we first draw

a path for the correlated Brownian motions W i−1 and W i at the sampling dates tn,

n = 0, 1, 2, . . . , Nt−1. For this purpose, we first consider two independent Brownian

motions, Y 1 and Y 2, whose simulation can be obtained by

Y 1(tn+1) = Y 1(tn) +
√

∆n ε
1
n, Y 1(t0) = 0,

Y 2(tn+1) = Y 2(tn) +
√

∆n ε
2
n, Y 2(t0) = 0,

where ∆n = tn+1 − tn, although in practice we consider ∆n = ∆ as a constant,

and where ε1n and ε2n are drawings from standard normal distributions. Next, the

correlated Brownian motions are defined by

W i(tn) = Y 1(tn),

W i−1(tn) = ρi−1,iY
1(tn) +

√
1− ρ2

i−1,iY
2(tn).

As the simulation of LIBOR forward rates is a particular case of simulating the

solution of stochastic differential equations, we have several possibilities for the nu-

merical solution. In this work we apply an Euler-Maruyama scheme [38], so that

we compute the forward LIBOR rates at each sampling date by using the following

discretization scheme for n = 0, 1, 2, . . . , Nt − 1:

Li−1
tn+1

= Li−1
tn −

δiρi−1,iσ
i(tn)Litn

1 + δiLitn
σi−1(tn)Li−1

tn ∆n +

+σi−1(tn)Li−1
tn (W i−1(tn+1)−W i−1(tn)) (2.66)

Litn+1
= Litn + σi(tn)Litn(W i(tn+1)−W i(tn)), (2.67)

starting from the given values of Li−1(t0) and Li(t0), because at the pricing date t = 0

the forward LIBOR rates are known for sure.
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Once we have the samples of the forward rates at the tenor dates we can compute

the discount bond (numeraire), Bi, at the tenor dates by using the formula

Bi
Tj

=
i−1∏
k=n

(1 + δkLk(Tj))
−1, j ≤ i. (2.68)

Finally, using that the discounted price of a derivative must be a martingale under

the terminal measure Qi, the price of the ratchet caplet at time t = 0 is given by

R(0, Li−1
0 , Li0) = Bi

0 Ei
[
R(Ti, L

i−1
Ti−1

, LiTi)

Bi
Ti

]
= Bi

0 Ei
[
Mδi(L̄

i −Ki)
+
]

(2.69)

where Ei denotes the expectation under the terminal measure Qi.

The above described Monte Carlo technique has been used to obtain the results

that appear in the forthcoming section of numerical results for the case b = 0.

As it has been pointed out in previous paragraphs, Monte Carlo simulation re-

quires the generation of large quantities of random numbers with specific statistical

properties to build the dynamics of LIBOR forward rates.

Actually, we can compute quickly and easily sequences of random numbers, how-

ever sometimes maybe they are not truly random, so they are referred as pseudo-

random numbers. This means that we can compute a huge quantity of random

numbers with identic statistical properties, but they are not simulated in a really

independent way, thus leading to specific errors in the approximation. In order to

overcome this kind of problem, Box-Muller and Polar-Marsaglia methods can be used

[38]. Polar-Marsaglia method avoids the computation of trigonometric functions and

in consequence, the computational time is lower with respect to Box-Muller. More-

over, it is more efficient computationally when a large quantity of random numbers

are required.

2.5.4 Numerical results for the ratchet cap with b=0

In this section we show some numerical results for an academic test and an example

of a real ratchet cap pricing problem to illustrate the performance of the proposed

numerical methods.
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First, we consider an academic test to check the second order Lagrange-Galerkin

method for finite elements Q2
h introduced in previous section and applied to price

interest rate derivatives such as ratchet caps. The results provided by the numerical

method are compared with the exact solution of the academic problem.

Next, in the real case example obtained from [54], we compare the computed prices

obtained with the different proposed numerical techniques.

FORTRAN scientific computing language has been chosen for the implementa-

tion of the Lagrange-Galerkin numerical methods, MATLAB for Monte Carlo and

MATHEMATICA for the computations related to the approximation by means of

fundamental solutions. As indicated in the previous section, we only consider the

case b equal to zero in the expression (2.10).

Academic test

The objective of this academic test is mainly checking the good performance of the

second order Lagrange-Galerkin method applied to solve the PDE models stated in

the previous section to price ratchet caplets when parameter b is equal to zero in

expression (2.10).

For this purpose, we consider the following problem posed in an unbounded do-

main: Lu = f, in (0, T )× R2
+,

u(T, x, y) = 1, in R2
+,

(2.70)

with

L =
1

2
(σxx)2 ∂xx + ρx,yσ

xσxxy∂xy +
1

2
(σyy)2 ∂yy − ρx,yσxσy

δy

1 + δy
x∂x + ∂t,

where the following volatilities, correlation and accrual parameters

σx = 0.242, σy = 0.242, ρx,y = 1, δ = 0.49833

have been taken. Moreover, the maturity T = 1 and the second member function

f = Lue (2.71)
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have been considered where

ue(t, x, y) = exp(α(T − t)(x+ y)), t ∈ [0, T ], (x, y) ∈ R+. (2.72)

The idea is to introduce a nonzero second member in the ratchet caplet equation and

an appropriate terminal condition such that the exact solution can be analytically

provided by expression (2.72).

In the localization procedure we consider a bounded domain Ω = [0, 3K]× [0, 3K],

the given parameter K being the strike of the first ratchet caplet in the forthcoming

real ratchet cap example, so that 3K = 0.144. Moreover, as we also take T = 1 and

α = 22, then the maximum of the analytical solution is given by ue(0, 3K, 3K) =

564.5337.

So, we consider the following Cauchy problem in divergence form already posed

in the bounded domain:

∂τu+ ~v · ∇u−Div(A∇u) = f in (0, T ]× Ω

u(0, x, y) = 1 in Ω

u(τ, x, y) = ue(T − τ, x, y) on (0, 1)× ΓD

where ΓD = Γ+
1 ∪ Γ+

2 and

A(x, y) =

(
1
2
(σx)2x2 1

2
ρx,yσ

xσyxy

1
2
ρx,yσ

xσyxy 1
2
(σy)2y2

)
,

~v(x, y) =

 δxy

1 + δy
ρx,yσ

xσy + (σx)2x+
1

2
ρx,yσ

xσyx

1
2
ρx,yσ

xσyy + (σy)2y

 ,

f(τ, x, y) = (∂τu
e + ~v · ∇ue −Div(A∇ue)) (τ, x, y).

Throughout this section the spatial quadrangular meshes are structured, uniform

and with edges parallel to the axis. This is motivated by the fact that in [46] analogous

results for quadrangular and triangular meshes were found, although quadrangular

elements seem to be more efficient.
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In Table 2.1 some data concerning the used meshes are presented. Moreover, in

Table 2.2 and Table 2.3 the error in the l∞((0, T ); l2(Ω)) norm for each mesh and

different time steps are shown. More precisely, Table 2.2 contains the results using a

Gauss-Legendre quadrature formula in all the integrals appearing in the variational

formulation while Table 2.3 presents those ones corresponding to Simpson quadrature

formula. As expected, the error decreases as the number of time mesh points increases

or the spatial meshes becomes finer. Notice that for each finer fixed mesh in space,

a second order convergence is clearly observed, until reaching the rounding error for

finer time meshes. These results are in agreement with the theoretically stated order

in time in [7] under certain assumptions on a general convection-diffusion-reaction

(possibly degenerated) equation.

N. Elem N. Nodes
Mesh 2 4 9
Mesh 4 16 81
Mesh 8 64 289
Mesh 16 256 1089
Mesh 32 1024 4225
Mesh 64 4096 16641
Mesh 96 9216 37249

Table 2.1: FEM meshes data.

NT Mesh 2 Mesh 4 Mesh 8 Mesh 16 Mesh 32 Mesh 64
10 2.0159×10−3 2.7522×10−3 2.5478×10−3 1.9773×10−3 1.4033×10−3 1.0909×10−3

102 1.1440×10−3 7.8230×10−5 2.6811×10−5 1.9992×10−5 1.4139×10−5 1.0937×10−5

103 1.1525×10−3 7.6045×10−5 7.0675×10−6 6.0155×10−7 1.4688×10−7 1.0927×10−7

104 1.1528×10−3 7.6193×10−5 7.0897×10−6 5.7718×10−7 3.1795×10−7 3.4992×10−8

105 1.1529×10−3 7.6206×10−5 7.0922×10−6 2.4162×10−6 3.9664×10−8 2.9971×10−9

Table 2.2: Error for different meshes and number of time steps (NT) in the academic
test, when using Gauss-Legendre quadrature formulas.
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NT Mesh 2 Mesh 4 Mesh 8 Mesh 16 Mesh 32 Mesh 64
10 1.8552×10−3 2.5966×10−3 2.5040×10−3 1.9466×10−3 1.3818×10−3 1.0807×10−3

102 5.9552×10−4 1.8053×10−4 4.2185×10−5 2.1019×10−5 1.4050×10−5 1.0863×10−5

103 5.8425×10−4 1.6594×10−4 2.3973×10−5 2.5240×10−6 3.8031×10−7 1.1890×10−7

104 5.8385×10−4 1.6570×10−4 2.3843×10−5 2.4174×10−6 3.1795×10−7 3.4992×10−8

105 5.8382×10−4 1.6569×10−4 2.3840×10−5 2.4162×10−6 3.1756×10−7 3.4815×10−8

Table 2.3: Error for different meshes and number of time steps (NT) in the academic
test, when using Simpson quadrature formulas.

Comparison of the different pricing techniques

Next we show other numerical tests to illustrate the performance of the analytical

approximation of Section 2.5.1, the finite elements solution of Section 2.5.2 and a

standard Monte Carlo simulation technique described in Section 2.5.3. They are

mainly intended to illustrate the comparison in terms of computational cost.

In Table 2.4 and Table 2.5 we show the data for the different tests. More precisely,

Table 2.4 shows the constant volatilities, correlations and accrual jointly with the

constants appearing in the strike definition (2.10) while Table 2.5 shows the forward

LIBOR spot values for the different tests.

Concerning to the used standard Monte Carlo simulation technique, the 99% con-

fidence intervals related to 500.000 simulations are determined. The computational

time for each price is approximately 26 minutes on a Intel(R) Core(TM)2 Duo CPU

T8100 2.10 GHz.

In the finite elements method, the used spatial quadrangular meshes are struc-

tured, uniform and with edges parallel to the axis with 4096 elements and 16641 nodes.

Pricing a ratchet caplet using finite elements takes about 26 minutes. Note that this

method provides simultaneously the prices for the 16641 mesh nodes, prices for any

LIBOR values can be easily obtained from them by a standard bilinear interpolation

from the prices at mesh nodes.

The analytical approximation method results to be very fast as it gives one ratchet

caplet price in about 0.031 seconds, while keeping a good level of precision, especially
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for not too long maturities.

Finally, comparison of the computed numerical results are shown in Table 2.6,

Table 2.7 and Table 2.8 for different spot values of the forward LIBOR rates.

Index frequency Semi Annual
δi 0.5

ρi−1,i 0.8
σi 0.2
σi−1 0.2
a, b,c 0.9, 0.0, 0.01
t 0

Table 2.4: Numerical data (I).

T0FR At-the-money In-the-money Out-of-the-money
Li−1

0 0.05 0.03 0.06
Li0 0.05 0.05 0.05

Table 2.5: Numerical data (II).

Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.0014551, 0.0015599] 0.00150373 0.00151720
1.5 2.0 [0.0021582, 0.0023049] 0.00220159 0.00224088
2.5 3.0 [0.0027734, 0.0029599] 0.00280634 0.00287529
3.5 4.0 [0.0033225, 0.0035454] 0.00334588 0.00344715
4.5 5.0 [0.0038577, 0.0041172] 0.00383673 0.00397233

Table 2.6: Tests results for ratchet caplet i At-the-money (Li−1
0 = 0.05, Li0 = 0.05).
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Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.012981, 0.013218] 0.0130957 0.0131012
1.5 2.0 [0.013164, 0.013462] 0.0132759 0.0132989
2.5 3.0 [0.013371, 0.013722] 0.0135010 0.0135448
3.5 4.0 [0.013606, 0.014004] 0.0137462 0.0138108
4.5 5.0 [0.013902, 0.014346] 0.0139994 0.0140839

Table 2.7: Tests results for ratchet caplet i In-the-money (Li−1
0 = 0.03, Li0 = 0.05).

Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.0002542, 0.0002981] 0.0002741 0.0002807
1.5 2.0 [0.0005890, 0.0006765] 0.0006273 0.0006430
2.5 3.0 [0.0009783, 0.0010905] 0.0010120 0.0010458
3.5 4.0 [0.0013795, 0.0015256] 0.0014000 0.0014557
4.5 5.0 [0.0017733, 0.0019517] 0.0017812 0.0018621

Table 2.8: Tests results for ratchet caplet i Out-of-the-money (Li−1
0 = 0.06, Li0 =

0.05).

Real ratchet caplets and ratchet cap examples

Along this section, first the numerical results obtained when pricing different real

ratchet caplets are shown. These results were obtained with the second-order charac-

teristic method combined with Q2
h finite elements, that is, (LG)2/Q2

h. Also, we have

fixed the upper bounds of the computational bounded domain to 3K.

Notice that we take the notional M = 10, 000 and the pricing date t = T0 = 0,

which corresponds to 10 Oct 2001 and coincides with the strike fixing date in Table

2.9, so that for computing the first ratchet caplet price (i = 1), R1(0, L0, L1), the

initial condition corresponds to time T0 = 0. Thus, to obtain the price at t = 0 it is

not necessary to solve the corresponding PDE, but just to compute the interpolated

initial condition at the forwards data pairs (L0
0, L

1
0).

Market data and characteristics of the first ratchet caplet are shown in Table 2.9.
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In Table 2.10 the ratchet caplet computed prices for the forwards L0
0 = L1

0 = 0.0323903

with different meshes are shown.

By using Monte Carlo simulation the price is equal to 0.120237. In Figure 2.5,

the first ratchet caplet price at t = 0 is shown in terms of the two involved forward

LIBOR rates.

Currency EURO
Index Name EURIBOR
Strike fixing date 10 Oct 2001
Forward fixing date 10 Apr 2002
Payment date 10 Oct 2002
Index frequency Semi Annual
Day count ACT/360
Fixed strike rate 4.8% (0.048)
Volatility 0.242
Correlation 1
Expiry 0.49683
Accrual 0.508333
Payment discount factor (B2

0) 0.966618

Table 2.9: First ratchet caplet data.

Mesh 2 Mesh 8 Mesh 32 Mesh 64 Mesh 96
-4.3269 0.3147 0.1088 0.1190 0.1197

Table 2.10: First ratchet caplet price, R1(0, 0.0323903, 0.0323903), for different
meshes. Monte Carlo pricing is 0.120237.

Next, in Table 2.11 the data for the second ratchet caplet are shown. Notice

that we need to solve the correspondig PDE, the final condition of which is posed

at time T1 (corresponding to 10 Apr 2002). In Table 2.12 the computed prices for

(L1
0, L

2
0) = (0.0323903, 0.0354491) with different meshes and numbers of time steps

are shown. Monte Carlo simulation provides the second ratchet caplet price equal to
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Figure 2.5: First ratchet caplet (Mesh 64, Time steps 1000).

4.98708. Moreover in Figure 2.6 the computed ratchet caplet price function at t = 0

is displayed in terms of the corresponding two forward rates.

Finally, the third ratchet caplet data and computed prices (Monte Carlo price is

equal to 5.72940) are shown in Tables 2.13 and 2.14, respectively. Figure 2.7 shows

the price function at t = 0 in terms of L2 and L3.

In order to price a real ratchet cap (composed of a set of ratchet caplets) the

required market data and the product characteristics are shown in Tables 2.15 and

2.16. Thus, once the different involved ratchet caplets have been computed, the price

of the ratchet cap is provided by adding the prices of each ratchet caplet at time t = 0

and considering the forwards appearing in column T0FR of Table 2.16 provides the

results presented in Table 2.18.

