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β-galactosidases are hydrolase enzymes that catalyze the hydrolysis of β-

galactosides into their monosaccharides. Due to this ability these proteins are 

very important in food, clinical and pharmaceutical industries. 

In this thesis the Kluyveromyces lactis β-galactosidase was cloned in a 

Saccharomyces cerevisiae strain, expressed, purified, and crystallized. Its free state 

structure and its complex with the product galactose were determined to 2.75 

and 2.8 Å, respectively. K. lactis β-galactosidase folds into 5 domains in a 

pattern conserved with other prokaryote enzymes solved for GH2 family, 

although two long insertions in domains 2 (264-274) and 3 (420-443) are 

unique and seem related to oligomerization and specificity. K. lactis β-

galactosidase tetramer is an assembly of dimers, with higher dissociation 

energy for the dimers than for its assembly, which can explain that equilibrium 

exists in solution between the dimeric and tetrameric form of the enzyme. 

On the other hand, a hybrid K. lactis-Aspergillus niger β-galactosidase was 

constructed, expressed and characterized. The hybrid protein between K. lactis 

and A. niger β-galactosidases increases the yield of the protein released to the 

growth medium and the modifications introduced in the construction 

conferred to the protein biochemical characteristics of biotechnological 

interest. The production of this hybrid K. lactis - A. niger β-galactosidase was 

also tested in a continuous immobilized culture using spent grains (a by-

product of brewery industry) as an immobilizing material in an airlift 

fermenter.  

Finally, different A. niger β-galactosidase constructions were expressed and 

studied in a S. cerevisiae strain and directed evolution techniques were applied 

to modify the optimal pH of the protein to a more neutral one.  
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Las -galactosidasas son enzimas hidrolasas que catalizan la hidrólisis de -

galactósidos en sus monosacáridos correspondientes. Debido a esta capacidad, 

estas proteínas son muy importantes en las industrias alimentaria, farmacéutica 

y clínica. 

En esta tesis, la β-galactosidasa de K. lactis fue clonada en una cepa de 

Saccharomyces cerevisiae, expresada, purificada y cristalizada. Su estructura en 

estado libre y la su complejo con el producto galactosa fueron determinadas a 

2,75 y 2,8 Å, respectivamente. La β- galactosidasa de K. lactis está organizada 

en 5 dominios en un patrón que está conservado en otras enzimas procariotas 

de la familia GH2, aunque presenta dos inserciones largas en los dominios 2 

(264-274) y 3 (420-443) que son únicas y parecen estar relacionadas con su 

oligomerización y especificidad. El tetrámero de la β-galactosidasa de K. lactis 

está formado por  un par de dímeros, presentando una mayor energía de 

disociación la forma de dímero que su forma tetramérica, lo que puede 

explicar el por qué existe un equilibrio en solución entre la forma dimérica y 

tetramérica de la enzima. 

Por otro lado, se ha construido, expresado y caracterizado una β-galactosidasa 

híbrida entre las β-galactosidasas de K. lactis - Aspergillus niger. La proteína 

híbrida entre las β-galactosidasas de K. lactis - A. niger aumenta el rendimiento 

de la proteína secretada al medio y las modificaciones introducidas en la 

construcción le han conferido características bioquímicas de interés 

biotecnológico. Se estudió además la producción de esta proteína híbrida en 

un cultivo continuo inmovilizado utilizando “spent grains” (un subproducto 

de la industria cervecera) como material de inmovilización en un fermentador 

tipo “Airlift”. 

Finalmente, se estudió la expresión y producción de la β-galactosidasa de A. 

niger en una cepa de S. cerevisiae, y se usaron técnicas de evolución dirigida para 

modificar el pH óptimo de la proteína hacia un pH más neutro. 
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As β-galactosidasas son hidrolasas, enzimas que catalizan a hidrólise dos β-

galactósidos nos seus monosacáridos correspondentes. Debido a esta 

capacidade, estas proteínas son moi importantes na industria alimentaria, 

farmacéutica e clínica.  

Nesta tese, a β-galactosidasa de K. lactis foi clonada nunha cepa de 

Saccharomyces cerevisiae, expresada, purificada e cristalizada. As estruturas en 

estado libre e no complexo co produto galactosa foron determinadas a 2,75 e 

2,8 Å, respectivamente. A β-galactosidasa de K. lactis está organizada en 5 

dominios nun patrón conservado noutras enzimas procariotas da familia 

GH2, pero ademáis presenta dúas insercións longas nos dominios 2 (264-274) 

e 3 (420-443) que son únicas e parecen estar relacionadas coa súa 

oligomerización e especificidade. O tetrámero da β-galactosidasa de K. lactis 

está formado por un par de dímeros, tendo unha maior enerxía de disociación 

a forma de dímero que a súa forma tetramérica, o que pode explicar o por qué 

do equilibrio existente en solución entre a forma dimérica e a forma 

tetramérica. 

Por outra banda, construiuse unha proteína híbrida entre as β-galactosidasas 

de K. lactis e Aspergillus niger, que foi expresada e caracterizada. A proteína 

híbrida entre as β-galactosidasas de K. lactis – A. niger aumenta o rendemento 

da proteína secretada ao medio e coas modificacións introducidas na 

construción conseguíronse características bioquímicas de gran interese 

biotecnolóxico. Estudouse ademáis a produción da β-galactosidasa  híbrida K. 

lactis-A. niger nun cultivo continuo inmovilizado nun fermentador tipo "Airlift" 

usando como material de inmobilización “spent grains” (un subproduto da 

industria cervexeira).  

Finalmente, foi estudada a expresión e produción da β-galactosidasa de A. 

niger nunha cepa de S. cerevisiae, e usáronse técnicas de evolución dirixida para 

modificar o pH óptimo da proteína hacia un pH máis neutro.  
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Introduction 

 

1. β-galactosidases 
a. What are they? Small summary of E.coli, K. lactis and A. niger β-

galactosidase. 

b. Why β-galactosidase from K. lactis? 

c. Why β-galactosidase from A. niger? 

d. Which families? 

e. Applications? 

i. Cheese Whey 

ii. Pharmaceutical/Medical Industry 

iii. Other Agrofood issues 

 

2. Three-dimensional analysis 

 

3. Directed evolution 
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β-galactosidases 
β-galactosidases (sometimes called lactases) are hydrolase enzymes that 

catalyze the hydrolysis of β-galactosides into their monosaccharides. 

There are β-galactosidases from prokaryotes to eukaryotes (including 

humans), and the first sequenced β-galactosidase was the Escherichia  coli β-

galactosidase (Fowler and Zabin 1970) with 1,024 amino acids1. 

This could be stated as the first step in a prolific run into the study of the β-

galactosidases, and it was and it is at present a model for the rest of the β-

galactosidases. 

Twenty-four years passed until the three-dimensional β-galactosidase structure 

was found (Jacobson et al. 1994), and the information was essential to 

continue studying the β-galactosidases from other organisms like the 

Kluyveromyces lactis β-galactosidase which had been sequenced only two years 

before (Poch et al. 1992). 

1.1 Most important β-galactosidases 

The most important β-galactosidases due to its biotechnology potential are: 

1. Escherichia coli β-galactosidase (hereafter E. coli β-galactosidase) 

2. Kluyveromyces lactis β-galactosidase (hereafter K. lactis β-galactosidase 

3. Aspergillus niger β-galactosidase (hereafter A. niger β-galatosidase) 

1. E. coli β-galactosidase (EC 3.2.1.23 - P00722) 

As it was stated before, its sequence was published in 1970 (Fowler and Zabin 

1970) and revealed that the β-galactosidase was composed by 10241 amino 

acids and a molecular weight of 116.000 KDa1. 

The most important following studies in the E. coli β-galactosidase (Langley et 

al. 1975; Cupples et al. 1990; Jacobson et al. 1994; Roth and Huber 1996; Roth 

and Huber 1996; Huber et al. 2001; Juers et al. 2001; Huber et al. 2003; Juers et 

al. 2003; Roth et al. 2003; Spiwok et al. 2004; Matthews 2005; Juers et al. 2009; 

Lo et al. 2009) determined that the protein is a tetramer of 464,000 KDa, and 

each monomer contains five domains, the third of which is an eight-stranded 

α/β barrel that comprises much of the active site. 
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The five domains are represented in Figure 1:  

 

 

 

 

 

 

 

 

 

Figure 1: E. coli β-galactosidase (Domain 1 (1-217) in red, Domain 2 (218-334) in green, Domain 3 (335-627) in blue, 

Domain 4 (628-736) in yellow and Domain 5 (737-1023) in magenta). Orange and blue spheres are Na and Mg ions 

respectively. 

As can be seen in the Figure 1, in the tetramer the four monomers are 

grouped around three mutually-perpendicular two-fold axes of symmetry. 

β-Galactosidase has two catalytic activities. First, it hydrolyzes the 

disaccharide lactose to galactose plus glucose. Second, it converts lactose to 

another disaccharide, allolactose, which is the natural inducer for the lac 

operon. 

 

a. How it works 

In summary, substrates initially bind in a „„shallow‟‟ mode, subsequently 

moving deeper into the active site so that the glycosidic oxygen is close 

enough to be protonated by Glu-461 (general acid catalysis) and the galactosyl 

anomeric carbon is close enough to contact the nucleophile, Glu-537. A 

carbocation-like transition state forms that collapses into an a-galactosidic 

bond between the carboxyl of Glu-537 and the C1 of galactose. This first step 

of the reaction is called galactosylation (the enzyme becomes galactosylated). 

Upon glycosidic bond cleavage, the first product normally diffuses away. 

Water or an acceptor with a hydroxyl group then enters and is activated by 

Glu-461 via general base catalysis. The galactosyl moiety is released to this 
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molecule via a second carbocation-like transition state (the two transition 

states are thought to be similar) to form free galactose or an adduct having a 

galactosidic bond with the acceptor. If the reaction is with water is called 

degalactosylation and if the reaction is with an acceptor is called 

transgalactosylation. 

β-Galactosidase requires Mg2+ or Mn2+ for full catalytic activity, but the exact 

role of this ion in catalysis is unclear. The active site also includes a 

monovalent cation (usually either Na+ or K+) important for activity, which 

directly ligates the galactosyl O6 hydroxyl during catalysis. The two ion sites 

are situated a few A° apart in the active site, both very near to an interface 

between two domains of the protein. 

Crystal structure and site directed mutagenesis experiments have shown that 

His-418, along with Glu-416 and Glu-461 (the acid/base catalyst) are 

ligands to the Mg2+ at the active site. Besides ligating the Mg2+ ion, His-418 is 

one of several residues that together form an opening that guides substrates 

into the binding site , and it is thought to contact the aglycone moeity of the 

substrate, pointing to a possible role in the formation of allolactose. His-418 is 

also close to Glu-461, and so very likely directly impacts the properties of that 

important catalytic residue. 

2. K. lactis β-galactosidase (EC 3.2.1.21 - P00723) 

Its sequence was published in 1992 (Poch et al. 1992) and revealed that the β-

galactosidase was composed by 1025 amino acids and a molecular weight of 

117.618 KDa. 

At present, no three-dimensional structure has been published by any research 

group, despite of the importance of this protein in agrofood and 

pharmaceutical/medical industries2. 

The optimal pH of the enzyme is neutral (close to 7), and is considered as 

GRAS (Generally Recognized/Regarded As Safe) by the FDA (American 

Food and Drug Administration). 

It is because is produced by an eukaryotic organism, and the fact of the 

optimum pH close to the neutrality, what makes this strain very important in 

biotechnology and the perfect candidate to grow in cheese whey, which is a 

by-product of the cheese factories all over the world (especially in small ones). 
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The most impostant studies about an approximation to the protein structure 

of the β-galactosidase are in temporary order: a comparison with prokaryotic 

enzymes and secondary structure analysis (Poch et al. 1992), (Athes et al. 1998) 

who studied the ifluence of polyols on the structural properties of 

Kluyveromyces lactis β-galactosidase under high hydrostatic pressure, (Becerra et 

al. 1998) who find out that dimeric and tetrameric form of the β-galactosidase 

are active, and finally (Tello-Solis et al. 2005) who discover and presented the 

secondary structure of the β-galactosidase using circular dichroism.  

In the purification of the protein all began with the first purification of 

(Dickson et al. 1979). 

Later the works of (Dickson et al. 1979; Becerra et al. 1998; Becerra et al. 1998)  

with different purification techniques improve the quality of the purification. 

About the production and applications in the eighties of the past centrury, 

Solomons studied the effect of lactose and β-galactosidases in humans 

(Solomons et al. 1985; Solomons et al. 1985), and Sreekrishna constructed the 

first strains capable of grow in lactose (Sreekrishna and Dickson 1985). 

In the nineties, the first prolific studies about the K. lactis production, and the 

production of ethanol from lactose arise (de Figueroa et al. 1990; Becerra et al. 

1997; Kim et al. 1997; Rubio-Texeira et al. 1998). 

From 2000 to present a great number of papers show the potential of the K. 

lactis β-galactosidase production and its uses to produce ethanol from cheese 

whey (Becerra et al. 2001; Becerra et al. 2001; Domingues et al. 2001; Rubio-

Texeira et al. 2001; Becerra et al. 2002; Kim et al. 2003; Panuwatsuk and Da 

Silva 2003; Ramirez Matheus and Rivas 2003; Becerra et al. 2004; Jurascik et al. 

2006; Clop et al. 2008; Guimaraes et al. 2008; Guimaraes et al. 2008; Guimaraes 

et al. 2008; Ornelas et al. 2008; Guimarães et al. 2010; Oliveira et al. 2011). 

3. A. niger β-galactosidase (EC 3.2.1.3 - P29853.2) 

The first research with information of its structure was published at 1979 

(Widmer and Leuba 1979), and the minimum expression of the protein was 

determined in 124.000 KDa. The pH optimum oscillate between 2.5 and 4.0. 

Due to the acid optimum pH of this protein, and the fact that is excreted 

naturally by the fungus, make this protein a good candidate to use in 

biotechnology applications. 
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Some of the most important studies related to the heterologous expression of 

this protein are summarized in table 1 extracted from (Oliveira et al. 2011). 

 

1.2. Families 

On the basis of their sequence, β-galactosidases are classified in CAZy 

(Cantarel et al. 2009) within families 1, 2, 35 and 42 of glycosyl hydrolases. 

Those from eukaryotic organisms are grouped into family 35 with the only 

exceptions of K. lactis (P00723) and K. marxianus (Q6QTF4) β-galactosidases 

(99% identity), which belong to the family 2 together with the prokaryotic β-

galactosidases from E. coli and Arthrobacter sp. Whereas the structures of these 

last two prokaryotic enzymes have been determined (Juers et al. 2000; Skalova 

et al. 2005), none of the eukaryotic β-galactosidase structures has been 

reported to date. Although their sequence homology with the prokaryotic 

enzymes is significant (48% vs. E. coli and 47% vs. Arthrobacter) there are many 

differences, particularly some long insertions and deletions, which can play an 

important role in protein stability and in substrate recognition and specificity. 

1.3. Applications 

β-galactosidases are used in different applications, but can be summarized in 

three most important fields: 

a. Cheese whey valorisation 

b. Pharmaceutical/Medical Industry 

c. Other Agrofoods issues 
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Source of 

enzyme 
Expression host/plasmid 

Media and culture 

conditions 

Extracellular recombinant β-

galactosidase activity 
References 

A. niger Mauri distiller's yeast/pVK1.1 

Modified Dw 

medium+10% lactose (2-L 

bioreactor) 

10 U/mL 
(Ramakrishnan and Hartley 

1993) 

A. niger Brewer's yeast W204-FLO1L/ pET13.1+lacA cassette (pLD1) SSlactose 2% (shake flasks) 17 U/mL (Domingues et al. 2000) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 SSlactose 1% (Shake Flask) 350 U/mL (Domingues et al. 2002) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 
SSlactose 5%  (2-L 

Bioreactor) 
2000 U/mL (Domingues et al. 2002) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 SSlactose 10% 5096 U/mL (Domingues et al. 2002) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 
Cheese whey permeate 5% 

lactose 
2635 U/mL (Domingues et al. 2002) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 
SSlactose 15%+1.5% YE 

(10-L bioreactor) 
7350 U/mL (Domingues et al. 2004) 

A. niger S. cerevisiae NCYC869-A3/pVK1.1 
SSlactose 5% (6-L airlift 

bioreactor) 
Maximum: 3250 U/mL (D=0.4 h−1) (Domingues et al. 2005) 

A. niger S. cerevisiae NCYC869/pδ-neo+lacA cassette 
SSlactose 5% (6-L airlift 

bioreactor) 
Maximum: 2754 U/mL (D=0.1 h−1) (Oliveira et al. 2007) 

K. lactis and A. niger K. lactis MW 190-9B/pSPGK1-LAC4; pSPGK1-LAC4-LACA 
Culture medium is not 

described (shake flasks) 
K. lactis/pSPGK1-LACA: up to 100 U/mL (Rodriguez et al. 2006) 

K. lactis and A. niger K. lactis MW 190-9B/pSPGK1-LAC4; pSPGK1-LAC4-LACA 
Culture medium is not 

described (shake flasks) 
K. lactis/pSPGK1-LAC4-LACA: up to 100–200 U/mL (Rodriguez et al. 2006) 
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a. Cheese whey valorisation 

Cheese whey is a subproduct resulted in the production of cheese, after the 

curdle separation. 

It has a yellow-green colour, an elevated COD and BOD, due to the great 

quantities of nutrients it retains. Because of that it has to be  treated after the 

elution to the drains. 

There are two types of cheese whey: 

Sweet whey: from cheeses that were produced by enzymatic coagulation. 

pH=6,5-7 

Acid whey: from cheeses that were produced by acid coagulation. pH=4,5 

The composition of cheese whey is not always the same because it depends in 

the cheese master and how he/she make the cheese (the pastry could be 

washed more or less, it could have more or less salt, depends on the type of 

milk:origin, land, etc), but it could be made an average like follows: 

Lactose 50 g/L 

Proteins 7,5 g/L 

Lipids 5 g/L 

N/NH4 0,031g/L 

Lactic Acid, Vit. B, 
others 

- 

QOD 79 g/L 

BOD 30.000-60.000 ppm 

Dry extract 6-7% 

Salts 8-10% Dry extract 

Phosphates 0,39 g/L 

 

There are a high variety of cheese whey uses: SCP (Single Cell Protein), 

biosurfactants production, biopolymers production, lactic acid production, 

bacteriocines production, biogas production, production of recombinant 

proteins, GOS and bioethanol production 

b. Pharmaceutical/Medical Industry 

On one handfor pharmaceutical industry, interest in β-galactosidases is due to 

the reproducibility of their activities which are used in a lot of commercial kits 



Introduction 

36 

as a reporter gene and so to reduce the problems associated to the lactose 

intolerance (Solomons et al. 1985; Solomons et al. 1985; Vesa et al. 2000; 

Bhatnagar and Aggarwal 2007; Ibrahim et al. 2009; O'Connell and Walsh 

2009). 

On the other hand, the medical industry interest is due lactose intolerance in 

humans affects to over 70% of the world's adult population (Oliveira et al. 

2011), which typical symptoms are abdominal pain, gas, nausea and diarrhea. 

c. Other Agrofoods issues 

In the food industry β-galactosidase is also used to enhance the sweetness of 

lactose for example in desserts like ice-creams, cakes, etc. 

 

2. Protein Structure Analysis 
 

Determine the 3D protein structure is essential because the function of a 

biological macromolecule is related to its 3D shape, so knowledge about the 

structure is essential to understand the function. 

The 3D protein structure benefits:  

 

1. Understanding biological processes at the atomic level 

2. Study interactions among proteins and/or other molecules 

3. Design of specific inhibitors/activators for a protein – drug discovery 

 

 

The three most important strategies to determine the protein structure are: 

Nuclear Magnetic Resonance (NMR), X-Ray Crystallization (XRC) and cryo-

Electron Microscopy (EM). 

 

 

NMR is based in the concept that NMR active nuclei absorb electromagnetic 

radiation at a frequency characteristic of the isotope. The resonant frequency, 

energy of the absorption and the intensity of the signal are proportional to the 

strength of the magnetic field. 

 

The advantages of NMR over XRC are: 
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1. Can be performed in the solution-state, so the structures may be more 

physiologically relevant. 

2. Some proteins do not give diffraction-quality crystals. 

3. Provides dynamics and other information: internal mobility, flexibility, 

order-disorder, hydrogen exchange rates, pKa values, binding 

constants, conformational exchange rates, … 

 

Disadvantages of NMR over XRC are: 

 

1. Molecular weight limitations: 50 kDa for complete structure 

determination and 100 kDa for local or partial analysis. 

2. Stable-isotope enrichment usually required: need efficient bacterial 

expression system. 

3. Structure determination methods more time consuming, difficult … 

 

XRC is a method of determining the arrangement of atoms within a crystal, in 

which a beam of X-rays strikes a crystal and diffracts into many specific 

directions. The crystal is an ordered solid in where a basic organizational unit 

is repeated (Lesk 2001). 

From the angles and intensities of these diffracted beams, a crystallographer 

can produce a three-dimensional picture of the density of electrons within the 

crystal. From this electron density, the mean positions of the atoms in the 

crystal can be determined, as well as their chemical bonds, their disorder and 

various other information. 

 

In an X-ray diffraction measurement, a crystal is mounted on a goniometer 

and gradually rotated while being bombarded with X-rays, producing a 

diffraction pattern of regularly spaced spots known as reflections. The two-

dimensional images taken at different rotations are converted into a three-

dimensional model of the density of electrons within the crystal using the 

mathematical method of Fourier transforms, combined with chemical data 

known for the sample. 

 

EM is the most innovative of the fourth methods, and allows the structure 

determination of macromolecules and biological aggregates at molecular 

resolution (7 to 30 Å) up to near atomic resolution (2-3 Å) that have not been 

stained or fixed in any way, showing them in their native environment. 
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The advantages over XRC and NMR are: 

1. There is no limit to the size of the structure in study, so large and 

complex structures which cannot be studied with the mentioned 

strategies can be solved with EM (for ex. membrane proteins). 

2. Relatively small sample amounts 

3. Cryo methods allow the observation of the molecules in their aqueous 

native state, close to physiological conditions. 

 

3. Directed Evolution 

Engineering the specificity and properties of enzymes and proteins within 

rapid time frames has become feasible with the advent of directed evolution. 

In the absence of detailed structural and mechanistic information, new 

functions can be engineered by introducing and recombining mutations, 

followed by subsequent testing of each variant for the desired new function. A 

range of methods are available for mutagenesis, and these can be used to 

introduce mutations at single sites, targeted regions within a gene or randomly 

throughout the entire gene. In addition, a number of different methods are 

available to allow recombination of point mutations or blocks of sequence 

space with little or no homology. Currently, enzyme engineers are still learning 

which combinations of selection methods and techniques for mutagenesis and 

DNA recombination are most efficient. Moreover, deciding where to 

introduce mutations or where to allow recombination is actively being 

investigated by combining experimental and computational methods. These 

techniques are already being successfully used for the creation of novel 

proteins for biocatalysis and the life sciences (Williams et al. 2004). 

Principally, the directed evolution methods are divided in recombinative and 

non-recombinative methods. 

Non-recombinative methods generally create diversity via point mutation and 

include the directed substitution of single amino acids, the insertion or 

deletion of more than one amino acid, for example by cassette mutagenesis, 

and random mutagenesis across the whole gene. 

The simplest, and still a popular, method of choice for introducing diversity is 

Error Prone – PCR (EP-PCR). The mutation rate can be adjusted so that, 

usually, an average of 1–2 amino acid mutations is introduced per gene 

product (Moore et al. 1997). 
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It is generally accepted that using a low mutation rate increases the probability 

of discovering beneficial mutations, since most random mutations are either 

neutral or deleterious. 

EP-PCR at low mutation rate suffers from one drawback:  there is an inherent 

bias introduced since on average only 5.6 amino acids per codon can be 

accessed given the substitution of a single nucleotide. In addition, the inherent 

bias of polymerases further reduces the diversity that can be accessed by EP-

PCR. 

These problems can be overcome by the use of gene site saturation 

mutagenesis (GSSM). 

GSSM is a method that uses sets of degenerate primers to introduce all 19 

amino acid substitutions at every position of the gene to produce every 

possible single amino acid mutant (DeSantis et al. 2003). 

In the case of recombinative methods DNA shuffling is still the most popular 

method of recombining DNA, whether homologous genes from different 

sources are being recombined, or for the recombination of point mutations. 

Briefly, the original DNA shuffling technique (Stemmer 1994; Stemmer 

1994)involves the controlled fragmentation of the source DNA using DNase 

I, followed by a primer-less, reassembly PCR reaction, which gradually 

produces full-length recombined sequences. Finally, the small amount of 

fulllength gene present in the reassembly reaction is amplified by a standard 

PCR reaction in the presence of flanking primers. 

Other recombinative method is the Staggered Extension Process (StEP) 

which uses a simple PCR reaction with very short elongation times; 

recombination occurs where partially elongated strands melt and anneal to a 

new template, producing a crossover (Zhao et al. 1998). 

One more recombinative method is Random Chimeragenesis on Transient 

Templates (RACHITT), which is similar to DNA shuffling but requires many 

more experimental steps; however the method does produce a much larger 

number of crossovers than basic DNA shuffling (Coco et al. 2001). 

Two other also known recombinative methods are Synthetic Shuffling  and 

Assembly of Designed Oligonucleotides (ADO): They  use of entirely 

synthetic oligonucleotides that result in the production of fulllength genes 

with defined crossover points and composition. Both techniques result in 
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significantly increased recombination frequency and have been validated 

experimentally (Zha et al. 2003). 

There are two last recombinative methods, the first is the Incremental 

Truncation for the Creation of HYbrid enzymes (ITCHY) which involves the 

direct ligation of truncated N- and C-terminal fragments of two genes, 

removing the requirement of homology (Ostermeier et al. 1999). Crossovers 

occur at random positions, and the initial products only contain a single 

crossover. DNA shuffling of the ITCHY products can generate products with 

multiple crossovers, and plasmid systems are available for selection of only in 

frame ligation products. 

The second is a computational algorithm (SCHEMA) which identifies optimal 

crossover points using structural information to identify sites with minimal 

interaction with the rest of the protein (Voigt et al. 2002). 

Once the directed evolution method was chosen and applied, the following 

step is to decide the optimum screening strategy, which is the most critical 

step in the directed evolution, and usually is a bottleneck. 

There are different screening strategies, but the most common ones are 

summarized in this review (Arnold F H  et al. 2003). 

As reviewed, the directed evolution methods make to evolve easily and fastly 

proteins (principally enzymes), which is really important in biotechnology to 

solve problems like the cheese whey. 

Different techniques have been applied to develop strains capable of secrete a 

directed evolution β-galactosidase, that makes the strain able to grow in 

cheese whey and consume the nutrients which make it toxic to environment. 

 

1 Fowler et. al think initially that the E.coli β-galactosidase was composed of 1171 residues and has a molecular weight of 135 KDa, but 

future experiments demonstrate that it is composed of 1024 amino acids and its molecular weight is 116KDa. 

2 
In the chapter 3of this thesis, the three-dimensional structure is presented and discussed. 
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The aim of this thesis is to determine and analyze the structure of the 

Kluyveromyces lactis β-galactosidase and express and apply directed evolution 

techniques in β-galactosidases with high biotechnological potential, and 

specifically: 

 

1. Expression, purification and crystallization of the Kluyveromyces lactis β-

galactosidase. 

 

2. Structural characterization ot the Kluyveromyces lactis β-galactosidase. 

 

3. Development of a hybrid Kluyveromyces lactis-Aspergillus niger β-

galactosidase. 

 

a. Construction, and biochemical analysis of the hybrid enzyme 

b. Production of the hybrid enzyme in a continuous culture 

 

4. Development of a Saccharomyces cerevisiae strain which expresses the 

Aspergillus niger β-galactosidase and application of directed evolution 

methods to modify the optimum pH of the enzyme. 
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β-galactosidases are probably one of the most important proteins in terms of 

biotechnology potential due to their applications in Pharmacy, Medicine, 

Agrofood Industries, etc. 

Within the group of -galactosidases, the most interesting ones, due to its 

biological and chemical properties are Escherichia coli, Kluyveromyces lactis and 

Aspergillus niger -galactosidases. 

The first one, the Escherichia coli -galactosidase, has been very thoroughly 

studied, so this thesis deals with the study of the other two -galactosidases, 

focusing more in the K. lactis-galactosidase due to its use in sweet cheese 

whey which is the most abundant in Galicia. 

Chapter 1 presents the details of a full-factorial design used to find conditions 

for growing good-quality crystals of K. lactis β-galactosidase. The application 

of a full-factorial approach to protein crystallization could reduce substantially 

the number of crystallization trials. The method is based on a factorial 

approach to experimental design, permits the assay of a large number of 

crystallization conditions with as few experiments as possible. This is 

accomplished by varying more than one factor at a time in a given experiment; 

this saves material, and from the analysis of the results, it is possible to readily 

determine the factors that are critical for crystallization.  

Chapter 2 is about the expression, purification, optimization of crystallization, 

and diffraction of crystals to obtain the K. lactis β-galactosidase structure. This 

protein has been expressed and purified in yeast for the crystallization trials. 

However, even optimization of the best crystallization conditions yielded 

crystals with poor diffraction quality that precluded further structural studies. 

Finally, thanks to the streak seeding technique, the crystal quality was 

improved and a complete diffraction data set was collected at 2.8 Å resolution. 

Chapter 3 describes X-ray crystallographic studies and an analysis of K. lactis 

β-galactosidase. β-galactosidase sequences can be deduced from various 

databases, and these can be classified into four different glycoside hydrolase 

(GH) families 1, 2, 35, and 42, based on functional similarities. Those from 

eukaryotic organisms are grouped into family 35 with the only exceptions of 

K. lactis and K. marxianus β-galactosidases (99% identity), which belong to the 

family 2 together with the prokaryotic β-galactosidases from Escherichia coli and 

Arthrobacter sp. Whereas the structures of these last two prokaryotic enzymes 

have been determined, none of the eukaryotic β-galactosidase structures has 
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been reported. In fact, to date, the X-ray crystal structures of eight different 

microbial β-galactosidases are available in the PDB, although none of the 

enzymes with solved structures is known to be used in food processing. Here 

it is reported the three-dimensional structure at 2.75 Å resolution and the 

complex structure with galactose at 2.8 Å resolution of the β-galactosidase 

from K. lactis, one of the most important and widely used enzymes of the food 

industry. 

Chapter 4 shows the construction and analysis of a two hybrid proteins from 

the β-galactosidase of K. lactis, intracellular, and its A. niger homologue that is 

extracellular; and the production of the hybrid K. lactis-A. niger β-galactosidase 

in a continuous immobilized culture. A hybrid protein between K. lactis and 

A. niger β-galactosidases was constructed that increases the yield of the protein 

released to the growth medium. Modifications introduced in the construction, 

besides to improve secretion, conferred to the protein biochemical 

characteristics of biotechnological interest. This hybrid β-galactosidase 

showed an optimal pH around the neutrality and it had a better stability at 

high temperatures compared with the wild protein from yeast. Different 

culture mediums were assayed to scale-up the production of this hybrid β-

galactosidase. The use of spent grains (a by-product of brewery industry) as an 

immobilizing material (in which the yeast can grow inside) to stabilize the 

production of the protein, was checked too. 

Chapter 5 presents the construction, expression and analysis of three new 

recombinant Saccharomyces cerevisiae strains expressing A. niger β-galactosidase, 

and the directed evolution of the enzyme to modify its optimum pH. The 

development of S. cerevisiae strains with the capability of metabolizing lactose 

is an important biotechnological objective, and here it is described the 

construction of new recombinant S. cerevisiae strains which was able to express 

and secrete the extracellular and thermostable β-galactosidase from A. niger up 

to 90% of the total β-galactosidase activity into the growth medium. Finally 

using a directed evolution technique, mutations in the enzyme were done, in 

order to modify its optimum pH. 
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SUMMARY 

Kluyveromyces lactis β-galactosidase is an enzyme with numerous 

applications in the environmental, food and biotechnological industries. 

Despite of its biotechnological interest, its three-dimensional structure has not 

yet been determined. The growth of suitable crystals is an essential step in the 

structure determination of a protein by X-ray crystallography. At present, 

crystals are mostly grown using trial-and-error procedures since their growth 

often depends on the combination of many different factors. Testing the 

influence on crystallization of even only a small number of these factors 

requires many experimental set-ups and large amounts of protein. In the 

present work, a full-factorial design has been used in order to find conditions 

for obtaining good-quality crystals of K. lactis β-galactosidase. With this full-

factorial method protein crystals have been obtained. 

INTRODUCTION 

The microbial lactase or β-galactosidase (β-D-galactoside 

galactohydrolase, EC 3.2.1.23) from the yeast Kluyveromyces lactis, the 

enzyme which is responsible for the hydrolysis of lactose into glucose and 

galactose, has outstanding biotechnological interest. Therefore it has attracted 

the attention of researchers and industries because of its important 

applications in the fields of medicine (treatment of lactose intolerance), food 

technology (to prevent lactose crystallization and increase its sweetening 

power) and the environment (cheese whey utilization). Although much of the 

work on K. lactis β-galactosidase has dealt with the production (Becerra et al. 

1997; Becerra et al. 2001; Becerra et al. 2002; Becerra et al. 2004), the use 

(Becerra et al. 2003) and biochemical characterization (Athes et al. 1998; 

Becerra et al. 1998; Tello-Solis et al. 2005), to the best of our knowledge, very 

little has been reported about its structure (Tello-Solis et al. 2005). 
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The growth of suitable protein crystals is an essential step in the 

structure determination of a protein by X-ray crystallography. At present, 

crystals are mostly grown using trial-and-error procedures, whereby various 

factors: pH, temperature, salt concentration, etc, are systematically varied until 

crystals are obtained. Usually, in these experiments, the different factors are 

varied only over a narrow range of values. The use of this method often 

requires large amounts of material and is frequently time consuming.  

Carter and Carter (Tello-Solis et al. 2005) demonstrated that the 

application of a full-factorial approach to protein crystallization could reduce 

substantially the number of crystallization trials. Their method, which is based 

on a factorial approach to experimental design (Fisher 1942), permits the assay 

of a large number of crystallization conditions with as few experiments as 

possible. This is accomplished by varying more than one factor at a time in a 

given experiment; this saves material, and from the analysis of the results, it is 

possible to readily determine the factors that are critical for crystallization. We 

present here the details of a full-factorial design to find conditions for growing 

good-quality crystals of K. lactis β-galactosidase. 

 

MATERIAL AND METHODS 

Strains and culture conditions 

The following strains were used: Kluyveromyces lactis NRRL-Y1140 

(MATa, wild type) and Saccharomyces cerevisiae BJ3505 (pep4::HIS3, prb-Δ1.6R 

HIS3, lys2-208, trp1-Δ101, ura 3-52, gal2, can1). The BJ3505 strain was 

purchased from Eastman Kodak. 

Liquid batch cultures of wild type and transformed cells were grown in 

Erlenmeyer flasks filled with 20% volume of culture medium at 250 rpm and 

30 ºC, unless otherwise stated. K. lactis wild type cells were growth in YPL (1% 

yeast extract, 0.5% bactopeptone, 0.5% lactose) whereas transformed S. 
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cerevisiae BJ3505 cells were growth in YPHSM (1% yeast extract, 8% 

bactopetone, 1% dextrose, 3% glycerol, 20mM CaCl2). In the late case, as 

inocula, a suitable volume of a stationary phase culture in complete medium 

(CM) (Lowry et al. 1983) without the corresponding auxotrophic amino acid 

was added to obtain an initial OD600 of 0.2. Samples were taken at regular 

time intervals to measure growth (OD600) and intracellular β-galactosidase 

activity. 

Vectors 

The YEpFLAG1-LAC4 (Becerra et al. 2001) containing the LAC4 

gene, which codes for K. lactis β-galactosidase, inserted between the yeast 

ADH2 promoter and CYC1 terminator was used. This plasmid also contains 

the sequence of the FLAG peptide for the immunological detection and 

affinity purification of the FLAG fusion protein. 

