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Abstract

In a world where technology plays a major, increasing role day after day,
efforts devoted to develop better software are never too much. Both industry

and academia are well aware of this, and keep on working to face the new
problems and challenges that arise, more efficiently and effectively each time.
Companies show their interest in cutting-edge methods, techniques, and tools,
especially when they are backed up with empirical results that show practical
benefits. On the other hand, academia is more than ever aware of real-world
problems, and it is succeeding in connecting its research efforts to actual case
studies.

This thesis follows the mentioned trend, as it presents a study on software
applications development based on a real case. As its main novelty and con-
tribution, the integral process of software development is addressed from the
functional paradigm point of view. In contrast with the traditional imperative
paradigm, the functional paradigm represents not only a different way of de-
veloping applications, but also a distinct manner of thinking about software
itself. This work goes through the characteristics and properties that func-
tional technology gives to both software and its development process, from
the early analysis and design development phases, up to the final and no less
critical verification and validation stages. In particular, the strengths and op-
portunities that emerge in the broad field of testing, thanks to the use of the
functional paradigm, are explored in depth.

From the analysis of this process being put into practise in a real software
development experience, we draw conclusions about the convenience of ap-
plying a functional approach to complex domains. At the same time, we extract
a reusable engineering methodology to do so.
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1
Introduction

Software is everywhere. From tiny devices to huge equipment, from trivial
purposes to critical tasks, software has become an essential part of many of

the tools, services, and systems we use every day. It is in mobile phones and
music players, it is part of coffee makers and television sets, it is present in
cars and airplanes. Software is applied to as many different things as different
dimensions our life has: buying tickets to a show or concert, making a doctor
appointment, or filing tax. The same way electricity and the light bulb are con-
sidered one the most relevant improvements to human life in the XIX century,
computers and software are undoubtedly changing our lifestyle at the dawn of
this new millennium.

The process of building software in a structured, well-specified and repeatable
manner is commonly known as software development, and carefully studied by
software engineering. The term software engineering was born in the 1960s
[1], with the appearance of the first high-level programming languages and the
concept of reusability, which started to lay the foundations of the field. Ever
since then, issues such as productivity and quality have been key aspects
software engineers all over the world need to deal with.

A few decades after the so-called software crisis [2, 3] that, in its early days,
put the discipline to the test through the 1970s and 1980s, we know now that
there is no silver bullet in software development. At least, not just one single
silver bullet. Many different instruments, technologies, and approaches have
come and gone in a continual effort to solve all the open problems of software
development once and for all. Some of them have even had quite resounding
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1.1. Motivation

success, but none has turned out to be the holy grail. Anyhow, as engineers,
we have learnt something from every step of the way, and have continued
looking for solutions.

This dissertation is an attempt to open a new line on software development,
based on a new challenge and an old but improved paradigm. The challenge is
the increasingly complex problems we need to solve, which are indeed only the
result of the non-stoppable spread of information technology; their more and
more demanding requirements force us to grant properties that were not even
considered a few decades ago, such as interoperability, distributability, scala-
bility, reliability, etc. The paradigm is functional programming, which has re-
mained outside the industry, primarily constrained to academia and research,
despite its particular features suggesting it as a powerful ally in the present
situation.

1.1 Motivation

Soon after the first high-level programming languages were created, the con-
cept of programming paradigm also came to light. It was the abstraction of the
set of characteristics that made different groups of programming languages
alike, on the basis of which aspects of computer programming they were fo-
cused on or built around. The most popular programming paradigms are prob-
ably imperative, declarative, and parallel computing paradigms, each of them
presenting its own strengths and weaknesses.

Imperative programming languages, and among them procedural and object-
oriented programming languages, have been possibly the most commonly
used programming languages in the history of software programming, and
they are still present in a vast majority of software developments nowadays.
Imperative programming usually describes computation as a sequence of stat-
ements which affect the state of the program; since a statement evaluation
may depend on the current state, the imperative paradigm lacks of referential
integrity (also referred to as referential transparency ), meaning that the same
statement may have different effects (i.e., results) depending on where and
when it is executed. One of the first and direct consequences of referential
opaqueness is that automatic code optimisation (by pre-processors and com-
pilers) turns into a much more complicated task. On the other hand, imperative
languages are claimed to follow the closest philosophy to how the underly-
ing hardware actually behaves, thus allowing for more efficient approaches in
practise [4].

The declarative programming paradigm focuses on how a problem is described
rather than on the actual way it is solved, thus shifting the abstraction level
at which developers need to think. In particular, functional programming, a
specific kind of declarative programming, is based on mathematical functions
instead of statements, and avoids state and side effects. The foundations of
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1. Introduction

this paradigm are the lambda calculus [5], and even though in practise very
few programming languages ensure referential transparency completely, it is
still possible to have automated tools for behaviour prediction, verification, and
code enhancement, among others. In contrast, declarative languages are of-
ten perceived as less efficient in the use of hardware resources, even though
they usually present features such as lazy evaluation, which can potentially
increase their performance.

Recently, improvements in hardware production have led to the introduction of
parallel programming, a new paradigm whose philosophy is based on problem
fragmentation and algorithm parallelisation. Of course, it is possible to ap-
proach parallelism from both an imperative and a declarative perspective, but
mainly when we consider task-level or data-level parallelism. In recent years,
nonetheless, fast innovation and popularisation of multi-core processors has
lowered parallelism down to the instruction level. This has brought into the
picture a whole new set of issues, ranging from synchronisation and commu-
nication problems to critical aspects inherent to concurrency (such as mutual
exclusions and race conditions).

Most of the regular software developments do not require, however, fine-grain
control over parallel hardware, so they can do without all the extra complex-
ity. But why does industry seem to have forgotten about declarative/functional
programming over the years? Solving more and more complex problems ev-
ery day, we could take advantage of using the most high-level tools, that could
help us focus on what we need to achieve rather than on how we are going to
achieve it, not distracting us from the essence of the problem we want to ad-
dress. Instead, the most popular development strategies and methodologies
have completely omitted anything else but imperative languages. Standard-
isation and popularisation of object-oriented analysis and design techniques
have only helped to consolidate that status quo [6].

But if we could combine the experience and know-how of broadly known and
used software development tools and life cycles, with the benefits of functional
programming, the improvement of both software production and software us-
age experiences could be enormous. And this is, precisely, the main objec-
tive of this thesis: to show that it is perfectly possible to accomplish a com-
plete real-world software development from a declarative perspective. What
is more, we aim to demonstrate that, by adopting this approach, considerable
benefits can be obtained thanks to the properties of functional code. Explain-
ing how a regular software development process can be put into practise with a
functional orientation in the same repeatable, structured, and methodological
way as traditional software developments, we hope to make it more acces-
sible to companies and developers, giving it a chance of succeeding outside
the academic world. Showing how a functional development can contribute to
software quality assurance, and to increment control and knowledge not only
about the development, but also about the business process itself, helping to
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1.2. Objectives

protect both products and activities from well-know failure (or weak) points, we
hope to make the strongest point for it.

1.2 Objectives

The main objective of this thesis is, first of all, to examine the traditional devel-
opment of big and complex software systems, with the intention of analysing
the whole process and identifying those stages which are more critical or
could more clearly benefit from improvement. By ‘traditional development pro-
cesses’ we refer to the most common software development practises (includ-
ing methodologies, tools and languages) that are commonly used by industry
nowadays, especially when we refer to non-trivial management information
systems.

Secondly, this thesis aims to study the mentioned development practises in the
light of the cutting-edge requirements of software engineering (i.e., interoper-
ability, distributability, scalability, reliability, etc.), in order to evaluate how well
they can cope with the new technical challenges that must be met nowadays.
While attention has been generally paid to the resulting products, here we turn
to the actual process and address the question of whether good software could
possibly be produced in better, faster, easier ways. For years, all efforts were
on defining the most advisable methodologies to follow, the most effective ap-
proaches to requirements elicitation, the most convenient cycles of system
analysis, design, implementation and testing stages. Instead, we want to fo-
cus on the paradigms and tools on which those methodologies and techniques
have been unquestionably relying, and determine whether and why there can
be a better choice for them under the previously-mentioned circumstances.

It is also the intention of this thesis to propose, then, a new perspective to soft-
ware development, based on the adoption of an alternative paradigm. Similar-
ities and differences with the new model will be explained in depth. Properties
and incentives of the new approach will be exposed, as well as the number of
advantages that are derived from it. These will be showed on the basis of a
real case study that will serve as story line for this dissertation.

Last but not least, we intend to formalise our proposal and state, as the final
contribution of this thesis, a new functional software development methodol-
ogy. Global benefits with respect to imperative/object-oriented-based develop-
ment cycles will be detailed, particularly stressing the general tasks where a
functional strategy represents a substantial improvement for the development
of applications on complex business domains.

1.3 Structure and contents

This document has been divided in chapters, each of them with a specific
purpose which clearly reflects in its contents.
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1. Introduction

After this introduction, the state of the art is explained in Chapter 2. A brief re-
view of the most popular software development methodologies has been writ-
ten, as well as some considerations about their strengths and weaknesses, to-
gether with open problems, unsolved issues and remaining challenges mostly
related to business modelling. A compare-and-contrast section on the impera-
tive and the functional programming paradigms follows, to thoroughly examine
advantages and inconveniences of each perspective. Finally, some remarks
are made regarding the specific process of software validation and testing,
one of the aspects of software engineering where there is still great room for
improvement.

The third chapter is devoted to introducing the system that has played the
role of case study for this thesis. It is a real-world application, currently in
production for a few years already, that was completely developed using the
methodology that we generalise and formalise here as our functional software
development methodology proposal. The business area that this software ad-
dresses is risk management in the insurance field, whose main concepts are
introduced as well, in order to provide the reader enough knowledge to be able
to fully understand the use cases and examples extracted from the case study
that will illustrate the following chapters.

The rest of this dissertation has been structured according to the main stages
present in any software development process, which have been grouped in
three big sets of activities. First, the sequence of interactions that involves
requirements extraction, continues with system analysis, and leads to the op-
erative design. Secondly, the core tasks concerning the actual creation, build-
ing, and implementation of the system. Finally, the very important processes
of software testing, a key aspect in the pursuit of product quality and an es-
sential element in improving the maintenance stage, probably the longest in
the lifespan extension of any application or system. Each and every of these
three central chapters is closed by a section which specifically refers to our
use case, to show how the arguments previously made apply in reality. The
intention of this layout is to both conveniently translate theory into practise,
achieving a better understanding of the related concepts, and to present some
empirical proof of the points made.

To sum up, Chapter 7 gathers together all the considerations about the soft-
ware development process from the previous pages, and presents, in a nut-
shell, the specifics of the functional software development methodology that
we propose. All the comments about the different stages, as well as the strate-
gies and recommendations that form our contribution, are explained from a
higher level perspective, describing the final outline of this methodology.

The thesis closes with a final chapter, a complete evaluation of the work that
has been done and the contribution it represents to the current status of the
field of software development of complex information systems, with a special
insight into the functional programming and the software validation worlds.
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Some thought has also been devoted to open research lines and future work
to be done, which are included here as well.
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2
State of the art

This chapter presents some general concepts that need to be clarified in
order to understand the objectives and relevance of this thesis. Background

information about software engineering, its methods and practises, as well as
an analysis of its current situation is brought into the picture, to provide the
reader with the needed context. The challenges that remain open in the field
are examined and related with the purpose and goals of this work, with special
attention to two main aspects: the approach to design and implementation,
and the carrying out of software validation.

2.1 Software engineering

Software engineering is a discipline devoted, as all engineering, to solve prob-
lems from our daily lives. Specifically, software engineering is concerned with
all aspects of software production. Even though software construction was not
considered an engineering process for a long time, it has proved to possess
all the properties, risks, and requirements to be expected from an engineering
activity [7].

At a sustained pace, social demand for software solutions applied to an in-
creasing number of fields is growing day after day [8]. To create those software
applications, the problems they are expected to solve need to be carefully and
exhaustively examined by experienced professionals, in order to gather both
the fundamental essence and the important details of the matter. Then, all
alternatives have to be considered, evaluated, and weighted, discarding the

9



2.1. Software engineering

least convenient and choosing the best technical options for each case. Last
but not least, this technical proposal shall take shape in the form of a specific
piece of software, and its functionality and suitability have to be ensured before
it can actually go into real operation.

Software engineering professionals are required, thus, to use their particular
technical and scientific knowledge and skills to analyse problems, divide them
into as many confrontable subproblems as appropriate, creatively invent sin-
gular and precise solutions for each of them, and then successfully combine
all those partial solutions into the final and complete one. Besides, the engi-
neering process of finding and creating a solution for a given challenge has to
meet certain quality criteria, which will ensure that the engineering response
to the problem reflects the best possible effort.

To face their engineering duty, software professionals use and apply a broad
set of methods and techniques. We use the term method or technique to de-
scribe a formal procedure for obtaining certain results, which is usually carried
out with the help of specific tools. While the combination of auxiliary tools
and instruments may be part of the procedure, it is actually the combination
of activities that defines the process, and the tools and instruments are just
automated systems to improve the accomplishment of those tasks by helping
to make them more productive, efficient, or accurate, leading to a better quality
result.

The main activities involved in the creation and management of a software
product are [9, 10]:

Software specification

Software development

Software validation

Software evolution

The construction of any system or application starts with its conceptualisation
and specification. The global objective of the software has to be determined,
as well as its properties and characteristics (functional and non-functional, i.e.,
including performance demands, usability constraints. . . ), and the functionali-
ties or services it will need to present or provide. This process of requirements
analysis and definition is critical to the success of a development project [11].

Once the goal system has been pictured, it is time to start its actual develop-
ment. Of course, this is the core activity in the software development project
[12, 13], and it can generally be divided into two broad stages: design of the
proposed system (including its architecture, environment, structure), and im-
plementation in a given platform and programming language.

While it can be seen as part of the application development or as a separate
task, the third of the former activities intends to provide some feedback about
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2. State of the art

the product quality and its degree of commitment with the project aim. Soft-
ware testing can be performed at a number of different levels [14, 15], from
the smallest application components (i.e., unit testing) or the different applica-
tion subsystems (i.e., integration testing) to the proper operation of the entire
system as a whole (i.e., system testing), and the fulfilment of end user expec-
tations (i.e., acceptance testing). This validation process assesses whether
the system is suitable according to its purpose.

Eventually, the system will be ready to start working on a production envi-
ronment, but the life of a software product does not end when it is handed
over to the customer [16]. After the system delivery, continuous maintenance
and support is very likely to be required, including not only solving the minor
problems that may still appear, but also the enhancement and evolution of the
application, in case new needs arise.

Any combination of all or some of these activities, organised so that they con-
stitute a guide towards the production of operational software, is what we call
software development process [17]: a structured approach to software devel-
opment whose aim is to facilitate the production of high-quality software in a
cost-effective way.

2.1.1 Software development methodologies

In contrast to a process, which usually states the set of actions involved in the
development of an activity, a methodology is a more specific series of steps to
be followed when an intended result is pursued, an ordered sequence of tasks
which sometimes specifies also tools and/or techniques. Traditionally, when it
comes to software development, the methodologies to build software products
have also received the name of life cycles [18].

Software development life cycles are important because they bring a consis-
tent structure to the software building activity, making the construction of an
application a repeatable and knowledgeable process, thus constraining risk
and making the whole process manageable and dependable. An immedi-
ate benefit of following a structured methodology when designing and build-
ing software is the possibility to graphically explain to the customers, who are
usually rather unaware of software construction complexities, the steps on the
way to develop their system, so that they can become more familiar with the
software development process and all the stages involved.

The first software development life cycle was formalised by Winston W. Royce
in 1970 [19], as a systematic and purely sequential series of stages which
included, in this order (cf. Fig. 2.1):

system requirements extraction

software requirements extraction

11
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analysis

program design

coding

testing

operation and maintenance

FIGURE 2.1. Waterfall software life cycle

Many of the software development approaches that followed since the for-
mulation of this Waterfall model can be considered just as modifications on
the main schema outlined by this first life cycle, adding room for extra activi-
ties, feedback loops, and iterations. Nevertheless, as the oldest development
model in software engineering, it is still considered the “classical software de-
velopment”.

One of the first variants introduced on the Waterfall model was the addition of
prototyping [20] (cf. Fig. 2.2).

FIGURE 2.2. Waterfall with prototyping software life cycle

12



2. State of the art

The major drawback of the original methodology was soon enough argued
(and stated by Royce himself), and lies in the fact that hardly ever the real
evolution of a software project is as clean and sequential as the model for-
mulated. A prototype, as a partially but quickly developed product, allows the
customer to examine different aspects of the future system still at a primitive
stage, and hence to decide about its suitability. This early validation is very
important to obtain some decisive feedback about the product which is being
built and the correct interpretation of the user needs and system requirements.
Incorporating prototypes was an effort to achieve a closer, and thus more re-
liable approximation to the reality of projects. However, the model was still
too rigid, so further proposals continued to appear, as the need for a sounded
methodology was growing clear.

The possibility of introducing modifications in a project whenever a failure or
misconception was detected, no matter whether it was on the requisites spec-
ification, the system design, or the program implementation, resulted in the
appearance of the V model [20] (cf. Fig. 2.3).

FIGURE 2.3. V software life cycle

This new refinement of the Waterfall methodology tried to illustrate how the
different activities of the software development process were related to each
other, specially linking the different creative tasks (requirements elicitation,
system design, program implementation) with the corresponding testing sta-
ges. These relationships were made explicit by this new model, so that on
appearance of a problem, detected at certain level of the ‘upward branch’ of
the process, the corresponding step on the ‘downward side’ is the stage that
needs to be re-executed in order to solve the problem.

Even though the innovative idea of bearing in mind where an error might
have originated was interesting, the perspective of just repeating that stage
to amend it was not the most efficient one, and how the project should go
through the rest of the life cycle again was not formally specified either. Still,
this proposal had great influence on subsequent methodologies which explic-
itly exploited the notion of iteration that was already underlying the V model.
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The Prototyping model tried to improve the Waterfall approach after the pro-
totype strategy was introduced [21]. The intention was to take advantage of the
prototype construction process that helped through the first phases, by making
it evolve into the final product instead of just using it for early evaluation and
then discarding it (cf. Fig. 2.4). Apart from making the most of all the efforts
put in the project from its early stages, working on the prototype to turn it into
the final working application also helps to reduce the project failure risk and
uncertainty. However, other kinds of risks appear which constitute the main
criticisms of this methodology: insufficient analysis, incomplete specifications,
poorly engineered final result.

FIGURE 2.4. Prototyping software life cycle

As phased development models were popularised, a set of methodologies
based on iterations and increments instead of linear sequences of activities
appeared, as part of the continual effort to improve the time to market of soft-
ware products. It was already clear by then that the software industry was a
promising business activity, so the urge was great to find the best operational
model for software construction. The greatest novelty of these new models
was the coexistence of two different versions of the software system in par-
allel. On the one hand, there was the application under development; on the
other hand, there was the previous operational version of the software, already
put to a production environment. To handle this simultaneous operation, the
methodologies need to produce a working version of the goal system as soon
as possible, and then continue working on new releases, adding functionalities
and improvements, and also correcting errors. One of the most well-known of
these is the Incremental development model [22].

FIGURE 2.5. Incremental software life cycle

This software life cycle suggests the grouping of system requisites by similari-
ties, in order to architecturally divide the application into as many subsystems
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as groups of related requirements. Beginning with a small operational system
with one or a few working subsystems, this development model continues to
make the system grow and evolve up to the final version, by adding new func-
tionalities (i.e., subsystems) in each new release (cf. Fig. 2.5). In some sense,
the Incremental model can be seen as the superposition of several Waterfall
developments.

Very similar to the Incremental model, the Iterative software development
model [22] differs from the previous in the way the final software product is
approached: instead of adding more and more functionality with each new
release, a rudimentary, not optimised version of the full system is delivered
already as first version. Then subsystems, their services and functionalities,
are improved with each new release, so that the whole set is enhanced, step
by step, until the product reaches the standard of quality of the project and the
terms agreed with the customer.

FIGURE 2.6. Iterative software life cycle

In practise, many organisations have used over the years a mixture of the
Incremental and the Iterative software development methodologies.

Sixteen years after the Waterfall model was described by Royce, in 1986 Barry
Boehm introduced a revolutionary aspect into the software development pro-
cess [23]: the Spiral model (cf. Fig. 2.7). Using an iterative methodology as
basis, he argued that the evaluation of risks should be explicitly considered
among the stages of a software project, so that not only different prototype
alternatives could be evaluated, for instance, but also other potential dangers
or threats to the successful completion of the project itself. In other words,
project management had finally made its appearance in the world of software
development.

By the beginning of the 1990s, it was clear that iterative processes produced
better results than their linear predecessors, but there was a need to make
software development a more dynamic process and to avoid at least some of
the overload caused by documentation duties and other administrative tasks
within most project development processes.
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FIGURE 2.7. Spiral software life cycle

In 1991, James Martin formulated the concept of Rapid Application Devel-
opment (RAD) [24] (cf. Fig. 2.8), as a new philosophy which main focus was
to pursue shorter development cycles (and thus, higher development speed).
Still following an iterative approach, the RAD methodology introduced explicit
scheduling of communication and planning activities as part of the life cycle,
since it encourages the existence of different development groups working in
parallel in different parts of the system. Even though Martin’s proposal was
not free from criticisms, especially related to both application and development
teams size, it would inspire the next generation of software life cycles.

FIGURE 2.8. RAD software life cycle
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It was in the late 90s when the most recent movement on software engineer-
ing and development finally took off. With the unquestionable and unstoppable
democratisation of information technologies, the number of software develop-
ment projects had increased enormously over the last decade, and both de-
velopers and managers found themselves in need of more flexible ways of
organising and working. Following the steps of RAD, they chose to put more
value on individuals, their intercommunication capabilities and technical skills,
instead of devoting so much effort to management and documentation. Atten-
tion was shifted from processes to people by a whole set of new methodologies
named ‘Agile methods’ [25]. The common philosophy behind this innovative
trend was the genuine intention of investing all the time and resources in ac-
tually producing good software, instead of filling in tons of reports and docu-
mentation that in the end nobody was reading. They replaced the paperwork
by more active collaboration with the client and within the working teams, and
suggested to focus on responding to changes, rather than on creating and
following a plan from beginning to end, trusting the developers to organise
themselves and encouraging face to face communication over documentation
interchange.

The most popular of these new agile approaches is Extreme Programming
(XP) [26], up to the point that both terms, agile process and extreme program-
ming, have become almost synonyms in practise. XP (cf. Fig. 2.9) claims to
be based on four properties: communication (all project members, including
users, need to share the same view of the system), feedback (referring to
both people interaction and system output) for testing, simplicity (simple de-
signs and code are preferred), and courage (the previous properties rely on
the participant’s ability to comply with them). Paradoxically, the strengths that
XP claims for itself are the more controversial aspects of the process, such as
flexibility/instability of requirements or potential personal conflicts.

FIGURE 2.9. Extreme programming software life cycle

As the agile processes had pointed out, permissiveness of change turned
out to be the primary driver for adaptability and evolution of software devel-
opment methodologies. In 1999, Ivar Jacobson, Grady Booch, and James
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Rumbaugh described a life cycle in which they tried to draw the best features
of conventional software process models and characterise them to implement
the best principles of agile development: the Unified Software Development
Process, or Unified Process for short [27] (cf. Fig. 2.10).

FIGURE 2.10. Unified Process software life cycle

This hybrid model is the first to describe the software development process as
a combination of three different views or perspectives: a dynamic perspective
that shows the phases of the model over time (inception, elaboration, con-
struction, transition, and production), a static perspective that shows the prop-
erties of those process activities, and a praxis perspective that suggests good
practises to be applied during the process.

Apart from the most remarkable software development methodologies that
have been mentioned here, other minor and specialised methodologies and
life cycles have also been proposed for specific situations or critical projects
[28–30]. Some of them are, for instance, Aspect-Oriented Software Develop-
ment (AOD), Adaptive Software Development (ASD), or Feature Driven De-
velopment (FDD). All of them, nonetheless, are based on or inspired by one
or several of the software processes that have just been discussed here, in-
cluding or omitting only specific tasks or activities to better suit their particular
needs and goals.

2.1.2 Software quality approaches

Good software is defined by a set of properties that includes maintainability,
dependability (involving not only reliability, but also security, and safety), effi-
ciency, and usability [31]. Common adoption of software development method-
ologies was a huge step towards a greater quality of software products, but
no process model includes explicit and specific recommendations to increase
software understandability, verifiability, repairability, robustness, performance,
re-usability, portability, or interoperability, among others; and those which claim
to do so, just include some generic advice.
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A number of tools, commonly referred to as CASE tools (for Computer Aided
Software Engineering tools) provide automated support for requirements anal-
ysis, system modelling, debugging, and testing activities [32, 33]. Their use
can make developer’s and engineer’s lives easier, but does not bring quality
as a direct result. The quality of the product, especially when developed us-
ing certain methodology, is closely related to the quality of the development
process itself. In the last decades, the belief has spread that more efficient
software processes result in products with better quality. As a consequence,
many software engineering companies have turned to software process im-
provement as a way of enhancing the quality of their software. This has been
the origin of enhancement movements such as CMMSM/CMMI© or standardis-
ation rules such as ISO 9000/9001:2008.

The Capability Maturity Model (CMMSM) [34, 35] is a set of system and soft-
ware engineering capabilities that should be present in an organisation and
its software development processes in order to be able to accomplish effec-
tive process improvement. Originally developed by the Software Engineering
Institute (SEI) at Carnegie-Mellon University in 1989, CMMSM has now been
superseded by the Capability Maturity Model Integration (CMMI©) [36–38] for
software development; it is claimed, based on empirical evidence, to help im-
proving predictability, effectiveness, and control of organisations’ software pro-
cesses.

CMMI© is both a recommendation of good practises for software construction
and maintenance, and a kind of process meta-model that classifies a devel-
opment process in one of five evolutionary levels (Initial, Managed, Defined,
Quantitatively managed, and Optimised), depending on the level of manage-
ment and control an organisation has over its own processes in terms of doc-
umentation, repeatability, consistency of results, standardisation, use of met-
rics, improvement policies, etc. CMMI© has been criticised for the consider-
able amount of bureaucracy that it introduces. In addition, this meta-model
does not really help define the structure of an effective software development
organisation. The behaviours and best practises recommended are just prop-
erties that have been detected on successful projects, but being CMMI© com-
pliant does not necessarily guarantee the success of a specific project.

The ISO 9000 series is a set of standards for quality management systems
which are maintained by the International Organization for Standardization
(ISO) [39]. The ISO 9000 family includes rules for fundamentals and vo-
cabulary (ISO 9000:2008), for requirements (ISO 9001:2008), and for perfor-
mance improvement (ISO 9004:2008), among others. In particular, the ISO
9001:2008 standard, intended for any organisation which designs, develops,
manufactures, installs, and/or services any product or provides any form of
service, can also be applied to software development companies. This stan-
dard demands:
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A set of procedures that cover all key processes in the business.

Monitoring processes to ensure the organisation procedures are effective.

Adequate records being kept of procedures and their performance.

A checking organisation that processes output for defects and performs
corrective actions when necessary.

Effort on continuous improvement.

This set of requirements needs to be fulfilled if a company is to achieve cus-
tomers satisfaction through consistent products and services which meet their
expectations. And even though they are perfectly applicable to software devel-
opment, they are also so generic that they do not add any useful information.
Besides, ISO 9001:2008 may be a generic standard to improve overall quality
of products, systems, or services a company provides, but it certainly does
not take into account any of the software development peculiarities. In the
same way CMMI© compliance does not guarantee the success of a software
project, certification to the ISO 9001 standard does not guarantee any quality
of end products and services; rather, it just certifies that formalised business
processes are being applied.

The main difference between the two systems lies in their respective purposes:
ISO 9001 specifies a minimal acceptable quality level for software processes,
while the CMM establishes a framework for continuous process improvement
and is more explicit than the ISO standard in defining the means to be em-
ployed to that end. Improving a process means being able to first fully under-
stand it and to later on change it in order to better pursue a specific goal. Most
of the literature on software process improvement is focused on perfecting the
development processes; however, the actual quality improvement should not
simply mean adopting a particular methodology or tool, or using some specific
model, but to globally make the software engineering process more trustable.

2.1.3 Open challenges

So it should be clear by now that there are a number of challenges in software
engineering that remain open to date [40, 41]. Some of them are related to
software itself, some refer to the software development process.

When it comes to software, there is a series of characteristics that have turned
from features to essential properties along the years. They can be grouped
into three main branches [1]:

Heterogeneity.
Systems are increasingly required to distributedly interoperate across
heterogeneous networks, interacting with new and old legacy systems,
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written in different languages, running in different environments and op-
erating systems. The challenge is to develop techniques to build de-
pendable software, flexible enough to face these demands.

Delivery.
With traditional software engineering techniques, software quality was
revealed as a very time-consuming property to acquire. On the other
hand, businesses are responsive and change quickly, and so must their
supporting systems. The challenge is to achieve short delivery times for
large and complex systems without compromising quality.

Trust.
Software is present in all aspects of our lives, some more critical than
others. Still, it is very important, not only that systems can be trusted
when it is really crucial, but also that users perceive them as generally
reliable, so that they can be fully accepted as part of their daily lives.
Of course, this can only be achieved through development of quality
products.

Undoubtedly, these open challenges are interrelated, which means that efforts
in any of these three directions will reflect on all of them. It also means that the
wiser approach is likely to be a wider perspective and approximation to all of
them, the final objective being to provide engineers, managers, and develop-
ers with the best possible set of choices to achieve their goals (i.e., success-
fully develop their software projects) with the most efficient usage of time and
resources. Or even more importantly, avoiding that certain projects may not
be undertaken due to the unawareness about all the tools and methods that
may help to address and accomplish them.

2.2 Imperative paradigm vs. Declarative paradigm

In contrast to a software development methodology, which is a style of solving
specific software engineering problems, a programming paradigm is a funda-
mental style of computer programming [42]. Paradigms differ from each other
in the concepts and abstractions they use to represent the elements of a pro-
gram, and the steps that conform computation.

The imperative programming paradigm describes computation in terms of stat-
ements that change the state of the program. Imperative programming, thus, is
based on sequences of commands to be performed by a computer. The term
‘imperative’ is used in contrast to the ‘declarative’ paradigm, which expresses
what needs to be done, rather than how to do it in terms of series of actions
to be taken [43]. Functional programming is one example of a declarative
approach.

The use of one paradigm or another not only has a great impact on the election
of the programming language to support the development of a system or appli-

21



2.2. Imperative paradigm vs. Declarative paradigm

cation, but also on what the actual code looks like and how it is implemented.
Traditionally, software development life cycles have implicitly relied on imper-
ative programming practises, and CASE tools are fundamentally oriented to
them. However, from an objective point of view, a declarative approximation
is much more suitable to solve complex problems, like the ones we are forced
to face more and more frequently. Challenges in software engineering have
moved from algorithm design to business logic and constraints implementa-
tion. With a paradigm that does not constrict engineers to think about how
they have to specifically solve a problem, but instead raises the abstraction
level of the development and allows them to concentrate on what needs to
be accomplished, the whole reasoning process stays at a level which is much
closer to human problem perception and argumentation, and also to problem
specification and description. In addition, a system which is not only created
and designed at this abstraction degree, but is actually implemented using a
high-level declarative programming language, will enable validation activities
to present the same properties, thus allowing the easier performance of pow-
erful verification tasks.

Still, there are imperative artifacts that can really improve the results of the
analysis and design activities in a software development project [44–46]. In
particular, concepts from the object-oriented programming paradigm (OO), the
most popular imperative approach nowadays, are indeed useful. OO uses the
notion of “object” to model concepts from the real world. Interactions among
those objects (in the shape of message interchanges) are intended to repre-
sent dynamism and business activities. However, while objects are generally
a very good abstraction of business elements and data, it is not that often the
case that modern business cases and logic can be easily depicted as just a
set of messages between those objects. Rather than being active elements,
in many situations engineers will find themselves creating artificial solutions
in order to design communication protocols for intuitively passive objects, in
order to carry out system functionalities and services.

On the other hand, declarative approaches such as functional programming
explicitly try to avoid state and mutable data, which is also an unnatural and
unwanted circumstance in most business scenarios. While its proximity to
mathematical foundations, the use of pattern-matching, high-order functions,
and recursion, can be of great help to easily implement logic and operations
in an intuitive and descriptive-like manner, there is a lack of resources when it
comes to data modelling and management.

Ideally, we would like to be able to take advantage of some of the OO benefits,
but without renouncing the functional properties of abstraction and high-level
reasoning.
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2.3 Software testing: verification and validation

We have already mentioned on several occasions the fundamental need for
testing efforts as part of the software product development process [47–49].
Software testing is an essential activity which tries to answer two different
questions: “is this the right product?” (Validation) and “is this product right?”
(Verification).

Validation, thus, is intended to decide whether or not a product design satis-
fies the intended requirements and meets the customers’ needs. Generally,
to determine this, a system undergoes different sets of external manually-
performed operational tests, either by potential users or by testers. Verifi-
cation, on the other hand, is meant to inspect whether or not a product has
actually been built according to its design and specifications.

There are some tools that can help performing verification duties, such as code
and data analysers, structure and sequence checkers, program monitoring
tools, test case generators. . . But in order to really effectively and efficiently
detect and solve problems within a software project, it is the testing techniques
and tactics they are used for which are important.

2.3.1 Unsuccessfully addressed problems

There is a set of software engineering principles that are widely accepted
among the software development community [50–53]. These principles in-
clude rigour and formality, separation of concerns, modularity, abstraction, an-
ticipation of change, generality and even incrementality. Software life cycles
take into account most of them, and they also include the testing activities
that should provide some confidence on how close to those principles has the
project been performing.

Yet, no software development process states explicitly which techniques or
methodologies are best followed to actually perform meaningful testing, so in
practise the related activities are faced in a much more ad hoc and manual
manner than would be advisable. This, of course, affects not only the time and
resources they require, but most importantly, their suitability and effectiveness.
There are no significant metrics that we can apply to decide how accurate
a verification or validation stage is or has been, and neither are there well-
grounded, sound criteria to help us decide when to stop performing tests.

In conclusion, there is a lack of formality when it comes to software testing
that needs to be addressed. Development teams of all sizes could hugely
benefit from having guidelines or defined procedures to follow when testing
their products.
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3
Case study

The development of this thesis has been intimately related to the concep-
tion, creation, and evolution of an information system used as a case study.

Therefore, before proceeding any further, the business case, features, and
properties of this application are explained in this chapter.

First of all, some basic notions about the field of risk management and some
discussion about the specific issues of the insurance domain take place. Then,
previous existing and alternative software applications to support this activity
are discussed, focusing on their particular properties and weaknesses, which
eventually lead to the birth of our case study project. Finally, we present AR-
MISTICE, describe the system, the particular problems it is designed to solve,
and the improvements that it is conceived to make.

3.1 Risk management

Enterprise Risk Management (ERM) is a field of enormous importance due
to its increasing complexity and undeniable economic value. More and more
companies are paying attention to it, given there is a significant economic
reward for attending to the various aspects of risk [54]. Besides the recog-
nition of the value in ERM, there is also an awareness of the need to apply
more complete, integrated approaches. The discipline has witnessed a shift
in the way organisations manage the many uncertainties that stand in the way
of achieving their strategic, operational, and financial objectives. “Band-aid”
approaches to risk management – with each risk considered in isolation and
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only when it occurs – have been replaced with more holistic methods, looking
at risks as they are integrated and interrelated across the entire organisation,
and managing risk response strategies well before they become acute [55].

All enterprises are different in some sense: their business models differ, the
types of products and services life-cycles are context-driven, organisational
charts are diverse, their motivations for overall business style are not the same.
However, most of them have as their bottom line the same pursuit of economic
success, so their objects of interest may not be the same, but their ultimate
aims are. Any company interested in dealing with risk needs to define a set
of considerations, of guidelines and intentions, that comprises the company’s
policy on ERM. To face hazard threats, there are different risk management
strategies that can be applied, different philosophies to follow, different atti-
tudes to adopt (namely, avoidance, prevention, assumption, or transference
[56]). And of course, the best risk management policy always depends on the
specific company, its business area, its particular situation on the market, life-
time, size, etc. Nevertheless, it is often a wise choice not to apply only one
of the previous strategies, but to build a customised risk management policy
choosing for each risk the best attitude in each particular case.

3.2 Risk Management Information Systems

So ERM has become a matter of real importance for the enterprise today,
an aspect of decision making for every CEO. This is a direct consequence of
the new business concept it introduces: economic prosperity is not just about
making money, it is also about avoiding losing money. And this means, most
of all, the intimate overseeing of all company resources (whether they be hu-
man, material, or ideological) and the close monitoring of all its activities, also
from a preventive point of view. In the business world, the main objective
has always been maximising the success of the enterprise objectives through
carefully planned strategies of action. With ERM, one must be take into ac-
count that it is equally important to ensure we protect business activities from
failure due to external or indirect causes that may go unnoticed, at least to
the non-expert eye. The incorporation of risk management then enhances the
overall economic objective by expressing risk not just as a threat, but also as
an opportunity for economic profit [55].

Risk management theories and procedures are formulated and re-formulated
every day, presented and discussed in major conferences and meetings [57–
60] at an international level. Risk management associations and organisations
[61–63], for the exchange of ideas and experiences, draw membership in the
thousands. More generic decision-support forums show their interest about
the subject [64], too. But even though we now assign risk management the
importance it deserves, and despite all efforts that are being made to face its
potential threats, it is obvious that we have not employed all our potentially
useful tools against it. In a society where information technologies are more
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and more present in the daily life of business and economy, ERM seems to be
one field where software engineering, unfortunately, has not made an impact
yet. Personal computers are part of the daily routine of risk management de-
partments everywhere, but user-level usage of computing is as far as it gets.
This restrains a potential benefit, not only from applying automation and com-
puting power to repeatable processes, but from using software engineering
techniques to create new software tools, to solve problems on the whole that
are not being adequately addressed by existing systems. Instead of using
computers just as an auxiliary tool, the goal should be to use them to take
over as much of the risk management tasks and processes as possible.