The ratchet cap price computed by Monte Carlo simulation ([55]) is equal to

52.5583 which is very close to the one obtained with the finest mesh and smallest

time step. Monte Carlo simulation has been carried out with 200,000 paths and 250

time steps of the Euler-Maruyama scheme.
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Currency EURO
Index name EURIBOR
Strike fixing date 10 Apr 2002
Forward fixing date 10 Oct 2002
Payment date 10 Apr 2003
Index frequency Semi Annual
Day count ACT/360
Volatility 0.228481
Correlation 1
Expiry 1
Accrual 0.505556
Payment discount factor (B3

0) 0.949599
β,a, b, c 1.0, 0.9, 0.0, 1.0%

Table 2.11: Second ratchet caplet data.

Mesh 2 Mesh 8 Mesh 32 Mesh 64 Mesh 96
10 2.927363 5.057679 4.976746 4.9498720 4.946677
102 2.912453 5.047475 4.976309 4.949729 4.946172
103 2.910926 5.046458 4.976268 4.949725 4.946161
104 2.910773 5.046357 4.976264 4.949724 4.946160
105 2.910758 5.046347 4.976263 4.94973 4.946159

Table 2.12: Second ratchet caplet price, R2(0, 0.0323903, 0.0354491), for different
meshes and time steps. Monte Carlo pricing is 4.95703.

Note that the analytical formula cannot be applied for the case of correlations

equal to one, thus we present another example taken from [55], in which the market

correlations ρi−1,i are shown in Table 2.19. For this new set of market correlations

and the same other data as in previous real case, the computed results with the three

different methods are shown in Table 2.20.
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Figure 2.6: Second ratchet caplet (Mesh 64, Time steps 1000).

2.6 Numerical methods for the ratchet caplet with

b 6= 0

As it has been mentioned in a previous section, in the general case with b 6= 0 the

spatial dimension of the Cauchy problem associated to each ratchet caplet increases

as soon as we move backwards in the intervals between tenor dates. Therefore, the

analytical approximation seems a very difficult task for higher dimensions and a

possible solution for the use of Crank Nicolson Lagrange Galerkin techniques or other

numerical methods for the PDE problems can be provided by the recently developed

sparse grid methods, already applied for option pricing in [40, 39, 59, 58], for example.

Thus, we just present a classical Monte Carlo simulation strategy for LIBOR Market

Model in next section in order to compare the numerical results to those ones obtained

for a case with b = 0.
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Currency EURO
Index name EURIBOR
Strike fixing date 10 Oct 2002
Forward fixing date 10 Apr 2003
Payment date 10 Oct 2003
Index frequency Semi Annual
Day count ACT/360
Correlation 1
Volatility 0.202308
Expiry 1.49863
Accrual 0.508333
Payment discount factor (B4

0) 0.931105
β, a, b, c 1.0, 0.9, 0.0, 1.0%

Table 2.13: Third ratchet caplet data.

Mesh 2 Mesh 8 Mesh 32 Mesh 64 Mesh 96
10 9.168823 6.682162 5.636706 5.609913 5.619255
102 9.110199 6.683876 5.633042 5.619419 5.620347
103 9.104151 6.684039 5.632686 5.619411 5.620376
104 9.103545 6.684056 5.632651 5.619411 5.620380
105 9.103484 6.684057 5.632647 5.619401 5.620382

Table 2.14: Third ratchet caplet price, R3(0, 0.0354491, 0.0390755), for different
meshes and time steps. Monte Carlo pricing is 5.759119.

2.6.1 Monte Carlo simulation

In this section the particular use of a Monte Carlo simulation technique to approxi-

mate the price of the ratchet caplets in the case b 6= 0.

For the ratchet caplet j (j = 1, . . . , N) we consider the terminal probability mea-

sure, Qj, associated to the numeraire Bj, so that in this probability measure the

stochastic differential equations governing the dynamics of forward LIBOR entering

in the j-th ratchet caplet contract are given by equations (2.2).

We assume that we are interested in the price at time t = 0 of the ratchet caplet
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Figure 2.7: Third ratchet caplet (Mesh 64, Time steps 1000).

j which is signed up at time T0 and pays at time Tj.

As it has been described in the case b = 0, we consider the uniform time grid tn,

n = 0, 1, 2, . . . , Nt, such that tNt = Tj and includes the tenor dates between T0 and

Tj.

As the simulation of LIBOR forward rates is a particular case of simulating the

solution of stochastic differential equations, we have several possibilities for the nu-

merical solution. In this work we apply an Euler-Maruyama scheme [38], so that

we compute the forward LIBOR rates at each sampling date by using the following

discretization scheme for n = 0, 1, 2, . . . , Nt − 1:

Lktn+1
= Lktn −

j∑
h=k+1

δhρh,kσ
h(tn)Lhtn

1 + δhLhtn
σk(tn)Lktn∆n +

+σk(tn)Lktn(W k(tn+1)−W k(tn)), k = 1, . . . , j − 1, (2.73)

Ljtn+1
= Ljtn + σj(tn)Ljtn(W j(tn+1)−W j(tn)), (2.74)

starting from the values of Lk(t0), k = 1, . . . , j, because at the pricing date t = 0 the

forward LIBOR rates are known for sure.
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Currency EURO
Index name EURIBOR
Rates-Volatilities Data from 10 Oct 2001
First strike fixing date 10 Oct 2001
First strike rate 4.8% (0.048)
First forward fixing date 10 Apr 2002
Index frequency Semi Annual
Tenor 5 Y
Day count ACT/360
β, a, b, c 1.0, 0.9, 0.0, 1.0%

Table 2.15: Ratchet cap general data

Once we have the samples of the forward rates at the tenor dates we can compute

the discount bond (numeraire), Bj, at the tenor dates by using the formula

Bj
Tn

=

j−1∏
k=n

(1 + δkLk(Tn))−1. (2.75)

Finally, using that the discounted price of a derivative must be a martingale under

the terminal measure Qj, the price of the ratchet caplet j, Rj, at time t = 0 is given

by

Rj(0, L
1
0, . . . , L

j−1
0 , Lj0) = Bj

0Ej
[
Rj(Tj, L

1
T0
, . . . , Lj−1

Tj−2
, LjTj−1

)

Bj
Tj

]
= Bj

0Ej
[
Mδj(L

j −Kj)
+
]
, (2.76)

where Ej denotes the expectation under the terminal measure Qj.

The above described Monte Carlo technique has been used to obtain the results

that appear in the forthcoming section of numerical results, in which the case with

b 6= 0 is included.
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Fixing date Payment date Accrual Volatility Expiry PDF T0FR
10 Apr 2002 10 Oct 2002 0.508333 0.242 0.49863 0.966618 0.0323903
10 Oct 2002 10 Apr 2003 0.505556 0.228481 1 0.949599 0.0354491
10 Apr 2003 10 Oct 2003 0.508333 0.202308 1.49863 0.931105 0.0390755
10 Oct 2003 10 Apr 2004 0.513889 0.196635 2 0.911389 0.0420952
10 Apr 2004 10 Oct 2004 0.505556 0.191161 2.50685 0.89127 0.0446503
10 Oct 2004 10 Apr 2005 0.505556 0.180336 3.00548 0.87087 0.0463364
10 Apr 2005 10 Oct 2005 0.505556 0.169901 3.50411 0.84998 0.0486138
10 Oct 2005 10 Apr 2006 0.505556 0.169616 4.00274 0.828783 0.0505905
10 Apr 2006 10 Oct 2006 0.508333 0.169385 4.50137 0.807112 0.0528180
10 Oct 2006 10 Apr 2007 0.505556 0.160095 5.00274 0.785758 0.0537565

Table 2.16: Ratchet cap general data (PDF: Payment discount factor, T0FR: Time
zero forward rate)

2.6.2 Numerical results for b 6= 0

In this section we show an example of pricing for a general ratchet cap allowing b

different from zero in the expression (2.10). The numerical technique used here is

Monte Carlo simulation described in previous section, by taking 100, 000 paths and

100 time steps for the Euler-Maruyama scheme.

As it has been described in the previous section, when b is different from zero, we

need a correlation matrix in order to suitably compute the dynamics of all the involved

LIBOR forward rates in each ratchet caplet. So, we cannot use the correlation data

appearing in [55] where only the correlations required for the case b = 0 are indicated.

Therefore, we consider the same data as in Table (2.15) and Table (2.16) jointly with

the correlation matrix appearing in page 78.
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Expiry date Monte Carlo Fin. Elem.

0.49863 [0.08035, 0.16103] 0.119052

1 [4.46309, 4.99531] 4.949725

1.49863 [5.30064, 5.87787] 5.619411

2 [5.76613, 6.41552] 6.048858

2.50685 [5.63189, 6.28277] 6.234265

3.00548 [4.56902, 5.14389] 4.882059

3.50411 [5.24919, 5.85409] 5.598571

4.00274 [5.79944, 6.47193] 6.214945

4.50137 [6.75106, 7.49735] 7.180383

5.00274 [4.63946, 5.21721] 4.942808

Table 2.17: Tests results for ratchet caplets (discounted prices) with all correlations
equal to 1.

Mesh 2 Mesh 8 Mesh 32 Mesh 64 Mesh 96
10 181.328153 62.991668 51.761137 51.792480 51.789511
102 179.863369 62.944707 51.927481 51.790246 51.777014
103 179.710736 62.938902 51.925654 51.788980 51.779073
104 179.695409 62.938329 51.925487 51.788865 51.778974
105 179.693877 62.938272 51.925469 51.788855 51.778971

Table 2.18: Ratchet cap price (R) for different meshes and time steps. Monte Carlo
pricing is 52.5583.

Correlation Value

ρ1,2 0.819825

ρ2,3 0.752715

ρ3,4 0.939065

ρ4,5 0.907290

ρ5,6 0.893844

ρ6,7 0.975612

ρ7,8 0.921198

ρ8,9 0.919544

ρ9,10 0.956855

Table 2.19: Market correlations.
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Expiry date Monte Carlo Fin. Elem. Analytical

0.49863 [0.08035, 0.16103] 0.119056 0.101565

1 [5.70828, 6.64748] 6.17175 6.45604

1.49863 [8.71595, 9.94146] 8.97657 9.42576

2 [7.03822, 8.14347] 7.32275 7.82406

2.50685 [7.99605, 9.23802] 8.76002 8.92893

3.00548 [7.80544, 9.04676] 8.23551 8.92812

3.50411 [6.23903, 7.24893] 6.62653 6.94819

4.00274 [8.95355, 10.32293] 9.51259 9.39194

4.50137 [10.62527, 12.17423] 11.07908 10.9521

5.00274 [6.89349, 8.00426] 7.39245 7.46256

Table 2.20: Results for ratchet caplets with market correlation in Table 2.19.
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In Table 2.21 the results obtained for different values of b are shown. As expected,

a monotone behavior with respect to the parameter b is observed.

In practice, as it is the case of other model parameters, this correlation matrix

has to be calibrated from market data and sometimes an additional adjustment to

obtain a positive defined matrix is required.

Expirydate b= 0.0 b= 0.01 b= 0.025 b= 0.05 b= 0.075 b= 0.1

0.49863 0.118320 0.107638 0.116599 0.114724 0.121690 0.126388

1 6.637526 6.018332 5.178980 3.973709 3.041199 2.371222

1.49863 11.018768 10.219395 9.286535 7.931483 6.487005 5.449291

2 8.227067 7.61439346 6.679627 5.394552 4.173885 3.188410

2.50685 13.308241 12.682557 11.502850 9.658426 8.073740 6.678742

3.00548 12.477173 11.659358 10.570663 8.765664 7.2050844 5.865793

3.50411 11.460219 10.448779 9.292035 7.591007 5.890608 4.469814

4.00274 12.919596 12.167242 10.831986 8.727991 7.054128 5.619187

4.50137 18.276307 17.197203 15.734764 13.391551 11.254968 9.231583

5.00274 10.037807 9.285889 8.185133 6.399956 4.803908 3.607201

Table 2.21: Results for ratchet caplets for different values of b and correlation matrix
C with Monte Carlo simulation.



82



Chapter 3

Spread Option

3.1 Introduction

In the previous chapter, mainly the description, mathematical modeling and nume-

rical solution of the ratchet cap pricing problem have been addressed. One of the

main features of the enclosed ratchet caplet type contracts is the presence of a payoff

that involves a set of forward rates. So, these products are an example of financial

derivatives whose payoff depends on multiple underlying LIBOR rates.

In the present chapter, with the same previously developed methodologies, other

interest rate derivatives are treated. More precisely, we will focus on the widely ex-

tended spread options on forward LIBOR rates, which can be framed into the slightly

more general rate based spread options. However, taking into account that they are

more popular, we maintain the name of spread option for the chapter title and its

sections. For both contracts, a PDE pricing model is posed, the existence and unique-

ness of solution is obtained and three alternative numerical methods are proposed.

These methods are the analytical approximation, the Crank Nicolson characteristics

method for time discretization combined with piecewise quadratic finite elements and

the Monte Carlo simulation.

A part of the original numerical results concerning the numerical methods are

included in reference [61].

83
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3.2 Financial product

In a spread option contract, the evolution of any two different underlying financial

products is observed and at contract maturity date a payoff involving the difference

between the prices of these two financial products is paid out. Spread options can

be designed with different underlying products: two equities, two bonds, two interest

rates, etc.

In the present work, we consider a spread option contract on two different forward

LIBOR rates. More precisely, this contract is signed with maturity at time T2. So,

previously at time T0 the first forward LIBOR rate is fixed to L1
T0

= L̄1 and next at

time T1 the second forward LIBOR rate is fixed to L2
T1

= L̄2. Taking into account

this notation, the payoff of the spread option at maturity is

Mδ
(
η(L̄2 − L̄1 −K)

)+
, (3.1)

where M denotes the notional, δ represents the duration of the period when the

contract is alive, K is the strike that is fixed at the beginning of the contract, and

η = 1 (η = −1) corresponds to the call (put) spread option.

In the terminology of [53], a rate based spread option is a more general product

that pays a weighed sum of two interest rates, whenever this sum exceeds the fixed

strike K in the case of a call, or if sum is below the strike for the case of a put,

otherwise the payment is zero. More precisely, for a fixed positive real number a and

a negative one c, at time T2 the buyer of the spread option receives the amount

Mδ
(
η(aL̄2 + cL̄1 −K)

)+
(3.2)

where a and c denote the weighing factors, usually a is positive and c is negative.

Notice that for the choice a = 1 and c = −1 we recover the spread option as a

particular case.

For the sake of simplicity, hereafter we just consider the case of a call option, so

that the parameter η = 1, and we take the notional M = 1 and δ = 1.
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3.3 PDE mathematical model

In this section, we pose the PDE mathematical model governing a (rate based) call

spread option and the main results concerning the existence and uniqueness of solution

for the PDE model are presented. For this purpose, let us first introduce some details

about LIBOR Market Model specially focused on the pricing a spread option.

As we consider a spread option which depends on two different forward LIBOR

rates, let us first consider an appropriate time structure T := {T0, T1, T2} with 0 <

T0 < T1 < T2. Thus, for t < Ti−1 we consider (Lit)t≤Ti−1
, i = 1, 2 as the value process

of the i− th forward LIBOR rate.

As we mentioned in the previous chapter, for i = 1, 2, the LIBOR Market model

assumes that there exists a probability measure Qi associated to the numeraire Bi,

such that the stochastic process (Lit) is a martingale and verifies the following stochas-

tic differential equation:

dLit = Litσ
i(t) dW i

t , (3.3)

where

• W = (W1,W2) denotes a 2-dimensional Brownian motion with covariance ma-

trix ρ (i.e., dW i
tdW

j
t = ρi,jdt). Actually, this matrix is characterized by the

correlation coefficient ρ1,2 between both LIBOR rates.

• σi is the deterministic volatility of the i-th LIBOR forward rate.

• δi = Ti − Ti−1 denotes the i-th accrual factor.