Molecular biology procedures 

Yeast strains were transformed using the lithium acetate procedure (Ito 

et al. 1983). Plasmid uptake and β-galactosidase production by the transformed 

strains were identified on plates with the chromogenic substrate X-gal in the 

corresponding auxotrophic medium. 

β-galactosidase activity assays and protein determinations 

The method of Guarente (Ito et al. 1983) as previously described 

(Becerra et al. 2001) was used. One enzyme unit (E. U) was defined as the 

quantity of enzyme that catalyzes the liberation of 1 μmol of ortho-

nitrophenol from ortho-nitrophenyl-β-D-galactopyranoside per min under 

assay conditions.  

Protein was determined by the method of Bradford (Bradford 1976) 

using bovine serum albumin (Sigma) as a standard. 
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Preparation of crude protein extracts 

Crude protein extract was prepared as described previously (Becerra et 

al. 1998) from cells cultured in 1 litre of YPL or YPHSM up to an A600nm of 

2 (about 3 mg dry wt/ml). 

Purification of β-galactosidase 

The purification of β-galactosidase from a crude protein extract of the 

strain of K. lactis NRRLY1140 and from a YEpFLAG1-LAC4 transformed S. 

cerevisiae BJ3505 strain was performed using different chromatographical 

techniques. 

In the first trial, a column with 5 ml agarose-p-aminopheyl-β-D-

thiogalactoside (Sigma Chemical, USA) was equilibrated with 50 mM 

phosphate buffer pH 7, and the enzyme was eluted with 0.1 M sodium borate, 

pH 10. Fractions of 1 ml were collected at a flow rate of 100 μl/min. The pH 

of the collected fractions was neutralized to avoid denaturation. 

In the second purification method assayed, a column with 0.2 ml of 

ANTI-FLAG M2 affinity gel (Sigma Chemical, USA), useful for purification 

of FLAG fusion proteins, was equilibrated with TBS (150 mM NaCl, 50 mM 

Tris-HCl pH 7.4) and the elution of the bound FLAG fusion protein was by 

competition with a solution containing 100 μg/ml FLAG peptide (Sigma 

Chemical, USA). 

All purification steps were carried out at 4ºC. The β-galactosidase 

activity was assayed in the eluted fractions obtained from chromatographic 

steps. Active fractions were pooled and, when required, concentrated by 

filtration in Amicon ULTRA-4 (Millipore, UFC 803024). 

Polyacrylamide gel electrophoresis 

This was performed as described in Becerra (Becerra et al. 1997). 
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Protein crystallization 

Crystals were grown at several conditions at 20ºC by vapour diffusion 

in hanging drops containing 1-3 μl of protein solution (9 mg/ml) and 1 μl of 

reservoir solution. 

Experimental design and statistical data analysis 

Factorial experimental design was created and data were analyzed with 

the aid of version 5.1 of the STATGRAPHICS Plus software for Windows 

(Statistical Graphics Corporation). 

The statistical significance of differences between means was 

determined by Student´s t-test performed with the same software; p values 

<0.05 were considered significant. 

RESULTS AND DISCUSSION 

Purification of K. lactis β-galactosidase 

The success of the crystallization process starts at the protein 

purification level. In a previous work, the expression and purification of Κ. 

lactis β-galactosidase in E. coli as a His-tagged recombinant enzyme was tried 

but left out, due to the formation of insoluble inclusion bodies and the 

irreversible inhibitory effect of imidazole on the enzyme (Becerra et al. 1997). 

In our study, Κ. lactis β-galactosidase purification was achieved by two 

different procedures: affinity chromatography on agarose-p-aminophenyl-β-

D-thiogalactoside and immunoaffinity on ANTI-FLAG M2 affinity gel. 

The purification of the enzyme from a crude protein extract of the K. 

lactis strain NRRL-Y1140 by affinity chromatography resulted in a purification 

factor of 2.7 over the crude extract, having an overall yield based on total 

enzyme units of 17.4%. Values are comparable to those previously reported 
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for the same enzyme (Becerra et al. 1998). The results of this purification 

process are summarized in Table 1. 

 

 

Table 1: Summary of the purification procedure of K. lactis β-galactosidase by affinity 

chromatography (A) and of K. lactis β-galactosidase fused to the FLAG peptide by immunoaffinity 

(B). 

 Step Total protein 

(mg) 

Total E.U. Yield (%) Specific 

activity (E. 

U/mg) 

Purification 

factor 

A Crude extract 87 137 250 100 1 577.59 1 

Affinity and 

microultrafiltration 

1.79 23 882 17.4 4 259.5 2.7 

B Crude extract 133.10 104 610 100 785.95 1 

Immunoaffinity 

chromatography 

1.91 71 980 68.81 37 705.61 47.98 

K. lactis β-galactosidase was also purified from a S. cerevisiae BJ3505 

strain transformed with YEpFLAG1-LAC4 by affinity purification of the 

FLAG fusion protein. In this case, a 1.43% protein recovery with a yield of 

68.8% and an increase in specific activity of 47.98-fold was obtained (Table 1). 

The homogeneity of the isolated β-galactosidases was examined by 

SDS-PAGE of the purified enzyme (Figure 1), both preparations show a main 

protein band with the approximate molecular weight of 124 kDa that agreed 

with the one predicted from the sequence of LAC4, the unique gene coding 

for β-galactosidase present in the K. lactis genome (Poch et al. 1992). 

These data demonstrate the usefulness of both tested purification 

procedures for obtaining K.lactis β-galactosidase protein. Although the 

second procedure gave the highest purification factor and turned out to be 

more effective. 
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Fig. 1. SDS-PAGE of purified K. lactis β-galactosidase. Lane 1, molecular weight markers; lane 2, 60 
µg of a crude extract from K. lactis NRRL-Y1140; lane 3, 1.5 µg of K. lactis β-galactosidase purified 
by affinity chromatography from K. lactis NRRL-Y1140, lane 4, 90 µg of a crude extract of S. 
cerevisiae BJ3505 transformed with YEpFLAG1-LAC4; lane 5, 3.5 µg of K. lactis β-galactosidase 
purified by immunoaffinity. β-Galactosidase is indicated by an arrow. 

Initial crystallization screens 

Crystallization of macromolecules is usually performed by a somewhat 

organized trial-and-error procedure using available kits. However, use of these 

kits locks the experimenter to a relatively narrow set of historical conditions. 

In our case, the search strategy to get optimal crystallization of K. lactis β-

galactosidase was based on the use of conditions that have already rendered 

useful for obtaining crystals of a homologous protein with similar size and 

function, the β-galactosidase from E. coli (Juers et al. 2003). Reproducing these 

conditions, small protein crystals were obtained in presence of 0.1 M Tris pH 

8.0 and different concentrations of (NH4)2SO4 (0.02 and 0.2 M) and PEG 

6000 (5% and 10 %) (Figure 2). 
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Fig. 2. Photography of one K. lactis _-galactosidase crystal obtained in presence of 0.1M Tris, pH 
8.0, 0.02M (NH4)2SO4 and 5% PEG 6000 (A). Protein crystals obtained using the full-factorial 
design approach (B and C). Photographs were taken with the objective 40×. 

Optimization of the crystallization conditions 

The formation of crystals depends on the concentration of 

macromolecule and precipitant. At higher concentrations of macromolecule, 

less precipitant is required for crystallization. The function of the different 

precipitants such as polyethylene glycol and ammonium sulphate in the 

crystallization drop is to alter the protein-solvent or protein-protein contacts 

so that the protein molecules precipitate out of solution, preferably as ordered 

crystals and not as disordered aggregates. In our case, in order to identify 

optimal conditions for crystal growth, including crystal volume and shape 

improvements, we studied, by means of a full-factorial design, the influence of 

three variables (% PEG 6000, (NH4)2SO4 and protein concentrations), and 

their interactions on the response. The range and coding criteria of the 

variables used are given in Table 2 and Table 3 shows the experimental matrix 

and the results obtained for the analysed response, the quality of crystals. The 

quality obtained was quantified taking into account three parameters: 

morphology, size and amount of crystals. A score of 2 points was given to 

crystals with regular morphology and 1 point to crystals with irregular 

morphology. In the center of the experimental domain (0 coded value to the 

three variables), crystals showed a similar size, and therefore were considered 



Kluyveromyces lactis β-galactosidase crystallization using full-factorial experimental design 

59 

as average size and scored with 2 points. Bigger crystals than those obtained in 

the center of domain were scored with 3 points, and smaller crystals with 1 

point. Finally, 1 point was given to conditions which showed multiple crystals, 

and two points were given to conditions with few crystals. 

Table 2 
Experimental domain and codification of the variables used in the full-factorial design 
 

Natural Values 

Coded values 
PEG 6000 

(P: %) 

(NH4)2SO4  

(A: M) 

Protein concentration 

 

-1 5 0.02 10 

0 10 0.1 15 

+1 15 0.18 20 

Codification: Vc = (Vn −V0)/DVn; decodification: Vn = V0 + (ΔVn ×Vc) where Vc is the 
coded value, Vn is the natural value, V0 is the natural value in thecenter of the experimental 
domain and ΔVn is the increase in the natural valuecorresponding to 1U of growth in the coded 
value. 
 

Table 3: Experimental results of the full-factorial design (23) for the study of K. lactis β-
galactosidase crystals quality obtained taking into account three parameters: morphology, size and 
amount of crystals. Variables according to Table 2. 

 P A PRO Quality of Crystals 

1 1 1 1 6 

2 -1 1 1 4 

3 1 1 -1 0 

4 -1 1 -1 5 

5 1 -1 1 5 

6 -1 -1 1 5 

7 1 -1 -1 4 

8 -1 -1 -1 0 

9 0 0 0 5 

10 0 0 0 4 

11 0 0 0 4 

12 0 0 0 4 

Variables are according to Table 2. 
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The ANOVA table (Table 4A) divides the variability in the response 

into separate pieces for each of the effects. It then tests the statistical 

significance of each effect by comparing the mean square against an estimate 

of the experimental error. In this case, 3 effects have P-values less than 0.05 

(with asterisk in Table 4A), indicating that they are significantly different from 

zero at the 95.0% confidence level. 

After removing the no significant coefficients, the P-value for lack-of-

fit in the ANOVA table (Table 4B) is greater to 0.05 (0.1149) and the model 

appears to be adequate for the observed data at the 95.0% confidence level. 

The lack of fit test is designed to determine whether the selected model is 

adequate to describe the observed data, or whether a more complicated model 

should be used. The test is performed by comparing the variability of the 

current model residuals to the variability between observations at replicate 

settings of the factors. 

The R-Squared statistic indicates that the model, as fitted, explains 

91.7017% of the variability in the response. The adjusted R-squared statistic, 

which is more suitable for comparing models with different numbers of 

independent variables, is 88.5898 %. The standard error of the estimate shows 

the standard deviation of the residuals to be 0.64145. The mean absolute error 

(MAE) of 0.423611 is the average value of the residuals. 

The Durbin-Watson (DW) statistic tests the residuals to determine if 

there is any significant correlation based on the order in which they occur in 

the data file. Since the DW value is greater than 1.4 (2.05063), there is 

probably not any serious autocorrelation in the residuals. 

The system can be represented by the following codified equation 

(significance tested by Fisher F-test) in which only the concentration of 

protein, the interaction between the % PEG 6000 and ammonium sulphate 
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concentration and the interaction between the three variables present 

influence in the response: 

Quality of crystals = 3.83333 + 1.375xPRO - 0.875 x P x A + 1.375 

x P x A x PRO 

Table 4: Analysis of variance for the response (quality of the crystals) in the full-factorial design 

(23) studied before (A) and after (B) removing the no significant coefficients and analysis of the 

significance and adequacy of the proposed model 

 

 
Source 

Sum of 

Squares 

Degree of 

Freedom 
Mean Square F-Ratio P-Value 

A P:PEG 0.125 1 0.125 0.50 0.5305 

 A:AMMONIUM 0.125 1 0.125 0.50 0.5305 

 PRO:PROTEIN 15.125 1 15.1250 60.50 0.0044* 

 PxA 6.125 1 6.125 24.50 0.0158* 

 PxPRO 1.1250 1 1.125 4.50 0.1240 

 AxPRO 0.125 1 0.125 0.50 0.5305 

 PxAxPRO 15.1250 1 15.1250 60.50 0.0044* 

 Lack-of-fit 1.04167 1 1.04167 4.17 0.1339 

       

 Pure error 0.75 3 0.25   

B PRO:PROTEIN 15.1250 1 15.1250 47.06 0.0002 

 PxA 6.1250 1 6.1250 19.06 0.0033 

 PxAxPRO 15.1250 1 15.1250 47.06 0.0002 

 Lack-of-fit 1.04167 1 1.04167 3.24 0.1149 

 Pure Error 2.25 7 0.321429   

 Total (Corr.) 39.6667 11    

(*) Significant coefficients. Variables according to Table 2. R2 = 91.7017%; R2 (adjusted for d.f.) = 
88.5898%; standard error of est. = 0.64145; mean absolute error = 0.423611; Durbin–Watson 
statistic = 2.05063 (P = 0.4610). 
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Fig. 3. Response surfaces obtained to identify optimal conditions for K. lactis β-galactosidase crystal 
growth according to the experimental plan defined in Table 2. Crystals score = response (quality of 
crystals taking into account: morphology, size and amount of crystals). Variable values and 
nomenclature can be seen in Table 2. 
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Some of the more representative surface responses corresponding to 

the mentioned equation are represented in Figure 3. These surfaces are planes 

defined by pairs of variables having the third variable fixed (values -1, +1). As 

can be seen in Figure 3, the response increases in each situation of our 

experimental domain when the concentration of the protein is increased 

(positive coefficient). The effect of % PEG 6000 and ammonium sulphate 

concentration, for the same protein concentration, is more complex because 

response increases in the corners, high % PEG 6000 and small ammonium 

sulphate concentration and vice versa small % PEG 6000 and high 

ammonium sulphate concentration. Therefore, the highest values of the 

response are obtained in the corners: P=+1, A=-1, PRO=+1 or P=-1, A=+1, 

PRO=+1. 

Some of the K. lactis β-galactosidase crystals obtained with the optimal 

conditions obtained by this approach are shown in Figure 2. 

CONCLUSIONS 

A methodical and efficient approach has been carried out to growth K. 

lactis β-galactosidase crystals. The full-factorial screen with response surface 

optimization allowed us to find conditions for growing good quality crystals 

with a small number of experiments to be performed. Optimal crystallization 

conditions for 20 μg of K. lactis β-galactosidase were obtained in the presence 

of 0.1 M Tris-HCl, pH 8, 15% PEG 6000 and 0.02 M (NH4)2SO4. Advantages 

obtained in this approach include improvements in β-galactosidase crystal 

volume and shape and also in reproducibility. Similar designs could be of 

interest to get crystals from other proteins which have special difficulties to 

solve. 
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SUMMARY 

β-galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the β-

galactosidic linkage in lactose. Due to much industrial applications the 

biotechnological potential of this enzyme is substantial. This protein has been 

expressed and purified in yeast for the crystallization trials. However, even 

optimization of the best crystallization conditions yielded crystals with poor 

diffraction quality that precluded further structural studies. Finally, thanks to 

the streak seeding technique, the crystal quality was improved and a complete 

diffraction data set was collected at 2.8 Å resolution. 

INTRODUCTION 

The enzyme β-galactosidase (β-D-galactoside galactohydrolase, EC 

3.2.1.23) catalyzes the hydrolysis of the disaccharide lactose into glucose and 

galactose. Enzymes with this activity are present in microorganisms, plants 

and animals, and have multiple biotechnological applications. β-galactosidases 

are useful in the treatment of lactose intolerance (Bhatnagar and Aggarwal 

2007) and they are frequently used in the food industry in order to increase 

the sweetening power of the natural saccharides (Gonzalez Siso 1996). In 

addition, they are also employed in a treatment and transformation of  cheeses 

whey (Gonzalez Siso 1996). β-galactosidase from the yeast Kluyveromyces lactis 

(Kl-β-Gal) is one of the most frequently used β-galactosidases in the 

biotechnological industry due to its favourable biochemical properties: an 

optimal neutral pH, and a higher stability than found for β-galactosidases 

from the other sources (i.e. fungal galactosidases). Furthermore, K. lactis is a 

GRAS (Generally Recognized as Safe) organism by the American Food and 

Drug Administration. 

Kl-β-Gal (P00723) is encoded by the gene LAC4 (Gene ID: 2897170). 

Although the gene was sequenced in 1992 (Poch et al. 1992), the structure of 
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the protein has not yet been reported. The molecular weight of the Kl-β-Gal 

monomer is 119 kDa and it was shown that only the dimeric and tetrameric 

forms of the protein are active, with the tetramer being more active than the 

dimer (Becerra et al. 1998). 

On the basis of their sequence, β-galactosidases are classified in CAZy 

(Cantarel et al. 2009) within families 1, 2, 35 and 42 of glycosyl hydrolases. 

Those from eukaryotic organisms are grouped into family 35 with the only 

exceptions of K. lactis and K. marxianus β-galactosidases (99% identitical), 

which belong to the family 2 together with the prokaryotic β-galactosidases 

from Escherichia coli and Arthrobacter sp. Whereas the structures of these last 

two prokaryotic enzymes have been determined (Juers et al. 2000; Skálová et al. 

2005), none of the yeast β-galactosidases structures has been reported to date. 

Although their sequence similarity with the prokaryotic enzymes is significant 

(48% vs. E. coli and 47% vs. Arthrobacter) there are many differences, 

particularly some long insertions and deletions, which might play an important 

role in protein stability and in substrate recognition and specificity. 

Knowledge of the Kl-β-Gal three-dimensional structure will provide an 

important insight into understanding of the mechanisms of catalysis and 

should lead to improvements of its biotechnological applications by rational 

protein engineering. In this study, we describe expression, purification and 

preliminary X-ray crystallographic studies of Kl-β-Gal. 

MATERIAL AND METHODS 

Expression and purification 

The gene LAC4 (Gene ID: 2897170) was amplified by PCR from the 

pLX8 plasmid, and cloned in the YEpFLAG vector (Eastman Kodak Company) 

as previously reported (Becerra et al., 2001) The construct was used to 

transform S. cerevisiae BJ3505 cells (Eastman Kodak Company) by the procedure 
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of Ito et al. (Ito et al., 1983). Cells were incubated at 303 K and 250 r.p.m. 

during 96 h in a 2 L Erlenmeyer flask containing 1 L of YPHSM modified 

medium [1% (w/v) Glucose, 3% (v/v) Glycerol, 1% (w/v) Yeast Extract and 

8% (w/v) Peptone]; these conditions increased the protein expression. Cells 

were collected by centrifugation (5000 x g for 10 min at 274 K), resuspended 

in 0.1 M KH2PO4, 1.2 M sorbitol and incubated at 30ºC during 3 h with 

lyticase (2 mg per g wet weight) in order to obtain the protoplasts (Jigami et al. 

1986), from which the protein extracts were prepared as described previously 

(Becerra et al. 1998). Kl-β-Gal was purified with ANTI-FLAG M2 affinity gel 

(Sigma Chemical, USA) and concentrated with ULTRA-4 (Millipore, UFC 

803024) as already reported (Rodríguez et al. 2008). The purified protein, with 

the FLAG peptide (SDYKDDDDK) attached to its N- terminus, was 

concentrated to 7 mg mL-1 in 0.05 M Tris-HCl, 0.150 M NaCl and 0.002 M 

DTT. The homogeneity of the purified protein sample was analyzed (Fig.1) by 

SDS-PAGE (Laemmli 1970). 

 

Figure 1: SDS-PAGE analysis of the purified sample of β-galactosidase (119 kDa). 
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Crystallization 

Crystallization conditions were initially explored using high throughput 

techniques with a NanoDrop robot (Innovadine Nanodrop I) and commercially 

available screens. Crystal Screen, Crystal Screen II, Crystal Screen Lite, Salt Rx and 

Index Screen from Hampton Research, PACT Suite and JCSG+ Suite from Qiagen 

and Screen Classic from Jena Biosciences were assayed using the sitting drop 

vapour diffusion method at 291 K. Drops consisting of 0.25 µL of precipitant 

and 0.25 μL of pure Kl-β-Gal (3.5 mg mL-1 in 0.05 M Tris-HCl, 0.150 M NaCl 

and 0.002 M DTT) were equilibrated against 80 μL of reservoir solution on 

sitting drop microplates (Innovaplate SD-2). Small crystals grew with the PACT 

Suite screen under several conditions when 7% of glycerol (v/v) was added to 

the protein stock solution prior to the experiment set up. Initial hits were then 

tested on Cryschem (Hampton Research) sitting drop plates by mixing 1 μL of 

protein with 1 μL of precipitant solution and equilibrating against 500 μL of 

reservoir solution. Crystallization trials in the presence of agarose were 

performed adding 0.2 % agarose to the drop using a preheated stock of 0.4 % 

agarose in the precipitant solution. Crystallization conditions were optimized 

further and small plate-shaped crystals grew in 23-27% (w/v) Polyethylene 

Glycol (PEG) 3350, 0.1 M BisTris pH 7.5, 0.2 M Sodium Tartrate. Streak 

seeding (Stura and Wilson 1991) performed under these conditions gave 

better quality crystals that were suitable for X-ray diffraction experiments (Fig. 

2). 
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a)                                                                                  b) 

 

Figure 2: (a) Crystal of β-galactosidase grown in 23-27% (w/v) PEG 3350, 0.1 M BisTris pH 7.5 and 0.2 M Sodium 

Tartrate by streak-seeding from previous crystals. (b) X-ray diffraction pattern using synchrotron source. Outer 

resolution shell is 2.8 Å (2.0Å at the edge of the detector). 

 

X-ray data collection and processing 

All crystals were cryoprotected before being flash-cooled to 100 K in 

liquid nitrogen. Mother liquor was substituted by cryoprotectant solution 

consisting of the crystallization solution containing 20% (v/v) glycerol. 

Diffraction data were collected using synchrotron radiation at the European 

Synchrotron Radiation Facility (ESRF, Grenoble) on ID23-1 beamline using an 

ADSC Quantum Q315r detector fixed at 415.9 mm and a wavelength of 0.979 

Å. Exposure time was set to 0.3 seconds and oscillation range to 0.5 degrees 

per image. Collected diffraction data were processed with MOSFLM (Leslie 

1992) and scaled using the CCP4 package (Collaborative Computational 

Project 1994). 
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RESULTS AND DISCUSSION 

Previous experiments carried out in our laboratory with a full-factorial 

experimental design (Rodríguez et al. 2008) allowed us to grow Kl-β-Gal 

crystals, but of rather poor diffraction quality. Trials of different modifications 

in protein preparation led to the improvement of purity of the protein sample. 

For example, although different methods for the cell disruption have been 

tried, protein crystals were grown only from the material obtained from the 

lyticase pre-treated cells. Initial protein concentration in the crystallizations 

was 7 mg mL-1 but, after persisting protein precipitation, 7% (v/v) of glycerol 

was added to the protein samples and protein concentration was reduced to 

3.5 mg mL-1 in order to increase its solubility. Repetitions of the some 

screening tests yielded small plate-like crystals. They grew within two weeks in 

several PACT Suite screen conditions with PEG 3350 as the main precipitant 

agent and pH between 6.5 and 8.  Subsequently more than a thousand 

optimization trials were performed, varying pH, PEGs types/concentrations, 

and different salts. Clusters of medium-size crystals grew in PEG 3350 in the 

range 23-27% (w/v), 0.1 M BisTris pH 7.5 and 0.2 M Sodium Tartrate. 

Diffraction of these crystals was too weak hence further improvement of the 

crystallization conditions was necessary. Neither additives (Additive Screen from 

Hampton Research) nor different experiment set up (hanging drop, microbatch 

and agarose-containing drops) improved the crystal growth, however a crystal 

streak seeding proved to be crucial for obtaining diffraction quality crystals 

(Fig. 2). 

More than 30 crystals were tested until a full data set from a single Kl-

β-Gal crystal was collected to 2.8 Å resolution (Fig. 2). Data processing 

showed that the crystal belonged to the orthorhombic crystal system with unit 

cell parameters were a = 139.97 Å, b = 153.40 Å, and c = 216.30 Å. The 
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analysis of the systematic absences along h00, 0k0 and 00l indicated the space 

group as P212121. Data collection statistics are summarized in Table 1. 

Analysis of the Matthews coefficient (Matthews 1968), assuming either 

a dimer or a tetramer in the asymmetric unit, showed a solvent content of 

74.91% and 49.83% and the Vm coefficient of 4.90 and 2.45 Å3 Da-1, 

respectively. The self-rotation functions calculated using POLARRFN 

(Kabsch et al. 1976) from the CCP4 package, with Patterson vectors up to a 

radius of 62 Å and resolution limits within 50-5 Å showed two peaks in the 

K=180º section of its stereographic projection (Fig. 3), revealing non-

crystallographic two-fold symmetry that could be compatible with the 

tetrameric state of the protein. Structure determination was carried out using 

the structure of Arthrobacter sp. β-galactosidase (PDB code 1YQ2) (Skálová et 

al. 2005) as the template for creating the model for the molecular replacement 

using the program Chainsaw (Stein, 2008) within the CCP4 suite and the 

LAC4 sequence (non-conserved residues were pruned to the gamma atom). 

Sequence homology between these two proteins is 47% (32% identity). 

Molecular replacement was performed with the program MOLREP (Vagin 

and Teplyakov 1997) using reflections within the resolution range 30 - 2.8 Å 

and a radius of Patterson vectors of 62 Å. A single solution containing 4 

monomers in the asymmetric unit with a final correlation coefficient of 0.27 

and an R factor of 0.55 was obtained, confirming a tetrameric quaternary 

structure of this enzyme. Refinement and building of the Kl-β-Gal model, 

which contains as much as 4000 amino acid residues, is in progress. 
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Table 1 
Data-collection statistics  
Values in parentheses are for the outer resolution shell 

 
Crystal data 

 

    Space group P212121 

    Unit cell parameters  
          a (Å) 139.97   
          b (Å) 153.40   
          c (Å) 216.30 
  
Data collection  
    Beamline ID23.1, ESRF 
    Temperature (K) 100 
    Wavelength (Å) 0.979 
    Resolution (Å) 125.00 - 2.80 (2.95 – 2.80) 
  
Data processing  
    Total reflections 643048 (91525) 
    Unique reflections 115027 (16572) 
    Redundancy 5.6 (5.5) 
    Completeness (%) 100.0 (99.9) 
    I/σ (I) 7.3 (2.3) 
    Mean I/σ (I) 15.9 (5.2) 
    Rmerge

†
 (%) 10.7 (35.7) 

    Rpim
††

 (%) 4.9 (16.4) 
    Molecules per ASU 4 
    Matthews coefficient (Å

3
 Da

-1
) 2.45 

    Solvent content (%) 
 

49.83 

†
Rmerge = ∑hkl ∑i | Ii(hkl) – <I(hkl)>| / ∑hkl ∑i  Ii(hkl), where Ii(hkl) is the ith measurement of reflection 

hkl and <I(hkl)> is the weighted mean of all measurements. 
††

Rpim = ∑hkl [1/(N - 1)] 1/2 ∑i | Ii(hkl) – <I(hkl)>| / ∑hkl ∑I, where N is the redundancy for the hkl 
reflection. 

 

Figure 3: Plot of the self-rotation function of the β-galactosidase Patterson function using data 

between 50 and 5 Å and a 62 Å radius of integration in the Κ=180° section. The view is down 

the c axis. φ=0˚ and φ=90˚ correspond to the a and b axes, respectively. 
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SUMMARY 

β-Galactosidase or lactase is a very important enzyme in the food 

industry, being that from the yeast Kluyveromyces lactis the most widely used. 

Here we report its three-dimensional structure both in the free state and 

complexed with the product galactose. The monomer folds into five domains 

in a pattern conserved with the prokaryote enzymes of the GH2 family, 

although two long insertions in domains 2 and 3 are unique and related to 

oligomerization and specificity. The tetrameric enzyme is a dimer of dimers, 

with higher dissociation energy for the dimers than for its assembly. Two 

active centers are located at the interface within each dimer in a narrow 

channel. The insertion at domain 3 protrudes into this channel and makes 

putative links with the aglycone moiety of docked lactose. In spite of common 

structural features related to function, the determinants of the reaction 

mechanism proposed for Escherichia coli β-galactosidase are not found in the 

active site of the K. lactis enzyme. This is the first X-ray crystal structure for a 

β-galactosidase used in food processing. 

INTRODUCTION 

β-D-Galactosidase (β-D-galactoside galactohydrolase, E.C. 3.2.1.23), 

most commonly known as lactase, is one of the most important enzymes used 

in food processing that catalyses the hydrolysis of terminal non-reducing β-D-

galactose residues in β-D-galactosides. Conventionally, its main application 

has been in the hydrolysis of lactose in milk or derived products, particularly 

cheese whey. Lactose is a disaccharide formed by glucose and galactose that is 

found in milk. In humans, lactose intolerance or unabsorbed lactose is a 

common problem. In fact, it is estimated that lactose intolerance occurs in 

70% of the world‟s adult population, and Eastern Asia has the highest number 

of lactose malabsorbers with more than 90% of its population (Husain 2010). 

Lactose maldigestion and intolerance are caused by lactase insufficiency or 
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non-persistence, which results from a decrease in the activity of the β-

galactosidase, in the brush border membrane of the mucosa of the small 

intestine of adults (Juajun et al. 2011). In this case lactose cannot be 

hydrolyzed, and passes into the large intestine, where it is fermented by 

colonic microflora causing symptoms such as abdominal pain, gas, nausea and 

diarrhoea (Husain 2010). The extent of these symptoms is variable and indeed 

most individuals can tolerate a moderate amount of lactose in their diet 

(Lifran et al. 2000). Nevertheless, there is a considerable market for lactose-

free milk and dairy products, which can be obtained by enzymatic hydrolysis 

using β-galactosidases (Oliveira et al. 2011). 

Besides lactose maldigestion, crystallization of lactose can be a problem 

in dairy products such as ice cream and sweetened condensed milk. β-

galactosidases derived from food grade organisms can be successfully 

employed for these problems related to the milk sugar lactose (Juajun et al. 

2011). The products of lactose hydrolysis, i.e., glucose and galactose, are 

sweeter and also much more soluble than lactose; hence, sandy defects in 

dairy products can be avoided (Ganzle and Haase 2008). 

Furthermore, disposal of large quantities of the lactose-containing by-

products from cheese manufacturing, whey and whey permeates, causes 

serious environmental problems. It is estimated that approximately 160 

million tons of whey are producing worldwide each year (Guimarães et al. 

2010). Whey's organic load is high (biochemical oxygen demand of 30–50 g/L 

and chemical oxygen demand of 60–80 g/L), mainly because of the lactose 

content, which together with the high volumes to which it is generated makes 

cheese whey a quite concerning environmental issue, and solutions for its 

valorization are strongly required (Guimarães et al. 2010). Whey can be used as 

a source of cheap, renewable, and fermentable sugars after β-galactosidase-
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catalyzed hydrolysis for the production of added-value molecules or bulk 

commodities by lactose-negative microbes (Oliveira et al. 2011). 

Apart from lactose hydrolysis, β-galactosidases with transgalactosylation 

activities are highly attractive for the production of added-value lactose 

derivatives. In particular, galacto-oligosaccharides (GOS), prebiotics that can 

stimulate the growth of beneficial bacteria such as bifidobacteria and 

lactobacilli, are increasingly finding application in functional foods, namely as 

low calorie sweeteners in fermented milk products, confectioneries, breads 

and beverages (Ganzle and Haase 2008; Gosling et al. 2010; Park and Oh 

2010). 

Many organisms naturally synthesize β-galactosidase, including animals, 

plants, and microorganisms, but an easier manipulation and acceptable 

productivities and yields from cultivations of the latter have favoured their 

establishment as a main source for industrial production of β-galactosidases. 

Although bacteria could offer more versatility, the corroborated GRAS status 

of yeasts like Kluyveromyces lactis and K. marxianus, and of fungi like Aspergillus 

niger and A. oryzae, still places them among the favourite sources of β-

galactosidase for food biotechnology and pharmaceutical industry (Rubio-

Texeira 2006). 

β-galactosidase sequences can be deduced from various databases, and 

these can be classified into four different glycoside hydrolase (GH) families 1, 

2, 35, and 42, based on functional similarities (Cantarel et al. 2009). Those 

from eukaryotic organisms are grouped into family 35 with the exceptions of 

K. lactis and K. marxianus β-galactosidases (99% identity), which belong to the 

family 2 together with the prokaryotic β-galactosidases from Escherichia coli and 

Arthrobacter sp. Whereas the structures of these last two prokaryotic enzymes 

have been determined (Juers et al. 2000; Skálová et al. 2005), none of the 

eukaryotic β-galactosidase structures has been reported. In fact, to date, the X-



Chapter 3 

82 

ray crystal structures of eight different microbial β-galactosidases are available 

in the PDB, although none of the enzymes with solved structures is known to 

be used in food processing. 

In this paper, we report the three-dimensional structure at 2.75 Å 

resolution and the complex structure with galactose at 2.8 Å resolution of the 

β-galactosidase from Kluyveromyces lactis, one of the most important and widely 

used enzymes of the food industry. 

MATERIAL AND METHODS 

Cloning, expression and purification 

Cloning, expression and purification of Kluyveromyces lactis β-

galactosidase (KL-β-Gal) was performed as described previously (Pereira-

Rodríguez et al. 2010). 

 

Crystallization and data collection 

Crystallization of KL-β-Gal (3.5 mg mL-1 in 0.05 M Tris-HCl, 0.150 M 

NaCl and 0.002 M DTT, 7% Glycerol) was performed on Cryschem 

(Hampton Research) sitting drop plates at 291 K as described previously 

(Pereira-Rodríguez et al. 2010). Small plate-shaped crystals grew in 23-27% 

(w/v) Polyethylene Glycol (PEG) 3350, 0.1 M BisTris pH 7.5-7.0, 0.2 M 

Sodium Tartrate. Streak seeding (STURA and WILSON 1991) performed 

under these conditions gave improved quality crystals that were suitable for X-

ray diffraction experiments. Crystals of KL-β-Gal belonged to P212121 space-

group with four molecules in the asymmetric unit and 51% solvent content 

within the unit cell. For data collection, native crystals were transferred to 

cryoprotectant solutions consisting of mother liquor plus 20% (v/v) glycerol 

before being cooled to 100 K in liquid nitrogen. The complex with the 
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product galactose was obtained by crystal soaking with the substrate lactose 

(Hassell et al. 2007). In order to minimize crystal damage, mother-liquor was 

substituted by the soaking solution (35% PEG 3350, 0.1 M BisTris pH 7.0, 

0.2 M Sodium Tartrate, 2 mM MgCl2) saturated with lactose, incubated for 6 

minutes and then cryocooled in liquid nitrogen. 

Diffraction data were collected using synchrotron radiation at the 

European Synchrotron Radiation Facility (ESRF, Grenoble) on ID23.1 and 

ID14.4 beamlines. Diffraction images were processed with MOSFLM (Leslie 

1992) and merged using the CCP4 package (Collaborative Computational 

Project 1994). A summary of data collection and data reduction statistics is 

shown in Table 1. 

Structure solution and refinement 

The structure of KL-β-Gal was solved by molecular replacement using 

the MOLREP program (Vagin and Teplyakov 1997). The structure of 

Arthrobacter sp. β-galactosidase (PDB code 1YQ2) (Skálová et al. 2005) was 

used to prepare the search model using the program Chainsaw (Stein 2008) 

and a protein sequence alignment of KL-β-Gal onto Arthrobacter β-

galactosidase. A single solution containing four molecules in the asymmetric 

unit was found using reflections within 125 - 3.43 Å resolution range and a 

Patterson radius of 31 Å, which after rigid body fitting led to an R factor of 51 

%. Crystallographic refinement was performed using the program Refmac5 

(Murshudov et al. 1997) within the CCP4 suite with flat bulk-solvent 

correction, and using maximum likelihood target features. Tight non-

crystallographic symmetry restrictions were applied during first steps of 

refinement. Loop 246-274, which is ordered in molecules A and C and 

disordered in molecules B and C (more details in results discussion), and other 

small regions (as the last portion of the linker between domain 4 and 5), were 

excluded from the NCS restraints during model building, but best results were 
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achieved when keeping NCS restrictions for the whole molecule in the last 

steps of refinement. Free R-factor was calculated using a subset of 5% 

randomly selected structure-factor amplitudes that were excluded from 

automated refinement. Several loops in different regions were excluded from 

the model during the first stages of the refinement since no electron density 

was observed at the polypeptide chain. After iterative refinement and 

rebuilding of these regions using the programs O (Jones et al. 1991), 

Buccaneer (Cowtan 2006) and COOT (Emsley and Cowtan 2004), the final 

2Fo-Fc map showed continuous density for the whole molecule. As it will be 

discussed below, some regions in molecules B and C are more disordered than 

in molecules A and B due to specific interactions in the tetramer. At the latter 

stages, water molecules, glycerol molecules and metal atoms were included in 

the model, which, combined with more rounds of restrained refinement, led 

to a final R-factor of 20.7 (Rfree = 24.4) for all data set up to 2.75 Å resolution. 