3.2.1 Commercial software for risk management

The majority of the software systems for risk management, usually referred
to as Risk Management Information Systems (RMIS), available in the market
are conceived to be used by insurance agents, brokers, and carriers (cf. Table
3.1). In other words, their focus is on the intermediate actors that study and
recommend the best insurance options to their clients, among their insurance
portfolio, and are not generally designed from the insurance customer point
of view. As a consequence, most RMIS do not reflect the needs and use
cases of insurance holders, but those of the intermediate agents that stand as
negotiators between insurance companies and their potential clients.

For small companies and private or individual interests, hiring insurance bro-
kers is generally a good option. Their knowledge about the insurance busi-
ness and the different options in the market, together with their risk-related
experience, will be an advantage worth benefiting from in most cases. How-
ever, when we talk about larger organisations, with international cross-borders
activities, with critical and/or strategic products or services that need to be
privately managed, with an extensive amount of objects of interest, outsourc-
ing risk management does no longer seem a reasonable alternative. These
kinds of insurance clients typically have their own risk management depart-
ment, which of course have some slightly but fundamentally different software
needs.

An information system meant to be useful in this scenario should provide
mechanisms to define the specific resources of the company, and manage
them from the point they appear or are acquired to the moment they are dis-
posed or are not of interest any more. The organisation also needs means of
handling all the information about the insurance policies it may engage, such
as coverage details, terms of protection and compensation, etc. And since
the objects of interest are not likely to be static entities, their changes prob-
ably affect the insurance policies, whose specifications may also be modified
as a consequence. Hence, policy supplements and renewals are required to
be automatically managed, too. Last but not least, the most important fea-
ture of an RMIS from the insurance client perspective is the administration,
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3. Case study

control, and supervision of accidents which affect their objects of interest, as
well as the corresponding claims and evolution of these from accident report
to damage reparation and loss indemnification (including payment orders, in-
voices, and handling of all associated documents). As one can imagine, all
these tasks and activities involve large amounts of data; thus, additional data
analysis tools and report generation features are also of maximum relevance
for managers, who need to be able to study the performance and efficiency of
the current ERM strategy of the company.

3.2.2 Prospectives

Given that ERM recognises that organisations face a greater variety, and an
increasing number and interaction of risks [65], it is surprising that the software
applications which claim to help to manage the risks are not designed to cope
with these enormous differences, even though their commonalities are the
really important point.

From our previous analysis of the existing commercial risk management tools
(cf. Table 3.1), we conclude that there is a need for a new sort of RMIS to fill
a significant void. A different system, designed with one important thought in
mind: to be powerful enough to model all the complexity and diversity of the
risk management process, but also flexible enough to be self-adaptive to any
company and therefore any type of risk, regardless of its particular business
domain. By ‘self-adaptive’ we mean that the system itself should have the built-
in properties and features to be used, right out of the box, by any insurance
client, without requiring any further tuning or human intervention (in particular,
developer’s intervention). In other words, a system where customisation to a
specific business activity could be easily performed by the users, as part of
their regular work.

This innovative RMIS needs be designed to be a tool for different user profiles,
according to the various degrees of expertise that would be present among
the staff of a risk management department. For the expert user, it should be of
help to spell out the company’s specific objects of interest, and their relevant
properties from an ERM point of view. This user profile is likely to be respon-
sible for defining the insurance policies contracted to protect those resources
from the consequences of potentially harmful events, whichever these might
be, for each particular case. For the non-expert user, who probably has to deal
with accident reports and tracking having little or no advanced knowledge re-
garding coverage and warranties, the system should be able to provide active
support in the decision-making process, retrieving and isolating only the most
relevant information in each case, according to the contextual data provided,
and thus, providing extremely valuable support for final decisions.

Of course, this software product should maintain all the interesting properties
that we have already identified in the systems we have analysed: multi-user
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capabilities, multi-platform usage, multi-database compatibility, multi-language
configuration, multi-currency support, powerful report functionalities. . . In ad-
dition, it should also face all the issues that we outlined in Section 2.1.3 (page
20): distributability and interoperability, timeliness and quality, robustness and
fault-tolerance.

These, as we will see in the next section and the following chapters, are the
challenges to be faced by our case study, ARMISTICE.

3.3 The ARMISTICE project

ARMISTICE [66–68] (Advanced Risk Management Information System: Track-
ing Insurances, Claims, and Exposures) is an efficient and robust risk manage-
ment information system (RMIS) developed using the advanced software en-
gineering techniques and methodologies proposed in this dissertation, which
conferred this software unusual and powerful flexibility, as well as high reliabil-
ity.

The system is a three-tier client/server vertical application which is able to,
among other things:

Model and manage all kind of organisation resources.

Model and manage all kind of potential risks.

Model and manage contracted insurance policies to a fine-grain level of
detail (by means of its own high-level language based on formulae and
constraints).

Manage the claims for accidents involving resources all over the world.

Select the most suitable warranty to cover resources damaged in an acci-
dent (help decision support expert system).

Manage other accident-related tasks (payments, invoices, repairs. . . ).

As it is easy to see, ARMISTICE’s application domain is quite complex. Many
entities, with complex relations among them, are identified in the analysis of
the domain. Thanks to the level of abstraction reached at the definition of the
system, which is that of meta-information, great versatility can be achieved.
When talking about meta-information, we mean that the system deals with
information about information, that is, it is designed not only to be able to man-
age some specific concepts, tied to more or less specific cases and specific
business scenarios, but with the ability to specify the very nature of those con-
cepts, cases, and scenarios in the first place. Besides, the high abstraction
level reached when designing the system is maintained through the develop-
ment stage thanks to the use of the functional programming paradigm, easing
and speeding up the implementation process, and also enabling some ad-
vanced validation strategies to be applied during testing activities.
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This makes it possible for ARMISTICE to be applied to diverse business fields,
regardless of their nature, and makes it a perfect case study to show empir-
ical evidence about the suitability of the methodology applied to develop this
software in order to approach other complex problems, conceive complete so-
lutions, and successfully perform them.

3.3.1 Data collection and analysis

All the information and data about the ARMISTICE project that is included in
this dissertation has been gathered by the development team during the life-
time of the application, from its early conception stages till the present day.
The analysis of the data was conducted in a exhaustive way, sometimes trying
to extract significant hypotheses, sometimes looking for arguments to support
our own theories. Whenever a conjecture was formed, further data was in-
spected (or additional data was acquired) in order to validate whether or not
there was any evidence in favour or against it.

Different techniques have been used for data collection, that can be grouped
in two sets:

Scheduled data collection Some information was obtained as a result of a
planned activity or effort, such as interviews with the users or develop-
ment team meetings. Two kinds of data profiles can be identified, the
first being unstructured data (i.e., informal notes), and the second being
structured data (i.e., design documents in the shape of UML diagrams).

On-demand data collection Apart from the information that was gathered as
a result of scheduled tasks or events, an important amount of data has
been collected, all through the project lifespan, whenever the need for
it was identified. Within this category we include mainly technical data
(i.e., server load, client performance, lines of code) and specific real
data (i.e., number and kind of most performed operations, amount of
business objects handled).

The author of this thesis, as one of the few people that has been, and con-
tinues to be, part of the ARMISTICE development team since it was started
in 2002/2003, has played an active part in such data gathering and interpre-
tation, too. First as developer, as analyst later on, and nowadays as project
manager, she has a deep knowledge and understanding about the system, the
business domain, the design decisions, and the implementation details. The
ARMISTICE development team has been formed by a non-static group of peo-
ple, with up to five developers (three of them full-time) when the project was
at its highest level of activity. Overall, the development has taken 200 person-
months and the total code size is ∼ 83000 lines of code (LOC) for the server,
and ∼ 66000 LOC for the client. Maintenance and bug-fixing take nowadays
around 500 person-hours a year.
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4
From requirements

to analysis and design

As we saw in Chapter 2, all software development methodologies include
as initial stage in their life cycles one or several tasks devoted to project

requirements analysis. This involves conceptual evaluation and determination
of system functionalities, extensive understanding of business domain, and
knowledge extraction about business processes and activities.

After that, no matter whether the process to follow is accomplished adopting a
sequential, iterative, incremental, prototyped, or agile approach, all the previ-
ous information is to be thoroughly studied and organised to produce a system
design, which will be later implemented as a software product. Of great impor-
tance and relevance in this transition is the use of modelling artifacts such as
software design patterns, and standard tools to capture and represent design
information such as UML.

Even though we must of course do it for every software product we develop,
when we deal with really complex and rather unknown domains, we would like
to place special attention on the results of the analysis and design phases.
The most expensive software problems to solve are those derived from bad
requisite interpretation or design flaws, so no additional effort to ensure qual-
ity results from these engineering procedures will be in vain. Moreover, if we
could formalise the output from this stage in a way that we could later use it
during testing, we would be providing very valuable reassurance and verifica-
tion traceable criteria.
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4.1. Requirements elicitation

In the following sections we review the key aspects of software requirements
study, system analysis, and program design. Afterwards, our proposal to im-
prove the confidence on the outlined solution, especially when dealing with
complex problems and domains (such as risk management, our case study),
is given: the formalisation of the extracted system concepts in a series of state-
ments and equations which will allow further reasoning, properties extraction
which will prove useful during testing, and a somewhat greater certainty and
stronger confidence in our analysis and design activities.

4.1 Requirements elicitation

In software engineering, a requirement is an expression of desired behaviour
or functionality for a software product or system. Requirements need to be
defined, as a list of user’s needs and wishes, and then specified, to link them
to how the system to be built shall behave.

More and more frequently, software engineers find themselves facing the de-
velopment of complex systems to address problems on business domains that
they are not familiar with, and whose properties and problems they are not
aware of or do not understand. In this regard, software engineering is one of
the most challenging engineering disciplines, since a great part of the prob-
lem description comes from people’s demands and preferences, which have
a great subjective component, and not from neutral and objective factual data,
such as slope inclination and terrain composition, or wavelength and transmis-
sion distances. In other words, software engineering has an important part of
social engineering, as it needs to capture and understand people’s problems
first, to then find an efficient and quality solution for them.

A number of requirements elicitation or extraction techniques have been de-
veloped to deal with this first and essential stage in software construction, the
most basic but effective one being interviews [69]. Other techniques, such as
direct observation, task analysis, or simulations, can also be applied in some
cases [70]. However, in spite of all given recommendations, requirements ex-
traction is certainly an activity that requires more effort than is usually taken
for granted. Most of the time, users have a hard time verbalising their needs,
at least in terms that are straightforward useful for, or helpful to, the software
engineers and developers. So, in the end, the success of this activity is highly
dependent on the abilities of the people in charge. The essential aptitudes
include good communication and social skills, such as effective use of lan-
guage (both written and spoken), the ability to represent own ideas schemat-
ically and to interpret others’ ideas, open-mindedness, decision-making com-
petence, and even conflict resolution abilities; not to forget, of course, about
application domain, technologies, and system programming knowledge. Obvi-
ously, all these attributes are hardly ever found in just one person, which is the
reason why multidisciplinary teams are necessary, more than anywhere else,
at this stage of the project.
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4.2 System analysis

As a result of the requirements identification process, engineers should be
able to outline the architecture of the system, based on the analysis of the
technical requisites that are inferred from the description of functionalities and
services needs. Using their technical expertise and previous experience, they
must evaluate different options such as the most suitable kind of application
(stand-alone, client-server, web. . . ), the operative environment and hardware
needs, as well as parameters such as concurrency, efficiency, or real-time be-
haviour demands. Using the elicited information, decisions concerning a wide
range of variables must be taken: from the software development methodology
that would be applied to the programming paradigm, and also the structure of
the software to be built.

When facing the development of a new project, unless there are any unavoid-
able constraints that oblige, the use of standard technologies and notations
is preferred. Not only because they help to build products which are eas-
ier to manage, evolve, and maintain [71], but also because by applying well-
established norms or technical solutions the chances of successfully commu-
nicating and integrating the new product with already existing environments
and systems will be greater. In particular, in the field of software analysis and
design, standard modelling tools facilitate information representation, man-
agement, and interchange.

One of the most widely known modelling languages is the Unified Modeling
Language (UML), a standardised general-purpose set of graphical notation
artifacts to represent abstracts models of software systems [72]. Because of
its properties and also thanks to the relative simplicity of the notation, UML
constitutes a great resource. It serves not only as documentation and infor-
mation exchange means within a development project, but also as a commu-
nication tool with the final user.

4.3 Program design

As we have already defined in previous chapters, software engineering is a
computer science discipline devoted to the systematic and disciplined analy-
sis, design, development, operation, and maintenance of software [1, 26]. It
involves knowledge about methods and tools for defining software systems re-
quirements, and also knowledge about tools and methods for designing soft-
ware that fulfils those identified requirements, and for building, testing, and
maintaining it. The theoretical principles that allow a group of software en-
gineers to analyse complex fields (like risk management, for instance) and
design a valid solution for their needs, are those from software analysis and
design [73–76].
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The central and fundamental instrument of software engineering to gather the
essence of a problem, leaving all specific constraint details behind and reach-
ing the main properties of a generic scenario, is abstraction. The software
engineer moves from the actual needs to the formal definition of the main re-
quirements, identifying the core parts of the software solution in the process,
and then refining each component’s task and goal in the system to be built.
This activity, this creative process of transforming a problem into a solution, is
what we call design. When referring to software design, it can be divided in
two different stages: conceptual or system design (which is actually the output
of the system analysis activity), and technical or program design.

Technical design can follow different paradigms (functional, object-oriented,
domain-specific, process control. . . ); there is also a large set of tools and
notations that can be used to both document and convey the design of a
software product (ER diagrams, UML diagrams, Petri Nets, data flow dia-
grams. . . ). In any case, a good technical design will generally be based on
a multi-component structure, promoting element independence for the sake of
software reuse, which is a factor of quality as well as fault prevention and toler-
ance [77]. By keeping each system component both as a working element on
its own and as an essential piece of the software gear (modularity), a versatile
and robust system architecture can be more easily outlined.

The use of software design patterns is a key factor to carry out this task,
ensuring the result to be efficient, flexible, and sound [78]. A design pattern
is a repeatable software solution to a particular kind of problem, which has
proved to be both efficient and simple [74]. Effective software design should
anticipate and avoid potential problems that may appear later on, during the
implementation phase. The use of design patterns has been shown an excel-
lent strategy when it comes to both recognition and prevention of such subtle
weak points. Besides describing a tested solution to a common scenario, they
also represent a well understood way of interaction and communication among
developers, improving readability of design documents, and even comprehen-
sibility of derived source code in subsequent stages. Applying software design
patterns during a system’s design and development process helps to reduce
the development effort, prevents the appearance of common errors, and guar-
antees the usage of already successful solutions.

4.4 Formalisation and model review

Faults or misconceptions in software product requirements extraction, system
analysis, or design, are the most expensive problems to solve in a software
project, unless they are detected before proceeding to the next step in the
development (i.e., implementation and testing) [79]. To prevent them from
occurring, software engineers and developer teams need to make sure they
have properly understood users’ requirements, and also that their analysis and
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design work reflects and fulfils those requisites in the most accurate way pos-
sible. This is usually attempted by extending or complementing the acquisition
interviews with reviewing sessions. Some iterative software methodologies al-
ready foresaw this need, and most of the development life cycles used nowa-
days schedule some room for this early reassurance activities. The specific
way they approach it, however, differs: from the old prototype building idea to
innovative simulation experiences, options have to be chosen depending on
the particular constraints of each project and product.

Prototyping may work well in many cases, but potential differences between
the primitive model and the final version of the software need to be kept in
mind by all parties. Also, there are scenarios where this technique is not ap-
plicable, either because it is too expensive or due to other limitations, like the
complexity of the business logic or the specificity of the underlying processes
and algorithms. In such situations, only the help of diagramming tools and rep-
resentation artifacts (such as UML diagrams) can help technicians and clients
communicate over a product model.

Be that as it may, we present here a contribution to this stage of a development
project, aimed to provide further confidence in the partial results of software
analysis and design. Especially when dealing with critical systems or complex
domains, we suggest to review the whole modelling process and to formalise
the identified concepts and their interrelationships (cf. Fig. 4.1). Maintaining
the high level of abstraction achieved during requirements, domain and system
study, the objective is to write down semi-formal descriptive statements that
characterise the conceptualisation of the business elements and the system
components. Reading back, not only these equation-like sentences, but also
the derived links and/or properties that can be extracted or inferred from them
(adding and completing our view of the project specifications), to the user or
client can be an additional way of verifying the accuracy of the work that has
been done so far.

Besides, having a semi-formal description of a domain abstraction for a system
can be of great help in later stages of the project, in particular if a declarative
paradigm is chosen for the implementation task. Obtaining the properties the
system to be built is required to present as output of this development stage,
along with the rest of the technical details, means we provide not only the
instructions for the implementation task, but also the features to look for at
the validation stage. This link, that is hence established early between user
requirements and system properties, is very interesting from the point of view
of traceability and validation. We come back to this idea in Chapters 5 and 6.

4.5 ARMISTICE’s business domain study

In Chapter 3, we presented our case study application ARMISTICE. In this
case study, the methodologies we have described in the previous section have
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FIGURE 4.1. Knowledge elicitation and validation process

been applied: requirements elicitation, problem abstraction, and usage of soft-
ware patterns to obtain a design of the functional architecture for the target
software system.

4.5.1 Knowledge extraction

The methodology followed in the development of the ARMISTICE project var-
ied from the first stages, when the stress was put on frequent meetings with
the domain experts, to the final stages, when few meetings were necessary
and the focus was on application testing. The initial appointments included
long discussion sessions about both what the user demanded and what we,
the technology experts, thought possible to achieve.

Risk management is not a well-known domain among computer scientists and
software engineers, so many explanations, instructions, and clarifications were
needed, especially during the first months. Once the essence of the domain
and its main concepts were clear to us, the system modelling process started.
For that matter, we found UML a very useful tool to communicate with the do-
main experts. As we depicted the system analysis and design in the shape of
UML diagrams (mainly structure diagrams, but also behaviour and interaction
diagrams), we showed and explained them to the experts in the field. After
some introduction to this standard modelling language, they were quite eas-
ily able to understand them and soon even to make corrections and put their
fingers on errors and misconceptions.

However, the properties of this case study, its intricate domain and the com-
plexity of the software which was being built, demanded a more structured
formalisation of the elicited requisites. This formalisation served both to es-
tablish a good level of confidence on the coherence of the elicited concepts,
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and a model and properties to be used later on, to test the correctness of the
system which would implement them.

4.5.2 Domain analysis and design

Risk management field and needs analysis shed light on the fact that regard-
less of the specific type of risk to face, the resources or processes exposed to
that specific risk, the shape the threat might take, the different consequences
it might have, in general, the approach in dealing with risks is common in all
possible scenarios. This generalisation has been the key concept behind AR-
MISTICE.

When modelling ARMISTICE’s business domain, we have gone one step fur-
ther than usual, defining meta-information instead of just domain-specific in-
formation. Hence, the new system is a means of establishing which are the
objects of interest, also referred to as risk situations, and the hazards threat-
ening those risk situations, in the first place. But the way this is achieved is not
only by introducing information about those risk situations in the system, but
by previously establishing the related meta-information, i.e., the information
about which kind of risk situations will the application manage. For exam-
ple, a user interested in the risks affecting employees should be able to input
the specific information about all personnel. But prior to doing this, the meta-
information about those risk situations (employees) needs to be created, that
is, the application will allow the specification of the ‘person’-type object of in-
terest, whose important properties can also be decided, for instance name,
age, gender, qualification, job, salary, etc. This first high-level abstraction is
called risk group.

In Figure 4.2 we present these concepts as a simple UML diagram[1], where

[1] All through this
section, some
information and
supplementary
restrictions on the
business objects
are omitted for the
sake of clarity.

each business object is represented by a square box, and relationships be-
tween them by arrows. Directed links reflect visibility properties, and multiplic-
ity is also displayed on the diagram (default is one, ∗ means many).

FIGURE 4.2. UML model of risk groups and risk situations

So, the diagram shows that every specific object of interest (i.e., every person
in the staff) will be a meta-instance of a risk group, which specifies the relevant
properties of a set of risk situations of the same type. After introducing this
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meta-information, the user can proceed and input the necessary specific data
about the employees.

Using this abstraction, it is possible to model the state of every insurable el-
ement. However, business requirements also demanded transient manage-
ment of the risk situations. Based on Fowler’s temporal patterns [80], track-
ing of the objects of interest is performed through time. The evolution of a
specific risk situation is modelled since its creation as a set of versions and
revisions (two-dimensional temporal modelling). A version represents a new
state of an element which is meaningful for the business logic (e.g., a modifi-
cation that may affect coverage). However, a revision represents a new state
of the element which is meaningless as far as the business logic is concerned
(e.g., modification to correct typos on the risk situation information). Figure
4.3 shows the UML representation of this feature, which is also applied to a
number of other elements in ARMISTICE (those for which it is relevant to keep
track of changes).

FIGURE 4.3. UML model of risk situation dynamism

A similar analysis and design process involves hazards threatening the risk
situations: if the objects of interest are people, the main hazards may be long-
lasting illnesses or strikes; if the objects of interest are warehouses or offices,
the relevant hazards to be taken into account by the system may be arson,
flooding, or theft. Again, it is the expert user who will first decide what the
meaningful risks to the business area are, and then introduce them into the
system, classifying them (if applicable) under the appropriate categories (cf.
Fig. 4.4).

Once risk situations and hazards have been created in the system, exposures
are set to match pairs of risk situations and hazards potentially affecting them
(cf. Fig. 4.5). Many different types of objects of interest can be registered
in the system, as well as many different hazards. However, not all hazards
threaten the same kind of risk situations. A person is probably not vulnerable
to theft (unless she performs an important “intellectual” role and competitors
may be interested in head-hunting or recruiting valuable employees), but the
contents of a warehouse certainly are. Thus, exposures represent the infor-
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FIGURE 4.4. UML model of risk hazards

mation about which hazards we want to bear in mind when referring to certain
risk situations. When a exposure link is established between a hazard and a
risk situation, some interesting values are assigned: probable maximum loss
(PML), estimated maximum loss (EML), normal loss expectancy (NLE), inten-
sity, and frequency.

FIGURE 4.5. UML model of exposures to risk

Exposure information is used by system experts to ensure that, ideally, every
risk situation is protected against all hazards it might be exposed to. In any
case, regardless of the risk management policy alternative which is being ap-
plied, this is a means for the responsible person of being aware of the specific
menaces that threaten every resource of the organisation.

These are the first system configuration steps ARMISTICE needs, so it will
contain the basic business data to start working with. But the goal is much
more than to build just a risk situations or hazards database: it is to build a
complete tool to assist in the implementation of a company’s overall risk man-
agement policy. To do so, the next important functionality is the management
of insurance policies, detailed down to the level of insurance warranties, which
specify the terms of the contracted coverage for a set of risk situations, when
some specific conditions become present. Furthermore, at the warranty level,
the system will also deal with the formulae which calculate excesses and limits
when the transference is not total.

Insurance policies are the most complex element in risk management, and
consequently also in our system. These formal documents, pages and pages
long, detail all the norms, rules, and regulations previously agreed upon by the
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parties: not only which specific objects are being considered or which partic-
ular hazards are being taken into account, but also relevant dates (when the
agreement validity commences and when it expires) and all sorts of applica-
bility conditions and constraints they decide upon. Once an insurance policy
term comes to an end, the agreement can be renewed as is, or it can be mod-
ified to include subtle variations, or it may be renegotiated from scratch. Of
course, changes can also be made by mutual consent even during the policy
validity period, meaning an amended document or addendum will be written
down, where the new terms and conditions will be put on record and be in
effect at that very moment. Depending on the business area, this kind of mod-
ifications may even be foreseeable, so that the new terms applicable, if they
finally appear, can be stated and agreed upon in advance.

To fulfil this real-life behaviour of a policy life-cycle, ARMISTICE has been
designed to allow modelling of insurance policies as a set of renewals (cf. Fig.
4.6). A renewal represents a new policy created to provide coverage to a set
of risk situations over a certain time interval. At the same time, a renewal can
be broken down into one or more supplements (endorsements). A supplement
represents a revision of the policy, made to establish or modify its coverage,
its contractual clauses, etc.

FIGURE 4.6. UML model of insurance policies

Apart from some indispensable information such as the set of covered risk
situations, the relevant dates, and other attributes (such as different sorts of
general limits and excesses), the essential core element of a supplement is
the conditional. Conditionals model the constraints under which an insurance
policy provides coverage for a claim. In other words, the supplement condi-
tional is a model of the contractual clauses of a specific policy, the model of
the policy coverage, that is to say, the model of the policy warranties.
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As descriptions of legal terms or insurance constraints, conditional restrictions
must allow the inclusion of references to actual risks, properties of the risks
situations that are being covered, as well as other policy-related data and cal-
culations (formulae for limits, excesses, etc.). As we will see in the next chap-
ter, these models of policy coverage will also include short explanatory details
(nuances) in natural language, which will allow ARMISTICE to very faithfully
represent reality, and make it possible to obtain extremely accurate results
when automatically suggesting the most appropriate policy to charge with the
expenses of an accident.

We have to remark that formulae, restrictions, and even conditionals, are mod-
elled as separated elements of its own for the sake of re-usability. The way
excesses or limits are calculated, the kind of conditions that are checked to
determine a clause’s applicability, and even the combination of both, are very
likely to be similar or even just the same in different sets of policies. So mod-
elling each of these elements as full and independent entities allows the user
to build her own “library” of these components and then use them as many
times as needed, thus saving, not only a lot of time and effort, but also poten-
tial mistakes.

Therefore, ARMISTICE combines the information vs. meta-information distinc-
tion at the business-data level with the translation of extremely complex real
elements such as policies into objects which can be handled by a computer.
Once all this data and logical structures are in the system, it should be ready
to assist risk managers. First, to manage accidents as soon as they occur,
to decide which of the contracted applicable policies is the most suitable or
desirable to apply in each case, and then to be aware of the life of the claim,
tracking the accident from the starting point until the file is closed. Second,
to analyse all data and make decisions about the suitability of the current risk
management policy that is being put into practise, as previously mentioned.

The accident claim management process involves becoming aware of the risk
situation(s) that has (have) been affected by a particular hazard, estimating
losses and repairs costs, tracking all related tasks and activities needed to
repair the damages, payment issuing and processing, indemnities claiming
and recovery,. . . This data helps the system to keep the claim status up-to-
date, right through and up to the final stage when everything is solved and the
file is finally and permanently closed. A UML description of this last scenario
is showed in Figure 4.7.

But even then, ARMISTICE’s functionalities will not be over. Apart from these
everyday kind of operations, there is potential for analysis that can be per-
formed on the basis of all the information gathered daily. At any time, the
system can be queried for information to show if the risk management policy
is being successful, i.e., if the losses are being recovered as desired, if any
of the contracted policies are redundant or superfluous, if there is any hazard
causing uncovered accidents because it was missed or underestimated at in-
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FIGURE 4.7. UML model of accident claims

surance negotiation time. This task is not to be underestimated, because it
can help to detect deviations on the risk management policy at relatively early
stages and, hence, to correct them.

4.5.3 System formalisation

In this last section of the chapter, the formalisation of ARMISTICE’s essential
concepts is explained. This is our suggested means of increasing confidence
in proper knowledge acquisition, by pursuing the validation of the main ab-
stractions acquired during the design stage. This also helps to improve and
fine-tune the acquired knowledge, as well as to anticipate the formulation of
testing requisites as directions for later test case generation.

Consequently with the discussion sequence followed for the domain analysis,
we start by formalising the definition of a risk situation (RS) as an element
which models the state of any object of our interest (e.g., a person, a shop,
or a vehicle). Every RS is also an instance of a risk group (RG). An RG is a
template, that is, a meta-description of all the important attributes (e.g., name,
age, address, vehicle registration number, warehouse area, or cubic capacity)
which describe the state of any relevant element from the risk management
point of view (e.g., employees, commercial premises, or industrial vehicles).

We denote the set of all possible attributes as A, each of them defined as

Attribute = (name, type)

where
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name ∈ String
type ∈ Types = {String,Boolean, T imestamp,Money, . . .}

Over these elements, the set of risk groups RG is defined. Each member
RGi ∈ RG is again a set, as follows:

RGi = {a0, a1, . . . an−1} / ∀x ∈ [0, n− 1], ax ∈ A (4.1)

Therefore, an RG is a set of n attributes which provides a meta-description of
a kind of RS that is important from the user’s perspective.

Using theRG superset, we can define the set of risk situationsRS; a RSRSj
is an instance of an RG RGi,

RSj : RGi −→ ∪ Types

such that every attribute in the RG has a concrete value assigned in the RS:

RSj = {p0, p1, . . . pn−1} / ∀x ∈ [0, n− 1] px = (a, v)
∧ a ∈ RGi
∧ v ∈ Type(a)

(4.2)

Hence, an RS represents indeed the state of a specific element of interest.
For short, we will use RSj .a to denote the value of attribute a in the RS RSj .

Temporal tracking of the elements inRS is performed by slightly modifying the
original definition of an RS as follows:
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RSj = {RSv0j , . . .RS
vα−1

j } / ∀x ∈ [0, α− 1] vx ∈ Timestamp

∧ vx < vx+1

∧ RSvxj = {RSvx,r0j , . . .RSvx,rβ−1

j }
∧ ∀y ∈ [0, β − 1] ry ∈ Timestamp
∧ r0 = vx ≤ ry < ry+1

∧ RSvx,ryj = {p0, p1, . . . pn−1}
∧ ∀z ∈ [0, n− 1] pz = (a, v)
∧ a ∈ RGi
∧ v ∈ Type(a)

(4.3)

So the elements belonging to the RS set can be defined as a collection of
items representing different states of RSs:

RS = {RSv0,r00 , . . . ,RSvx,ryj , . . . } / ∀j ∈ [0, |RS| − 1] x ∈ [0, αj − 1]

∧ y ∈ [0, βj,x − 1]
(4.4)

where |RS| is the actual number of different modelled RSs. The expres-
sion RSj .a must be changed to RS [vDate][rDate]

j .a where vDate, rDate ∈
Timestamp.

With this new definition for temporal management, complex questions like “At
the moment in time rDate, what was the value we thought attribute a (of RS
RSj) had at date vDate, and which one we do know it is now?” can be
answered. Figure 4.8 shows a schematic view of the evolution of the versions
and revisions of a RS RSj through time. In particular, the evolution of the RS
state in the time interval [v1, v2] is highlighted. Here the modification is caused
by the correction of a hypothetical mistake: before temporal point r1 > rDate,
the value of a (number of employees) in the RS was 7; but after r1 it was
updated to 8.

A similar formalisation process involves hazards threatening the risk situations.
We call

H = {h0, h1, . . . hn−1} / ∀x ∈ [0, n− 1] (4.5)

where each hi is to be defined by the ARMISTICE user (e.g., fire, explosion, or
terrorism). A hazard hi ∈ H can act over an RS causing a damage or accident.
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FIGURE 4.8. Versions and revisions of a risk situation

Respectively, an exposure ei ∈ E is a quantified relationship between a risk
situation and a hazard,

ei : RSj × hk −→ (PML,EML,NLE, i, f) (4.6)

The set of relationships E represents, as we previously said, the information
about which combination of RSs and hazards may be involved in an accident.
In other words, it is the probability of a damage on a specific RS caused by
the presence of a specific hazard. Such a probability is expressed by the
associated factors:

Normal Loss Expectancy,NLE ∈ Percentage, a measure of loss-recovery
costs under normal conditions.

Estimated Maximum Loss, EML ∈ Percentage, a measure of recovery
costs which assumes the existence of impairments at the time of loss.

Probable Maximum Loss, PML ∈ Percentage, an estimate of the largest
loss that is likely to be suffered.

Intensity, i ∈ Degree, a qualitative measure expressing how seriously the
hazard can be expected to manifest itself.

Frequency, f ∈ Degree, a qualitative estimate of the number of occur-
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rences an accident affecting the RS due to the hazard under considera-
tion can be expected within a specific time period.

where Percentage ∈ Types and Degree ∈ (Low,Medium,High). This
additional information (PML, EML, NLE, intensity, and frequency of an expo-
sure) will be very valuable and useful for the analysis of the risk management
measures and their effectiveness.

Carrying on the formalisation to the next level, ARMISTICE works over a set
of policies P , where each policy Pi is modelled as a set of renewals Prj

i . At
the same time, a renewal is composed by a set of supplements Prj ,sk

i :

Pi = (Number,Branch, {Pr0
i , . . .P

rα−1

i })
Prj
i = (V alidityStart, V alidityF inish, {Prj ,s0

i , . . .Prj ,sβ−1

i })
Prj ,sk
i = (Coverage, Conditional)

(4.7)

where Number,Branch ∈ String, and V alidityStart, V alidityF inish ∈
Timestamp are the dates used to determine the validity period of the renewal.
As for the Coverage, it represents the collection of RSs building the set of
objects insured by the policy. Of course, every RSj inside the Coverage set
is different, and each of them refers to a particular version of the RS:

Coverage ⊆ RS / ∀ RSj1 ,RSj2 ∈ Coverage⇒ j1 6= j2
∧ ∀ RSji ∈ Coverage⇒ RSji = {RS

vx,ry
ji
} ∈ RSj

(4.8)

Regarding the Conditional, Ci ∈ C, it is used when looking for coverage for a
claim, and can be represented as

Ci = {g0, . . . gn} / ∀x ∈ [0, n], gx = (Restriction,Excess, Limit) (4.9)

each warranty gx containing an applicability precondition Restriction ∈ Res
and some formulae Excess, Limit ∈ For, used to calculate the correspond-
ing excess and limit.

Each element Fori ∈ For is a formula which models a calculation:

Fori : {pj / pj = (a, v) ∧ a ∈ A ∧ v ∈ Type(a)} −→ ∪ Types (4.10)
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where the pj operands are either user-defined values or properties which may
be present on risk situations. Besides, excesses and limits need to have mon-
etary values, so actually Excess, Limit : Fori −→Money.

On the other hand, restrictions are the conditions to be held by a warranty in
order to be activated (i.e., determined as applicable) when an accident occurs.
Thus, every warranty (i.e., contractual clause) inside a conditional of a policy
is an applicability constraint which models its behaviour. Formally speaking,
each element Resi ∈ Res is an expression which may involve user-defined
values, risk properties, hazards, and even literals (s ∈ String):

Resi : {pj/pj = (a, v) ∧ a ∈ A ∧ v ∈ Type(a)}
× {hk / hk ∈ H}

× {sm / sm ∈ String} → {Boolean ∪ String}
×Integer

(4.11)

When a restriction is evaluated, it can turn out to be true or false (i.e., the
associated warranty can be applied or not). However, due to the inclusion
of human-language nuances sm ∈ String, sometimes it will not be possible
for the system to state directly whether the restriction is true or not. Due to
the unpredictability of these nuances si (and for simplicity reasons), which are
specified by the human user to reflect any additional constraint or detail, they
have not been formalised. Had they been so, natural-language processing
techniques [81] could have been used, for instance. In our case, however, the
truth value of a restriction will depend on the answer of the user to the terms
expressed by those manually described conditions included in the restriction
(in other words, it will only be evaluated to a boolean value by means of human
user intervention). Every evaluated restriction has also an associated weight
expressed as an Integer value which is used as sorting criterion among the
contractual clauses which could provide coverage against an accident (if more
than one should be found).

Finally, we will take a look at the basis of claims. In a formal way, we can
describe the set of claims in the system, CM, as a set of elements
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CMi = (ODate, hk,ARS, gx) / ODate ∈ Timestamp

∧ hk ∈ H
∧ ARS ⊆ RS
∧ ∀ RSj1 ,RSj2 ∈ ARS, j1 6= j2
∧ ∀ RSji ∈ ARS, RSji = {RS

vx,ry
ji
} ∈ RSj

∧ gx ∈ Ci , Ci ∈ C
∧ Ci ∈ P

rz ,sy
x

∧ P rz
x .V alidityStart < ODate < P rz

x .V alidityF inish
∧ ARS ⊆ P rz ,sy

x .Coverage
∧ gx.Restriction ≡ true

(4.12)

that represents the relationship between the RS affected (ARS) by a hazard
(hk) on certain date (ODate), and the warranty that provides coverage for
that specific accident (gx). ODate is the date used to find the applicable pol-
icy renewals (i.e., those whose validity period has already started but has not
expired yet) for which supplements the set ARS is found to be part of their
Coverage. Once supplements appropriate by date and coverage are identi-
fied, their warranties must be examined, to determine the ones with positive
restriction evaluation. Among those, the most suitable warranty to cover the
claim will be chosen to be charged with all the loss recovery expenses, either
by the system (if the choice is automatically decidable) or by the user.

As Equation 4.12 shows, the same comment we made when talking about
policies Coverage (cf. Eq. 4.8) is applicable here: each RSj inside the ARS
set must be different. As both sets will be checked against each other for
total/partial matches, this makes sense.

4.6 Formalisation benefits: validation planning

The structure of the abstract concepts and their relationships produced by
the formalisation of the analysis and design constitute a model of the system
elemental components and properties. The formalisation process we have
carried out is extremely helpful in assuring that a good analysis and design
has been performed, and the methodical and explicit description it provides
will be even more useful in upcoming stages of the project.

First of all, the results of the formalisation can be presented to the users for
validation. They constitute a different way of expressing system properties
and business entities characteristics, a reformulation of requirements usually
stated in natural language, or depicted in UML diagrams. Any alternative rep-
resentation we use forces us to describe our application requisites in a different
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FIGURE 4.9. Correspondence between development stages and validation activities

style, using a distinct set of conventions which have different expressive ca-
pabilities. This exercise is more likely to reveal ambiguities or under-specified
details than using just a single way of reporting and documenting. Thus, it
increases the chances of identifying weak or flaw specification spots as soon
as possible, which is very convenient as was pointed out in this chapter.

Secondly, this formal description of properties and features is a high-level rep-
resentation, closer to human reasoning and also to the abstraction level of the
programming paradigm we intend to use (i.e., functional programming). This
reflects directly on the effort required for the implementation task, since the
way of coding behaviour in declarative languages is based on the description
of functionalities and the pattern-matching of data instead of the procedural
dictation of instructions.