As argued in the case of ratchet caplets, taking into account that the payoffs

(3.1) and (3.2) involve two rates, we need to express the dynamics of the two forward

LIBOR rates under the same probability measure. So, by using a change of numeraire

technique, we can use Q2 (i.e, B2 as numeraire) as common measure to have

dL1
t = −L1

tσ
1(t)

ρ1,2δ2σ
2(t)L2

t

1 + δ2L2
t

dt+ L1
tσ

1(t) dW2
t (3.4)

jointly with the stochastic equation (3.3) with i = 2 for L2
t dynamics.
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Next, by the usual no arbitrage arguments, in the case of the rate based call spread

option the relative or discounted price is given by

Πt = EQ2 [
(aL̄2 + cL̄1 −K)+ | Ft

]
, t ≤ T0 (3.5)

and the absolute price is equal to St = B2
t Πt.

Remark 3.3.1. Clearly, for the choice a = 1 and c = −1 in expression (3.5) the

relative price of the call spread option is obtained.

It is important to notice that since a (rate based) call spread option can be un-

derstood as very close to a ratchet caplet with the parameter b equal to zero, we can

deduce a very close PDE problem by using the Feynman-Kâc theorem, therefore ob-

taining a similar result to the one in Theorem 1.4.1. Thus, the proof of the following

theorem is also analogous to the one of the Theorem 1.4.1.

For i = 1, 2 we denote by Li the real variable corresponding to the i-th forward

LIBOR rate and we set T−1 = 0 by convention.

Theorem 3.3.2. Let us assume that the matrix (ρh,kσ
h(t)σk(t))h,k=1,2 is bounded and

uniformly positive definite. Then, we have

Πt = u2,1(t, L1
t , L

2
t ;K1), t ∈ [0, T0] (3.6)

where K1 = K is given and the function

u2,1 = u2,1(t, L1, L2;K1), t ∈ [0, T0], L1, L2 > 0, K1 ≥ 0.

Moreover, we have

Πt = u2,2(t, L1
t , L

2
t ;K2), t ∈ [T0, T1], (3.7)

where K2 = K2(L̄1) = −cL̄1 +K1 and the function

u2,2 = u2,2(t, L2;K2), t ∈ [T0, T1], L2 > 0, K2 ≥ 0.

The functions u2,2 and u2,1 are uniquely recursively defined as follows
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• u2,2 is the unique non-negative solution to the Cauchy problem

{
L2,2u2,2 = 0 in (T0, T1)× R+

u2,2(T1, L2;K2) = (aL2 −K2(L1))+, in R+

where L2,2 is the two-dimensional operator

L2,2 =
(σ2(t)L2)2

2
∂L2L2 + ∂t.

• u2,1 is the unique non-negative solution to the Cauchy problem

{
L2,1u2,1 = 0 in (0, T0)× R2

+

u2,1(T0, L1, L2;K) = u2,2(T0, L2; (−cL1 +K)+), in R2
+

where L2,1 is the following

L2,1 =
1

2

2∑
h,k=1

ρh,kσ
h(t)σk(t)LhLt∂LhLk − ρ1,2σ

1(t)σ2(t)
δ2L2

1 + δ2L2

L1∂L1 + ∂t.

3.4 Numerical solution

3.4.1 Finite Elements

In order to state the problem as a IVP in divergencial form, we consider the change

of time variable τ = T0 − t. Then, with a certain abuse of notation by maintaining

the same notation for the unknown in the new time variable, we pose the problem

for u2,1 in the form:

∂τu
2,1 + ~v · ∇u2,1 −Div(A∇u2,1) = 0 in (0, T0)× R2

+ (3.8)

u2,1(0, L1, L2) = u2,2(t = T0, L2; (−cL1 +K)+) in R2
+ (3.9)
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where:

A(L1, L2) =

(
1
2
(σ1)2L2

1
1
2
ρ1,2σ

1σ2L1L2

1
2
ρ1,2σ

1σ2L1L2
1
2
(σ2)2L2

2

)
(3.10)

~v(L1, L2) =

 δ2L1L2

1 + δ2L2

ρ1,2σ
1σ2 + (σ1)2L1 +

1

2
ρ1,2σ

1σ2L1

1
2
ρ1,2σ

1σ2L2 + (σ2)2L2

 (3.11)

Next step in the numerical solution is the localization process. For this purpose,

let us consider both L∞1 and L∞2 large enough real numbers suitably chosen and let

the bounded domain Ω = (0, L∞1 ) × (0, L∞2 ) with Lipschitz boundary Γ, such that

Γ = Γ+
1

⋃
Γ+

2

⋃
Γ−1
⋃

Γ−2 , where Γ−1 = Γ ∩ {L1 = 0}, Γ−2 = Γ ∩ {L2 = 0}, Γ+
1 =

Γ ∩ {L1 = L∞1 }, Γ+
2 = Γ ∩ {L2 = L∞2 } as shown Figure 2.4. Then, problem (2.41)-

(2.42) is replaced by

Find u2,1 : [0, T0]× Ω→ R such that

∂τu
2,1 + ~v · ∇u2,1 −Div(A∇u2,1) = 0 in (0, T0]× Ω , (3.12)

u2,1(0, L1, L2) = u2,2(t = T0, L2; (L1 +K)+) in Ω , (3.13)

where the matrix A and the vector ~v are defined in (3.10) and (3.11), respectively.

Moreover, using [47] and taking into account the expression of the matrix A and the

vector ~v, the boundary condition are only required at Γ+
1 and Γ+

2 , so that we consider

the additional boundary conditions for a call (put) spread option

u2,1(τ, L1, L2) = u2,2(t = T0, L2; (L1 +K)+) on [0, T0]× Γ+
1 , (3.14)

u2,1(τ, L1, L2) = u2,2(t = T0, L2; (L1 +K)+) on [0, T0]× Γ+
2 , (3.15)

where the appropriate expression is considered in u2,2 for the case of a call or a put.

Remark 3.4.1. Here we note the small improvement of the here proposed choice of

the boundary conditions (3.14)-(3.15) with respect to the ones proposed in the recent

paper [61], where the boundary conditions for the call are

u2,1(τ, L1, L2) = 0 on [0, T0]× Γ+
1 (3.16)

u2,1(τ, L1, L2) = L2 on [0, T0]× Γ+
2 (3.17)
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while for the put would be

u2,1(τ, L1, L2) = L1 on [0, T0]× Γ+
1 (3.18)

u2,1(τ, L1, L2) = 0 on [0, T0]× Γ+
2 (3.19)

which are based on considerations taking into account the corresponding payoff ex-

pression. Additionally to the more coherent choice of (3.14)-(3.15), in practice we

observed that this choice allows the use of smaller computational domains to get more

accurate solutions. More precisely, the domain truncation with values of 4K in the

new choice provides the same kind of results that the truncation with values of 15K

in the case of using conditions (3.16)-(3.17).

As we mentioned at the beginning of this section, we use the characteristics-

Crank-Nicolson method for the time discretization jointly with finite elements for

spatial discretization. For this purpose, we consider {τh} a quadrangular mesh of the

domain Ω. Let (T,Q2,ΣT ) be a family of quadratic Lagrangian finite elements, where

Q2 is the space of polynomials defined in T ∈ τh with degree less or equal than two

in each spatial variable and ΣT the subset of nodes of the element T .

Now, let us define the subset of finite elements Vh and the space of test functions

Vh,ΓD :

Vh = {ϕh ∈ C0(Ω̄) : ϕhT ∈ Q2, ∀T ∈ τh}, Vh,ΓD = {ϕh ∈ Vh : ϕh = 0, on ΓD} ,

where C0(Ω̄) is the space of piecewise continuous functions on Ω̄.

Therefore, if u2,1
h denotes the finite element approximation of u2,1, the discretized

equation associated to (2.60) is

∫
Ω

(u2,1
h )n+1 − (u2,1

h )n ◦Xn
e

∆t
ψh dL+

1

2

∫
Ω

A∇(u2,1
h )n+1∇ψh dL

+
1

2

∫
Ω

(F n
e )−1(A∇(u2,1

h )n) ◦Xn
e∇ψh dL

+
1

2

∫
Ω

Div(F n
e )−t(A∇(u2,1

h )n) ◦Xn
e ψh dL = (3.20)

=
1

2

∫
Γ−1 ∪Γ−2

gnψh dAL, ∀ψh ∈ Vh,ΓD .
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3.4.2 Analytical Approximation

The pricing problem of a spread option contract is analogous to the ratchet caplet

one with the parameter b equal to zero. Thus, in the interval [T0, T1] the discounted

spread price Πt is given by

Πt = u2,2(t, L2
t ;K2(L1

t )) = aL2
tN (d+(t, L2

t ))−K2(L1
t )N (d−(t, L2

t )), t ∈ [T0, T1],

(3.21)

where N denotes the normal cumulative distribution function and

d±(t, L2) =

log

(
L2

K2

)
± 1

2

(
σ̄2(t, T1)

)2

σ̄2(t, T1)
,

with σ̄2(t, T1) as in (2.21). Moreover, in the interval [0, T0] the discounted price

satisfies

Πt = EQ2
[(
L2
T1
− (−cL1

T0
+K)

)+ | Ft
]

= u2,1(t, L1
t , L

2
t ), t ∈ [0, T0], (3.22)

where u2,1 is the non-negative solution of the Cauchy problemL2,1u2,1 = 0, in (0, T0)× R2
+,

u2,1(T0, L1, L2) = u2,2(T0, L2; (−cL1 +K)+), in R2
+,

(3.23)

with u2,2 given by formula (3.21) and

L2,1 =
1

2

(
σ1(t)L1

)2
∂L1L1 + ρ1,2σ

1(t)σ2(t)L1L2∂L1L2

+
1

2

(
σ2(t)L2

)2
∂L2L2 − ρ1,2σ

1(t)σ2(t)
δ2L2

1 + δ2L2

L1∂L1 + ∂t. (3.24)

Notice that in the rate based spread option the strike only depends on L1 and the

definition of Π2
t by means of u2,1 is used for the large interval [0, T0].

Next, by the change of variables

ū2,1 (t, x1, x2;K) = u2,1(t, ex1 , ex2 ;K), x1, x2 ∈ R, t < T0 ,
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problem 3.23 can be rewritten as follows:L̄2,1ū2,1 = 0, in (0, T0)× R2,

ū2,1(T0, x1, x2;K) = u2,2
(
T0, e

x2 ; (−cex1 +K)+) , in R2,
(3.25)

where

L̄2,1 =
(σ1(t))

2

2
(∂x1x1 − ∂x1) +

(σ2(t))
2

2
(∂x2x2 − ∂x2)

+ ρ1,2σ
1(t)σ2(t)∂x1x2 − ρ1,2σ

1(t)σ2(t)
δ2e

x2

1 + δ2ex2
∂x1 + ∂t.

(3.26)

By the analogous use of the representation formulas (2.19)-(2.26) in the ratchet caplet

case with b = 0, we have

ū2,1(t, x1, x2;K)

=

∫
R2

Γ̄2,1(t, x1, x2;T0, y1, y2) · u2,2 (0, aey2 ;−cey1 +K) dy2dy1

=

∫
R2

Γ̄2,1(t, x1, x2;T0, y1, y2)

×
∫
R

Γ̄2,2(T0, y2;T1, η2) (aeη2 − (−cey1 +K))+ dη2dy2dy1 ,

(3.27)

where K ≥ 0, t ∈ (0, T0) and Γ̄2,2 is the Gaussian fundamental solution of L̄2,2, whose

explicit expression is given in (3.21) and Γ̄2,1 is the (unknown) fundamental solution

of L̄2,1.

In the previous section, the ratchet caplet price was given in terms of the solution

ū2,1 to the Cauchy problem (3.25). In order to obtain an analytical approximation of

the spread option price, we will used classical theory of fundamental solutions because

we have a representation in terms of solutions of a sequence of Cauchy problems.

We first recall the expression of the Gaussian fundamental solution Γ̄2,2 of the one

dimensional heat operator

L̄2,2 =
(σ2)2

2
(∂y2y2 − ∂y2) + ∂t,

given by (2.20) with σ̄2(t, T1) = σ2
√
T1 − t (cf. (2.21)), so that

Γ̄2,2(T0, y2;T1, η2) =
1

σ2
√

2πδ1

exp

[
−1

2

(
2(η2 − y2) + (σ2)2δ1

2σ2
√
δ1

)2
]
, (3.28)
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for y2, η2 ∈ R and T0 < T1 (δ1 = T1 − T0).

It is not possible to compute explicitly an expression of Γ̄2,1 because the operator

L2,1 in (3.26) has got non constant coefficients. Thus, we approximate the fundamen-

tal solution Γ̄2,1 by means of the fundamental solution Γ̃2,1 of the constant coefficients

operator

L̃2,1 :=
(σ1)

2

2
(∂x1x1 − ∂x1) +

(σ2)
2

2
(∂x2x2 − ∂x2)

+ ρ1,2 σ
1σ2 ∂x1x2 − c̄2 ρ1,2 σ

1σ2∂x1 + ∂t,

which is obtained by freezing the variable coefficient δ2e
x2(1 + δ2e

x2)−1 appearing in

(3.26) to the value defined by the spot, i.e:

c̄2 =
δ2L

0
2

1 + δ2L0
2

. (3.29)

Now, its fundamental solution Γ̃2,1 is given by

Γ̃2,1(t, x1, x2; 0, y1, y2) =
exp(F (t, x1, x2; 0, y1, y2))

2πσ2σ1(T0 − t)
√

1− ρ2
1,2

, (3.30)

for x1, x2, y1, y2 ∈ R, t < 0, where:

F (t, x1, x2; 0, y1, y2) =

=
1

8
(
1− ρ2

1,2

) [(σ1)2(t− 0) + 4(x1 + x2 − y2 − y1)

+ 8c̄2 ρ
2
1,2 (y1 − x1) + (σ2)2(t− T0)

(
1 + 4(−1 + c̄2) c̄2 ρ

2
1,2

)
+

4(x2 − y2)2

(σ1)2(t− T0)
+

4(x1 − y1)2

(σ2)2(t− T0)

+
2σ2(−1 + 2c̄2) ((σ1)2(t− T0) + 2(x2 − y2)) ρ1,2

σ1

− 4 ((σ1)2(t− T0) + 2(x2 − y2)) (x1 − y1)ρ1,2

σ2σ1(t− T0)

]
. (3.31)
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Thus, we get the following analytical approximation formula:

ū2,1(t, x1, x2;K)

=

∫
R2

Γ̄2,1(t, x1, x2;T0, y1, y2)

×
∫
R

Γ̄2,2(T0, y2;T1, η2) (aeη2 − (−cey1 +K))+ dη2dy2dy1

≈
∫
R2

Γ̃2,1(t, x1, x2;T0, y1, y2)

×
∫
R

Γ̄2,2(T0, y2;T1, η2) (aeη2 − (−cey1 +K))+ dη2dy2dy1.

Notice that formula (3.32) involves a triple integral, however two of them can be

computed analytically. We defer all the explicit formulas to the Appendix A.

Finally, the approximation of the (rate based) call spread price in the interval

(0, T0) is given by

Πt ≡ u2,1(t, L1
t , L

2
t ;K) = ū2,1(t, log L1

t , log L2
t ;K).

3.5 Numerical results

In this section we show some numerical results of a call spread option pricing problem

to illustrate the performance of the proposed numerical methods and PDE model. We

compare the computed prices obtained with the PDE model with those ones from the

Monte Carlo simulation.

FORTRAN scientific computing language and Mathematica have been chosen for

the implementation of the PDE numerical methods and MATLAB for the second one.

3.5.1 Example of spread option pricing

In this section we show the computed prices for a call spread option by means of

the finite element methods. The financial data and characteristics of this call spread

option are shown in Table 3.1. Particularly, notice that constant volatilities and

correlation have been considered.
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Concerning the numerical methods, the computational domain Ω = (0, 4K) ×
(0, 4K) has been chosen and the data for the different finite element meshes over Ω

are shown in Table 3.2.