The structure of the complex with galactose was solved by molecular 

replacement with the native model and refinement was performed as 

described above. The substrate molecules were manually built into the 

electron density map, imported to the model and included in the refinement. 

Refinement with Refmac5 of the galactose-KL-β-Gal complex up to 2.8 Å led 

to a final R-factor of 21.4 (Rfree = 24.6) at 2.8 Å resolution. Refinement 

parameters for both structures are reported in Table 1. 

Stereochemistry of the models was checked with PROCHECK 

(Laskowski et al. 1993) and MOLPROBITY (Chen et al. 2010), while topology 

assignment by has been analysed by the Protein Families database (PFAM, 

Finn et al. 2010). The figures were generated with PyMOL (DeLano 2002).  

Analysis of the interfacial surfaces and the oligomer stability was done with 

the Protein Interfaces, Surfaces and Assemblies service (PISA) at the 

European Bioinformatics Institute (Krissinel and Henrick 2007). RMS 
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deviation analysis where made using the program SUPERPOSE within the 

CCP4 package (Collaborative Computational Project 1994) 

Analytical ultracentrifugation 

Sedimentation equilibrium experiments were performed in a Beckman 

Optima XL-A ultracentrifuge using a Ti50 rotor and six channel centerpieces 

of Epon-charcoal (optical pathlength 12 mm). Samples of purified KL-β-Gal 

in the concentration range 0.2 - 0.5 mg ml-1 were equilibrated against 2 mM 

Tris-HCl pH 7.4, 15 mM NaCl. Samples were centrifuged at 6000, 9000 and 

11000 r.p.m. at 293 K. Radial scans at 280 nm were taken at 12, 14 and 16 

hours. The three scans were identical (equilibrium conditions were reached). 

The weight-average molecular mass (Mw) was determined by using the 

program EQASSOC with the partial specific volume of KL-β-Gal set to 0,73 

at 293 K as calculated from its amino acid composition. 

PDB accession codes 

Model coordinates and structure factors data have been deposited in 

the Protein Data Bank. Accession codes for the native and complex structures 

3OBA and 3OB8 respectively. 
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Table 1. Crystallographic statistics 
Values in parentheses are for the high resolution shell 
Crystal data KL-β-Gal KL-β-Gal - galactose 

    Space group P212121 P212121 

    Unit cell parameters   

          a (Å) 140.030 140.381 

          b (Å) 153.340   153.454 

          c (Å) 216.160 217.166 

Data collection   

    Beamline ID23.1 (ESRF) ID14.4 (ESRF) 

    Temperature (K) 100 100 

    Wavelength (Å) 0.979 0.939 

    Resolution (Å) 62.53 - 2.75 (2.90 – 2.75) 49.30 – 2.80 (2.95 – 2.80) 

Data processing   

    Total reflections 874,614 (123,972) 1,379,068 (193,533) 

    Unique reflections 121,272 (17,499) 115,849 (16,726) 

    Multiplicity 7.2 (7.1) 11.9 (11.6) 

    Completeness (%) 100.0 (100.0) 100.0 (100.0) 

    I/σ (I) 4.3 (1.4) 7.7 (1.9) 

    Mean I/σ (I) 10.7 (3.6) 24.5 (6.7) 

    Rmerge
† (%) 17.2 (53.6) 9.9 (43.1) 

    Rpim
†† (%) 6.8 (21.5) 3.0 (13.2) 

    Molecules per ASU 4 4 

    Matthews coef. (Å3 Da-1) 2.5 2.5 

    Solvent content (%) 51% 51% 

Refinement   

    Rwork / Rfree
††† (%) 20.7 / 24.4 21.4 / 24.6 

No. of atoms   

    Protein 33300 33300 

    Carbohydrate 60 48 

    Refinement 4 24 

    Water Molecules 1666 1047 

Ramachandran (Chen et al. 2010)   

    Favoured (%) 95.7 95.5 

    Outliers (%) 0.10 0.00 

RMS deviations   

    Bonds (Å) 0.008 0.009 

    Angles (deg.) 1.108 1.131 

Protein Data Bank codes 3OBA 3OB8 

   
†Rmerge = ∑hkl ∑i | Ii(hkl) – [I(hkl)]| / ∑hkl ∑i  Ii(hkl), where Ii(hkl) is the ith measurement of 
reflection hkl and [I(hkl)] is the weighted mean of all measurements. 
††Rpim = ∑hkl [1/(N - 1)] 1/2 ∑i | Ii(hkl) – [I(hkl)]| / ∑hkl ∑i  Ii(hkl), where N is the redundancy for 
the hkl reflection. 
†††Rwork / Rfree = ∑hkl | Fo – Fc | / ∑hkl | Fo |, where Fc is the calculated and Fo is the observed 
structure factor amplitude of reflection hkl for the working / free (5%) set, respectively. 
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RESULTS AND DISCUSSION 

As previously reported (Pereira-Rodríguez et al. 2008; Pereira-Rodríguez 

et al. 2010), we have purified and crystallized the Kluyveromyces lactis β-

galactosidase (KL-β-Gal). The details of crystallization conditions have been 

given before (Pereira-Rodríguez et al. 2008; Pereira-Rodríguez et al. 2010). The 

structure of KL-β-Gal has been determined to 2.75 Å and 2.8 Å resolution, 

respectively, for the native crystal and its complex with galactose. 

Experimental and structure determination details are given in Materials and 

Methods and in Table 1. KL-β-Gal forms a homo-oligomer of four subunits 

that can be described as a dimer of dimers as it will be discussed below. Each 

chain (A-B-C-D) consists of 1024 residues with a molecular mass of 119 kDa 

as calculated from its primary structure. The first nine residues, which 

correspond to Ser 1 and the eight amino acids from the purification FLAG 

tag, are missing in the model and probably disordered. The imposition of tight 

non-crystallographic symmetry during refinement leads to a final model with 

four identical subunits. However, there are some regions that exhibit poor 

electron density. This is possibly due to weaker packing interactions in those 

regions within two of the monomers, which make some loops more exposed 

to the solvent and consequently more flexible, as it will be discussed. Soaking 

with the natural substrate lactose was done in an attempt to capture the 

substrate in the catalytic pocket. However, the high activity that this protein 

shows at the crystallization pH only allowed us to capture de product 

galactose. Directed mutagenesis on one of the catalytic residues or the use of 

substrate analogues should be explored in order to achieve this goal. 

Nevertheless, some insights into substrate recognition can be done on the 

basis of comparison with the extensive work made on the E. coli β-

galactosidase (EC-β-Gal) (Roth and Huber 1996; Roth et al. 1998; Juers et al. 

2000; Juers et al. 2001; Huber et al. 2003; Juers et al. 2003; Juers et al. 2009; 

Dugdale et al. 2010; Lo et al. 2010). 
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The fold of the monomer 

Topology assignment shows that KL-β-Gal subunit follows the pattern 

previously described for the two known β-galactosidases, and folds into 5 

domains (Figure 1), only one with assigned catalytic function. Domain 1 

(residues 32 to 204) presents a jellyroll fold and it is classified as a Glycosyl 

Hydrolase (GH) family 2 sugar binding domain. Domains 2 (residues 205-

332) and 4 (residues 643-720) form two GH family 2 immunoglobulin-like β-

sandwich domains. Domain 3 (residues 333-642) folds into a GH family 2 

TIM barrel domain harbouring the catalytic pocket and domain 5 (residues 

741-1025) is classified as a β-galactosidase small chain. There are two 

extended regions of the protein that cannot be assigned to any of the 

domains. One is the N-terminal region (residues 2-31) and the other is a small 

solvent exposed chain that connects domains 4 and 5 (residues 721-740). 

The oligomerization pattern of the tetramer 

The K. lactis β-galactosidase was found to be tetrameric in the crystal, 

with the four molecules building up the asymmetric unit. Several studies have 

reported the presence of two active forms in native electrophoresis analysis of 

β-galactosidase samples purified from K. lactis, which were attributed to the 

presence of dimers an tetramers (Becerra et al. 1998). The fact that the 

oligomerization pattern observed in the crystal corresponds to a “dimerization 

of dimers” is consistent with the experimental results. It is significant that the 

PISA server analysis (Krissinel and Henrick 2007) predicts that the 

dissociation energy (∆Gint) for this oligomer into two dimers is rather low (6 

kcal/mol) when compared with the dissociation energy of the dimers (20 

kcal/mol). We have performed preliminary analytical ultracentrifugation 

analysis and data shows that the average molecular weight corresponds to that 

of the dimer, under the conditions assayed. Thus, it is feasible that an 

equilibrium exists between the associated and dissociated dimers, although 
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more studies need to be carried out to elucidate the conditions that would 

govern the association equilibrium and its biological implications. 

As the model has been refined with tight NCS-restraints, the tetramer is 

made of four identical subunits A, B, C and D (Fig. 2). Monomers A-C and B-

D form two identical dimers. Within each dimer, monomers are related by a 

NCS twofold axis that brings their catalytic pockets face to face at the 

interface. Assembling of these dimers occurs essentially through interaction 

between monomers A and B, although there are also some contacts between 

monomers A and D, and monomers B and C that help stabilizing the 

tetramer. Both “dimers” are also related by a NCS twofold symmetry axis. 

Figure 2 shows the residues that are involved in shaping the different contact 

surfaces. Surface 1 is identical within monomers A-C and B-D, with a total of 

2521 Å2 of surface area buried in each interface. Surface 2 (2438 Å2) is present 

between monomers A and B making most of the contacts that stabilize the 

tetramer. There is a third small contact surface (350 Å2) made up by contacts 

between molecules A-D and B-C that might further stabilize the tetramer. 

Upon formation of the tetramer, the total surface area is reduced by 11%. 

Most of the contacts in the interfaces are non-polar interactions (~75% 

for surface 1 and ~65% for surfaces 2 and 3). Contact surface 1 is equivalent 

between monomers A-C and B-D and it involves residues from domains 1, 3 

and 5. This surface is responsible for the stabilization of the two identical 

dimers A-C and B-D. Contact surface 2 is present only in monomers A and C 

and stabilizes the assembly of the dimers (tetramerization). Contacts in this 

interface are from domains 1, 2, 4, 5 and one insertion in loop 8 of the 

catalytic domain (domain 3). The small surface between molecules A-D and 

B-C is made up from residues from domain 5 in molecules A and B that are 

making contacts with residues from domain 1 and the insertion in loop 8 of 

the catalytic domain of molecules D and C. Although surface 1 and 2 are 
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similar in terms of buried surface area (~2500 Å2) and in the number of polar 

links between the residues that build the interfaces, the stability of the 

assemblies seems to be different. As mentioned above, the dissociation energy 

calculated for the dimers is ~20 kcal/mol, while for the assembly of dimers is 

~6 kcal/mol. The large number of non-polar interactions and the presence of 

several main chain hydrogen bonds in surface 1 could be accounting for this 

difference in stability. 

The active site 

On the basis of sequence alignment, we can identify the catalytic 

residues in KL-β-Gal as Glu482 and Glu551. These residues are located in a 

pocket found at one side of the TIM barrel domain, in the centre of each 

monomer. The catalytic pocket is surrounded by residues from domains 1, 3 

and 5 that shape a very narrow cavity about 20 Å deep (see Figure 1c). 

Moreover, dimerization buries them even more, as both cavities are located 

face-to-face within the interface (see Figure 2a). This arrangement, together 

with one insertion in the catalytic domain 3 (residues 420-443) that folds over 

the entrance in each monomer, make the pockets accessible from the exterior 

through a narrow slot of no more than 10 Å width. On the other hand, the 

disposition and the distance between both active sites do not suggest any 

interaction between them. 

Ligand binding 

The catalytic pocket was filled with water molecules in the apo-

structure whereas in the galactose complex structure, one magnesium and two 

sodium ions are located at the active site. The magnesium and one of the 

sodium ions (Na1) were found close to the galactose ring (Figure 3a), 

resembling the metal binding scheme of EC-β-Gal catalytic site (Juers et al., 

2009). A second sodium ion, Na2, also identified in the Arthrobacter structure 

(AR-β-Gal), was found filling a gap left by the shorter side chain of residue 
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Trp190 in KL-β-Gal, which is an arginine in EC-β-Gal. On the other hand, 

the galactose ring presents orientation and main contacts with surrounding 

residues conserved through the three structures.  

KL-β-Gal presents a manganesium (Figure 3b), not found in the other 

two structures, coordinated by residues from the insertion (590-605) at loop 8 

of the catalytic domain (Asp593) and from one loop from the fifth domain 

(His975 and Asp978). The strong anomalous signal observed at the 

wavelength of data collection (0.98, 0.94 Å for the native and the complex), 

the coordination geometry and the chemical nature of its ligands (two 

bidentate Asp and one His, completed with a water molecule visible only in 

two of the monomers) led us to assign this peak to a manganese ion. There is 

an additional sodium ion, Na3, common to EC-β-Gal, coordinating also to 

residues from this area. In the case of KL-β-Gal, both ligands may be 

important for folding stability as these loops are building up part of 

oligomerization interfaces 2 and 3 and, therefore, are shaping the dimer-dimer 

interface. This putative structural role in assembling the tetramer may explain 

the stimulatory effect on KL-β-Gal activity observed in the presentce of Mn2+, 

previously reported (Pereira-Rodríguez et al., 2006). 

Three molecules of glycerol, added as part of the cryoprotectant 

solution, were found in the apo-crystals and a fourth sodium ion, Na4,  was 

found in the complex structure bound to backbone carbonyls and water 

molecules. This sodium atom is also in the same position in EC-β-Gal 

crystals. 
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Figure 1. (a) Stereo view of KL-β-Gal monomer in cartoon representation. Domains are 

represented in different colours. N-terminal region (cyan), domain 1 (blue), domain 2 (green), 

domain 3 (yellow), domain 4 (orange), linker (magenta) and domain 5 (red). (b) Surface 

representation of the monomer with coloured domains following the same scheme. (c) Zoomed 

view of the catalytic pocket entrance. Residues from domains 1, 5 and, mostly, 3 are building up the 

pocket entrance. A galactose bound to the active site is shown in stick representation. 
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Figure 2. (a) Surface representation of the KL-β-Gal tetramer. Chain A is shown in blue, B in 

green, C in red and D in yellow. The three different interfaces between monomers are labelled as 

Surface 1 (A-C), Surface 2 (A-B) and Surface 3 (A-D). (b) Surface representation of KL-β-Gal 

monomer (upper and medium panels) showing the residues of each interface in the colour of the 

contiguous molecule following the previous colour scheme (left) and the domains coloured as in 

Figure 1 (right). Lower panel showing the A-F interface of AR-β-Gal hexamer, similar to surface 1 

in KL-β-Gal. 
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Figure 3. (a) Stereo view of KL-β-Gal catalytic pocket. Residues interacting with the galactose, 

magnesium (green sphere) and sodium (purple spheres) ions are in stick representation. The 2Fo–

Fc electron density map for the galactose residue contoured at 1r is shown. (b) Coordination of the 

two ions stabilizing the insertion in loop 8 of the catalytic domain (residues 590–605) and the loop 

965–985 from domain 5. This region is part of interfaces 2 and 3. The anomalous electron density 

map shows a strong peak, contoured at 5 s in the figure, that has been assigned to Mn2+. 
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Structural comparison with Escherichia coli and Arthrobacter 

sp. β-galactosidases 

Six β-galactosidase structures have been reported to date, all of them 

classified within clan A in the CAZy database: the E. coli (EC-β-Gal) (Juers et 

al., 2000) and Arthrobacter sp. (isoenzyme C.2.2.1, AR-β-Gal) structures 

(Skalova et al. 2005)from GH2, the GH35 structures from Hypocrea jecorina 

(Maksimainen et al. 2011), Penicillium sp. (Rojas et al. 2004) and Bacteroides 

thetaiotaomicron (no reference) and the structure of Thermus sp. β-galactosidase 

(Hidaka et al. 2002) from GH42. Only those from GH2 show high levels of 

homology with KL-β-Gal (48% for EC-β-Gal and 47% for the AR-β-Gal). 

The other enzymes only show some similarity at the catalytic domain. 

Interestingly, KL-β-Gal is one of the few eukaryotic β-galactosidases with this 

folding scheme. In fact, all the other eukaryotic β-galactosidases, including 

those from other yeast species, are classified within the GH35 family and they 

share a common overall folding different from that of GH2 structures. This 

might be suggesting a differential origin for KL-β-Gal and the rest of the 

eukaryotic enzymes. 

The folding pattern of KL-β-Gal is conserved (Figure 4) with that 

previously reported for EC-β-Gal and AR-β-Gal (Juers et al. 2000; Skalova et 

al. 2005). Global RMS deviation between KL-β-Gal and these two structures 

is 1.9 Å for AR-β-Gal and 3.2 Å for EC-β-Gal (762 and 756 residue alignment 

respectively). These global RMS deviations are not explained by differences in 

sequence or folding but by different domain orientations. As it will be 

discussed below, there are also local differences that must play important roles 

in oligomerization and function, mostly insertions and deletions in some 

loops, but these are not taken into account in the RMS calculation. In fact, 

looking at the RMS deviations by domain (not shown), the differences 

between KL-β-Gal and the other two structures are smaller. Structure 

differences between these three enzymes are summarized in the structural 
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superposition of the three subunits shown in Figure 4a and also in the 

structure-bases sequence aligment shown in Figure S1 (Appendix A). 

 

Figure 4. Superimposition of KL-b-Gal (blue), EC-b-Gal (orange) and AR-b-Gal (green) 

structures. Important insertions in KL-b-Gal are highlighted and domains labeled. 

In EC-β-Gal, the N-terminal region is associated with the alpha 

complementation phenomenon (Juers et al. 2000). Such mechanism has not 

been reported for the KL-β-Gal and, even when we have observed that it is 

important for protein activity (Becerra et al. 2001), no function has been 

attributed to this region yet. Domain 1 is very similar in all three proteins. 

Domain 2 differs from the EC-β-Gal domain, where an important insertion 

(272-288 in EC-β -Gal numbering) emerges from one of the loops and is 

responsible for some important interactions in the catalytic pocket (Juers et al. 

2000). This insertion in the prokaryotic enzyme has also been reported to be 

one of the reasons why this molecule has to be in the form of tetramers to be 

active (Juers et al. 2000). In KL-β-Gal there is one long insertion (246-274, 

squared in blue in Figure 4) that is contributing to surface 2 (AB) and makes 

most of the contacts for the assembly of the dimers within the tetramer. This 

loop is solvent exposed in the other two molecules (C and D), the electron 

density in that region being quite poor. 
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Domain 3, the TIM barrel catalytic domain, presents also a long 

insertion (420-443, squared in green in Figure 4) that fold over the entrance of 

the catalytic pocket hiding it from the surface. Upon dimerization, this loop 

makes a channel that makes accessible the catalytic centres of both monomers 

to the solvent. Moreover, the amino acids in this loop present higher B-

factors than the average. Mobility of this region could be one explanation to 

this high B-factor, and, possibly, this is a requirement to facilitate the binding 

of substrates to the catalytic pocket. A small insertion also in this domain 

(599-605) is making interactions with one loop from the fifth domain (965-

985). As it was discussed above, the interaction between these two loops is 

stabilized by a manganesium ion, which is found in both crystals and must be 

playing a structurally important role. This loop is also part of surface 1 (AC, 

BD). Domain 4 is clearly smaller in KL-β-Gal when compared to the other 

two structures, most of the loops and β-sheets being reduced and, also, the 

long chain that connects domain 4 and 5 shows a different disposition being 

closer to domain 5. This domain 4 is involved in oligomerization in the EC-β-

Gal and AR-β-Gal, while is in the surface in the β-galactosidase tetramer, 

which may be explaining the smaller size observed in KL-β-Gal. Finally, the 

fifth domain aligns poorly to both structures (RMS is 1.7 Å and 2 Å for the 

EC-β-Gal and AR-β-Gal respectively), although it resembles more that of EC-

β-Gal. 

It is outstanding how proteins with a highly similar folding can have 

different biochemical characteristics based mostly in a few insertions that 

modulate oligomerization. The KL-β-Gal assembly of dimers, the EC-β-Gal 

tetramer and the AR-β-Gal hexamer (described as a dimer of trimers, (Skalova 

et al. 2005) are an interesting example that illustrates this feature). While their 

overall structure and folding scheme is very similar, small differences in some 

loops can trigger completely different oligomer arrangements. Monomer 

interaction surfaces in EC-β-Gal are completely different from those of KL-β-
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Gal and AR-β-Gal. On the other hand, contact surface between monomers of 

different trimers in AR-β-Gal is very similar to Surface 1 in KL-β-Gal (Figure 

2), but some differences in other regions lead to completely different 

oligomers, and, consequently, to a different specificity. 

The specificity of KL-β-Gal active site  

Although the catalytic pocket of KL-β-Gal (i.e. subsite -1) does not 

present any substantial change with respect to those of EC-β-Gal and AR-β-

Gal, there are some features that define the active site that might be 

influencing substrate recognition and activity of the enzyme. Catalytic residues 

are in very similar positions in the three enzymes and the overall shape of the 

pocket is conserved (Figure 5). Moreover, despite GH35 β-galactosidases 

showing different overall domain structures, the catalytic domain folds, 

similarly, into a TIM barrel. This fact reveals common structural features 

related to function that, nevertheless, are modulated by unique particularities 

related to specificity. 

Many structural studies carried out on the EC-β-Gal have delineated 

the main features explaining its function, essentially the ability to hydrolyse 

lactose or allolactose with equal catalytical efficiency, while being only able to 

produce allolactose by transglycosylation (Juers et al., 2001). This is the natural 

inducer for the lac operon. Interestingly, the values of Kcat for allolactose 

production are very similar to that for its hydrolysis, this balance being altered 

by changes in pH and the presence/absence of Mg. Furthermore, through the 

analysis of different complexes with substrate, intermediate and products, they 

have proposed a reaction mechanism that involves a movement of the 

galactosyl moiety from a shallow mode binding (proper of the substrates and 

the product allolactose) into a deep position (proper of intermediates and the 

product galactose), in which there is a conformational change in loop 794-804 

and in Phe601 position that is stated to be responsible of selecting allolactose 
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as transglycosylating product. KL-β-Gal, on the contrary, presents a strikingly 

high hydrolytic activity against lactose but is able to produce 6‟galactobiose 

(Gal-(1,6)-β-D-Gal), allolactose (Gal-(1,6)-β-D-Glc) and the trisaccharide 

6‟galactosyl-lactose (Gal-(1,6)-β-D-Gal-(1-4)-D-Glc) in high amounts by 

transglycosylation (Martínez-Villaluenga et al., 2008). The ratio of these 

products is also altered by temperature and pH changes. This catalytic 

behavior should be explained on the basis of the KL-β-Gal structural 

determinants here described. 

The active site of KL-β-Gal is build up mostly by residues from domain 

3, but some residues from domain 1 (Asn88, Val89, Asp187) and from 

domain 5 (Ala1000, Cys1001) also contribute to the narrow entrance that 

accesses the binding site (Figures 5). Residue Trp999 in EC-β-Gal is not 

conserved in AR-β-Gal and KL-β-Gal, where it is replaced by a cysteine 

(Cys1001 in KL-β-Gal). Mutagenesis analysis in EC-β-Gal has shown that this 

change is positive for the activity of the enzyme, but tryptophan-stacking 

interactions are also important for the binding of the glucose as an acceptor 

molecule in the formation of allolactose. This feature is no longer selected in 

KL-β-Gal and AR-β-Gal because they do not present the lac operon 

regulation and that change towards a more effective enzymatic activity is 

allowed. Apart from lacking Trp999, the most distinguishing feature in KL-β-

Gal active site is the insertion at loop 420-443 that shapes the catalytic pocket 

and makes a narrower cleft when compared to EC-β-Gal (Figure 5). As 

described above, this loop folds over the entrance of the pocket and buries 

the binding site. Moreover, when doing a manual docking of a lactose residue 

into the catalytic centre (Figure 5a), some residues from this loop (Glu431, 

Tyr440 and Lys436) are within hydrogen bonding distances with the glucose 

moiety of the substrate, i.e. the aglycone. Consequently, this insertion must be 

playing essential roles in ligand binding and recognition of the lactose 
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molecules and, also, in selecting different acceptor molecules during 

transglycosylation, unique to the eukaryotic enzyme.  

In EC-β-Gal, this region is partially occupied by a loop from domain 2 

of the neighbour molecule (residues 272 to 283), and it is part of the activating 

interface of this enzyme (Juers et al. 2000). However, none of the residues 

from this loop is interacting with lactose or allolactose in the complexes of 

EC-β-Gal and, thus, aglycone binding seems looser in EC-β-Gal as compared 

to KL-β-Gal. This non-specific binding of the aglycone has been related to 

the relative promiscuity of the enzyme for various substrates (Juers et al. 

2001). 

This loop and loop 794-804, responsible for the conformational 

change, are not conserved in the Arthrobacter and K. lactis enzymes. Moreover, 

as it can be observed in Figure 5, the position of Phe620, (equivalent to EC-β-

Gal Phe601) is intermediate between the deep and shallow stages of the 

substrate binding process described in EC-β-Gal complexes. Furthermore and 

contrarily to what is observed in the bacterial enzyme, native and the complex 

of KL-β-Gal with galactose show no conformational changes in the position 

of residues at the active site. All these observations point to the conclusion 

that the reaction mechanism proposed for EC-β-Gal is unique to this enzyme, 

putatively being common to enzymes being regulated by the lac operon. 

Finally, it has been shown in EC-β-Gal that a magnesium and a sodium 

ion are part of the catalytic pocket and their importance for a proper catalysis 

and substrate binding has been proved (Lo et al. 2009).These two ligands are 

conserved in KL-β-Gal and it is reasonable to think that they will play a 

similar role in this enzyme. 
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Figure 5. (a) Stereo view of KL-β-Gal catalytic pocket with the bound galactose in green sticks. A 

putative lactose molecule has been docked by structural superposition of a lactose moiety onto the 

galactose found in the complex, followed by manual adjustment of the glucose moiety to avoid 

clashes with the residues at the active site. (b) EC-β-Gal catalytic pocket. Important residues are 

shown in sticks. Catalytic residues and also Cys1001 (a) and Trp999 (b) are labeled. Loops 272–288 

in EC-β-Gal (b) and 420–443 in KL-β-Gal (a) are highlighted in cartoon representation. 
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CONCLUDING REMARKS 

In this study, we have been able to express and purify the β-

galactosidase from Kluyveromyces lactis, and solved the crystal structures of the 

free state and its complex with the product galactose at 2.75 and 2.8 Å, 

respectively. KL-β-Gal subunit folds into five domains in a pattern conserved 

with other prokaryote enzymes solved for GH2 family, although two long 

insertions in domains 2 (264-274) and 3 (420-443) are unique and seem related 

to oligomerization and specificity. The KL-β-Gal tetramer is an assembly of 

dimers, with higher calculated dissociation energy for the dimers than for its 

assembly, which can explain that equilibrium exists in solution between the 

dimeric and tetrameric form of the enzyme. Two active centres are located at 

the interface within each dimer, in a narrow channel of 10 Å width that makes 

the catalytic pockets accessible to the solvent. The unique insertion at loop 

420-443 protrudes into this channel and makes many putative links with the 

aglycone moiety of docked lactose, which may account for a high affinity of 

KL-β-Gal for this substrate and therefore might explain its unusually high 

hydrolytic activity (Martínez-Villaluenga et al., 2008). None of the structural 

determinants responsible for the reaction mechanism proposed to the E. coli 

β-galactosidase, which involves transition from a deep to a shallow stage 

following substrate binding, are envisaged in the KL-β-Gal active site and, 

consequently, we suggest that this mechanism rules only for GH2 enzymes 

being regulated by the lac operon. Our results provide key structural 

determinants of Kluyveromyces lactis β-galactosidase activity and specificity, this 

enzyme being one of the most pursued targets in the food and 

biotechnological industry.  
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SUMMARY 
 

Background: The β-galactosidase from Kluyveromyces lactis is a protein 

of outstanding biotechnological interest in the food industry and milk whey 

reutilization. However, due to its intracellular nature, its industrial production 

is limited by the high cost associated to extraction and downstream 

processing. The yeast-system is an attractive method for producing many 

heterologous proteins. The addition of a secretory signal in the recombinant 

protein is the method of choice to sort it out of the cell, although 

biotechnological success is not guaranteed. The cell wall acting as a molecular 

sieve to large molecules, culture conditions and structural determinants 

present in the protein, all have a decisive role in the overall process. Protein 

engineering, combining domains of related proteins, is an alternative to take 

into account when the task is difficult. In this work, we have constructed and 

analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, 

and its Aspergillus niger homologue that is extracellular. In both, a heterologous 

signal peptide for secretion was also included at the N-terminus of the 

recombinant proteins. One of the hybrid proteins obtained has interesting 

properties for its biotechnological utilization. 

Results: The highest levels of intracellular and extracellular β-

galactosidase were obtained when the segment corresponding to the five 

domain of K. lactis β-galactosidase was replaced by the corresponding five 

domain of the A. niger β-galactosidase. Taking into account that this 

replacement may affect other parameters related to the activity or the stability 

of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and 

temperature (40°C) for optimum activity differ from values obtained with the 

native proteins. The stability was higher than the corresponding to the β-

galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was 
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increased by the presence of Ni2+. The affinity for synthetic (ONPG) or 

natural (lactose) substrates was higher in the hybrid than in the native K. lactis 

β-galactosidase. Finally, a structural-model of the hybrid protein was obtained 

by homology modelling and the experimentally determined properties of the 

protein were discussed in relation to it. 

Conclusion: A hybrid protein between K. lactis and A. niger β-

galactosidases was constructed that increases the yield of the protein released 

to the growth medium. Modifications introduced in the construction, besides 

to improve secretion, conferred to the protein biochemical characteristics of 

biotechnological interest. 

INTRODUCTION 

The enzymatic hydrolysis of lactose by β-galactosidase (E.C. 3.2.1.23) is 

one of the most promising biotechnological processes in development to use 

the sugar of the milk whey, a by-product of cheese manufacture with high 

polluting power (Becerra et al. 2004). β-galactosidases are widely distributed in 

nature and are produced by animals, plants and microorganisms (bacteria, 

fungi and yeast). However, the preparations that are commercially available 

and rated GRAS come from only a few species of yeast and micro fungi, the 

most important being Kluyveromyces lactis and K. fragilis, Aspergillus niger and A. 

oryzae. Micro fungi secrete this enzyme extracellularly, however, they produce 

a lower quantity of enzymatic units than do yeasts and the optimum pH is 

acid. Micro fungal β-galactosidase utilization for hydrolyzing lactose is 

restricted to acid wheys (González Siso 1996). In contrast, yeast β-

galactosidase optimum pH is near neutral, consequently making it suitable for 

saccharifying milk and sweet whey. However, the production and industrial 

use of this intracellular enzyme are problematic due to the high cost associated 
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with its extraction from the cells and to the low yields obtained as a result of 

its instability (Becerra et al. 2001). 

The secretion of β-galactosidase to the culture medium would facilitate 

remarkably the downstream processing, eliminating the step of extraction 

from the cells and reducing the risk of degradation by intracellular proteases. 

In the case of small peptides or proteins, efficient secretion can be achieved 

simply by fusing a secretory signal sequence 5' to the gene. However, for large 

oligomeric proteins of cytosolic origin, like the β-galactosidase of K. lactis, 

(Becerra et al. 1998) consecution of efficient secretion is not so easy. Protein 

secretion in yeast heterologous systems is influenced by the composition of 

the medium, culture conditions, phase of growth and structure of the cell wall 

(Rossini et al. 1993; Henry et al. 1997; Wong et al. 2002). Protein determinants 

like size, three-dimensional structure, load, isoelectric point or the 

glycosylation state are also important (De Nobel and Barnett 1991; Soo-Wan 

N 1993; Schuster et al. 2001), although their influence has not been completely 

clarified yet. 

Recent studies indicate that the most outstanding structural features 

influencing secretion are, directly or indirectly, related to protein folding: 

formation of disulphide bridges (Kowalski et al. 1998; Bao and Fukuhara 

2001), glycosylation (Sagt et al. 2000; Lee et al. 2003), and union to BiP 

(Katakura et al. 1999) or to ubiquitine (Bao and Fukuhara 2001). Not 

surprisingly, previous trials of heterologous secretion of β-galactosidase by S. 

cerevisiae rendered levels of 40% of the enzyme in the culture medium in the 

case of the protein from A. niger. This enzyme is extracellular in the micro 

fungus and therefore suitable structural characteristics for this localization are 

endogenous. On the contrary, in similar conditions but with the Escherichia coli 

protein, cytosolic in origin, secretion did not surpass 2% in the culture 

medium (Kumar et al. 1992; Pignatelli et al. 1998). 
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In this work, we successfully attempted to convert the intracellular β-

galactosidase of K. lactis in a protein secreted to the medium. We used 

engineering techniques based on the construction of hybrid proteins with the 

extracellular β-galactosidase of A. niger. Changes introduced in the hybrid 

proteins have been evaluated by biochemical methods and discussed to the 

light of predicted structural models and biotechnological value. 

RESULTS AND DISCUSSION 

Construction of hybrid enzymes between the intracellular β-
galactosidase of K. lactis and the extracellular β-galactosidase 
of A. niger 

The extracellular β-galactosidase of Aspergillus niger presents, along its 

primary structure, a lower number of charged amino acids (Figure 1) 

compared to the intracellular K. lactis β-galactosidase, showing the A. niger β-

galactosidase a 50% reduction in histidine and 43% in lysine content. This 

difference in charged amino acids could facilitate the secretion of the A. niger 

β-galactosidase, since amino acid charge distribution plays an important role 

in the localization of secreted and membrane proteins (Boyd and Beckwith 

1990). 
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Figure 1. Amino acid sequence alignment of E. coli β-galactosidase with the K. lactis and 
A. niger β-galactosidase. 

Multiple sequence alignment of Escherichia coli β-galactosidase (ECLACZ), Kluyveromyces lactis β-
galactosidase (KLLAC4) and Aspergillus niger β-galactosidase (ANLACA). "*" means that the 
residues in that column are identical in all sequences in the alignment. ":" means that conserved 
substitutions have been observed. "." means that semi-conserved substitutions are observed. Acid 
(blue colour) and basic (red colour) amino acids of K. lactis and A. niger β-galactosidase are marked. 
The coloured bar below the E. coli β-galactosidase represents the five different domains structurally 
determined in the protein (Domain 1: green; Domain 2: yellow; Domain 3: red; Domain 4: light 
blue; Domain 5: dark blue). The secondary structure of E. coli β-galactosidase was obtained from 
the Protein Data Bank (Protein-Data-Bank). The localization of the restriction sites BamHI 
(residues underlined and pink) and KpnI (residues underlined and blue) are indicated. The 
conserved residues in E. coli β-galactosidase and K. lactis β-galactosidase important for catalytic 
function in E. coli β-galactosidase are shown in green. The residues of A. niger signal sequence are in 
yellow and underlined. 