Last but definitely not least, the combination of these benefits opens the door
to a planned-in-advance testing stage of both static and dynamic system prop-
erties. The static properties stated by our formalised equations are plain de-
scriptions of business objects and their attributes. For instance, directly from
Equations 4.1 and 4.2 (page 45), we can write down the following properties:

“Every risk situation object must have a number of properties which
is equal to the number of properties of the risk group object it is
associated with.”

and

“Each property of a risk situation object must have the same type
as one property in the risk group object it belongs to.”

The properties can be translated, in a straightforward way, into data genera-
tors to be used with automatic testing tools for unit testing, as will be explained
in Chapter 6. In a similar manner, the dynamic properties, the set of busi-
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ness rules that affect different business objects and their behaviour, descrip-
tive human-language statements, are usually established as global properties
that need to hold and commonly only used to write test case samples. Again,
in Chapter 6 a technique to automatically generate test cases from these busi-
ness rules descriptions is presented, following the same philosophy.
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5
Implementation of

a paradigm shift

Analysis and design are meant to gradually take shape through software im-
plementation. The real-world concepts and business domain requirements

that were captured during previous development stages will finally be trans-
lated from UML diagrams and other specification documents to specific pieces
of source code.

There is a wide range of factors that influence the choice of the most con-
venient implementation environment for a software project, including not only
the programming language, but also any other auxiliary development tools,
specific utility libraries, etc. Sometimes, the decision is bounded by unavoid-
able dependencies with some specific-purpose third-party software, it may be
influenced by the development team technical skills (personal preferences or
prejudices), it may be suggested by previously successful similar experiences,
or it may be constrained due to other political or economical reasons.

In this chapter, however, we will assume that none of the aforementioned fac-
tors are in place, thus no preconditions or constraints are being put before
us. That needs to be the case for introducing the paradigm shift this thesis
advocates. With no external reasons affecting this election, the focus can be
placed just on unbiased technological suitability arguments.

The following sections first briefly present the novelties, changes, and adapta-
tions that appear in the implementation phase of a software product when the
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functional paradigm is applied, with respect to more extended development
approaches. Then, the benefits that come with the adoption of functional prin-
ciples are explored. Formalisation of elicited analysis concepts as shown in
Chapter 4 is justified now thanks to the usage of a functional language for the
implementation. Program logic and behaviour are translated into a few lines of
descriptive high-level code, saving time and efforts, producing a high-quality
result, and enabling the software engineers to tackle more complex problems
and scenarios.

5.1 Is such a change feasible?

The popularisation of modelling artefacts, such as software patterns and rep-
resentation tools such as UML notation, has come hand in hand with the
blooming of object-oriented languages such as Java or C++. The analysis
and design activities conducted with the assistance of these abstractions and
utilities are a perfect fit for the intrinsic properties of those languages (the con-
cepts of class and object, inheritance, abstraction, encapsulation, polymor-
phism). In fact, this combination of procedures and outcomes forms what has
been traditionally called object-oriented development.

However, while modelling real world concepts as entities (i.e., objects) with
certain properties (either static –attributes– and/or dynamic –behaviour) is a
quite natural approach to generic-purpose software analysis, it does not nec-
essarily mean that it can only be followed by an implementation in an object-
oriented language. As already stated in the previous chapter, the requirements
elicitation and system design tasks can be clearly distinguished from program
construction: the first two aim to determine the functional requisites of the
system, and it is the last one which links them to the coding stage produc-
ing implementation specifications. In other words, only after stating what the
application or system (at all levels) needs to do, we move to how it will do it.

The advantage that the object-oriented programming paradigm has claimed as
fundamental, and the main explanation for its dominance over other paradigms,
is based on the straightforward mapping of the concepts in an object-oriented
analysis model onto implementation classes. In contrast, any alternative ap-
proaches would necessarily need to deal with the problem of translating such
a conceptual model to a completely different set of implementation constraints
and terminology.

But clearly, the previous diagnosis does not take into account other potentially
relevant properties that different paradigms may present, apart from program-
ming detail specifics. For that reason, it fails to recognise that even though
there may be little room for discussion about how convenient it is to transfer
object-oriented concepts to object-oriented source code, it need not be the
case for such a step to be infeasible in other environments, though due to
different reasons. Specifically, considering a functional approach, despite the
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implementation details being far away from those of object-oriented program-
ming, its descriptive nature and intrinsic higher level of abstraction places this
alternative in a much closer position to that of concepts and definitions, which
are the ultimate components of any design.

This is why this dissertation presents the functional paradigm as an option
worth considering for the implementation phase of software development pro-
cesses, no matter that the previous phases have been addressed using tech-
niques which are commonly associated only with object-oriented program-
ming. In addition, if we refer to the distributed functional paradigm, which
provides transparent access to features such as concurrency, distribution, or
persistence, the chances for improvement are even greater.

5.2 Translation of borrowed concepts

Object-orientation is an approach to software development that organises both
problem and solution as a collection of discrete objects, an abstraction which
blends together data structure and behaviour. Despite the properties, features,
or reasons that may justify the additional effort of dealing with concepts from
two different programming paradigms in a specific programming language or
environment, there is of course a set of basic definitions and formalisms that
need to be translated, unavoidably, when object-oriented analysis and design
are to be applied in any non-object-oriented environment. These elementary
aspects include, mainly, the object/class abstraction and the inter-relationships
between objects.

This is an old challenge, though, that has been successfully addressed many
times and from different perspectives, as we will see in the next subsection.

5.2.1 Object-orientation in non-object-oriented environments

The idea of applying object-oriented concepts and techniques in non-object-
oriented environments is almost as old as object-orientation itself. From the
moment this new paradigm broke into industry, different initiatives where put
in practise in order to integrate the new software development philosophy with
the already-existing procedures and organisational routines and schemes. The
precursor efforts in this direction go back to the early nineties, where object-
orientation was first tried to be applied in a C-programming environment.

Being one of the most popular imperative languages at the time (after displac-
ing a whole generation of languages from the fifties, such as Fortran, Lisp,
and COBOL, more than a decade before), the C language was the most com-
mon scenario for these initial integration approaches. The majority of them
suggested that classes were implemented as structures, and associations be-
tween classes as pointers to structures. More complex constraints of object-
orientation, which were more difficult to reproduce in a non-object-oriented
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environment, were surpassed or mimicked in the best possible way (like inher-
itance, replaced by delegation), and the whole process involved a firm disci-
pline (properties like encapsulation depending strongly on this) [82].

But even though this kind of projects served well for the specific purposes they
were designed for, they were almost completely abandoned after some years,
as a result of the extended and definite replacement of plain structured pro-
gramming by object-oriented programming. A new step in the ongoing evolu-
tion of languages and software development techniques had taken place. And
still, there were very successful experiences that have survived even until our
days. This is the case of a very well-known international project involving a
large community of users and developers: the GNOME project [83].

5.2.1.1 The GNOME project

Born in 1997, the GNOME project is an ongoing community development effort
intended to build a complete, easy-to-use, accessible desktop environment for
users and a powerful application framework for software developers. GNOME
is a free software object-based desktop implemented in the imperative lan-
guage C and distributed according to the GNU General Public License (GPL).
The project is steered by the GNOME Foundation, which receives strategic
guidance from worldwide software companies and organisations, such as Sun
Microsystems, Nokia, Google, Intel, IBM, and the Free Software Foundation,
among others.

While most GNOME libraries are written in plain C, all their graphical wid-
gets are implemented as objects following the principles of object-oriented
programming. The technical solution applied to fill in the gap between proce-
dural and objectual programming follows the same line that has already been
mentioned: GObject, the basic element of the fundamental GLib library, is a
particular kind of C structure where specific fields are used to inherit state, and
function pointers may resolve behaviour along a chain of inheritance. Even
though enforcement of objective structuring is not as strict as it would be when
using an object-oriented language, the use of standard coding practises and
naming conventions has definitely benefited the project. The reasonable ease
of use, together with advanced capabilities such as reference counting and
event propagation, have confirmed polymorphic and extendible GObjects as a
long-lasting successful experience.

Be that as it may, this mixture of technologies is certainly not common. Most
companies have switched completely to object-orientation, or else stuck to
traditional imperative languages for their own reasons. This, however, has not
prevented the GNOME developers community to spread and grow broader.
Both programming styles are popular enough among today’s professionals
(and even amateurs) not to be an obstacle to anyone who is interested in col-
laborating, as the numbers show [84, 85], regardless of having a background
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as C programmers or coming from the object-oriented world. And this can only
be an encouragement for this dissertation’s objectives.

5.2.2 Object-orientation and functional environments

Similarly to what happened with procedural languages, declarative program-
ming has not remained unaware of the benefits that came along with object-
orientation. Several decades older than the latter, functional languages were
nonetheless always regarded as academia experiments, not mature or effi-
cient enough for the outside-world. It is true that their most famous repre-
sentatives were, in fact, born as academia products (such as ML –University
of Edinburgh– or Haskell –University of Glasgow) in contrast with industry-
originated languages (such as FORTRAN –IBM, C –Bell Labs, or more re-
cently Java –Sun Microsystems), with the exception of Erlang, which has been
developed by Ericsson.

Yet, there are widely recognised multi-paradigm languages which combine
object-oriented and functional concepts. That is the case of Objective Caml
(OCaml), which is not only an example of the relevance and interest of less
dogmatic approaches to software development, but more importantly, probably
the main implementation of Caml, a dialect of ML created at INRIA. Developed
in 1996, OCaml extends the Caml core with object-oriented constructs, adding
an object layer to the original functional features such as pattern matching or
first-class functions.

On the other hand, some authors have already pointed out that a purely object-
oriented world view can constrain the achievement of appropriate solutions
due to the incompleteness of its ground concepts, that therefore unavoidably
restricts the available set of possibilities [86]. Multi-paradigm solutions are
again suggested as a wise way of eluding this problem, and efforts to apply
functional abstractions and patterns to enhance object-oriented design have
been explored.

All these reason lead us to the thought that maybe it is time for a paradigm
shift, or perhaps to steadily direct our efforts towards a serious multi-paradigm
development style at last. The trend is out there already, the change is slowly
starting. Even big software companies do not regard declarative program-
ming and functional languages as academic tools any more. The most evident
proof of this in some recent products: Microsoft F# [87], for instance, is a multi-
paradigm language which supports object-orientation and also functional pro-
gramming, a sort of OCaml dialect. Scala [88] is another language whose pop-
ularity has increased enormously in recent times, as it offers a smooth com-
bination of object-oriented and functional languages features, together with
seamless Java integration.

All the steps in the history of programming have taken us to broader, more ab-
stract, higher-level ways of designing and implementing software. The natural
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evolution is to proceed towards the most advanced of these choices: declara-
tive programming.

5.3 Strengths of declarative languages

Declarative languages, and among them, functional ones, present a set of
powerful and versatile features that have, from the beginning, succeeded in
gathering the attention of academia all around the world. Efforts in translating
that interest to industry have not had good results so far, but the maturity that
has been reached and the particular development and operational needs that
we are facing at the moment can be the proper scenario in which finally this
valuable technology can be transferred from campuses to companies.

The main properties that, though not present in all declarative languages, are
commonly associated with declarative programming, are:

Reduction semantics, computations as side-effect free reductions of expres-
sions instead of instructions operating on an implicit state.

Higher-order functions, functions that can be both provided as argument to
and returned as result from other functions.

Lazy evaluation, avoiding any computation until its actual value is indeed
needed.

Pattern-matching, operation on data based on testing and/or deconstructing
elements for values or according to a specification.

Type inference, using the surroundings of an expression to automatically
compute the most general type expression for it.

In contrast with declarative programming, object-oriented programming, whose
main abstraction are autonomous objects (representations of business-domain
complete entities, captured in a taxonomy of inheritance relationships, that
have self-supporting state, and provide self-sustained operations), is charac-
terised by a set of properties that rarely appear in declarative environments:

Encapsulation, clear differentiation between an abstraction’s structure and
its behaviour.

Inheritance, incremental derivation of objects from other objects by speciali-
sation.

Dynamic binding, run-time determination of the exact implementation of a
request that will be executed.

Identity, object existence considered independent of its value or state.

The question of what is best to have among these two sets of characteristics
does not have a definite answer. Software engineering is nowadays mature
enough not to believe in, or look for, silver bullets any more. In some scenarios,
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higher-order functions can make a difference, as can inheritance in others.
Some problems can be enormously simplified by means of encapsulation, and
others can be avoided if reduction semantics is in place. So the choice does
not only involve picking one of these sets of properties, it includes employing
the philosophy behind the paradigm that offers them.

The functional decomposition implied by declarative programming means that
everything is seen, and thus modelled, as a function or set of functions. On
the other hand, object-oriented decomposition establishes a correspondence
between modelled objects and the real world. The object-oriented perspective
is closer to the way we perceive reality (as identifiable things with state that
change over time), but does not perform that well when carefully looking at the
behavioural details. The functional perspective is not as good at the big scale
of designing activity agents who carry out activities or implement services, but
it works nicely in the small and specific, allowing to code complex behaviours
in easy and safe ways. Objects grant greater stability of actors and interfaces
which offer services, but do not prescribe order of actions, neither do they
avoid the developer having to deal with their internal complexities. When us-
ing object-oriented analysis and design, object-oriented programming offers
seamless development, but using “classes for everything” is not feasible nor
desirable in all cases.

This dissertation aims to offer a third and integrating alternative, proving that
the benefits of object-oriented analysis and design need not be incompatible
with those of the functional programming properties.

5.3.1 Functional patterns

Similar to what happens with design patterns, there are many situations in
which developers find themselves implementing similar scenarios over and
over again. An analogous role to that of design patterns during the analysis
and design stages is that of functional patterns at the implementation stage.

Patterns in functional programming have been studied in depth by a number
of authors, who have identified the most common statement sequences and
behavioural templates to be found in functional source code, at different levels
of abstraction, from the most essential strategic programming [89] to high-
level application tasks [90]. This, in addition to the extensive research that has
been conducted in the opposite direction (i.e., exporting traditional functional
programming features to object-oriented environments as new design patterns
[86]), clearly highlights the relevance of and interest in discussion in this field.

5.3.2 Erlang

Erlang is a functional language that was created as a tool to develop robust
applications meant to run over a net of computers. Originated inside Eric-
sson Telecommunications, its initial aim was to be of use to program tele-
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phone switches. However, it turned out to be a programming environment that
helped to speed up the development and to reduce the maintenance effort
while generating highly reliable robust pieces of software. This was the key
for it to step out from the telephony world and to start being used for other
purposes. Nowadays, Erlang and the set of libraries that conform the OTP
platform (often referred together as Erlang/OTP) have proved that they can
be a perfectly valid environment to develop almost any kind of software ap-
plication, especially when robustness, reliability, high-availability, maintenance
ease, and transparent distributability are essential requisites [91–95] (for more
detailed information about the language, refer to [96–98]).

5.3.2.1 Object-Orientation and Erlang

Even though Erlang is not an object-oriented language, we can easily program
its main concepts in a number of different ways. Several solutions/approaches
have been proposed for OO in Erlang over the past few years:

WOOPER This Wrapper for Object-Oriented Programming in Erlang project
was first released in 2007, as an open-source layer on top of the Erlang
language which provides support for object-oriented constructs and fea-
tures (such as polymorphism and inheritance, for example) [99]. This
approach defines each class in a different Erlang module and uses Er-
lang lightweight processes to represent object instances. It makes use
of private hash tables to store object attributes as key-value pairs, and
method definition and invocation need to follow some specific conven-
tions.

eXAT The eXperimental Agent Tool project integrates a library that allows de-
velopers to write Erlang programs with an object-oriented flavour [100].
Again, classes are identified with Erlang modules, and objects are used
by means of a special module called object, which creates and de-
structs instances, and also provides access to attributes and methods.
The first publications about eXAT date to late 2003 and 2004 [101, 102].

ECT The most recent contribution to this particular research area is ECT:
Erlang Class Transformation [103], which is to be released soon. Unlike
the previous experiences, this approach does not use Erlang processes
to map the object abstraction, but instead it extends the language using
a series of syntactic sugar definitions that are translated into pure Erlang
by a transformation before compilation time. Once more, a class is an
Erlang module, but object instances are record instances rather than
processes, which allows object pattern-matching.

There has also been partial studies or approximations to some of the most
interesting features of OO, such as inheritance [104], but neither these nor ei-
ther of the previous outlined solutions had been released or even developed
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when the ARMISTICE project was started in 2002. Consequently, we devel-
oped our own solution for ARMISTICE [105] along the same line that has been
fully extended and formalised now in the aforementioned ECT initiative.

For the concept of object class, we chose to map each class to an Erlang
module implementing the interface and behaviour of that class. Regarding
the implementation of the concept of object state, there are two possible ap-
proaches:

Representing states as explicit data structures. This is simple, but involves
passing around such structures within each object message (i.e., func-
tion invocation). It also imposes a coarse grain concurrency.

Representing states as implicit data structures. If each object instance is
an Erlang process, then its state is determined by the state of such a
process (represented internally by some kind of data structure). This
provides secure encapsulation and a fine grain concurrency, more con-
sistent with OO principles.

With the first approach, each class instance is associated with a data structure
that represents its members, both state and methods. In this case, if a method
call is invoked over an object, a method (function) is evaluated with the actual
data structure that models the object as an argument.

To illustrate this, the following code corresponds to the sit_riesgo module,
which represents a simplified object of interest in ARMISTICE, providing that
instances of this class have attributes named oid (risk object identifier), codigo
(code), nmb (name), and grp (risk group):

-module(sit_riesgo).
-export([new/0]).
-export([get_oid/1, get_codigo/1, get_nmb/1, get_grp/1]).
-export([set_codigo/2, set_nmb/2, set_grp/2]).
-record(sit_riesgo_vo, {oid, codigo, nmb, grp}).

%% @doc Creates a new object
%% @spec new() -> Object :: record()
new() ->
{ok, #sit_riesgo_vo{}}.

%% @doc Returns risk object name
%% @spec get_nmb(Object :: record()) -> {ok, string()}
get_nmb(Object) ->
{ok, Object#sit_riesgo_vo.nmb}.

%% @doc Modifies risk object name
%% @spec set_nmb(Object :: record(), NewName :: string()) ->
%% {ok, record()}
set_nmb(Object, NewName) ->
{ok, Object#sit_riesgo_vo{nmb = NewName}}.
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...

Simplicity, low resource usage (one object is a record, or a list of records –
for class inheritance), and the fact that objects are really immutable (Erlang
data structures are non-destructive) are the main advantages of the use of
explicit data structures to implement objects in this functional language. But
the simplicity of this approach also has some disadvantages. Using records
to implement object breaks the encapsulation principle and forces us to ex-
plicitly manipulate object state between messages. This is a very annoying
requirement and could be the source of many programming bugs. The next
code fragment clearly shows this drawback:

...
{ok, RS} = sit_riesgo:new(),
{ok, RS1} = sit_riesgo:set_codigo(RS, "STOR-11"),
{ok, RS2} = sit_riesgo:set_nmb(RS1, "Storage building"),
{ok, RS3} = sit_riesgo:set_grp(RS2, 23445),
...

Using the second approach, each class instance is mapped to an Erlang pro-
cess. The object state is implicitly encapsulated in the Erlang process state.
From the client’s point of view, an object is now modelled as a process ID
(its object identifier ), and sending a message to an object is, actually, send-
ing a message to the process object. The following example shows our class
sit_riesgo, had it been implemented using the process approach:

-module(sit_riesgo).
-export([new/0]).
-export([get_oid/1, get_codigo/1, get_nmb/1, get_grp/1]).
-export([set_codigo/2, set_nmb/2, set_grp/2]).
-record(sit_riesgo_vo, {oid, codigo, nmb, grp}).

%% @doc Creates a new object
%% @spec new() -> pid()
new() ->
spawn(?MODULE, dispatch, [#sit_riesgo_vo{}]).

%% @doc Dispatches object functionalities invocation
%% @spec dispatch(State :: record()) -> {response, pid(), Result}
dispatch(State) ->
receive
{call, Pid, Method, Args} ->
{ok, NextState, Result} = ?MODULE:Method([State | Args]),
Pid ! {response, self(), Result},
dispatch(NextState)

end.
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%% @doc Returns risk object name
%% @spec get_nmb(State :: record()) -> {ok, record(), string()}
get_nmb(State) ->
{ok, State, State#sit_riesgo_vo.nmb}.

%% @doc Modifies risk object name
%% @spec set_nmb(State :: record(), NewName :: string()) ->
%% {ok, record(), ok}
set_nmb(State, NewName) ->
{ok, State#sit_riesgo_vo{nmb = NewName}, ok}.

...

And it would be used as follows:

...
RS = sit_riesgo:new(),
RS ! {call, self(), get_cdg, [])}
receive
{response, RS, RSCode} -> RSCode

end,
RS ! {call, self(), set_nmb, ["Storage building"])}
receive
{response, RS, ok} -> ok

end,
...

This second solution is probably a more natural way of mapping many of
the object orientation principles: it provides object state encapsulation, ob-
ject identity is unique (as long as processes identifiers are unique), and these
objects are really concurrent objects. However, there is a drawback: this ap-
proach is more resource consuming than the former, specially if there are
many small objects in the system.

Focusing on our case study, ARMISTICE deals with many Value Objects [106].
This kind of object, which maps database objects, is quite simple since its be-
haviour is mainly constrained to get and set methods. The simplicity, short
life cycle and high number of instances in the system suggest the use of ex-
plicit data structures to implement them. On the other hand, sometimes we
find it necessary to implement some classes based on the Singleton [74] de-
sign pattern (the database connection manager, process monitors. . . ). This
pattern ensures the existence of only one instance of the class at any time
and provides a global access point for the whole system. Since these objects
are fine-grain and have a long life-cycle, they are implemented using the sec-
ond solution. Moreover, the global access point is easily implemented using
the Erlang process registration facilities [97].

Hence, both alternatives are used for the business objects and logic imple-
mentation, carefully choosing the best of the two options in each case. In
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general, explicit data structures are preferred when objects have a short lifes-
pan and do not require intense concurrency support, while processes are best
suited for long-life objects which need to attend a great number of concurrent
invocations.

5.4 Developing key aspects of ARMISTICE

This last section intends to be a demonstration of the arguments that have
been previously outlined in this chapter. Namely, we claim that implementing
an object-oriented design in a functional language is a feasible task, and that
using functional programming as a development paradigm is fully compatible
with a regular software development. What is more, it increases the ability
of facing complex challenges, enhances the implementation experience, and
produces less and higher-level source code that would be inherently easier to
debug and to maintain.

As we will see, the use of Erlang and its programming philosophy to deal with
the domain complexity of the ARMISTICE project has simplified the develop-
ment process considerably, reducing implementation time cycles. Moreover,
thanks to the specific properties of the Erlang/OTP platform, it allowed to easily
provide features such as scalability and high availability at a very low cost.

The most relevant implementation scenarios in which using this technology
made a difference are:

ARMISTICE’s formulae and restriction ad-hoc language, developed to help
expressing insurance constraints.

ARMISTICE’s descriptive modelling of contractual clauses and policy war-
ranties, including allowance of human-language explanations as integral
part of them.

ARMISTICE’s decision support engine, to assist users when selecting the
most suitable policy to cover accident damages.

5.4.1 System architecture and technologies

The set of technologies that has been put together to bring this case study
project to life is a novelty in the field of traditional management software. The
business logic of the ARMISTICE system, as we outlined in the previous chap-
ter, has a high level of complexity, managing different kinds of heterogeneous
business objects representing risks, rules modelling the exposures to dan-
gers of such risks, and applicability constraints for insurance policies covering
them. This complex domain, in the shape of the application use cases, has
been mainly developed using a declarative language: the concurrent func-
tional language Erlang [107].
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ARMISTICE has a client/server architecture structured in layers using two well-
known architectural patterns: Layers and Model-View-Controller [74]. The
client side is a lightweight Java [108] stand alone and multi-platform client
which just performs remote procedure calls (RPCs) to the server and imple-
ments no business logic. We could say that this client only knows how to
forward user interaction as specific enquiries to the server, and how to display
the answers back on the screen. The absence of responsibility on the user
side makes the GUI an easily adaptable or interchangeable component.

Communication between the user side and the server side (which goes through
a network) is implemented using XML-RPC [109] as middleware. XML-RPC is
a remote procedure call protocol [110] that was designed to be as simple as
possible, but also flexible enough to transmit complex and customisable data
structures.

The server side, completely developed in Erlang, supports the model and all
the business logic; it is structured in four tiers (see Fig. 5.1):

FIGURE 5.1. ARMISTICE architecture overview

Interface adapter : Here is where the communication between client and
server occurs. This component receives messages from the clients, de-
serialises the input and parameters, and gives them the suitable format
so that they can be forwarded to the next server software level. One or
more operations from the next layer can be invoked, and the output is
again given an appropriate format before being sent back to the request-
ing client.

Use case facades: These are the access points to the business logic, each
of them representing a set of related application use cases. Each facade
refers to the methods implementing the use cases, and may also use the
persistent objects layer.

Persistent object layer : In this tier, business objects are defined using the
Value Object (VO) and Data Access Object (DAO) patterns [106]. Each

65



5.4. Developing key aspects of ARMISTICE

object models a domain entity or business concept, and this layer takes
care of their permanent storage interacting with the persistence layer.

Persistence: This last component represents the permanent storage in a
relational database.

The remainder of this chapter focuses on the implementation mechanisms and
solution details related to one of the most relevant ARMISTICE use cases: de-
termination of the coverage for an accident. Starting with the formulae and re-
striction language that was developed to help expressing coverage constraints,
then proceeding with policies modelling, and finally describing the decision
support system built on top of them.

5.4.2 Formulae and restriction language

ARMISTICE’s formulae and restrictions, previously described in Chapter 4
(from page 48 on), are built using an ad-hoc language that was developed
to allow all the expressiveness and flexibility that was required to properly and
powerfully model the risk management business domain.

Our restriction language is actually a superset of the formulae language, where
logical operators and the concept of nuance (s ∈ String) have been added.
The possibility of including these human-language explanations as part of the
description of a supplement clause and the ability to deal with them at the
same level as other parts of the constraints expressions allows ARMISTICE to
very faithfully represent reality, and makes it possible for its decision support
system to assist the user to obtain extremely accurate results when selecting
the appropriate policy to charge with the expenses of an accident.

As explained when the formalisation of ARMISTICE’s business domain was
described (viz, section 4.5.3), the key objects to implement such decision sup-
port task are Conditionals. A conditional is an insurance policy element that
is thoroughly analysed when looking for coverage to any claim, since it is the
model of the contractual clauses of the policy. In other words, it is the model of
the policy coverage, the model of the policy warranties, the model of the policy
terms (i.e., applicability preconditions, excess, and limit):

Ci = {g0, . . . gn} / ∀x ∈ [0, n], gx = (Restriction,Excess, Limit) (5.1)

whereRestriction ∈ Res andExcess, Limit ∈ For[1] are the corresponding
[1] Actually,

Excess, Limit :
For → Money. coverage conditions, excess and limit. The logic restrictions Res and numeric

calculations For were defined as:

66



5. Implementation of a paradigm shift

Resi : {fj / fj ∈ For}
× {hk / hk ∈ H}
× {sm / sm ∈ String} −→ {Boolean ∪ String} × Integer

(5.2)
Fori : {pj / pj = (a, v) ∧ a ∈ A ∧ v ∈ Type(a)} −→ ∪ Types

where the pj operands are either user-defined values or risk situations prop-
erties, that is

Fori : {RS
vx,ry
j .p / RSvx,ryj ∈ RS} × puser × psys −→ ∪ Types (5.3)

where p, puser and psys are sets of pairs label/value (a, v), a ∈ A∧v ∈ Type(a)
which can be accessed using specific constructors of the modelling language.
The puser set, also known as user parameter set, are input values provided by
the user in the process of evaluation of a formula. The psys set, also known
as system parameters, are system-scope values, whether they be calculated
when the formula is evaluated or through time as internal counters.

The system provides a collection of tools designed to manage the elements
in the For and Res sets. Restrictions are the conditions to be held by a war-
ranty in order to be activated, and every warranty (i.e., contractual clause)
inside a conditional of a policy has an applicability restriction, which models its
behaviour. These expressions can access the context where they are evalu-
ated and they can use temporal information about risk situations, policies, and
other claims. The set of constraints and calculations, together with the risk
situations meta-description (i.e., risk groups) and the set of hazards, are the
essential elements to build a flexible and adaptable RMIS framework.

5.4.2.1 Formulae

Formulae, together with the meta-description of insurable elements and the
set of hazards, are an essential element as far as ARMISTICE’s adaptability
and extensibility is concerned. The specific language, designed and devel-
oped to express formulae, includes basic operators, grouping operators, and
conditional operators, as well as constructs to access risk situation properties,
policies internal data, system counters, user input parameters, etc. One can
also use already defined formulae as part of a new formula, enabling the re-
use of formulae definitions and the creation of formulae libraries. Hence, there
is great flexibility when it comes to modelling receipts, excesses, and limits
calculations.
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As a sample of this language, the following text is a possible way of modelling
a formula to express the excess of a warranty, just as the ARMISTICE user
would write it down in a GUI text field. Consider an insurance excess which
compensation is equivalent to the total cost of the damages, for losses under
a minimum value, otherwise being equal to a parametrisable percentage of
the total cost damages. Consider also the existence of an upper limit equal
to the average cost of storage valuables in the risk situations that have been
affected. Such a formula would look like:

if ( accident.covered < #min,
accident.covered,
min(#percentage * accident.covered,

average(policy.supplement.risksituations(%stock))) )

In the previous example, different kinds of parameters and operators are used:
two user input parameters (#min and #percentage, that for each particular
context in which this formula is used could take different values), a grouping
operator (average), a global counter (accident.covered), and an access
operator to a property from a set of risk situations (%stock) covered by a
policy (policy.supplement.risksituations) supplement.

5.4.2.2 Restrictions

A conditional constraint clause (i.e., restriction) is to be evaluated to a boolean
value, true or false, reflecting whether the associated warranty can be applied
to a particular claim or not. However, sometimes it is not possible to state
directly the restriction result. In these situations, the truth value of a restriction
may depend on the answer of the user to a question expressed in natural
language (namely a combination of nuances, sm ∈ String), therefore, it can
only be evaluated to a boolean value by means of human intervention.

The evaluation process of a restriction can be broken down into the evaluation
of each and every one of its terms, and then their combination into a global re-
sult, either a truth value, or a simplified expression with a logical combination of
nuances that have to be decided by the user. Besides, every evaluated restric-
tion has an associated weight expressed as an Integer value (see equation
5.2) which heuristically measures the relationship between the context infor-
mation, the present hazards, the affected risk situations, and the restriction
itself. This weight can also be used as a sorting criterion among the automat-
ically undecidable contractual clauses.

A very simple example of a restriction, containing two elements of the hazards
set H and two nuances, is displayed next:
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(fire and "Not arson")
or

(earthquake and "Great magnitude")

where fire, earthquake ∈ H. In a context in which the danger causing
the accident is a fire, the previous expression will be simplified for the user by
posing the question “Arson?”

5.4.3 Policy relevance

As has already been stated, ARMISTICE’s business logic has been imple-
mented in Erlang using a combination of object-oriented and functional pro-
gramming styles. Object-orientation has helped modelling the business do-
main, identifying business concepts, and representing them as objects with
certain properties and functionalities. For the actual implementation of those
functionalities, whose complexity is directly proportional to that of the business
domain itself, a conventional functional style has been put in practise.

The use of the functional abstractions that have been described earlier in this
chapter has been a key factor in the simplification of the development process.
To illustrate this idea, an outline of one of the key business processes of the
system is shown next: the assistance in the process of determining whether
a certain insurance policy is suitable to provide coverage for a given loss or
accident.

Applicable policies are those whose warranties and constraints allow them to
be charged with the expenses of facing the risk that has caused damage. In
order to decide which policies, among all the policies managed by ARMIS-
TICE, are relevant, insurance policy clauses (warranties) have been modelled
as restrictions using an ad-hoc restriction language defined and implemented
using Erlang data structures.

A simplified implementation of such modelling, expressed in an Erlang-like
syntax, is:

Constraint = {literal, Nuance}
| {danger, Danger}
| {negation, Constraint}
| {all, [Constraint]}
| {any, [Constraint]}

When looking for a suitable policy to cover the damages of a given accident
claim, each and every of its insurance clauses is matched against the specific
details of the hazard causing the accident. Here, the use of pattern matching is
of enormous help, considerably simplifying the implementation of this process
and, at the same time, descriptively documenting it.
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Following the simplified example before, the accident information would be
reduced to the main causing hazard:

% @doc Determine response of a constraint evaluation
% @spec relevant(H :: Hazard(), Clause :: Constraint()) ->
% boolean() | string()
relevant(H, {literal, Nuance}) -> Nuance;
relevant(H, {danger, H}) -> true;
relevant(H, {danger, NH}) -> false;
relevant(H, {negation, C}) -> do_not(relevant(H, C));
relevant(H, {any, Clauses}) ->
lists:foldl(fun(A, B) -> do_or(A, B) end,

false,
[ relevant(H, C) || C <- Clauses ]);

relevant(H, {all, Clauses}) ->
lists:foldl(fun(A, B) -> do_and(A, B) end,

true,
[ relevant(H, C) || C <- Clauses ]);

% @doc Perform NOT operation on a value, which can be either a
% boolean value or a string containing some nuances
% @spec do_not(Op :: boolean() | string()) -> boolean() | string()
do_not(Op) when atom(Op) -> not Op;
do_not(Op) when list(Op) -> "NOT" ++ Op.

% @doc Perform OR operation on a pair of values, which can
% be either boolean values or strings containing nuances
% @spec do_or(OpA :: boolean() | string(),
% OpB :: boolean() | string()) -> boolean() | string()
do_or(OpA, OpB) when atom(OpA), atom(OpB) -> OpA or OpB;
do_or(true, OpB) when list(OpB) -> true;
do_or(false, OpB) when list(OPB) -> OpB;
do_or(OpA, OpB) when list(OpA), list(OpB) -> OpA ++"OR"++ OpB;
do_or(OpA, OpB) -> do_or(OpB, OpA).

% @doc Perform AND operation on a pair of values, which can
% be either boolean values or strings containing nuances
% @spec do_and(OpA :: boolean() | string(),
% OpB :: boolean() | string()) -> boolean() | string()
do_and(OpA, OpB) when atom(OpA), atom(OpB) -> OpA and OpB;
do_and(true, OpB) when list(OpB) -> OpB;
do_and(false, OpB) when list(OPB) -> false;
do_and(OpA, OpB) when list(OpA), list(OpB) -> OpA ++"AND"++ OpB;
do_and(OpA, OpB) -> do_and(OpB, OpA).

Representing policy clauses as lists of restrictions, the complex selection of
the relevant clauses is easily written down as a filter, using a list comprehen-
sion:

% @doc Determine if an insurance policy is applicable
% to a certain accident claim

70



5. Implementation of a paradigm shift

% @spec applicable(Accident :: Claim(),
% Insurance :: Policy()) -> boolean() | string()
relevant_policy({accident, Hazard}, {policy, Clauses}) ->
[ ClauseID || {ClauseID, ClauseDefinition <- Clauses,

relevant(Hazard, ClauseDefinition) =/= false ].

It is clear that working at the higher abstraction level that functional languages
provide simplifies enormously the implementation of complex behaviour with-
out giving up any expressiveness, flexibility, or power.

5.4.4 ARMISTICE as decision support system

Thanks to the detailed design exposed in Chapter 4, which paid a lot of atten-
tion to all domain properties and characteristics, ARMISTICE is a very power-
ful tool for the daily control and management of accident claims. It improves
the risk management decision process at two different levels: as a proactive
working tool for the non-expert user, and as an advanced analysis tool for the
expert user.

Whenever a potential risk (or several) turns into a real accident that actually
affects one or more of the risk situations handled by the system, the ques-
tion arises of whether there may be one (or more than one) insurance policies
whose coverage terms include the damaged objects of interest, to be charged
with the recovery expenses (and, if several, which would be the best to de-
mand the repayments from, for that particular accident). To answer all these
questions and manage the loss situation, a file is opened by the insurance
department to manage the corresponding claim.

Storing all the information about the contracted policies, ARMISTICE is ca-
pable to act as a decision support system, discarding all the irrelevant poli-
cies (those with non-applicable warranty clauses, covering different risk sit-
uations, different hazards, or different time periods) for a given accident. It
does so by automatically checking all policy data (specifically, each supple-
ment/conditional data) against the known accident details the user inputs. By
analysing policy warranties contents (i.e., evaluating the associated restric-
tions) and contrasting them with accident dates, objects of interest involved,
materialised risks, etc., all non-applicable warranty clauses (and thus, all non-
applicable supplements, then policies) can be discarded, leaving for the user
to select from only a few choices, corresponding to those constraints whose
applicability lays on the human-language nuances they contain, hence only
decidable by a human being.

This process can be seen as the simplification of a logical tree representing
the contractual clauses of a policy. The way it is performed consists in pruning
branches off that tree, using context information. Prunable constraints will be
those that can be fully evaluated and so automatically designated as true or
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false by the system. Let us picture, for instance, an applicability precondition of
a hypothetical contractual clause that would provide coverage against fire (but
only if it is not arson), flood, and earthquake (but only if its Richter magnitude
is greater than 4.0, and whenever the total number of employees in the set of
affected risk situations –i.e., company’s offices– is greater than five). Besides,
let us say that coverage would also only be supplied if the government does
not provide financial support to alleviate the accident. These restrictions can
be logically organised as shown in Figure 5.2(a).

(a) Policy clause logical tree (b) Simplified logical tree

FIGURE 5.2. Policy clauses representation

Now, if an earthquake strikes the region and there are more than five employ-
ees working in the affected facilities, the system can automatically simplify the
expression to Figure 5.2(b). The user that inputs the original information about
the earthquake and its effects into the system, should now just answer whether
there will be government response to the catastrophe and if the tremor had a
relevant magnitude for the clause to be applicable (i.e., true).