First, call spread option computed prices with the different meshes and time steps

are presented in Table 3.3. Notice the convergence of the computed numerical results

as the mesh becomes finer in time and space.

Monte Carlo simulation provides the price 6.9552×10−4 for the call spread option

after 100, 000 simulations. The computational times for the PDE are smaller than

those ones required by Monte Carlo simulation.

Index frequency Annual
Fixed strike rate (K) 2.8% (0.028)
Payoff parameters (a, c) 1.0, -1.0
Volatilities (σ1, σ2) (0.2, 0.2)
Correlation (ρ) 1
Accrual (δ1, δ2) (1.0, 1.0)
Fixing date 1st rate (T1) 1.0
Fixing date 2nd rate (T2) 2.0
Payment discount factor (B3

0) 0.84116

Table 3.1: Call spread option data.

N. Elem N. Nodes
Mesh 2 4 9
Mesh 8 64 289
Mesh 32 1024 4225
Mesh 64 4096 16641

Table 3.2: FEM meshes data.

Figure 3.1 shows the call spread option price function at t = 0 on the computa-

tional domain in terms of L1
0 and L2

0 with the data of Table 3.1 .
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Figure 3.1: Spread option computed prices by the numerical methods applied to the
PDE model with Mesh 64 and 100000 time steps.
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Mesh 2 Mesh 8 Mesh 32 Mesh 64
10 6.7847×10−4 6.91406×10−4 6.9391×10−4 6.9402×10−4

102 6.8888×10−4 6.9104×10−4 6.9379×10−4 6.9397×10−4

103 6.8996 ×10−4 6.9099×10−4 6.9378×10−4 6.9398×10−4

104 6.9007×10−4 6.9099×10−4 6.9378×10−4 6.9398×10−4

Table 3.3: Spread option price, S(0, 0.0822, 0.0822), for different meshes and time
steps.

3.5.2 Comparison between Monte Carlo, finite elements method

and analytical approximations

In this section we present a comparison among the three previously described nume-

rical methods. The financial data of the rate based spread options are given in Table

3.4.

Note that in the Tables appearing in this section different parameters a and K

have been considered and that a = 1 corresponds to the classical call spread option.

Index frequency Annual
Payoff parameter (c) -1.0
Volatilities (σ1, σ2) (0.2, 0.2)
Correlation (ρ) 0.8
Accrual (δ) 1.0
Fixing date 1st rate (T1) 1.0
Fixing date 2nd rate (T2) 2.0
Payment discount factor (B3

0) 0.84116

Table 3.4: Rate based call spread option data.

Concerning the numerical methods, 200, 000 simulations with 250 steps each have

been used in Monte Carlo simulation while 1000 time steps and mesh 64 over the

domain Ω = (4K, 4K) have been considered for the finite element method.
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K/a 0 0.2449 0.4898 0.7347 1
0.010 7.2002×10−2 5.1955×10−2 3.2037×10−2 1.4783×10−2 4.4174×10−3

0.0144 6.7539×10−2 4.7522×10−2 2.7879×10−2 1.2211×10−2 3.6577×10−3

0.0188 6.3139×10−2 4.3128×10−2 2.3877×10−2 9.7446×10−3 2.7491×10−3

0.0232 5.8739×10−2 3.8750×10−2 2.0134×10−2 7.6698×10−3 2.0474×10−3

0.0280 5.3939×10−2 3.4029×10−2 1.6425×10−2 5.8249×10−3 1.4724×10−3

Table 3.5: Rate based spread option price with finite elements with mesh 64 and 1000
time steps.

K/a 0 0.2449 0.4898 0.7347 1
0.010 7.2000×10−2 5.1869×10−2 3.1836×10−2 1.4339×10−2 4.0031×10−3

0.0144 6.7600×10−2 4.7470×10−2 2.7599×10−2 1.1439×10−2 2.9488×10−3

0.0188 6.3200×10−2 4.3073×10−2 2.3536×10−2 8.9749×10−3 2.1497×10−3

0.0232 5.8801×10−2 3.8689×10−2 1.9731×10−2 6.9356×10−3 1.5537×10−3

0.0280 5.4001×10−2 3.3954×10−2 1.5966×10−2 5.1568×10−3 1.0818×10−3

Table 3.6: Rate based spread option price with the analytical approximation.

K/a 0 0.2449 0.4898 0.7347 1
0.0100 7.2226×10−2 5.2110×10−2 3.2105×10−2 1.4613×10−2 4.1458×10−3

0.0144 6.7754×10−2 4.7717×10−2 2.7891×10−2 1.1637×10−2 3.0406×10−3

0.0188 6.3449×10−2 4.3267×10−2 2.3864×10−2 9.2062×10−3 2.2211×10−3

0.0232 5.9056×10−2 3.8953×10−2 1.9948×10−2 7.0543×10−3 1.6208×10−3

0.0280 5.4171×10−2 3.4262×10−2 1.6168×10−2 5.3146×10−3 1.1153×10−3

Table 3.7: Rate based spread option price by Monte Carlo with 200, 000 simulations
and 250 time steps in Euler scheme.
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Chapter 4

Stock Loan

4.1 Introduction

A stock loan is a contract between a lender (for example, a bank) and a borrower (for

example, a client of the bank). The borrower owns a share of a stock which acts as

the collateral of the loan obtained from the lender. At any time before (or at) loan

maturity, the borrower may recover the stock by repaying the lender the principal and

the fixed interest rate associated to the loan. Otherwise, the borrower can surrender

the stock instead of paying the loan. The product is a way of financing in which

the stocks are employed as the only guarantee for the loan, being the secured feature

one advantage with respect to traditional loans. The stock loan price must be here

understood as the fair price the lender should charge to the borrower and this is the

target of the pricing problem here addressed. On the other hand, as the borrower has

the option to redeem, the question about the optimal redeeming strategy arises.

An important feature from the financial and mathematical point of view are the

contract specifications concerning the destination of the accumulative dividends asso-

ciated to the stock: they can be either gained by the lender or by the borrower and,

in both cases, also either before or on redemption. The first attempt of a quantitative

analysis to price a stock loan contract appears in [67], where the case in which the

dividends of the stock are collected by the lender until redemption and not credited

99
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to the borrower. Thus, under this dividend treatment by the contract, the pricing

problem is formulated as an American call option with a time dependent strike. More-

over, in [67] the authors deduce a pricing formula when the maturity of the loan is

infinite by analogy with the American perpetual option with time varying exercise

value. Finally, the paper indicates different interesting open problems, among them

there are some of those ones treated in [17]. Thus, in [17] the different PDE based

pricing models for the finite maturity case subjected to different possibilities of divi-

dend yield distribution are presented and the mathematical analysis mainly focus on

the properties of the redeeming boundary, which is the unknown free boundary that

separates the redemption region from the no redemption one, thus characterizing the

optimal redemption policy to be followed by the borrower. More precisely, the first

three situations analyzed in [17] correspond to the cases of dividend gained by the

lender before redemption, reinvested dividend returned to the borrower on redemp-

tion and dividend always delivered to the borrower, and all lead to one-dimensional

Black-Scholes variational inequalities. From the mathematical point of view, the most

complex case arises when the accumulative dividend yield is returned to the borrower

on redemption. In this fourth case, the introduction of a path dependent variable al-

lows to pose an obstacle problem associated to an ultraparabolic PDE of Kolmogorov

type, as in the case of Asian options with continuous arithmetic averaging. For this

case, in [17] the existence of a redeeming boundary and their properties are analyzed.

In this chapter, when the accumulative dividend yield is returned to the borrower

on redemption, the mathematical analysis of the PDE model for the stock loan pricing

problem is carried out. For this purpose, the techniques developed in [48] and [45] to

study obstacle problems associated to hypoelliptic equations of Kolmogorov type are

applied. Secondly, as the analytical solution cannot be obtained, we propose a numer-

ical method to approximate the solution. More precisely, first the unbounded domain

is truncated to a large enough computational bounded domain with suitable bound-

ary conditions. Next, taking into account that the Kolmogorov equation is strongly
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convection-dominated, we propose the characteristics method to discretize the ma-

terial derivative associated to the time derivative and first order spatial derivatives

terms. This technique has been previously used in other related financial problems

such as in [8] for arithmetic Asian options with American feature, or the ones treated

in previous chapters of this thesis. Furthermore, in order to deal with the nonlinear-

ity associated to the obstacle condition (free boundary), the augmented Lagrangian

active set method proposed in [37] is used. For Asian options, this method has been

compared with an alternative duality method in [9]. For the discretization in the as-

set and accumulative dividend variables, a piecewise quadratic finite elements method

is considered, so that the joint time and spatial discretization falls in the frame of

the so called Lagrange-Galerkin methods. In order to validate the performance of

the proposed numerical techniques, we verify all qualitative properties theoretically

proved in [17] about the redemption region and the optimal redeeming boundary .

The main original results of the present chapter are included in reference [52].

4.2 Financial product and formulation of the pric-

ing model

We assume that the risk neutral price of the stock evolves according to the classical

geometric Brownian motion dynamics

dSt = (r − δ)Stdt+ σStdWt, (4.1)

where {Wt}t≥0 denotes a standard real Brownian motion on a suitable filtered proba-

bility space (Ω,F ,P, (Ft)t≥0). The parameters r, δ and σ denote the risk-free interest

rate, the dividend yield and the volatility respectively. Hereafter we assume that the

dividend yield is a positive constant, that is

δ > 0. (4.2)

As indicated in the introduction of this chapter, we consider a stock loan financial

product in which the borrower receives a loan from the lender who in turn receives
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the stocks as collateral. The load contract states that the accumulative dividend yield

associated to the stock will be returned to the borrower on redemption. Redemption

can take place at any time before or on the loan maturity and in case of no redemption,

the lender maintains the stocks. The parameters of the stock loan contract are the

principal value, K, the continuously compounded interest rate, γ, of the loan and the

maturity, T .

Let us assume that the initial date for the loan is t = 0. Then, the intrinsic value

of the stock loan is given by

St −K exp(γt) +

∫ t

0

δ exp(r(t− u))Su du, t ∈ [0, T ]. (4.3)

Taking into account certain analogy with options based on continuous averages

(Asian option) allowing early exercise (American feature), we introduce the auxiliary

path dependent stochastic process

It =

∫ t

0

δ exp(r(t− u))Su du, t ∈ [0, T ], (4.4)

so that expression (4.3) can be easily written as

St −K exp(γt) + It, t ∈ [0, T ]. (4.5)

In order to obtain the stochastic differential equation for the process It, we can

consider the more general case

It = g(t)

∫ t

0

f(u, Su)du,

where dIt is given by

dIt =

(
g(t)f(t, St) +

g′(t)It
g(t)

)
dt.

Thus, for the particular case g(t) = δ exp(rt) and f(t, S) = exp(−rt)S, that co-

rresponds to (4.4), we get

dIt = (δSt + rIt)dt. (4.6)

By using classical arguments, such us Itô′s lemma and dynamic hedging method-

ology (see [50], for example), the unique price of the stock loan contract which avoids
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the introduction of arbitrage opportunities is given by the process vt = V (t, St, It),

where V is the solution of the following free boundary problem:{
min{−L[V ], V −Ψ} = 0

V (T, S, I) = Ψ(T, S, I), (t, S, I) ∈ [0, T )× R2
+.

(4.7)

In (4.7)

L =
σ2S2

2
∂SS + (r − δ)S∂S + (δS + rI)∂I + ∂t − r (4.8)

is the Kolmogorov operator related to processes (St, It) defined in (4.1) and (4.6), and

Ψ(t, S, I) = (S −K exp(γt) + I)+, t ∈ [0, T ], S > 0. (4.9)

is the payoff/obstacle function.

The proof of the existence of solutions to (4.7) is a delicate matter. In fact, on the

one hand, it is well-known that obstacle problems do not generally admit classical

(smooth) solutions. On the other hand, L is not a uniformly parabolic operator

and the classical PDE theory of generalized solutions does not apply to problem

(4.7). We emphasize that, differently from the standard Black-Scholes case, (4.7) is

a two-dimensional time-dependent problem and does not admit dimension reduction.

Indeed, the solution V is a function of the time variable t and the spatial variables S

and I. Operator L is not uniformly parabolic because only the first order derivative

with respect to I appears; in other terms, we have two spatial variables but only one

source of diffusion, i.e. one Brownian motion.

We mention that operators similar to L were recently studied in [26], [48] and

[45] in connection with the analysis of American Asian options. Taking into account

certain analogies between stock loans and Asian options, in Section 4.3. we give some

result on the existence and optimal regularity of solutions. Moreover, we prove the

following stochastic representation formula for the solution to (4.7):

vt = sup
u∈T[t,T ]

E [exp(−r(u− t)) max (Su −K exp(γu) + Iu, 0) | St = S, It = I] , (4.10)

where T[t,T ] denotes the set of optimal (Ft)-stopping times and E represents the ex-

pected value under the risk neutral measure.
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The first equation in (4.7) can be equivalently decomposed in the form
L[V ] ≤ 0 in (0, T )× R2

+,

V ≥ Ψ in (0, T )× R2
+,

L[V ] · (V −Ψ) = 0 in (0, T )× R2
+,

(4.11)

where the third equation is known as a complementarity condition of the also called

complementarity problem (4.7).

As in most financial contracts with early exercise opportunity, associated to pro-

blem (4.7) we can distinguish the redemption region

R0 = {(t, S, I) ∈ [0, T )× R2
+/V (t, S, I) = Ψ(t, S, I)}, (4.12)

the no-redemption region

R+ = {(t, S, I) ∈ [0, T )× R2
+/V (t, S, I) > Ψ(t, S, I)} (4.13)

and the optimal redeeming boundary that separates both regions

Σ = R0 ∩R+. (4.14)

For each time t ∈ [0, T ), the notation R0(t), R+(t) and Σ(t) identifies in the SI-

plane the set of points located at time t in the redemption region, no redemption

region and optimal redeeming boundary, respectively. Also, the optimal redeeming

boundary identifies the critical price of the stock at which it is worth redeeming the

loan.

By assuming the existence of solution and exploiting the regularity of the solution

V , in [17] some qualitative properties of the optimal redeeming boundary have been

proved. Specifically, early redemption never happens for r > γ, while when r = γ it

is optimal to hold the loan before maturity, even if in some occasion early redemption

may be optimal as well. Furthermore, for r < γ the redemption region is non-empty.

These results are summarized in the following proposition proved in [17]:

Proposition 4.2.1. It we assume that δ > 0 then
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1. If r > γ then R0 = ∅.

2. If r = γ then it is optimal to hold the loan before maturity.

3. If r < γ then

{(t, S, I)/I ≥ K exp(γt)} ⊂ R0 (4.15)

and the optimal redeeming boundary can be parameterized by the curve S∗ in

the tI-plane in the form:

S∗ : [0, T )× (0, K exp(γt))→ (0,+∞)

such that

R0 = {(t, S, I)/S ≥ S∗(t, I)}

and S∗ is monotonically decreasing in t and I, with

lim
t→T

S∗(t, I) = exp(γT )K − I. (4.16)

The above result is based on the existence and other properties of the solution V ,

which we examine in detail in the forthcoming sections. In particular, we put some

emphasis on the regularity properties of generalized solutions because those properties

also give some hint for the efficient numerical solution of (4.7): specifically, we will

show that the numerical schemes can take advantage of the degenerate structure of

L as a strongly convection-dominated operator.

4.3 Mathematical analysis

In this section we prove the existence of solutions to problem (4.7) in the anisotropic

Sobolev spaces Sp defined in (4.18) as well as some regularity results. It is interesting

to notice that the regularity in Sp is optimal for this kind of problems and gives a

clear picture of the peculiar properties of the solution. Other notions of generalized

solutions (for instance, in the viscosity or variational sense) can be considered as

well, albeit the stochastic representation (4.10) entails uniqueness among different

solutions.
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4.3.1 Existence and uniqueness of solution

In order to study the existence and uniqueness of solution we first introduce a suitable

functional setting. So, we denote by

Y = (r − δ)S∂S + (rI + δS)∂I + ∂t (4.17)

the first order part of L.