ECLACZ   ------ASGTAPFG-GE-IIDERGGYADRVTLRLNVENPKLW-SAEIPNLYRAVVELHTA 

KLLAC4   SSLLNEENGNTTFSTKE-FISFSTKKNEETAFKINVKAPEHW-TAENPTLYKYQLDLIGS 

ANLACA   ------ASGNNAPGTGKGAVDIYG--HDSYPLGFDCANPTVWPSGDLPTNFR-TLHLEQS 

                .*. . .  :  :.      :  .: ::   *  * :.: *. ::  :.*  : 

 

 

ECLACZ   DGTLIEAEACDVGFREVRIENGLLLLNGKPLLI---RGVNRHEHHPLHGQVMDEQTMVQD 

KLLAC4   DGSVIQSIKHHVGFRQVELKDGNITVNGKDILF---RGVNRHDHHPRFGRAVPLDFVVRD 

ANLACA   PTT---------PYAIVEFQGGSYDPWGGPGFAACSELLNNEFERVFYKNDFSFQIAIMN 

           :          :  *.::.*     *   :    . :*.. .:  . . .  :  : : 

 

 

ECLACZ   ILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANI--ETHGMV-PMNR------- 

KLLAC4   LILMKKFNINAVRNSHYPNHPKVYDLFDKLGFWVIDEADL--ETHGVQEPFNRHTNLEAE 

ANLACA   LYMI--FGGTNWGNLGYPNGYTSYD----YGSAVTESRNITREKYSELKLLGN------- 

         : ::   . .      ***    *      *  * :. ::  *.:.    :..        

 

 

ECLACZ   ---------------LTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESG------- 

KLLAC4   YPDTKNKLYDVNAHYLSDNPEYEVAYLDRASQLVLRDVNHPSIIIWSLGNEAC------- 

ANLACA   --------------FAKVSPGYLTASPGNLTTSGYADTTDLTVTPL-LGNSTGSFFVVRH 

                         . .* :  *   . :     * .. ::    ***.:         

 

 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQL----RSL- 

KLLAC4   MS--------CLIPENLRNPKKVHENRL-------------PTRAYYYDQDIF---ESL- 

ANLACA   MK-LSSACAIALLAA--QAAGASIKHRI---NGFTLTEHSDPAKRELLQKYVTWDDKSLF 

         *.         *     . .     :*:              ::    .: :    .**  

 

 

ECLACZ   -NGEWRFAWFPA---PEAVPESWLECDLPEA---DTVVVPSNWQMH---GYDAPIYTNVT 

KLLAC4   -NGPWAFALFDA---PLDAPDAK-NLDWETAKKWSTISVPSHWELQEDWKYGKPIYTNVQ 

ANLACA   INGE-RIMIFSGEFHPFRLPVKELQLD---------------------------IFQKVK 

          **   :  * .   *   *    : *                           *: :*  

 

 

ECLACZ   YPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQD 

KLLAC4   YPIPIDIPNPPTVNPTGVYARTFELDSKSIESFEHRLRFEGVDNCYELYVNGQYVGFNKG 

ANLACA   --------------ALGFNCVSFYVDWALVEGKPGEYRADGIFDLEPFFDAASEAGIYLL 

                       . *  . :* :*   ::    .   :*: .   ::  .  .*     

 

 

ECLACZ   SRLPSEFDLSAFLR--AGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVS--------- 

KLLAC4   SRNGAEFDIQKYVS--EGENLVVVKVFKWSDSTYIEDQDQWWLSGIYRDVS--------- 

ANLACA   ARPGPYINAESSGGGFPGWLQRVNGTLRSSDKAYLDATDNY-VSHVAATIAKYQITNGGP 

         :*  . :: .       *    .  .:: ** :*::  * : :* :   ::          

 

 

ECLACZ   -LLHKP-TTQISDFHVATRFND-DFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQV--- 

KLLAC4   -LLKLPKKAHIEDVRVTTTFVDSQYQDAELSVKVDVQGSSYDHINFTLYEPEDGSKVYDA 

ANLACA   IILYQPENEYTSGCS-GVEFPDPVYMQ-YVEDQARNAGVVIPLINNDAS----------- 

          :*  * .   ..    . * *  :    :. :.   *     :.                

ECLACZ   ------ASGTAPFG-GE-IIDERGGYADRVTLRLNVENPKLW-SAEIPNLYRAVVELHTA 

KLLAC4   SSLLNEENGNTTFSTKE-FISFSTKKNEETAFKINVKAPEHW-TAENPTLYKYQLDLIGS 

ANLACA   ------ASGNNAPGTGKGAVDIYG--HDSYPLGFDCANPTVWPSGDLPTNFR-TLHLEQS 

                .*. . .  :  :.      :  .: ::   *  * :.: *. ::  :.*  : 

 

 

ECLACZ   DGTLIEAEACDVGFREVRIENGLLLLNGKPLLI---RGVNRHEHHPLHGQVMDEQTMVQD 

KLLAC4   DGSVIQSIKHHVGFRQVELKDGNITVNGKDILF---RGVNRHDHHPRFGRAVPLDFVVRD 

ANLACA   PTT---------PYAIVEFQGGSYDPWGGPGFAACSELLNNEFERVFYKNDFSFQIAIMN 

           :          :  *.::.*     *   :    . :*.. .:  . . .  :  : : 

 

 

ECLACZ   ILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANI--ETHGMV-PMNR------- 

KLLAC4   LILMKKFNINAVRNSHYPNHPKVYDLFDKLGFWVIDEADL--ETHGVQEPFNRHTNLEAE 

ANLACA   LYMI--FGGTNWGNLGYPNGYTSYD----YGSAVTESRNITREKYSELKLLGN------- 

         : ::   . .      ***    *      *  * :. ::  *.:.    :..        

 

 

ECLACZ   ---------------LTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESG------- 

KLLAC4   YPDTKNKLYDVNAHYLSDNPEYEVAYLDRASQLVLRDVNHPSIIIWSLGNEAC------- 

ANLACA   --------------FAKVSPGYLTASPGNLTTSGYADTTDLTVTPL-LGNSTGSFFVVRH 

                         . .* :  *   . :     * .. ::    ***.:         

 

 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQL----RSL- 

KLLAC4   MS--------CLIPENLRNPKKVHENRL-------------PTRAYYYDQDIF---ESL- 

ANLACA   MK-LSSACAIALLAA--QAAGASIKHRI---NGFTLTEHSDPAKRELLQKYVTWDDKSLF 

         *.         *     . .     :*:              ::    .: :    .**  

 

 

ECLACZ   -NGEWRFAWFPA---PEAVPESWLECDLPEA---DTVVVPSNWQMH---GYDAPIYTNVT 

KLLAC4   -NGPWAFALFDA---PLDAPDAK-NLDWETAKKWSTISVPSHWELQEDWKYGKPIYTNVQ 

ANLACA   INGE-RIMIFSGEFHPFRLPVKELQLD---------------------------IFQKVK 

          **   :  * .   *   *    : *                           *: :*  

 

 

ECLACZ   YPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQD 

KLLAC4   YPIPIDIPNPPTVNPTGVYARTFELDSKSIESFEHRLRFEGVDNCYELYVNGQYVGFNKG 

ANLACA   --------------ALGFNCVSFYVDWALVEGKPGEYRADGIFDLEPFFDAASEAGIYLL 

                       . *  . :* :*   ::    .   :*: .   ::  .  .*     

 

 

ECLACZ   SRLPSEFDLSAFLR--AGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVS--------- 

KLLAC4   SRNGAEFDIQKYVS--EGENLVVVKVFKWSDSTYIEDQDQWWLSGIYRDVS--------- 

ANLACA   ARPGPYINAESSGGGFPGWLQRVNGTLRSSDKAYLDATDNY-VSHVAATIAKYQITNGGP 

         :*  . :: .       *    .  .:: ** :*::  * : :* :   ::          

 

 

ECLACZ   -LLHKP-TTQISDFHVATRFND-DFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQV--- 

KLLAC4   -LLKLPKKAHIEDVRVTTTFVDSQYQDAELSVKVDVQGSSYDHINFTLYEPEDGSKVYDA 

ANLACA   IILYQPENEYTSGCS-GVEFPDPVYMQ-YVEDQARNAGVVIPLINNDAS----------- 

          :*  * .   ..    . * *  :    :. :.   *     :.                

ECLACZ   QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH----- 

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE 

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY----- 

                           *  .  :.          * :       .      :      

 

 

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD 

KLLAC4   KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ---- 

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED 

             .:     .::  ..          :   * . .     *:   .* :  :       

 

 

ECLACZ   TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP 

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP 

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP 

           . .* :. .         ..*   *    *.* *:  .           : :     * 

ECLACZ   QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP 

KLLAC4   --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK 

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK 

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .   

 

 

ECLACZ   RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT 

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN 

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV 

           ....:  * :     . :   * :    .   **.  . :   *      *:  .::  

 

 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA 

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF----- 

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T 

         . . :.:     .   :: :            :: :     * :  *   *:         

 

 

ECLACZ   LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW 

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW 

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW 

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     * 

 

 

ECLACZ   QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK 

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE 

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG--------------- 

                   . *      :  :.*     . . .  . :   .                 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH----- 

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE 

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY----- 

                           *  .  :.          * :       .      :      

 

 

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD 

KLLAC4   KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ---- 

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED 

             .:     .::  ..          :   * . .     *:   .* :  :       

 

 

ECLACZ   TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP 

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP 

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP 

           . .* :. .         ..*   *    *.* *:  .           : :     * 

ECLACZ   QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP 

KLLAC4   --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK 

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK 

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .   

 

 

ECLACZ   RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT 

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN 

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV 

           ....:  * :     . :   * :    .   **.  . :   *      *:  .::  

 

 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA 

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF----- 

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T 

         . . :.:     .   :: :            :: :     * :  *   *:         

 

 

ECLACZ   LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW 

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW 

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW 

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     * 

 

 

ECLACZ   QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK 

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE 

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG--------------- 

                   . *      :  :.*     . . .  . :   .                 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH----- 

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE 

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY----- 

                           *  .  :.          * :       .      :      

 

 

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD 

KLLAC4   KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ---- 

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED 

             .:     .::  ..          :   * . .     *:   .* :  :       

 

 

ECLACZ   TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP 

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP 

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP 

           . .* :. .         ..*   *    *.* *:  .           : :     * 

ECLACZ   QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP 

KLLAC4   --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK 

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK 

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .   

 

 

ECLACZ   RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT 

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN 

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV 

           ....:  * :     . :   * :    .   **.  . :   *      *:  .::  

 

 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA 

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF----- 

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T 

         . . :.:     .   :: :            :: :     * :  *   *:         

 

 

ECLACZ   LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW 

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW 

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW 

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     * 

 

 

ECLACZ   QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK 

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE 

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG--------------- 

                   . *      :  :.*     . . .  . :   .                 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH----- 

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE 

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY----- 

                           *  .  :.          * :       .      :      

 

 

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD 

KLLAC4   KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ---- 

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED 

             .:     .::  ..          :   * . .     *:   .* :  :       

 

 

ECLACZ   TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP 

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP 

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP 

           . .* :. .         ..*   *    *.* *:  .           : :     * 

ECLACZ   QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP 

KLLAC4   --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK 

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK 

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .   

 

 

ECLACZ   RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT 

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN 

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV 

           ....:  * :     . :   * :    .   **.  . :   *      *:  .::  

 

 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA 

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF----- 

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T 

         . . :.:     .   :: :            :: :     * :  *   *:         

 

 

ECLACZ   LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW 

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW 

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW 

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     * 

 

 

ECLACZ   QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK 

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE 

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG--------------- 

                   . *      :  :.*     . . .  . :   .                 

ECLACZ   --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED 

KLLAC4   --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT---- 

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST---- 

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.      

ECLACZ   SAEFQLSAGRY-HYQLVWCQK 

KLLAC4   LDQYRLKAQDF-NFEFDLAFE 

ANLACA   TALGEVESVDQPKYKKRKGAY 

             .:.:    :::       

ECLACZ   SENGLRCGTRELN--------YGPHQWRGDFQFN-----ISRYSQQQLMETSHR------ 

KLLAC4   QENGNHTDTHFLNIKFEGAGKLSIFQKEKPFNFK-----IS--DEYGVDEAAHA------ 

ANLACA   SQNWKSSSP------LEGLSEAGIGFYSASFDLDLPKDGMSHCSSTSVTALRHPRTACRS 

         .:*    ..             .       *::.     :*  ..  :    *        

 

 

ECLACZ   ------HLLHAEEGTWLNID--------GFHMGIGGD----DSWS------------PSV 

KLLAC4   ------CDVKRYGRHYLRLD--------HAIHGVGS-----EACG------------PAV 

ANLACA   TSTDIVCEIHKQHRTSDQLPCPRGNPELSRNELVGGDPVALDSAGGKLESLELSYTTPVL 

                 ::       .:              :*.     :: .            * : 

ECLACZ   SAEFQLSAGRY-HYQLVWCQK 

KLLAC4   LDQYRLKAQDF-NFEFDLAFE 

ANLACA   TALGEVESVDQPKYKKRKGAY 

             .:.:    :::       

ECLACZ   SENGLRCGTRELN--------YGPHQWRGDFQFN-----ISRYSQQQLMETSHR------ 

KLLAC4   QENGNHTDTHFLNIKFEGAGKLSIFQKEKPFNFK-----IS--DEYGVDEAAHA------ 

ANLACA   SQNWKSSSP------LEGLSEAGIGFYSASFDLDLPKDGMSHCSSTSVTALRHPRTACRS 

         .:*    ..             .       *::.     :*  ..  :    *        

 

 

ECLACZ   ------HLLHAEEGTWLNID--------GFHMGIGGD----DSWS------------PSV 

KLLAC4   ------CDVKRYGRHYLRLD--------HAIHGVGS-----EACG------------PAV 

ANLACA   TSTDIVCEIHKQHRTSDQLPCPRGNPELSRNELVGGDPVALDSAGGKLESLELSYTTPVL 

                 ::       .:              :*.     :: .            * : 
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The construction of hybrid enzymes can be performed by means of 

different procedures from which new variants are arising constantly (Nixon et 

al. 1998; Chen 1999; Kikuchi and Harayama 2002; Lutz and Patrick 2004; 

Bloom et al. 2005). In our experimental design, homologous recombination 

was discarded because the homology between genes was insufficient (Crameri 

et al. 1998; Harayama 1998). Therefore, the corresponding constructions were 

made by PCR amplification of the selected domains, restriction and ligation. 

Since previous work had demonstrated that, in K. lactis, mutant β-

galactosidases with large deletions in the N-terminal region were inactive 

(Becerra et al. 2001) we designed two hybrid proteins between K. lactis and A. 

niger β-galactosidases interchanging the C-terminal region. Constructions were 

made in the pSPGK1 plasmid (Fleer et al. 1991) and were called pSPGK1-

LAC4-LACA-BamHI and pSPGK1-LAC4-LACAKpnI. Both contain in the N-

terminus the secretory signal of the pre-sequence of the K. lactis killer toxin 

that has rendered good levels of secretion in other trials (Becerra et al. 2001). 

In the first construction, the 500 N-terminal amino acids of the K. lactis β-

galactosidase were fussed in frame to the 478 amino acids of the C-terminal 

side of the A. niger enzyme. In the second, only the segment corresponding to 

the fifth domain, 297 amino acids positioned at the C-terminus, of the K. lactis 

β-galactosidase was replaced by the corresponding fifth domain, 274 amino 

acids positioned at the C-terminus, of the A. niger enzyme. The prediction of 

domains in the proteins from K. lactis and A. niger (Figure 1) was done by 

multiple alignments and in comparison with the sequence and structure of the 

E. coli β-galactosidase experimentally determined by crystallography (Jacobson 

et al. 1994). 
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Kinetics of secretion 

To examine the kinetics of β-galactosidase secretion, a K. lactis β-

galactosidase mutant strain, MW190-9B, was transformed with the above 

described constructions and with the plasmid pSPGK1-LAC4, bearing the 

gene coding for K. lactis β-galactosidase, as a control. Discontinuous cultures 

were made in liquid medium in Erlenmeyer flasks. 

The levels of extracellular and intracellular β-galactosidase produced 

were different in the three transformants (Figure 2). In all cases extracellular 

β-galactosidase activity was detected in the media. It is important to remark 

that values of secreted protein are underestimated in this work if compared to 

other data in the literature. Usually in the bibliography the term extracellular 

activity includes also the activity of the periplasmic enzyme that is not 

effectively released to the medium. We have preferred to use the term 

extracellular to design uniquely the enzyme available in the medium, out of the 

cell, because its biotechnological use is easier. 
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Figure 2. Kinetics of growth and secretion. Growth (Optical Density at 600 nm), percentage of 
viable cells per ml, extracellular and intracellular β-galactosidase production (E. U. mL-1) by the 
MW190-9B strain transformed with the corresponding plasmids. Values represent the mean of 5 
different cultures. 
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The strain transformed with the plasmid pSPGK1-LAC4-LACA-

BamHI showed a lower intracellular and extracellular β-galactosidase 

production than the control. This result may be attributed to the fact that a 

portion of the catalytic site of the K. lactis β-galactosidase was replaced by the 

catalytic site of A. niger β-galactosidase. Nevertheless, MW190-9B transformed 

with pSPGK1-LAC4-LACA-KpnI showed the highest absolute values of 

intracellular and extracellular β-galactosidase production, almost three times 

and twice higher, respectively, than those obtained for MW190-9B 

transformed with pSPGK1-LAC4, although β-galactosidase activity into the 

culture medium reaches only 2.6% of the intracellular activity. In this case, the 

catalytic site from the K. lactis enzyme remained intact, since only the segment 

corresponding to the fifth domain was exchanged. 

However, the growth rate of MW190-9B transformed with pSPGK1-

LAC4-LACA-KpnI diminished to half of the reached by the strain 

transformed with pSPGK1-LAC4. Cellular lysis was discarded by measuring 

cellular viability (Figure 2), therefore this slow growth may be attributed to the 

fact that the cells direct the available energy towards β-galactosidase 

production rather than division. 

Two conclusions are obtained from these results. First, the C-terminal 

region of A. niger β-galactosidase functionally complements the C-terminal 

region of K. lactis β-galactosidase. Similarly, the fifth domain of the E. coli β-

galactosidase has been related to the ω-fragment and early studies have shown 

that it folds independently and complements molecules missing this part of 

the sequence (ω-complementation) (Jacobson et al. 1994). Second, the 

construction pSPGK1-LAC4-LACA-KpnI is of biotechnological value and 

therefore we decide to further characterize this hybrid protein. 
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Characterization of the hybrid protein LAC4-LACA-KpnI 

Determination of optimum pH and temperature, thermal stability, 

effects produced by divalent cations upon enzymatic activity and calculation 

of kinetics constants was performed. To carry out these measures, crude 

extracts of the strain MW190-9B transformed with pSPGK1-LAC4-LACA-

KpnI and with pSPGK1-LAC4 (control) were obtained at the moment of 

maximum expression of β-galactosidase activity (80 hours). 

Determination of the optimum pH 

For the determination of the optimum pH, the measurements of 

enzymatic activity were carried out in buffer Z aliquots modified to obtain pH 

values from 5 up to 8.5. As seen in Figure 3A, the optimum pH for the β-

galactosidase of K. lactis is about 7, whereas for the hybrid protein is slightly 

acid 6.5. The optimum pH values reported for β-galactosidases from A. niger 

are from 2.5 to 4 (Widmer and Leuba 1979) whereas from K. lactis are from 7 

to 7.5 (Dickson et al. 1979; Tello-Solis et al. 2005). Therefore, the constructed 

hybrid protein has characteristics with regard to the pH optimum that differs 

from its precursors. It was reported that, at pH 6.5, the activity of K. lactis β-

galactosidase decreased significantly due to local changes in charged residues 

(Tello-Solis et al. 2005). The hybrid protein, with a different composition in 

charged amino acids, may buffer these local changes and therefore it may be 

more tolerant to pH changes during culture. 
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Determination of the optimum temperature 

The optimum temperature reported for A. niger β-galactosidase is 50°C 

(Santos et al. 1998) whereas for K. lactis β-galactosidase is 30°C (Dickson et al. 

1979). For the determination of the optimum temperature of the hybrid 

protein and K. lactis control, the measurements of enzymatic activity were 

performed at different temperatures, from 15°C to 50°C (Figure 3B). It was 

observed that whereas in our conditions the optimum temperature for K. lactis 

β-galactosidase is around 35°C, in the hybrid protein is slightly greater, being 

near to 40°C. In the same way as for the optimum pH, the constructed hybrid 

protein presents characteristics that make it more adequate to high 

temperature during catalysis. 

Figure i3. Determination of the pH and temperature optimum. Optimum pH (A) and 
optimum temperature (B) for the hybrid enzyme between the β-galactosidase of K. lactis and A. niger 
(red) and the β-galactosidase of K. lactis (blue). Experimental variations are less than 10% of the 
value of the point. Data are the mean of three independent experiments. 

 

A

B



Chapter 4 – Chapter 4.1 

120 

Thermal stability 

Thermal stability of the hybrid β-galactosidase was also determined and 

compared to the native β-galactosidase of K. lactis. Before performing the 

measurement of enzymatic activity, the enzymatic preparation was incubated 

in buffer Z at different times and temperatures: 30°C, 42°C, 50°C and 60°C. 

The hybrid β-galactosidase presented a higher stability than the one of K. lactis 

(Figure 4) at all tested temperatures. Almost the 75% of the enzyme kept 

stable after an hour of incubation at 30°C, the 60% after 15 minutes at 50°C, 

the 8% after 3 minutes at 60°C (data not show in Figure 4), clearly in 

advantage to the native K. lactis β-galactosidase stability (55%, 40% and 0% 

respectively). Although biotechnological applications may demand even 

higher thermal stability of the hybrid β-galactosidase, other procedures exist to 

improve this factor, i.e. immobilization as previously shown (Makowski et al. 

2007). 

Figure i4. Determination of the thermal stability. Determination of the thermal stability at 30°C 

(green), 42°C (blue) and 50°C (red) for the hybrid enzyme between the β-galactosidase of K. lactis 

and A. niger (circles) and the native β-galactosidase of K. lactis (square). Experimental variations are 

less than 10% of the value of the point. Results are the average of two independent experiments. 
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Effects of the divalent cations 

The activity of K. lactis β-galactosidase is stimulated by the presence of 

some divalent cations, Mg2+ or Mn2+, and inhibited by the presence of others, 

Ca2+, Zn2+ and Ni2+ (Dickson et al. 1979; Kim et al. 1997). The effect of Mg2+, 

Ca2+ and Zn2+on the activity of the hybrid protein and the native K. lactis β-

galactosidase is similar (Figure 5A). Whereas the presence of Ca2+ or Zn2+ 

causes a slight inhibition of the activity, Mg2+ stimulates it clearly. Although an 

increase of the β-galactosidase activity has been described in presence of Mn2+ 

(Dickson et al. 1979), this stimulatory effect could not be verified in this 

experiment due to the interference produced by reducing agents present in 

buffer Z (Figure 5B). 

The cation Ni2+ exerts different effects in the activity of the native and 

hybrid proteins (Figure 5B). As previously described by other authors (Kim et 

al. 1997), the cation Ni2+ inhibits K. lactis β-galactosidase activity but over the 

hybrid enzyme the effect is activator. Crystallographic studies identified 

possible divalent cations binding sites in the structure of the E. coli β-

galactosidase, although no functional significance was ascribed to them 

(Matthews 2005). Further studies to determine the relationship between 

structural features, cation binding and activity of β-galactosidase will be 

required. 
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Figure i5. Determination of the effects of the divalent cations. Determination of the effects of 
the divalent cations Mg2+ (blue), Ca2+ (green) and Zn2+ (yellow) (A) and Mn2+ (red) and the Ni2+ 
(black) (B) on the enzymatic activity of the β-galactosidase hybrid between K. lactis and A. niger 
(circles) and the native β-galactosidase of K. lactis (square). Experimental variations are less than 
10% of the value of the point. Results are the average of two independent experiments. 

Determination of the kinetic constants 

The values of kinetic constants for the hybrid and native β-

galactosidases were obtained from double-reciprocal plots (Figure 6). Hybrid 

β-galactosidase presents a greater affinity both for ONPG (Km 0.8 mM) and 

lactose (Km 8.7 mM) than K. lactis β-galactosidase (1.5 mM and 21 mM, 

respectively). This striking increase in affinity aimed us to look for a structural 

explanation of the change. 

 

A

B
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Figure 6. Lineweaver-Burk plots. Lineweaver-Burk plot of the reaction catalyzed by the β-
galactosidase hybrid between K. lactis and A. niger (red circles) and the native β-galactosidase of K. 
lactis (square blue) in the presence of the synthetic substrate ONPG (A) or the natural substrate 
lactose (B). Experimental variations are less than 10% of the value of the point. Results are the 
average of two independent experiments. 

A

B
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Prediction of the tertiary structure of the β-galactosidase of K. 

lactis and the hybrid protein 

Three-dimensional protein structures are important for a detailed 

understanding of the molecular basis of protein function. In absence of direct 

experimental data, a computational approach by homology modelling is a 

reliably method to generate a three-dimensional model for a protein. In order 

to understand the differences between the hybrid and native K. lactis β-

galactosidases, a prediction of the tertiary structure of these proteins and the 

A. niger β-galactosidase was made. The server for automated comparative 

modeling (Swiss-Model) was used. The amino acids E461, M502, Y503 and 

E537, considered important residues for the catalytic activity of the E. coli β-

galactosidase (Jacobson et al. 1994; Matthews 2005) and which form the 

active-site pocket, are highly conserved in the K. lactis β-galactosidase (residues 

E482, M522, Y523 and E551) (Poch et al. 1992). As depicted in Figure 7A, a 

part of the active site is formed by a deep pit that intrudes well into the core 

of the TIM barrel at the third domain. In addition, there are loops coming 

from the first and fifth domain. In the case of the hybrid protein (Figure 7C), 

the fifth domain of the K. lactis β-galactosidase was replaced by the 

corresponding domain of the A. niger enzyme (Figure 7B). Structurally, as 

predicted by the model, this causes a slight opening of the third domain. This 

could favour the accessibility of the substrate and could explain the change in 

the kinetic constants. 
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Figure 7. Ribbon representations. Ribbon diagram corresponding to the prediction of the 
tertiary structure of K. lactis β-galactosidase (A), A. niger β-galactosidase (B) and hybrid β-
galactosidase (C) using the Swiss-Model program. The residues mentioned in Figure 1 have been 
drawn as spheres of colours (E482 blue, M522 green, Y523 yellow, E551 red). D1–D5 identify the 
five domains of K. lactis β-galactosidase (A) predicted by alignment in comparison with the 
sequence of the E. coli β-galactosidase (Figure 1). The fifth domain of the A. niger β-galactosidase is 
coloured in green (B and C). The white arrow (C) shows the slight opening of the third domain in 
the hybrid β-galactosidase. 

CONCLUSION 

The cellular wall represents in yeasts an additional barrier for the 

excretion of proteins to the culture. The secretory signal directs the proteins 

across the secretion route up to the periplasmic space but this does not imply 

that the protein could cross the cell wall. The hybrid protein obtained in this 

work, by replacing the fifth domain of the β-galactosidase of K. lactis by the 

one of A. niger, is active, reaches the culture medium and presents, in addition, 

greater stability at high temperatures and more convenient kinetics parameters 

for its biotechnological utilization. Some of these features may be explained to 

the light of structural changes predicted by homology modelling. 

METHODS 

Strains and culture conditions 

The Kluyveromyces lactis MW 190-9B strain (MATa lac4-8 uraA Rag+) was 

used. Liquid batch cultures of transformed cells were grown in Erlenmeyer 

flasks filled with 20% volume of culture medium at 250 rpm, unless otherwise 

stated. As inocula, a suitable volume of a stationary phase culture in complete 

medium (Zitomer and Hall 1976) without the amino acid corresponding to 
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the strain auxotrophy was added to obtain an initial OD600 of 0.2. The same 

medium was also used as culture media. Samples were taken at regular time 

intervals to measure growth (OD600), percentage of viable cells, intracellular 

and extracellular β-galactosidase activity. 

Vectors and DNA constructions 

The pSPGK1-LAC4 (Becerra et al. 2001), a derivative of pSPGK1 

plasmid (Fleer et al. 1991) containing the secretory signal that corresponds to 

the pre-sequence (16 amino acids) of the K. lactis killer toxin (α-subunit) and 

the PCR-amplified LAC4 gene (which codes for K. lactis β-galactosidase) 

inserted between the constitutive promoter and the terminator of the S. 

cerevisiae phosphoglycerate-kinase (PGK) gene, was used for building new 

vectors. Vectors were constructed as follows: 

-pSPGK1-LAC4-LACA-BamHI: plasmid pSPGK1-LAC4 was digested 

with BamHI. The BamHI-BamHI fragment that contains the C-terminal 

segment of the K. lactis β-galactosidase was removed and replaced by the C-

terminal segment of the Aspergillus niger β-galactosidase amplified from 

pVK1.1 (Kumar et al. 1992) with the following oligonucleotides creating 

BamHI sites on the ends of the PCR product: 

GAAGGATCCTGAGTCTGGCATCTCG, 

CCACACCCGTCCTGTGGATCC. 

-pSPGK1-LAC4-LACA-KpnI: plasmid pSPGK1-LAC4 was digested 

with KpnI and ligated to the segment corresponding to the five domain of the 

A. niger β-galactosidase amplified from pVK1.1 with the following 

oligonucleotides generating KpnI sites on the ends of the PCR product: 

GCGGTACCCCGCGGACACTTCACCGC, 

GCGGTACCGCCATCTCCTTGCATGC. 
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PCR conditions 

A 20 ng amount of template DNA was incubated with 30 pmol of 

primer-1 and 30 pmol of primer-2 in the presence of 0.25 mM dNTPs, Taq or 

Pwo polymerase buffer and 2 U of the corresponding polymerase. Initial 

denaturation was done at 94°C for 2 min, followed by 30 cycles of 1 min at 

95°C, 2 min at 50–57°C and 1.5–2.5 min at 72°C. There was a final incubation 

at 72°C for 10 min to fill-in ends. 

Molecular biology procedures 

Escherichia coli DH5a strain (supE44 DlacU169 f80lacZDM15 hsdR17 

recA1 endA1 gyrA96 thi-1 relA1) was used for the construction of the plasmids 

and propagation by means of the usual DNA recombinant techniques 

according to Ausubel et al. (Ausubel FM and K 1995). Yeast strains were 

transformed using the lithium acetate procedure (Ito et al. 1983). Plasmid 

uptake and β-galactosidase production by the transformed strains were 

identified on plates with the chromogenic substrate X-gal in the 

corresponding auxotrophic medium. 

Percentage of viable cells 

The methylene blue solution, which contained 0.01% Methylene Blue 

(Sigma-Aldrich, M9140) and 2% (w/v) tri-sodium citrate dihydrate in 

phosphate-buffered saline solution (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4 and 1.8 mM KH2PO4, pH 7.4), was mixed with an equal volume of 

yeast suspension for 10 min. Unstained cells were assumed to be viable. The 

stained cells in the mixture were quantified under an optical microscope 

(Nikon Eclipse 50i). The viability of 100 cells, from five replicates of each 

sample, was assessed and expressed as the mean percentage of viable cells. 
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β-galactosidase activity assays 

The method of Guarente (Guarente 1983) as previously described 

(Becerra et al. 2001) was used. One enzyme unit (E. U) was defined as the 

quantity of enzyme that catalyzes the liberation of 1 μmol of ortho-

nitrophenol from ortho-nitrophenyl-β-D-galactopyranoside per min under 

assay conditions. E.U. are expressed per mL of culture medium. 

Throughout this paper and unless otherwise specified, the term 

extracellular β-galactosidase is used to mean the enzyme in the culture 

medium and the term intracellular β-galactosidase is used to mean the cell-

associated enzyme, both periplasmic and cytoplasmic. 

Preparation of crude protein extracts 

For the preparation of crude protein extracts, the cells were harvested 

by centrifugation at 7000 rpm for 5 min at 4°C and washed once with distilled 

water. They were suspended in 20 mM Tris-HCl, pH 7.8, 300 mM (NH4)2SO4, 

10 mM MgCl2, 1 mM EDTA, 10% glycerol buffer with 0.1 mM PMSF, 4 mM 

Pepstatin, 4 mM Leupeptin and 2 μM β- mercaptoethanol and broken using a 

sonicator at 16 μm for a total of 20 min at 4°C making four exposures of 5 

min, with 5 min intervals after each. Cell debris was removed by 

centrifugation at 40000 rpm for 90 min at 4°C. The supernatant constituted 

the cell-free extract. 

Protein determinations 

Protein was determined by the method of Bradford (Bradford 1976) 

using bovine serum albumin (Sigma) as a standard. 
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Characterization of the hybrid enzyme 

The characterization was carried out from a crude extract of the strain 

of K. lactis MW190-9B/pSPGK1-LAC4-LACAKpnI obtained at the moment 

of maximum expression of β-galactosidase activity (80 hours). As a control, in 

all the essays performed, the same quantity of protein of a crude extract of the 

strain of K. lactis MW190-9B/pSPGK1-LAC4, obtained at the moment of 

maximum expression of β-galactosidase activity, was taken. 

In order to calculate the optimum pH, 60 μg of the crude yeast protein 

extract were incubated in buffer Z (100 mM Na2HPO4, 40 mM NaH2PO4, 10 

mM KCl, 1.6 mM MgSO4 and 2.7 mL of β-mercaptoethanol for litre of 

dissolution) adjusted respectively to pH 5; 5.5; 6; 6.5; 7; 7.5 and 8. 

For optimum temperature determination, the enzymatic activity of 60 

μg of the crude protein extract was measured at different temperatures: 15, 20, 

25, 30, 35, 40, 45 and 50°C. 

In thermal stability experiments, 30 μg of the yeast crude protein 

extract were incubated during different periods of time to different 

temperatures: 30, 42, 50 and 60°C. 

For the determination of the effects of divalent cations on the 

enzymatic activity, 100 μg of the crude protein extract and several increasing 

concentrations (0.1, 0.5, 1.5 and 10 mM) of CaCl2, MgCl2, MnCl2, ZnSO4 or 

NiCl2 were added to the buffer Z and the enzymatic activity was measured as 

previously described. 

Kinetic studies 

The β-galactosidase activity was tested with the artificial substratum 

ONPG and the natural substratum lactose. The determination of the β-

galactosidase activity in 30 μg of the crude extract was made as above 
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explained, but in presence of different concentrations of ONPG: 2, 3, 6, 8 and 

12 mM. Alternatively, 60 μg of the crude extract were incubated with different 

concentrations of lactose: 5, 20, 40, 80 and 160 mM. To determine lactose 

hydrolysis, a commercial kit was used (Boehringer-Mannheim) following the 

supplier instructions. The method is based on the oxidation of the product D-

galactose by the β-galactose dehydrogenase. The amount of NADH formed in 

this last reaction is stoichiometric to the amount of lactose and D-galactose. 

The NADH production was measured following the absorbance increase at 

340 nm. 

Homology modelling 

The models of the K. lactis and A. niger β-galactosidases and the hybrid 

protein were made with the fully automated protein structure homology-

modelling server (Swiss-Model). 
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INTRODUCTION 

At present the importance of the enzymatic processes applied to the 

food or pharmaceutical industry is so big, that some of the products could not 

be made by other way. The industrial enzyme production is a business which 

in the beginning of the present XXI century involves around 1.6 billion of 

dollars per year (Cherry and Fidantsef 2003). One of the most interesting 

types of enzymes in the industrial production is the group of the β-

galactosidases (β-D-galactoside galactohydrolases, EC 3.2.1.23) which 

hydrolyze the o-glycosidic linkages between β-D-galactose terminal and non-

reducing residues. They are known as lactases due to their catalysis of the 

lactose (milk‟s sugar) into its constituent sugars: glucose and galactose. 

The β-galactosidases are obtained principally by a small amount of 

microbial sources as for example Kluyveromyces genre yeasts and Aspergillus 

genre fungus, which are considered as GRAS (Generally Regarded As Safe) by 

the FDA. Therefore, they can be used in the food or pharmaceutical industry. 

Currently β-galactosidase preparations, obtained from K. lactis and K. 

fragilis, are used to saccharified milk and sweet whey, but due to the β-

galactosidase intracellular nature and its poor stability, the extraction and 

purification of the enzyme involves high costs (Cherry and Fidantsef 2003). 