So the output of the decision support module is, in the end, the list of policies
which are either downright candidates, or else that have non-automatically
decidable constraints/clauses, expected to be a much more smaller set than
the original one. These fewer possibilities can then be explored by the non-
expert user, to decide if the nuances are important or not, concerning the
specific accident that she is dealing with at the moment, finally picking the
most convenient coverage choice.

Having the system discarding all non-relevant policies, and reporting back just
those either already applicable, or which require the user to make a decision
on about their suitability because they include human-language nuances in
the warranty clauses text, turns the decision making process into something
much easier, even for the non-expert user, since the quantity of information
to be taken into account is substantially reduced. Besides, from the Artifi-
cial Intelligence perspective, a correspondence can be established among the
different parts of a classic production system (cf. Fig. 5.3) and some of the
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ARMISTICE components we have just described. Such a production system
would consist of:

A knowledge base, containing

a rule base (or list of rules), represented by the applicability con-
straints of the insurance warranties of each policy;

a factual-data base, containing all the information about accidents
that have happened, as well as definition and properties of risk
situations and policies, and their evolution over time.

The combination of the facts on the factual-data base and the rules on
the rule base is the trigger for the relevant rules activation (i.e., selection
of accident-relevant policies), according to the actual characteristics of
what has indeed happened.

An active memory storing the results that the system is producing, as well
as the user input about the facts, relevant active rules, etc. This com-
ponent will, hence, have information about the set of policies that are
retrieved after matching the warranties constraint definition against the
data about an accident. As far as ARMISTICE is concerned, a rule/war-
ranty that is fired/activated means the policy it belongs to is potentially
appropriate to cover the expenses the accident recovery is going to
cause.

Last but not least, an inference engine, realised in the restriction and for-
mulae analysers which conduct the whole process, finally suggesting
the coverage after calculating conditions, excesses, and limits. Its main
properties are forward chaining, activation of all matching rules, and ex-
haustive depth first search (meaning that all sub-constraints and sub-
formulae are analysed in-depth).

FIGURE 5.3. Architecture of an AI production system
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Once these initial steps in the accident registration have been performed, the
usual activities involved in accident claim management procedures take place:
determination of the tasks to be carried out to repair the damages, sending
and receiving evidence documentation and various paperwork, issuing and
processing payments, claiming and recovering indemnities, etc.

As repairs are being performed, receipts are coming in, and insurer compen-
sations are being received, the corresponding data helps the system keep the
claim status up-to-date, right through and up to the final stage when everything
is solved and the file is permanently closed. Even then, ARMISTICE’s useful-
ness is not finished. Apart from these everyday kinds of operations, there is
potential for analysis that can be performed on the basis of all the daily in-
formation gathered. This is the second risk management working area that
ARMISTICE greatly improves upon.

The head of the risk management department will have the actual data her
company is producing added to her regular statistical resources, reports, and
studies, right away. At any time, she can query the system and obtain different
flavours of reports that will show if the risk management policy is doing its job, if
the losses are being recovered as desired, if any of the contracted policies are
redundant or superfluous, if there is any hazard causing uncovered accidents
because it was missed or underestimated at insurance negotiation time. This
second task is even more critical than the first, because it can help to detect
deviations in the risk management policy at relatively early stages and, hence,
to correct them.

Such in-depth analysis is only possible thanks to the application managing
all relevant information, from risk situations and hazards to policies and acci-
dents, a direct consequence of the effort put in the analysis and design stages,
and made possible by the high-level of abstraction kept at the implementation,
too. There is no doubt that this has made ARMISTICE a very powerful re-
source for those responsible to have the overall risk management policy of a
company under much higher control.
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As part of the natural evolution of the discipline, software engineering is nowa-
days undergoing a progressive displacement of concerns, that are moving

from functionality-related aspects towards quality assurance efforts. Function-
ality and quality are, however, two sides of the same coin, and the common
path of software validation pursues both.

As software becomes more and more ubiquitous, the complexity of the prob-
lems that need to be addressed increases as well. Greater challenges require
not only better analysis, design, and implementation capabilities, but also more
effective techniques when it comes to providing some measurement of final
product quality and expectations compliance. This is why software companies
pay more attention now to their engineering processes [111], including (and
especially) their software testing stages, as part of their quality improvement
policies. The objective is, of course, to enhance the properties of the delivered
software, in particular by reducing the amount of faults that make their way into
the deployment and production stages.

Crucial as it is acknowledged to be to software engineering, software testing
still does not offer a degree of discipline and results comparable to other soft-
ware engineering activities. Testing goes beyond debugging: it means evalu-
ating behaviour, attributes, or capabilities of programs or systems to determine
if they meet their requirements. And even though our way of implementing ac-
tivities, modelling, and representing properties or services has evolved enor-
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mously, we still use mostly the same testing procedures invented decades ago.
They involve, in many cases, creativity; they require, to be more efficient, cer-
tain experience; they benefit from intuition. We approach much more complex
business domains and industrial and social needs, but fault identification and
correction processes have not stepped up to the same level as the software
under test. Last but not least, testing is usually a trade-off between project
budget, development time, and product quality. And while software testing
may be expensive, not testing it is even more costly [112].

With the complexity barrier getting pushed forward day after day, the furthest
we can go is constrained by the strength of the techniques we put in practise in
each step of the development process. This is why, in this dissertation, we are
focusing on every stage of software building, seeking how to improve software
design and construction as a whole. In this chapter, we aim to show that the
benefits of the paradigm we have been discussing extend to testing, enabling
the application of certain methodologies which produce excellent results with
moderate effort. We will see that, thanks to the use of functional program-
ming, this essential task is greatly improved in many ways, such as easiness,
rigorousness, and effectiveness.

6.1 Software testing

The distinction between debugging and testing was initially introduced by Glen-
ford J. Myers in 1979 [113], as he wanted to express the need of the software
engineering community to regard verification as something else. Some years
later, in 1988, Gelperin and Hetzel [114] established a taxonomy of the phases
and goals through which software testing had evolved:

First phase (before 1956): debugging
In the early days of software development, testing efforts were mostly re-
duced to achieving program execution. Most of the testing efforts were
focused on hardware, so terms such as program checkout, bug inspec-
tion, fault correction, and even testing were not clearly differentiated.

Second phase (1957-1978): demonstration
Around the fifties, the general view of testing started to change and ac-
tivities aimed at fault detection were clearly distinguished from fault lo-
cation, identification, and correction tasks. The objective was to provide
some empirical data about the software behaving as expected according
to its specifications and requirements.

Third phase (1979-1982): destruction
Criticisms of the demonstration-oriented testing appeared, arguing that
the risk of introducing unintended or subconscious trends when select-
ing data to test for successful execution could lead to poor testing re-
sults. As a consequence, a new perspective is proposed, and testing
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is, as a result, oriented to detect implementation faults by trying to force
software crashes.

Fourth phase (1983-1987): evaluation
As software professionals gave in to the fact that no testing process
could guarantee error-free software, the belief spread that at least a
carefully chosen set of techniques could help ensure development of
better quality software. Hence, testing enters each life-cycle phase,
which has now a set of activities or sub-products to be verified, in an
attempt to detect not only implementation faults, but also requirements
and design defects.

Fifth phase (from 1988): prevention
The last phase represents the generalisation of the evaluation-oriented
testing to all levels of testing, seeking rather to prevent than only to de-
tect requirements, design, and implementation problems. Timely test
planning, test analysis, and test design forces development teams to
reflect about verification and validation activities as early as requisite
gathering starts, potentially revealing flaws, incompleteness, ambiguity,
inconsistencies, and/or incorrectness before they are carried into the fol-
lowing development stage.

The importance of testing activities has, thus, grown in parallel with its rele-
vance within software development, from merely test execution and closing
stages of a project to a key task that interacts with all development steps
throughout all project lifespan. In this thesis, we aim to contribute to the con-
solidation of testing as a first-order activity, which is planned and thought about
already from the analysis and design activities. Indeed, our case study formal-
isation in Chapter 4 will be helpful again, as we will see in Section 6.3.3.

6.1.1 Verification versus validation

The terms verification and validation are commonly used interchangeably in
the industry, and it is not uncommon to see them incorrectly defined. The Ca-
pability Maturity Model Integration (CMMI) defines these concepts according
to the IEEE Standard Glossary of Software Engineering Terminology:

Verification “Process of evaluating a software system or component to de-
termine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.”

Validation “Process of evaluating a software system or component during or
at the end of the development process to determine whether it satisfies
the specified requirements.”

In other words, verification activities try to give an answer to the questions “are
we building the product right, does it conform to design specifications?”, while
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validation tasks attempt to shed some light over the complementary questions
“are we building the right product, does the product do what the user requires?”

Different testing strategies face software verification and validation from a di-
versity of perspectives, seeking from empirical information to formal evidence
about the quality of a product or service. The stage or stages of the devel-
opment process they are used in also vary (as do their methods and tools,
and its formality and rigour), although most test efforts are employed after the
requirements have been defined and the coding process has been completed
at least to a certain extent. As different as they may be, the main concern of
all testing alternatives is common: to be as effective as possible in minimising
efforts and (side) effects.

In addition, one should consider that software testing effectiveness is a param-
eter of the software itself, strongly dependent on its properties and the charac-
teristics of its target audience. Take, for instance, a flight simulator game and
a flight simulator instructor for pilots. Being products with similar features, the
error tolerance is completely different in these two scenarios; in other words,
the same kind of software failure will not be equally acceptable for each of
them. Based on this last criteria, certain testing methodologies may be better
suited than others, or even be not applicable at all.

And even when using the most appropriate testing approaches, we should
bear in mind that the search for software errors is a non-decidable search
problem [115] with an infinite space:

It is a search problem because the space of all possible test scenarios is
explored to find the ones leading to bugs.

It is a non-decidable problem because the decision whether a certain be-
haviour is indeed defective is not inherent to the testing process, it usu-
ally requires external input (i.e., the developer, the user).

It is an infinite-space search problem because the total number of possible
scenarios is often extremely large, practically infinite.

In this dissertation, we use the term ‘testing’ as a general concept, and refer
specifically to ‘verification’ and ‘validation’, according to the previously men-
tioned IEEE definitions, whenever we want to specifically emphasise one of
the two perspectives.

6.1.2 Testing levels

A common categorisation of testing [116] approaches corresponds to the well-
known levels of testing (as first defined in the V model, cf. page 13), that
includes:
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Unit testing Also called module testing or component testing, unit tests are
typically written and run by software developers themselves, and con-
sists in choosing the smallest testable part of an application or system
(i.e., a function, a module, a program) and checking whether it meets its
design and behaves as intended. As many other testing activities, unit
testing produces a rudimentary form of system documentation, since the
tests themselves represent a form of written contract for a piece of code
that, among other things, allows to combine source refactoring and re-
testing to ensure it still works as expected (i.e., regression testing, cf.
page 85). Even though it will obviously not detect complex errors (such
as integration errors, broader system-level errors), a large percentage of
defects are identified thanks to this testing modality.

Integration testing Modern systems are usually structured in separate mod-
ules that work together to offer full services or provide complex function-
alities. Apart from being unit-tested individually, these software modules
are combined and tested as a group in integration testing activities. The
assembly needs to interact correctly across procedure calls or process
activations, to verify not only functional, but also performance and relia-
bility global requirements. Thus, this testing technique exercises compo-
nents interfaces in a black-box testing style (cf. section 6.1.3.2). Follow-
ing a bottom-up approach, the testing groups grow gradually, eventually
leading to the next testing granularity.

System testing Using the functional requirements and/or the system require-
ments specification, a complete, integrated system can be tested as a
whole to evaluate its compliance with those requirements. This system
testing is usually again a black-box testing scenario, which creates ar-
tificial environment conditions to lead the system to different situations
using no information of the system internals. This modality tests not only
design and behaviour, but also a whole set of different aspects which be-
come relevant at this level: performance, security, scalability, capacity,
or recovery.

Installation testing In many cases, the installation of a software application
is the first interaction with real users, which should make the verification
of this process a main concern. Instead, it is often one of the most under-
tested aspects. Actions devoted to ensure that every possible configu-
ration receives an appropriate level of attention, to grant that all installed
features and options function properly, and to verify that all needed com-
ponents are indeed installed, is called installation testing. It seeks to
increase the level of confidence with which the software is delivered to
clients. This is especially important whenever the software is to be re-
leased into already ‘live’ target environments, where unexpected events
could cause data loss or corruption.
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Acceptance testing Though it can also be performed by the software prov-
ider, the leading actor of acceptance testing (also called functional test-
ing or validation testing), the final stage of testing before product release
or deployment, is generally the end-user. The objective of acceptance
tests is to provide confidence in the delivered software meeting the busi-
ness requirements, on the basis that if a system works as intended and
without issues during ‘normal use’ testing sessions, the same level of
stability in production can be inferred. To accomplish this, the testing
environment needs to be as close as possible (if not identical) to the an-
ticipated deployment environment, and a trial-and-review process needs
to take place in the hands of subject matter experts.

Acceptance criteria highly depend on the nature and goal of the soft-
ware, but they always should be established in advance, derived from
the same user stories the system requirements are elicited from. Since,
one hopes, previous testing activities will have uncovered operational
flaws, this beta-testing activity is the final quality gateway.

The contributions in this chapter fall, as we will see, in the first two sets of the
previous taxonomy: unit testing and integration testing.

6.1.3 Testing techniques

Next, a short description of the most important testing techniques [117–120]
is exposed.

6.1.3.1 Dynamic and static verification

Dynamic verification is the kind of testing that is usually associated with
the plain ‘testing’ concept itself. All the techniques and procedures that are
grouped under this umbrella-term require the execution of the software under
consideration, and propose a form of review process of its behaviour.

In contrast with dynamic verification, static verification (or static analysis)
does not require the execution of the program or component, and replaces
it by its physical inspection. Among the most well-known static verification
techniques, we find:

Software inspection Software review, and more specifically, software peer
review, is a peer review process in which software professionals differ-
ent from the software authors go over an application’s or component’s
source code to technically evaluate it for content and quality. The pri-
mary objective of software inspection is, according to the Capability Ma-
turity Model, “detecting and correcting defects in software artifacts, and
preventing their leakage into field operations”. To be effective, software
inspection is formally engineered as any other software development
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procedure, including planning, preparation, and actual inspection activi-
ties, even in an iterative fashion.

As part or consequence of software review, bad practises are detected
and source code sees its structure, readability, and maintainability im-
proved, acknowledging verification of source code conventions and ap-
plication of refactoring actions.

Software metrics calculation Classical engineerings tend to regard mea-
surement as one of the key aspects of management and evaluation.
For years, computer science has tried to apply a similar approach to
software development. However, software is a much more abstract con-
struct than bridges or machinery. Still, some meaningful aspects can be
measured while developing a system, such as performance or code cov-
erage. Other metrics have been revealed as naïve and simplistic met-
rics, like lines of code, function points, or cyclomatic complexity. Con-
sequently, they have been replaced by maintenance-time ones, such as
faults-slip-through [121], aimed to provide feedback for quality evalua-
tion.

Formal verification Instead of trial-and-error, formal verification (also referred
to as formal methods) tries to prove the correctness of certain behaviour
(algorithm) with respect to a formal specification (property). To do so, it
pursues the construction of a formal proof on an abstract mathematical
model of the system. Such a mathematical model can be a finite state
machine, Petri net, labelled transition system, process algebra, opera-
tional semantics, denotational semantics, Hoare logic, etc.

There are two broad approaches to formal verification:

Theorem proving (also known as logical inference) which, in a strong
parallelism with classical logic, consists of the development of for-
mal proofs that show that some statement (the conjecture) is a
logical consequence of a set of statements (the axioms and hy-
potheses). This can be used in a wide variety of domains, given an
appropriate formulation of the problem as axioms, hypotheses, and
a conjecture. One of the fields where theorem proving is applied
is software testing, where the conjecture (model) is that a specific
piece of source code (or an entire system) carries out a certain
task or provides a certain functionality, according to its specifica-
tion (formal proof).

Model checking, given a model of a system, seeks to automatically
test whether it meets the corresponding specification by means of
a systematic and exhaustive exploration of all model states and
transitions. That is, once a correspondence between the software
under test and a suitable abstraction is established, the problem
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is stated as the reachability of a property from an initial state, pro-
vided a certain program structure.

Formal verification is used by many leading hardware companies, but its
use in the software industry is still languishing. The reason for this is
probably the greater commercial significance that hardware errors have,
together with the infeasibility of exercising a realistic set of possibilities
by simulation, and the suitability of hardware-specific challenges (sim-
pler, with fewer possible outcomes) for automated proof methods, all
these making formal verification more productive, and hence, easier to
introduce.

The testing techniques we will develop and present later on in this chapter are
dynamic verification strategies.

6.1.3.2 White-box and black-box testing

An alternative (and non-exclusive) classification for testing methods is based
on the knowledge about the system that is used or needed to perform test-
ing activities. According to this criteria, white-box testing, also known as
glass-box, logic-driven or design-based testing, derives test cases from
the physical program structure.

Examples of white-box testing strategies are:

Code coverage It is one of the first techniques that were designed for sys-
tematic testing. It is a form of unit testing that measures to which extent
the source code of a program has been tested. According to granularity
of coverage, code inspection is sometimes sub-divided into:

Statement coverage, which ensures each line of code has been exe-
cuted during testing.

Decision coverage or branch coverage, which takes care that each
control structure that implies a logical decision has been taken in
all its alternatives.

Function coverage, which controls that every function has been called.

Entry/exit coverage, which checks that every possible call and return
pair has been executed.

Path coverage, which aims to ensure that every possible route through
a piece of code, or all independent paths within a module, have
been tried at least once.

These levels of code inspection are closely inter-related and they even
imply each other in some cases, such as path coverage, which implies
decision, statement, and entry/exit inspection; or decision coverage,
which implies statement inspection. Besides, other considerations such
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as execution of loop structures at their boundaries or checking internal
data structures to ensure their validity are often taken into account as
well. All in all, full path coverage is often impractical or even infeasible,
not to mention undecidable.

Mutation testing Mutation testing consists in modifying source code portions
in small ways (either at compile time or at runtime) to mimic typical pro-
gramming errors and see how tolerant the system is to them, or else
to locate weaknesses in sections of the code that are seldom accessed
during regular execution. This kind of testing is intended to test the qual-
ity of previous testing efforts, since after mutating source code state-
ments, previous test suites will be run again to check whether or not
they are able to find those errors. Mutation testing, thus, is an attempt to
face the problem of test suite accuracy measurement, using figures such
as the ratio of detected mutants to the total mutants created (i.e., sensi-
tivity). Downsides include the strong dependence between the types of
faults the mutation operators are designed to represent and its effective-
ness, as well as how expensive it is to perform, especially when dealing
with large applications.

Fault injection Apart from faulty code, software liability is intimately related to
erroneous input data. While consequences of internal failures are likely
to be revealed by many different testing approaches, only fault injection
can quantify the influence of external events on system behaviour. This
testing method consists, then, in using specially crafted input data in an
attempt to cause on purpose the software to crash or behave incorrectly,
so that error-handling code paths are exercised. The intention is to be
able to observe system responses whenever a fault occurs, revealing
(under controlled anomalous circumstances) how ‘badly’ the software
can behave. Fault injection can help to determine whether or not a sys-
tem is able to produce acceptable results in the presence of corrupted
or malicious input (i.e., tolerance).

As with mutation testing, the biggest issue here is the plausibility of
the injected anomalies which, together with the absence of help tools,
makes this strategy rarely feasible.

Besides, all static testing techniques are white-testing by definition, too.

Black-box testing, also called data-driven, input/output-driven or specif-
ication-based testing, takes an external perspective. Applicable to all gran-
ularity levels, test cases are pairs of valid or invalid inputs and corresponding
correct outputs. It is argued that black-box testing represents a more objective
approach compared to white-box testing, since it does not need any knowl-
edge about the internals of the software. On the other hand, not using a
blind-exploration approach, white-box testing is often more efficient.
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Some examples of black-box testing are:

All-pairs This is an effective test case generation technique that avoids test
generation combinatorial explosion. Based on that most faults are caus-
ed by interactions of at most two factors, pairwise testing tests all possi-
ble discrete combinations of pairs of input parameters to a system. This
is of course faster than an exhaustive search of all combinations of all
parameters, even more if combined with parallel execution of the tests.
However, test combinations of pairs may still be infeasible.

It is also referred to as pairwise testing.

Boundary value analysis Experience shows that boundaries of input and
output ranges of software components are common locations for errors.
This kind of testing is actually a test case design strategy which con-
centrates testing effort on cases near the limits of valid ranges (which
are considered error-prone areas), forcing the exercise of the extreme
conditions in order to detect problems. Boundary value analysis is often
considered a part of stress and negative testing.

Decision table testing Decision tables are used in logic to define rules based
on the matching of different actions to a series of conditions. Using a de-
cision table to depict relationships between input data and behaviour or
output data, it becomes an instrument to build test cases. Apart from
documenting a system by explicitly associating conditions with actions
to be performed, and matching many independent conditions with sev-
eral actions, the effort which is put on the recognition and development
of these decision tables may reveal software redundancies and/or incon-
sistencies.

Equivalence partitioning This technique, also intended for reducing the total
number of test cases to be developed, is based on classifying the input
data of a software unit into several disjoint partitions and designing test
cases to cover each partition once. This approach is based on the as-
sertion that selection of just one test case out of each partition is enough
(since using more or even all test cases for the same partition will not
result in finding more faults), and also the premise that each partition
member causes the same kind of processing and output. However, to
be sure about this, a grey ish box testing may be needed (i.e., consider-
ing knowledge about internal data structures and algorithms only for test
case design purposes). The classification of input data into partitions
that act as equivalence classes is done by referring to input conditions:
for each input condition, two equivalence classes are defined, the cases
which satisfy the condition and the cases which do not. Boundary value
analysis can be seen as a kind of equivalence partitioning.

Exploratory testing Although regarded by many as just “unorganised man-
ual testing”, exploratory testing (or ad-hoc testing) is considered by many
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others as a test approach that is applicable to any testing technique,
and whose main principle is the emphasis on the personal freedom
and responsibility of the professional tester. By simultaneously learning,
creative test designing, and test running, the tester gathers knowledge
about the software that, together with her experience and intuition, leads
her to generating new good test cases. The more the tester knows about
the system under test and different test methods, the better the testing
will be, since the key to test optimisation is no other than the tester cog-
nitive compromise.

Exploratory testing can be one of the more agile and cost-effective test-
ing approaches, since it requires less preparation while revealing impor-
tant bugs faster. It is also more intellectually appealing, as the tester
does not need to complete a series of scripted tests before focusing or
moving on to new aspects. Tradeoffs include the impossibility of review-
ing tests in advance, and also the difficulty to reproduce them later on.

Fuzz testing Fuzz testing is a simple technique which consists of providing
invalid, unexpected random data (also known as fuzz) as system input to
force failure occurrence and detection. Rather than attempting to guess
what data is likely to crash an application (as fault injection would do),
fuzz testing simply feeds the software with indiscriminate input. As ele-
mentary as it is, this can be a powerful, efficient, and cost-effective ap-
proach, and reveal important bugs, often the kind of defects that would
be overlooked when software is written and debugged. For instance,
fuzzes work best for problems such as buffer overflows, cross-sit script-
ing, denial of service attacks, format bugs, or SQL injections.

Model-based testing In model-based testing, test cases are (often automat-
ically) derived completely or partly from a model that describes all or
some aspects of the system (usually functional properties). Such a
model is generally a partial, abstract representation of the system be-
haviour. Even though the functional model which derives the test cases
can be based on the existing source code, model-based testing is still
seen as black-box testing variant. The interest in model-based testing
is due to its potential for automation: if the model is machine-readable
and has a well-defined behavioural interpretation (for instance, can be
interpreted as a finite state machine), test cases can be (more cost-
efficiently) automatically generated. This promises to increase effective-
ness and shorten the testing cycle.

Regression testing Whenever modifications are made to existing software,
either during its development or maintenance, experience says that there
is a high probability of fault re-emergence. This is typically due to the
fragility of bug fixes, which instead of solving the problem, patch it for a
narrow set of scenarios directly related to the observed anomaly, but not
for the general case. This kind of testing aims to reveal such software
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‘regressions’, functionalities that were once correct but stop working as
expected as unintended consequence of program changes.

Common regression testing methods include re-running all previously
designed tests, which is the reason why most test suites are built in an
incremental way. However, for many projects it is not feasible to follow
an approach like this, either because test suites grow too large, because
changes come in too fast, or because heavy or costly simulations are
needed each time. Hence, regression testing is at times re-oriented
towards selective re-testing for confidence on that newly added features
or bug fixes do not have unwanted side-effects.

Specification-based testing Similar to model-based testing, specification-
based testing aims to test the functionality of software according to its
requirements (i.e., the model, instead of being specifically created for
testing purposes, is the software specification). Product conformance
with specification is checked by reviewing any reference documents (for-
mal specifications, user manuals, etc.), stating the claims that are made
about the system or application, testing them against the product, and
reviewing the results for errors.

Hence, specification-based testing is dominated by the traceability of
written specifications, and only the existence of a formal specification
introduces the possibility of automating test generation.

State transition tables Also called state transition testing, state transition ta-
bles are one of many ways to specify state machines (just like state
diagrams), which essentially consists in writing truth tables in which the
inputs are the current software state, and the outputs include the next
state, along with other outputs. The advantage of state transition tables
is that they list all possible state-transition combinations, not just the valid
ones, which may be needed in sensible, critical domains. Analysing all
possible interactions allows to identify defects that may enable invalid
paths from one state to another. Of course, this is only useful if the num-
ber of states and events is relatively small, since these tables become
very large very quickly as their number increases.

Traceability matrix This method is used to validate the compliance of a prod-
uct with customer requirements. The requirements are listed in a row
of the matrix and the columns of the matrix are used to identify how
and where each requirement has been addressed. The resulting matrix
(also known as requirements traceability matrix) allows, then, to follow
a top-level requirement into their implementation and test cases. Such
traceability is a highly desirable property for any software system, and it
is not only a requisite for verifying that requirements are fulfilled by the
software, but also for identifying unaddressed or extra functionalities,
and to assess how far a given test suite covers the requirements of the
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functionalities to be tested. Correlation shown by the traceability matrix
may be too loose (meaning there is no coupling between a requirements
and a system module or test case) or too tight (reflecting a very complex
relationship which should probably be simplified by splitting up either the
requirement definition, the functionality implementation, or both).

Use case testing Use case testing approaches determine how to use em-
ploy cases to develop effective sets of test cases. Use cases are one of
the most meaningful sources of information as far as user expectations
about the software are concerned, so they represent not only the spec-
ification of a system, but also a practical way of testing its behaviour.
Thus, this testing approach focuses the attention on the user rather than
on the actions the application or system performs. This perspective can
help identify test cases which other technique have more difficulties in
seeing, but to be ‘testable’, use cases need to be stable, specific, com-
plete, and correct. Analysing and identifying use cases paths, test cases
can be derived to exercise those paths, after taking into account their
equivalence, commonalities, and variance properties.

When we present the testing methodologies we propose later on in this chap-
ter, we will be showing black box testing approaches in all cases.

6.1.3.3 Positive and negative testing

One last classification of testing approaches refers to them as positive and
negative, with regard to the main strategy they adopt, either aimed to endorse
that the software works as it is intended to, or else aimed to break the software
showing proof that it does not work, breaks, or presents some unspecified
behaviour.

Positive or clean testing is used mainly, if not exclusively, to check whether a
given system, function or operation conforms to its initial design under regular
conditions or ordinary interactions. On the other hand, the objective of neg-
ative or dirty testing is to purposely make the system, function, or operation
fail, in order to check whether it responds soundly and is capable of handling
anomalous situations appropriately. Simply put, the first philosophy checks
for good behaviour in response to expected inputs, while the second checks
for good behaviour even in presence of unexpected (wrong) inputs. It is clear
that the ultimate goals of these two variants are completely different, but as
different aims as they have, both approaches are complementary.

However, there is a school of thought in software testing that favours the idea
that testing is not good enough unless it detects some defect. Admittedly, suc-
cessful positive tests can never assure that a system or application performs
correctly in every possible situation, they only grant that it does so in those
situations represented by the tests. Still, verifying that something works as in-
tended prior to submitting it to unusual conditions seems the most reasonable

87



6.2. QuickCheck

approach. Positive testing answers the question of whether the product under
test has the functionalities it was developed to fulfil. If the required properties
and behaviours are not present in the software under normal circumstances,
all other tests, especially negative tests, are irrelevant. Otherwise, it could
be the ironic case in which a system is strong against malformed data, but
it does not produce correct outputs for correct data. Indeed, negative testing
is necessary in order to discover significant failures derived from the system
response to external problems, software weaknesses, or malicious attacks, so
both approaches need to be considered for genuinely effective testing.

In Section 6.3, we formulate different testing approaches which combine both
positive and negative testing.

6.2 QuickCheck

It is generally accepted that software testing is as necessary as delicate a
matter. In particular, designing good test sets is a non-trivial task, which can
very easily be missed. Unconscious presumptions about the functionality of
the element under test may leave important scenarios or possibilities out of
the testing range/scope. That is why automatic test generation tools can be
interesting and helpful products.

As a successful example, QuickCheck has proven itself as a useful testing
assistant. Invented by Claessen and Hughes [122], it is an automatic tool
for test-case generation and execution based on specifications. Working as
a library, QuickCheck provides a simple domain-specific language (in a way,
an extension of the same programing language it was developed in, Haskell)
which allows the developer/tester to easily write down program specifications
in the form of properties which should be satisfied. From those formal specifi-
cations, QuickCheck automatically generates, runs, and checks the results of
a large number of random test-cases to see whether the properties hold.

While using software specifications for testing is not a novelty in itself, as we
have seen in the previous section, directly deriving test cases from them is
not a trivial task. However, functional programs are very well suited to au-
tomatic testing. Pure functions defined in functional languages are easier to
test than those with side-effects from imperative paradigms, thanks to the ab-
sence of concern about state before and after execution. Besides, declarative
source code has the power of the full language for expressing test cases due
to properties such as pattern matching and symbolic interpretations. Com-
pare, for instance, the following test case specifications in Java (using JUnit to
manually test on a case-by-case basis) and Erlang (using QuickCheck to fully
specify complete tests as properties):

88



6. Ensuring functionality and quality through testing

// Imperative Java definition
public List listIntersection(List a, List b) {
List intersection = new List();
Iterator itB = b.iterator();
while (itB.hasNext()) {

Object element = itB.next();
if (a.contains(element)) {
intersection.add(element);

}
}
return intersection;

}
// JUnit test
public void test() {
List a = new List();
List b = new List();
List c = new List();
a.add(1); a.add(2); a.add(3);
b.add(3); b.add(4);
c.add(3);
assertEquals(c, listIntersection(a, b));
...

}

% Functional definition
list_intersection([], A) -> [];
list_intersection( A,[]) -> [];
list_intersection( A, A) -> A;
list_intersection( A, B) -> [ X || X <- B, lists:member(X, A)].

% QuickCheck test
prop_intersection() ->
?FORALL({A, B}, {list(int()), list(int())},

?FORALL(E, lists:append(A, B),
case lists:member(E, list_intersection(A, B)) of

true -> lists:member(E, A) andalso lists:member(E, B);
false -> not lists:member(E, A) or not lists:member(E, B)

end)).

In the first case, we contrast the output of the listIntersection function with
its expected value, after a set of specific steps, and infer from the successful
match the correctness of the function under test.

In the second one, however, we declaratively specify the behaviour that the
list_intersection function is expected to fulfil at all times: whenever we
take an element E from a list –which is the concatenation of two lists A and B
to ensure we focus on relevant cases, if the element belongs to the intersection
of A and B it means that it was already present in both A and B, not being
present at least in one of them otherwise. This is precisely the formal definition
of the intersection operation, which is tested with randomly generated values
of lists of integers.
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But, even if we perform imperative-like programming, the same testing philos-
ophy can still be applied thanks to QuickCheck constructs based on algebraic
laws, abstract models, and pre- and postconditions; the use of observational
equivalence as result checking mechanism, and the explicit representation of
state as data structures, when needed. Besides, with the QuickCheck specifi-
cation language being embedded in the same programming context, the effort
required to write properties is constrained to the specifications description,
since there is no need to use any other descriptive language or formalism.

Undoubtedly, software specifications bring important benefits: they contribute
to wider product understanding (no matter if they are written before the system
implementation is done, as requirements formalisation, or afterwards, to serve
as testing criteria) and better system documentation; being able to also use
the same specifications for testing purposes only adds even more value to
them. Of course, since source code and specifications are not derived from
each other, rather they are independently written by developers or testers,
there is no guarantee that the first is consistent with the latter. Testing one
against the other with random inputs, however, is a way to empirically improve
the confidence on that they actually are consistent. More systematic testing
could seem more likely to be meaningful in this sense, but different studies
show that, actually, this is not the case [123, 124].

Random testing does well in comparison with other black-box testing tech-
niques, and even as well as they with only a small percentage of additional
testing, with cost efficiency making up for it. However, improvement of random
test cases effectiveness is possible if test data distribution can be influenced.
To make that possible, QuickCheck also provides a test data generation lan-
guage, which enables testers to control the distribution of test cases to con-
form to any desired and arbitrarily complex invariant.

There is a variety of QuickCheck implementations deriving from the original
Haskell version, in different programming languages such us C++ [125], Java
[126], or ML [127], among others. So far, there is only one commercially
available version of QuickCheck, which is implemented in Erlang [128, 129]
and has many features that the open source versions from the research com-
munity lack. This product is provided by Quviq and is referred to as Quviq
QuickCheck. In the rest of the chapter we will show how we used Quviq
Quickcheck as part of our strategy to improve the development life cycle of
a software product, specifically for improving testing activities and results.

6.2.1 Property-based testing

As has been explained, Quviq QuickCheck is a powerful and versatile specific-
ation-based testing tool, aimed to test software against properties formulated
in the programming language Erlang. Part of its strength comes from the
capabilities it provides to easily write customised data generators and system
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properties. In their simplest form, QuickCheck[1] properties are universally [1] From now, we
will refer to ‘Quviq
QuickCheck’ just
as ‘QuickCheck’.
Examples in this
dissertation use
version 1.13.

quantified formulae which read:

∀ values in a certain set, a test depending on those values
generates results meeting a specified condition

(6.1)

For example, the property that certain encode and decode functions on strings
are each others inverse, can be expressed as

prop_encode_decode() ->
?FORALL(S, string(), decode(encode(S)) == S).

descriptively stating (thanks to the declarative syntax of a functional language
like Erlang), that if we encode any string S and decode the result again, then
we end up with the original string S. The terms encode(S) and decode(S’)
are invocations to the functions we want to test, and string() is a data gen-
erator which produces random lists of characters. QuickCheck provides a few
basic data generators that can be used to write user-defined data generators:

alfanumeric_string() ->
list(oneof([choose($0, $9), choose($A, $Z), choose($a, $z)])).

prop_encode_decode() ->
?FORALL(S, alfanumeric_string(), decode(encode(S)) == S).

Using these user defined generators, properties are tested automatically by
QuickCheck against randomly generated test cases. On test success, the tool
will just display an informative message:

> eqc:quickcheck(string_eqc:prop_encode_decode()).
..................................................................
..................................
OK, passed 100 tests
true

The number of test cases generated on each execution of QuickCheck is by
default 100, but this can easily be adjusted to our needs.

> eqc:quickcheck(eqc:numtests(250,
string_eqc:prop_encode_decode())).

..................................................................

..................................................................

..................................................................

....................................................
OK, passed 250 tests
true
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On test failure, the values of the ?FORALL-bound variables are reported. For
example, if we (wrongly) stated that encoding is the identity operation,

prop_encode() ->
?FORALL(S, string(), encode(S) == S).

and tested the property with QuickCheck, then we would see an output like:

> eqc:quickcheck(string_eqc:prop_encode()).
. Failed! After 1 test.
"n"
Shrinking... (1 times)
""
false

The testing fails, claiming that it is false that the specified property holds for
any string input. Only one test was in this case enough to detect the failure,
and such test input was the randomly generated string "n", which turned out
not to be its own encoding, hence representing a failing value of S or, in other
words, a counterexample for the property we wanted to test.

Whenever a failing test case is found, QuickCheck shrinks it to a “minimal
counterexample” to speed diagnosis [130]. In the previous example, the short-
est character list which is not its own encoding is found to be the empty string
(""), which is the minimal string we can build.

6.2.2 State machine testing

Of course, the greatest challenge to effectively use a tool like QuickCheck
at full scale within a software development project, is expressing real spec-
ifications as testable properties. To make this process easier, QuickCheck
provides high-level forms of specification on top of the universally-qualified
properties seen in the previous section. These higher-level specifications are
provided as domain-specific idioms embedded in the programming language,
in other words, libraries whose API can be thought of as a new special-purpose
language for expressing specifications of the chosen form.

One of these forms is state machines. Besides data generators and system
properties, QuickCheck provides a mechanism to define a state machine that
can be used to test state-full system behaviour in a very simple and struc-
tured manner. QuickCheck state-machine testing consists in specifying an
initial state that can be modified as a result of state transitions. Transitions be-
tween states represent the operations (use cases) of the system to be tested.
For each operation to be executable at a certain state, some conditions might
have to be met, and some other would be true after the state transition is
completed. Those conditions that need to be true before a certain operation

92



6. Ensuring functionality and quality through testing

can be executed are called preconditions, and those conditions that should be
fulfilled once the execution is finished are named postconditions. In summary,
QuickCheck provides the means to define a state machine that will have a cer-
tain initial state, and a set of operations (transitions) with their corresponding
pre- and postconditions, and how they affect the internal state.

Once the definitions of the state machine are written down, QuickCheck will
automatically generate random sequences of state transitions from the initial
state, each of them according to their preconditions (i.e., if a precondition is
not true, that transition will not be eligible by QuickCheck to be the next step
for the state machine in the sequence of randomly generated test cases), up-
dating the internal state, and then checking their postconditions. To be able to
decide whether the pre- and post-conditions are being fulfilled by a candidate
transition for a test case, QuickCheck executes them symbolically.