For any domain Ω ⊂ R3 and p ≥ 1, we define the anisotropic Sobolev spaces

Sp(Ω) = {U ∈ Lp(Ω) | ∂SU, ∂SSU, Y U ∈ Lp(Ω)} (4.18)

endowed with the semi-norm

‖U‖Sp = ‖U‖Lp + ‖∂SU‖Lp + ‖∂SSU‖Lp + ‖Y U‖Lp .

If U ∈ Sp(H) for any compact subset H ⊆ Ω, then we write U ∈ Sploc(Ω). Next, we

introduce the notion of strong solution of the free boundary problem (4.7).

Definition 4.3.1 (Strong solution). A strong solution to problem (4.7) is a function

V ∈ S1
loc∩C((0, T ]×R2

+) which satisfies the differential inequality a.e. in (0, T )×R2
+

and the final condition in the pointwise sense.

Although the goal of this section is the proof of the existence of a strong solution

to problem (4.7), in the sense of Definition 4.3.1, as an intermediate result we first

construct a supersolution.

Definition 4.3.2. A function V̄ ∈ C2([0, T )× R2
+) ∩ C([0, T ]× R2

+) such that

LV̄ ≤ 0 and V̄ ≥ Ψ in (0, T )× R2
+, (4.19)

is called a supersolution to problem (4.7).

As the following lemma shows, it is not difficult to give the explicit expression of

a supersolution to (4.7) with Ψ as in (4.9).
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Lemma 4.3.1. For any β and q suitably large constants, the function

V̄ (t, S, I) = βe−qt
√
S2 + I2 (4.20)

is a super-solution to problem (4.7).

Proof. We have

LV̄ (t, S, I) =
βe−qt

2 (I2 + S2)3/2
W (S, I)

where

W (S, I) = −2
(
S2 + I2

) (
q
(
S2 + I2

)
+ δS (S − I)

)
+ σ2S2I2.

Therefore LV̄ ≤ 0 if and only if W (S, I) ≤ 0. By using repeatedly the elementary

inequality

SI ≤ S2 + I2

2
,

we have

W (S, I) ≤ S2 + I2

2

((
−4q + σ2

) (
S2 + I2

)
− 4δS (S − I)

)
≤ S2 + I2

2

(
S2
(
−4q − 2δ + σ2

)
+ I2

(
−4q + 2δ + σ2

))
.

Thus W (S, I) ≤ 0 if q is positive and suitably large. Once q is fixed, it is clear that

there exists β > 0 such that

V̄ (t, S, I) ≥ Ψ(t, S, I), (t, S, I) ∈ (0, T )× R2
+,

and therefore V̄ is a supersolution.

Now we prove the main result of this section. Generally speaking, we study

problem (4.7) in the framework of hypoelliptic equations of Kolmogorov type. The

obstacle problem for a general class of degenerate parabolic operators including (4.8)

was first studied for the free boundary problem for arithmetic Asian options in [45].

As it appears in next theorem, we previously introduce the concept of function

with polynomial growth.
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Definition 4.3.3. A function f : [0, T ]× R2
+ → R has polynomial growth if

|f(t, S, I)| ≤ C (1 + Sp + Ip) , (t, S, I) ∈ [0, T ]× R2
+,

for some positive constants C, p.

Theorem 4.3.2. There exists a strong solution V of problem (4.7) with Ψ as in (4.9):

we have that V ∈ Sploc
(
(0, T ]× R2

+

)
for any p ≥ 1 and

V ≤ V̄ (4.21)

where V̄ is the supersolution in (4.20). Moreover, V is the unique solution with

polynomial growth of problem (4.7), which solves the optimal stopping problem (4.10).

Proof. Following [45], let Dρ(x1, x2) denote the Euclidean ball centered at (x1, x2) ∈
R2, with radius ρ. We consider the sequence of domains On = Dn

(
n+ 1

n
, 0
)
∩

Dn

(
0, n+ 1

n

)
covering R2

+. For any n ∈ N, the cylinder Hn = (0, T ) × On is a L-

regular domain in the sense that the Cauchy-Dirichlet problem for L is well-posed

because it is possible to find a barrier function (cf. Remark 3.1 in [26]) at any point

of the “parabolic” boundary

∂PHn := ∂Hn \ ({0} ×On).

In particular, since L satisfies condition (4.25) on any Hn, then by Theorem 3.1 in

[26], for any n ∈ N, problemmax{LU − f,Ψ− U} = 0 in Hn,

U |∂PHn = Ψ
(4.22)

has a strong solution U ∈ Sploc (Hn) ∩ C (Hn ∪ ∂PHn). Moreover, for every p ≥ 1 and

H ⊂⊂ Hn there exists a positive constant C, only depending on H,Hn, p, ‖Ψ‖L∞(Hn)

such that

‖Un‖Sp(H) ≤ C. (4.23)
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Next we consider a sequence of cut-off functions χn ∈ C∞0 (R2
+), such that χn = 1 on

On−1, χn = 0 on R2
+ \On and 0 ≤ χn ≤ 1. We set

Ψn(t, S, I) = χn(S, I)Ψ(t, S, I) + (1− χn(S, I))V̄ (t, S, I) ,

where V̄ is the supersolution in (4.20), and we denote by Vn the strong solution to

(4.22) with Ψ = Ψn. By the comparison principle we have Ψ ≤ Vn+1 ≤ Vn ≤ V̄ .

Therefore, by (4.23), for every compact set H and n ∈ N such that Hn ⊃ H we have

‖Vn‖Sp(H) ≤ C, p ≥ 1,

for some constant C depending on H and p but not on n. Then we can pass to

the limit as n → ∞, on compact subsets of (0, T ) × R2
+, to get a strong solution of

max{LV − f,Ψ − V } = 0 in the space Sploc. A standard argument based on barrier

functions shows that V (t, ·) is continuous up to t = T and attains the final datum.

Finally, the uniqueness and the Feynman-Kac representation of strong solutions is

a consequence of the local summability properties of the transition density of the

process (cf. [45], Theorem 1-ii)) and it can be proved as in [48], Theorem 4.3.

4.3.2 Anisotropic regularity of solutions

In this section we analyze the regularity properties of V and, in particular, the

anisotropic Hölder continuity of V is compared with the classical Euclidean regu-

larity.

For greater convenience, we put x = (S, I) and, using the matrix notation, we

rewrite the vector field Y in (4.17) as

Y = 〈Bx,∇x〉+ ∂t

where B is the convection matrix

B =

(
r − δ 0

δ r

)
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and ∇x is the gradient in the variables x. It is possible to introduce a functional

setting, induced by the convection field Y , which is natural for the study of the

interior regularity of strong solutions. Let us first consider an operator in R3 of the

form

L̄ = ā(t, x)∂x1x1 + Y, (4.24)

with Y as in (4.17). It is known (cf. [25], Theorem 1.4) that under the assumption

(4.2) (i.e. δ > 0) and if the coefficient ā is a smooth function such that

1

µ
≤ ā ≤ µ on R3, (4.25)

where µ is a positive constant, then L̄ has a fundamental solution which can be

globally estimated by Gaussian functions from above and below. Moreover, if the

coefficient ā in (4.24) is constant, then operator L̄ is invariant1 w.r.t. the left trans-

lations in the group law

(τ, ξ) ∗ (t, x) = (τ + t, x+ etBξ), (4.26)

where the exponential matrix of B is equal to

exp(tB) = exp(t(r − δ))

(
1 0

exp(tδ)− 1 exp(tδ)

)
.

Since the function ā(t, S, I) = σ2S2

2
verifies the non-degeneracy condition (4.25) on

any compact subset of R × R2
+, then the pricing operator L is locally of the form

(4.24). Consequently, it is natural to characterize the interior regularity of solutions

to L in terms of the group law (4.26). Indeed, the following embedding theorem holds

(cf. [26]).

1L̄ is left-∗-invariant if

L̄U ((τ, ξ) ∗ (t, x)) =
(
L̄U
)

((τ, ξ) ∗ (t, x)) .
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Theorem 4.3.3 (Embedding theorem). Let O,Ω be bounded domains of R3 such that

O ⊂⊂ Ω and p > 6. There exists a positive constant c, only dependent on B, Ω, O

and p, such that

‖U‖C1,α
B (O) ≤ c‖U‖Sp(Ω), α = 1− 6

p
, (4.27)

for any u ∈ Sp(Ω). In (4.27), C1,α
B is the anisotropic Hölder space defined by the

following norms2:

‖U‖C0,α
B (Ω) = sup

Ω
|U |+ sup

(t,x),(τ,ξ)∈Ω

(t,x)6=(τ,ξ)

|U(t, x)− U(τ, ξ)|
‖(τ, ξ)−1 ∗ (t, x)‖αB

,

‖U‖C1,α
B (Ω) = ‖U‖C0,α

B (Ω) + ‖∂x1U‖C0,α
B (Ω)

+ sup
(t,x),(τ,ξ)∈Ω

(t,x)6=(τ,ξ)

|U(t, x)− U(τ, ξ)− (x1 − ξ1)∂x1U(τ, ξ)|
‖(τ, ξ)−1 ∗ (t, x)‖1+α

B

,

where ‖ · ‖B is the anisotropic norm in R3 defined by

‖(t, x1, x2)‖B = |t|
1
2 + |x1|+ |x2|

1
3 .

As a consequence of Theorem 4.3.3, the strong solutions to problem (4.7) belong

locally to the space C1,α
B for any α < 1. Actually, according to the recent results in

[27], the solutions to (4.7) belong to the class S∞loc and this regularity is optimal.

Now we briefly compare the intrinsic notion of C1,α
B -regularity with the more

familiar regularity in the standard Euclidean sense. First notice that, for any bounded

domain Ω, there exists a positive constant cΩ such that

‖(τ, ξ)−1 ∗ (t, x)‖B = ‖(t− τ, x− ξ) + (0, (Id2 − e(t−τ)B)ξ)‖B

≤ cΩ|(t− τ, x− ξ)|
1
3 , (τ, ξ), (t, x) ∈ Ω,

where Id2 is the identity matrix in R2. It immediately follows that

C0,α
B (Ω) ⊆ C0,α

3 (Ω)

where C0,α denotes the standard Euclidean Hölder space.

2We adopt the notation x = (S, I) and ξ = (S′, I ′).
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Remark 4.3.4 (Euclidean regularity). If U ∈ C1,α
B (Ω) then U, ∂SU ∈ C0,α

3 (Ω) and

also

|U((t, x) ∗ (τ, 0))− U(t, x)| = |U((t+ τ, eτBx))− U(t, x)| ≤ cΩ|τ |
1+α

2 . (4.28)

Estimate (4.28) is equivalent to the Hölder regularity of order 1+α
2

along the integral

curves of Y . As a matter of fact, if we identify Y with the vector field Y (t, x) =

(1, Bx), then γ(τ) := (t+ τ, eτBx) is the integral curve of Y starting from (t, x), that

is the solution of the problem γ̇(τ) = Y (γ(τ)),

γ(0) = (t, x).

Notice that the C1,α
B -regularity of U does not imply the existence of the Euclidean

derivative ∂IU : roughly speaking, since ∂I is obtained by commuting ∂S and Y

[∂S, Y ] = ∂SY − Y ∂S = (r − δ)∂S + δ∂I ,

then intrinsically it has to be considered a third order derivative.

Keeping in mind the above remarks, in the numerical solution of problem (4.7) we

adopt the natural approach of using a semi-Lagrangian method for time discretization,

that mainly consists of a finite differences scheme along the integral curves of the

convective part Y of the equation.

4.4 Numerical methods

In order to enumerate the numerical techniques, the main difficulties and the way to

overcome them numerically are briefly outlined. First, a localization technique is used

to cope with the initial formulation in an unbounded domain. Also, as the diffusive

term is strongly degenerated, the PDE can be understood as an example of extreme

convective dominated case, so that we propose a Crank-Nicolson characteristics time

discretization scheme combined with a piecewise quadratic Lagrange finite element
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method. For the inequality constraints associated to the early redemption opportu-

nity, we propose a mixed formulation and the use of an augmented Lagrangian active

set technique.

4.4.1 Divergence form and localization in a bounded domain

Taking into account that we apply finite elements methods based on variational for-

mulation, we first rewrite the PDE in (4.7) in divergence form. For simplicity, we

introduce the new time variable τ = T − t and pose the equivalent problem:

L[V ] ≥ 0 in (0, T )× R2
+ , (4.29)

V ≥ Λ in (0, T )× R2
+ , (4.30)

L[V ] · (V − Λ) = 0 in (0, T )× R2
+ , (4.31)

V (0, S, I) = Λ(0, S, I) in R2
+ , (4.32)

where the new operator and obstacle are respectively given by

L[V ] = ∂τV + ~v · ∇V −Div(A∇V ) + rV, (4.33)

Λ(τ, S, I) = Ψ(T − τ, S, I), (4.34)

with

A(S, I) =

(
1
2
σ2S2 0

0 0

)
, (4.35)

~v(S, I) =

(
(σ2 − r + δ)S

−(δS + rI)

)
. (4.36)

As in most problems arising in finance, the numerical solution with finite di-

fferences, finite volumes or finite elements requires the approximation of the original

problem in an unbounded domain by another one posed in a bounded computational

domain. This technique is known as localization procedure, that has to be performed

so that the truncation by the bounded domain and the associated boundary conditions
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do not affect the solution in the region of financial interest. For the classical problem

of European vanilla options and Dirichlet boundary conditions, a rigorous analysis

has been carried out in [36]. In general, the required boundary conditions at the new

boundaries of the bounded domain are obtained with financial and/or mathematical

arguments.

For the localization purpose, let us consider both S∞ and I∞ large enough real

numbers suitably chosen and let the bounded domain be Ω = (0, S∞)× (0, I∞), with

Lipschitz boundary Γ, such that Γ = Γ+
1

⋃
Γ+

2

⋃
Γ−1
⋃

Γ−2 , where Γ−1 = Γ ∩ {S =

0}, Γ−2 = Γ ∩ {I = 0}, Γ+
1 = Γ ∩ {S = S∞}, Γ+

2 = Γ ∩ {I = I∞}.
Then, problem (4.29)-(4.32) is replaced by the following one:

Find V : [0, T ]× Ω→ R, such that

L[V ] ≥ 0 in (0, T ]× Ω , (4.37)

V ≥ Λ in (0, T )× Ω , (4.38)

L[V ] · (V − Λ) = 0 in (0, T )× Ω , (4.39)

V (0, S, I) = Λ(0, S, I) in Ω , (4.40)

We note that in a certain abuse of notation, we maintain the use of V also for the

solution in the new time variable.

Next, by applying the theory of second order partial differential equations with

nonnegative characteristics that can be found in [47] and taking into account the

expression of the matrix A and the vector ~v, only boundary conditions at Γ+
1 and Γ+

2

are required.

More precisely, following the ideas in [47], for simplicity let us introduce the no-

tation

x1 = S, x2 = I. (4.41)

Then, the operator associated to the Cauchy problem (4.7) can be written in the

form:

L∗ =
2∑

i,j=1

a∗ij
∂2

∂xixj
+

2∑
j=1

b∗j
∂

∂xj
+ l∗ +

∂

∂t
, (4.42)
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where the involved data are defined as follows

A∗(x1, x2) = (a∗ij) =

 σ2x2
1

2
0

0 0

 , (4.43)

v∗(x1, x2) = (b∗j) =

(
(r − δ)x1

δx1 + rx2

)
, (4.44)

l∗(x1, x2) = −r. (4.45)

Thus, in terms of the inwards normal vector to the boundary of Ω, ~m = (m1,m2),

we introduce the following subsets of Γ:

Σ1 = {(x1, x2) ∈ Γ ,

2∑
i,j=1

a∗ijmimj > 0}, (4.46)

Σ2 =

{
(x1, x2) ∈ Γ− Σ1 ,

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi < 0

}
. (4.47)

As indicated in [47], the boundary conditions at Σ1∪Σ2 for the initial boundary value

problem associated to (4.42) are required. So, considering each boundary of Ω, we

get:

• On boundary Γ+
1 : x1 = x∞1 , 0 ≤ x2 ≤ x∞2 , ~m = (−1, 0)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 =

σ2x2
1

2
> 0

• On boundary Γ+
2 : 0 ≤ x1 ≤ x∞1 , x2 = x∞2 , ~m = (0,−1)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi = −(δx1 + rx∞2 ) < 0
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• On boundary Γ−1 : x1 = 0, 0 ≤ x2 ≤ x∞2 , ~m = (1, 0)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi = (−σ2 + r − δ)x1 = 0

• On boundary Γ−2 : 0 ≤ x1 ≤ x∞1 , x2 = 0, ~m = (0, 1)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

(
b∗i −

2∑
j=1

∂a∗ij
∂xj

)
mi = δx1 > 0

Therefore, we obtain that Σ1 = Γ+
1 and Σ2 = Γ+

2 , so that Σ1 ∪ Σ2 = Γ+
1 ∪ Γ+

2 .