The Aspergillus niger β-galactosidase is naturally secreted to the medium, 

but it has an optimum pH too much acid to be used in sweet cheese whey (the 

most important variety of cheese whey in Galicia, and in Spain too), therefore 

it can be only utilized in acid wheys which have less biotechnological 

possibilities because of its acid taste and because of its high content in salts 

(Rubio-Texeira 2006). Other advantage in the A. niger β-galactosidase 

(furthermore of the extracellular nature) is that it has got a good 
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thermostability, and could be used at high temperatures like for example 50ºC 

(Panesar et al., 2006). 

A hybrid β-galactosidase between K. lactis and A. niger was constructed, 

and it duplicated the secretion percentages with respect to the wild β-

galactosidase from yeast with the same secretion signal (Rodriguez et al. 2006). 

This hybrid β-galactosidase showed an optimal pH around the neutrality and 

it had a better stability at high temperatures compared with the wild protein 

from yeast. 

In this work different culture mediums were assayed to make a first 

approximation to scale-up the production of this biotechnological value 

hybrid β-galactosidase. The use of spent grains (a by-product of brewery 

industry) as an immobilizing material (yeasts colonize the surface of the carrier 

by spontaneous adhesion or attachment of the yeast to the surface of the 

nonporous cellulose-based carrier material prepared from spent grains), was 

checked too. 

MATERIAL AND METHODS 

The general material and methods to develop this work are summarized 

in (Rodriguez et al. 2006). 

Strain 

The K. lactis MW190-9B/pSPGK1-LAC4-LACA-KpnI strain 

(Rodriguez et al. 2006) secreting a hybrid protein between K. lactis and A. niger 

β-galactosidases was used. 

Media 

The following media were used: 
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YPD: complex medium which contains 1% yeast extract, 2% peptone 

and 2% glucose. 

YPL: complex medium which contains 1% yeast extract, 2% peptone 

and 2% lactose. 

Minimum medium (MM): minimum medium which contains 2% 

glucose or lactose and YNB 1X (6.7 gL−1 Yeast Nitrogen Base from BD 

without amino acids).  

SS-Lactose (5%): minimum medium which contains 0.5% KH2PO4, 

0.2% (NH4)2SO4, 0.04% MgSO4·7H2O, 0.2% Yeast Extract and 5% Lactose. 

Cheese Whey Powder provided by a Portuguese dairy (Lactogal - 

Porto). 

Microtiter Assay of β-galactosidase activity 

Intracellular 

Grown cells in flasks or culture tubes were span in Eppendorf tubes in 

a centrifuge for 5 minutes at 5000 rpm, until achieve a pellet of 100-150 µL. 

Then the biomass was washed in the Eppendorf tube with 9 volumes of PE 

buffer (Table 1), centrifuged and the supernatant was discarded. 

The biomass was resuspended in 3 volumes of PE buffer, and 4 

volumes of glass beads were added to the tube. Cycles of 30 seconds of vortex 

and 1 minute on ice, for 9 minutes were perfomed. 

Then 3 volumes of Z buffer (Table 2) were added and vortex gently. 

After that, a centrifugation for 15 minutes at 13200 rpm and 4ºC was made to 

separate the cell debris against the supernatant. 

Finally, the supernatant was collected in a new Eppendorf tube and 

maintained on ice. The quantity of total protein was measured using the 



Chapter 4 – Chapter 4.2 

136 

Bradford method (Bradford 1976) To determinate the β-galactosidase activity 

at least three dilutions were measured and the following formula was used: 

Intracellular β-galactosidase activity (nmoL/min/mL)= S1/6,13662/(V3*1000)*250/200*1000000 

1 -> Slope (in the kinetic measure) 

2 -> Extinction molar coefficient (empirically measured using buffer Z and pNP disolved in buffer 

Z. Nine different concentrations of pNP were measured using the same protocol as followed in the 

samples) 

3-> Sample volume used in mL 

Table 1. PE Buffer (200mL) 1, 2   

Na2HPO4                       1.708g 

NaH2PO4. H2O             1.1g 

KCl                                 0.15g 

MgSO4.7H2O               0.05g 

EDTA Na2.2H2O          0.0744g 

(NH4)2SO4                    7.92g 

Glycerol                       10mL 

Milli-Q Water          up to 200 mL final volume 

*1 It is necessary to adjust the pH to the optimum of the protein activity, and autoclave the 

solution. 

*2 It is necessary to add: 20 µL/mL of Protease Inhibition Cocktail (Roche) stock solution 

25X, 10 µL/mL of PMSF (100mM) stock solution 100X, 1 µL/mL of DTT (1M) stock 

solution 1000X and 2.8 µL/mL of 2-Mercaptoethanol 
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Table 2. Buffer (500mL)* 

Na2HPO4.7H2O                                                                                           8.05g 

NaH2PO4. H2O                                                                                            2.75g 

KCl                                                                                                            0.375g 

MgSO4.7H2O                                                                                             0.123g 

2-Mercaptoethanol                                                                                 1.35mL 

Milli-Q Water                                                            up to 500 mL final volume 

*It is necessary to adjust the pH to the optimum of the protein activity. 

To measure the β-galactosidase activity, 200 µL of extract or diluted 

extract was added into a microtiter plate, and 50 µL of pNPG (p-Nitrophenyl-

beta-D-galactopyranoside at 4 mg/mL) were added to initialize the reaction. 

The kinetic reaction was measured at 405 nm and 30ºC, for 15-30 minutes. 

Extracellular 

50 µL of fermentation supernatant were mixed with 150 µL of Buffer Z 

(Table 2). Then, 50 µL of pNPG (p-Nitrophenyl-beta-D-galactopyranoside at 

4 mg/mL) were added and the kinetic reaction was measured as in the 

intracellular protocol. To determinate the extracellular β-galactosidase activity 

the following formula was used:  

Extracellular β-galactosidase activity (nmoL/min/mg)=S1/6,13662/(V3*1000)*250/200*1000000 

1 -> Slope (in the kinetic measure) 

2 -> Extinction molar coefficient (empirically measured using Z buffer and pNP dissolved in Z 

buffer)  

3-> Protein sample concentration used in mg/mL 

Microtiter assay of the Bradford method 

It is based on the Bradford protocol (Bradford 1976). Coomassie Plus 

Protein Assay Reagent (Pierce) was used. As standard a stock of 2 mg/ mL of 

Bovine Serum Albumin (BSA):  100 mg of BSA dissolved in 50 mL of 0.9% 

NaCl was used. 1 mL aliquots of BSA stock were stored at -20 ºC. The 

working range used was between 100 – 1500 µg/mL. 
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Procedure 

 

Firstly, 10 µL of each standard or sample (diluted with water if it was 

necessary) were added into the plate wells and 10 µL of the diluent (water) 

were used for the blank wells. Then, 300 µL of the Coomassie Plus Protein 

Assay Reagent were added to each well, and mixed on a plate shaker for 30 

seconds. 

Finally, measure the absorbance at 595 nm (A595). 

NOTES: 

 The average A595 for the blanks were subtracted from the standard or sample 

readings. 

 If higher A595 readings were required, 15 µL of standard or sample and 300 µL of 

reagent per well were used. 

 Always two different dilutions of each sample were assayed, to check for possible 

interferences. 

Standard BSA  

(µL) 

MilliQ water  

(µL) 

[BSA] 

(µg/mL) 

A 375  (Stock)  125 1500 

B 325  (Stock) 325 1000 

C 175  (Std A) 175 750 

D 325  (Std B) 325 500 

E 325  (Std D) 325 250 

F 325  (Std E) 325 125 

G 100  (Std F) 400 25 
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Fermenters conditions 

A Plexiglas airlift was used to carry out the fermentations. The total 

capacity is 10 liters, and the working volume is 6 liters. In the first 24 hours 

the inocula grew in “batch” conditions, because the entry and the out of the 

medium were closed, to achieve enough amounts of cells to immobilize. The 

following days different flows and medium were used. Temperature, pH and 

airflow were controlled at 30ºC, 5 and 0.5 vvm respectively. Samples to 

measure the absorbance at 600nm, dry weight, HPLC analysis (lactose, 

glucose, glycerol and ethanol), and immobilized biomass were taken during 

the fermentation. 

Immobilization 

The immobilization was carried out following the Branyik protocol 

with small modifications (Branyik et al. 2002). 

Carrier preparation 

Dry spent grains (100 g), obtained after dry roller milling of malt and 

wort separation, were mixed in 1500 mL of 3 vol % HCl solution at 60°C for 

2.5 h to hydrolyze the residual starchy endosperm and embryo of the barley 

kernel present in the spent grains. The mixture was cooled, washed with water 

and dried. The remaining solids (approximately 30 g), mainly the husks of the 

barley grain, were partially delignified by shaking (120 rpm) in 500 mL of 2% 

(wt/vol) NaOH solution at 30°C for 24 h. After being washed several times 

with water (until neutral pH) and dried, the carrier (approximately 10 g) was 

ready to be used. The preparation procedure gave a 10% yield (on a weight 

basis) from dry spent grains. The drying steps applied in the preparation 

procedure were necessary only to quantify the yields. 
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Airlift System Preparation 

The Plexiglas airlift reactor (ALR) was sterilized with sodium 

hypochlorite solution (2% active chlorine) at least 2 days prior to 

fermentation. After draining the reactor, the sterile air supply was started and 

the reactor was filled with the sterilized slurry consisting of pretreated spent 

grains (90 g dry state) in Milli-Q water (1 L). Prior to inoculation, the reactor 

containing fresh carrier was washed with 50 L of sterile water. Subsequently, 

the reactor was charged with concentrated medium to obtain the desired 

concentration of the medium and then inoculated with 1 L of yeast cell 

suspension grown by using a rotary shaker. At the end of a 24 h batch growth, 

fresh sterilized medium was added and the continuous system was considered 

to be in steady state conditions after a period of 5 residence times. 

Immobilized biomass determination 

A sample of approximately 100 mL was taken from the reactor in an 

Erlenmeyer flask (previously dried at 105°C for 12 h and weighted). The bulk 

liquid was removed by decantation in a sink and the carrier was washed twice 

with 200 mL of distilled water each one. Then the flask with the carrier was 

dried at 105°C for 12 h and afterwards was weighted. After that the carrier 

was incubated with 100 mL of 3% (wt /vol) NaOH solution and shaken at 

150 rpm for 24 h. During this time the attached biomass was completely 

removed from the carrier and this was verified using microscopy. The 

biomass free carrier was weighted again after being washed several times with 

400 mL of distilled water (until the NaOH completely disappeared) and dried 

at 105°C for 12 h. The amount of yeast biofilm was determined from the 

weight difference before and after the treatment with caustic. Corrections of 

the biomass weight for the losses of carrier itself (approximately 6% wt) 

during the washing procedures were carried out with blank experiments with 

clean carrier. 
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Dry weight 

Samples of 25 mL were harvested in Falcon tubes (previously weighted 

and dried at 105ºC overnight), and centrifugated at 5000 rpm during 10 

minutes to separate the cells from the medium. Then, they were weighted and 

dried again at 105ºC overnight. The amount of yeast was determined from the 

weight difference before and after the sample acquirement. 

Sugars and alcohol measures 

Lactose, glucose, ethanol and glycerol were analyzed by HPLC 

(CHROMPACK Jasco), using a Varian MetaCarb 87H column eluted at 60ºC 

with 0.005M H2SO4 at a flow rate of 0.7 mL/min, and a refractive-index 

detector (Jasco 830-RI). 

Plasmid Stability 

 Cells were grown during almost 149 hours in complex medium, and 

cells dilutions were grown in selective and non-selective media (YPD, YPL 

and MM), where cfu (colony forming units) were countered. The % of 

stability was calculated dividing the number of cfus in selective medium 

against the number of cfus in complex medium. 

RESULTS AND DISCUSSION 

Flask’s cultures 

Firstly, cultures were done in the same complex medium (YP) but with 

different carbon source (glucose or lactose) to check the growth, the carbon 

source consumption of the strain producing the hybrid protein (Figure 1 and 

2), and the stability of the plasmid. The stability of the plasmid in YPD was 

100% and in YPL was 96,43%, after almost 149 hours (more than 50 

generations). 
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The strain MW190-9B/pSPGK1-LAC4-LACA-KpnI shows a similar 

growth in both assayed media (Figure 1 and 2) and the consumption of all the 

sugar (glucose or lactose respectively) finishes before 24 hours, for this reason 

the following experiments were focused in the first 30 hours of culture.  

In order to analyse the intracellular and extracellular β-galactosidase 

activity of the transformed strain new culture were made in both media 

(Figure 3). Both intra and extracellular β-galactosidase activities are higher in 

YPL than in YPD. 

To determinate the production of the β-galactosidase and to check the 

ability to grow in 5% of lactose (average concentration of lactose in cheese 

whey) new cultures were done at this sugar concentration (Figures 4 and 5). 

An improvement in both intra and extracellular β-galactosidase activity 

is observed when the transformed strain is grown in YP-lactose (5%) (Figure 

4) compared with the same strain growing in YP-lactose (2%) (Figure 3). At 

26 hours of culture with YPL (2% lactose) only 2050 nanomol/min*mg and 

135 nanomol/min*mL, intra and extracellular activity respectively were 

measured. However with YPL (5% lactose) at the same time, 7000 

nanomol/min*mg and 340 nanomol/min*mL, intra and extracellular activity 

respectively were measured, being 3.4 and 2.5 times higher (intra and 

extracellular β-galactosidase activity respectively) compared with the condition 

with less sugar per liter. 
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Figure 1. Growth (absorbance at 600 nm), glucose consumption, glycerol and ethanol production in 
YPD-glucose (2%) of the yeast strain MW190-9B/pSPGK1-LAC4-LACA-KpnI. 
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Figure 2. Growth (absorbance at 600 nm), lactose consumption, glycerol and ethanol production in 
YPD-lactose (2%) of the yeast strain MW190-9B/pSPGK1-LAC4-LACA-KpnI.  
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Figure 3. Growth (absorbance at 600 nm), intracellular and extracellular β-galactosidase activity of 
the yeast strain MW190-9B/pSPGK1-LAC4-LACA-KpnI in YPD-glucose (2%) (full line) and in 
YP-Lactose (2%) (dots). 
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Figure 4. Growth (absorbance at 600 nm) of the yeast strain MW190-9B /pSPGK1-LAC4-LACA-
KpnI in YP-Lactose (5%); and intracellular (activity per mg of protein) and extracellular (activity per 
mL of medium) β-galactosidase activities during 72 hours. 
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Figure 5. Lactose consumption, and glycerol and ethanol production of the yeast strain MW190-
9B/pSPGK1-LAC4-LACA-KpnI growing in YP-Lactose (5%). 

 

As it is well known, the utilization of peptone and yeast extract in 

industrial processes is avoidable because they are very expensive products and 

make the economic balance to fall down (Johansson et al. 2001; Michael J. 

Waites 2001). Therefore, other experiments were done in SS-5% lactose 

medium, due to its benefits in the industrial production, measuring only the 

extracellular β-galactosidase activity (Figure 6). 
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SS (5% Lactose)
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Figure 6. Growth (absorbance at 600 nm) of the yeast strain MW190-9B/pSPGK1-LAC4-LACA-
KpnI in SS-Lactose (5%), and extracellular β-galactosidase activity. 

 

 

The extracellular β-galactosidase activity was improved in the SS-

Lactose (5%) at 16 hours of culture with regard to the YP-Lactose (5%) 

medium, because the absorbance was similar in both cultures (7.5 and 7 

respectively) and the extracellular β-galactosidase activity was 250 and 160 

nanomol/min*mL respectively in both media. 

As the SS-Lactose it is a cheaper medium (in the scale-up the economy 

influence the decisions of which medium is possibly profitable or not), and 

better production results were obtained, SS-Lactose (5%) medium was used in 

the following experiments.  
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Immobilization 

Some previous experiments with Saccharomyces genre strains in spent 

grains as a support material have been done in the past, and good results were 

obtained (Branyik et al. 2002). However, to our knowledge, it is the first time 

that experiments with spent grains and Kluyveromyces lactis are made. 

The procedure to prepare the spent grains and to immobilize the cells is 

explained in: Branyik et al., 2002. Two grams of spent grains and 100 mL of 

culture medium inoculated to reach an initial optical density of 0.3 was 

maintained at 30ºC and 160 rpm during 96 hours. 

0,1491 gbio/gdrech were achieved, which means that the 24,47% of the 

cells have been immobilized, and taking into account that the immobilization 

yield is usually bigger in airlifts, these results were a good start point. 

Continuous Fermenters 

 A first fermenter was made in an airlift with 10 liters of capacity and 6 

liters of working volume. The culture medium was SS-Lactose (5%), and the 

inoculation of the yeast reached an initial optical density of 0,602. 

Temperature, pH and air flow were maintained at 30ºC, 5 and 0.5 vvm 

respectively. Bioreactor was maintained in batch operation for 19.25 h before 

switching to continuous feeding. Results obtained are summarized in figures 7 

and 8. 
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Figure 7. Growth, flow and extracellular beta-galactosidase activiy of the yeast strain MW190-
9B/pSPGK1-LAC4-LACA-KpnI in the SS-Lactose (5%) continuous airlift fermenter  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Lactose consumption and glycerol and ethanol production of the yeast strain MW190-
9B/pSPGK1-LAC4-LACA-KpnI growing in the SS-Lactose (5%) continuous airlift fermenter. 
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In this airlift the carbon source was finished before 24 hours, and the 

maximum of extracellular β-galactosidase activity was reached after this. 

The dilution rate was not enough because the lactose concentration 

after the batch phase was always under 2-3 g/L, therefore the cells did not 

grow properly and the results obtained were poor.  

A second fermenter was done in the same airlift, but using this time SS-

lactose (5%) in the first 250 hours, and cheese whey powder (diluted in water 

to reach a concentration of 5% lactose) afterwards (Figure 9). 

In this case, different dilution rates and two different feed mediums 

were analyzed. Dry weight was calculated to obtain a measure of 

“productivity”, which reflects the extracellular β-galactosidase activity per 

gram of cells, and should give us an idea of which dilution rate is better. Table 

3 shows a summary of the results of this last continuous airlift. 

In general, the maximum of extracellular β-galactosidase activity 

corresponds with the ingestion of lactose by the yeast, and is correlated with 

the dilution rate and the growth of the cells (Figure 9). 

Ethanol is produced during the use of the lactose, and is consumed 

when the lactose was not present. 

Moreover cells are washed when the dilution rate is close to their 

exponential growth rate. 
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Figure 9. On the top, growth (g cells), extracellular β-galactosidase activity and dilution rate; at the 
bottom, lactose consumption, and ethanol production of the yeast strain MW190-9B/pSPGK1-
LAC4-LACA-KpnI growing in continuous airlift fermenter. The dots line means the change of the 
culture medium (from SS-lactose to cheese whey). 
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Table 3. Time, dilution rate, extracellular β-galactosidase activity, total β-galactosidase activity, g 
cells / g spent grains, total immobilized biomass and productivity (in terms of liberation of 1 
nanomol of ortho-nitrophenol from ortho-nitrophenyl-β-D-galactopyranoside /min*g of cells) of 
the yeast strain MW190-9B/pSPGK1-LAC4-LACA-KpnI growing in continuous airlift fermenter. 

A minimum 0.23 g dry cell g–1 dry carrier was obtained in the first 

measure (after 24 hours of continuous mode) (Table 3) which is almost the 

minimum immobilized biomass that was obtained in previous works (Branyik 

et al. 2002), but a maximum of 0.45 g dry cell g–1 dry carrier was obtained in 

the last measure (after 13 days). Therefore, it seems that the spent grains are a 

good immobilizing substrate for this recombinant yeast strain. 

In the case of cheese whey the immobilization was almost the double 

than in the SS-lactose, so a big improvement was done using a cheaper and 

more pollutant culture medium. 

Time D (1/h) 

Extracellular 

β-galactosidase 

activity 

(nanomol/min*m

L) 

Total Extracellular 

β-galactosidase 

activity 

(activity in the 

whole reactor) 

g cells/g spent 

grains 

Total immobilized 

biomass g 

"Productivity" 

(nanomol/min per 

g) 

24-72 hours 0.097 68 410564 0.23 1.853 221616 

73-120 hours 0.208 44 262660 0.28 1.543 170259 

121-210 hours 0.084 51 304957 0.24 3.197 95377 

211 - 234 hours 0.179 32 194252 0.30 2.034 95504 

235 -289 hours 0.081 4 25405 0.37 7.547 3366 

290 - 328 hours 0.18 4 25030 0.45 2.678 9346 
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The optimum dilution rate in the whole process was close to 0.1 h-1, 

which was the half of the dilution rate expected, because generally in this type 

of productions the optimum is reached near to the exponential growth rate, 

which was previously calculated as 0.213 h-1 (data not shown). 

The production of extracellular β-galactosidase from cheese whey was 

not probably good due to the preparation of the medium (although it was 

tried to avoid the protein fraction of the cheese whey, it was not separated 

mechanically. These proteins probably affect to the mix) in the fermenter. 

Doing an effective protein separation before using it, will allow the use of 

cheese whey as medium culture. 

Although good results were carried out with regard to the 

immobilization and production of the hybrid β-galactosidase, more 

experiments have to be carried out to scale-up the process, and this is 

probably the first step in order to produce the hybrid β-galactosidase from 

cheese whey with K. lactis strains immobilized in spent grains. 
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SUMMARY 

Saccharomyces cerevisiae strains expressing under the control of the yeast 

ADH2 promoter the Aspergillus niger β-galactosidase gene fused in frame to 

the yeast α-factor secretion signal were able to secrete up to 94% of the total 

β-galactosidase activity into the growth medium and were able to grow in 

lactose-containing media. Moreover, approaches to rationally engineer the pH 

activity profiles of the acid A. niger β-galactosidase were done. Replacement of 

three acid residues of the surface of the enzyme: Glu439, Asp469 and Asp476 

with His, Gly and Ala, respectively, led to decreases in activity and a shift in 

the pH profile of the enzyme to the neutral range. The most striking success 

in this study was in proving the feasibility of shifting the pH profile of this 

important enzyme, A. niger β-galactosidase, to enhance its catalytic efficiency 

in milk and sweet cheese-whey. 

INTRODUCTION  

The use of β-galactosidase (EC 3.2.1.23) in the hydrolysis of lactose in 

milk and milk products is one of the most promising applications of enzymes 

in the food industry (Husain 2010). The enzyme has been isolated and 

purified from a wide range of microorganisms but most widely used β-

galactosidases in industry are derived from a few species of yeast (the most 

important being Kluyveromyces lactis) and fungal (Aspergillus niger) sources 

(Panesar et al., 2006), because these could be readily obtained with acceptable 

productivities and yields from cultivations of these microorganisms (Oliveira 

et al. 2011). Additionally, products obtained from these organisms are 

generally recognized as safe (GRAS status) for human consumption, which is 

critical for food related applications (Panesar et al., 2006). A. niger β-
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galactosidase is secreted to the extracellular medium, which is an additional 

advantage in industrial applications, whereas K. lactis β-galactosidase is 

intracellular. Fungal enzyme has a pH optimum in the acidic range (2.5-5.4) 

and a high temperature optimum that allows their use at temperatures up to 

50 °C (Panesar et al., 2006). Their main application is in the hydrolysis of acid 

whey, which derives from the production of fresh or soft cheeses (Yang and 

Silva 1995). Acid whey has, however, lower interest for nutrition purposes 

because of its undesirable acidic flavour and high saline contents (Rubio-

Texeira 2006). 

For most of the applications, therefore, the pH optimum of A. niger β-

galactosidase are too acidic. It largely limits the applications of the enzyme in 

milk and the neutral sweet cheese-whey (derived from hard cheese 

manufacturing). Generating an A. niger β-galactosidase more active and 

tolerant in neutral conditions would help to increase its applications.  

The main objective of this work was the heterologous expression of the A. 

niger β-galactosidase by Saccharomyces cerevisae strains in order to make 

experiments to shift the pH-profile of the enzyme to match the sweet cheese-

whey pH by rational protein engineering. Moreover, it was tested the ability of 

this recombinant yeast strain to grow on lactose media. 

MATERIAL AND METHODS 

Yeast and bacterial strains, plasmids and culture 

conditions 

 To maintain and propagate the plasmids by means of the usual DNA 

recombinant techniques (Ausubel et al., 1995) was used the strain of Escherichia 

coli: XL1-Blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F'proAB 

lacIqZD M15 Tn10 (Tetr)]) (Stratagene Cloning Systems). 



Heterologous expression and directed evolution of Aspergillus niger β-galactosidase 

157 

The following vectors were used: YEpFLAG (Eastman Kodak Company), 

allows the expression in S. cerevisiae of the cloned gene in frame to the yeast α 

factor secretion signal and expressed under the control of the yeast ADH2 

promoter and CYC1 terminator. This plasmid also contains the sequence of 

the FLAG peptide for the immunological detection of the secreted protein. 

The plasmid pVK1.1 (Kumar et al. 1992) which contains the LACA gene 

(which codes for Aspergillus niger β-galactosidase) was also used.  

The following yeast strain from S. cerevisiae: BJ3505 (pep4::HIS3, prb-

1.6R HIS3, lys2-208, trp1-101, ura3-52, gal2, can1) (Eastman Kodak Company) 

was used. 

Yeast cells were transformed by the procedure of Ito et al. (Ito et al. 

1983). 

Liquid batch cultures of transformed strains were performed (a) in 

Erlenmeyer flasks filled with 20% volume of culture medium at 30ºC and 250 

r.p.m. Samples were taken at regular time intervals to measure growth 

(absorbance at 600 nm), intra- and extracellular β-galactosidase activity, pH 

and ethanol; (b) in Biostat-MD (Braun-Biotech) 2 l vessel chemostat. The 

working volume of the culture was 1 l and the temperature was maintained at 

30ºC. The air flow was 2 l/min sparged through the culture with an agitation 

speed of 250 r.p.m. Samples and measurements were as described above. 

YPHSM modified (1% D-Glucose, 3% Glycerol, 1% Yeast Extract, 8% 

Bactopeptone), YP-2,5% Lactose (2.5% Lactose, 0.5% Bactotriptone, 1% 

Yeast Extract), YPD (0.5% Bactotriptone, 1% Yeast Extract, 0.5% D-

Glucose) or sweet cheese-whey permeate were used as culture media. Sweet 

cheese-whey permeate from a Galician (Spain) local dairy industry (Queizuar, 

S. L.) was obtained by ultrafiltration; the lactose concentration was 

approximately 5%. The cheese-whey permeate was further concentrated by 
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nanofiltration and a product with approximately 15% lactose was obtained 

and tested. 

Bacterial strain was grown in LBA (1% NaCl, 1% Bactotriptone, 0.5% 

Yeast Extract, 0.1% D-Glucose and 80 mg/ml of ampicillin). 

PCR conditions 

A 20 ng amount of template DNA was incubated with 30 pmol of 

primer-1 and 30 pmol of primer-2 in the presence of 0.25 mM dNTPs, Taq or 

Pwo polymerase buffer and 2 U of the corresponding polymerase. Initial 

denaturation was done at 94°C for 2 min, followed by 30 cycles of 1 min at 

95°C, 2 min at 50–57°C and 1.5–2.5 min at 72°C. There was a final incubation 

at 72°C for 10 min to fill-in ends. 

β-Galactosidase activity assays 

Intra- and extracellular β-galactosidase activity was measured by the 

method of Guarente (Guarente 1983) with modifications. For extracellular 

activity, a suitable volume of the culture medium was used instead of the 

permeabilized cellular suspension. β-Galactosidase activity was assayed by 

using ortho-nitrophenyl-β-D-galactopyranoside as the substrate. The reaction 

mixture contained 0.8 ml of 1.7 mM ortho-nitrophenyl-β-D-galactopyranoside 

in 0.075 M sodium acetate buffer (pH 4.5) and 0.2 ml of suitably diluted 

enzyme. The reaction was allowed to proceed for 10 min at 45°C and was 

stopped by adding 1 ml of 0.1 M Na2CO3. The absorbance was measured at 

420 nm. One enzyme unit (E. U) was defined as the quantity of enzyme that 

catalyzes the liberation of 1 nanomol of ortho-nitrophenol from ortho-

nitrophenyl-β-D-galactopyranoside per min under assay conditions. E.U. are 

expressed per mL of culture medium. 



Heterologous expression and directed evolution of Aspergillus niger β-galactosidase 

159 

In order to calculate the optimum pH, the reaction mixture was 

incubated in sodium acetate buffer adjusted respectively to pH 2; 3; 4; 5; 6; 7 

and 8. 

Lactose and ethanol concentration determination 

Lactose and ethanol concentration were determinated using the 

Lactose/D-Galactose kit (Boehringer Mannheim/R-Biopharm) and the 

Ethanol kit (Boehringer Mannheim/R-Biopharm), respectively, following the 

supplier specifications, or by HPLC. In this case, two HPLC systems were 

used: 

1. Waters HPLC, using a Shodex SC-1011 column eluted at 70ºC 

with Milli-Q water at a flow rate of 0.5 mL/min, and a 

refractive-index detector (Waters 410). 

2. Waters HPLC (Waters Breeze I), using a Waters Sugar-Pak 

column eluted at 90ºC with Milli-Q water at a flow rate of 0.5 

mL/min, and a refractive-index detector (Waters 2414). 

 Directed Evolution 

The server for automated comparative modeling, Swiss-Model (Arnold 

et al. 2006) was used to generate a three-dimensional model of A. niger β-

galactosidase. 

The Rosetta Design Server (Liu and Kuhlman 2006; Kaufmann et al. 

2010) was used to determine how the mutations affected the global energy of 

the protein.  

The program GETAREA (Fraczkiewicz and Braun, 1998) was used to 

compute the surface exposure of each amino acid in the homology modeling 

of A. niger β-galactosidase structure. 
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The QuikChange® XL Site-Directed Mutagenesis Kit (Stratagene) was used 

according to manufacturer's recommendations to make the site-directed 

mutagenesis. 

RESULTS AND DISCUSSION 

Design of the YEpFLAG-LACA constructions 

 LACA gene, which codifies for Aspergillus niger β-galactosidase, was 

amplified by the polymerase chain reaction with the following primers using 

the pVK1.1 plasmid (Kumar et al. 1992) as template: 

 LACACI 

5‟- GAC TAC AAG GAT GAC GAT GAC AAG GAA TTC AAG 

CTT TCC TCC GCT TGT GC- 3‟ 

LACACII 

5‟-  CCG CGG GTC GAC GGG CCC GGA TCC ATC GAT CTA 

GTA TGC ACC CTT CCG CT- 3‟ 

LACASS 

5‟- GAC TAC AAG GAT GAC GAT GAC AAG GAA TTC TCC 

ATT AAG CAT CGA ATC AA- 3‟  

LACA 

5‟- CTA TAT CGT AAT ACA CCA AGC TCG ACC TCG ATG 

AAG CTT TCC TCC GCT TG -3‟ 

Primers present a fragment of LACA sequence and carried 30 

nucleotides of the specific sequence required for homologous recombination 

with the vector YEpFLAG. 
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LACACI and LACACII were designed to amplify LACA gene by PCR 

and to clone into YEpFLAG vector maintaining the two secretion signal (the 

yeast α-factor secretion signal from the vector and the endogenous signal 

sequence of the LACA). The construction was called Y2SSLACA.  

LACACII and LACASS were designed to amplify LACA gene by PCR 

and to clone into YEpFLAG maintaining only the yeast α-factor secretion 

signal from the vector. The construction was called YPSSLACA.  

LACACII and LACA were designed to amplify LACA gene by PCR 

and to clone into YEpFLAG maintaining only the endogenous signal 

sequence of the LACA gene. The construction was called YOSSLACA.  

To make the constructions Y2SSLACA and YPSSLACA, YEpFLAG 

was previously digested with XhoI and BglII, and in the case of YOSSLACA, 

YEpFLAG was digested with NruI and BglII. PCR products and the digested 

YEpFLAG were cotransformed in the Saccharomyces cerevisiae strain BJ3505. 

The three constructions were obtained by homologous recombination. 

Kinetics of growth and secretion 

Discontinuous cultures were performed for 170 hours (≈ 7 days) in 120 

ml of YPHSM in Erlenmeyer flasks to study the kinetics of growth and 

secretion of A. niger β-galactosidase by the transformed yeasts with the 

different constructions (Figure 1). YPHSM media is a high stability expression 

media that allowed maintain the pH between 6 and 7.5. Synthesis of the 

enzyme is accelerated in all cases after 24 h of culture, when glucose is 

exhausted, since the ADH2 promoter is glucose-repressed. β-galactosidase 

activity in the culture medium increased with increasing cell concentration, 

reaching its maximum when cell growth approached the stationary phase. 
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Figure 1. Growth (Optical Density at 600 nm), pH, extracellular and intracellular β-galactosidase 
production (E. U. mL-1) by the BJ3505 strain transformed with the corresponding plasmids. Values 
represent the mean of 2 different cultures. 

The strain transformed with the plasmid YOSSLACA showed the 

lowest intracellular and extracellular β-galactosidase activity (Figure 1). This 

result may be attributed to the fact that the endogenous signal sequence of the 

LACA gene is not operating correctly in the S. cerevisiae strain BJ3505.  
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The strain transformed with the plasmid YPSSLACA, with the signal 

sequence of the yeast α-factor, showed the highest levels of extracellular and 

intracellular β-galactosidase activity (Figure 1).  This recombinant strain 

reached around 10-fold increase of extracellular β-galactosidase compared 

with the recombinant strain transformed with the plasmid YOSSLACA and a 

1.7-fold increase compared with the recombinant strain transformed with the 

plasmid Y2SSLACA. Moreover, the strain transformed with the plasmid 

YPSSLACA was able to secrete up to 94% of the total β-galactosidase activity 

into the growth medium. Previous trials of heterologous secretion of A. niger 

β-galactosidase by S. cerevisiae rendered levels of 40% (Kumar et al. 1992) and 

61% (Ramakrishnan and Hartley 1993) of the enzyme in the culture medium.  

To the best of our knowledge, there have been no reports on the 

expression of the LACA gene fused in frame to the yeast α-factor secretion 

signal by recombinant S. cerevisiae cells.  

Determination of the optimum pH 

 The supernatant of the liquid cultures and the permeabilized cells 

obtained at 62 hours of culture of the three recombinant S. cerevisiae strains 

were assayed to determinate the optimum pH of the different recombinant A. 

niger β-galactosidase. Measurements of the enzymatic activity were performed 

in sodium acetate buffer adjusted to different pH values from 2 to 8. Both 

intracellular and extracellular protein of the three different recombinant A. 

niger β-galactosidase showed an optimum pH of 3 (Figure 2). These results are 

similar to previous studies which indicate that the optimum pH values for β-

galactosidase from A. niger are from 2.5 to 4 (Widmer and Leuba 1979). 
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Figure 2. Determination of the optimum pH for the three different constructions. Data are the 

mean of two independent experiments. 

Kinetics of secretion and ethanol production in lactose media.  

Saccharomyces cerevisiae is the organism of choice in most commercial 

biotechnological processes. However, it cannot ferment lactose since it lacks 

both β-galactosidase and a lactose-permease system to transport the 

disaccharide into the cytoplasm. This inability to ferment lactose prevents this 

yeast from using milk whey. Milk whey could be a cheap substrate for the 

production of ethanol, yeast biomass or associated metabolites and, at the 

same time, the disposal problem would be alleviated. The development of S. 
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cerevisiae strains with the capability of metabolizing lactose is an important 

biotechnological objective (Becerra et al. 2003; Becerra et al. 2004). 

One of the attempts to construct a S. cerevisiae strain than could utilize 

lactose included the use of the vector pVK1.1 (Kumar et al. 1992) to engineer 

different recombinant S. cerevisiae strains with the capacity to produce and 

secrete A. niger β-galactosidase  (for a review see: (Oliveira et al. 2011)). 