Symbolic execution [131] is often used in frameworks for model-based test-
ing as a means for searching for execution traces in an abstract model. Each
execution path in the model (in the case of a state machine, each possible
combination of sequential transitions from a given initial state) represents one
possible program execution that can be used as test case. The simulated pro-
gram execution normally uses symbols for variables rather than actual values,
and those symbols are instantiated by assigning values to them when the test
case is actually run.

Hence, after generating a test case using symbolic execution, QuickCheck
proceeds with a real execution. Whenever a postcondition evaluates to false
in the real exercise, the testing will stop and return an error. If QuickCheck
runs all the test case transitions without running into any unexpected errors or
conditions infringements, it will proceed to the next test case, and eventually
exit informing of successful completion.

In short, the steps for using the QuickCheck state machine are these:

1. Define the state structure and the content for the initial state.

2. Specify the set of operations to test (and the generators for their input
parameters).

3. For each operation, define its preconditions and postconditions, and how
its execution modifies the content of the internal state.

4. Execute a set of automatic randomly-generated tests.

The UML activity diagram on Figure 6.1 explains in a graphical way how the
QuickCheck state machine works. First of all, the structure of the state and its
initial value needs to be defined. The internal state structure can be as simple
or as complicated as needed. Depending on each case, we might need to
store a list of identifiers, several sets of objects, a boolean flag, etc. Since
QuickCheck puts no restrictions on the size or structure of the internal state,
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FIGURE 6.1. QuickCheck state machine

the test case developer has full freedom.

The internal state must hold the data we may need for the checks to be per-
formed at the pre- or postcondition functions, and for the state change as well.
According to this, a state definition will generally be a record with several fields:

-record(state, {fields_of_interest...}).

The initialisation of the state is done at the QuickCheck initial_state/0
callback library function:

initial_state()->
#state {fields_of_interest = initial_values(), ... }.

The state machine transitions (system, application, or component operations
to be tested) are specified within the definition of the command/1 callback func-
tion, which receives the internal state as argument:

command(S) ->
oneof([{call, ?MODULE, operation_to_test1, [data_generator1()]},

{call, ?MODULE, operation_to_test2, [data_generator2()]},
{call, ?MODULE, operation_to_test3, [data_generator3()]},
...]).
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This definition makes use of the QuickCheck generator oneof/1, which ran-
domly selects an element from a list. Note that, as mentioned before, the
previous code explicitly uses symbolic calls in order to ease the debugging
when an error is actually found (as we will see in detail in Section 6.3.1),

{call, ?MODULE, function, Arguments}

instead of actual function calls like

?MODULE:function(Arguments)

Besides, QuickCheck allows to assign each transition with a probability of oc-
currence, as a positive integer:

command(S) ->
frequency(
[{10, {call, ?MODULE, operation_to_test1, [data_generator1()]}},
{20, {call, ?MODULE, operation_to_test2, [data_generator2()]}},
{ 5, {call, ?MODULE, operation_to_test3, [data_generator3()]}},
...]).

meaning that the probability of occurrence of the corresponding operation in a
generated test sequence is proportional to its associated weight (i.e., 10, 20,
5,. . . ). This introduces very important advantages with respect to test case
distribution management.

The best way to produce an exhaustive command/1 function that includes all
relevant operations is by adding them gradually, so we should start testing a
small state machine with few transitions and check it is error-free before pro-
ceeding and considering more possibilities. It is very important to remember
that each state machine operation should resemble an exact operation, use
case, or functionality in our system, so that the state machine performs no
extra work, or bears no extra responsibility apart from performing the actual
transitions.

It might be the case that the actual operations in the system or module to
be tested receive or return additional information that we are not interested
in providing or that it is not needed at the postconditions. In these cases, to
keep the state machine definition clean and simple, local wrapper functions for
each operation to test can be defined and used as state transition operations.
Wrapper functions can adapt both parameters and/or returned values for/from
the original function, thus simplifying the interface between QuickCheck and
the functions to test, and without modifying the code which is being tested.

For each operation/state transition, besides its preconditions and postcondi-
tions, a next_state/3 callback function is necessary, which specifies how
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the state transition (execution of the operation) affects the internal state. Of
course, precondition, postcondition, and next_state functions must reflect
the properties we want our system to have. Domain constraints should be
identified and translated into these check points, always bearing in mind that
actual fulfilment of those constraints must already be the responsibility of the
code or component to be checked. That is, we need to confirm that those
conditions are being assured, avoiding by all means restricting our test-cases
more than the normal use of the application would.

precondition(S, {call,?MODULE,operation_to_test1,[parameters]}) ->
(condition on [parameters] and S);

precondition(_State, _Call) ->
true.

With regard to the effect of each function on the internal state, the next_state
function must modify the internal state according to the executed transition:

next_state(S, R, {call,?MODULE,operation_to_test1,[parameters]})->
NewState = #state {fields_of_interest = new_values,...};

next_state(State, _Result, _Call) ->
State.

As for the postconditions, this is the place where important tests can be per-
formed to check whether or not each operation result is what we expect. The
postcondition/3 callback function looks almost like the precondition/2
callback function, with as many pattern matching cases as operations in the
command/1 definition:

postcondition(S,{call,?MODULE,operation_to_test1,[parameters]},R)->
(condition on R and [parameters] and internal state S);

postcondition(_State, _Call, _Result) ->
false.

Once we have built our QuickCheck state machine module, from the internal
state definition to the postconditions implementation, it is time to let it run.
When using QuickCheck state machine capabilities, this is done by invoking
the testing of a generic property:

prop_state_machine() ->
?FORALL(Commands, commands(?MODULE),
begin
{_History, _State, Result} = run_commands(?MODULE,Commands),
Result == ok

end).
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which calls QuickCheck function run_commands/2 to execute automatically
generated sequences of operations (Commands, produced by the generator
commands(?MODULE)), and verifies an ok result.

Thus, QuickCheck provides easy-to-use mechanisms both to check software
applications for properties that must hold and to check for systems or compo-
nents behaviour adjusting to a certain set of state-transition rules, complying
with preconditions and postconditions.

6.3 Testing ARMISTICE

In this last section of the present chapter, we will describe in detail the testing
levels that were inspected in our case study, the testing techniques that were
developed and put in practise, and the results and lessons that we learned
from these experiences.

As mentioned, the ARMISTICE system has been in production for a few years
now. Prior to that, different testing activities were conducted by both develop-
ers and regular users during several stages of the development. In the earliest
development phases, verification was gradually performed by developers, in
the form of unit testing of the functions and modules as they were individually
being implemented. Studied in retrospective, these manual unit testing opera-
tions usually have revealed a natural tendency to fulfil boundary value analysis,
as well as intuitive equivalence partitioning. Since a prototyping life cycle was
being applied, no intensive integration testing tasks were required, because
both client, server, and their communication protocol evolved in parallel, in an
incremental and progressive fashion. Besides, some use-case testing was
done by programmers themselves, specifically exploratory testing of applica-
tion functionalities, as well as informal system and regression testing. These
activities were complemented by the validation work carried out by final users
from the moment the first working prototype was available, which was relatively
soon. This early on-site deployment enabled the client to check the system in
an exhaustive and ongoing acceptance testing process. We could say that
the general philosophy behind the developer’s testing efforts was aligned with
the principles of negative testing while, on the other hand, users tended to
be inclined towards positive testing, following what their daily routine activities
would normally dictate.

Such a testing schema is not uncommon in software development cycles, but
it is hardly ever complete and exhaustive. The fact that an application has
been running daily without major problems is just weak empirical evidence of
correctness. In order to provide a greater degree of confidence, and taking
advantage of the application’s core being implemented in Erlang, we decided
to use QuickCheck to apply some model-based testing, in particular model-
based automatically generated random tests involving different aspects of the
system, from data types to business rules.
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6.3.1 Data types verification

As a good starting point to enhance the testing processes that ARMISTICE
had undergone, and consequently, the system reliance and faithfulness, we
chose ARMISTICE data types. Data types are the smallest logic element that
can be tested in most software applications; they are the components on which
all other business objects are built upon.

When creating software, data types are the basic bricks. From application data
types, business objects which implement business logic are built. Most of the
time a programmer will use data types defined in library modules, therefore
being tested by many users over many years. But sometimes, the appropriate
data type is unavailable and has to be constructed from scratch. In this way,
new basic bricks are created, and potentially used in many products in the
future. Thus, data types are a key aspect, perfectly suitable to initially turn to
when aiming to thoroughly test a software product, and the efforts devoted to
test them definitely pay off.

As one can imagine when talking about such a complex software system as
our case study RMIS, there are a number of data types implemented in AR-
MISTICE, and some of them (such as logico for booleans or entero for
integers) are very similar to the basic data types found in Erlang, as in most
commonly used programming languages. Upon these basic types, other data
types are constructed, for example a data type monetario for representing
amounts in different currencies.

One of the main reasons for the ARMISTICE development team to build anew
not only complex, but customised basic data types, is to be able to have a
uniform way of marshalling and unmarshalling values within the system. This
is needed since, as we mentioned in Chapter 5, all communication between
the ARMISTICE server and clients is performed via XML-RPC, an RPC pro-
tocol based on XML-formatted text messages. Marshalling and unmarshalling
of Erlang terms into/from text strings occur any time the ARMISTICE server
receives a request, and before any answer can be sent in response. For that
reason, all data types have constructors to create a value from a string, and
similarly, they all implement a function to convert a value to a string. Such
operations are the basis of all communications with the client.

The method we present here is a structured methodology to follow when test-
ing user-defined Erlang data types using QuickCheck. All ARMISTICE data
types have been tested with this method.

6.3.1.1 Decimal data type

All ARMISTICE data types have the same structure: a value is represented
by a record with the name of the type, and as many fields as required for the
definition of the data type.

98



6. Ensuring functionality and quality through testing

-record(logico, {value}).
-record(entero, {value}).
-record(monetario, {value, exchange, currency}).

Successful operations on a data type value return the new value wrapped in a
tuple with ok as the first parameter:

> logico:new(true).
{ok, {logico, true}}
> entero:new(10).
{ok, {entero, 10}}
> monetario:new().
{ok, {monetario, {decimal, 10000000000000000},

{decimal, 10000000000000000},
{cadena, "EURO"}}}

Or, similarly, using record notation:

> logico:new(true).
{ok, #logico{value = true}}
> entero:new(10).
{ok, #entero{value = 10}}
> monetario:new().
{ok, #monetario{value = #decimal{value = 10000000000000000},

exchange = #decimal{value = 10000000000000000},
currency = #cadena{value = "EURO"}}

On the other hand, in case a data type operation results in an error, the value
of the data type is represented by a tuple with first argument error and second
argument an atom describing the cause of the error. Thus, a division by zero
error with two entero values will not result in a crash:

> {ok, A} = entero:new(10).
{ok, {entero, 10}}
> {ok, B} = entero:new(0).
{ok, {entero, 0}}
> entero:divs(A, B).
{error, division_by_zero}

In this way, even failing operations on the server side are detectable at the
client side.

As our leading example, and to illustrate the proposed method for testing data
types with QuickCheck, we have selected the decimal, a data type for fixed
point rational numbers, i.e., real numbers with a fixed number of decimal digits.
This decimal data type is the basis for the monetario data type, which is used
to represent sums of money, so it need not have the same range as floats.
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The decimal data type is defined in a module called decimal.erl which ex-
ports a creator function named new in four flavours. As displayed in Fig. 6.2,
the input to this constructor is either a single value or a two-element tuple
(first component for the integer part, second the decimal part), with parameter
values being either integer, float, or a string representation of one of the two.
Besides, (only) when providing a single string value, it can contain commas as
thousands separator and/or a single dot as decimal separator. The decimal
separator cannot be used if the two-element tuple notation is used.

FIGURE 6.2. Decimal data type creation

Other decimal data type constructors provided include mathematical opera-
tors (sum, subtraction, product, division, negation, absolute value, maximum,
and minimum) and relational operators (such as ‘greater than’, and ‘less than
or equal’). As mentioned, unlike the Erlang floats, this data type stores just a
fixed number of decimal digits, rounding values when necessary.

Now, when first using QuickCheck, the provided documentation includes all
the information about the libraries functionalities but, understandably, no ad-
vice is given about the right methodology to be applied. Thus, when an initial
attempt is performed, it is very likely that too naïve an approach is followed.
To begin with, it is necessary to define a data generator (in this case, for the
decimal data type), to enable QuickCheck to create random instances for test
case input, and at least one property that represents the expected character-
istics and expresses the desired features (again, of the data type). A simple
approach to generate decimals would be to define the following QuickCheck
generator in which the function new[2] is applied to an arbitrary integer and an

[2] To enhance
reading,

operations have
been simplified to

ignore the
previously

mentioned ok tag
from their results.

arbitrary positive integer as, respectively, the integer and decimal parts of the
intended decimal:

decimal() ->
?LET(Tuple, {int(), nat()}, decimal:new(Tuple)).

where int() and nat() are data generators for integer and natural numbers
provided by the QuickCheck libraries, and ?LET is a primitive that binds a
variable (Tuple) to a value obtained from a generator (or combination of gen-
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erators) before using it on the ?LET body expression (decimal:new(Tuple)).
This generator ignores three of the four ways to construct a decimal but, since
it seems to be able to produce all possible decimals, it might look perfectly
suitable to the non-expert eye.

In addition, the kind of properties that can easily come to mind in a context like
this are, for example, a check that the sum operator is actually commutative:

prop_sum_comm() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal:sum(D1, D2) == decimal:sum(D2, D1)).

If we use QuickCheck to check such a property, with successful results, it
would mean that the specified condition holds for thousands of randomly gen-
erated test cases or, in other words, that among thousands of randomly gen-
erated test cases, QuickCheck has been unable to find one that did not fulfil
the condition and would serve as counterexample:

> eqc:quickcheck(eqc:numtests(10000,
decimal_eqc:prop_sum_comm())).

(...)
OK, passed 10000 tests
true

To reassure the confidence in QuickCheck generating evenly assorted tests
when executing the data generators, there are a few library utilities to inspect
the distribution of the generated input data, such as collect/2 or measure/3:

prop_sum_comm() ->
?FORALL({D1, D2}, {decimal(), decimal()},

collect({decimal:get_value(D1), decimal:get_value(D2)},
decimal:sum(D1, D2) == decimal:sum(D2, D1))).

> eqc:quickcheck(decimal_eqc:prop_sum_comm()).
(...)
OK, passed 100 tests
3% {0.0,0.0}
1% {20.29,-17.15}
1% {20.15,-25.15}
1% {20.0,14.13}
1% {19.15,20.0}
1% {15.1,5.18}
1% {11.26,-30.25}
...
true
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prop_sum_comm() ->
?FORALL({D1, D2}, {decimal(), decimal()},
measure("Inputs", [decimal:get_value(D1),decimal:get_value(D2)],

decimal:sum(D1, D2) == decimal:sum(D2, D1))).

> eqc:quickcheck(decimal_eqc:prop_sum_comm()).
(...)
OK, passed 100 tests
Inputs: Count: 200 Min: -30.2 Max: 29.21

Avg: -1.1482000000000006 Total: -229.6400000000001
true

As seen above, after a successful execution, collect/2 classifies and dis-
plays the distribution of input data that has been used, providing interesting
feedback in order to check whether the space of possible test cases is be-
ing evenly covered. Respectively, measure/3 also collects some information
about the specified values (in the previous case the operation arguments), and
shows statistics such as the minimum, average, and maximum values.

In this example, commutativity of sum seems to be fairly tested and to be in-
deed commutative, but this kind of ‘innocent testing’ leaves us facing questions
such as: which other properties need to be checked?, or when have we added
sufficiently many properties, so that we can be satisfied with testing coverage?
It certainly does not seem enough to test just one property for each operator,
but exhaustively testing all and every property we may think of for each one
of them is clearly impractical. These test completeness-related issues actu-
ally represent the arguments why this approach can be qualified as naïve, and
sustain the claim for a more structured and defined process.

6.3.1.2 Model for decimal data type

Using knowledge from the field of mathematics and formal methods [132, 133],
we can state that creating a model of the testing subject (i.e., the data type)
could help in deciding whether we have created enough properties for it or not.
Once a model is established, it is necessary to show that each operation on
decimals can be emulated in the model, by model operations.

Thus, we formulate an injection [[◦]] from the decimal data type into our model,
such that ∀di, dj ∈ decimal,

[[sum(di, dj)]] ≡ [[di]] + [[dj ]]
[[subs(di, dj)]] ≡ [[di]]− [[dj ]]
[[mult(di, dj)]] ≡ [[di]] ∗ [[dj ]]
[[divs(di, dj)]] ≡ [[di]] / [[dj ]]

[[lt(di, dj)]]l ≡ [[di]] < [[dj ]]
. . .

(6.2)
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In general, we may need to implement a model with all these operations. In this
case, though, as our model we can use the standard Erlang implementation
of floating point numbers (in itself built upon a C definition that implements the
IEEE 754-1985 standard [134]). In other cases, though, a simpler model than
the data type itself can be relatively easy to implement, for instance not caring
about efficiency and leaving out optimisations.

A simple injection is hence chosen for this particular example, namely mapping
ARMISTICE’s decimals to Erlang floating point numbers. In fact, this injection
function was already present in the decimal module source code under test,
in the formerly seen get_value/1 function:

decimal_model(Decimal) ->
decimal:get_value(Decimal).

which makes use of built-in functions in the language [135] to translate from the
internal float representation that the decimal module uses (strings) to floating
point numbers.

Note that the last equation shown in expression 6.2 includes a different model
([[◦]]l), used for interpreting the result of the function lt(D1,D2), since that
result is not a decimal but a boolean value (i.e., logico). The model for the
logico data type simply maps values to Erlang booleans and the injection is
also already present in the corresponding module logico.erl,

logico_model(Logico) ->
logico:get_value(Logico).

Now the QuickCheck properties to check whether ARMISTICE’s decimal im-
plementation is equivalent to the Erlang floating point implementation look like:

prop_sum() ->
?FORALL({D1, D2}, {decimal(), decimal()},

decimal_model(decimal:sum(D1, D2)) ==
decimal_model(D1) + decimal_model(D2)).

prop_lt() ->
?FORALL({D1, D2}, {decimal(), decimal()},

logico_model(decimal:lt(D1, D2)) ==
(decimal_model(D1) < decimal_model(D2))).

If one such property is created for each operation defined in the data type,
then by checking each of them for a large number of random inputs, we would
gain confidence that the data type operations have been sufficiently tested.

When the previous prop_sum/0 property was first tested for ARMISTICE’s
decimals, it immediately resulted in a failure:
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> eqc:quickcheck(decimal_eqc:prop_sum()).
....Failed! After 5 tests.
{{decimal,1000000000000000}, {decimal,11000000000000000}}
false

After only five tests, QuickCheck found a counterexample against the equiv-
alence between adding two decimal values and adding the corresponding
two floats. It is worth remembering again that these testing activities were
performed on the system when it had already been in production for a few
years, hence the bugs that were found using them had not been detected or
diagnosed by other means.

The counterexample values reported back by QuickCheck (accessible again if
needed via the function counterexample/0), which are aimed to be used as
input to reproduce the failure, and thus help locate the problem, are shown in
their internal representation. This representation can be hard to understand
by someone else who is not familiar with ARMISTICE’s decimal data type
implementation, so it is not desirable to deal with when performing testing
activities. The situation would be even worse for more complex data types,
and for a trained QuickCheck user, the values would be even surprising, since
rather small integer values are expected as first test case scenarios, rather
than values with 15 or more zeroes. The fact that the test actually failed with 1
and 1.1 is only directly obvious to the developer of the decimal data type.

Additional reasons further discourage relying on the internal representation
of the data type. Apart from being hard for others than the developer of the
module to understand, the implementation may change due to refactoring or
optimisation, so we want tests to depend on source code details as little as
possible, same as we want to avoid implementations depending on the kind
of tests that are meant to be performed afterwards. Moreover, the internal
representation is only the final result of a computation constructing the data
structure, which may even vary for the same value depending on the way it
is indeed constructed. Hence, we would rather stick to a black box testing
approach and just know which steps were followed for the construction of the
value (instead of its ‘physical’ structure), since that is the most revealing infor-
mation concerning an observed failure.

Therefore, previous QuickCheck generators are modified to work with sym-
bolic values rather than real values. This means that the generator func-
tions will be set to produce symbolic representations of objects creation (in
this case, decimal), which will be evaluated when needed, in place of actual
values. So, the decimal generator for testing is rewritten to:

decimal() ->
?LET(Tuple, {int(), nat()}, {call, decimal, new, [Tuple]}).
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thus generating a symbolic call to decimal:new(Tuple) in the form of a tuple
{call, ?MODULE, ?FUNCTION, ?ARGUMENTS} with tag call, Erlang source
code module ?MODULE (i.e., decimal), function name ?FUNCTION (i.e., new),
and list of arguments ?ARGUMENTS (i.e., [Tuple]), where Tuple is itself a tuple
of generators {int(), nat()}, which will be replaced by the corresponding
automatically generated values at execution time) instead of actually perform-
ing the call.

Of course, QuickCheck testing properties need to be changed accordingly
and introduce the evaluation of symbolic values using eval/1, a standard
QuickCheck function:

prop_sum() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
decimal_model(decimal:sum(D1, D2)) ==

decimal_model(D1) + decimal_model(D2)
end).

With these modifications, the failure is now reported back by QuickCheck as:

> eqc:quickcheck(decimal_eqc:prop_sum()).
........Failed! After 9 tests.
{{call,decimal,new,[2,1]}, {call,decimal,new,[2,2]}}
Shrinking..(2 times)
{{call,decimal,new,[0,1]}, {call,decimal,new,[0,2]}}
false

Now it is much easier to see that the problem is detected by using values 2.1
and 2.2. Besides, the same error can be reproduced using values 0.1 and 0.2,
as pointed out by the result of the automatic shrinking process performed by
QuickCheck, which on error detection looks for the smallest equivalent failing
case. The automatic shrinking affects the values in the symbolic calls and
tries to narrow down the bug search by determining simpler input which will
still crash the property in the same way.

Back to the ARMISTICE decimal data type testing, the detected problem is
explainable according to an overlooked difference between the decimal defi-
nition and the model used for testing, rather than a bug in the actual implemen-
tation. Conforming to the IEEE 754-1985 standard [134], Erlang float values
present an unavoidable rounding error, empirically demonstrated just by per-
forming simple calculations:

> (0.1+0.2) == 0.3.
false
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> (0.1+0.2) - 0.3.
5.55112e-17

On the other hand, ARMISTICE’s decimals implementation use and store a
maximum of 16 decimal digits, which immediate consequence is that there is
not always an exact bijection between a decimal and Erlang floats. In other
words, there is not always an exact representation of each decimal. However,
ARMISTICE computations with decimals are performed on the decimals,
and conversions are only required for the testing purposes we have seen.
Hence, we are more than satisfied with an approximate equality:

a ≈ b ⇔ |a| − |b| < εabs ∧


|a| − |b|
|a|

< εrel if |a| > |b|

|a| − |b|
|b|

< εrel if |a| < |b|

(6.3)

The previous equivalence relation is defined with respect to two maximum
tolerance levels: an absolute error value (ABS_ERROR, εabs), which measures
how different two floats are; and a relative error value (REL_ERROR, εrel), which
takes into account not only the values themselves, but also their magnitudes
[136]. Note that the implemented equivalence function equivalent/2 divides
the difference by the maximum of the absolute values of the two floats, ensur-
ing that the maximum is never zero (unless they both are zero, in which case
the absolute error value is used).

-define(ABS_ERROR, 1.0e-16).
-define(REL_ERROR, 1.0e-10).

equivalent(F, F) ->
true;

equivalent(F1,F2) ->
if (abs(F1-F2) < ?ABS_ERROR) -> true;

(abs(F1) > abs(F2)) -> abs( (F1-F2)/F1 ) < ?REL_ERROR;
(abs(F1) < abs(F2)) -> abs( (F1-F2)/F2 ) < ?REL_ERROR

end.

To set the reference error values, we use the knowledge that the decimal data
type in ARMISTICE has, as we have already mentioned, 16 digits precision
(hence, the value of ABS_ERROR, εabs = 10−16) and agree to a 99.9999999999%
accuracy (hence, the value of REL_ERROR, εrel = 10−10). Just a minor change
in the QuickCheck specification is necessary to introduce the new equivalence
function:
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prop_sum() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
equivalent(decimal_model(decimal:sum(D1, D2)),

decimal_model(D1) + decimal_model(D2))
end).

prop_lt() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
logico_model(decimal:lt(D1, D2)) ==

(decimal_model(D1) < decimal_model(D2)))
end).

Finally, these properties pass thousands of randomly generated test cases.

6.3.1.3 Generators to cover data structure

The natural progression of the testing activity would proceed by defining sim-
ilar properties, one for each operation on the data type. But, even though it
might seem so, this will not mean that the decimal data type has been tested
completely.

As explained earlier, ARMISTICE’s decimals can be constructed in a number
of ways, reflected in the different inputs the new/1 constructor accepts (cf.
Fig. 6.2). However, the approach followed so far ignores the distinct building
flavours in the belief that any decimal can be produced with the variant chosen
by the decimal/0 generator, whose code is kept small and simple. Common
sense dictates, though, that testing is not only about producing possible output
values, but exercising possible input value combinations. Doing otherwise may
result in missed opportunities to detect errors, as we will see right away.

In addition, it should also be considered that operations that modify the data
structure may actually violate invariants or invalidate properties that were true
right before applying them. For instance, imagine a data type ordered_set in
which elements are stored in a sorted list; a set obtained from the union of two
sets may invalidate that invariant if the union operation is faulty. As a conse-
quence, deletion on such a union can fail even if set element removal is work-
ing perfectly under normal conditions. Besides, if a property involving comput-
ing set union has already been defined, even code coverage techniques will
most likely not reveal such a testing deficiency: testing might involve all source
code belonging to different operations, but coverage analysis does not usually
reveal that testing is not enforcing execution of combinations of operations,
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meaning that a 100% line coverage can hardly be assimilated to testing of all
relevant cases.

Similarly, in our case study, there is part of the data structure that has not been
actually tested. We want to test things such as, for example, a multiplication
of two decimals where operands need not have been obtained via the new/1
creator:

decimal:mult(decimal:new("12,837.12"),
decimal:sum(decimal:new(12), decimal:new({13,4}))).

To do so, a recursive generator is proposed, to produce arbitrary nesting of
decimals as arguments of the QuickCheck testing constructor. The depth of
the recursion is determined by QuickCheck such that small values are tried
first, slowly growing as long as no errors are being detected. Access to the
parameter that controls recursion depth is granted via the macro ?SIZED:

decimal() ->
?SIZED(Size, decimal(Size)).

decimal(0) ->
{call, decimal, new, [oneof([int(),

real(),
decimal_string(),

{oneof([int(), list(digit())]),
oneof([nat(), list(digit())])}])]};

decimal(Size) ->
Smaller = decimal(Size div 2),
oneof([decimal(0),

{call, decimal, sum, [Smaller,Smaller]},
{call, decimal, mult,[Smaller,Smaller]}]).

Not only have all the new/1 function variants been included in this improved
generator as ways of creating decimal data structures, but also some opera-
tors such as sum and mult. Recursion termination is granted by the reduction
of the Size parameter at each step of the process[3].

[3] Additional code
of decimal

auxiliary
generators can be

seen in [137]. Recursive generators like this can generate symbolic calls that cover the whole
data structure, as we can check using the QuickCheck sample/1 utility:

> eqc_gen:sample(decimal_eqc:decimal()).
{call,decimal,sum,

[{call,decimal,sum,
[{call,decimal,mult,

[{call,decimal,new,[{11,"4003351"}]},
{call,decimal,new,["-930764"]}]},

{call,decimal,new,[-2.35986]}]},
{call,decimal,new,[1.64783]}]}
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Re-running the previously defined property for the sum operator, thousands of
tests are successfully performed in a few seconds, increasing our confidence
in the implementation. But the testing activity will not be complete until proper-
ties for all operators have been defined, and all operations which produce new
decimal data type structures as a result are included as part of the recursive
generator. However, doing so with the multiplication resulted in a new failure:

prop_mult() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
equivalent(decimal_model(decimal:mult(D1, D2)),

decimal_model(D1) * decimal_model(D2))
end).

> eqc:quickcheck(decimal_eqc:prop_mult()).
...............Failed! After 16 tests.
{{call,decimal_eqc,sum,

[{call,decimal_eqc,sum,
[{call,decimal_eqc,new,["+1"]},
{call,decimal_eqc,new,[2.36314e+4]}]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new,[-5]},
{call,decimal_eqc,new,[-9.61993e+5]}]}]},

{call,decimal_eqc,sum,
[{call,decimal_eqc,mult,

[{call,decimal_eqc,new,["74.4"]},
{call,decimal_eqc,new,[{"-6,179","40"}]}]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new,["47"]},
{call,decimal_eqc,new,["-467,725.079"]}]}]}}

Shrinking...............................(31 times)
{{call,decimal_eqc,sum,

[{call,decimal_eqc,sum,
[{call,decimal_eqc,new,["+0"]},
{call,decimal_eqc,new,[0.00000e+0]}]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new,[1]},
{call,decimal_eqc,new,[10.1400]}]}]},

{call,decimal_eqc,sum,
[{call,decimal_eqc,mult,

[{call,decimal_eqc,new,["00.4"]},
{call,decimal_eqc,new,[{"-0,000","40"}]}]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new,["40"]},
{call,decimal_eqc,new,["-000,000.078"]}]}]}}

false

As we can see from this example, the failing test case contains a fairly large
expression. The shrinking procedure reduces the test case significantly, but
there are still a number of terms that a human tester would reduce further. For
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example the sign could be removed from {call,decimal,new,["+0"]}, but
even better, the whole term could be removed. Another simplification could be
used for the string "-000,000.078", where six zeroes can be reduced to one,
at least if the value is important and not the actual structure of the string. The
reason why these terms are not shrunk any further lays in the definition of our
generators, and in the fact that QuickCheck automatic shrinking is focused on
value complexity rather that on value structure, which is user-defined. We will
first try to improve this shrinking behaviour, before diagnosing the problem.

6.3.1.4 Improving shrinking

To allow testers to improve situations in which automatic shrinking is not good
enough, QuickCheck offers a couple of macros ?SHRINK and ?LETSHRINK
which can be used to define customised shrinking rules, manually providing
shrinking alternatives which are applied before the built-in ones.

With these rules for shrinking added to the recursive generators[4] we increase

[4] For details on
the shrinking

improving
process, again

refer to [137].
the simplicity of the returned failing test case without losing accuracy.

In addition to simplifying the terms, being able to see the difference between
the value returned by the implementation under test and the value computed
in the corresponding model is also very helpful when diagnosing a failure. The
QuickCheck ?WHENFAIL macro allows to process additional information (first
argument) whenever the second argument (generally, the property) evaluates
to false:

(...)
decimal(Size) ->
Smaller = decimal(Size div 2),
oneof([decimal(0),

?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, sum, [D1, D2]}),

?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, mult, [D1, D2]})]).

prop_mult() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
Real = decimal_model(decimal:mult(D1, D2)),
Model = decimal_model(D1) * decimal_model(D2),
?WHENFAIL(io:format("Real ~p nModel ~p n", [Real,

Model]),
equivalent(Real, Model))

end).

Checking this re-defined property against the same example (which can be
done thanks to the QuickCheck recheck/0 function) showed a difference in
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real vs. model outcome by a factor 10. Running QuickCheck a few additional
times always returned the same factor 10 difference.

Shrinking.....................(51 times)
{{call,decimal_eqc,new,[10.1400]},
{call,decimal_eqc,sum,

[{call,decimal_eqc,new,["0.4"]},
{call,decimal_eqc,mult,
[{call,decimal_eqc,new,["47"]},
{call,decimal_eqc,new,["-0.078"]}]}]}}

Real -331.172
Model -33.1172
false

Thanks to this information, the difference was rather quickly identified as an
error in the decimal module implementation: the carrier was incorrectly prop-
agated. The problem arose when values were rounded to ignore the least
significant digits, which are not to be stored in ARMISTICE decimals imple-
mentation, as previously said. In such cases, a rounding operation was con-
sidered for the last decimal digit to be stored, but no carrier was being taken
into account to be propagated to the left. Instead, if the last decimal was to
be modified (rounded) and this digit turned out to be a 9, then the 9 was erro-
neously replaced by a 10. For instance, when rounding a large number like

481.5162342481516239|942

to sixteen significant digits (same as the real implementation), we should ob-
tain

481.5162342481516240|000

But, instead, the erroneous code was replacing it by

481.5162342481516231|000

Since the internal representation of decimals is a sequence of digits with a
fixed number (16) of decimals, this longer sequence was then interpreted as:

4815.1623424815162310

Strangely enough, this rounding error had been in the code for several years
without being found a problem. However, after diagnosing it, it was actually
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found related to some obscure error reports from the ARMISTICE’s users, to
that date unsolved.

6.3.1.5 Well defined generators

After correcting the code, properties for addition and multiplication operators
passed thousands of generated test cases. Creating, as remarked, additional
properties for the yet untested operations (subtraction, division,. . . ) takes
hardly any effort having the previous testing structure in place and following
the same steps.

However, it is highly convenient to re-check once more all defined properties
after each incorporation, since new errors can be revealed by the new combi-
nations. In this case, it is the property for addition which fails again, crashing
in the evaluation of a generated value:

> eqc:quickcheck(decimal_eqc:prop_sum()).
............Failed!
After 13 tests.
Shrinking....(4 times)
Reason:
{’EXIT’,{{error,decimal_error},

[{decimal_eqc,’-prop_subs/0-fun-0-’,1},
{eqc,’-forall/2-fun-4-’,2},
...]}}

{{call,decimal,new,[0]},
{call,decimal,divs,
[{call,decimal,new,[{0,[]}]},
{call,decimal,new,["0"]}]}}

false

Specifically, the failure case reveals that when adding two values, a simple
one (i.e., {call,decimal,new,[0]}) and a complex one obtained as a re-
sult of dividing two simple values (i.e., {call,decimal,new,[{0,[]}]} and
{call,decimal,new,["0"]}), the process fails if the latter is a division in-
volving a zero denominator. Indeed, as pointed out by the shrinking process
counterexample, the second operand is the result of a division by zero. In
other words, a symbolic value that does not correspond to a real value has
been generated as input for the property.

While we absolutely want to test that the division operation implementation
detects and handles expected error situations such as division by zero nicely,
this is done in the property for division. There, we test that a division in the
model results in the same value as a division of decimal values, including be-
haviour on anomalous situations. Hence, division by zero in the model should
generate an exception similar to to the one raised by the implementation:
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prop_divs() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),
case equivalent(decimal_model(D2), 0.0) of
true ->
{’EXIT’, _} = (catch decimal_model(D1)/

decimal_model(D2)),
{error, _} = decimal:divs(D1, D2);

false ->
equivalent(decimal_model(decimal:divs(D1, D2)),

decimal_model(D1) / decimal_model(D2))
end

end).

With such a property, we already check that division by zero is an exception
case. Now what we want is to avoid generating these exception cases as part
of the QuickCheck generators activity. Instead, we only want to generate well
defined symbolic values, meaning that such symbolic values do not raise an
exception when evaluated.

To do so, a simple, generally applicable concept is used. An auxiliary test
function defined/1 is written, which evaluates an automatically generated
symbolic value and catches potential exceptions; the symbolic value is said to
be defined only if no exception occurs. We rely on the fact that the majority
of the symbolic values will not raise an exception when evaluated, and we
introduce a well_defined/1 complementary generator to keep generating
values until we find a defined one:

defined(E) ->
case catch eval(E) of

{’EXIT’, _} -> false
_Value -> true;

end.

well_defined(G) ->
?SUCHTHAT(E, G, defined(E)).

These generators are now used in our QuickCheck specification for ARMIS-
TICE decimals:

decimal() ->
?SIZED(Size, well_defined(decimal(Size))).

This way the generation process is filtered and never produces faulty values.
Admittedly, this might seem biased at first sight, but it is actually not, as long as
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we ensure that we check each operation in a specific property that deals with
the acknowledged faulty situations that are expected around such operation.
The only case missing is the generation itself, where we need to check whether
specific inputs crash the new/1 operation. For that purpose, an additional
property is added to test that generating base values always succeeds (as
expected). In addition, we also check that translating the created decimal
into the model always produces a valid value:

prop_new() ->
?FORALL(SD, decimal(0), is_float(decimal_model(eval(SD)))).

At this point, only one last property remained untested, which was part of
the motivation for introducing the customised ARMISTICE data types. Since
client-server communication is performed using XML-RPC, marshalling to and
from strings was a requirement that we now must verify: for each and every
decimal data structure that is produced in any of the different possible ways,
converting it to a string and performing the reverse operation needs to be
idempotent:

prop_decimal_string() ->
?FORALL(SD, decimal(),

begin
D = eval(SD),
decimal:new(decimal:to_string(D)) == D

end).

With this last definition, and finally succeeding in passing hundred thousands
of tests for each property in the decimal implementation, we have thoroughly
tested the data type, concluding its verification process.

6.3.2 Integration testing

The kind of testing described in the previous section can be classified as black-
box unit testing in which specific pieces of software (i.e., Erlang modules) are
tested on their own to see if they behave as expected. A large number of
automatically generated test cases are presented as input, and outputs are
inspected on the basis of descriptive properties.

On the next testing level, we use QuickCheck in a different way. In ARMIS-
TICE, as likely in any client-server application of a certain magnitude, different
teams (or at least different people) develop in parallel the user client and the
business logic functionalities. In this traditional architecture, according to the
Model-View-Controller pattern, the user interface and the back-end server are
both connected thanks to a third component, usually referred to as controller
(cf. Fig. 6.3).
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FIGURE 6.3. Model-View-Controller architectural pattern.

The controller receives clients petitions and dispatches them, invoking the cor-
responding model services. Upon server reply, the controller forwards the
responses to the requester. Ideally, controllers should embody no real knowl-
edge about server structure or distribution, and should only perform invocation
format conversions, if needed.