Next, we propose the following nonhomogeneous Neumann conditions:

∂V

∂S
(t, S, I) = g1(t, S, I) on [0, T ]× Γ+

1 , (4.48)

∂V

∂I
(t, S, I) = g2(t, S, I) on [0, T ]× Γ+

2 , (4.49)

the functions g1 and g2 being defined by

g1(t, S, I) =
∂Λ

∂S
(0, S, I) = 1, (t, S, I) ∈ [0, T ]× Γ+

1 , (4.50)

g2(t, S, I) =
∂Λ

∂I
(0, S, I) = 1, (t, S, I) ∈ [0, T ]× Γ+

2 , (4.51)

which are derived from the exercise value function Λ, provided that we choose the

bounded domain satisfying the condition

min(S∞, I∞) > K exp(γT ), (4.52)
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that guarantees the inequality

S + I −K exp(γT ) > 0, ∀(S, I) ∈ Γ+
1 ∪ Γ+

2 . (4.53)

Notice that condition (4.52) is satisfied by the data in the forthcoming test examples.

Moreover, we propose a mixed formulation to deal with obstacle problem by in-

troducing the multiplier P : [0, T ] × Ω −→ R, so that we can replace equations

(4.37)-(4.39) by the equation

Vτ −Div (A∇V ) + ~v · ∇V + rV + P = 0 in (0, T )× Ω, (4.54)

and the complementarity conditions

V ≥ Λ, P ≤ 0, (V − Λ) · P = 0 in (0, T )× Ω. (4.55)

This kind of mixed formulations have been previously used in early exercise Asian

options with arithmetic averaging in [8] or in pension plans with early retirement

opportunity pricing problems in [14], for example. In practice, we will apply the

mixed formulation (4.54)-(4.55) to the fully discretized problem.

4.4.2 Discretization in time

Very often, in differential equations for pricing financial products, the diffusive term is

quite small relative to the convective one for some regions of the domain or due to the

presence of particular values of the involved parameters. This is specially reinforced

in the case of the equations here considered for the stock loans pricing, due to the

fact that there is no diffusion in one of the spatial dimensions. In such circumstances

numerical schemes present difficulties.

A relatively large variety of ideas and approaches have been proposed in widely

different contexts to solve these difficulties and the characteristics method for time

discretization constitutes a possible upwinding scheme that leads to symmetric and

stable approximations, reducing temporal errors and allowing for large timesteps with-

out loss of accuracy.
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The classical method of characteristics of first order has been introduced in [56]

and first applied for the resolution of financial problems in Vázquez [64] for vanilla

options and in D’Halluin, Forsyth and Labahn [19] for pricing Asian options. Also in

the framework of the Hobson-Rogers stochastic volatility model, it has been applied

to price European and American vanilla options in [29].

More recently, the higher order Crank-Nicolson Lagrange-Galerkin method has

been analyzed in [6] and [7] for a general possibly degenerated convection-diffusion-

reaction equation and applied to the pricing problem of Asian options with continuous

arithmetic averaging in [8, 9].

In order to cope with the extremely convection dominated feature that appears

in the Kolmogorov equation associated to the stock loan model, we use the Crank-

Nicolson Lagrange-Galerkin method to approximate the material derivative

D

Dτ
= ∂τ + ~v · ∇ (4.56)

For this purpose, we define the characteristics curve through the point (S, I) at time

τ̄ , Xe(x, τ̄ ; τ), which verifies the following final value problem:

∂τXe((S, I), τ̄ ; τ) = ~v(Xe((S, I), τ̄ ; τ)), Xe((S, I), τ̄ ; τ̄) = (S, I) . (4.57)

The final value problem (4.57) can be exactly solved, so that depending on the

parameter values, we obtain:

• If σ2 − r + δ = 0:

X1
e ((S, I), τ̄ ; τ) = S

X2
e ((S, I), τ̄ ; τ) = −δ

r
S + exp(r(τ̄ − τ))

(
I +

Sδ

r

)
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• If σ2 − r + δ 6= 0:

X1
e ((S, I), τ̄ ; τ) = S exp(−(σ2 − r + δ)(τ̄ − τ))

X2
e ((S, I), τ̄ ; τ) =

−δS exp(−(σ2 − r + δ)(τ̄ − τ))

σ2 + δ
+

exp(r(τ̄ − τ))

(
I +

Sδ

σ2 + δ

)
Next, in order to describe the time discretization taking into account previous

computations, for N > 0 let us consider the time step ∆τ = T
N

and the time mesh-

points τn = n∆τ, n = 0, 1
2
, 1, 3

2
, . . . , N . Then, at time τn+ 1

2 the material derivative

approximation by characteristics method is given by:

DV

Dτ
≈ V n+1 − V n ◦Xn

e

∆τ
,

where Xn
e (S, I) := Xe(S, I, τ

n+1; τn), the components of which are given by

• If σ2 − r + δ = 0:

Xn,1
e (S, I) = S, Xn,2

e (S, I) = −δ
r
S + exp(r∆τ)

(
I +

Sδ

r

)
• If σ2 − r + δ 6= 0:

Xn,1
e (S, I) = S exp(−(σ2 − r + δ)∆τ),

Xn,2
e (S, I) =

−δS exp(−(σ2 − r + δ)∆τ)

σ2 + δ

+ exp(r∆τ)

(
I +

Sδ

σ2 + δ

)
The velocity field ~v is shown in Figures 4.1 and 4.2 for the conditions σ2−δ+r > 0

and σ2 − δ + r > 0, respectively.

Remark 4.4.1. Note that the velocity field at the boundary Γ+
2 points towards the

interior of the domain if σ2 − r + δ ≥ 0 (see Figure 4.1). Also, if the quantity

σ2 − r + δ < 0 then the velocity field at the boundaries Γ+
2 and Γ+

1 points towards the
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Figure 4.1: Velocity field in the domain Ω for σ2 − δ + r > 0.

interior of the domain (see Figure 4.2). So, even for small enough time steps, the

point Xn
e (S, I) may not belong to the domain and some approximations will be used.

More precisely, if the point Xn
e (S, I) is located outside the domain, we use a suitable

Taylor approximation at the corresponding boundary, taking in account the functions

appearing in the Neumann boundary conditions (4.48) and (4.49).

Next, if we consider a Crank-Nicolson scheme around the point (Xe((S, I), τn+1; τ), τ)

with τ = τn+ 1
2 for n = 0, ..., N − 1, then the time discretized PDE operator can be

written as follows:

L[V ]
(
Xe((S, I), tn+1; tn+ 1

2 ), tn+ 1
2

)
≈

V n+1(S, I)− V n(Xn
e (S, I))

∆τ
− 1

2
Div(A∇V n+1)(S, I)

−1

2
Div(A∇V n)(Xn

e (S, I)) +
1

2
(rV n+1(S, I)) +

1

2
(rV n(Xn

e (S, I))) . (4.58)

For simplicity, let us introduce the notation
(
L[V ]

)n+ 1
2 :

(
L[V ]

)n+ 1
2 (S, I) = L[V ]

(
Xe((S, I), τn+1; τn+ 1

2 ), τn+ 1
2

)
. (4.59)
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Figure 4.2: Velocity field in the domain Ω for σ2 − δ + r < 0.

In order to state the weak formulation for the semidiscretized problem, we use a

Lemma that appears in [8, 46], multiplying the terms in (4.58) by a suitable test

function ψ and integrating in Ω, we have:

((
L[V ]

)n+ 1
2 , ψ

)
≈
∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI

−1

2

∫
Ω

Div(A∇V n+1)ψdSdI − 1

2

∫
Ω

(Div(A∇V n)) ◦Xn
e ψ dSdI

+
1

2

∫
Ω

rV n+1ψ dSdI +
1

2

∫
Ω

(rV n) ◦Xn
e ψ dSdI (4.60)

where notation dA is used for the integration measure in Γ.

Next, applying Lemma 3.4 that appears in [8, 46] and the usual Green’s formula,

expression (4.60) is equivalent to:



122

((
L[V ]

)n+ 1
2 , ψ

)
≈∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI +

1

2

∫
Ω

A∇V n+1∇ψ dSdI

+
1

2

∫
Ω

(F n
e )−1(A∇V n) ◦Xn

e∇ψ dSdI

+
1

2

∫
Ω

(Div(F n
e )−t(A∇V n)) ◦Xn

e ψ dSdI

+
1

2

∫
Ω

rV n+1ψ dSdI

− 1

2

∫
Γ

~n · A∇V n+1ψ dA

+
1

2

∫
Ω

(rV n) ◦Xn
e ψ dSdI

− 1

2

∫
Γ

(
(F n

e )−t~n · (A∇V n)
)
◦Xn

e ψ dA . (4.61)

Notice that the tensor (F n
e )−t(S, I) = (∇Xe(S, I, τn+1; τn))−t can be easily com-

puted and takes the form

(Fn
e )−t =

(
b11 b12

0 b22

)
,

where the tensor components are actually independent of S and I. More precisely,

by taking into account the different cases depending on the value of σ2 − r + δ, we

have:

• If σ2 − r + δ = 0:

b11 = exp(r∆τ), b22 = 1, b12 =
δ

r
(1− exp(r∆τ)).

• If σ2 − r + δ 6= 0:

b11 = exp(r∆τ),

b22 = exp(−(σ2 − r + δ)∆τ),

b12 =
δ exp(−(σ2 − r + δ)∆τ)

σ2 + δ
− δ exp(r∆τ)

σ2 + δ
.
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Next, let us precise the boundary integrals appearing in formulation (4.61). First,

notice that we have ~n · A∇V n+1 = 0 on Γ−1 ∪ Γ−2 and we can use the Neumann

boundary conditions on Γ+
1 ∪ Γ+

2 . Therefore, in the first boundary integral on the

right hand side of equation (4.61) we can introduce the function

ḡn+1 =

{
a11 g

n+1
1 on Γ+

1

a11 g
n+1
2 on Γ+

2

(4.62)

Moreover, for the second integral, we have∫
Γ

(
(F n

e )−t~n · (A∇V n)
)
◦Xn

e ψ dA =

∫
Γ

gnψ dA, (4.63)

where gn : (0,∞)× (0,∞)→ R is given by

gn(S, I) =



0 on Γ−1

−((F n
e )−t)11a11(Xn

e (S, I))
∂V

∂I
(Xn

e (S, I)) on Γ+
1

−1
2
((F n

e )−t)12a11(Xn
e (S, I))

∂V n

∂I
(Xn

e (S, I)) on Γ−2

−((F n
e )−t)12a11(Xn

e (S, I))
∂V

∂I
(Xn

e (S, I)) on Γ+
2

Therefore, expression (4.61) becomes ((
L[V ]

)n+ 1
2 , ψ

)
≈∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI +

1

2

∫
Ω

A∇V n+1∇ψ dSdI

+
1

2

∫
Ω

(
(F n

e )−1(A∇V n)
)
◦Xn

e∇ψ dSdI

+
1

2

∫
Ω

rV n+1ψdSdI

+
1

2

∫
Ω

(
Div(F n

e )−t(A∇V n)
)
◦Xn

e ψ dSdI

−1

2

∫
Γ

gn(S, I)ψ dA

+
1

2

∫
Ω

(rV n) ◦Xn
e ψ dSdI −

1

2

∫
Γ+

1 ∪Γ+
2

ḡn+1ψ dA (4.64)
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for all ψ ∈ H1(Ω).

4.4.3 Finite elements discretization

In order to obtain the fully discretized problem, we combine the previously describe

time discretization with a finite elements based spatial discretization. For this pur-

pose, we consider a family of quadrangular meshes {τh} of the domain Ω. Associated

to the mesh {τh}, let (T,Q2,ΣT ) be a family of quadratic Lagrangian finite elements,

where Q2 denotes the space of polynomials defined in T ∈ τh with degree less or equal

than two in each spatial variable and ΣT the subset of nodes of the element T . Now,

let us define the finite elements space Vh:

Vh = {ϕh ∈ C0(Ω̄) : ϕhT ∈ Q2,∀T ∈ τh} ,

where C0(Ω̄) denotes the space of continuous functions on Ω̄.

Therefore, if Vh ∈ Vh denotes the finite element approximation of V ∈ H1(Ω),

then the spatial discretization of (4.64) can be written in the form

((
L[Vh]

)n+ 1
2 , ψh

)
≈∫

Ω

V n+1
h − V n

h ◦Xn
e

∆τ
ψh dSdI +

1

2

∫
Ω

A∇V n+1
h ∇ψh dSdI

+
1

2

∫
Ω

(
(F n

e )−1(A∇V n
h )
)
◦Xn

e∇ψh dSdI

+
1

2

∫
Ω

rV n+1
h ψhdSdI

+
1

2

∫
Ω

(
Div(F n

e )−t(A∇V n
h )
)
◦Xn

e ψh dSdI

−1

2

∫
Γ

gnh(S, I)ψh dA

+
1

2

∫
Ω

(rV n
h ) ◦Xn

e ψhdSdI −
1

2

∫
Γ+

1 ∪Γ+
2

ḡn+1ψh dA (4.65)

for all ψh ∈ Vh.
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4.4.4 Mixed formulation and augmented Lagrangian active

set method

Once the previous discretizations have been applied, we are led to the following fully

discretized complementarity problem at each time step n:

MhV
n
h ≥ bn−1

h , V n
h ≥ Λh,

(
MhV

n
h − bn−1

h

)
·
(
V n
h − Λh

)
= 0, (4.66)

where Mh denotes the finite elements matrix, V n
h denotes de vector containing the

values of the solution at the nodes of the finite element mesh and Λh is the vector of

the node values of the function Λ. So, the corresponding mixed formulation of the

complementarity problem (4.66) can be written in the form

MhV
n
h + P n

h = bn−1
h , (4.67)

jointly with the complementarity conditions

V n
h ≥ Λh, P n

h ≤ 0, P n
h ·
(
V n
h − Λh

)
= 0, (4.68)

where P n
h denotes the vector containing the nodal values of the multiplier.

The basic iteration of the augmented Lagrangian active set algorithm has been

introduced in [37] and mainly consists of two steps. In the first one the domain is

decomposed into active and inactive parts (depending on whether the constraints

are active or not), and in the second step, a reduced linear system associated to the

inactive part is solved. Although the algorithm can be used in bilateral problems (in

case of upper and lower constraints), we use the algorithm for unilateral problems,

which are based on the augmented Lagrangian formulation. The method has been

already successfully used when pricing early exercise Asian option with continuous

arithmetic mean [9] and pension plans [14]. We address the reader to both papers for

further details on the algorithm.
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4.5 Numerical results

After verifying the performance of the numerical methods with some academic test

problems with analytical solution, the real test proposed in [17], in which the authors

apply the shooting grid method introduced in [4] is carried out. More precisely, the

financial data appearing in the stock loan are the following:

σ = 0.4, r = 0.05, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (4.69)

We note that for the previous data set, the relation r < γ holds, so that Proposition

4.2.1 states the existence of a redeeming boundary and that the redemption region

always contains a specific known region. We notice that the numerical methods

confirm these results.