Although, the main objective of this work was the heterologous expression of 

A. niger extracellular β-galactosidase in order to make experiments to shift the 

pH-profile of the enzyme to match the sweet cheese-whey pH, we decided to 

test the ability of the strain transformed with the plasmid YPSSLACA to grow 

in lactose media. Growth, ethanol formation and β-galactosidase production 

by the recombinant strain were measured both in a synthetic medium with 

2.5% of lactose (Figure 3) and ultrafiltration-permeate of cheese-whey three 

times concentrated (Figure 4). 

The recombinant strain transformed with the plasmid YPSSLACA was 

able to grow efficiently in lactose media without the diauxic growth typical of 

wild-type S. cerevisae in pre-hydrolyzed lactose (Porro et al. 1992). A 1.1-fold 

and 1.8-fold increase in extracellular and intracellular β-galactosidase 

production, respectively, were attained in a synthetic medium with 2.5% of 

lactose (Figure 3) comparing with the previous fermentation conducted in 

glucose medium (Figure 1). Domingues (Domingues et al. 2002) described that 

the β-galactosidase activity of a flocculent S. cerevisiae strain secreting A. niger β-

galactosidase increased linearly with increasing lactose concentrations, 

between 0.5 and 15% (w/v). However, when an ultrafiltration-permeate of 

cheese-whey three times concentrated (around 15% w/v) was used as culture 

medium the maximum extracellular β-galactosidase detected was around 150 

E.U/ml (Figure 4). This may be attributed to the presence of a β-galactosidase 

activity inhibitor in the whey permeate. Examples of A. niger β-galactosidase 
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inhibition by whey have been reported (Richmond et al., 1981). Trace amounts 

of divalent cations in the whey were pointed out as a possible cause of this 

inhibitory effect. 

Low ethanol productions were obtained. The reduced ethanol levels 

produced are in agreement with results obtained by other authors using 

different approaches to construct S. cerevisiae strains with the capability of 

metabolizing lactose (Porro et al. 1992; Rubio-Texeira et al. 1998), with the 

exception of the flocculent strain reported by Domingues et al. (Domingues et 

al. 1999). This non-fermentative behaviour of our recombinant strain may 

have interesting biotechnological advantages because they favour an efficient 

transformation of lactose into biomass and biomass-associated products. 

 

 

 

 

 

 

 

Figure 3. Growth (absorbance at 600 nm), ethanol production, extracellular and intracellular β-

galactosidase activity (E. U. mL-1) by the recombinant BJ3505 strain transformed with the plasmid 

YPSSLACA growing in YP-2.5% Lactose.  
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Figure 4. Growth (absorbance at 600 nm), ethanol production, extracellular β-galactosidase activity 

(E. U. mL-1) by the recombinant BJ3505 strain transformed with the plasmid YPSSLACA growing 

in permeated cheese-whey three times concentrated. 

On comparison with previously published heterologous A. niger β-

galactosidase expression levels, it was found that the maximum of        

extracellular β-galactosidase activity reached by our recombinant strain (740 

E.U./ml) was noteworthy in relation to initial attempts of expression of this 

enzyme by recombinant S. cerevisiae strains (Kumar et al. 1992; Ramakrishnan 

and Hartley 1993; Domingues et al. 2000). Although, subsequent works have 

demonstrated that increased levels of extracellular A. niger β-galactosidase 

were reached after a further optimisation (Domingues et al. 2002; Domingues 

et al. 2004; Domingues et al. 2005; Oliveira et al. 2007). Optimization of 

bioreactor operation together with culture conditions (lactose and yeast 

extract concentration) were described (Domingues et al. 2010) to led to a 21-

fold increase in the extracellular A. niger β-galactosidase activity produced by a 

recombinant S. cerevisiae strain when compared with preliminary shake-flask 

fermentations. Therefore, further studies about optimisation of the medium 

composition and growth conditions should be done to achieve increased 

production and secretion of β-galactosidase activity by our recombinant S. 

cerevisiae cells.  Moreover, scope also exists for industrial-scale optimisation 
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work with our recombinant strain, which could result in further increases in 

expression levels. 

Even though our main goal was to produce heterologously A. niger β-

galactosidase, we have observed that this recombinant S. cerevisiae strain was 

able to grow in lactose media. The production system hereby presented seems 

an interesting one for cheese-whey treatment. While reducing the organic load 

by hydrolyzing lactose and metabolizing the resulting monosaccharides, the 

recombinant strain produces A. niger β-galactosidase. 

Modification of the optimum pH of the Aspergillus niger β-

galactosidase 

As previously mentioned, A. niger β-galactosidase have optimal pH within 

the acidic range and this restrict the use of the enzyme to acid whey hydrolysis 

with lower interest for nutrition purposes. Generating an A. niger β-

galactosidase more active and tolerant in neutral conditions would help to use 

this enzyme for saccharifying milk and sweet cheese-whey. 

Application of enzymes in processes with a specified pH condition 

necessitates protein engineering to change pH performance. Rational design 

and site-directed mutagenesis were employed to improve the activity of 

phytases at lower pH (Tomschy et al. 2002) and to alter the pH optimum of 

xylanases (Turunen et al. 2002), α-amylases (Hidaka et al. 2002; Bessler et al. 

2003; Rubin-Pitel and Zhao 2006) and cellulases (Heinzelman et al. 2009; 

Cockburn and Clarke 2011). 

Different strategies can be chosen to modify the pH activity profile of an 

enzyme (Tomschy et al. 2002; Cockburn and Clarke 2011). The first is the 

replacement of ionisable groups that are directly involved in substrate or 

product binding and/or catalysis by non ionizable ones or by amino acids 
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with different charge or pK values (Tanner et al. 1999; Kim et al. 2006). The 

second is the replacement of residues that are in direct contact with the 

binding/catalytic residues by forming hydrogen bonds and/or salt bridges. 

Substitution of such residues may disturb the hydrogen-bonding network in 

the active site or alter the electronic environment of binding/catalytic residues 

(Fang and Ford 1998; Wang et al. 2005). The effects on the pH activity profile 

caused by this type of mutations are particularly difficult to predict. The third 

is the alteration of longer-range (indirect) charge-charge interactions by 

modification of the surface charge of the enzyme. This can be achieved by 

either (non selective) chemical modification of surface residues (Rashid and 

Siddiqui 1998) or by selective, site-directed modification of surface charge 

(Loewenthal et al. 1993; Cockburn and Clarke 2011). 

In general, it has been found that while introduction of charges near or in 

catalytic residues can have the most dramatic effect in altering the pKa values, 

this will often result in an inactive enzyme (Tynan-Connolly and Nielsen 

2007). Therefore, for a first approximation to shift the optimum pH of A. 

niger β-galactosidase we have preferred focus on the introduction or removal 

of charged groups on the surface of the protein.  

The three-dimensional structure of A. niger β-galactosidase has not been 

solved but there are several homologs that do have known structures. The 

server for automated comparative modeling, Swiss-Model (Arnold et al. 2006) 

was used to generate a three-dimensional model of A. niger β-galactosidase to 

facilitate the analysis of which residues would be suitable candidates for 

replacement (Figure 5). The homology modeling structure obtained from 

Swiss-Model of A. niger β-galactosidase was based on the structure of 

Penicillium sp. β-galactosidase (1tg7A.pdb) (Rojas et al. 2004). Both enzymes are 

members of the GH family 35. The significant sequence identity between β-

galactosidase from A. niger and β-galactosidase from Penicillium sp. (69%) 
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enables us to affirm that both proteins should share significant structural 

homology.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Ribbon diagram corresponding to the prediction of the tertiary structure of A. niger β-

galactosidase using the Swiss-Model program. The residues selected to perform site-directed 

mutagenesis have been drawn as spheres of colors (Glu439 red, Asp429 blue and Asp436 yellow). 

Two criteria were used for the selection of residues for replacement: first, 

the charged residue would be solvent exposed, which would increase the 

likelihood of the enzyme being able to tolerate the introduction of removal of 

charged residues and, secondly, the residue would pass the test of the 

RosettaDesign Server (Liu and Kuhlman 2006; Kaufmann et al. 2010). 

TheRosettaDesign server identifies low energy amino acid sequences for 

target protein structures (http://rosettadesign.med.unc.edu ). The client 

provides the backbone coordinates of the target structure and specifies which 

http://rosettadesign.med.unc.edu/
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residues to design. The server returns to the client the sequences, coordinates 

and energies of the designed proteins. RosettaDesign has been experimentally 

validated and has been used previously to stabilize naturally occurring proteins 

and design a novel protein structure(Liu and Kuhlman 2006; Kaufmann et al. 

2010). With respect to the first criteria, the program GETAREA 

(Fraczkiewicz and Braun, 1998; http://curie.utmb.edu/getarea.html ) was 

used to compute the surface exposure of each amino acid as a ratio of its 

exposed surface area in the homology modeling of A. niger β-galactosidase 

structure to the area exposed when it is in the peptide Gly-X-Gly. Residues 

were scored as „surface exposed‟ if this ratio was 0.30. 38 acid amino acids 

and 21 basic amino acids were considered to be surface exposed in the 

homology modeling of A. niger β-galactosidase structure. 

Only mutations of three residues matched the two criteria: Glu439His 

(charge reversal), Asp469Gly (charge removal) and Asp476Ala (charge 

removal) (Figure 5). These mutations and all the possible combinations of 

these three mutations were created (except for the combination of the three 

mutants that for unknown reasons it was impossible to create it). Site-directed 

mutagenesis was performed using the QuikChange® XL Site-Directed Mutagenesis 

Kit (Stratagene) using the construction YPSSLACA as template and the 

appropriate primers (Table 1) to make the PCR. 

To obtain the double mutations, Glu439His mutant was used as template 

to generate Glu439His/Asp469Gly mutant and Glu439His/Asp476Ala 

mutant, whereas Asp469Gly mutant was used as template to generate 

Asp469Gly/Asp476Ala mutant. 

 

 

 

http://curie.utmb.edu/getarea.html
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Table 1. List of primers and mutations performed. 

 

After polymerase chain reaction, the product was subjected to DpnI 

(Stratagene) digestion to remove template DNA and then transformed into E. 

coli XL1-Blue cells. The mutations were confirmed by nucleotide sequencing 

and the plasmids were transformed into S. cerevisiae BJ3505 strain for 

expression trials. 

The β-galactosidase activities of the various mutant enzymes were screened 

at pH 3, 4, 5, 6 and 7 to determine the effect, if any, of the amino acid 

replacements on the pH-activity profile of A. niger β-galactosidase (Figure 6). 

The introduction of mutations at these positions with basic and neutral 

replacements resulted in dramatic losses of activity. Whereas the Glu439His 

mutant maintained only 0.4% of wild-type activity, the Asp469Gly mutant had 

3.1% of wild-type activity and the Asp476Ala mutant retained 1.5% of wild-

type activity. However, while the activity was decreased, there were a shift in 

the pH profile to the neutral range in the mutant Glu439His and the mutant 

Asp476Ala (Figure 6). More than 54% and 48% of the residual activity of the 

Glu439His mutant was retained at pH 6.0 and pH 7.0, respectively, which 

Mutant Forward Reverse 

Glu439His 
CTACAGCAGCGAAcAcTCAACATCAT

ACAA 

TCCGAATGTCTGACCACGAAGAAAG

AG 

Asp469Gly 
CACTTAATGGACGCGgTTCAAAGAT

ACACG 

TGAGTGTACCACCAAGCTGAGGGA

TA 

Asp476Ala 
AAGATACACGTGACCGcTCACAATG

TCTC 

TGAATCGCGTCCATTAAGTGTGAGT

GTACC 

Glu439His/Asp469Gly 
CACTTAATGGACGCGgTTCAAAGAT

ACACG 

TGAGTGTACCACCAAGCTGAGGGA

TA 

Glu439His/Asp476Ala 
AAGATACACGTGACCGcTCACAATG

TCTC 

TGAATCGCGTCCATTAAGTGTGAGT

GTACC 

Asp469Gly/Asp476Ala 
AAGATACACGTGACCGcTCACAATG

TCTC 

TGAATCGCGTCCATTAAGTGTGAGT

GTACC 
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revealed that  mutant Glu439His was most neutral-tolerant among the three 

mutants and wild-type A. niger β-galactosidase. 
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Figure 6.  pH-activity profiles of the A. niger β-galactosidase wild-type and the three mutants 

generated. Activities at optimal pH were defined as 100%. Error bars represent the standard 

deviation from four separate experiments. 
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Figure 7. pH-activity at 3 and 7 of the A. niger β-galactosidase wild-type and the three doubled 

mutants generated. Activities at optimal pH were defined as 100%. Error bars represent the 

standard deviation from four separate experiments. 
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The double mutants also led to decreases in activity. The double mutant 

Glu439His/Asp469Gly retained 1.7% of wild-type activity, the 

Glu439His/Asp476Ala mutant had 0.95% of wild-type activity and the 

Asp469Gly/Asp476Ala retained 1.0 % of wild-type activity. In this case, the 

double mutants Glu439His/Asp476Ala and Asp469Gly/Asp476Ala showed a 

shift in the pH profile to the more neutral side (Figure 7). 

Although the effect of the single and double mutants, far of the 

hypothetical catalytic residues: Glu200 and Glu298 

(http://www.uniprot.org/uniprot/P29853), over the pH-activity profile of A. 

niger β-galactosidase is difficult to explain, it has been described that the 

structural bases of the alkalophilic character of the alkaline endoglucanases 

produced by bacteria and alkaline proteases involved an increase in the 

number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues 

(Wang et al. 2005). In our case, the decrease in Asp residues and/or the 

increase in His residue could explain the effect of the single mutants 

Glu439His, Asp476Ala and the double mutants Glu439His/Asp476Ala and 

Asp469Gly/Asp476Ala over the pH profile of A. niger β-galactosidase. 

Nevertheless, the precise mechanisms for the decrease of activity and over the 

pH-activity profile by these mutations are difficult to predict and structural 

analysis are necessary to further characterize the A. niger β-galactosidase and 

these mutations. 

In conclusion, although our data are preliminary, our study shows that it is 

feasible to improve the function of A. niger β-galactosidase under neutral pH 

conditions by rational protein engineering. 

 

 

http://www.uniprot.org/uniprot/P29853
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The concluding remarks of this thesis are the following: 

1. A methodical and efficient approach has been carried out to growth 

Kluyveromyces lactis β-galactosidase crystals. The full-factorial screen with 

response surface optimization allowed us to find conditions for 

growing good quality crystals with a small number of experiments to be 

performed. Optimal crystallization conditions for 20 μg of K. lactis β-

galactosidase were obtained in the presence of 0.1 M Tris-HCl, pH 8, 

15% PEG 6000 and 0.02 M (NH4)2SO4. Advantages obtained in this 

approach include improvements in β-galactosidase crystal volume and 

shape and also in reproducibility.  

2. Crystallization of K. lactis β-galactosidase (3.5 mg mL-1 in 0.05 M Tris-

HCl, 0.150 M NaCl and 0.002 M DTT, 7% Glycerol) was performed 

using the sitting drop method. Small plate-shaped crystals grew in 23-

27% (w/v) Polyethylene Glycol (PEG) 3350, 0.1 M BisTris pH 7.5-7.0, 

0.2 M Sodium Tartrate. Streak seeding performed under these 

conditions gave improved quality crystals that were suitable for X-ray 

diffraction experiments. 

3. K. lactis β-galactosidase subunit folds into 5 domains in a pattern 

conserved with other prokaryote enzymes solved for GH2 family, 

although two long insertions in domains 2 (264-274) and 3 (420-443) 

are unique and seem related to oligomerization and specificity.  

4. K. lactis β-galactosidase tetramer is an assembly of dimers, with higher 

calculated dissociation energy for the dimers than for its assembly, 

which can explain that equilibrium exists in solution between the 

dimeric and tetrameric form of the enzyme.  

5. Two active centres are located at the interface within each dimer, in a 

narrow channel of 10 Å width that makes the catalytic pockets 

accessible to the solvent. The unique insertion at loop 420-443 

protrudes into this channel and makes many putative links with the 

aglycone moiety of docked lactose, which may account for a high 

affinity of K. lactis β-galactosidase for this substrate and therefore might 

explain its unusually high hydrolytic activity. 

6. None of the structural determinants responsible for the reaction 

mechanism proposed to the Escherichia coli β-galactosidase, which 

involves transition from a deep to a shallow stage following substrate 

binding, are envisaged in the K. lactis β-galactosidase active site and, 

consequently, we suggest that this mechanism rules only for GH2 

enzymes being regulated by the lac operon. 
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7. A hybrid protein obtained by replacing the fifth domain of the β-

galactosidase of K. lactis by the one of Aspergillus niger, is active, reaches 

the culture medium and presents, in addition, greater stability at high 

temperatures and more convenient kinetics parameters for its 

biotechnological utilization. 

8. The K. lactis strain secreting the hybrid protein between K. lactis and A. 

niger β-galactosidases was immobilized in spent grains to produce the 

hybrid protein using lactose as carbon source. Spent grains were a good 

carrier to immobilize the recombinant strain. 

9. Saccharomyces cerevisiae strains expressing under the control of the yeast 

ADH2 promoter the A. niger β-galactosidase gene fused in frame to the 

yeast α-factor secretion signal were able to secrete up to 94% of the 

total β-galactosidase activity into the growth medium and were able to 

grow in lactose-containing media.  

10. Approaches to rationally engineer the pH activity profiles of the acid A. 

niger β-galactosidase were done. Replacement of three acid residues of 

the surface of the enzyme: Glu439, Asp469 and Asp476 with His, Gly 

and Ala, respectively, led to decreases in activity and a shift in the pH 

profile of the enzyme to the neutral range. 
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1. BIOLOGICAL MATERIAL 

1.1 Bacterial strains 

All the Escherichia coli strains used in this work to amplify the plasmids 

and to make the constructions are shown in the following table 1. 

Table 1. List of the Escherichia coli strains used. 

STRAIN GENOTYPE REFERENCE 

DH5α supE44 DlacU169 f80lacZDM15 hsdR17 recA1 endA1 

gyrA96 thi-1 relA1 

GibcoBRL 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´proAB laclq ZM15 Tn10 (Tetr)]c 

Stratagene Cloning 

Systems 

 

The bacterial strains were usually conserved in LB plates at 4ºC, after 

their growth at 37ºC overnight and periodically recultured each two months. 

The same happened with the strains transformed with plasmids with 

ampicillin resistance, but making them grow in LB plates supplemented with 

ampicillin. 

To maintain the strains during a long time, bacteria were inoculated in 

the same culture mediums but in liquid state. They grew with stirring 

overnight at 37ºC, and afterwards they were added into a vial (volume=2mL) 

with glycerol at 20%. Then, samples were frozen at -80ºC. 

1.2 Yeast strains 

Saccharomyces cerevisiae (table 2) and Kluyveromyces lactis (table 3) yeast 

strains were conserved in YPD or CM at 2% glucose plates (see yeast culture 

mediums) at 4ºC, after having grown at 30ºC during two or three days. They 

were recultured periodically each two or three months. To keep them during 
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long time, they were inoculated in YPD or CM, grown with stirring at 30ºC, 

and afterwards they were added into a vial (volume=2mL) with glycerol at 

50%, and finally were frozen at -80ºC. 

Table 2. List of the Saccharomyces cerevisiae strains used. 

Saccharomyces cerevisiae STRAINS 

BJ3505 
pep4::HIS3, prb-Δ1.6R HIS3, lys2-208, trp1-
Δ101, ura 3-52, gal2, can1 

Eastman Kodak 

Table 3. List of the Kluyveromyces lactis strains used. 

Kluyveromyces lactis STRAINS 
Y1140 MATa wt Provided by  R. Zitomer, 

University at Albany, USA  

MW190-9B MATa lac4-8 uraA Rag+ Provided by Micheline 
Wesolowski-Louvel. 
Université Claude Bernard. 
Lyon. France. 

 

2. CULTURE MEDIA 

1.5 % of bacto agar was added to the liquid mediums to prepare the 

semi-solid mediums. Solutions were sterilized in an autoclave at 121ºC and 

2Ba during 20 minutes.  

2.1 Bacteria culture media 

LB (Luria-Bertani) 

It is a general medium for bacteria growth, and its composition is: 

 1% Bactotryptone 

 0.5% Yeast Extract 

 0.5% NaCl 

 0.1% Glucose 
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LBA (Luria-Bertani supplemented with ampicillin) 

A Luria-Bertani medium supplemented with ampicillin (6-[D(-)-alpha-

Aminophenylacetamide]-penicillanic acid sodium salt from Sigma Aldrich) for 

the growth of bacteria transformed with plasmids which give the bacteria the 

ampicillin resistance  

The ampicillin solution is prepared at a final concentration of 70 

mg/mL with distilled water and is conserved at -20ºC. The final concentration 

in the LBA medium is 70 µg/mL.  

The gene which confers the ampicillin resistance codifies for an enzyme 

which is secreted to the periplasmic space, where catalyze the hydrolysis of the 

antibiotic β-lactamic ring.  

LBA/X-Gal/IPTG 

LBA plates supplemented with X-Gal (Eppendorf) and IPTG (Roche 

Diagnostics Corporation). After the sterilization of the LBA medium, 2 mL of 

20 mg/mL of X-Gal in N,N-dimethylformamide and 400 L of a IPTG 

solution 0.23 mg/mL in sterile distilled water were added to the medium. 

These plates were used to distinguish which colonies had or not β-

galactosidase. This happens due to the X-Gal (5-bromo-4-chloro-3-indolyl-β-

Dgalactopyranoside) which is hydrolyzed by the β-galactosidase giving a 

specific blue color. IPTG (Isopropyl-D-1Thiogalactopyranoside) is the 

inductor of the β -galactosidase in bacteria. It is a chemical analogue of 

allolactose which is non-hydrolyzable by the β-galactosidase, so works as 

inductor of the E. coli operon lac.  
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SOC 

This liquid medium is used to obtain competent cells. Its composition 

is: 

 2% Bactotryptone 

 0.5% Yeast Extract 

 0.0584% NaCl 

 0.0186% ClK 

2.2 Yeast culture media 

YPD  

It is a general medium for yeast growth. Its composition: 

 1% Yeast Extract 

 0.5% Bacto peptone 

 2% Dextrose 

YPL 

It is the same medium as YPD, but the carbon source is changed from 

glucose to lactose. 

CM 

Also known as SC, Synthetic Complete (Zitomer & Hall, 1976). It is a 

synthetic medium prepared in different way depending on the selection that it 

is needed. For example, a CM-Ura is a complete synthetic medium but 
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without uracil. Usually the carbon source used is glucose at 2%, but can be 

changed if It is necessary (for example: lactose, glycerol, galactose, etc). 

Its composition is (to make 1L): 

Glucose 20 g 

Amino acids mix (200X) 5 mL 

YNB* 67 mL 

Histidine, Leucine, Uracil, 
Adenine, Tyrosine** 

40 mg each 

Trytophan 30 mg 

* Added in sterile conditions after the sterilisation of the rest of the components, when the medium 

reaches 60ºC. 

** The auxotrophic marker was not added. 

 

 

Amino acids mix (200X) composition (to make 1L): 

Arginine, Methionine, 
Threonine 

2 g each 

Isoleucine, Phenylalanine 12 g each 

Lysine 8 g 

YNB (Yeast Nitrogen Base) composition (to make 1L): 

Vitamins Mix 300X 50 mL 

Trace Salts 150X 100 mL 

Ammonium sulphate* 75 g 

KH2PO4 15 g 

MgSO4 7.5 g 

NaCl 1.5 g 

CaCl2 1.5 g 

*Added when the rest of the components are dissolved, because of its insolubility. 
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Vitamins Mix 300X (to make 1L) mg Trace Salts 150X (to make 1L) mg 

Biotin 0.6 Boric acid 75 

Calcium pantothenate 120 Cupric sulphate 6 

Folic cid 0.6 Potassic Iodure 15 

Inositol 600 Ferric chloride 30 

Niacin 120 Manganese sulfate 60 

p-Aminobenzoic acid 60 Sodium molybdate 30 

Pyridoxine 120 Zinc sulfate 60 

Riboflavin 60 

Thiamine   120 

YPHSM modified 

General medium for yeast growth, recommended by Eastman Kodak 

for the production of recombinant proteins with YEpFLAG. 

Its composition is: 

 1% Yeast Extract 

 8% Bacto peptone 

 1% Dextrose 

 3% Glycerol 

SS-Lactose 

Minimum medium which contains: 

 0.5% KH2PO4 

 0.2% (NH4)2SO4 

 0.04% MgSO4·7H2O 

 0.2% Yeast Extract 

http://en.wikipedia.org/wiki/Manganese(II)_sulfate
http://en.wikipedia.org/wiki/Sodium_molybdate
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 5% Lactose. 

Cheese Whey 

Initially cheese whey obtained from the local dairy plant Queizuar S.L. 

(Bama, A Coruña, Spain) was used to do the cultures without any 

modifications. Afterwards, ultrafiltrated permeate of cheese whey 

concentrated (3X) was used in the fermentations. If a protein precipitation 

was observed after autoclave sterilization at 121ºC for 15 min, then it was 

removed by centrifugation (15 min at 10000 r.p.m.) under sterile conditions.  

3. CLONING VECTORS AND 

MOLECULAR MARKERS 

3.1 Cloning vectors 

 T-vector (pMBL): contains the bacterium replication origin, the α-

peptide, a Multiple Clonig Site (MCS), the lac promoter, the pUC 

replication origin and the ampicillin resistance gene. 

 YEpFLAG (Eastman Kodak Company): contains ADH2 promoter, 

which is repressed with glucose, yeast α factor secretion signal, twenty-

four base pairs that codifies the FLAG peptide for the inmunological 

detection, 2 micron to use it in S. cerevisiae, the ampicillin resistance gene, 

the selection marker TRP1 and the bacterial replication origin. 

 pSPGK1 (X. J. Chen. Institut Curie. Orsay. France): contains the 

secretory signal that corresponds to the pre-sequence (16 amino acids) 

of the K. lactis killer toxin (α-subunit) and the constitutive promoter and 

the terminator of the S. cerevisiae phosphoglycerate-kinase (PGK) gene. 
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 pLX8 (Das and Hollenberg 1982): contains the gene LAC4 which 

codes for Kluyveromyces lactis β-galactosidase, and the LAC12 gene which 

codes for K. lactis lactose permease. 

 pVK1.1 (Kumar et al. 1992): contains the gene LACA which codes for 

Aspergillus niger β-galactosidase. 

3.2 Molecular Markers 

To calculate the molecular weight of the PCR fragments and the 

constructions, two different molecular markers were used: 

 DNA lambda phage digested by the restriction enzyme BstEII 

from BioLabsTM (Daniels et al. 1983)  (Figure 1). 

 GeneRuler™ 1 kb DNA Ladder, 250-10,000 bp. The ladder is 

a mixture of chromatography-purified individual DNA 

fragments. (Figure 1) 

 

 

 

 

 

 

 

Figure 1. On the left, DNA lambda phage digested by the restriction enzyme BstEII. On the right, 

GeneRuler™ 1 kb DNA Ladder, 250-10,000 bp. 
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In Southern Blot experiments the DIG Labeled DNA Molecular 

Weight Marker VII (Roche) was used (Figure 2). 

 

Figure 2. DIG Labeled DNA Molecular Weight Marker VII. 

To calculate the molecular weight of the proteins, two different 

molecular markers were used (Figure 3): 

 SDS- Broad Range Marker (New England Biolabs) 

 PageRuler™ Plus Prestained Protein Ladder (Fermentas) 

 

Figure 3. On the left, SDS- Broad Range Marker. On the right, PageRuler™ Plus Prestained 

Protein Ladder. 
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4. Molecular Biology Techniques 

4.1 DNA extraction from bacteria 

4.1.1 Plasmid DNA extraction from E. coli 

(Sambrock et al., 1989; Ausubel et al., 1995). 

Alkaline Lysis Protocol. 

 

To obtain plasmid DNA in small and large scale (miniprep or 

maxiprep), the same procedure was used, changing only the initial volume (1 

mL or 25 mL respectively). The volume of the solutions was adapted to the 

scale of the extraction. 

25 mL: 

Cells were inoculated in 25 mL of adequate media (with the appropriate 

antibiotic), and grew overnight at 37ºC with stirring. The following day, cells 

were precipitated at 8000 r.p.m. during 5 minutes. Supernatant was discarded, 

and pellet was resuspended in 1.5 mL of Solution I using vortex. Then an 

incubation of 5 minutes at room temperature was done, with the tube opened. 

Afterwards, 3 mL of Solution II were mixed thoroughly in the tube by 

inversion 4–6 times, and incubated during 5 minutes in ice. Then 2.5 mL of 

solution III were added, and mixed again inverting the tube 4–6 times. After 5 

minutes of incubation in ice, the mix was centrifuged at 12000 r.p.m. during 

10 minutes. The supernatant was transferred to a new clean tube. 5 mL of 

PCIA (mix of phenol, chloroform and isoamyl alcohol) were then added, 

mixed by vortex, and centrifuged 5 minutes at 8000 r.p.m. Then the aqueous 

phase was collected and was added to a new clean tube, with 10 mL of 

ethanol at 95% to precipitate the DNA. A new vortex was made, and the 

samples were incubated during 10 minutes at -10ºC. Afterwards the samples 

were centrifuged at 13000 r.p.m. 15 minutes. Pellet was washed with 10 mL of 
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ethanol at 70%, and centrifuged again at 13000 r.p.m. 15 minutes. Finally, 

pellet was dried at vacuum and resuspended in 100-250 L of Milli-Q water. 

 Solutions: 

Solution I 

 

 

 

 

 

It was sterilised in the autoclave and kept at 4ºC in the fridge. 

Solution II 

 

 

 

It was prepared once it was needed from two sterile solutions of NaOH 2M 

and SDS at 20%. 

Solution III 

 

 

 

 

It was sterilised in the autoclave and kept at 4ºC in the fridge. 

Glucose 50 mM 

EDTA 10 mM 

Tris-HCl 

pH 8 
25 mM 

NaOH 0.2 M 

SDS 1% 

Potassium Acetate 5M 60 mL 

Glacial acetic acid 11.5 mL 

Milli-Q Water 28.5 mL 
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PCIA 

To prepare, liquid phenol was mixed in a proportion of 1:1 with 

chloroform, and was equilibrated with 1xTE in a proportion of 3:1 shaking 

vigorously during several minutes. After that, the mix was incubated at room 

temperature in the darkness, until the aqueous phase was completely 

separated. Then the aqueous phase was aspired, repeating this procedure at 

least 2 or 3 times. Finally a proportion of 1/25 isoamyl alcohol was added and 

the mix was kept at 4ºC in the darkness. 

Treatment with RNAse 

Using the last protocol, although a great amount of DNA is purified, a 

considerable amount of RNA is also extracted, and for some procedures it 

was necessary to eliminate it. In these cases, 0.1 μg of RNAse (Roche and 

Fermentas) were added for each 1 mL of DNA, and incubated during 15 

minutes at 37ºC. 

4.1.2 Plasmid DNA extraction from E. coli using 

QIAprep


 or similar commercial kits 

Cells were inoculated in LBA plates and were grown overnight at 37ºC. 

Then, cells were collected using a toothpick, and added into an Eppendorf tube 

with 250 L of buffer 1 (Resuspension buffer). After a vigorous vortex during 

20 seconds, 250 L of buffer 2 (Lysis buffer) were added, and the samples 

were mixed thoroughly by inverting the tube 4–6 times. Afterwards 350 L of 

buffer 3 (DNA Binding Buffer) were added and mixed thoroughly by 

inverting the tube 4–6 times again. 

Then, the samples were centrifuged at 13000 r.p.m. 10 minutes. 

Supernatant was applied to a spin column and centrifuged at 13000 r.p.m. 1 

minute. The flow-through was discarded, and the column was washed with 
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600 L of buffer 4 (Column Wash Buffer), and centrifuged at 13000 r.p.m. 1 

minute. 

Finally, the spin column was placed in a new 1.5 mL Eppendorf tube, and 

DNA was eluted adding 50 L of Milli-Q water and centrifuging the tube at 

13000 r.p.m. 1 minute. 

4.2 DNA extraction from yeast 

4.2.1 Plasmid Extraction using the miniprep 

solutions 

A modified miniprep protocol was used to extract the plasmids from 

yeast. 

Yeast cells were grown in selective media during 24-48 hours (until the 

culture was saturated). Cells were centrifuged at 5000 r.p.m. 5 minutes and 

supernatant was discarded. 200 µL of Solution I (minipreps) and glass beads 

(Ø=425-600 µm) just until the top of the liquid were added to the pellet. The 

mix was vigorously stirred by vortex during 3 or 4 minutes, putting the cells 

on ice every 30 seconds. Then, mix was centrifuged at 13000 r.p.m. 2 minutes, 

and supernatant was taken. 

200 µL of solution II were added and mixed inverting the tube several 

times. Afterwards 150 µL of solution III were added and mixed inverting the 

tube several times again. Then they were incubated 5 minutes on ice, and 

centrifugated at 12000 rpm during 5 minutes. The pellet was discarded, and 

the supernatant was put in a new clean tube. 

1 volume of PCIA was added and vortex was applied gently during 5 

seconds, and centrifugated at 13000 rpm during 2 minutes. The aqueous 

phase was taken to another clean tube, and two volumes of ethanol (95%) and 

0.1 volumes of NaAcOH (3M) were added. The tube was incubated on ice (or 
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at -20ºC) during 30 minutes, and centrifugated at 13000 rpm during 15 

minutes. Then the pellet was washed with 1 mL of ethanol (70%) and 

centrifugated at 13000 rpm during 15 minutes. 

Finally, the samples were dried in vacuum and the samples weer 

resuspended in Milli Q water. 

4.2.2 Plasmid Extraction using the plasmid miniprep kit 

solutions 

A modified plasmid miniprep protocol was used to extract the plasmids 

from yeast. 

Firstly grow culture to saturation in 4 ml selective media and spin1.5 

mL for 10 min in Eppendorf tube, and remove supernatant. Add another 

1.5mL of culture to pellet, spin, and remove supernatant (optional). Then 

resuspend the cells in 500 µL sterile Milli-Q water. Spin cells 5 minutes at 

5000 rpm, remove supernatant, and resuspend pellet in 250 µL of buffer 1 

(Resuspension buffer containing RNAse A). 

Afterwards add 250 µL buffer 2 (Lysis buffer) and 250 µL acid washed 

glass beads, vortex for 2 min and let sit 5 min at 4ºC. Then add 350 µL chilled 

buffer 3 (DNA Binding Buffer) and mix by inverting, and incubate on ice for 

5 min. 

Spin at 13000 rpm during 10 min and place a spin column in 1.5 mL 

Eppendorf tube and apply supernatant. Afterwards spin 60 sec at 13000 rpm, 

drain tube and wash column with 0.75 mL of buffer 4 (Column Wash Buffer). 

Spin 60 sec at 13000 rpm, drain tube and spin again. 

Finally place column in a clean 1.5 mL Eppendorf tube and elute DNA 

with 50 µL Milli-Q water and spin 30 seconds. 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4.2.3 Genomic DNA extraction 

4.2.3.1 mi-Yeast Genomic DNA Isolation 

Kit (Metabion) 

For the yeast genomic DNA extraction the mi-Yeast Genomic DNA 

Isolation Kit (Metabion) was used. 

Firstly add 1 mL cell resuspension (e.g. overnight culture containing 

approximately 1-2x108 cells) to a 1.5 mL tube on ice, and spin at 13,000 rpm 

for 1 min and remove the supernatant. Then add 300 μL of 50 mM EDTA 

(pH 8.0) to the cell pellet and gently pipet up and down until cells are 

suspended. Add 7.5 μL of Lyticase (stock solution 20 mg/mL) and invert the 

tube 25 times to mix. 

Incubate at 37°C for 30 min on shaker to digest the cell walls. Invert 

the sample occasionally during the incubation and spin at 13,000 rpm for 1 

min to pellet the cells. Remove the supernatant, add 400 μL of Cell Lysis 

Buffer and mix thoroughly. Add 10 μL of Proteinase K (stock solution 10 

mg/mL) to the 1.5 mL tube and mix thoroughly. Incubate the sample at 65°C 

for 15 - 30 min. 

Then cool the sample to room temperature and add then 3 μL of 

RNase A (stock solution 10mg/mL) to the 1.5 mL tube and incubate at 37°C 

for 15 - 30 min. Afterwards add 100 μL of PPT Buffer and vortex for 20 sec. 