On the other hand, clients, controllers, and most of all, servers, are conve-
niently structured if additional patterns such as Layers (cf. Fig. 6.4) are used.
The Layers pattern allows to present a unique (or selected) access point(s)
to third parties, while enabling software hierarchisation, isolation of future im-
plementation changes, ease of management duties, as well as refactorisation
and optimisation activities. In such fractionated systems, integration of the
different components, at all levels, is a fundamental aspect to test. Once all
components have been tested for integrity, they need to be tested for integra-
tion. Seamless interaction between all the pieces that conform an application
is crucial for the good operation of the entire software, since its global function-
ality depends on such intercommunication to be virtually error-free (assuming
each part has been already subject of individual testing procedures).

FIGURE 6.4. Layers architectural pattern.

This scenario applies of course not exclusively to client-server layered archi-
tectures or MVC-structured systems. Modern systems are more and more
frequently designed and implemented as a set of separate components that
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work together to offer some service or provide some functionality. In all those
situations, systems, and applications, integration is an essential aspect to test.

In the following pages, we will explain in depth a method to perform integration
testing that has been exercised on ARMISTICE using QuickCheck, the same
automatic testing tool we have used to perform unit testing.

6.3.2.1 State machine based methodology

Bearing in mind that we want to test integration between ARMISTICE’s clients
and server, the list of relevant test cases is precisely the list of requestable ser-
vices, this is, the set of exported functionalities that form the public interface
of the ARMISTICE server. In a good software design, an application provides
one or more facades [74] with details for invoking the different interface func-
tions. The testable set would then generally be the list of procedures exported
by each single system facade. Thus, integration testing will consider different
sets of related use cases at a time, based on the presence of access facades,
or else functionality, as classification or partition criterion.

To illustrate the use of QuickCheck for integration testing purposes, we have
chosen the set of ARMISTICE use cases in Figure 6.5, belonging to the risk
group and risk object management facades. As one can imagine, even the
execution of these management operations on these fundamental business
objects involves the invocation of different functions in several internal mod-
ules in the different internal layers of the application server. The facades play
an intermediate role, offering a unique interface function to the clients, and
translating each request into the necessary sequence of function invocations
to provide the corresponding functionality. Return values from intermediate
calls will be used as input data for others, until a final result is obtained, and
sent as the service response. Since any operation in ARMISTICE needs to be
performed by a specific user (that must be logged in), we have added to the
set of use cases the user log in and log out functionalities.

To use the QuickCheck state machine, we begin by defining the structure and
contents of its internal state, as well as the initial value for such state. The data
stored as internal state of the testing state machine can be as simple or as
complicated as needed, and it will be useful to favour the generation of tran-
sitions (command invocations) on related input values, which translates into
more realistic, and thus interesting, test sequences. Depending on the set of
functionalities to test (i.e., the input parameters of the interface functions to be
tested) we might need to store a list of object identifiers, several sets of objects,
a boolean flag, etc. Stored values can be later used on checks performed at
the precondition/2, the postcondition/3, and the next_state/3 func-
tions. In integration testing, as we will see, the most important checks will take
place in the postconditions.
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FIGURE 6.5. Risk groups and risk objects management use cases.

In our ARMISTICE case study, the state will be composed of:

user sessions, data about users that have successfully logged in,

groups, data about the risk groups that have been created, and

objects, data about the risk objects that have been created.

According to this, the definition of the state will be:

-record(state, {user_sessions, groups, objects}).

where each element in the user_sessions list field is a unique SessionID
identifying the user, each element in the groups list field is a unique GroupID
identifying a risk group, and finally each element in the objects list field is an
ObjectID identifying a unique risk situation.

The initialisation of the state is done at the initial_state/0 QuickCheck
callback function:

initial_state()->
#state{user_sessions = [],

groups = [],
objects = []}.

The user_sessions represent the valid session ID of users that have logged
in but have not logged out, meaning that they can invoke services (regardless
of them being allowed to actually perform the operations or not, based on
their user profile). The groups and objects lists start empty even though
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they could have been initialised using already stored data from ARMISTICE’s
persistent storage.

Next, the state machine transitions are specified within the definition of the
library callback function command/1, which will be the operations or exported
functions to be tested:

command(S) ->
frequency([{ 1, {call, ?MODULE, login, [user()]}},

{10, {call, ?MODULE, new_risk_group,
[oneof(S#state.user_sessions),
group_name()]}},

{50, {call, ?MODULE, find_risk_group,
[oneof(S#state.user_sessions),
oneof(S#state.groups)]}},

{ 5, {call, ?MODULE, update_risk_group,
[oneof(S#state.user_sessions),
oneof(S#state.groups)]}},

{ 2, {call, ?MODULE, delete_risk_group,
[oneof(S#state.user_sessions),
oneof(S#state.groups)]}},

{50, {call, ?MODULE, new_risk_object,
[oneof(S#state.user_sessions),
oneof(S#state.groups),
object_name()]}},

{100,{call, ?MODULE, find_risk_object,
[oneof(S#state.user_sessions),
oneof(S#state.objects)]}},

{20,{call, ?MODULE, update_risk_object,
[oneof(S#state.user_sessions),
oneof(S#state.objects)]}},

{15,{call, ?MODULE, delete_risk_object,
[oneof(S#state.user_sessions),
oneof(S#state.objects)]}}])).

Apart from the definition of arguments generators, which can make use (as
seen above[5]) of the values stored in the different fields of the internal state in

[5] Additional
constraints, e.g.,
user_sessions
not being empty

for operations
other than login

to be eligible, have
been omitted for

the sake of clarity.

each moment, the frequency distribution assigned to the different use cases
included in this command/1 function is part of the analytic effort required from
the test designer, who will likely need a deep understanding of the application
and business domain to be able to use them appropriately (either to faithfully
represent a real system usage situation, or to favour certain operations over
others in case some specific scenario wants to be stressed, etc.). Besides,
as recommended in [137] and also applied in Section 6.3.1, the previous code
uses symbolic calls instead of actual function calls in order to ease the debug-
ging when an error is actually found.

For the sake of clarity, we will limit our following examples to just a few of the
previous operations, namely new_risk_group/2, find_risk_group/2, and
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delete_risk_group/2. Nevertheless, the procedure is repeatable for the
rest of the use cases, as well as for the use cases in other system facades.

new_risk_group(SessionID, Name) ->
{ok, GroupData} = risk_interface:new_risk_group(SessionID,

Name, ""),
[{oid, GroupID}, _GroupCode, _Name, _Description] = GroupData,
GroupID.

find_risk_group(SessionID, GroupID) ->
{ok, _GroupData} = risk_interface:find_risk_group(SessionID,

GroupID),
GroupID.

delete_risk_group(SessionID, GroupID) ->
ok = risk_interface:remove_risk_group(SessionID, [GroupID]),
GroupID.

As we can observe, the functions to be tested do not necessarily receive the
same parameters we want to provide, nor do they return the same data. To
cope with this contingency, these wrapper functions, local to the testing mod-
ule in which the state machine is being specified, adapt the interface functions
to the testing needs. The new_risk_group/2 function, for instance, serves as
wrapper for the function new_risk_group/3 exported by the system facade
risk_interface. In the original function, some parameters are of no use or
interest for integration testing purposes, such as the group description; sim-
ilarly, of all the information returned by that function, we are only interested
in the unique identifier the system has assigned to the newly created object,
since this is the kind of information we will store in the state machine internal
state. Analogously, wrapper functions can be implemented for any state tran-
sition, this is, for any operation in command/1, avoiding to write calls to the real
functions straight away. As we have already pointed out, in this way we can
suit them to the best of testing interests without modifying the code we are
actually checking.

Next, preconditions, postconditions, and next state functions need to be es-
tablished for each state transition. In this case, ARMISTICE’s client users can
only perform the activities their roles grant them access to. Certain operations
being restricted for certain user roles for security purposes is a common sce-
nario in many systems. In particular, three different user profiles are defined in
ARMISTICE: administrator, manager, and clerk (cf. Fig. 6.6). Only users with
an administrator profile can insert, modify, or delete any business object, while
managers can do so for entities they are related to (i.e., bound to the same
geographical location); clerks cannot perform any administrative duties and
are only granted read-access permissions to a subset of all business objects
(again, the ones in their same location).

119



6.3. Testing ARMISTICE

FIGURE 6.6. Role specialisation of selected management use cases.

Most user interfaces would, straight away, only show right options available for
each user at each moment, as a reflection of such domain constraints. While
this double-check of certain operational demands is not unusual, it should not
lead us to make any groundless assumptions about user interactions. In other
words, regardless of the user interface, the fact is that any of ARMISTICE’s
server public functions can be potentially invoked in any order, providing any
given data as argument. Consequently, we should not rely on the component’s
caller (in this case, the user interface) if we do not want to add unrecognised
bias to our integration tests. Since we want to test behaviour in all possible
situations, our precondition functions will return true in every case:

precondition(_S, {call,?MODULE,
new_risk_group, [SessionID, Name]})->

true;
precondition(_S, {call,?MODULE,

find_risk_group, [SessionID, GroupID]})->
true;

precondition(_S, {call,?MODULE,
delete_risk_group, [SessionID, GroupID]})->

true;
precondition(_State, _Call, _Arguments) ->
true.

With regard to the effect of each function on the internal state (the lists of
user sessions and objects created in the system), the next_state/3 func-
tion modifies the internal state of the testing state machine according to the
executed transition. For example, for the transitions of new_risk_group/2
and delete_risk_group/2 respectively, state change means adding the new
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group identifier to the groups field (so that it can be used later in the testing
sequence), or removing it (so that it is no longer used after that); on the other
hand, the find_risk_group/2 transition does not have any influence on the
state, since it does not imply any changes:

next_state(State, Value,
{call, ?MODULE, new_risk_group, _Arguments}) ->

S#state{groups = [ Value | S#state.groups ]};
next_state(State, _V,

{call, ?MODULE, find_risk_group, _Arguments}) ->
S;

next_state(State, Value,
{call, ?MODULE, delete_risk_group, _Arguments}) ->

S#state{groups = lists:delete(Value, S#state.groups)};
next_state(State, _ReturnValue, _Call) ->

State.

As for the postconditions, this is where we can be perform tests to check
whether or not each operation result is what we should expect. In our applica-
tion integration case study, we want to guarantee integration between clients
and server more than the client or server internal behaviour (that needs to
be, of course, checked on its own). So before we can go into detail with the
postcondition functions we need to figure out how to check if ARMISTICE ex-
pected operations at the application back-end are actually invoked for each
user interaction (i.e., use case invocation).

6.3.2.2 The dummy component strategy

As we know, when dealing with integration testing, the main goal is checking
that two (or more) components work properly together. In other words, we
want to be sure that when a service is requested from one component, which
relies on another component to perform the operation, the former invokes the
right methods from the latter.

A key reflection in this scenario is that, for such matter, the second component
is not actually needed, because integration testing is essentially not about test-
ing functionality, but about testing interaction. What we do need is a replace-
ment that offers the same interface and provides the same kind of answers.
We do not really care if the service is actually provided, if any operation at all
is performed inside that dummy component, or if all the process of building
up a request result is just simulated. Hence, as an integration testing strategy,
we suggest creating and using such dummy components (also called mock
objects [138]), which should be comparatively easy (they only need to conform
to a given interface and simulate the same kind of responses), and includes
advantages as faster response times and collateral effects avoidance (since
services do not need to be actually provided, i.e., no databases need to be
modified, no messages need to be transmitted, etc.).
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In our case study, applying this dummy component strategy means that we
can do without a full ARMISTICE server as long as we can replace its differ-
ent parts with dummy components offering the same API and answers to the
clients (so neither the real ARMISTICE server nor the existing clients need to
be modified, cf. Fig. 6.7).

FIGURE 6.7. Usage of a dummy component for integration testing

The new dummy external component does not need to replicate the func-
tionality of the original external component. It only has to provide the same
interface and emulate its replies. For the use cases we have been using as
example, a dummy component will not actually insert, retrieve, or delete any
risk group or risk object, but from a external point of view it will seem exactly
as if it did, because it will provide all those operations supported by the orig-
inal component (or at least, those under test) and return similar responses to
the invoker. Thus, the difference between the original component and the new
dummy component will not be noticeable to the observer.

Yet, there is something more we need to do to be really capable of checking the
proper connection between component requests and called functions, which is
precisely the key aspect to check on an integration test. To be able to inspect
whether the client’s queries are forwarded to the expected exported services,
the dummy component shall register all access to its interface functions, and
also provide a way to retrieve that information. These calling traces can later
be recovered from our QuickCheck testing module to verify that the correct
interactions are taking place in all possible scenarios.

For our integration testing example, we implemented a simple and indepen-
dent generic server (using the Erlang gen_server behaviour [107]), where
the dummy components can register function invocation data. This module,
called operations_logger (cf. Fig. 6.7), provides the following interface:
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add_operation/1: adds an operation Operation to the list of invoked
operations, stored in the generic server state,

get_all_operations/0: returns the list of invoked operations, stored
since last call in the gen_server state, and clears that list;

where each operation Operation is a tuple with elements:

{Module, Function, Arguments, Result}

Every time a function in the dummy external component is called, it is reg-
istered via the operations_logger module. In our study case, thus, this is
how the original new_risk_group/3 function implementation, which is one of
the functions of the ARMISTICE server API (exported by the risk_interface
facade), looks like:

new_risk_group(SessionID, GroupName, GroupDescription)->
{ok, GroupData} = risk_group_facade:new_skeleton(SessionID),
[{oid, GroupID}, {code, GroupCode}, _, _] = GroupData,
ok = risk_group_facade:update(SessionID, GroupID,

GroupName, GroupDescription),
ok = risk_group_facade:unlock(SessionID, GroupID),
{ok, [{oid, GroupID}, {code, GroupCode},

{name, GroupName}, {desc, GroupDescription}]}.

According to this, the sequence of steps for the creation of a risk group in
the system involves first creating a skeleton of the object, which automatically
assigns an object identifier and an entity code. Then, the object is updated with
specific values for name and description, and it is finally released for public
access to other ARMISTICE users. These functions (new_skeleton, update,
or unlock) belong to more internal subsystem facades (in this particular case,
to the risk_group_facade). Respectively, below is how the same function
will look like in our dummy component:

new_risk_group(SessionID, GroupName, GroupDescription)->
GroupData = [{oid, group_id()}, {code, group_code()},

{name, GroupName}, {desc, GroupDescription}],
operations_logger:add_operation({risk_group_facade, new_skeleton,

[SessionID], {ok, GroupData}}),
operations_logger:add_operation({risk_group_facade, update,

[SessionID, GroupID,
GroupCode, GroupName,
GroupDescription], ok}),

operations_logger:add_operation({risk_group_facade, unlock,
[SessionID, GroupID], ok}),

{ok, GroupData}.
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were we have basically substituted function calls for invocation registrations
on the log server, and emulated the same kind of answer by taking action only
in specific sensible data (such as risk group identifier) which will be of use for
testing purposes.

On the basis of the previous example, it is easy to realise the high poten-
tial for automatisation that the process of dummy components creation has.
Just by inspecting the facade(s) under test, we could automatically generate
a dummy version of them by replacing function calls by logging operations
of those method invocations. Alternatively, communications between facades
could also be monitored in a way that those invocations could be detected,
logged, and made accessible for interaction pattern verification.

The same procedure is to be used in all the functions of the dummy compo-
nent, so that for each operation to test at the QuickCheck module, the steps
that are needed to handle each service request are registered. Then, the
way of checking which functions were called requires a slight modification to
the implementation of the wrapper functions we saw before. Additionally, they
need to retrieve (from the log server) the set of function calls that the emu-
lated execution of the service implied, and return them as part of the wrapper
customised result:

new_risk_group(SessionID, Name)->
{ok, GroupData} =

dummy_risk_interface:new_risk_group(SessionID,
Name, ""),

[{oid, GroupID}, _GroupCode, _Name, _Description] = GroupData,
Operations = operations_logger:get_all_operations(),
{GroupID, Operations}.

For the new_risk_group/2 example above, after calling the dummy version
of the function under test, the set of operations invoked as a consequence is
retrieved from the auxiliary module that stores them (operations_logger).
As has already been said, this set of operations should be inspected to check
that the proper calls are being made for this operation, but the actual test is not
made as part of the wrapper implementation; instead, it represents exactly the
postcondition that the operation needs to satisfy in order to be considered cor-
rect. Thus, in order to make available for the postcondition the Operations
information, the wrapper function should return it as part of its result. Re-
member that Operations include exhaustive information about calls (function
name, arguments, result), so should an operation depend on the results of
previous operations, or on the values provided as function arguments, all that
information would be available.

The postcondition for the new_risk_group/2 function will check the list of
invoked functions to be sure that all (and only) the appropriate dummy AR-
MISTICE model functions have been ‘executed’:
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postcondition(State,{call,?MODULE,new_risk_group,Arguments},R)->
{Result, Operations} = R,
check(new_risk_group, {State, Arguments, Operations, Result});

In this source code extract, it is actually the check/2 auxiliary function which
has the knowledge about the correct list of operations to be called to create
a new risk group, and compares it with the list of operations obtained from
operations_logger (Operations). The boolean result of that comparison is
the answer to the operation postcondition, and similarly for the rest of the use
cases to be tested.

A sequence of operations randomly generated by QuickCheck could be:

{call,armistice_eqc,login,["cvazquez"]}
{call,armistice_eqc,login,["fpoza"]}
{call,armistice_eqc,new_risk_group,["cvazquez","vehicles"]}
{call,armistice_eqc,new_risk_group,"["fpoza","warehouses"]}
{call,armistice_eqc,login,["mfernandez"]}
{call,armistice_eqc,new_risk_group,["fpoza","shops"]}
{call,armistice_eqc,find_risk_group,["mfernandez", 10]}
{call,armistice_eqc,logout,["fpoza"]}
{call,armistice_eqc,find_risk_group,["cvazquez", 20]}
{call,armistice_eqc,delete_risk_group,["cvazquez", 20]}

for which the corresponding internal invocations trace, stored at the auxiliary
log module after the execution of such sample test, case would be:

{users_facade,login,["cvazquez"],"cvazquez"}
{users_facade,login,["fpoza"],"fpoza"}
{risk_group_facade,new_skeleton,["cvazquez"],{ok,[{oid,10},

{code,"G1"},{name,""},{desc,""}]}
{risk_group_facade,update,["cvazquez",10,"G1","vehicles",""],ok}
{risk_group_facade,unlock,["cvazquez",10],ok}
{risk_group_facade,new_skeleton,["fpoza"],{ok,[{oid,20},

{code,"G2"},{name,""},{desc,""}]}
{risk_group_facade,update,["fpoza",20,"G2","warehouses",""],ok}
{risk_group_facade,unlock,["fpoza",20],ok}
{users_facade,login,["mfernandez"],"mfernandez"}
{risk_group_facade,new_skeleton,["fpoza"],{ok,[{oid,30},

{code,"G3"},{name,""},{desc,""}]}
{risk_group_facade,update,["fpoza",30,"G3","shops",""],ok}
{risk_group_facade,unlock,["fpoza",30],ok}
{risk_group_facade,find_risk_group,["mfernandez", 10]}
{users_facade,logout,["fpoza"],ok}
{risk_group_facade,find_risk_group,["cvazquez", 20]}
{risk_group_facade,findlock_risk_group,["cvazquez", 20]}
{risk_group_facade,delete_risk_group,["cvazquez", 20]}
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We can see that, complex services invocation such as the creation of a new
risk group translates into several internal model function calls (new_skeleton,
update, unlock), as expected.

On real invocation, and according to our definitions, QuickCheck generates
and executes several iterations of tests where each test case is itself a ran-
domly long sequence of the specified operations. Thanks to the randomness
introduced by the tool, perfectly common function call combinations (as in the
typical ones a user/client of the system will demand) will be tested together
with more unusual or even completely improbable sequences, thus improving
the chances of finding an error.

As we already saw in Section 6.3.1, whenever QuickCheck finds a sequence
of operations that leads either to a crash of the system or to a false postcon-
dition, the test execution is stopped and the complete trace of operations is
reported. QuickCheck performs also a shrinking stage on the faulty trace to
find its smallest equivalent, that produces the same wrong behaviour. How-
ever, in this case, after executing a great number of tests, no errors were found.
Hence, even though we cannot prove that the ARMISTICE subsystems inte-
gration is correct, we have obtained great confidence in the fact that for each
operation in the ARMISTICE server public API, the correct operations in the
internal business logic are called, and in the correct order. Of course, since
we are testing against a dummy component, this fact does not imply that the
entire system works properly, and individual component testing should always
be done separately.

6.3.2.3 Negative testing

The testing procedure we have just explained describes a convenient way to
perform integration testing that can easily be applied in similar scenarios. The
key aspect of the proposed approach is the implementation of dummy compo-
nents which offer the same interface and emulate the same behaviour as the
original components, in order to avoid any changes in the component to test.

However, nowadays it is hardly ever the case that all components in a software
system are deployed in an isolated and unique environment. In such circum-
stances, there is a whole range of potential failures, due not only to the failure
of a component, but also to external communication conditions. When testing
interaction between components, relevant questions such as what happens if
one of them fails to respond to a request need to be taken into account. Such
failure scenarios fall outside of the scope of the state-machine integration test-
ing that we have described so far. The kind of testing we have suggested
with this state-machine based methodology only focuses on positive testing
right now, but situations in which function invocations may fail due to external
circumstances (such as network congestion or similar) must also be consid-
ered. If they are not, then we will never be able to test how such errors affect
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the behaviour of our system and control whether these unavoidable errors are
handled in a satisfactory manner.

To deal with negative integration testing, again we would prefer not to mod-
ify the original components, therefore we must re-use the dummy components
for simulating these situations too. For instance, a possible way to reproduce
timeouts is forcing the dummy component not to reply to requests immedi-
ately, but wait several seconds before returning the result value, or alterna-
tively to drop the normal answer. By doing so, new communication scenarios
are added, which obviously need to be properly handled at the corresponding
postconditions. If test sequences with these new use cases are generated
and executed, i.e., including waiting times and exceptions in the communica-
tion between components, tests may fail because the expected call traces will
be different from those obtained when such exceptions or errors were not con-
sidered. So, a key aspect here is to properly deal with these anomalies in the
postcondition function, where we can act accordingly, inspecting the traces
taking into account these irregular situations.

Since behaviour might be different depending on the situation, knowledge
about whether the dummy component will enforce a delay or not, is needed in
the QuickCheck testing module. Thus, a good solution is to implement a new
transition in the QuickCheck state machine to anticipate a delayed interaction.
In combination with the frequency/0 utility function, the state of the network
can be simulated for different congestion scenarios:

command(S) ->
frequency([{1, {call,?MODULE, delay,

[?LET(MSec,choose(1,10000),(10000-MSec))]}},
{10, oneof([{call, ?MODULE, use_case1, [data_gen1()]},

{call, ?MODULE, use_case2, [data_gen2()]},
...])},

...]).

The sample code above implies that once in ten times, a delay will be forced.
The delay transition, uses the choose/1 QuickCheck generator, which gener-
ates a random number in the specified range (in this case, to produce a delay
between 1 and 10000 milliseconds).

The implementation of the delay/1 function in the testing module must com-
municate with the dummy component to set the amount of time the next re-
sponse shall be delayed. We should not ignore the fact that we are actually
introducing a communication pattern to the original scenario, but it only takes
place between the QuickCheck testing module and the dummy component.
A new function, delay/2 is implemented in the dummy component, while the
original component remains untouched, and each dummy operation will now
take into account the notified delay prior to returning the responses.
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Besides, the structure of the QuickCheck state machine would also need to be
modified, since the response time of the next request must be handled. Thus,
a new field response_time is added to the state:

-record(state, {user_sessions, groups, objects, response_time}).

This new field will be filled in the next_state/3 function for the new transition
delay,

next_state(State, _Result, {call, ?MODULE, delay, [MSec]})->
State#state{response_time = MSec};

In this way, before executing the next function invocation in the test sequence,
whichever it is, the response time will be accessible. After execution of the
chosen function, the response time should be reset (at the corresponding
next_state/3 transition):

next_state(State, Result, {call, ?MODULE, use_case1, Arguments})->
...,
State#state{response_time = 0};

next_state(State, Result, {call, ?MODULE, use_case2, Arguments})->
...,
State#state{response_time = 0};

...

With respect to the precondition function, we may want to stipulate that the
delay function is not called twice consecutively, i.e., if a delay already exists,
another delay would not overwrite it:

precondition(State, {call, ?MODULE, delay, [_MSec]})->
State#state.response_time == 0;

The postcondition function will always return true for this command, and
will be modified according to expected behaviour (if needed) for the rest of
commands.

With this approach, the delay is in a way a global parameter which is ap-
plied regardless of the operation chosen to be executed next in the testing
sequence. However, more precise situations can be configured, for instance
defining a specific delay for each particular function of the dummy component.
For such a testing scenario, we would have one new delayed transition for
each original function in the QuickCheck state machine, with the delay being
an additional parameter to the wrapper function and its dummy counterpart. In
that way, very different and changing testing scenarios could be reproduced.
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6.3.3 Business rules validation

Up to this point, we have explored different software testing scenarios at dis-
tinct application levels, from the lowest and most elementary (unit testing) to
more complex situations (integration testing). Also, testing strategies for them
have been designed, developed and exercised as complete approaches which
help obtaining trustable results in each of those cases. Now, as our last expe-
rience in this area, we face the highest abstraction level of software validation:
that of business concepts and domain rules.

Nowadays, many applications and information systems are data-intensive, and
most of them use a database to handle vast amounts of data, relying on trust-
worthy data management systems for data storage. Modern database man-
agement systems (DBMS) provide transactionality and fault-tolerance features
(e.g., ACID properties [139]: atomicity, consistency, isolation, durability), en-
suring the data they accumulate and manipulate survives even if an external
application using that data fails.

The most commonly used DBMSs are Relational DBMSs. RDBMSs have
been widely used for the last thirty years and, besides storing information in
a structured manner [140], they also allow the definition of several types of
constraints on the data, to keep it free of basic inconsistencies. Relationships
on data constrain the data itself; thus the database content, and those con-
straints are guaranteed to be satisfied by the RDBMS. In other words, storing
data in a relational database can only succeed if the relational constraints are
respected. Also, the combination of pre-production testing and massive in-use
testing by both industrial and commercial clients, provides enough confidence
in that no mature DBMS loses data during normal operation and constraints
are always consistently satisfied.

However, it is not always convenient, or even possible, to place all responsi-
bility concerning consistency checks onto the DBMS. Some data constraints
can be extremely complicated. They may involve not only data formats or
relationships, but also non-trivial calculations; their applicability may be time-
dependent; or their complexity so high that performance and efficiency can
become an issue. Commonly, the constraints are also very business-specific,
and therefore there is no need, nor desire, to “hard-wire” them in the database
(particularly if the database is, or will be, shared by other systems or applica-
tions). For these reasons, moving the consistency checks for these business-
specific constraints, also called business rules [141] to the business logic
layer, on top of the persistence management layer and the DBMS (cf. Fig.
6.8), is a better design alternative. If the application respects its own layered
structure to access the data, then the data in the database should be consis-
tent with the business rules implemented by the business logic at all times.

So we find here a common scenario for data-intensive systems, where busi-
ness domain modelling requires the enforcement of specific and complex busi-
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FIGURE 6.8. Layered application architecture sample

ness constraints. Unfortunately, none of the testing approaches we have ap-
plied so far fits this new testing demand, where the most relevant aspect is
to provide enough confidence in that no situation can be reached where a
business rule is violated and data is potentially left in an inconsistent state.
No matter if that is a consequence of one or several invocations of system
services, or a result of unexpected input, faulty internal behaviour, or even
unconsidered scenarios.

Literature shows that previous attempts have faced the challenge of business
rules definition and modelling, either by proposing new development method-
ologies, or by formulating modifications to existing ones [141, 142]. Nonethe-
less, few efforts have been devoted to testing the actual fulfilment of such
business rules. To the best of our knowledge, the most practical approach to
this matter is the one presented in [143], which proposes an extension to JUnit
[144] to perform better testing, namely data-oriented tests, for business rules
testing.

In this last section, we present a different approach to business rules vali-
dation. Instead of manually adding conditions to an existing test suite, tests
are automatically generated (and executed) from a model using QuickCheck,
covering both positive and negative testing.

6.3.3.1 Formulating business rules

Before elaborating on the general method for testing data intensive applica-
tions we have developed, we introduce a simple case that serves as moti-
vating example. Our strategy is used for testing that a properly architectured
software system does not violate its business rules when data access is per-
formed through the business logic layer. We describe our approach on the
basis of a small, but representative, application. The technique generalises to
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much larger systems, and we applied it to our ARMISTICE case study. After
being developed for ARMISTICE, the same technique has been successfully
evaluated in a different industrial setting, demonstrating its general applicabil-
ity [145].

Domain-specific business rules play a major role in the well-functioning of any
data-intensive system. However, while data-intrinsic constraints are clearly
identified, located at database level, and defined and modelled using ER dia-
grams and other data model artefacts, that is not regularly the case for busi-
ness level constraints. Some authors suggest that, similar to what is done
in knowledge-based systems, where the business rules (inference rules) are
treated in an explicit way and placed in the same location (rule base), the same
should be done in any information system [146]. This will, of course, provide a
unique repository for business rules, to which all other parts of the system will
need to be granted access in order to implement the business logic, and thus
the system services and functionalities. However, this idea, inherited from the
AI field, implies greater system complexity, along with other problems such
as more expensive maintenance operations and poorer efficiency [146]. The
usual and more common scenario is, in practise, that of software applications
in which business rules, whilst possibly written down as requirements or spec-
ifications in the system documentation, are spread across the system, i.e., not
explicitly, but implicitly coded in the implementation of the different services,
methods, or functions.

In any case, when testing this kind of software, it does not make a big dif-
ference whether the business rules are implicit or explicit within the system.
The testing efforts must always be devoted to pursue evidence that they are
either executed or else somehow implied by the working system. At the test-
ing stage, this can be achieved in an implementation-independent and non-
intrusive manner by looking at the effects (i.e., results, output, database chan-
ges) of system operations.

To illustrate this, we borrow a simple example from Willmor and Embury [143],
and we implement a database application to deal with customers, products,
and orders, in which we introduce a status for customers, either ‘gold’ or ‘non-
gold’. The purpose of the status is reflected in that only gold members can
purchase some special products. An ER diagram for this example is shown in
Figure 6.9.

When translating Diagram 6.9 into a relational database schema, a set of con-
straints appear, that will be implemented as database constraints:

Entity keys (i.e., unique identifiers such as customer ID, order number,
product code) will be translated into primary key constraints.

One-to-many relationships will be translated into foreign key constraints
(i.e., customer ID on relation order ).
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FIGURE 6.9. ER diagram example

Many-to-many relationships will be translated into relations with two foreign
key constraints (i.e., order number and product code on new relation
order products).

Other flavours of constraints may be added (i.e., non null product price or
amount).

However, constraints like when a customer acquires ‘gold’ status, or which
products are only to be purchased by ‘gold’ customers, are the kind of con-
straints not desirable to implement at the database level. Not only because
these constraints may vary during system life or operation (the list of ‘fea-
tured products’ can be very dynamic, a ‘gold’ membership can be obtained by
purchasing a number of orders or just be granted temporarily and selectively
to incentivise consumer shopping), but most importantly, it is a domain-level
property which is not data-intrinsic. Thus, these constraints are considered
business rules and are taken care of at the application business level.

As stated in [143], correct implementation of business rules by a system can
be tested by translating each rule into some form of SQL query [147] which can
be evaluated against the database. For instance, the following SQL sentence
will check that customers without ‘gold’ status cannot have an order placed
that includes ‘gold’ featured products. The business rule is violated if anything
else than the empty set is returned.

Business rule:

SELECT customer.id
FROM customer, order, order_products

WHERE customer.id = order.customer_id
AND order.number = order_products.order_number
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AND customer.status <> ’gold’
AND order_products.product_code

IN <featured product list>

Assuming at this point that gold membership is obtained when the user has
at least five orders placed, and if the available operations in the system allow
to add, update, and delete entities (customers, products, orders), there are
many ways in which the previous business rule can be broken. Not only single
operations like placing a new order including a featured product when the user
does not have the gold status will violate the constraint above, the following
sequence will do as well:

1. A non-gold customer places the fifth order (the system, apart from stor-
ing the order information, updates customer status to ‘gold’).

2. The same customer (now upgraded to ‘gold’) places an order for a fea-
tured product.

3. The same customer cancels one of the first five orders.

There are different valid system behaviours that can be implemented to avoid
reaching the inconsistent situation that this sequence will lead the database
to (according to business rules). The application can prevent a gold customer
from cancelling an order if that would remove her gold status, or else cancelling
such order could not only remove the gold membership condition, but also
automatically cancel the order that included the featured product, for instance.
When testing database applications for data consistency, we do not really care
about which policy is actually implemented: we aim to ensure that, whichever
it is, it guarantees business rule compliance at all times.

From the previous example we conclude also that data-intensive application
tests must include sequences of system services invocation. Straight viola-
tions of business rules will usually be taken care of by the developers during
unit testing, but uncommon or atypical sequences of invocations (especially
to different system components or subsystem functionalities) may very well
cause inconsistencies on data, and are more likely to be overlooked. In real
applications, though, the amount of possible sequences of interface function
calls is enormous. In particular, it is impractical to generate a large number of
such sequences manually.

Besides, even though user interfaces can disable certain sequences of activ-
ities, such as preventing a non-gold user from ordering a featured product by
not displaying that option, we cannot guarantee nor trust them to do so, hence
we want to generate this kind of testing sequences as well. We consider se-
quences that we expect the application to produce during normal operation
positive tests, and those that we expect the application not to produce nega-
tive tests.
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To help generating such sequences, and also to get around unconscious pre-
sumptions that would lead to the exclusion of relevant scenarios or possibil-
ities, automatic test generation tools that provide random input can be help-
ful. However, completely randomising a test sequence would generate lots of
meaningless tests, e.g., repeatedly trying to add non-existing products to an
order, or cancelling unknown orders, etc. In pure random generation, mean-
ingful test sequences, like the previous one involving the same customer per-
forming three different operations, will hardly ever occur unless the test gen-
eration is steered to some extent. As a suitable way of facing all these chal-
lenges, we chose to apply QuickCheck state-machine testing once more.

6.3.3.2 Applying a state machine model

The business logic of our shop example contains a set of typically exported
functions to register a new customer (new_customer) or to disable a certain
product for sale (delete_product), among more complex services such as
registering that a certain customer has placed an order (place_order). The
safest assumption for testing is to presume that any interface function defined
in the business logic can be called in arbitrary sequence with arbitrary argu-
ments. But, as we previously mentioned, we want to get as many meaningful
tests as possible; therefore we want to have (and use) knowledge about which
interface calls have been previously invoked and the results they had, in order
to generate the next interface call in a testing sequence. For example, the
failing scenario described on page 133 would be the result of a sequence of
interface calls like this:

Id = {call, business_logic, new_customer, ["Laura"]},
Nr1 = {call, business_logic, place_order, [Id,1277]},
Nr2 = {call, business_logic, place_order, [Id,7027]},
Nr3 = {call, business_logic, place_order, [Id,3112]},
Nr4 = {call, business_logic, place_order, [Id,4983]},
Gold1 = {call, business_logic, place_order, [Id,9002]},

{call, business_logic, cancel_order, [Nr3] }

where we need a return value from the first call in consecutive calls, and we
need to remember the returned order numbers in order to cancel one.

The core of a data-intensive system is, ultimately, the database behind it, thus
it can be seen, as a whole, as a stateful system where the ‘state’ is actually
all the data stored in the database at any particular moment. The way the
database is brought from one state into another is through the different system
services available, which we can specify as state machine transitions.

The challenge here is to abstract from the data in the database and use that
abstraction as a model for the state machine. Otherwise, we would end up
with a copy of the entire database as state. Not only would that state be po-
tentially too large for a model, more seriously, the entire business logic would
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have to be re-implemented to perform the state transitions, since re-using the
implementation under test would not enable us to find errors. Of course, imple-
menting software twice is an unattractive idea; apart from the work involved,
there is the possibility of making similar mistakes.

Therefore, to automatically generate meaningful both positive and negative
tests and keep a minimum test state at the same time, we need to make sure
we maintain the least amount of data needed to generate related interface
calls, and enough data to bring the system in all kind of different states.

Since state changes are a consequence of public interface function invoca-
tions, the list of possible function invocations constitutes the state machine set
of transitions or commands, as explained in Section 6.3.2. To specify them,
the QuickCheck’s command/1 generator is used, conveniently in combination
with the frequency/1 function to assign to each transition a certain likeli-
hood of appearance in the generated testing sequences (according to domain
knowledge):

command(S) ->
frequency(

[{1, {call, business_logic, new_customer,[name()]}},
...
{4, {call, business_logic, add_product, [...]}},
{2, {call, business_logic, place_order, [...]}}
...]).

The command/1 generator takes the test machine abstract state as input, and
commands are generated relative to the present abstract state. As input for
each of the specified interface functions, specific generators need to be de-
fined as well. In our simplistic example, for instance, it is easy to specify
a generator for the argument of new_customer because only a name is re-
quired, but even if address, email address, telephone number, etc., needed to
be provided, random data could be generated for these fields resembling the
SQL definitions from the application database schema. For instance, the next
database table description:

CREATE TABLE customer
(id INTEGER CONSTRAINT cust_prk PRIMARY KEY,
name VARCHAR,
status VARCHAR CONSTRAINT cust_nn NOT NULL)

can be translated into the set of QuickCheck generators:

id() ->
int().
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name() ->
varchar().

status ->
oneof(["gold", "non-gold"]).

Generators can be as specific as needed, e.g., creating the name as a first
name and a last name both starting with an uppercase character and the rest
in lowercase. That, however, would only be significant in case such formatting
is enforced by the application interface functions. If that is not the case, the
recommendation is to remain as general an simple as possible. Besides, in
this case the business logic creates new customers always with non-gold
status, and assigns an automatically generated unique ID, so both id/0 and
status/0 generators are not necessary.