After using different meshes, time discretization steps and parameters of the

numerical method, we show the results obtained for the localization parameters

S∞ = 3K and L∞ = 3K, a quadrangular finite elements mesh with 4096 elements

and 16641 nodes, and the time step ∆τ = 0.001.

Note that the particular choice of the bounded domain guarantees that condition

(4.52) is satisfied.

Figure 4.3 shows the computed optimal redeeming boundary at the times to ma-

turity τ = T − t = 0, 1, and 3, which coincide with those ones presented in [17] by

using different scales in the axes. It has been computed by taking into account that

the multiplier passes from zero value in the redemption region to a negative value

in the no redemption region. The redemption region is located above the redeeming

boundary curve and condition (4.15) is numerically satisfied. On the other hand,

clearly the limit property (4.16) is also illustrated by Figure 4.3.

Figure 4.4 shows the computed stock loan value for r < γ with the data in (4.69)

at t = 0 which qualitatively resembles the kind of results obtained for Asian options

with early exercise opportunity (see [8, 9], for example).

Additionally to the example appearing in [17], also the tests corresponding to cases

with r = γ and r ≥ γ have been performed and the results stated in Proposition 4.2.1
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Figure 4.3: Optimal redeeming boundary for the data σ = 0.4, r = 0.05, δ =
0.03, γ = 0.09, K = 0.7 and T = 3.

have been satisfied.

More precisely, in a second example for the case r = γ the following financial data

set has been chosen:

σ = 0.4, r = 0.09, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (4.70)

For these data, Figure 4.5 shows the computed stock loan prices for t = 0. The

computations have been performed with the same parameters of the numerical me-

thods than the previous case.

Taking into account that the no redemption region corresponds to the points where

the multiplier is identically zero, we note that in this case the multiplier vanishes in

the whole domain, thus confirming the theoretical property proved for this case in

Proposition 4.2.1.

Finally, in a third example for the case r > γ the following financial data set has
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Figure 4.4: Stock loan price at t = 0 for the data σ = 0.4, r = 0.05, δ = 0.03, γ =
0.09, K = 0.7 and T = 3.

been taken:

σ = 0.4, r = 0.13, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (4.71)

For these data, Figure 4.6 shows the computed stock loan prices for t = 0. The

computations have been performed with the same parameters of the numerical me-

thods than in previous examples.

We also mention that in this case the multiplier vanishes in the whole domain,

thus confirming the theoretical property proved for this case in Proposition 4.2.1.
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Figure 4.5: Stock loan price at t = 0 for the data σ = 0.4, r = 0.09, δ = 0.03, γ =
0.09, K = 0.7 and T = 3.
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Figure 4.6: Stock loan price at t = 0 for the data σ = 0.4, r = 0.11, δ = 0.03, γ =
0.09, K = 0.7 and T = 3.



Chapter 5

Conclusions

The objective of this work has been the mathematical analysis and numerical solution

of the models that arise in pricing problems for several financial derivatives: ratchet

cap, spread option and stock loan. These models are mainly posed in terms of partial

differential equation of parabolic and Kolmogorov type, either in the form of Cauchy

problems or in the form of obstacle ones. Once the models have been posed, their

mathematical analysis allows to obtain the existence and uniqueness of solution under

certain assumptions, as well as some qualitative and regularity properties of the so-

lution. Moreover, the numerical methods provide rigorous tools to obtain in practice

the fair prices of the financial products. The algorithms developing the numerical

methods have been implemented in FORTRAN, MATLAB and Mathematica.

For the ratchet cap contract, in the LIBOR Market Model setting a rigorous and

original PDE modeling of the general case has been posed, thus leading to a sequence

of nested Cauchy problems for which the main result of existence and uniqueness

has been obtained. The particular case with b = 0 leads to a simpler case where

only two LIBOR rates are involved in the price of each ratchet caplet. Thus, by

freezing a variable coefficient and using the concept of fundamental solutions, an

analytical approximation can be obtained to price the ratchet cap. Alternatively,

after a localization procedure and the statement of appropriate boundary condition

for a Cauchy-boundary value problem, a Crank-Nicolson Lagrange-Galerkin method
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can be used to price the ratchet cap. Both previous methods can be compared

with the third classical alternative based on Monte Carlo simulation. The numerical

results confirm that the computed prices for different data sets are very close each

other for the three methods. The main advantages of the finite elements approach

are the precision and the fact that a large quantity of prices can be computed in a

single execution at a relatively moderate computational cost. The advantages of the

analytical approximation are also the precision and the very fast computing of a single

price. The treatment of the case b 6= 0 is limited in this work to the use of Monte

Carlo simulation, as the use of the analytical approximation faces the computation

of very complex nested integrals in increasing dimension and the application of finite

elements techniques would require the use of specific techniques in higher dimensions,

such as possibly sparse grids [40, 59, 58].

The spread option contract on two LIBOR rates results to be very close to the

ratchet caplet case with b = 0, so that most of the previous comments can be con-

sidered. Also the mathematical analysis provides the existence and uniqueness of

solution and the three numerical alternatives can be handled to price this product.

Notice that the methodology could be applied to other options on two LIBOR rates.

The rigorous quantitative treatment of the stock loan pricing problem in the lit-

erature is very recent. For pricing this product, when the cumulative dividend yield

associated to the stock is delivered by the lender to the borrower on redemption,

an obstacle problem associated to a Kolmogorov equation can be posed. In this

work, the existence and uniqueness of solution is analyzed. Furthermore, appropri-

ate numerical methods for solving the problem are proposed. This methods mainly

consist of a Crank-Nicholson characteristics technique for the time discretization of

the convection dominated Kolmogorov equation combined with piecewise quadratic

Lagrange finite elements and an augmented Lagrangian active set technique to treat

the nonlinearity associated to the (unilateral) obstacle condition. The validation of

the performance of the proposed numerical methods is partly validated by verifying

some qualitative properties about the redemption region and redeeming boundary
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theoretically proved in the literature.

As a whole, by using some tools of applied mathematics to quantitative finance

problems, the present work tries to contribute to the understanding and rigorous

statement of mathematical models for pricing complex real financial derivative, to

their rigorous mathematical analysis and to the development of software tools that

can be used in practice and that are based on deeply studied numerical techniques.
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Appendix A

Computations related to the

analytical approximation

In this Appendix we detail the intermediate computations related to the analytical

approximation of the ratchet caplet price when b = 0 treated in chapter 2, i.e. the

payoff only depends on two forward LIBOR rates. The same kind of computations

can be addressed for the base rated call spread option treated in chapter 3.

So, starting from expression (3.32) for the ratchet caplet case, we can first compute

explicitly

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi)

=

∫
R

Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)Γ̄
i,i(Ti−2, yi;Ti−1, ηi)dyi,

obtaining the following expression:

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi) =
exp(Mi)

(2π)3/2(σi)2σi−1τ
√
δi−1(1− ρ2

i−1,i)
,
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where we recall that τ = Ti−2 − t and Mi is given by

Mi =−
(

1
2
(σi)2δi−1 + ηi − yi

)2

2(σi)2δi−1

−
(σi−1)2τ − 4(xi−1 + xi − yi − yi−1) + 4(xi−yi)2

(σi−1)2τ
+ 4(xi−1−yi−1)2

(σi)2τ

8
(
1− ρ2

i−1,i

)
+
σi(2c̄i − 1) ((σi−1)2τ − (xi − yi)) ρi−1,i

4σi−1
(
1− ρ2

i−1,i

)
− ((σi−1)2τ + 2(xi − yi)) (xi−1 − yi−1)ρi−1,i

2τσiσi−1
(
1− ρ2

i−1,i

)
+

8c̄iρ
2
i−1,i(−xi−1 + yi−1)− (σi)2τ (1 + 4(−1 + c̄i)c̄i(ρi−1,i)

2)

8
(
1− ρ2

i−1,i

) .

Once G3 has been obtained, we compute

G4(t, xi−1, xi;Ti−2, yi−1, Ti−1)

=

∫ ∞
log(aeyi−1+c)

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi)(e
ηi − (aeyi−1 + c))dηi ,

the value of which is given by

G4(t, xi−1, xi;Ti−2, yi−1, Ti−1) =
exp(Hi)

4σi
√
−πBiτ((σi)2δi−1 + (σi−1)2τ(1− ρ2

i−1,i))

×

(
− 2 +K exp

(
1 + S1

i

4Bi

)
·
(

1 +N
(

Fi

2
√
Bi

))
+N

(
1 + Fi

2
√
Bi

))
,

(A.1)

where N denotes the standard normal distribution and

Hi(t, xi−1, xi;Ti−2, yi−1, Ti−1) =
S2
i

8
+
c̄i(xi−1 − yi−1)ρ2

i−1,i

1− ρ2
i−1,i

+
S3
i

2τ(1− ρ2
i−1,i)

+
S4
i

2(1− ρ2
i−1,i)

+
S5
i

τ(1− ρ2
i−1,i)

2Ai
+

S6
i

(1− ρ2
i−1,i)

2Ai
+

S7
i

τ2(1− ρ2
i−1,i)

2Ai
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Ai =− 1

2(σi)2δi−1

− 1

2(σi−1)2τ(1− ρ2
i−1,i)

Bi =
1

2(σi)2δi−1

+
1

2(σi)4δ2
i−1Ai

Ei =a exp(yi−1) + c

Fi =− 1

2
+

(ρi−1,i)
2

4(σi)2δi−1(1− ρ2
i−1,i)Ai

− xi
2(σi)2(σi−1)2δi−1τ(1− ρ2

i−1,i)Ai

+
Cρi−1,i

4σiσi−1δi−1(1− ρ2
i−1,i)Ai

+
(xi−1 − yi−1)ρi−1,i

2(σi)3(σi−1)δi−1τ(1− ρ2
i−1,i)Ai

− 2Bi log(Ei)

S1
i =− 1 +

ρi−1,i

2(σi)2δi−1(1− ρ2
i−1,i)Ai

− xi
(σi)2(σi−1)2δi−1τ(1− ρ2

i−1,i)Ai

− (2c̄i − 1)ρi−1,i

2σiσi−1δi−1(1− ρ2
i−1,i)Ai

+
(xi−1 − yi−1)ρi−1,i

(σi)3si−1δi−1τ(1− ρ2
i−1,i)Ai

S2
i =(σi)2δi−1 +

(σi−1)2τ

(1− ρ2
i−1,i)

− 1

(1− ρ2
i−1,i)Ai

+
1

2Ai

S3
i =− τ(xi−1 + xi − yi−1) +

x2
i

(σi−1)2
+

(xi−1 − yi−1)2

(σi)2

− 2xi(xi−1 − yi−1)ρi−1,i

σiσi−1
+

(xi−1 − yi−1)ρi−1,i

2σiσi−1Ai

S4
i =

σiσi−1(2c̄i − 1)τρi−1,i

2
− σi(2c̄i − 1)xiρi−1,i

σi−1

+
σi−1(xi−1 − yi−1)ρi−1,i

σi
+

(σi)2τ
(
1 + 4(−1 + c̄i)c̄iρ

2
i−1,i

)
4

S5
i =−

xi + (2c̄i − 1)(xi−1 − yi−1)ρ2
i−1,i − τ−1x2

i − (1− ρ2
i−1,i)

−1xi

4(σi−1)2

− σi(2c̄i − 1)xiρi−1,i

4(σi−1)3
+

(xi−1 − yi−1)ρi−1,i

4σiσi−1

S6
i =

(σi)2(2c̄i − 1)2ρ2
i−1,1

16(σi−1)2
+
σi(2c̄i − 1)ρi−1,i

8σi−1

−
(1− ρ2

i−1,i)σ
i(2c̄i − 1)ρi−1,i

8σi−1
+

1

16

S7
i =− xi(xi−1 − yi−1)ρi−1,i

2σi(σi−1)3
+

(xi−1 − yi−1)2ρ2
i−1,i

4(σi)2(σi−1)2
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Finally, we use numerical integration with MATHEMATICA to compute

ūi,i−1(t, xi−1, xi;K) =

∫
R
G4(t, xi−1, xi;Ti−2, yi−1, Ti−1)dyi−1 .

In the base rated call spread option case we consider i = 2. Once the corresponding

integral G3 for i = 2 has been computed, we proceed analogously to obtain the

integral

G4(t, x1, x2;T0, y1, T1)

=

∫ ∞
log(−cey1+K)

G3(t, x1, x2;T0, y1, T1, η2)(aeη2 − (−cey1 +K))dη2 ,

instead of (A.1).



Resumen

En este trabajo se estudian algunos modelos matemáticos para valorar determinados

derivados financieros. Concretamente, se aborda el modelado, el análisis matemático

y la resolución numérica de problemas de valoración de ratchet caps, spread options

y stock loans.

Un ratchet cap consiste en un producto derivado de tipos de interés que se des-

compone en contratos de tipo ratchet caplet, para los cuales el tipo de interés de

ejercicio (strike) asociado está definido de forma recursiva en función de un conjunto

de tipos impĺıcitos o forward del LIBOR. Para un contrato de tipo spread option, la

función de pago depende de la relación entre la diferencia de dos tipos LIBOR y un

tipo fijo de ejercicio, de modo que pueden ser consideradas las versiones call y put del

producto. En un contrato de tipo stock loan, el prestatario del crédito posee acciones

que son utilizadas como garant́ıa del crédito, por lo que puede considerarse como un

derivado sobre el stock. En los tres casos, en matemáticas financieras, la metodoloǵıa

usual para la valoración de una opción también permite obtener diversos modelos que

pueden ser formulados como problemas de ecuaciones en derivadas parciales.

Después de establecer estos modelos, el análisis matemático de los mismos permite

obtener la existencia y unicidad de solución, aśı como algunas propiedades cualitativas

y de regularidad de la solución. Además, teniendo presentes los requerimientos de la

valoración de los productos en la práctica, desarrollamos diferentes métodos numéricos

para resolver los modelos y proporcionar los precios justos de los productos financieros

aqúı tratados.

Los derivados financieros son un tipo de instrumento cuyos precios dependen de
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otros productos subyacentes. El ejemplo más clásico aparece en los mercados de op-

ciones sobre activos. El punto de partida del comercio de estos derivados financieros

en mercados organizados data de principios de los 70 del siglo pasado, con la apertura

del Chicago Board of Options Exchange(CBOE) en Chicago (USA). Prácticamente

al mismo tiempo, los art́ıculos seminales de Black y Scholes [11] y Merton [42] pro-

porcionaron la metodoloǵıa de cobertura dinámica para obtener el modelo de Black-

Scholes de ecuaciones en derivadas parciales y la fórmula de Black-Scholes para op-

ciones europeas de tipo vanilla. Desde ese momento, la complejidad de los productos

de tipo opción y otros derivados ha aumentado considerablemente y los correspondi-

entes modelos de ecuaciones en derivadas parciales se han ido proponiendo para su va-

loración (véase [66, 65], por ejemplo). Entre las diferentes herramientas matemáticas

implicadas en el establecimiento del modelo de Black-Scholes, la consideración de un

movimiento Browniano geométrico para la dinámica del subyacente (el precio de un

activo, en este caso) constituye un punto clave. También tenemos que destacar que

el corto vencimiento de los contratos de opciones permite el uso de tipos de interés

constantes o determı́nisticos dependientes del tiempo. No obstante, este no es el caso

para contratos de larga duración, como los bonos.

Entre la gran variedad de derivados, si el subyacente es un tipo de interés particular

o un conjunto de ellos, aparece la clase de derivados de tipos de interés. Por lo tanto,

los beneficios o las funciones de pago asociadas a un derivado de tipo de interés

depende del nivel de ciertos tipos. Uno de los ejemplos más sencillos de esta clase

de derivados consiste en un bono que paga periódicamente cupones, que dependen

de cierto tipo de interés variable. Como en el caso de las opciones, si intentamos

resolver el problema de valoración asociado, aparece la pregunta sobre cuáles son

los modelos más adecuados para las dinámicas de los tipos de interés implicados.