Incubate the sample on ice for 5 min. The spin at 13,000 rpm (12,000 x g) for 

1 min at room temperature and transfer the supernatant into a new 1.5 mL 

tube. Add 600 μL of Column Binding Buffer without wetting the rim and mix 

by vortexing. Set one spin column into a collection tube and transfer 650 μL 

of the sample (prepared previously) to the spin column. 

Then spin at 13,000 rpm for 1 min and discard the flow through. The 

liquid will flow through the spin column membrane leaving the genomic 
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DNA bound to the filter membrane. (Repeat these steps until all supernatant 

has passed through the column.) 

Remove the spin column from the collection tube and discard the flow 

through. Place the spin column in the same collection tube and add 650 μL of 

Column Wash Buffer without wetting the rim. Spin at 13,000 rpm for 1 min 

and remove the spin column from the collection tube and discard the flow 

through. 

Replace the spin column in the same collection tube, add 350 μL of 

Column Wash Buffer without wetting the rim and spin at 13,000 rpm for 1 

min. 

Spin again at full speed (13,000 rpm) for 1 min, place the spin column 

in a clean 1.5 mL microcentrifuge tube and discard the collection tube 

containing the filtrate. 

Finally, elute by adding 50 - 100 μL of Milli-Q water and incubate the 

spin column with TE buffer or distilled water at room temperature for 1 min. 

Spin at 13,000 rpm for 1 min and the Yeast Genomic DNA is now ready to 

use. 

4.2.3.2 Fast Chromosomal Yeast DNA 

extraction protocol 

For the yeast genomic DNA extraction the Fast Chromosomal Yeast 

DNA extraction protocol (Ausubel FM and K 1995) was used. 

Firstly prepare 10 mL of yeast culture and let grow overnight. Spin at 

4000 rpm for 5 minutes, and discard supernatant. Resuspend the pellet with 

the micropipette in 500 μL of Milli-Q water and transfer into an Eppendorf 

tube. Then spin at 13000 rpm for 10 seconds, discard the supernatant and 

resuspend the pellet in 200 μL of Breaking Buffer (Table 4) with 2 μL of 
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RNAse (25mg/mL) plus 0.3 g of glass beads (approx. 200 μL of volume) plus 

200 μL of PCIA. Vortex at 15-20 Hz for 3 minutes. 

Then add 200 μL of buffer 1xTE and vortex again briefly (approx. 4 

seconds), spin at 13000 rpm at 5 minutes and room temperature, and transfer 

the supernatant by decantation into a new clean tube. 

Afterwards add 1 mL of ethanol (100%) and mix inverting the tube. Let 

the tube 5-10 minutes at room temperature. Then spin at 13000 rpm for 5 

minutes and eliminate the supernatant by decantation. 

Finally dry the tube with vacuum, and resuspend the DNA with 40 μL 

of 1xTE. Leave the samples at 4ºC (fridge). 

Table 4. Breaking Buffer (10 mL) 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 DNA purification from agarose gels 

For the DNA purification from agarose gels the mi-Gel Extraction Kit 

(Metabion) was used. 

Triton 100X 200 μL 

SDS 20% 500 μL 

NaCl 2.5 M 400 μL 

Tris ClH pH=8.0 

1M 
100 μL 

EDTA pH=8 

0.5M 
20 μL 

Milli-Q 

Water 
8.78 mL 
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Firstly cut the desired DNA band with a clean sharp scalpel from the 

TAE agarose gel. Place the gel piece in a 1.5 mL microcentrifuge tube and add 

3 volumes of Gel Extraction Buffer to the 1.5 mL microcentrifuge tube. 

Then incubate for 5 - 10 min at 65°C (mix thoroughly for 10 sec and 

invert the tube every 2-3 min to melt the gel). Insert the spin column into the 

collection tube and add the solution into the spin column.  

Centrifuge the spin column at 13,000 rpm for 1 min at room 

temperature and discard the flow through liquid and replace spin column in 

collection tube. Add 500 μL of Column Wash Buffer to the spin column and 

centrifuge at 13,000 rpm for 1 min at room temperature. 

Afterwards discard the flow through liquid and repeat the previous 

steps once more. To eliminate any possibility of Column Wash Buffer 

carryover, spin at 13,000 rpm for 1 min at room temperature and replace the 

spin column into a clean microcentrifuge tube. 

Finally elute the DNA by adding 10 μL of Milli-Q water directly onto 

the centre of the white spin column membrane and spin at 13,000 rpm. The 

DNA is now ready to use. 

4.4 DNA enzymatic manipulation 

4.4.1 Enzymatic digestion 

Genomic and plasmid DNA were digested using restriction 

endonucleases (New England Biolabs, Roche, Takara and Fermentas) 

following the manufacturer recommendations with regard to the buffer, 

optimal temperature, enzyme concentration and digestion time. 
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4.4.2 Ligation reaction 

4.4.2.1 T4 DNA ligase protocol 

T4 DNA ligase (Roche and Fermentas) and the specific supplied buffer 

were used using a final volume of 10 L. Several proportions of vector/insert 

were assayed, but normally the relationship employed was 1/5 or 1/10. 

Different times and temperatures were assayed too, but normally the reaction 

was incubated during 2-4 hours at room temperature, or overnight at 4ºC or 

14ºC (incubator). 

4.4.2.2 T-Vector protocol 

It is a commercial kit to clone pcr products. Figure 4 is a representation 

of the pMBL vector 

 

Protocol: 

1. Mix in a vial: 

a. 1 μL T4 DNA ligase 10X buffer 

b. 1 μL pMBL T-vector (50 ng/μL) 

c. x μL DNA insert 

d. 1 μL T4 DNA ligase (5U) 

e. H2O up to 10 μL 

2. Incubate the vial at room temperature (20-22ºC during an hour) 

3. Transform 50 mL of competent cells with 5 μL of ligation mix. 
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Figure 4. pMBL vector. 

4.4.2.3 GAP-repair technique (Zaragoza, 

2003) 

It is based on the yeast DNA recombination using the nick repair 

mechanisms. Firstly a nick is made in the plasmid (where we want to insert the 

gene) using restriction enzymes, and afterwards the insert is amplified by PCR 

using primers with thirty nucleotides tails (homologues of the region of the 

plasmid where we made the nick). 

Then the yeast is cotransformed with the PCR and the linear plasmid, 

and the yeast makes the recombination, creating a circular plasmid with the 

insert in the chosen place. 

4.4.3 Amplification of DNA using the PCR 

(polymerase chain reaction) 

It is based on the property of the DNA polymerases to synthesize a 

complement strand, using a primer and a template. The most used polymerase 

is the Taq polymerase which is an enzyme obtained from Thermus aquaticus (a 

thermophile bacterium). Sometimes a more accurate replication is needed and 

other polymerases as for example Pfu or Pwo were used. In the case of very 

long templates, the Taq Long (New England Biolabs) was used. Finally to 

α-peptide 

 
Bacterium replication origin 
α-peptide 
MCS 
lac promoter 
pUC replication origin 
Ampicillin resistance 
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make the site directed mutagenesis, the Quikchange or the Quikchange XL 

were used (Stratagene). 

Typical mix to make the pcr: 

Products Volume (µL) 

Template 0.2 (depending on the sample) 

dNTPs 4 

Each primer 2.5 

Specific Buffer 5 

Polymerase 0.5 

Milli-Q Water 35 

The programs used in the thermocyclers only have differences 

depending on the annealing temperature of the primers, and the length of the 

fragment of DNA to amplify (for Taq for example, aprox. 1 minute per 

1000pb). 

PCR cycles: 

Number of cycles Temperature (ºC) Time (seconds)  

1 95 180 Initialization 

30 

95 30 Denaturation 

Depend on the 

primers 
45 Annealing 

72 
Depend on the 

fragment to amplify 

Extension / 

Elongation 

1 72 600 Final Elongation 

1 4-8 ∞ Final Hold 

http://en.wikipedia.org/wiki/Denaturation_(biochemistry)#Nucleic_acid_denaturation
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4.4.4 Purification of the DNA amplified by PCR 

For the purification of the DNA amplified by PCR, the commercial kit 

mi-PCR Purification Kit (Metabion) was used. 

Firstly add 5 volumes of DNA Binding Buffer to the PCR reaction and 

mix well by pipetting. Place a spin column into a 2 mL collection Tube. 

Transfer the PCR/DNA Binding Buffer mixture to a spin column and spin at 

13,000 rpm for 1 min at room temperature. 

Then remove the spin column and discard the liquid flow-through 

from the collection tube by decanting and replace the spin column in the same 

decanted collection tube. 

Add 750 μL of Column Wash Buffer to the spin column, spin at 13,000 

rpm for 1 min at room temperature, add 250 μL of Column Wash Buffer to 

the spin column, spin at 13,000 rpm for 1 min at room temperature again and 

remove the spin column discarding the liquid flow-through by decanting. 

Afterwards replace spin column back into the same collection tube. 

To eliminate any possiblity of Column Wash Buffer carryover spin at 

13,000 rpm for 1 min at room temperature. Transfer the spin column to a 

clean microcentrifuge tube and elute the DNA by adding 50 μL of Milli-Q 

water 

Finally spin at 13,000 rpm for 1 min at room temperature and discard 

the spin column. The purified DNA is now in the microcentrifuge tube and 

ready to use. 

After the protocol the DNA is free of all reaction components, such as 

primers, linkers, enzymes, salt, and dNTPs. 
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4.5 Bacteria Transformation Protocols 

4.5.1 Rubidium chloride method (Kushner, 1978) 

 

Competent cells preparation 

 

SOC medium was inoculated in a proportion of 1mL of preinoculum 

per 100 mL of SOC, and was incubated at 37ºC with stirring (300rpm) until 

the culture reached 0.6-0.8 DO600nm. Then the culture was put on ice during 10 

minutes to stop the cell division. Afterwards cells were taken to sterile tubes 

and were centrifugated at 5000 rpm during 7 minutes in a refrigerated 

centrifugue. Once the cells are in ice, be aware that in every step of the 

protocol they should be on ice. 

Then the supernatant was discarded, and a small amount of TBF-1 

solution (table 5) was added to gently resuspend the cells. After they were 

resusended, the rest of the volume up to 40 mL was added, and the cells were 

incubated during 5 minutes to let the TBF-1 solution work properly. 

After this time of incubation, cells were precipitated again with a 

centrifugation of 5000 rpm during 7 minutes. Supernatant was discarded, and 

the solution TBF-2 (15 mL) (table 6) was added in the same way as the TBF-

1, using the solution to gently resuspend the cells. 

Finally cells were poured in small aliquots in Eppendorf tubes, and 

conserved at -80ºC 
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To prepare 80 mL of TBF-1:   To prepare 15 mL of TBF-2: 

Table 5. TBF-1      Table 6. TBF-2 

Cl2Rb 0.964 g 

Cl2Mn 0.788 g 

CH3COOK 0.232 g (pH 5,8) 

Cl2Ca 0.116 g 

Glycerol 12 mL 

Add Milli-Q water to achieve 80 mL or 15 mL (respectively) of final volume, 

and filter the solution. 

Cells transformation 

The transformation was carried out using aliquots of 100 L of fresh 

defrosted cells (during 20 minutes on ice) per transformation. Then the 

necessary amount of DNA was added to the cells, and they were incubated on 

ice for 15 minutes. 

Afterwards, cells were forced to a thermal shock at 42ºC during 45 

seconds (depending on the strain could be less or more time). Cells were 

incubated again on ice during 3 minutes, and after that, 1 mL of LB was added 

to the mix of cells and DNA, and was incubated at 37ºC during 1 hour. 

Finally, cells were centrifuged at 2500 rpm during 3 minutes, and they 

were inoculated with 100 µL of LB in LBA plates. 

 

 

 

Cl2Rb 0.02 g 

Cl2Ca 0.2 g 

Glycerol 2.28 mL 
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4.6 Yeast Transformation Protocols 

4.6.1 Litium acetate modified method (Ito et al., 

1983) 

It is a transformation method for yeasts. 

Firstly inoculate 50 mL YPD with a fresh colony, and leave growing at 

30ºC and 150 rpm overnight. Then inoculate 50 mL of fresh YPD with the 

preinoculum grown overnight (calculate to leave the inoculums at approx. 0.4 

(OD600). Monitor the growth until the OD600 is around 0.6-0.8, and then 

spin down the cells (5000 rpm for 5 minutes). 

Afterwards resuspend cells in 1 mL of lithium acetate buffer-1XTE 

(prepared using 900 µL of Lithium Acetate 1M and 100 µL of 10XTE), and 

spin cells again at 5000 rpm for 5 minutes.Turn on a thermal blockand set for 

42ºC. 

Then resuspend cells in 100 µL of lithium acetate buffer 1XTE (for 

each transformation) and mix them in an Eppendorf tube with 5 µL of boiled 

sheared salmon sperm DNA (5 mg/mL), and with 0.5-10 µg of DNA. Invert 

the tube to mix them, and add 300 µL of PEG 4000 (50%). 

Incubate 30 min at 30ºC and 150 rpm on an orbital shaker, add 88 µL 

of DMSO, and incubate 7 min 42°C. Then spin down cells (5000 rpm for 5 

minutes), and wash cells with 1 mL of Milli-Q water. (Optional if it is a very 

difficult transformation) Resuspend cells in 1 mL of fresh YPD and incubate 

at 30ºC for 2 hours, and spin down cells (5000 rpm for 5 minutes). 

Finally resuspend cells in 100 µL of Milli-Q water and grow them in 

adequate plate. 
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To prepare 100 mL of 10XTE:  

1 M Tris pH 7.5 10 mL          

         0.5 M EDTA pH 

8 

2 mL    

Milli-Q water 88 mL         

4.6.2 Electroporation Modified Method (Kooistra et 

al. (2004)) 

It is a transformation method with more efficiency than the Lithium 

acetate. 

Protocol: 

Put a yeast preinoculum growing overnight in 10 mL YPD. The 

following day use 200 µL of this preinoculum in fresh YPD, until the cells 

reach an O.D. 600nm of approx. 0.6-0.8 (exponential phase). Meanwhile, put 

the electroporation cuvettes (2mm path, Cell Projects LTD) and the cuvette 

holder in ice during at least 15 minutes. Spin the cells during 5 minutes at 

5000 rpm, discard the supernatant and wash the cells in 1 mL of Milli-Q water 

and centrifugated again during 5 minutes at 5000 rpm. Discard the 

supernatant, and incubate the cells in 1 mL of pre-treatment buffer (see 

composition in table 7) during 30 minutes at 30ºC. 

Centrifugate the cells at 5000 rpm during 5 minutes, discard the 

supernatant and add 1 mL of electroporation buffer (see composition in table 

8). Mixed the cells with the DNA, and incubate other 15 minutes on ice. Then 

put 50 µL of the suspension in each electroporation cuvette, and place them 

to the electroporator (BioRad Gene Pulser II). Voltage 1000 V, capacitance 

25µF and a resistance 400 ohm have to been fixed. Then make a pulse, and 
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afterwards add 1 mL of YPD and transfer the suspension in an Eppendorf 

tube in ice during 15 minutes. 

Finally incubate at 30ºC during 1 hour, and plate on appropriate media. 

Table 7. Pre-treatment Buffer. 

Volume: 100 mL 

YPD 

95 mL 

DTT 1M (dithiothreitol) 

20 mL 

HEPES 1M (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ) 

30 mL 

Table 8. Electroporation Buffer. 

Volume:100 mL 

Tris-HCl 1M, pH 7.5 

1 mL 

Sacarose 1M 

27 mL 

Lithium acetate 1M 

100 μL 

Milli-Q Water 

71,9 mL 

 

4.7 Electrophoresis techniques 

4.7.1 Agarose gels 

To observe the PCR products, plasmid digestions and in general the 

DNA used in the constructions, agarose (Sigma) gels were made with a 

concentration of agarose between 0.7-1% in 1xTAE Buffer (Table 9). 

The voltage used was between 60-100 V and the migration time 

depended in the size and the concentration of the gel, and in the size of the 

DNA fragments. 

Before loading the samples in the gel, 1/10 of final volume of blue 

loading buffer (Table 10) was added. 
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Table 9. 1xTAE Buffer. 

Tris-Acetate 0.04M 

EDTA 0.1M 

Acetic Acid 30mM 
Table 10. Blue Loading Buffer 

Glycerol 50% 

Bromophenol Blue 0.25% 

Xylene Cyanol 0.25% 

4.7.2 Agarose gels staining 

4.7.2.1 Ethidium Bromide 

To observe the bands of DNA in the agarose gels, gels were stained 

with Ethidium Bromide in a concentration of 5 drops of diluted ethidium 

bromide stock (1/10 of a stock of ethidium bromide at 10 mg/mL) per 100 

mL of TAE. Afterwards gels were watched in an UV transiluminator Bio-Rad 

Universal Hood II. 

The photographs were taken using the software Quantity One 4.5.0 

(Build 46). 

4.7.2.2 SYBR® Safe DNA Gel Stain 

To observe the bands of DNA in the agarose gels, SYBR® Safe 

DNA Gel Stain was added to all of the samples (following the distributor 

instructions), before loading the gel. Gels were watched in an UV 

transiluminator Bio-Rad Molecular Imager Gel Doc XR+ System. 

The photographs were taken using the software Image Lab. 

4.7.3 Polyacrylamide gels (SDS-PAGE) 

To observe the proteins, polyacrylamide gels were made at a fixed 

concentration of 10% following the Laemmli protocol(Laemmli 1970). The 

electrophoretic cell used was a Bio-Rad Mini Protean. 

Separating and Stacking gels were prepared as follows: 

http://www.medicine.mcgill.ca/Pharma/Green/LabProductDocuments/SYBR%20Safe%20DNA%20Gel%20Stain-Invitrogen.pdf
http://www.medicine.mcgill.ca/Pharma/Green/LabProductDocuments/SYBR%20Safe%20DNA%20Gel%20Stain-Invitrogen.pdf
http://www.medicine.mcgill.ca/Pharma/Green/LabProductDocuments/SYBR%20Safe%20DNA%20Gel%20Stain-Invitrogen.pdf
http://www.bio-rad.com/prd/en/US/adirect/biorad?ts=1&cmd=BRCatgProductDetail&vertical=LSR&catID=e1a0b16a-7dcb-4feb-a363-0822c8a47bcb&country=US&lang=en&javascriptDisabled=true
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Solution Separating Gel Stacking Gel 

Acrilamide 45% 2,2 mL 0,55 mL 
Tris 1.5 M pH 8.8 (6.8) 2,5 mL (0,63 mL) 
SDS 10% 0,1 mL 0,05 mL 
APS 10% 0,1 mL 0,05 mL 
TEMED 0,004 mL 0,005 mL 
Milli-Q H2O 5,1 mL 3,68 mL 

All the components of the separating gel were mixed adding the APS 

and the TEMED at the end, and the solution was introduced between the 

crystals. Distilled water was added in the top of the solution to avoid the air 

contact with the solution which makes the polymerization slower. 

After 20-30 minutes (when the polymerization finished), the water was 

discarded and the components of the stacking gel were introduced between 

the crystals, and finally the comb was introduced. All the system was flooded 

in Tris-ClH-Glycine Buffer (table 11). 

The protein samples were loaded after being mixed with 50% of 2X 

Laemmli loading buffer (table 12), and incubated at 95ºC for 5 minutes. 

Electrophoresis was made at 100 V meanwhile the sample migrates into 

the stacking gel, and at 120-150 V when the sample migrates into the 

separating gel. Once the bromophenol blue dye went out, the electrophoresis 

was stopped. 

Table 11. Tris-ClH-Glycine Buffer. 

Tris-HCl 25 mM pH 8.3 

Glycine 192 mM 

SDS 0,1% 
Table 12. 2X Laemmli Loading Buffer (1mL). 

SDS 10% 400 µL 

Glycerol 200 µL 

Tris-HCl 1M pH 6.8 120 µL 

Bromophenol Blue 0.1% 20 µL 

Milli-Q Water 160 µL 

Β-mercaptoethanol 100 µL 
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4.7.4 Polyacrylamide gels (SDS-PAGE) Staining 

Three different protocols of staining were assayed: 

4.7.4.1 Coomasie Brilliant Blue method 

To stain the proteins in the polyacrilamide gels the protocol used was as 

described by (Volker et al. 1985). Gels were incubated in Coomassie brilliant 

blue (CBB) G-250 with slow stirring for two or three hours (or even 

overnight), and were washed with distilled water to eliminate the excess of 

dye. The sensibility is 0.05-0.1 µg each band. 

4.7.4.2 Two solutions with methanol 

To stain the proteins in the polyacrilamide gels two solutions were 

used. The first was named as “Solution I or Staining Solution” (Table 13) and 

the second was named as “Solution II or Fade Solution” (Table 14). 

Firstly the polyacrylamide gel was incubated with slow stirring in 

Solution I for 1 hour. Then the solution I was discarded and the gel was 

incubated in the same conditions as solution I but with solution II for 30 

minutes. Finally the dehydrated gel was incubated in distilled water for 10 

minutes. 

Table 13. Solution I or Staining Solution (500mL). 

Coomasie Brilliant Blue 0.1% 0.5 g 

Methanol 40% 200 mL 

Acetic Acid 10% 50 mL 

Milli-Q Water 250 mL 
 

Table 14. Solution II or Fade Solution (100mL). 

Methanol 40% 40 mL 

Acetic Acid 10% 10 mL 

Milli-Q Water 50 mL 

 

4.7.4.3 Microwave protocol 
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To stain the proteins in the polyacrilamide gels two solutions were 

used. The first was named as “Solution I or Staining Solution” (Table 15) and 

the second was named as “Solution II or Fade Solution” (Table 16). 

Firstly the polyacrylamide gel was heated in the microwave at maximum 

potency (up to 90ºC) with Solution I for 15 seconds. Then it was incubated 

for 10 minutes with stirring. Afterwards the solution I was substituted by 

solution II and the gel was heated in the microwave at maximum potency (up 

to 90ºC) again for 15 seconds. Finally the gel was incubated at room 

temperature for at least 2 hours with stirring in this solution II. 

Table 15. Solution I or Staining Solution (100mL). 

Coomasie Brilliant Blue 25 mg 

Acetic Acid 10 mL 

Milli-Q Water 90 mL 
Table 16. Solution II or Fade Solution (100mL). 

Acetic Acid 10 mL 

Milli-Q Water 90 mL 

4.8 Crude Protein Extracts 

To obtain crude protein extracts a 1L culture growing for at least 48-72 

hours absorbance at 600 nm of 3) was centrifugated at 7000 rpm for 10 

minutes at 4ºC (all the protocol has to be made at 4ºC and with ice). 

Discarded the supernatant, the cells were washed once in 5 mL cool distilled 

water and once in 5 mL Buffer A (Table 17), and centrifugated after the 

washes at 6000 rpm during 5 minutes. 

Then cells were suspended in 3 mL of Buffer A with 0.5 volumes of 

glass beads (Ø=425-600 µm). Afterwards, 3 µL of pepstatin (4mM final 

concentration), leupeptin (4mM), aprotinin (2 µg/mL), beta-mercaptoethanol  

(2 µM) and PMSF were added. 
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Five or six cycles of 20 seconds at maximum vortex and 20 seconds on 

ice were made to disrupt the cells. Then the extract was centrifugated at 8000 

rpm for 15 minutes. 

Finally discarded the pellet, the supernatant was centrifugated again in a 

new clean tube at 13000 rpm for 60 minutes. The supernatant of this last step 

was used as the crude protein extract, and depending on the following 

experiments it was stored at 4ºC or at -20ºC or -80ºC. 

Table 17.  Buffer A. 

Tris HCl 20 mM pH 7.8 

(NH4)2SO4 300 mM 

MgCl2 10 mM  

EDTA 1 mM 

Glycerol 10% 

5. Analytical techniques 

5.1 β-galactosidase activity 

5.1.1  Eppendorf Assay 

5.1.1.1 Intracellular 

Grown cells in flasks or culture tubes were span in 10 mL tubes in a 

centrifugue for 5 minutes at 5000 rpm. Supernatant was discarded and then 

cells were washed with 2 mL of Buffer Z (Table 18), and span again for 5 

minutes at 5000 rpm. Cells were resuspended in 2 mL of Buffer, and 110 µL 

of chloroform and 175 µL of SDS (Sodium Dodecyl Sulphate) 0.1% were 

added to the tube. 

Afterwards, a vortex of 20 seconds was made to break the cells and the 

extract was incubated for 10 minutes at 30ºC. Once the incubation finished, 

440 µL of O-nitrophenyl-β-D-galactoside (4 mg/mL) were added and the 

reaction was neutralized adding 0.5 mL of Na2CO3 1M. The absorbance at 

420 nm after cells centrifugation and the initial reaction, middle reaction and 
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finish reaction time were measured, and were used with the following 

formulas to calculate the β-galactosidase activity. 

Formulas: 

1. (Abs 420nm t2 –Abs 420nm t1)/(ε*(t2-t1)) 

2. Abs 420nm t1/(ε*(t1-t0)) 

3. Abs 420nm t2/(ε*(t2-t0)) 

An average of the three formulas was done. 
The volume of the reaction and the volume of cells were taken into account. 
ε is the molar extinction coefficient : 4500 M−1 cm−1. 

Table 18. Buffer Z. 

Volume:500 mL* 

Na2HPO4.7H2O                                                                                           8.05g 

NaH2PO4. H2O                                                                                            2.75g 

KCl                                                                                                            0.375g 

MgSO4.7H2O                                                                                             0.123g 

2-Mercaptoethanol                                                                                 1.35mL 

Milli-Q Water                                                            up to 500 mL final volume 

*It is necessary to adjust the pH. 

5.1.1.2 Extracellular 

Grown cells in flasks or culture tubes were span in 10 mL tubes in a 

centrifugue for 5 minutes at 5000 rpm, and 100-300 µL of supernatant were 

collected and added into a tube with 2 mL of Buffer Z (Table 18). 

Then the tube was incubated for 10 minutes at 30ºC. Once the 

incubation finished, 440 µL of O-nitrophenyl-β-D-galactoside (4 mg/mL) 

were added and the reaction was neutralized adding 0.5 mL of Na2CO3 1M. 

The absorbance at 420 nm and the initial reaction, middle reaction and finish 

reaction time were measured in minutes, and were used with the following 

formulas to calculate the β-galactosidase activity. 
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Formulas: 

1. (Abs 420nm t2 –Abs 420nm t1)/(ε*(t2-t1)) 

2. Abs 420nm t1/(ε*(t1-t0)) 

3. Abs 420nm t2/(ε*(t2-t0)) 

An average of the three formulas was done. 
The volume of the reaction and the volume of extract were taken into account. 
ε is the molar extinction coefficient : 4500 M−1 cm−1 

5.1.2 Microtiter Assay 

5.1.2.1 Intracellular 

Grown cells in flasks or culture tubes were span in Eppendorf tubes in 

a centrifugue for 5 minutes at 5000 rpm, until achieve a pellet of 100-150 µL. 

Then the biomass was washed in the Eppendorf tube with 9 volumes of PE 

buffer (Table 19), and the supernatant was discarded. 

The biomass was resuspended in 3 volumes of PE buffer, and 4 

volumes of glass beads were added to the tube. A vortex was made with cycles 

of 30 seconds of vortex and 1 minute on ice, for a total time of 9 minutes. 

Then 3 volumes of buffer Z were added and vortex gently. Then a 

centrifugation for 15 minutes at 13200 rpm and 4ºC was made to separate the 

cell debris against the supernatant. 

Finally, the supernatant was collected in a new Eppendorf tube and 

maintained on ice. The quantity of total protein was measured using the 

Bradford method. To determinate the β-galactosidase activity the following 

formula was used: 
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Formula: 

 

A Δ405*D/ ε/ Prot 

 

A Δ405*D is an average of the Δ405 multiplied by the respective dilution. 

ε is the molar extinction coefficient : 6136‟6 M−1 cm−1 

Prot is the quantity of protein measured by the Bradford method 

 

Volume:200 mL*1*2 

 

Table 19. PE Buffer. 

Na2HPO4                                                                                                   1.708g 

NaH2PO4. H2O                                                                                              1.1g 

KCl                                                                                                              0.15g 

MgSO4.7H2O                                                                                               0.05g 

EDTA Na2.2H2O                                                                                      0.0744g 

(NH4)2SO4                                                                                                   7.92g 

Glycerol                                                                                                      10mL 

Milli-Q Water                                                            up to 200 mL final volume 

*1 It is necessary to adjust the pH, and autoclave the solution. 

*2 It is necessary to add: 

 20 µL/mL of Protease Inhibition Cocktail (Roche) stock solution 25X. 

 10 µL/mL of PMSF (100mM) stock solution 100X. 

 1 µL/mL of DTT (1M) stock solution 1000X. 

 2.8 µL/mL of. 2-Mercaptoethanol 

To measure the β-galactosidase activity, 200 µL of extract or diluted 

extract was added into a microtiter plate, and 50 µL of pNPG (p-Nitrophenyl-

beta-D-galactopyranoside at 4 mg/mL) were added to initialize the reaction. 

The kinetic reaction was measured at 405 nm and 30ºC, for 15-30 minutes. 

5.1.2.2 Extracellular 

Mix 50 µL of fermentation supernatant with 150 µL of Buffer Z. Add 

50 µL of pNPG (p-Nitrophenyl-beta-D-galactopyranoside at 4 mg/mL) and 

measure the kinetic reaction as in the intracellular protocol. 
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Formula: 

 

A Δ405*D/ ε/ Vol 

 

A Δ405*D is an average of the Δ405 multiplied by the respective dilution. 

ε is the molar extinction coefficient : 6136‟6 M−1 cm−1 

Vol is the volume of extract used. 

 

5.2 Protein Quantification 

5.2.1 Bradford method 

All the following protocols are based on Bradford protocol (Bradford 

1976). 

5.2.1.1 Eppendorf Assay 

At first, it is necessary to prepare dilutions of known protein 

concentrations, to calculate a linear regression between absorbance and 

protein concentration, as in the example with BSA 1mg/mL (Bovine Serum 

Albumin): 

1. 0.5 µL + 999.5 µL Milli-Q water 

2. 1 µL + 999 µL Milli-Q water 

3. 2 µL + 998 µL Milli-Q water 

4. 4 µL + 996 µL Milli-Q water 

5. 8 µL + 992 µL Milli-Q water 

6. 16 µL + 984 µL Milli-Q water 

Then, prepare your samples and dilute them if it is necessary. After that 

take 800 µL of every sample and pattern, and mix in a new Eppendorf with 

200 µL of Bradford Reactive (BIORAD, Pierce, etc), mix gently and incubate 

at room temperature for 10 minutes. Remind to make a blank with 200 µL of 

Bradford Reactive and 800 µL of Milli-Q water. 

Then measure the absorbance at 595nm, against the blank, and use the 

linear regression to estimate the protein concentration. 
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5.2.1.2 Microtiter Assay 

Coomassie Plus Protein Assay Reagent (Pierce) was used. 

STANDARDS 

Working Range: 100 – 1500 µg/mL 

BSA Stock: 2 mg/mL (100 mg of BSA dissolved in 50 mL of 0.9% NaCl) 

Store 1 mL aliquots at -20 ºC. 

Standard BSA  

(µL) 

MilliQ water  

(µL) 

[BSA] 

(µg/mL) 

A 375  (Stock)  125 1500 

B 325  (Stock) 325 1000 

C 175  (Std A) 175 750 

D 325  (Std B) 325 500 

E 325  (Std D) 325 250 

F 325  (Std E) 325 125 

G 100  (Std F) 400 25 

 

Procedure 

 

Add 10 µL of each standard or sample (dilute with water if necessary) 

into the plate wells. Use 10 µL of the diluent (water) for the blank wells. 

Add 300 µL of the Reagent to each well, and mix on a plate shaker for 

30 seconds. 

Measure the absorbance at 595 nm (A595). 
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NOTES: 

 Subtract the average A595 for the blanks from the standard or sample readings. 

 If higher A595 readings are required, use 15 µL of standard or sample and 300 µL of reagent per well. 

 Always assay two different dilutions of each sample, to check for possible interferences. 

5.2.2 Nanophotometer 

1-2 L of sample were taken to the nanophotometer cuvette, and 

measured following the manufacturer information. 

5.3 DNA quantification 

5.3.1 Spectrophotometric Assay 

5 L of sample were diluted with Milli-Q water in a final volume of 1 

mL. This dilution was chosen to make easy the following calculations, because 

with this dilution the absorbance measured was multiplied by 10 to express 

the concentration in g/L. Measures were done in a Cecil CE 2041 using 1 

mL quartz cuvettes. Sample absorbances were measured between two 

wavelengths, 260 and 280 nm, and the real concentration was calculated 

assuming that one unit of A260 is equivalent to a concentration of 50 g/mL 

of double stranded DNA. 

The relationship A260/A280 is an index of the purity grade of the sample. 

The ideal value is 1.8 (Sambrook et al., 1989). 

5.3.2 Nanophotometer 

1-2 L of sample were taken to the nanophotometer cuvette, and 

measured following the manufacturer information. 

 

5.4 High Performance Liquid Chromatography (HPLC) 

Three different HPLC systems were used to measure the sugars and 

alcohols in the fermentations. 
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5.4.1 Waters HPLC (I) 

Initially a Waters HPLC was used. Lactose, Glucose, Galactose, 

Glycerol and Ethanol were analyzed by HPLC (Waters), using a Shodex SC-

1011 column eluted at 70ºC with Milli-Q water at a flow rate of 0.5 mL/min, 

and a refractive-index detector (Waters 410). 

5.4.2 Waters HPLC (II) 

A Waters HPLC was used. Lactose, Glucose, Galactose, Glycerol and 

Ethanol were analyzed by HPLC (Waters Breeze I), using a Waters Sugar-Pak 

column eluted at 90ºC with Milli-Q water at a flow rate of 0.5 mL/min, and a 

refractive-index detector (Waters 2414). 

5.4.3 JASCO HPLC 

In Braga, lactose, glucose, ethanol and glycerol were analyzed by HPLC 

(CHROMPACK Jasco), using a Varian MetaCarb 87H column eluted at 60ºC 

with 0.005M H2SO4 at a flow rate of 0.7 mL/min, and a refractive-index 

detector (Jasco 830-RI). 

5.5 Ethanol and Lactose Kits 

Sometimes, lactose and ethanol were measured with specific Lactose 

and Ethanol kits from Boehringer Mannheim and Megazyme, following 

strictly the distributor protocol. 

5.6 Protein Purification 

5.6.1 Afinity Chromatography purification 

Biologic LP from Bio-Rad (a chromatographic system) was used with a 

5 mL of volumen agarose column refilled with p-Aminephenyl-1-thio-β-D-

galactopiranoside (Sigma) which was maintained by temperature control (4ºC) 

using a refrigerated bath (model Multitemp III from Pharmacia Biotech). 
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The column was equilibrated with phosphate buffer 50mM pH 7 

during 1 hour. Then 7.5 mL of sample (approx. 1.5 mg of total protein) was 

loaded into the column, and the buffer loading was fixed at 0.4 mL/min 

during 100 minutes (40 mL). 

Afterwards, the elution was made changing the phosphate buffer into 

sodium borate buffer 0.1 M pH 10.1 during approx. 100 minutes at 0.4 

mL/min again. The fractions were collected using a fraction collector (model 

2110 from Bio-Rad), neutralizing the pH to avoid the denaturalization of the 

protein. 

β-galactosidase activity was measured, and those samples which have 

the maximum activity were concentrated and desalinized using the 

microultrafiltration systems (Amicon ULTRA-4, 30000 MWCO). 

5.6.2 Immunopurification 

Firstly prepare TBS (50 mM Tris HCl, with 150 mM NaCl, pH 7.4) 

buffer which is the optimum buffer for protein and resin.  

Then suspend the resin by gentle inversion and make sure the bottle of 

ANTI-FLAG M2 affinity gel is a uniform suspension of gel beads. Remove 

0.250 mL aliquot for use and immediately transfer the suspension to an 

Eppendorf tube. Centrifuge the resin at 5000 G (maximum) in a refrigerated 

centrifuge, and discard the glycerol buffer with a pipette. 