Understandably, generating only random parameters for all functions means
that services such as place_order would most likely be called with customer
IDs and product codes that are not in the database. In the intentional test-
ing approach [143] objects are automatically generated when not present in
the database. We propose a different approach and use the abstract state
(S) to keep track of created customers and products in order to use them in
calls to place_order and similar. In addition, we still choose now and then,
with a small probability, a customer or product (or both, i.e., double error) that
does not exist in the database to validate the generation of adequate error
messages (negative testing).

command(S) ->
frequency(
[{1, {call, business_logic, new_customer, [name()]}}, ...
{2, {call, business_logic, place_order,

[customer_id(S), product_code(S)]}}]).

customer_id(State) ->
oneof([int()|keys(State#shop.customers)]).

product_code(State) ->
oneof([int()|State#shop.products]).

Generators customer_id and product_code in the previous source code
pick a random integer (int/0) and add it to the list of known keys (function
keys/1 extracts the keys from the customer records); the QuickCheck prim-
itive oneof/1 takes then a random element from that list, hence generating
both positive and negative (with a lower probability) testing sequences.

The abstract state of the state machine is defined to be a record data structure
with two fields, each one containing a list which will be initially empty: customer
references, and product codes.
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initial_state() ->
#shop{customers=[],

products =[]}.

The customer reference list will contain a list of customer records, i.e., two-
field tuples storing the customer identifier (id) and the list of orders placed by
the customer,

#customer{id, orders=[]}

where an order is stored by its order identifier, needed for cancelling opera-
tions, for instance. These lists will be populated, during test generation and
execution, by customer and product data created and added to the database
as testing proceeds, and potentially re-used in further test cases.

Each interface function may have an influence on the state, and the state tran-
sition callback function next_state is filled to reflect that. The next_state
function returns the updated abstract state, i.e., the abstract state we expect
the database to be in after executing the interface call.

next_state(State, Id, {call, ?MODULE, new_customer, [Name]}) ->
NewCustomer = #customer{id = Id},
State#shop{customers = [NewCustomer | State#shop.customers]};

...
next_state(State, Nr,

{call, ?MODULE, place_order, [Id, ProductCode]}) ->
case existing(ProductCode, State#shop.products) of
true ->
case get_customer(State#shop.customers,Id) of
not_found ->
State;

Customer ->
NewOrders = [Nr | Customer#customer.orders],
State#shop{customers =
[Customer#customer{order = NewOrders}

| delete_customer(S#shop.customers,Id)]}
end;

false ->
State

end;
...

In this example, the first function clause specifies that when a new customer
is created, the field id of a new customer record is initiated with the value
that the new_customer function will return when executed (namely, the unique
identifier assigned to the new object, Id)[6]. After that, the new customer is

[6] The other field,
products, gets a
default value, the
empty list.added to the list of already existing customers (State#shop.customer) and
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State is updated by replacing the value of the field customers by this new
list of customers. The second function clause establishes a different state ac-
cording to the existence of the user and product in a place_order operation.
No changes are produced if any of them does not exist (State is returned
unchanged); should customer and product be already present in the abstract
state, it would mean that they have been produced by other transactions earlier
in the test case, so the order can be potentially placed, and the order identifier
returned (Nr) added to the existing orders of the customer.

Now these initial_state and next_state functions allow QuickCheck to
generate a great amount of different commands that are partially random and
partially refer to expected previously returned values.

As seen in Section 6.2.2, two more callback functions need to be defined
before we can actually start testing our application with this state machine
QuickCheck library: precondition/2 and postcondition/3. However, un-
like other scenarios, data-intensive testing will not make use of those library
hooks. First of all, because we do not want to impose any restriction on which
transitions are produced after each other, so no previous condition would be
asked in any case for an exported function to be invoked; secondly, because
postconditions cannot be effectively used in this business rules testing sce-
nario, so function result verifications need to be performed in a different place.

Assuming that the business rules hold in our initial state, after execution of
each test case, we would like to verify that they still do. The natural location
for business constraints checking (formulated as SQL-queries, just as we saw
before) would be as part of the postconditions, but once a command has been
executed, the database is already changed, so there is no possible way of
figuring out whether the new database state is consistent with the business
rules and the original database state, unless we include in the QuickCheck
state machine internal state as much information as needed to reproduce the
previous database content. Similarly, if a service or function invocation returns
an error, the minimum information stored at the QuickCheck state machine
internal state will usually not be enough to check if that error was expected
according to database original state and the details of the invocation call. Of
course, increasing the amount of data in the internal state could help, but it
would lead us closer and closer to replicating the database content, which is
something we want to avoid.

Similarly, checking the business rules cannot be done either as part of the
next_state/3 function, because of symbolic values usage. Even though
working with symbolic calls has a number of advantages, it also has a draw-
back: since we do not work with evaluated values, we cannot observe whether
a certain action will be successful or not when this would depend on the actual
values of the invocation, thus we cannot predict the final situation such a test
case will take the system to in terms of the database content.
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In the absence of a full internal state that would replicate database contents,
and unable to perform the desired checks either at the next_state/3 nor
at the postcondition/3 functions, we propose as alternative predicting the
expected result in advance querying the actual database state (prior to func-
tionality execution), and contrasting it with the result obtained from the system
after executing the test.

6.3.3.3 Results validation

When run, these data-intensive test cases would fail if the application crashes
during consecutive calls, when the result returned by a function is unexpected,
or when the database is left in a state that violates the business rules. To check
that each interface function returns an expected value (keeping in mind that we
want to keep the test state as simple as possible), we implement a validation
function for each transition in the state machine definition, which will basically
describe (and test) the conditions on the database that should be fulfilled in
order to create a certain return value. This is easiest done by replacing the
calls to the interface functions by local versions (wrappers) which combine
validation and actual interface call.

In our shop example, for instance, it is always possible to create a new cus-
tomer and get a new identifier in return. We cannot possibly know which iden-
tifier will be returned, but there is no need for us to be aware of the precise
value. Therefore, our local version of the new_customer function just invokes
the corresponding interface function and matches the kind of result:

new_customer(Name) ->
Result = business_logic:new_customer(Name),
case Result of

Id when is_integer(Id) -> Result;
_Other -> exit(unexpected_value)

end.

In this particular case (new_customer/1), no conditions on the database need
to be inspected. If the returned value fits the expected type of value (i.e., is an
integer), then the value generated by the business logic is returned; otherwise,
an exception is raised and the test fails.

More advanced interface functions such as place_order, however, demand a
more complex validator function. A specific user placing an order for a partic-
ular product represents a state change that can potentially violate a business
rule:

Business rule:

“If an order contains a featured product,
the customer must be a gold customer.”
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Intuitively, we infer from this description that if a customer has ‘gold’ status,
placing an order should always be a successful operation (provided that both
the user and the product actually exist in the database), and if the customer
does not have the required status, the interface call will only be allowed if the
order does not contain a featured product. These data-related conditions are
easily translated into boolean functions with specific SQL-queries:

product_exists(Connection, Code) ->
[] =/= db:process_query(Connection,

"SELECT code FROM product WHERE code="
++ integer_to_list(Code)).

customer_exists(Connection, Id) ->
[] =/= db:process_query(Connection,

"SELECT id FROM customer WHERE id="
++ integer_to_list(Id)).

featured_product(Connection, Code) ->
[Code] == db:process_query(Connection,

"SELECT code FROM product WHERE code="
++ integer_to_list(Code) ++
" AND code IN " ++ featured_products()).

gold_customer(Connection, Id) ->
[Id] == db:process_query(Connection,

"SELECT id FROM customer WHERE id="
++ integer_to_list(Id) ++ " AND status=’gold’").

Some of the above queries may well be equal to existing functions in the busi-
ness logic layer. Yet choosing not to re-use them has the value of separating
concerns and specifying the test constraints in the test specification. In partic-
ular, if different people write tests specification and business logic layer, there
is an extra possibility to identify failures.

Now we evaluate all involved constraints before executing the interface func-
tion, and check whether the result from the business logic invocation is justified
according to the previous database state:

place_order(Id, ProdCode) ->
PE = product_exists(ProdCode),
CE = customer_exists(Id),
FP = feature_product(ProdCode),
GC = gold_customer(Id),
Result = business_logic:place_order(Id, ProdCode),
case Result of
OrderId when is_integer(OrderId) and

PE and CE and (not FP orelse GC) -> Result;
{error,not_gold_customer} when FP and not GC -> Result;
{error,non_existing_product} when not PE -> Result;
{error,non_existing_customer} when not CE -> Result;
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_Other -> exit(unexpected_value)
end.

We implement a case distinction on the obtained result instead of on the com-
bination of previous conditions. On the one hand, this reduces the amount of
code, since only one alternative for each possible return value is needed. On
the other hand, we specify different from what we would do when implement-
ing the business logic layer. If the code is different, it is less likely that the same
mistake is made. But even more important than the two reasons above, we do
not have to worry about the (normally) unspecified implementations of dealing
with double faults; in case both product and customer do not exist, there might
not be information on which of the errors is produced. By looking at the result,
no matter which of the two error messages is produced, we accept the error
message.

Two additional remarks deserve attention here, the first being that we always
have to inspect the database state prior to computing the interface call, since
in case the latter results in a state change, the prediction would be useless if
performed afterwards. Secondly, all local versions of interface functions that
wrap together database state querying and service invocation should, for se-
curity and integrity purposes, be embedded in a single database transaction,
making each procedure atomic and therefore avoiding problems if testing in a
concurrent environment. Unfortunately, not all DBMSs support nested trans-
actions, which makes it essential to perform these tests sequentially, with just
one client querying the database. In most cases, all interface calls would be
embedded in their own transaction, so this sequential testing would be no real
obstacle. However, there may be issues in a concurrent setting that could
not be discovered with this testing approach, and for which other testing tech-
niques (such as load testing, for instance) would be of use.

As far as the integrity of the business data is concerned, checking business
rules consistence after executing each command separately is no different
from doing so at the end of the whole testing sequence. Our assumption is
that if the database is brought in a state that is inconsistent with the set of
business rules, then the execution of consecutive commands will be unlikely
to repair it. Moreover, if we run thousands of test sequences and the business
logic can be violated with a sequence that repairs the violation afterwards,
then we most likely also run, as one of the other tests, a shorter sequence that
violates the logic and does not have consecutive commands which amend the
situation. The advantage of checking violation of the business logic only once
per test sequence is that it makes testing faster, and hence more tests can be
run in the same time.

In order to test compliance of the database after-test status with the business
logic constraints, we add a check for each business rule and perform all these
as part of an invariant function after executing the generated sequence. Each
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business rule is embedded in a database transaction consisting of one or more
SQL queries. For example, the invariant for our running example is:

invariant() ->
{ok, Connection} = db_interface:start_transaction(),
Result = business_rule(Connection),
db_interface:rollback_transaction(Connection),
Result.

business_rule(Connection) ->
[] == db_interface:process_query(Connection,

"SELECT id "
" FROM order_products NATURAL JOIN customer "
" WHERE status <> ’gold’ "
" AND code IN ( " ++

string:join([integer_to_list(P)
|| P <- ?GOLDEN_PRODUCTS], "," ) ++

" )").

Business-rules compliance is then inspected before and after a whole test
sequence has been executed, defining the main testing property as:

prop_business_logic() ->
?FORALL(Commands, commands(?MODULE),
begin
true = invariant(),
{_History,_ State, Result} = run_commands(?MODULE,Commands),
PostCondition = invariant(),
clean_up(S),
PostCondition and Result == ok

end).

The reason to check whether the database invariant is satisfied before the test
starts is to be able to use the property also on databases that may already
be populated with some data before testing. So for every test sequence, each
command is evaluated, and its expected result and actual result are matched
as described above. When the whole sequence is successfully performed,
the database invariant is checked once more, and if it holds in the final sys-
tem state, the test case passes and a new test sequence is generated to
continue. Also, with QuickCheck automatically taking care of counterexam-
ple simplification on failure (shrinking), the efficiency and effectiveness of the
testing process is highly improved.

6.3.3.4 Insurance policies and business rules

The business rules testing method that has just been described has been
used in our real case study ARMISTICE to provide greater confidence on a
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particularly critical area of the application: the insurance policies business
logic.

Insurance policies, as described in Chapter 4, are one of the key elements in
ARMISTICE. These formal documents detail all the terms agreed by the par-
ties with regard to objects of interest, hazards and coverage. The interface
functions offered by the policies subsystem include operations to, for instance,
create a new insurance policy (create_policy(PolicyNumber)), a new re-
newal for a policy (create_renewal(PolicyNumber,ValidityPeriod)) or a
new supplement (create_supplement(RenewalCode, Warranties)) for a
given renewal in certain policy, as well as for updating or deleting them, and
also for publishing[7]them (i.e., change their status, so they are not longer ‘un-

[7] The creation of
insurance
elements is a long
task that may take
days or even
weeks, for an
expert user.

der construction’ and become visible to other parts of the system), such as
publish_supplement(SupplementID), etc.

There are a lot of business rules that affect data related to insurance policies.
The following are two examples to which we have applied our testing method:

Business rule 1:

“There can only be one renewal under construction for each given
insurance policy, and one supplement under construction for each
given renewal.”

Business rule 2:

“If a supplement has already been published, the corresponding
renewal cannot be under construction.”

whose corresponding database invariant tests are:

Business rule 1:

business_rule(Connection,S) ->
RenConsCount =
db_interface:process_query(Connection,
"SELECT COUNT(*) "
" FROM renewal "
" WHERE ren_constr IS TRUE "
" AND ren_policy IN (SELECT pol_number "

" FROM policy ) "
" GROUP BY ren_policy "),

SupConsCount =
db_interface:process_query(Connection,
"SELECT COUNT(*) "
" FROM supplement "
" WHERE sup_constr IS TRUE "
" AND sup_renewal IN (SELECT ren_code "

" FROM renewal) "
" GROUP BY sup_renewal "),
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([] == [ R || R <- RenConsCount, R > 1])
andalso

([] == [ S || S <- SupConsCount, S > 1]).

Business rule 2:

business_rule(Connection,S) ->
[] == db_interface:process_query(Connection,

"SELECT COUNT(*) "
" FROM renewal, supplement "
" WHERE ren_code = sup_renewal "
" AND sup_constr IS FALSE "
" AND ren_constr IS TRUE ").

Even though no actual errors were found by applying our testing method to
this case study, the thousands of automatic tests that were successfully ex-
ecuted in a matter of minutes grant us a much greater level of confidence in
the correctness of the business logic under test. As a side-effect we now also
have a formal specification of (part of) the business rules for this system, which
simplifies future extensions and additions to the software.

The method we have presented is based on two main points: the concept
of business rule and the use of a state machine. The final aim is to acquire
enough confidence in the business logic implementation of a software system
not leading the underlying database to an inconsistent state as a result of
regular or faulty operation. By “inconsistent state”, we refer to a database
state in which one or more of the business rules imposed by the business
domain of the system are violated.

We have chosen to express the business rules in a combination of SQL and
programming language. This combination is powerful enough to express those
rules whereas they are at the same time well understood by the engineers im-
plementing the database application. Of course, one could also use other for-
malisms, like the Object Constraint Language (OCL, defined as part of UML)
to express the constraints in. For our method this would require an extra trans-
lation of OCL properties to database queries, but this translation could easily
be covered by a library.

The QuickCheck state machine primitives are actually used in a non-standard
way (as compared to the use described in the integration testing section),
which indicates that a new library module specifically devoted to testing data-
intensive systems would be in place. Since the most relevant element in a
database-intensive application is the database, we have identified the global
state of the system with the state of the database, where the interface func-
tions are the operations that can result in a state change. Abstracting from
the database content the minimum amount of information needed to conduct
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relevant and meaningful tests, we have presented here the different elements
of our testing state machine: a command generator that takes frequencies
into account, a function to compute the next state, auxiliary data generators to
automatically build proper interface function arguments, and finally a validator
function to predict the result of a command invocation beforehand. Compar-
ison between expected and actual result is the way to determine if the sys-
tem is working as intended, and invariant (business rule) checking after each
command sequence (test case) execution is the way to ensure business rule
compliance at all times.
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Functional software

development methodology

This chapter compiles and discusses the different aspects of the functional
software development methodology that has been the story line of this work,

as explained stage by stage so far. Abstracting from the details of our partic-
ular study case, relevant contributions, as applicable to other functional appli-
cation developments, are presented.

7.1 Purpose

The main purpose of this dissertation has been to explore a new software de-
velopment methodology, including all steps of software construction, in order
to propose significant improvements that can lead to a better software engi-
neering experience, both for the developer and the final user.

One way of pursuing the development of better software is by designing and
formulating effective methods and techniques that contribute to software qual-
ity assurance. Two main factors have the biggest influence over quality: knowl-
edge and management. By increasing our comprehension about business
domains and software properties, and by wisely steering the transformation
process from requisites into functionalities, we can protect products and activ-
ities from different aspects of failure.

The software development community is currently undergoing a hot debate
about whether or not software construction is an engineerable activity [148,
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149]. Focus has shifted from procedures and documentation to people and
skills, and together with that change of concerns has come less interest in
formerly worshipped properties such as repeatability of processes, risk con-
straint, and dependable control. However, software needs to be, more than
ever, usable, efficient, maintenable, reliable, secure, safe,. . . Through the
years, the different life cycles that have come and gone were never too spe-
cific about how to achieve these properties. While the heterogeneity, delivery,
and trust challenges remain open, rigour and formality are losing attention.

All in all, conceiving software development as a mere experimental and artistic
expression is no less debatable. Whereas creativity might be a bonus when
building a solution for a problem, it is the quality and usefulness of such a so-
lution which is required. Among all the possible ways of addressing the many
challenges of software development, only those which are not only clever, but
readable, maintenable, scalable, testable, and documented, succeed. We can
list a number of common characteristics among software development activ-
ities and other engineering disciplines, including problem definition as start-
ing point, creation of models to contrast the engineer’s understanding of the
problem, feasibility studies to verify the viability of design candidates, impor-
tance of design as a central activity, creation of plans for building the product,
inspections during creation, verification of requirements fulfilment, and ongo-
ing interplay between theoretical abstract knowledge and practical experience
knowledge.

The fact that society has come to accept software failure at certain levels, is
indeed a consequence of bad software engineering. In spite of that, the same
society does not take software failure as an option in highly critical applications
such as medical equipment or aircraft navigation systems.

Consequently, we present here the summary of our experiences as promising
recommendations whose main argument continues to explore the direction
software development has been travelling for years: the approach of more
complex problems using higher-level strategies. To complement the revolution
that is giving prominence to professionals at the expense of processes, an
innovative development methodology which turns the spotlight on the what
instead of the how along its different stages is proposed.

7.2 Phases

In this section we will refer to the different activities that take place during the
development of a given software project. According to each task’s inputs, ob-
jectives, and outputs, the proposals and methodologies that have been high-
lighted during the previous chapters will be gathered together and abstracted
for general use. The sequential structure in which they will be addressed does
not imply any order in their actual fulfilment.

148



7. Functional software development methodology

7.2.1 Requirements analysis and system design

The translation of user needs or problem description into specific functionali-
ties and services is one, if not the most, critical step in software development.
No matter how efficient an implementation is or that a product presents no
bugs: if it fails to meet its expectations or does not satisfy the original ne-
cessity, it would be a failure. Even if the deviation is detected soon enough
to be amended, corrective actions to deal with bad requisites compilation or
interpretation are among the most expensive efforts. For these reasons, not
enough stress can be placed at this stage.

Requirements elicitation and system design

The correct interpretation of client demands and wishes, as well as the de-
tection and identification of the relevant details about the business domain
properties and the operative processes, should be faced as a joint work be-
tween developers and future users. The implication of all parties is an impor-
tant ingredient for a successful recipe, which turns essential in complex en-
vironments that require advanced knowledge and understanding of concepts
and activities. Elicitation techniques based on structured and unstructured
interviews, attended by multidisciplinary teams are a good approach that
must lay the foundations for a firm relationship and collaboration throughout
all the project life.

After the requirements are gathered, and once the main purpose and objec-
tives are clear, system architecture, environment, and main components must
be depicted. This stage involves two different activities: conceptual design and
technical design. For the first one, UML standards represent a powerful, ex-
pressive, and flexible way of articulating, communicating, and documenting the
abstract structure that will be given to the specific needs as they are modelled
and turned from requirements explanations to agents and components prop-
erties and behaviour. In particular, our experience in the ARMISTICE case
study revealed UML class diagrams as a good communication tool, above the
rest of the UML tools, involving a technical level which is easy to reach for
non-technical users and clients.

A complete perspective is to be maintained during technical design, paying
attention not only to the active elements, their attributes and abilities, but also
to the whole collaborative picture. Design patterns are excellent resources
in this process, as broadly-spread compoundable artifacts which are known to
present recognisable solutions to common problems. A wide range of design
patterns where used in ARMISTICE’s both server and client design, from ar-
chitectural patterns such as Model-View-Controller or Layers (which enabled
us to use specific techniques during testing), to creational patterns such as
Singleton objects or objects Pools for specific services in the application back-
bone, Value Objects and Data Access Objects for persistent storage access,
and multiple behavioural and structural patterns in the user interface. On the
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other hand, experience as well as specialised knowledge will assist profes-
sionals to choose the most suitable technological alternatives.

Efforts in this area, related to the contents of Chapter 4, have been published
in different journals and international forums:

Environment-independent methodology
for accessing external data sources [150].
Laura M. Castro, Víctor M. Gulías, Carlos Abalde, and Javier París.
WSEAS journal on Transactions on Information Science and Applications, 2008.

Database access and patterns in Erlang/OTP [151].
Laura M. Castro, Víctor M. Gulías, Carlos Abalde, and Javier París.
Proceedings of the 8th International Conference on Applied Informatics and Commu-
nications, 2008.

A new Risk Management approach
deployed over a client/server distributed functional architecture [67].
Víctor M. Gulías, Carlos Abalde, Laura M. Castro, and Carlos Varela.
Proceedings of the 18th International Conference on Systems Engineering, 2005.

TABLE 7.1. Publications related to system design.

Model review and formalisation

Once the software project has a determined set of goals and there is a proto-
type design, either just as the system intended internal and external structure
in the form of UML diagrams, or including a proof-of-concept, our recommen-
dation is to replace the sensible model review by a more serious task in which
we go beyond a model review and formally validate the coherence between
engineering plans and clients wishes before proceeding any further.

The suggested strategy for doing so is to address the formalisation of the
core concepts of the system-to-be as a series of declarative statements.
This extra effort in re-describing the results of the previous stages in a rigor-
ous mathematic-like style is intended to act as early validation of the elicited
abstractions, and hopefully help detect subtle misconceptions that may lead
to gaps or faults in the software, improving and fine-tuning its model. Not as
expensive as actual prototyping, such statements will not only increase con-
fidence in proper knowledge acquisition, they could also be re-used later if
combined with the use of functional programming and automatic validation,
providing a valuable tool for traceability. One could argue that, instead of go-
ing through an intermediate step as this formalisation, software constraints
such as QuickCheck’s properties could be written down already at this mo-
ment, directly inferred from the analysis documents. However, that would not
only require an expert in that tool to perform this task, which may or may not be

150



7. Functional software development methodology

feasible, but more importantly, it would not be a neutral language to present
to a final user or client. On the other hand, a QuickCheck user should be
able to very easily extract QuickCheck properties from this formalised system
description.

This proposal has been found interesting by the scientific community, and has
taken the shape of the following publications:

Managing the risks of Risk Management [64].
Laura M. Castro, Víctor M. Gulías, Carlos Abalde, and J. Santiago Jorge.
Journal of Decision Systems, 2008.

Formalisation of a Functional Risk Management System [68].
Víctor M. Gulías, Carlos Abalde, Laura M. Castro, and Carlos Varela.
Proceedings of the 8th International Conference on Enterprise Information Systems,
2006.

TABLE 7.2. Publications related to model review and formalisation.

7.2.2 Implementation

Historically, time and resources devoted to a software project have been mov-
ing from the implementation phase to both requirements analysis and design,
and validation and maintenance. Many development frameworks speed up
this task by improving the coding experience, and even automatically gener-
ating source code from specifications and models in some cases. Still, this
is not applicable to a whole system or application, so concerns about how to
improve this task remain.

As a natural, but yet to be taken, step in the evolution of software engineering,
this dissertation presents the functional paradigm as a feasible means of
easing and improving the efficiency of the implementation phase.

Declarative programming represents the abstraction from sequences of or-
ders and explicit state management to higher-level algorithm description. The
long-time alleged tie between specific analysis and design approaches (such
as object-orientation) has been demystified: functional languages have been
successfully combined with several paradigms. In fact, this multi-paradigmatic
view is closer to the real world, where passive objects and active agents seam-
lessly collaborate everywhere, performing complex tasks. The key property
that the functional paradigm offers is the higher abstraction level at which im-
plementation is carried out, which enables to tackle more complex problems
and reduces the distance between specification and modelling, and coding,
thus preventing many errors usually introduced by such a gap.

Two relevant publications support the interest and significance of this view:

151



7.2. Phases

Erlang/OTP framework
for complex management applications development [152].
Carlos Abalde, Víctor M. Gulías, Laura M. Castro, Carlos Varela, and J. Santiago
Jorge.
Proceedings of the 3rd International Conference on Web Information Systems and
Technologies, 2007.

ARMISTICE: an experience
developing management software with Erlang [66].
David Cabrero, Carlos Abalde, Carlos Varela, and Laura M. Castro.
Proceedings of the 2003 ACM SIGPLAN Workshop on Erlang, 2003.

TABLE 7.3. Publications related to system implementation.

7.2.3 Verification and validation

The increasing relevance and attention that software quality concerns have
been gathering have also given rise to all kinds of verification and validation
activities. As the complexity of problems addressed by software grew, so did
the software itself and, consequently, testing tools and procedures. The ob-
jective is to improve the efficiency and effectiveness of the testing techniques
in this new, continually evolving context of sophisticated software systems and
applications.

The recommendations given for the previous stages convey some benefits
that extend to this one, enabling powerful, more ambitious testing resources
and methodologies. In particular, the use of a functional paradigm provides
a well suited environment for model-based testing, since abstract models
are described in a significantly close manner to the way software is actually
written. Besides, the absence of side effects and observational equivalence
properties present the most convenient context for automatic testing. Thanks
to this, meaningful confidence can be gained in spite of not applying formal
verification methods.

Below we summarise the different testing approaches that have been experi-
mented with and exercised at various validation levels during the development
of this thesis, as seen in Chapter 6.

Unit testing of data types using properties

The first contribution of this dissertation in the field of validation is the intro-
duction of a methodology to test data types. With this methodology, the
automatic testing tool QuickCheck can be used in a more structured way, giv-
ing more assurance to tests results. The methodology has been shown to
work well for Erlang-based data types, but the language is not a limiting factor,
as some recent experiments with C data types demonstrate.
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Our validation technique is based on checking whether a data type imple-
mentation is equivalent to a trusted model, thus holding equivalent properties.
Hence, to apply it, a model for the data type must be defined, followed by the
creation of as many model-equivalence checking properties as available
operations in the data type. Important recommendations include working with
symbolic values instead of real values, to keep independent of internal repre-
sentation of the data type. To run the automatic test generator on the defined
equivalence properties, data type generators are needed, which must cover all
the data structure and include all possible data type constructors (i.e., not only
constructors, but all data type operations producing values of the data type as
a result). Also, exception cases testing must be placed at the relevant proper-
ties, hence keeping the generated values well-defined. Finally, the inclusion of
customised shrinking preferences may be in place, to help automatically reach
a simplified counterexample.

Even though one may expect data types to be rather simple pieces of soft-
ware, this methodology proved that failures can be detected even in software
considered very stable and used in production for several years. Used on data
types from our risk management information system case study, it showed a
generally applicable, simple, and fruitful recipe to follow, as acknowledged by
the research community:

Testing Erlang data types with Quviq QuickCheck [137].
Thomas Arts, Laura M. Castro, and John Hughes.
Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, 2008.

TABLE 7.4. Publications related to verification and validation.

Integration testing using a state machine model

As previously said, during the testing stage several types of checks can be per-
formed on a system or software application. When the software to be checked
is composed or structured in different modules or components, they should
not only be tested on their own (to ensure they do perform correctly) but also
in combination (to ensure they do interact properly). Integration testing, then,
ensures that when a service is requested from one component, which relies in
other component to perform the operation, the former invokes the right meth-
ods from the latter.

In this regard, the second contribution of this dissertation is a state machine-
based integration testing methodology. Using a state machine for test
case generation and execution means generating random sequences of state
transitions (representing the component operations to test) from a given initial
state, each of them according to certain preconditions, invoking them updating
the internal state, and then checking some postconditions. Therefore, to ap-
ply this technique, the internal state structure and its contents as initial state
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must be defined, as well as the set of operations to test and their preconditions
and postconditions, and how the execution of each operation may modify the
contents of the internal state. The important observation here is that, since
integration testing does not check functionality, but rather only interaction, the
second component is not actually needed: a replacement that offers the same
interface and mimics the same kind of answers is enough.

This approach is aligned with the principles of black box testing, meaning that
random order and argument values on functions invocation is assumed. Con-
sequently, preconditions in the state machine are kept as small and simple as
possible (i.e., ideally, empty). As for the postconditions, they are the place to
check if a component invokes the proper operations from another. Since the
second one needs only be a dummy component, it must register all accesses
to its interface functions and provide a way to retrieve that information. Such
an invocation trace is recovered to verify that only correct interactions take
place in all possible scenarios.

Successful execution of tests produced with this methodology provides confi-
dence on that for each operation in the tested component, the right operations
in the external component are called, and in the expected order. Several pub-
lications have been derived from this research effort:

A practical methodology for integration testing [153].
Laura M. Castro, Víctor M. Gulías, Carlos Abalde, and Javier París.
Lecture Notes in Computer Science, 2009.

Testing integration of applications with QuickCheck [154].
Laura M. Castro, Miguel A. Francisco, and Víctor M. Gulías.
Extended Abstracts of 12th International Conference on Computer Aided Systems
Theory, 2008.

Applications integration: a testing experience [155].
Laura M. Castro, Víctor M. Gulías, and Miguel A. Francisco.
Proceedings of 6th Workshop on System Testing and Validation, 2008.

TABLE 7.5. Publications related to verification and validation (ii).

Data integrity validation via business rules testing using a state machine model

Last but not least, as part of this work, research in the area of business rules
testing has been also performed. The previously unaddressed challenge of
validating directly the core axioms of an application business logic, which is
specially relevant to increase confidence on data integrity, has been explored,
and a method suitable for testing data-intensive applications is proposed.
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Business rules are domain constraints that are commonly assumed to be sat-
isfied by a system or application, but due to their abstract and high-level na-
ture, they are hardly ever located at one single point in the implementation.
Besides, the interaction of different services and functionalities may inadvert-
edly break the data consistency demanded by such business rules. Using
QuickCheck again, we develop a testing process that can be, nevertheless,
easily exported and reproduced in other environments. The procedure con-
sists of a combination of design discipline and test specification techniques
which, assuming that the application has been architectured with a layered
structure and that all access to data from the business logic layer is conducted
via a specific persistence layer, suggests formulating the business rules as
invariants in the form of data-inspecting queries. A state machine for testing
will then have the exported functions from the public system interfaces (ac-
cess points to the business logic) as transitions, a minimum internal state to
be able to generate operations which refer to the same entities (i.e., object
keys or similar), and plain true preconditions and postconditions, to allow the
simulation of any client’s interaction and perform black and white testing at the
same time. To diagnose a testing case as successful or not, the actual state
of the data source is consulted to determine the success or failure of a given
call beforehand, and is then contrasted with the real execution of the function,
validating whether the result of the interface service invocation corresponds
to what was expected. Last but not least, invariants (i.e., business rules) are
checked after each testing sequence, to show whether data consistency is still
maintained.

Contributions in this area are yet to be published.

Testing data consistency of data-intensive applications
using QuickCheck
Laura M. Castro, and Thomas Arts.
To be published, 2010.

TABLE 7.6. Publications related to verification and validation (iii).

7.3 SWOT analysis

We conclude this chapter by performing a SWOT analysis on the functional
software development methodology that is proposed here. SWOT analysis is a
well-known management method which tries to evaluate the strengths, weak-
nesses, opportunities, and threats involved in a project or business prospect
[156]:

Strengths are internal factors that benefit a given objective. In our context,
they are the properties of our development methodology that most influ-
ence the construction of quality software.
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FIGURE 7.1. SWOT Analysis

Weaknesses are also internal factors, but rather than assisting the objective
they represent a menace. In our development methodology, this means
the properties that can turn against us and be an obstacle in our way to
good software.

Opportunities play a similar role to that of strengths in SWOT analysis, but
they are external aspects instead of internal. In other words, they are the
circumstances that surround software development nowadays, which
can support the success of our methodology.

Threats are also external elements or situations that stand in the way of a
project goal. For our proposal, these are the circumstances that could
impede its successful application.

Essential for strategic planning, the identification of the internal and external
factors that may favour or jeopardise an activity or plan is intended to get the
most out of the first while keeping the latter under control during the pursue of
an objective.

Undoubtedly, the strongest feature of this methodology lays around the use of
the functional paradigm and all the benefits that it brings with it. This ranges
from reduction semantics that avoid side effects such as aliasing (coherence
problems due to multi-referencing) and thus favour the untroubled introduction
of parallelism, for instance, to the expressive power of high-order functions or
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the cost-effectiveness of lazy evaluation. Thanks to these attributes, reduced
effort is necessary to transform program descriptions into source code. Also,
the nature of functional programmed code is not only prone to optimisations,
but also an excellent context for the introduction of automated tools for be-
haviour prediction, code enhancement, and verification. Hence, advantages
range from the implementation to the maintenance stages.

However, all programming paradigms and languages can be badly used as
to become counter-productive. In the case of functional programming, there
are some tasks that may be poorly suited for it, such as low-level driver and
controller coding, or whenever fine-grain control over parallel hardware is re-
quired. Since hardware nature is essentially imperative this cannot really be
avoided; it constitutes a serious weakness, at least for the time being.

Still, the fields and challenges that software faces grow broader day by day, as
do the kinds of services and functionalities that are required from applications
and systems. Our society has not only embraced technology, and in particular
software, it has reached a point in which it requires it at all levels and scales.
In this context, the ability to efficiently and effectively face newer and more
complex domains is a great opportunity, and has a specific weight that cannot
be overlooked.

Last but not least, the proposal of new ways of doing things, approaching
problems, and performing common tasks, always needs to break down the
barrier of the established status quo. In particular, changes in the way we think
and act face the force of habit and routine. Even harder than that, wrong ideas
and misconceptions need to be removed, such as the belief that functional
programming is only well suited for non-practical issues, academical purposes,
and research projects.

7.4 Case study evaluation

For a few years now, our case study application, ARMISTICE, has been suc-
cessfully deployed in the risk management department of a large holding en-
terprise, where it has replaced the rudimentary solutions (specifically, a num-
ber of extremely complicated spreadsheets) that were used before for the daily
job of the staff. The suitability and adaptability of the development methodol-
ogy that was followed and the implementation technologies that were used to
build the system have been demonstrated, as it has been possible to easily
model all the insurable elements, policies, and hazards, and provide a full set
of complex functionalities involving the lifespan of insurable objects, the com-
plete modelling of policies, and the detailed management of accident claims.
The amount of information and the degree of control that users are provided
by the system is a differential factor regarding other RMIS systems, and it has
made it possible to detect mistakes in the original composition of some real
policy clauses.
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Diagrams below show some statistics concerning the volume of information
that ARMISTICE has been managing during its years in production, as well as
its evolution.
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FIGURE 7.2. Real evolution of business objects in ARMISTICE

As can be seen in Figure 7.2, (a) and (b), both the number of risk situations
and contracted policies have grown from year to year, in the first case, at a
quite stable pace, which very likely reflects the natural expansion of the client
company. Regarding contracted policies, however, there is a great increase
in the number of policies managed by the system each year with respect to
the previous one from the moment the software was deployed. We interpret
this as a reflection of the client’s level of confidence in the risk management
product, as the contracted policies are consistently translated into their AR-
MISTICE counterpart, and paperwork is steadily substituted by ARMISTICE’s
processes. Last but not least, a third diagram (Figure 7.2 (c)) shows the evolu-
tion of processed claims. We can appreciate that the overall number of claims
that remain uncovered, that is to say, whose losses cannot be recovered by
referring to any of the existing insurance policies, has been decreasing since
ARMISTICE’s introduction, in spite of the increasing number of risk objects
and claims. We would definitely need more specific data corresponding to fur-
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ther years in order to know if this is a consistent trend. If so, this could mean
that the department’s risk management policy, now improved and assisted by
ARMISTICE, is helping the company to reduce the number of accidents that
translate into non-recovered losses. Though these measurements cannot be
claimed as 100% accurate metrics, they constitute informative indicators that
can be regarded as very positive feedback about the success of the system.
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8
Conclusions

In this final chapter, we go over the contributions that have been made, ex-
plain the lessons that have been learned, and discuss some future work to

be pursued.

8.1 Contributions

This PhD. thesis summarises an applied research effort in which a real case
study has served as basis to conduct software engineering research. Our
work led to the extraction of some interesting points about an alternative way
of developing software, as well as to the exploration and elaboration of several
specific methods and procedures, that can now confidently be advised to be
applied in other developments as well.

The functional paradigm has proved, this time with a complex management
domain as environment (i.e., risk management), that when regular software
production enters especially complex grounds, the possibilities that declara-
tive programming provides are of great help. Hence, the methodology that
has been followed and explained here is a step forward into formalising and
establishing such a development environment as a serious alternative to more
traditional developments, that cannot face the same sort of problems to the
same extent and with comparable effort.

The correctness of the system under development being one of our main con-
cerns, the most relevant and practical contributions of this work lay in the test-
ing field, where three different levels have been approached, and three com-
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plementary strategies have been proposed. While being all rooted in model-
based testing, each of these strategies addresses a different testing subject
and distinct testing aims are exercised (namely, verification: unit testing, inte-
gration testing; and validation: business rules testing). Also, in spite of relying
on the use of a specific automatic testing tool (i.e., QuickCheck), they have
been abstracted and formulated in order to be generally applicable.