A diferencia de lo que ocurre en el caso de las opciones, al tratarse de contratos

de larga duración y teniendo en cuenta el comportamiento de los tipos de interés,

se plantea la consideración de modelos estocásticos para la evolución de los tipos.

En la literatura se ha dedicado mucho esfuerzo al desarrollo de dichos modelos, que
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actualmente se pueden clasificar en dos clases: modelos de tipos a corto (short rate

models) y modelos de mercado (market models). En el libro de Brigo y Mercurio

([13]) se obtiene una presentación muy completa de las diferentes familias de tipos de

interés y su modelado.

Los modelos de tipo short rate están basados principalmente en dinámicas de un

factor para el proceso del tipo instantáneo (spot), rt, es decir,

drt = u(t, rt) dt + w(t, rt) dWt ,

donde las distintas expresiones particulares para las funciones u y w dan lugar a una

gran variedad de modelos y donde Wt denota un movimiento Browniano (ver [66, 13],

por ejemplo). Los modelos más populares de Vasicek(1977) [63], Dothan(1978) [20]

y Cox-Ingersoll-Ross (1985) [16] se pueden englobar en este marco. Una ventaja de

estos modelos es la posibilidad de obtener fórmulas anaĺıticas para la valoración de

bonos cupón cero (zero coupon bonds) o incluso de bonos que pagan cupones (coupon

bearing bonds). Además, constituyen un primer paso sencillo para explicar modelos

más generales y adecuados. Sin embargo, estos modelos resultan endógenos, en el

sentido que proporcionan la estructura de tipos como un output y una calibración

a mercado de sus parámetros constantes resulta casi imposible en la práctica. Un

primer intento para superar esta desventaja es la inclusión de cierta dependencia en

tiempo en las funciones u y w, como se propuso en el modelo de Hull-White (1990)

[33], o la consideración de modelos de dos factores (ver [13]). No obstante, como el

modelo de Hull-White también está basado en los valores de mercado de los tipos

instantáneos y su varianza, todav́ıa se mantienen las desventajas relacionadas con la

dificultad en la calibración a la curva inicial de factores de descuento.

El modelo general de Heath-Jarrow-Morton [32], que aparece en 1992, constituye

la primera alternativa para modelos de short rates en tiempo continuo. En este modelo

general, se modelan los tipos instantáneos forward y se propone una metodoloǵıa libre

de arbitraje para la evolución estocástica de la curva de rendimiento completa, por

lo que las dinámicas de los tipos forward están definidas adecuadamente en función

de sus estructuras de volatilidad instantánea. El modelo de Heath-Jarrow-Morton
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también es considerado como el punto de partida de los modelos de mercado (market

models).

Entre la gran variedad de tipos de inteés, el LIBOR (London Interbank Offer Rate)

representa la tasa interbancaria considerada con más frecuencia como referencia para

los contratos y también el tipo al cual los bancos internacionales más importantes

se prestan dinero entre ellos. Además, los tipos forward son una clase de tipos de

interés válidos para peŕıodos futuros. Pueden ser pactados hoy para una inversión en

un peŕıodo futuro (por ejemplo, de uno a dos años desde el momento actual). En el

LIBOR Market Model, se eligen los tipos forward del LIBOR y sus dinámicas como

tipos de interés subyacentes en contratos de tipo ratchet cap y spread option.

Desde los art́ıculos de Brace, Gatarek y Musiela [12], Jashmidian [35] y Miltersen,

Sandmann y Sondermann [44], el LIBOR Market Model ha sido ampliamente utilizado

como modelo para la evolución de tipos forward de LIBOR. Está basado en el marco

más general Heath-Jarrow-Morton y ha sido uno de los modelos de mercado de tipos

de interés más populares, principalmente debido a su coherencia con las fórmulas de

valoración anaĺıticas de Black usadas en mercado para caps y floors, los cuales son

los derivados de tipos de interés más negociados. Además, sus parámetros pueden ser

calibrados con datos de mercado y productos ĺıquidos.

Desde un punto de vista numérico, en el LIBOR Market Model la mayor parte

de la valoración de derivados de tipos de interés se lleva a cabo mediante simulación

de Monte Carlo, sacando partido de su aplicabilidad general a la mayoŕıa de los

derivados. En concreto, los derivados de tipos de interés más negociados pueden ser

valorados, tales como vanilla caps y floors, discrete barrier caps y floors, discrete ba-

rrier digital caps y floors,spread options y ratchets (ver Brigo-Mercurio [13] o Pelsser

[53], por ejemplo). Cuando un derivado depende de un conjunto de tipos LIBOR,

tiene que utilizarse una medida común en la formulación de las ecuaciones diferen-

ciales estocásticas de los diferentes tipos de interés implicados, por lo que aparecen

términos de deriva (drift). En este caso, considerando martingalas auxiliares, se han

introducido recientemente algunas técnicas de simulación sin deriva (ver [31, 10, 22],
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por ejemplo). Sin embargo, la principal limitación de la simulación de Monte Carlo

viene de su excesivo coste computacional, especialmente cuando en un cartera se

precisan los precios de muchos derivados.

En ocasiones, como en la valoración de otros derivados financieros, surge una al-

ternativa y técnica numérica más eficiente en el marco del LIBOR Market Model al

formular problemas de valoración en términos de ecuaciones en derivadas parciales.

Esta aproximación para la valoración de derivados resulta más clásica en la valo-

ración de opciones (ver, por ejemplo, Pascucci [50] y Wilmott [65]). El teorema

de Feynman-Kàc permite obtener una fórmula para representar el precio de algunos

derivados financieros como la solución del problema de Cauchy asociado a ecuaciones

de derivadas parciales parábolicas (a veces degeneradas) (ver [50], por ejemplo). En el

caso de un contrato de tipo ratchet cap, como la función de pago depende de un con-

junto de tipos forward del LIBOR, el precio de cada ratchet caplet se obtiene a partir

de la solución de problemas de Cauchy, con un aumento de la dimensión espacial a

medida que van hacia atrás los intervalos de tiempo. El riguroso establecimiento de

este complejo modelo de ecuaciones en derivadas parciales y su análisis matemático,

representa una parte original importante de este trabajo, ya que en la literatura sólo

podemos encontrar la referencia [55], en la que se introduce un caso más sencillo y se

resuelve numéricamente. En esta tesis también se enmarca este caso particular en el

general y se analiza matemáticamente. En el caso de call (put) spread option sobre

tipos LIBOR se emplea también la metodoloǵıa de ecuaciones en derivadas parciales

descrita.

El primer intento para establecer un modelo riguroso de valoración de stock loans

aparece en [67], en el cual los dividendos de la acción son recogidos por el prestamista

hasta la amortización, de modo que el modelo de ecuaciones en derivadas parciales

es análogo al de una opción vanilla de compra americana con precio de ejercicio

dependiente del tiempo. La valoración se puede formular en términos de problemas

de complementariedad asociado a las ecuaciones clásicas de Black-Scholes (ver [66],

por ejemplo), por lo que su análisis matemático puede ser enmarcado en la teoŕıa de
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inecuaciones parabólicas degeneradas (ver, [18] o [34], por ejemplo). Es bien conocida

la interpretación del modelo de valoración de opciones americanas como un problema

de frontera libre en el cual no sólo el precio de la opción sino también la región de

ejercicio anticipado óptimo tiene que ser determinada. Aunque normalmente los pro-

blemas de frontera libre se asocian a ecuaciones lineales parabólicas, la consideración

de costes de transacción en opciones europeas de tipo vanilla, por ejemplo, dan lugar

a problemas de frontera libre (de doble obstáculo) asociados a ecuaciones no lineales

[2].

En [67] el stock loan perpetuo se relaciona con una opción americana perpetua

para obtener una fórmula anaĺıtica. Más recientemente, en [17] distintos reǵımenes

para la distribución de los dividendos nos llevan a los correspondientes problemas de

frontera libre en el marco de vencimiento finito para un contrato de tipo stock loan.

Aquellos que se corresponden con el dividendo asignado al prestamista antes de la

amortización, reinversión del dividendo y devolución al prestatario en el momento de

la amortización y el dividendo entregado al prestatario antes de la amortización, nos

llevan a inecuaciones variacionales parabólicas en una dimensión espacial, que son muy

similares a las que gobiernan opciones americanas vanilla. Sin embargo, el caso más

interesante desde el punto de vista matemático lo proporciona el escenario en el que

el dividendo acumulado se devuelve al prestamista en el momento de la amortización.

Cuando esta especificación figura en el contrato stock loan, la introducción de un

proceso estocástico auxiliar y el uso de metodoloǵıa de cobertura dinámica permite

representar el precio del stock loan como la solución de un problema de obstáculo

asociado a una ecuación de tipo Kolmogorov. Este modelo se introduce en [17] y

también se analiza la existencia de frontera libre (frontera de amortización en el

caso del stock loan), suponiendo que la existencia de solución ha sido obtenida. Una

parte original del presente trabajo es la demostración de la existencia de solución y

de su unicidad en el conjunto de funciones con crecimiento polinómico, utilizando

para ello las técnicas recientemente aplicadas en [45] para opciones asiáticas con

media aritmética y posibilidad de ejercicio anticipado. Además, también se analiza
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la regularidad anisotrópica de la solución mediante las técnicas desarrolladas en [26]

para ecuaciones parabólicas hipoeĺıpticas.

Teniendo en cuenta la aplicación en la práctica de los modelos aqúı considerados,

su análisis matemático necesita completarse con su resolución numérica. Los métodos

numéricos propuestos pueden ser implementados como herramientas de software en

lenguajes apropiados de programación para ser manejados por usuarios.

Generalmente, los métodos numéricos para valorar derivados financieros pueden

ser clasificados en tres tipos: simulación Monte Carlo, árboles binomiales y solución

numérica o anaĺıtica de modelos de ecuaciones en derivadas parciales.

Como se ha indicado anteriormente, en el LIBOR Market Model, la técnica más

empleada en la literatura es la basada en simulación Monte Carlo. Los árboles bi-

nomiales también pueden ser utilizados y, por ejemplo, en [15] se incluyen algunos

ejemplos de valoración de derivados de tipos de interés para el Swap Market Model,

modelo muy cercano al LIBOR Market Model.

En finanzas cuantitativas, los métodos más extendidos incialmente para la solución

numérica de modelos de ecuaciones en derivadas parciales siempre han sido los clásicos

de diferencias finitas para ecuaciones parabólicas que modelan los precios de derivados

de tipo europeo, combinados con algunas técnicas de proyección para los productos

con ejercicio anticipado, tales como opciones americanas o bonos callable [66]. Sin

embargo, ya se han utilzado en finanzas computacionales otras técnicas numéricas

tradicionales en la dinámica de fluidos computacional, tales como volúmenes finitos

[68], elementos finitos [41, 57] o métodos de las caracteŕısticas (esquemas semila-

grangianos) para la discretización en tiempo [64, 5, 21, 29]. Una presentación rigurosa

de métodos de diferencias finitas y elementos finitos en problemas de valoración de

opciones se puede encontrar en el texto [1].

En el marco particular de la solución numérica de problemas de ecuaciones en

derivadas parciales para la valoración de ratchet caps basadas en el LIBOR Market

Model, solo hemos encontrado el trabajo de Pietersz [55], en el cual se establece una

ecuación parabólica en dos dimensiones espaciales y se presenta una comparación
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entre la simulación de Monte Carlo y un esquema de diferencias finitas expĺıcito. Con

respecto al problema del stock loan, solamente la referencia [17] incluye la resolución

numérica mediante un método de tipo forward shooting propuesto en [4] para opciones

asiáticas de tipo americano.

En este trabajo, proponemos el uso de una metodoloǵıa unificada para la dis-

cretización temporal-espacial en todos los problemas de ecuaciones en derivadas par-

ciales, que está basada en el método de alto orden de Crank-Nicolson Lagrange-

Galerkin, inicialmente propuesto en [60] para una ecuación de convección-difusión

con coeficientes constantes y extendido en [6, 7] a un marco más amplio de pro-

blemas de convección-difusión-reacción (posiblemente degenerados) . Además, estos

métodos se han aplicado con éxito a la valoración de opciones asiáticas sin posibilidad

de ejercicio anticipado en [8]. La ventaja de los métodos de caracteŕısticas para la

discretización en tiempo surge sobre todo en los problemas de convección dominante,

en los cuales pueden aparecer oscilaciones espúreas si se aplican métodos numéricos

no adecuados. En el caso de contratos de tipo ratchet cap y spread option, se propone

una técnica semianaĺıtica original y se compara con la anterior, junto con una sen-

cilla simulación de Monte Carlo. En el caso de stock loans, se combina la técnica de

Lagrange-Galerkin con una técnica de tipo conjunto activo basado en la lagrangiana

aumentada (augmented Lagrangian active set technique), propuesta en [37] que per-

mite manejar una restricción unilateral en el marco de una formulación mixta. Este

método ha sido utilizado previamente con éxito en [9] para valorar opciones asiáticas

con media aritmética y ejercicio anticipado. La aplicación de métodos numéricos en

la valoración de stock loans permite, no solamente obtener su precio sino también las

regiones de amortización anticipada y de continuidad , aśı como la frontera de amorti-

zación óptima que separa ambas regiones. Las verificación de las propiedades teóricas

probadas en [17] acerca de estas regiones contribuyen a validar el comportamiento de

los métodos numéricos propuestos.

El esquema de la memoria de esta tesis es el siguiente.

El caṕıtulo 1 se dedica a la presentación del marco funcional de ecuaciones en
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derivadas parciales parabólicas con coeficientes variables para ser usado posterior-

mente en el análisis matemático de los modelos de ratchet cap y spread options de

tipos forward del LIBOR. Contiene principalmente las definiciones y resultados más

importantes relativos a la existencia y unicidad de soluciones.

En el caṕıtulo 2 se establece la formulación rigurosa de un modelo original de

ecuaciones en derivadas parciales para la valoración de un contrato de tipo ratchet

cap. A continuación, se desarrolla el análisis matemático del modelo general para

obtener la existencia de solución. También se analiza matemáticamente un caso par-

ticular más sencillo. Para este caso, se describen distintas técnicas numéricas para

obtener el precio de un ratchet cap, basadas en soluciones semianaĺıticas, métodos de

Lagrange-Galerkin y simulación de Monte Carlo. A continuación, se presentan difer-

entes ejemplos para ilustrar el comportamiento de los métodos numéricos propuestos.

En el caṕıtulo 3 se establece de modo riguroso un modelo de ecuaciones en

derivadas parciales para valorar opciones spread de compra y venta sobre tipos for-

ward del LIBOR, se analiza matemáticamente y se resuelve numéricamente con las

mismas técnicas del caṕıtulo 2. Además se presentan algunos ejemplos numéricos.

En el caṕıtulo 4 se realiza el análisis matemático del modelo de valoración de

contratos de tipo stock loan, cuando la tasa de dividendo acumulada asociado al

stock es devuelto por el prestamista al prestatario en el momento de la amortización

del préstamo. Más concretamente, el modelo se puede formular como un problema

de obstáculo asociado a una ecuación de Kolmogorov, por lo que puede obtenerse

la existencia y unicidad en el marco de las soluciones con crecimiento polinómico.

A continuación, para la solución numérica del problema se describe la combinación

de Crank-Nicolson Lagrange-Galerkin con un método del tipo Augmented Lagrangian

Active Set. Algunos ejemplos numéricos ilustran las propiedades teóricas de la frontera

de amortización óptima.

En el caṕıtulo 5 se recogen las principales conclusiones de este trabajo.

En el Anexo A se incluyen algunos cálculos intermedios relacionados con la aprox-

imación análitica propuesta en el caṕıtulo 2 para la valoración de ratchet caplets. El
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mismo tipo de cálculos se requieren para el spread option en el caṕıtulo 3.
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[8] A. Bermúdez, M. R. Nogueiras and C. Vázquez, Numerical solution of varia-

tional inequalities for pricing Asian options by higher order Lagrange-Galerkin

methods, Applied Numerical Mathematics, 56 (2006) 1256-1270.
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