Then place 500 µL of TBS into the Eppendorf and wash the gel by 

loading five sequential aliquots (500 µL each one) of TBS using the pipette to 

mix the beads with the TBS. Between the loads, centrifugue again at 5000 G 

(maximum) in a refrigerated centrifuge, and discard always the liquid. The 

meaning of these sequential washes is to replace the glycerol with TBS and 

therefore equilibrate the resin for use.  
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Once, the resin is equilibrated, load it with the TBS and the protein 

solution (crude extract), and incubate overnight in a Petri plate with gently 

stirring.  

The following day, the resin and the protein solution are applied to an 

empty chromatography column, and let the crude extract leaves the column 

by gravity. The elution is performed by adding FLAG peptide in a 

concentration of 150ng/µL to compete with beta-galactosidase. 

Finally the purified protein is concentrated around 3-8 mgr/ml by 

filtration in AMICON ULTRA-4 (Millipore, UFC 803024). 

6. Cell fractionation 

To make the cell fractionation, put an inoculum at 0.3-0.4 of 

absorbance at 600 nm, and wait until it reaches 0.6-0.8. Then centrifugate cells 

at 3000 rpm for 5 minutes at 4ºC. The supernatant has to be collected and 

named as S1*. On the other hand, cells have to be suspended in 25 mL of 

Milli-Q water, and afterwards centrifugated in a weighted tube at 4000 rpm 

and 4ºC for 5 minutes. 

Once the centrifugation finishes, weight the tube again, and calculate 

the cells wet weight. Then use Tris-SO4 pH 9.4 100 mM to resuspend the cells 

(2 mL per gram of cells). Add DDT 1M to a reach a final concentration of 10 

mM, and incubate cells at 30ºC with stirring. 

Afterwards, centrifugate the cells at 4000 rpm and 4ºC for 5 minutes, 

and resuspend them in Lyticase Buffer (Table 20) at a final concentration of 

0.15 g/mL. Add 2-3 mg of lyticase per gram of wet weight, and incubate at 

30ºC with soft stirring for 20-40 minutes (measuring every 10 minutes the 

absorbance to check the protoplasts formation). 
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Then centrifugate again at 4000 rpm and 4ºC for 5 minutes. Collect the 

supernatant and name it as S2*, and resuspend the pellet in 1-2 mL of Milli-Q 

water. Centrifugate the resuspended pellet at 4000 rpm and 4ºC for 5 minutes. 

Collect the supernatant and name it as S3*. Resuspend the pellet in 1-2 mL of 

Milli-Q water and centrifugate again at 4000 rpm and 4ºC for 5 minutes. 

Discard the supernatant, and finally resuspend the pellet in 1 mL of Milli-Q 

water. This final fraction is named as P1*. 

Table 20.  Lyticase Buffer 

Sorbitol 1.2 M 

KH2PO4 10 mM pH 6.8 

*  S1-> Extracellular fraction (culture medium) 

S2-> Periplasmic fraction 

S3-> Membrane fraction 

 P1-> Intracellular fraction 

7. Statistical Methods 

A factorial approach to experimental design, permits the assay of a large 

number of crystallization conditions with as few experiments as possible. This 

is accomplished by varying more than one factor at a time in a given 

experiment; this saves material, and from the analysis of the results, it is 

possible to readily determine the factors that are critical for crystallization 

(Fisher 1942; Carter and Carter 1979). 

In this work it was studied the influence of three variables (Amonium 

sulphate oncentration, Protein concentration and PEG6000 %), and their 

interactions in the response. Once the variables were chosen, the experimental 

patterns (domains) were established and codified their edge values as +1 and -

1, an experimental matix was constructed. 

In that matrix: 
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1.1 The number of elements of each column is equal to the number 

of experiments (2H, being H the number of variables) 

1.2 Each variable should take only the edge values (+1 and -1) and, 

in each column, the number of +1 and -1 values should be 

the same (means that each variable should present the same 

number of values in its upper and lower levels). 

1.3 It should be orthogonality condition: the scalar product of all 

column vectors must be equal to zero. 

Furthermore of the experiments of this matrix, three replicates of the 

central point (all the variables with value 0) were made, to determine the 

intrinsic variability of the system. The obtained results were used for the 

determination of the system equation and the analysis of the significance using 

the experimental design module of the software Statgraphics Plus: 

Design with two variables:  

   

Coded Value V1 V2 

-1 V1n-dV10 V2n-dV20 

0 V1n V2n 

+1 V1n+dV10 V2n+dV20 

 

Encoding: Vc = (Vn-Vo)/ dVn  

Decoding: Vn = Vo+ (dVn x Vc)  

Vc : Coded value  

Vn : Natural Value  

Vo : Natural Value in the center of the experimental domain  

dVn : Increase of the natural value according to a unit increase in the coded value  

The response is visualized presenting the surface defined by the 

equation (surface response) through their projections over defined plans for 

each pair of variables.  
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8. Crystallization Techniques and 

Structural Resolution 

8.1 Crystallization 

Several crystallization techniques have been use: hanging drop, sitting 

drop, and streaking. 

8.1.1 Hanging Drop Technique 

In this technique, a small volume of protein (1-5 µL) is mixed with the 

precipitant solution maintaining a ratio normally of 1:1. The drop is loaded in 

a silanized cover glass, and it is stuck in the crystallization plate, being the 

drop hanging by gravity in a hermetically closed chamber. In the bottom of 

the plate, there is a reservoir with 250-1000 µL of precipitant solution. 

Due to the highest concentration of the reservoir with regard to the 

drop, there is a steam diffusion net flux from the drop to the reservoir until 

the equilibrium is achieved. As a consequence of that water flux, the protein 

and reservoir concentration in the drop increase slowly until the solution is 

oversaturated. 

Along the way this happens, there are nucleation events, and if the 

conditions are appropriated, the protein precipitates orderly and the crystals 

appear. 

8.1.2 Sitting Drop Technique 

It is based in the same phenomenon as the Hanging Drop Technique, 

with the difference that the drop is not loaded in a cover glass. In this case the 

drop is “sit” it in a small “chair”, which is surrounded by the precipitant 

reservoir. The chamber is hermetically closed sealing the crystallization plate 

with a film. 
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There were made lots of experiments and test of crystallization 

modifying the several variables (protein concentration, concentration and type 

of precipitant, additives, drop and reservoir volumes, temperature, pH, 

dimensions, characteristics of the crystallization plates, etc). 

Initially the first experiments were carried out in the laboratory with 

multiwell plates (similar to the cellular cultures ones), in which a thin layer of 

silicone (Type B Silicone from Panreac) was added around 12 of the 24 wells 

per plate. For that purpose, a syringe (10 mL of volume) was use (the syringe 

was loaded previously with the appropriate silicone).  

The hanging drop technique was used and the cover glasses were 

home-made silanized. To do that, the cover glasses were immersed in a 

solution with Dichloromethylsylane at 2% in 1,1,1 Threechloromethane. Then 

the cover glasses were dried. 

The drops were loaded (1-3 µL of final volume and 500 µL of 

reservoir) in the cover glasses manually with micropipettes (, and the drops 

were incubated at room temperature and at 4ºC. The drops were checked 

every day in the first weeks, and after that more periodically, in a Nikon 

Eclipse 50i microscope. Photos were taken with the Nikon Digital Sight DS-

SM camera and with the software NIS-Elements F. Version 2.10. 

Later, the crystallization conditions were tested using high yield 

techniques using a crystallization robot (Innovadine Nanodrop I) and with 

several different commercial crystallization kits (Crystal Screen, Crystal Screen 

II, Crystal Screen Lite, Salt Rx e Index Screen (Hampton Research), y Screen 

Classic (Jena Biosciences). 

In this case the drops were loaded by the robot with 0,25 µL of protein 

solution and 0,25 µL of reservoir (0,5 µL final volume). These experiments 

were carried out in controlled temperature (18ºC and 4ºC) 
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Once the optimal conditions were checked (in where crystals grew), 

these conditions were replicated in bigger supports (Cryschem, Hampton 

Research) and volumes manually (2 µL of final volume and 0,5 mL of 

reservoir). Some experiments were made also with against diffusion using the 

Granada Crystallization Box (Triana Tech) and with Streak seeding (Stura and 

Wilson 1991) performed under these conditions gave improved quality 

crystals that were suitable for X-ray diffraction experiments 

To obtain data from the diffraction, the crystals were transferred in 

cryoprotectant solutions (crystallization solution + 20% of glycerol) before 

the freezing at -173,5 ºC in liquid nitrogen.  

The galactose-protein complexes were obtained with the lactose 

substrate applying the soaking technique (Hassell et al. 2007). 

8.2 DIFFRACTION 

X-Ray diffraction experiments were carried out with the Instituto de 

Química-Física Rocasolano (IQFR, Madrid) equipment and with the 

European Synchrotron Radiation Facility (ESRF, Grenoble) radiation sources 

(specifically lines ID23.1 and ID14.4). 

8.3. STRUCTURAL RESOLUTION  

Diffraction images were processed with the MOSFLM software (Leslie 

1990), with which the unit cell parameters were characterized, and an index 

was made to give a hkl index (Miller indexes) to each reflection. With the 

same software an estimation of the intensities of each maximum of diffraction 

and the determination of the spacial group was made. 

Scale-up of these intensities and the calculation of the modules of the 

structure factors were carried out using a group of several programs that are 

included in the CCP4 (Collaborative Computational Project 1994). 
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The K. lactis β-galactosidase structure was solved by molecular 

replacement using the MOLREP software (Vagin and Teplyakov 1997) and 

using the Arthrobacter sp. β-galactosidase structure (PDB code: 1YQ2) (Skalova 

et al. 2005) to prepare the seeking model using the CHAINSAW software 

(Stein 2008), and the alignment of both protein sequences. 

Crystallographic refinement was made using the REFMAC5 software 

(Murshudov et al. 1997) as part of the CCP4 software. After several 

refinement and reconstruction manual cycles using the O (Jones et al. 1991) 

and COOT (Emsley and Cowtan 2004) the final map showed the continuous 

density of the whole molecule. 

The galactose-protein complex was solved using the native structure 

and the refinement was made using the previously procedure. 

The models stereochemistry was checked using PROCHECK 

(Laskowski et al. 1993) and MOLPROBITY (Chen et al. 2010). The figures 

were made using PyMOL (DeLano 2002). For the interaction surfaces analysis 

and the oligomer stability the PISA software (Krissinel and Henrick 2007), 

which is hosted in the European Bioinformatics Institute, EBI, 

http://www.ebi.ac.uk/, was used. 

9. Software 
Furthermore to the Microsoft Office (from XP versión to Professional 

Plus 2010) and the previous mentioned software in the other sections, the 

following software and internet webpages were used: 

pDRAW 32 (www.acaclone.com) 

For restriction analysis and vector images. 

OLIGO version 6 

Oligonucleotides design, to order their synthesis (Roche Applied 

Science), and use them as primers in sequencing.  

http://www.ebi.ac.uk/
http://www.acaclone.com/
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CLUSTAL V 

For sequence alignment (Higgins et al. 1992) 

NCBI  

Internet webpage for papers search, and sequence alignment (BLAST 

software) 

http://www4.ncbi.nlm.nih.gov/entrez/query.fcgi 

SGD (Saccharomyces Genome Database)  

Saccharomyces cerevisiae strain database for gene searching, and sequence 

analysis.  

http://genome-www.stanford.edu/Saccharomyces/  

GENOSCOPE  

Genome database of several microorganisms (yeasts included). 

http://www.genoscope.cns.fr/ 

EUROSCARF  

It is the EUROpean Saccharomyces Cerevisiae ARchive for Functional 

Analysis. It is a huge database for strains and plasmids. 

ExPASy (Expert Protein Analysis System).  

Webpage with a variety of bioinformatic software (for example Swiss-

Model).  

http://www.expasy.ch/ 

SWISS-MODEL 

This homology modeling server was used to obtain the structural model 

of the K. lactis and A. niger β-galactosidase, and also the hybrid protein from 

the K. lactis and A. niger β-galactosidase. 

http://swissmodel.expasy.org/ 

http://www4.ncbi.nlm.nih.gov/entrez/query.fcgi
http://genome-www.stanford.edu/Saccharomyces/
http://www.genoscope.cns.fr/
http://www.expasy.ch/
http://swissmodel.expasy.org/


Appendix I – Material and Methods 

243 

PDB (Protein Data Bank)  

Protein data bak with programs to analyze the secondary structure of a 

problem protein, and give you the three dimensional structure of the protein 

with more homology, which has been crystallized and included in its database.  

http://www.rcsb.org/pdb 

STATGRAPHICS Plus  

Statistical analysis of the factorial design.  

Kodak Digital Science 1 D o Quantity One version 4.5.0  

DNA agarose gel analysis and quantification. 

Breeze I (Waters) 

Analysis of the data obtained in the Waters HPLC. 

Workstation Toolbar Version 6.30 

Analysis of the data obtained in the JASCO HPLC 

Sigmaplot 10.0 (Systac Software Inc) 

Easy and complete graphing software 

Transform 0.10.0 

Free software very useful and flexible to format DNA, RNA or protein 

sequences. 

Endnote X-X4 

Software for bibliography organization. 

PyMOL (DeLano Scientific) 

For the protein images. 

CaZY Database  

It is the Carbohydrate-Active enZYmes Database. 

http://www.rcsb.org/pdb
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http://www.cazy.org/ 

Rosetta Design Server 

To emulate modifications in the amino acids of the protein, and guess 

if it is possible or not in the nature. 

http://rosettadesign.med.unc.edu/ 

Net Primer Biosoft 

To design the primers on-line. Give information about Molecular 

Weight, Melting Temperature, GC % content, ΔH, hairpins, dimmers, 

palindromes, etc. 

http://www.premierbiosoft.com/netprimer/index.html 
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Resumen 

Las β-galactosidasas son las enzimas encargadas de la hidrólisis de los β-

galactósidos en sus monosacáridos correspondientes. 

Las β-galactosidasas están ampliamente representadas desde organismos 

procariotas hasta organismos eucariotas (como p.ej. los humanos). 

La primera β-galactosidasa secuenciada fue la de Escherichia coli en 1970 

(Fowler and Zabin 1970) la cual contiene 1024 aminoácidos. Este pequeño 

paso, abrió el camino hacia varias líneas de investigación destinadas a mejorar 

el conocimiento de este tipo de enzimas así como a la producción y evolución 

de las mismas. Hubo que esperar 20 años hasta que su estructura 

tridimensional fue descubierta (Jacobson et al. 1994). 

En el caso de la β-galactosidasa de Kluyveromyces lactis la información sobre su 

secuencia fue publicada en 1992 (Poch et al. 1992), pero su estructura 

tridimensional, a pesar de numerosos intentos de resolución usando técnicas 

como por ejemplo el Dicroismo Circular (Tello-Solis et al. 2005) no ha sido 

resuelta. 

Existe una elevada demanda de aplicaciones cuyo uso implica la actividad de 

las β-galactosidasas, las cuales se pueden resumir en los tres siguientes 

campos: 

1. Valorización del suero de leche. 

En este caso existen varias soluciones para este subproducto de la 

elaboración del queso entre las cuales pueden destacar las siguientes: 

SCP, producción de biosurfactantes, producción de bacteriocinas, 

producción de proteínas recombinantes, producción de biopolímeros, 

producción de biogás, producción de bioetanol y producción de ácido 

láctico. 

2. Aplicaciones farmacéuticas/médicas. 

Destacan entre ellas el uso de la β-galactosidasa como sistema de 

comprobación de que un kit ha funcionado correctamente 

(“screening”) y su uso para el tratamiento de la intolerancia a la lactosa 

(desde pastillas de β-galactosidasa al uso de la propia enzima en la 

producción de alimentos sin lactosa)  

3. Otros usos habituales en la industria de la alimentación. 
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Un uso habitual de las β-galactosidasas en la industria alimentaria va 

destinado a incrementar el poder edulcorante de la lactosa en algunos 

alimentos como por ejemplo en helados, tartas, etc. 

Debido a esta elevada demanda, se hace necesario el comprender más 

profundamente cómo funcionan estas enzimas. Por ello uno de los objetivos 

en esta tesis es el de la expresión, purificación, cristalización, determinación de 

la estructura tridimensional y análisis de la β-galactosidasa de Kluyveromyces 

lactis. 

Otro objetivo de la presente tesis es la construcción y producción de una β-

galactosidasa híbrida entre la β-galactosidasa de Kluyveromyces lactis y la β-

galactosidasa de Aspergillus niger. 

El último de los objetivos el cuál también está relacionado con los dos 

anteriores, trata de la construcción, producción y modificación por evolución 

dirigida de una cepa de Saccharomyces cerevisiae que secrete la β-galactosidasa de 

Aspergillus niger. 

Las técnicas usadas para la elaboración de la tesis, están explicadas en la 

sección “Material and Methods”. 

La β-galactosidasa de Kluyveromyces lactis 

La β-galactosidasa de K. lactis es la enzima responsable de la hidrólisis de 

lactosa a sus dos monosacáridos correspondientes (glucosa y galactosa). 

Es una proteína de unos 120 kDa (Becerra et al. 1998), compuesta por un 

tetrámero, y cuya secuencia fue liberada 1992 (Poch et al. 1992). 

Tiene una temperatura y pH óptimos de 30ºC y 7 respectivamente (Rodriguez 

et al. 2006), lo que la convierte en una enzima muy apta para su uso 

biotecnológico e industrial. 

Aunque se han realizado diversos estudios para descubrir la estructura 

tridimensional de la enzima, como por ejemplo el del grupo de Tello-Solis 

(Tello-Solis et al. 2005), a día de hoy no se ha resuelto su estructura terciaria ni 

cuaternaria. 

En la presente tesis, hemos realizado una nueva construcción (Becerra et al. 

2001), en la cual se ha insertado la β-galactosidasa de K. lactis en el vector de 

expresión de proteínas YEpFLAG (Eastman Kodak) entre el promotor 
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inducible de levaduras ADH2 y el terminador CYC1 (el vector cuenta además 

con un péptido FLAG para su detección inmunológica). 

Este vector se transformó en la cepa de Saccharomyces cerevisiae recomendada 

por el kit, cuya denominación es BJ3505. 

Una vez transformada la levadura, se realizaron diversos estudios de expresión 

para conseguir optimizar la producción de la β-galactosidasa, y una vez 

finalizados se comenzó con la etapa de purificación. 

Inicialmente se realizaron varias purificaciones por exclusión e intercambio 

iónico, pero la solución se halló realizando la purificación usando una 

columna con resina anti-FLAG (Sigma-Aldrich), y siguiendo las instrucciones 

del fabricante. 

Una vez optimizadas las purificaciones y comprobadas en gel tanto en 

cantidad como en calidad (ya que ambos factores son limitantes a la hora de 

cristalizar), se realizaron unos test usando como herramienta para la 

optimización de las condiciones de cristalización un diseño de plan factorial 

completo. 

El uso de los planes factoriales para la cristalización de proteínas se demostró 

en el trabajo de Carter y Carter (Carter and Carter 1979), permitiendo este 

método el ensayo de un elevado número de condiciones de cristalización con 

un número reducido de experimentos. 

Se realiza variando más de un factor a la vez en cada experimento, de manera 

que se ahorran ensayos, y además analizando los resultados es posible 

determinar cuáles son los factores críticos en la cristalización. 

Usando este método y condiciones similares a las que ya se habían obtenido 

cristales en la β-galactosidasa de E. coli (Juers et al. 2003) mediante la técnica de 

la gota colgante, se obtuvieron los primeros cristales, cuyo tamaño (unas 10 

µm aprox) y forma no fueron suficientes para difractar, pero que nos dieron 

una información muy valiosa sobre los factores y compuestos que más afectan 

a la cristalización de la β-galactosidasa de K. lactis (Rodríguez et al. 2008). 

El siguiente paso para la mejora de los cristales pasó por usar técnicas de alto 

rendimiento con el robot NanoDrop (Innovadyne Nanodrop) y varios kits de 

“screening” (Crystal Screen, Crystal Screen II, Crystal Screen Lite, SaltRx y 

Index Screen de Hampton Research, PACT Suite y JCSG+ Suite de Qiagen y 

JB Screen Classic de Jena Biosciences) para acotar más las condiciones 
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óptimas para el crecimiento de los cristales, usando de nuevo la técnica de 

cristalización de la gota colgante. 

La mejora de los rendimientos y pureza de las purificaciones, así como la gran 

cantidad y variedad de kits usados, sirvió para mejorar los cristales tanto en 

tamaño como en capacidad de difracción. Se testaron más de 30 cristales, para 

finalmente conseguir un set completo de datos a 2.8 Å (Pereira-Rodriguez et 

al. 2010). 

Finalmente mediante la técnica de “streak seeding”, que se basa en romper los 

cristales con un pelo de gato o similar y con el mismo extenderlo sobre una 

nueva gota, de manera que la estructura tridimensional se reproduce si las 

condiciones son similares, y crecen los cristales en torno a una línea común. 

Se consiguieron así cristales con un mayor poder de difracción, logrando un 

set completo de datos a 2.75 Å y 2.80 Å, consiguiendo descifrar tanto la 

estructura tridimensional del cristal por separado, como la estructura de la 

enzima con galactosa en su interior (tras la adicción de lactosa sobre el cristal) 

respectivamente. 

El análisis de la estructura se obtuvo a través de reemplazamiento molecular 

con el programa MOLREP. La enzima tiene un peso molecular de 119kDa, 

contiene 1024 aminoácidos, y su forma activa comprende una estructura 

tetramérica que comprende la unión de dos dímeros entre sí (es la primera β-

galactosidasa conocida que tiene esta estructura) y no de cuatro monómeros 

individuales como por ejemplo ocurre en el caso de la β-galactosidasa de E. 

coli. 

Cada monómero está constituído por 5 dominios: Dominio 1 (residuos 32 a 

204) presenta una estructura “jelly-roll” y es un dominio de unión a azúcar 

clasificado dentro de la familia 2 de las Glicosil Hidrolasas (GH), el Dominio 

2 (residuos 205 a 332) que forma una estructura “β-sandwich” similar al de la 

inmunoglobulina y que pertenece a la familia 2 de las GH, el  Dominio 3 

(residuos 333 a 642) forma una estructura “TIM Barrel” perteneciente 

también a la familia 2 de las GH y que además es el centro catalítico, el 

Dominio 4 (residuos 643 a 720) que forma también una estructura “β-

sandwich” similar al de la inmunoglobulina y que pertenece a la familia 2 de 

las GH, y finalmente el Dominio 5 (residuos 741 a 1025) que está clasificado 

como una pequeña cadena de β-galactosidasa. Existen dos regiones en la 

proteína que no pueden ser asignadas a ninguno de los dominios; una es la 
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región N-terminal (residuos 2 a 31) y la otra es una cadena pequeña expuesta 

al solvente que conecta los dominios 4 y 5 (residuos 721 a 740). 

La unión de los monómeros para formar los dímeros de dímero, se establece 

entre agrupaciones de monómeros 2 a 2, uniéndose los dímeros mediante el 

contacto de dos de los monómeros principalmente, aunque se observan 

interacciones entre todos los monómeros para dar lugar a la estructura 

tetramérica. 

El centro catalítico está constituido por un par de residuos catalíticos que son 

dos ácidos glutámicos posicionados en las posiciones 482 y 551. Ambos 

residuos se encuentran en las profundidades del “TIM Barrel” dentro del 

dominio 3. El bolsillo catalítico abarca unos 20 Å de profundidad y está 

rodeado por residuos de los 4 monómeros constituyentes. 

En cuanto a la información obtenida en el cristal con el ligando, se ha 

encontrado la galactosa dispuesta de una manera muy parecida a su 

disposición en las β-galactosidasas de E. coli y Arthrobacter, y dos iones sodios y 

un ión magnesio. Uno de esos sodios y el ión magnesio están dispuestos en la 

misma posición que lo hacen en E. coli, y el otro sodio se encuentra en una 

posición similar a como lo hace en Arthrobacter. 

Se ha podido localizar un ión manganeso, que no aparece en ninguna de las 

estructuras descritas previamente coordinado por residuos del loop 8 del 

dominio catalítico (Asp593) y de un loop del 5º dominio (His975 y Asp978). 

También aparece un ión sodio estabilizando el loop del 5º dominio, el cual 

está presente también en E. coli. Ambos ligandos pueden tener un rol 

importante en la oligomerización de la enzima en sus interfaces 2 y 3. 

Construcción, expresión y producción de una β-galactosidasa híbrida 

entre la  β-galactosidasa Kluyveromyces lactis y la β-galactosidasa de 

Aspergillus niger 

La β-galactosidasa de K. lactis tiene un interés muy elevado en biotecnología 

debido a la gran cantidad de usos que se le atribuyen. Sin embargo, el hecho 

de ser una enzima intracelular provoca que aumenten las dificultades en 

cuanto a su recuperación una vez producida, es decir, al ser una enzima 

intracelular, es necesario extraerla de las células y separarla de las mismas. Esto 

además de ser difícil, incrementa el presupuesto necesario para su uso en la 

industria. 
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Es por ello que se ha construido una enzima híbrida entre la β-galactosidasa 

de K. lactis (intracelular) y la β-galactosidasa de A. niger (extracelular), para 

conseguir una proteína que se secrete al exterior. 

Para ello se sustituyó el dominio 5 de la β-galactosidasa de K. lactis por el 

dominio 5 de la β-galactosidasa de A. niger (Rodriguez et al. 2006). Para 

predecir los dominios se usó como base la estructura cristalográfica de E. coli. 

Las técnicas usadas para la construcción de la enzima híbrida fueron la 

amplificación por PCR, la digestión por restricción y el ligamiento, ya que la 

recombinación homóloga tuvo que ser descartada por la poca homología 

existente entre ambas enzimas. 

Una vez construida la enzima, se estudió su expresión y producción en 

matraces, siendo los resultados un incremento en 2 y 3 veces la producción de 

la β-galactosidasa extra e intracelular respectivamente. 

La conclusión de estos resultados es que la región C-terminal de la β-

galactosidasa de A. niger complementa perfectamente la región C-terminal de 

la β-galactosidasa de K. lactis. 

Debido a la presencia de actividad enzimática, se decidió estudiar tanto el pH 

óptimo como la Tª óptima de la enzima, con miras a su uso en la industria. 

Los resultados indican que la proteína híbrida adquirió unas propiedades 

bioquímicas híbridas entre ambas β-galactosidasas, ya que el pH óptimo 

desciende de 7-7,5 (Dickson et al. 1979; Tello-Solis et al. 2005) en K. lactis  a 6,5 

(el pH óptimo de A. niger está entre 2,5-4 (Widmer and Leuba 1979)) y la 

temperatura óptima aumentó de 30-35ºC en K. lactis (Dickson et al. 1979) a 

40ºC (la Tª óptima de A. niger es de 50ºC (Santos et al. 1998)). 

Posteriormente se estudió su estabilidad térmica así como el efecto de los 

cationes en la enzima. Los resultados presentan una mayor estabilidad térmica 

de la enzima híbrida respecto a la silvestre tanto a 30ºC, como a 42 y 50ºC. En 

cuanto a los cationes, su efecto fue similar en el caso de Mg2+, Ca2+, Zn2+; 

pero en el caso del Ni2+ su efecto fue contrario a K. lactis, ya que este catión 

provocó un aumento de la actividad en la enzima híbrida, y no una inhibición 

como ocurre en el caso de la enzima de K. lactis. 

Se analizaron finalmente las KM del ONPG y la lactosa, que son el sustrato 

artificial y natural, respectivamente; siendo mayor la afinidad por ambas 

moléculas en el caso de la enzima híbrida. 
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También se realizó un modelado por homología de la enzima híbrida, en 

función de la estructura cristalográfica de E. coli. 

Visto que la enzima híbrida tiene unas propiedades muy interesantes para su 

producción a gran escala, se realizó un estudio de su producción 

inmovilizando la cepa en “spent grains” (un subproducto de la elaboración de 

la cerveza) y haciéndola crecer en un medio rico en lactosa en un fermentador 

tipo “air-lift”. 

Este tipo de fermentadores es especialmente indicado para cultivos en 

aerobiosis, ya que la función de agitación se realiza por la entrada en la parte 

interior del mismo un flujo de aire, lo que mejora la oxigenación del medio y 

además es una manera menos agresiva de agitar las células. 

Para la inmovilización de las células se siguió el protocolo de Branyik (Branyik 

et al. 2002). 

Inicialmente se realizaron pruebas de crecimiento, consumo de lactosa, etanol, 

glicerol y actividad β-galactosidasa intra y extracelular en matraces. 

Una vez determinadas las actividades, se realizó el cultivo en un fermentador 

de 6 litros de volumen de trabajo, en SS-Lactosa (5%) y luego en suero de 

leche (LACTOGAL), modificando los tiempos de residencia para calcular la 

mejor tasa de dilución para la producción de la β-galactosidasa híbrida. 

La tasa de dilución óptima fue de 0.1, aproximadamente la mitad de la tasa de 

crecimiento exponencial (0.213), lo cual es sorprendente debido a que 

mayoritariamente la mejor tasa de dilución suele coincidir con la fase de mayor 

crecimiento celular. 

Se consiguió además una tasa máxima de inmovilización de 0,45g cél/g de 

agente inmovilizador, lo cual demuestra que las “spent grains” son un 

substrato apropiado para inmovilizar K. lactis. 

El que se pueda usar el suero de leche como medio de cultivo, facilita si cabe 

aún más su aprovechamiento, ya que evita el problema medioambiental que 

lleva asociado. 

De todas maneras deberían realizarse más estudios para validar su uso a nivel 

industrial. 
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Construcción de cepas de Saccharomyces cerevisiae que secretan la  β-

galactosidasa de Aspegillus niger y evolución dirigida 

La construcción de cepas capaces de crecer en lactosa es un objetivo muy 

importante en el campo de biotecnología (Becerra et al. 2002; Becerra et al. 

2003). 

Se han construido tres cepas diferentes capaces de secretar la β-galactosidasa 

de A. niger: una con la señal de secreción de la propia β-galactosidasa, otra con 

las dos señales de secreción (la del plásmido y la de la β-galactosidasa) y una 

última con la señal de secreción del plásmido únicamente. 

Las tres construcciones se consiguieron mediante recombinación homóloga, 

usando el plásmido YEpFLAG (Eastman Kodak) y transformándose en 

BJ3505 ya que era la cepa de Saccharomyces cerevisiae que recomendaba el kit. 

Se analizaron las actividades β-galactosidasa, y de las tres construcciones, la 

que más actividad β-galactosidasa extracelular producía era la construcción 

con la señal de secreción del propio plásmido. Esta cepa fue capaz de secretar 

más del 90% de la actividad β-galactosidasa total. El pH óptimo de las 

proteínas también fue calculado y resultado obtenido fue 3. 

Para terminar debido a que la enzima β-galactosidasa de A. niger tiene un pH 

óptimo muy ácido (pH=3) se estudió la estructura obtenida mediante 

modelado por homología y se analizaron varias mutaciones en el servidor 

Rosseta (Liu and Kuhlman 2006; Kaufmann et al. 2010), que analiza la energía 

global de la proteína y en función de ello, se puede prever si la mutación es 

posible o no en la naturaleza (si es estable), para tratar de modificar el pH 

óptimo usando la evolución dirigida. 

La técnica usada fue el kit QuikChange® XL Site-Directed Mutagenesis 

(Stratagene) con el que se construyeron los 3 mutantes simples así como las 

diferentes combinaciones, de manera que finalmente se obtuvieron 6 

mutantes de la β-galactosidasa de A. niger. El reemplazamiento de tres 

residuos ácidos de la superficie de la enzima: Glu439, Asp469 y Asp476 por 

His, Gly y Ala, respectivamente, aunque disminuyó la actividad enzimática 

presentó un cambio en el perfil de pH de la enzima hacia una enzima más 

neutral. 
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Conclusiones 

 

Las principales conclusiones del presente trabajo son las siguientes: 

 

1. Se ha realizado una aproximación métodica y eficiente para el crecimiento 

de cristales de la β-galactosidasa de Kluyveromyces lactis. El plan factorial 

completo empleado permitió encontrar condiciones para el crecimiento de 

cristales proteicos de buena calidad realizando un bajo número de 

experimentos. Las condiciones óptimas de cristalización de 20 µg de β-

galactosidasa de K. lactis se obtuvieron en presencia de 0,1 M de Tris-HCl, pH 

8, 15% PEG 6000 y 0,02 M de (NH4)2SO4. Las ventajas obtenidas con esta 

aproximación incluyen mejoras en la forma y el volumen de los cristales de la 

β-galactosidasa de K. lactis así como en la reproducibilidad. 

2. La cristalización de la  β-galactosidasa de K. lactis (3,5 mg ml-1 en 0,05 M de 

Tris-HCl, 0,150 M de NaCl, 0,002 M de DTT y 7% de Glicerol) se realizó 

usando el método de la gota sentada. Pequeños cristales en forma de plato 

crecieron en presencia de PEG 3350 al 23-27% (p/v), 0,1 M de BisTris pH 

7,5-7,0 y 0,2 M de Tartrato Sódico. La micro-siembra de los cristales realizada 

empleando estas condiciones, mejoró la calidad de los cristales obtenidos e 

hizo posible que fuesen adecuados para los experimentos de difracción 

mediante Rayos-X. 

3. El monómero de la β-galactosidasa de K. lactis se pliega en cinco dominios 

en un patrón conservado con otras enzimas procarióticas resueltas 

pertenecientes a la familia GH2, aunque dos inserciones largas en el dominio 2 

(264-274) y el 3 (420-443) son únicas y parecen estar implicadas en la 

oligomerización y la especificidad.  

4. El tetrámero de la β-galactosidasa de K. lactis es un ensamblado de dímeros, 

con una energía de disociación superior para los dímeros que para el 

tetrámero, lo que podría explicar que existiese un equilibrio en solución entre 

la forma dimérica y tetramérica de la enzima.  

5. Dos centros activos se localizan en la interfase dentro de cada dímero, en 

un canal estrecho de 10 Å de ancho que hace los bolsillos catalíticos accesibles 

al solvente. La inserción única en el bucle 420-443 se introduce en este canal y 

presenta muchos enlaces posibles con la fracción aglicona de la lactosa, lo que 
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podría explicar la alta afinidad de la β-galactosidasa de K. lactis por este 

sustrato y por tanto su inusual elevada actividad hidrolítica. 

6. Ninguno de los determinantes estructurales responsables del mecanismo de 

reacción propuesto para la β-galactosidasa de Escherichia coli, que implica una 

transición de un estado profundo a uno superficial tras la unión del sustrato, 

están presentes en el sitio activo de la β-galactosidasa de K. lactis y, 

consecuentemente, se sugiere que este mecanismo se aplica sólo para las 

enzimas pertenecientes a la familia GH2 reguladas por el operon lac. 

7. Una proteína híbrida obtenida tras el reemplazamiento del dominio quinto 

de la β-galactosidasa de K. lactis por el de Aspergillus niger, fue activa, alcanzó el 

medio de cultivo y presentó además una estabilidad superior a temperaturas 

elevadas y unos parámetros cinéticos más adecuados para su utilización 

biotecnológica.  

8. Una cepa de K. lactis secretando la proteína híbrida entre la β-galactosidasa 

de K. lactis y la de A. niger fue inmovilizada en afrecho (spent grains) para 

producir la proteína híbrida usando lactosa como fuente de carbono, 

alcanzando un máximo de 0,45 gramos de peso seco de células por gramo de 

peso seco de afrecho. 

9. Una cepa recombinante de Saccharomyces cerevisiae expresando bajo el control 

del promotor ADH2 de levaduras la β-galactosidasa de A. niger fusionada a la 

señal de secreción del factor α de levaduras presentó hasta el 94% de la 

actividad total β-galactosidasa en el medio de cultivo y fue capaz de crecer en 

medios con lactosa. 

10. Mediante experimentos de evolución dirigida de la β-galactosidasa de A. 

niger se intentó modificar su pH óptimo. El reemplazamiento de tres residuos 

ácidos de la superficie de la enzima: Glu439, Asp469 y Asp476 por His, Gly y 

Ala, respectivamente, aunque disminuyó la actividad enzimática presentó un 

cambio en el perfil de pH de la enzima hacia una enzima más neutral. 
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