Using test case generation tools is not a trivial task, though. A too naïve ap-
proach can convince ourselves we have tested enough when we are actually
missing a lot or are even not really proving anything relevant. In the devel-
opment of the proposed verification and validation strategies, a serious effort
has been made to avoid these pitfalls. The followed processes have been
exhaustively explained here, and each step has been justified in the light of
the possible problems to face (wrong approaches, obscurity of dealing with
unusual scenarios, failure to achieve a complete test coverage, unsatisfactory
fault report). As a solution to overcome them, model definition, use of sym-
bolic values, careful data generators definition, or self-defined counterexam-
ple shrinking rules, for instance, have been explored in depth and successfully
tried out on different parts and aspects of our case study application, in some
cases even to find errors whose symptoms had occurred for some time but
whose scarce bug reports were either not well understood or not sufficiently
informative to diagnose them.

The proposed testing methodologies make use of the definition of properties
and state machine behaviour description as central elements, which bring im-
portant advantages. First of all, the use of such abstractions enables the auto-
matic generation of all kinds of testing sequences, only limited by the proper-
ties or state machine definitions themselves. These testing sequences simply
adjust to the set of constraints specified as model properties or state machine
specifications, hence including not only the kinds of operation sequences that
will usually be tested, but all kinds of sequences, no matter how strange or
improbable they might seem. Having the possibility of testing all sorts of un-
likely cases is very useful to find the sorts of errors that are more expensive
to fix (both in terms of time and effort), most of all if found after releasing or
deploying the system into a production environment.

The criterion to determine if a test case has been successful or not varies
accordingly with the testing scope. For unit-testing, an equivalent model is de-
fined and used as reference for expected result of test case execution. For in-
tegration testing, external components are replaced by API-equivalent dummy
ones, and communication (invocation) traces are inspected. Finally, business
rule consistency testing relies on data-related domain invariants specified as
SQL-statements. These activities improve both system confidence and knowl-
edge at the same time, since they require careful identification and description
of properties and behaviour at various levels.
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To conclude, these pragmatic contributions have been complemented with
recommendations about knowledge elicitation and knowledge reassurance
processes, where the formalisation of business concepts links perfectly the
requirements gathering, design, and implementation stages, representing a
valuable tool for traceability, and even filling in the gap between the real world
concepts and the source code, provided that functional programming is in
place, and consequently improving the development experience and the de-
veloped product.

8.2 Lessons learnt

Improvements in software development are a never-ending quest. Resources
increase, performance enhances, tools appear, technologies advance. As a
result, not only the products we create, but the building process itself, must be
modified to take the most advantage of the existing capabilities at the current
moment. After all, the quality of the result is very often heavily influenced by
the quality of the production procedure.

For years, functional programming in particular, and the declarative paradigm
in general, did not have a significant role in industry. However, this is clearly
changing, as reflected, for instance, in the interest, presence, and relevance
that commercial users and developers are gaining in traditionally theoretic and
academic-oriented scenarios such as the International Conference on Func-
tional Programming (ICFP, possibly the most important international confer-
ence on the subject) and its satellite events. Telecommunication companies,
with Ericsson leading, are using Erlang for critical control software; Internet
applications and web services providers are also taking advantage of this
and other functional languages; numerous small and medium size compa-
nies demand more and more professionals with experience or background
in declarative programming, for a variety of projects which range from mas-
sive distributed systems (i.e., Facebook chat), to data acquisition and real-time
monitoring systems (i.e., Finish Meteorological Institute), including electronic
payment systems or market analysis tools in the financial sector (i.e., Credite
Suisse, Deutsche Bank) [157, 158]. This trend has been reflected by the most
relevant programming online indexes as well [159].

At the same time, the recognition of the importance of verification and valida-
tion tasks within the software life cycle, is also growing. Still, its unarguable
complexity and the great amount of time and resources usually needed to per-
form formal verification or even plain testing properly, sometimes together with
(or due to) the lack or unawareness of powerful and versatile tools, implies
that, in practise, these activities are often underestimated and diminished, or
just simply ignored and skipped, sometimes due to the client’s demands or
hard time-to-market constraints.
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The background of this work has been our case study ARMISTICE, a very
convenient risk management process support tool, with decision making as-
sistance abilities, not bounded to a specific business area thanks to its abstrac-
tion capabilities, and meta-information definition and use. This case study is
a successful experience report that shows that, irregardless of the complex-
ity of a given domain, existing engineering techniques, methodologies, and
procedures are powerful enough to overcome initial concerns. A key step in
the way of applying new technologies in such scenarios is domain knowledge
elicitation from the experts. Here we have shown how the available standard
notational solutions and well-known development life cycles perfectly apply
and favour good results.

The use of a declarative approach in order to build general-purpose software
has helped to reduce the gap between the analysis and design stages, and
the implementation stage. Problems and concepts are commonly abstracted
and translated into definitions and functionality descriptions, using high-level
languages and tools such as UML. Important software errors or bugs may
be introduced when diagrams and models are translated again into specific
software components and source lines. However, using a higher-level imple-
mentation language decreases the virtual distance between design and imple-
mentation, and hence diminishes the chances of errors appearing due to this
necessary step. As a side effect, more complex challenges can be addressed,
and more complex systems can be designed and built with reasonable effort.

Additionally, the testing procedures that have been shown here have also im-
portant advantages. First of all, the use of the automatic test-case generator
QuickCheck allows us to perform many random sequences of operations just
after writing down a few properties. The way the properties or behaviour under
test are specified allows QuickCheck to generate not only the kind of opera-
tion sequences that will usually be tested, but all sequences (no matter how
strange or improbable they might be) that adjust to the set of indicated con-
straints. Having the possibility of finding such errors before an application or
component is released or sent to a production environment is extremely valu-
able and might potentially save a lot of time and effort. Also, QuickCheck not
only automatically generates a great amount of random test cases, but also
provides useful information when a fault is detected. Whenever QuickCheck
finds an error, it returns the exact trace of operations that led to that error; even
more, it also generates the smallest equivalent trace which produces the same
error. These traces are generally of good help in identifying and locating the
problem in the source code, and extremely helpful if this situation is compared
with having just a brief description of a strange behaviour given by a user once
the system or application is working in a real environment.

Different testing scenarios have been addressed, among the most common
in any software application. Most modern systems are structured in different
separate modules that work together to offer full services or provide complex
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functionalities. Most management systems embody a whole set of working
rules (business constraints) that are hardly ever explicitly placed at a single
point in the system. Most complex systems need to define their own data
types, to have an efficient way of dealing with their specific data structures.
In these situations, integration, business rules, and data types testing are es-
sential aspects to check. Hence, three different testing strategies have been
developed, in order to provide a generally-applicable, systematic way of ap-
proaching these particular testing tasks, which we consider of great interest.

To sum up, this thesis is a claim about the declarative paradigm as a greatly
useful tool that improves the construction of complex software, and an expo-
sition of several techniques which, in such context of functional programming,
allow to address development, verification, and validation at different levels,
with reduced effort and contrasted results.

8.3 Prospects: open research lines

As much progress as we are making in introducing new technologies in almost
every aspect of our lives and jobs, there seems to be a disconcerting lack of
generic, flexible, powerful tools in especially complex domains, as it is the
case of Risk Management. This is clearly not due to an absence of need
for them, since complex tasks can enormously benefit from comprehensible
tools to improve performance and user experience, and to increase the level
of knowledge, control, and overall results.

Concerning our case study, there is still further work to be done. A few ideas
on this include additional customisable reports, for example, perhaps in the
same way the system already deals with risk situations and hazards definition:
through the use of meta-information. Another very interesting line of inquiry
would be that of architectural and functional pattern detection for these sort
of highly critical applications. The effort carried out to meticulously analyse
the domain and extract the relevant information that was then written down
as a model design, led to the gathering of the kind of expert knowledge that
would be needed for such a task. Locating behaviour or structural similarities
between these kinds of knowledge-intensive software systems could be really
interesting and open a whole set of research possibilities.

The deployment process has revealed some framework improvements like the
definition of dynamic properties in the groups of objects of interest, that could
be done by introducing the concept of formula (λ-expressions) inside the base
data types (Type set), as is already being done in other parts of the sys-
tem. In this way, even more flexible behaviours could be performed. Another
prospect involves the definition of a standardised language to encode all of the
behaviour of a policy and not only its formulae and restrictions.

There is also room for improvement at the reliability-ensuring activities: soft-
ware verification and validation techniques and tools to ensure the compliance

165



8.3. Prospects: open research lines

and persistence of the intended properties and behaviours of applications are
also a very important topic to keep looking further into. Automatic test case
generation software such as QuickCheck is a very powerful tool to use when
aiming for better software, which also means software submitted to more com-
plete validating procedures. QuickCheck improves the testing process not only
by making it easier and faster, but also more exhaustive. The testing strate-
gies proposed here can still be enhanced. For instance, the methodology for
testing data-types could be extended to non-Erlang data types, taking advan-
tage of already existing intercommunication alternatives between Erlang and
other technologies such as C or Java. This could be most interesting for multi-
language and multi-paradigm inter-operable applications and environments,
rather popular in heterogeneous systems.

With regard to the methodology developed for integration testing, the way of
contrasting the generated traces and the expected ones could also be im-
proved. Currently, this task is implemented manually considering all feasible
situations, which makes the comparison very complex due to all the possible
scenarios that must be considered depending on the values returned by the
traced functions. Designing a framework for specifying a possible trace and
comparing two traces with several possibilities and branches of operations
would facilitate the entire process.

Last but not least, the business rule validation methodology could be per-
formed using other formalisms to express the data-related invariants in, like the
Object Constraint Language (OCL, defined as part of UML), instead of SQL. In
cases where data persistent storage is provided by a relational database, this
would require an extra translation from OCL properties to database queries;
but whenever alternative storages are used, it would constitute a better, neu-
tral, and standard choice. The mentioned OCL-to-persistent-storage trans-
lation (i.e., OCL-to-SQL, for instance) could easily be covered by a specific-
purpose library.

166





Index

business rules, 129, 142, 154

Capability Maturity Model, 19
Integration, 19

decision support system, 71
design, 35, 149

formalisation, 44, 150
patterns, 36

Erlang, 59

ISO
9000, 9001, 19

meta-information, 30, 39

object of interest, 26
object-oriented

development, 54

programming
functional, 4, 21, 151

patterns, 59
object-oriented, 22
paradigm, 4, 21

declarative, 4, 21, 58
imperative, 4, 21
parallel, 5

QuickCheck, 88

requirement, 34
analysis, 33
elicitation, see ∼ extraction
extraction, 34, 149

risk management, 25–26

software
development, 3

methodology, 11
process, 11

engineering, 3, 9
life cycle, 11

V model, 13
testing, 23, 76, 152

levels, 78
validation, 23, 77, 129, 152, 154
verification, 23, 77, 152

testing
acceptance, 80
black-box, 83
dynamic, 80
installation, 79
integration, 79, 114, 153
negative, 87, 126
positive, 87
property-based, 90, 152
random, 90
state machine, 92, 116, 134, 153,

154
static, 80
system, 79
unit, 79, 152
white-box, 82

Unified Modeling Language (UML), 35

168



Bibliography

[1] I. Sommerville, Software Engineering, Addison-Wesley, 8th edition,
2006.

[2] F. L. Bauer, Software Engineering, in First NATO Software Engineering
Conference, 1968.

[3] E. Dijkstra, The Humble Programmer, Communications of the ACM
(1972).

[4] P. L. Van Roy, Can Logic Programming Execute as Fast as Imperative
Programming?, PhD thesis, University of California at Berkeley, 1990.

[5] C. Reade, Elements of Functional Programming, Addison-Wesley,
1989.

[6] T. Neward, The Success of Java, O’Reilly’s On Java
(2002), http://www.oreillynet.com/onjava/blog/2002/09/the_
success_of_java.html.

[7] J. E. Tomayko and O. Hazzan, Human Aspects of Software Engineering,
Charles River Media, Inc., 2004.

[8] R. L. Glass, Software Engineering: Facts and Fallacies, Addison-
Wesley Longman Publishing Co., Inc., 2002.

[9] H. Erdogmus, Essentials of Software Process, IEEE Software 25(4),
4–7 (2008).

[10] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp, and S. Wolffe,
Fundamental principles of software engineering - A journey, Journal of
Systems and Software 62(1), 59–70 (2002).

[11] I. Sommerville and G. Kotonya, Requirements Engineering: Processes
and Techniques, John Wiley & Sons, Inc., 1998.

[12] D. Hatley, P. Hruschka, and I. A. Pirbhai, Process for system architecture
and requirements engineering, Dorset House Publishing Co., Inc., 2000.

[13] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis,
John Wiley & Sons, Inc., 3rd edition, 2003.

169

http://www.oreillynet.com/onjava/blog/2002/09/the_success_of_java.html
http://www.oreillynet.com/onjava/blog/2002/09/the_success_of_java.html


BIBLIOGRAPHY

[14] R. D. Craig and S. P. Jaskiel, Systematic Software Testing, Artech
House, Inc., 2002.

[15] R. Black, Managing the Testing Process: Practical Tools and Tech-
niques for Managing Hardware and Software Testing, John Wiley &
Sons, Inc., 2002.

[16] T. M. Pigoski, Practical Software Maintenance: Best Practices for Man-
aging Your Software Investment, John Wiley & Sons, Inc., 1996.

[17] J. Rost, Software Engineering Theory in Practice, IEEE Software 22(2),
96–95 (2005).

[18] R. J. Botting, Theory and practice of software engineering, in Pro-
ceedings of 17th ACM Annual Conference on Computer Science, pages
481–481, ACM Press, 1989.

[19] W. W. Royce, Managing the Development of Large Software Systems,
in Proceedings of IEEE WESCON, pages 1–9, 1970.

[20] S. L. Pfleeger and J. M. Atlee, Software Engineering – Theory and
Practise, Prentice Hall, 3rd edition, 2003.

[21] F. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, 1975.

[22] C. Larman and V. R. Basili, Iterative and Incremental Development: A
Brief History, IEEE Computer Archive 36(6), 47–56 (2003).

[23] B. Boehm, A Spiral Model of Software Development and Enhancement,
ACM SIGSOFT Software Engineering Notes 11(4), 14–24 (1986).

[24] J. Martin, Rapid Application Development, MacMillan Publishing Co.,
Inc., 1991.

[25] D. Cohen, M. Lindvall, and P. Costa, An introduction to agile methods,
Advances in Computers 62, 1–66 (2004).

[26] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 6th edition, 2007.

[27] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Devel-
opment Process, Addison-Wesley, 1999.

[28] R. H. Thayer, Project Manager’s Guide to Software Engineering’s Best
Practices, IEEE Computer Society Press, 2002.

[29] J. Shore and S. Warden, The Art of Agile Development, O’Reilly, 2007.

[30] J. Hunt, Agile Software Construction, Springer-Verlag New York, Inc.,
2005.

170



BIBLIOGRAPHY

[31] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, Prentice Hall, 2nd edition, 2006.

[32] A. Fuggetta, A Classification of CASE Technology, IEEE Computer
Archive 26(12), 25–38 (1993).

[33] I. Vessey and A. P. Sravanapudi, CASE tools as collaborative support
technologies, Communications of the ACM 38(1), 83–95 (1995).

[34] H. Watts, Managing the Software Process, Addison-Wesley, 1989.

[35] J. R. Persse, Implementing the Capability Maturity Model, John Wiley &
Sons, Inc., 2001.

[36] Standard CMMI Appraisal Method for Process Improvement
(SCAMPISM), http://www.sei.cmu.edu/library/abstracts/
reports/06hb002.cfm, Aug. 2006.

[37] D. M. Ahern, R. Turner, and A. Clouse, CMMI Distilled: A Practical Intro-
duction to Integrated Process Improvement, Addison-Wesley Longman
Publishing Co., Inc., 2003.

[38] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI: Guidelines for Process
Integration and Product Improvement, Addison-Wesley Professional,
2nd edition, 2006.

[39] R. Bamford and W. Deibler, ISO 9001: 2000 for Software and Systems
Providers: An Engineering Approach, CRC-Press, 2003.

[40] R. T. Futrell, L. I. Shafer, and D. F. Shafer, Quality Software Project
Management, Prentice Hall, 2001.

[41] J. S. Osmundson, J. B. Michael, M. J. Machniak, and M. A. Grossman,
Quality management metrics for software development, Information and
Management 40(8), 799–812 (2003).

[42] R. W. Floyd, The paradigms of programming, Communications of the
ACM 22(8), 455–460 (1979).

[43] L. G. Samaraweera and R. Harrison, Evaluation of the functional and
object-oriented programming paradigms: a replicated experiment, ACM
SIGSOFT Software Engineering Notes 23(4), 38–43 (1998).

[44] S. R. Schach, Object-Oriented and Classical Software Engineering,
McGraw-Hill, 2007.

[45] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison Wesley Longman Publishing Co., Inc., 2004.

[46] E. Stiller and C. Le Blanc, Project-Based Software Engineering: An
Object-Oriented Approach, Addison-Wesley Longman Publishing Co.,
Inc., 2001.

171

http://www.sei.cmu.edu/library/abstracts/reports/06hb002.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06hb002.cfm


BIBLIOGRAPHY

[47] M. Shannon, G. Miller, R. J. Prewitt, and S. Loveland, Software Test-
ing Techniques: Finding the Defects that Matter, Charles River Media,
2004.

[48] W. E. Lewis, Software Testing and Continuous Quality Improvement,
Auerbach Publications, 3rd edition, 2008.

[49] G. D. Everett and R. Jr. McLeod, Software Testing: Testing Across the
Entire Software Development Life Cycle, Wiley-IEEE Computer Society
Press, 2007.

[50] J. Kasurinen, O. Taipale, and K. Smolander, Analysis of Problems in
Testing Practices, in Proceedings of 16th Asia-Pacific Software Engi-
neering Conference, pages 309–315, IEEE Computer Society Press,
2009.

[51] W. Schulte, Challenge problems in software testing, in Proceedings
of 3rd International Workshop on Software Quality Assurance, page 1,
ACM Press, 2006.

[52] D. V. Smoline, Some problems of computer-aided testing and “interview-
like tests”, Computers and Education 51(2), 743–756 (2008).

[53] Open Problems in Testability Transformation, in Proceedings of 2nd
IEEE International Conference on Software Testing Verification and Vali-
dation Workshop, pages 196–209, IEEE Computer Society Press, 2008.

[54] E. Kauf, La Maîtrise des Risques, Securitas, 1978.

[55] U. Nordblad, Risk Management, in Risk Management Conference
(ICEA), 1982.

[56] F. J. Navas Oloriz and G. Fernández Isla, Programa de Gerencia de
Riesgos en la Empresa, Gerencia de Riesgos IV(2) (1986).

[57] The Enterprise Risk Management Annual Conference, http://www.
conference-board.org/erm.htm, Aug. 2007.

[58] Middle East Risk Management Annual Congress, http://www.iirme.
com/risk/, Aug. 2007.

[59] Risk Minds Annual Conference, http://www.icbi-uk.com/
riskminds/, Aug. 2007.

[60] Risk Management Annual Conference, http://www.cboe.com/rmc/,
Aug. 2007.

[61] The Institute of Risk Management, http://www.theirm.org/, Aug.
2007.

[62] Risk and Insurance Management Society, Inc., http://www.rims.
org/, Aug. 2007.

172

http://www.conference-board.org/erm.htm
http://www.conference-board.org/erm.htm
http://www.iirme.com/risk/
http://www.iirme.com/risk/
http://www.icbi-uk.com/riskminds/
http://www.icbi-uk.com/riskminds/
http://www.cboe.com/rmc/
http://www.theirm.org/
http://www.rims.org/
http://www.rims.org/


BIBLIOGRAPHY

[63] The Risk Management Association, http://www.rmahq.org/RMA/,
Aug. 2007.

[64] L. M. Castro, V. M. Gulías, C. Abalde, and J. S. Jorge, Managing the
Risks of Risk Management, Journal of Decision Systems 17(4), 501–
521 (2008).

[65] Coopers and Lybrand, Los nuevos conceptos del Control Interno, Díaz
de Santos, 1997.

[66] D. Cabrero, C. Abalde, C. Varela, and L. M. Castro, ARMISTICE: An
Experience Developing Management Software with Erlang, in Proceed-
ings of 2nd ACM SIGPLAN Workshop on Erlang, pages 23–28, ACM
Press, Aug. 2003.

[67] V. M. Gulías, C. Abalde, L. M. Castro, and C. Varela, A New Risk
Management Approach Deployed over a Client/Server Distributed Func-
tional Architecture, in Proceedings of 18th International Conference on
Systems Engineering, pages 370–375, IEEE Computer Society Press,
2005.

[68] V. M. Gulías, C. Abalde, L. M. Castro, and C. Varela, Formalisation of
a Functional Risk Management System, in Proceedings of 8th Interna-
tional Conference on Enterprise Information Systems, pages 516–519,
INSTICC Press, 2006.

[69] S. G. Schreiber, Knowledge Engineering and Management, MIT Press,
2000.

[70] S. Kendal and M. Creen, An Introduction to Knowledge Engineering,
Springer-Verlag New York, Inc., 2006.

[71] K. H. Bennett and V. T. Rajlich, Software maintenance and evolution:
a roadmap, in Proceedings of Conference on The Future of Software
Engineering, pages 73–87, ACM Press, 2000.

[72] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modelling Lan-
guage Reference Manual, Prentice Hall, 2nd edition, 2005.

[73] E. Braude, Software Engineering. An Object-Oriented Perspective,
John Wiley & Sons, Inc., 2001.

[74] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. El-
ements of Reusable Object-Oriented Software, Professional Computing
Series, Addison-Wesley, 1999.

[75] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design, Prentice Hall, 1998.

[76] C. Larman, Applying UML and Patterns, Prentice Hall, 1998.

173

http://www.rmahq.org/RMA/


BIBLIOGRAPHY

[77] W. C. Lim, Effects of Reuse on Quality, Productivity, and Economics,
IEEE Software 11(5), 23–30 (1994).

[78] E. H. Erikson, Business Modeling with UML (Business patterns at work),
John Wiley & Sons, Inc., 2001.

[79] B. Boehm and V. R. Basili, Software Defect Reduction Top 10 List, IEEE
Computer Archive 34(1), 135–137 (2001).

[80] M. Fowler, Patterns of Enterprise Application Architecture, Signature,
Addison-Wesley Professional, 2002.

[81] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing, MIT Press, 1999.

[82] K. Williams, Using object oriented analysis and design in a non-object
oriented environment experience report, in Proceedings of International
Conference on Software Maintenance, page 109, IEEE Computer Soci-
ety Press, 1995.

[83] GNOME, GNOME 2.0: An Innovative Platform for Building Advanced
Applications, Technical report, Sun Microsystems, 2003.

[84] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M. González, The
processes of joining in global distributed software projects, in Proceed-
ings of 1st International Workshop on Global Software Development for
the Practitioner, pages 27–33, ACM Press, 2006.

[85] B. Shibuya and T. Tamai, Understanding the process of participat-
ing in open source communities, in Proceedings of 2nd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Re-
search and Development, pages 1–6, IEEE Computer Society Press,
2009.

[86] T. Kühne, A Functional Pattern System for Object-Oriented Design, PhD
thesis, Darmstadt University of Technology, 1999.

[87] R. Pickering, Foundations of F#, Apress, 2007.

[88] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A Com-
prehensive Step-by-Step Guide, Artima Incorporation, 2008.

[89] R. Lämmel and J. Visser, Design patterns for functional strategic pro-
gramming, in Proceedings of 3rd ACM SIGPLAN Workshop on Rule-
based Programming, pages 1–14, ACM Press, Oct. 2002.

[90] V. M. Gulías, A. Valderruten, and C. Abalde, Building functional patterns
for implementing distributed applications, in Proceedings of IFIP/ACM
Latin America conference on Towards a Latin American agenda for net-
work research, pages 89–98, ACM Press, 2003.

174



BIBLIOGRAPHY

[91] LambdaStream, Video on Demand Kernel Architecture (VoDKA), http:
//www.lambdastream.com/index.php?page=vodka&hl=en_UK, Jan.
2010.

[92] Igalia, SERVAL: Internet software VLAN switch developed in Erlang,
http://serval.igalia.com, Jan. 2010.

[93] YAWS: high performance webserver, http://yaws.hyber.org/, Jan.
2010.

[94] Tsung: multi-protocol distributed load testing tool, http://tsung.
erlang-projects.org/, Jan. 2010.

[95] Ejabberd: jabber/XMPP instant messaging server, http://www.
ejabberd.im/, Jan. 2010.

[96] Erlang/OTP Documentation, Jan. 2010, http://www.erlang.org/
doc.html.

[97] R. Virding, C. Wikström, and M. Williams, Concurrent Programming in
Erlang, Prentice Hall, 2nd edition, 1996.

[98] F. Cesarini and S. Thompson, Erlang Programming, O’Reilly, 2009.

[99] WOOPER: Wrapper for Object-Oriented Programming in Erlang, http:
//ceylan.sourceforge.net/main/documentation/wooper/, 2007.

[100] eXAT: eXperimental Agent Tool, http://www.diit.unict.it/users/
csanto/exat/, 2008.

[101] A. Di Stefano and C. Santoro, eXAT: an Experimental Tool for Program-
ming Multi-Agent Systems in Erlang, in Proceedings of AI*IA/Taboo joint
Workshop on Objects and Agents, Pitagora Editrice Bologna, 2003.

[102] A. Di Stefano and C. Santoro, Designing Collaborative Agents with
eXAT, in Proceedings of 13th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 15–
20, IEEE Computer Society Press, 2004.

[103] G. Fehér and A. G. Békés, ECT: an object-oriented extension to Erlang,
in Proceedings of 8th ACM SIGPLAN Workshop on Erlang, pages 51–
62, ACM Press, 2009.

[104] R. Carlsson, Inheritance in Erlang, Technical report, Erlang/OTP User
Conference, Nov. 2007, http://www.erlang.se/euc/07/papers/
1700Carlsson.pdf.

[105] L. M. Castro, Diseño e Implementación de Aplicaciones utilizando Pro-
gramación Funcional Distribuida: un caso de estudio, Master’s thesis,
Universidade da Coruña, 2003, http://www.madsgroup.org/staff/
laura/academico.html#proyecto.

175

http://www.lambdastream.com/index.php?page=vodka&hl=en_UK
http://www.lambdastream.com/index.php?page=vodka&hl=en_UK
http://serval.igalia.com
http://yaws.hyber.org/
http://tsung.erlang-projects.org/
http://tsung.erlang-projects.org/
http://www.ejabberd.im/
http://www.ejabberd.im/
http://www.erlang.org/doc.html
http://www.erlang.org/doc.html
http://ceylan.sourceforge.net/main/documentation/wooper/
http://ceylan.sourceforge.net/main/documentation/wooper/
http://www.diit.unict.it/users/csanto/exat/
http://www.diit.unict.it/users/csanto/exat/
http://www.erlang.se/euc/07/papers/1700Carlsson.pdf
http://www.erlang.se/euc/07/papers/1700Carlsson.pdf
http://www.madsgroup.org/staff/laura/academico.html#proyecto
http://www.madsgroup.org/staff/laura/academico.html#proyecto


BIBLIOGRAPHY

[106] F. Marinescu, EJB Design Patterns. Advanced Patterns, Processes and
Idioms, John Wiley & Sons, Inc., 2002.

[107] Open Source Erlang, Aug. 2003, http://www.erlang.org.

[108] Sun Microsystems Java Technology, http://java.sun.com, 2003.

[109] XML-RPC Specification, http://www.xmlrpc.com/spec, 2007.

[110] R. Orfaly, J. Edwards, and D. Harkey, Essential Client/Server Survival
Guide, John Wiley & Sons, Inc., 3rd edition, 1999.

[111] Software Engineering Institute, Summary Report of Appraisal Results,
Technical report, Carnegie Mellon, 2010, http://sas.sei.cmu.edu/
pars/pars.aspx.

[112] L. van der Aalst and J. Vink, Testing expensive? Not testing is more
expensive!, in Proceedings of Test Excellence through Speed and Tech-
nology International Conference, pages 1–12, 2008.

[113] G. J. Myers and C. Sandler, The Art of Software Testing, John Wiley &
Sons, Inc., 2nd edition, 2004.

[114] D. Gelperin and B. Hetzel, The Growth of Software Testing, Communi-
cations of the ACM 31(6), 687–695 (1988).

[115] J. G. Brookshear, Theory of computation: formal languages, automata,
and complexity, Benjamin-Cummings Publishing Co., Inc., 1989.

[116] P. Ammann and J. Offutt, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, 2008.

[117] C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing Computer Software,
John Wiley & Sons, Inc., 2nd edition, 1999.

[118] B. Beizer, Software testing techniques, Van Nostrand Reinhold Co., 2nd
edition, 1990.

[119] S. Vegas, A Characterisation Schema for Software Testing Techniques,
PhD thesis, Universidad Politécnica de Madrid, 2002.

[120] R. G. Hamlet, Special Section on Software Testing, Communications of
the ACM 31(6), 662–667 (1988).

[121] L. Damm, L. Lundberg, and C. Wohlin, Faults-slip-through - a concept
for measuring the efficiency of the test process, Software Process: Im-
provement and Practice 11(1), 47–59 (2006).

[122] K. Claessen and J. Hughes, QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs., in Proceedings of 5th International
Conference on Functional Programming, pages 268–279, 2000.

176

http://www.erlang.org
http://java.sun.com
http://www.xmlrpc.com/spec
http://sas.sei.cmu.edu/pars/pars.aspx
http://sas.sei.cmu.edu/pars/pars.aspx


BIBLIOGRAPHY

[123] D. Hamlet, When only random testing will do, in Proceedings of 1st
International Workshop on Random Testing, pages 1–9, ACM Press,
2006.

[124] J. W. Duran and S. C. Ntafos, An Evaluation of Random Testing, IEEE
Transactions on Software Engineering 10(4), 438–444 (1984).

[125] C. Soldani, QuickCheck++, http://software.legiasoft.com/
quickcheck/, 2010.

[126] T. Jung, Java implementation of QuickChek, http://quickcheck.
dev.java.net/, 2010.

[127] C. League, QCheck/SML, http://contrapunctus.net/league/
haques/qcheck/, 2010.

[128] T. Arts, J. Hughes, J. Johansson, and U. Wiger, Testing Telecoms Soft-
ware with Quviq QuickCheck, in Proceedings of 5th ACM SIGPLAN
Workshop on Erlang, ACM Press, 2006.

[129] QuviQ A. B., http://www.quviq.com, 2008.

[130] J. Hughes, QuickCheck Testing for Fun and Profit, Lecture Notes in
Computer Science 4354, 1–32 (2007).

[131] J. C. King, Symbolic execution and program testing, Communications
of the ACM 19(7), 385–394 (1976).

[132] R. W. Floyd, Assigning meaning to programs, in Proceedings of
Symposia in Applied Mathematics, volume 19, pages 19–32, American
Mathematical Society, 1967.

[133] C. A. R. Hoare, Proof of Correctness of Data Representations, Acta
Informatica 1, 271–281 (1972).

[134] I. of Electrical and E. Engineers, IEEE standard for binary floating-point
arithmetic, ANSI/IEEE Std 754-1985 (Aug. 1985).

[135] J. Barklund and R. Virding, Erlang 4.7.3 Reference Manual, Technical
report, Ericsson Computer Science Laboratory, 1999, http://www.
erlang.org/download/erl_spec47.ps.gz.

[136] B. Dawson, Comparing floating point numbers, http:
//www.cygnus-software.com/papers/comparingfloats/
comparingfloats.htm, 2008.

[137] T. Arts, L. M. Castro, and J. Hughes, Testing Erlang data types with
Quviq QuickCheck, in Proceedings of 7th ACM SIGPLAN Workshop on
Erlang, pages 1–8, ACM Press, 2008.

[138] R. Osherove, The Art of Unit Testing, Manning Publications Co., 2009.

177

http://software.legiasoft.com/quickcheck/
http://software.legiasoft.com/quickcheck/
http://quickcheck.dev.java.net/
http://quickcheck.dev.java.net/
http://contrapunctus.net/league/haques/qcheck/
http://contrapunctus.net/league/haques/qcheck/
http://www.quviq.com
http://www.erlang.org/download/erl_spec47.ps.gz
http://www.erlang.org/download/erl_spec47.ps.gz
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm


BIBLIOGRAPHY

[139] T. Haerder and A. Reuter, Principles of transaction-oriented database
recovery, ACM Computing Survey 15(4), 287–317 (1983).

[140] E. F. Codd, A relational model of data for large shared data banks,
Communications of the ACM 13(6), 377–387 (1970).

[141] M. Bajec and M. Krisper, A methodology and tool support for managing
business rules in organisations, Information Systems 30(6), 423–443
(2005).

[142] J. Dietrich and A. Paschke, On the test-driven development and valida-
tion of business rules, in Proceedings of 4th International Conference on
Information Systems Technology and its Applications, volume 63, pages
31–48, 2005.

[143] D. Willmor and S. M. Embury, Testing the Implementation of Business
Rules Using Intensional Database Tests, in Proceedings of Testing:
Academic & Industrial Conference on Practice And Research Tech-
niques, pages 115–126, IEEE Computer Society Press, 2006.

[144] JUnit: Testing framework for Java, http://www.junit.org, 2008.

[145] N. Paladi and T. Arts, Model based testing of data constraints: testing
the business logic of a Mnesia application with Quviq QuickCheck, in
Proceedings of 8th ACM SIGPLAN Workshop on Erlang, pages 71–82,
ACM Press, 2009.

[146] V. Chanana and A. Koronios, Data Quality Through Business Rules, in
Proceedings of International Conference on Information and Communi-
cation Technology, pages 262–265, Mar. 2007.

[147] A. I. Standard, Database Language SQL, http://www.cse.iitb.ac.
in/dbms/Data/Papers-Other/SQL1999/ansi-iso-9075-2-1999.
pdf, 1999.

[148] T. Demarco, Software Engineering: An Idea Whose Time Has Come
and Gone?, IEEE Software 26(4), 95–96 (2009).

[149] R. R. Loka, Software Development: What Is the Problem?, Computer
40(2), 110–112 (2007).

[150] L. M. Castro, V. M. Gulías, C. Abalde, and J. París, Environment-
independent methodology for accessing external data sources, WSEAS
Transactions on Information Science and Applications 5(9), 1–10
(2008).

[151] L. M. Castro, V. M. Gulías, C. Abalde, and J. París, Database access
and patterns in Erlang/OTP, in Proceedings of 8th Conference on Ap-
plied Informatics and Communications, pages 73–78, World Scientific
and Engineering Academy and Society (WSEAS), 2008.

178

http://www.junit.org
http://www.cse.iitb.ac.in/dbms/Data/Papers-Other/SQL1999/ansi-iso-9075-2-1999.pdf
http://www.cse.iitb.ac.in/dbms/Data/Papers-Other/SQL1999/ansi-iso-9075-2-1999.pdf
http://www.cse.iitb.ac.in/dbms/Data/Papers-Other/SQL1999/ansi-iso-9075-2-1999.pdf


BIBLIOGRAPHY

[152] C. Abalde, V. M. Gulías, L. M. Castro, C.Varela, and J. S. Jorge, Er-
lang/OTP Framework for Complex Management Applications Develop-
ment, in Proceedings of 3rd International Conference on Web Informa-
tion Systems and Technologies, pages 422–425, INSTICC Press, Mar.
2007.

[153] L. M. Castro, M. A. Francisco, and V. M. Gulías, A Practical Methodology
for Integration Testing, Lecture Notes in Computer Science 5717, 881–
888 (2009).

[154] L. M. Castro, M. A. Francisco, and V. M. Gulías, Testing Integration
of Applications with QuickCheck, in Proceedings of 12th Twelve Inter-
national Conference on Computer Aided Systems Theory, pages 299–
300, Feb. 2009.

[155] L. M. Castro, V. M. Gulías, and M. A. Francisco, Applications integra-
tion: a testing experience, in Proceedings of 6th Workshop on System
Testing and Validation, Dec. 2008.

[156] M. Armstrong, Management Processes and Functions, Management
studies, Institute of Personnel and Development, 1990.

[157] Who uses Erlang for product development?, http://erlang.org/
faq/introduction.html#1.5, 2010.

[158] Haskell in Industry, http://www.haskell.org/haskellwiki/
Haskell_in_industry#Haskell_in_Industry, 2010.

[159] TIOBE Software BV, Programming Community Index, http://www.
tiobe.com/index.php/content/paperinfo/tpci/index.html,
2010.

[160] Crain Communications Inc., Largest risk management information sys-
tems providers, Business Insurance (Apr. 2007).

179

http://erlang.org/faq/introduction.html#1.5
http://erlang.org/faq/introduction.html#1.5
http://www.haskell.org/haskellwiki/Haskell_in_industry#Haskell_in_Industry
http://www.haskell.org/haskellwiki/Haskell_in_industry#Haskell_in_Industry
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	Introduction
	Motivation
	Objectives
	Structure and contents

	State of the art
	Software engineering
	Software development methodologies
	Software quality approaches
	Open challenges

	Imperative paradigm vs. Declarative paradigm
	Software testing: verification and validation
	Unsuccessfully addressed problems


	Case study
	Risk management
	Risk Management Information Systems
	Commercial software for risk management
	Prospectives

	The ARMISTICE project
	Data collection and analysis


	From requirements to analysis and design
	Requirements elicitation
	System analysis
	Program design
	Formalisation and model review
	ARMISTICE's business domain study
	Knowledge extraction
	Domain analysis and design
	System formalisation

	Formalisation benefits: validation planning

	Implementation of a paradigm shift
	Is such a change feasible?
	Translation of borrowed concepts
	Object-orientation in non-object-oriented environments
	Object-orientation and functional environments

	Strengths of declarative languages
	Functional patterns
	Erlang

	Developing key aspects of ARMISTICE
	System architecture and technologies
	Formulae and restriction language
	Policy relevance
	ARMISTICE as decision support system


	Ensuring functionality and quality through testing
	Software testing
	Verification versus validation
	Testing levels
	Testing techniques

	QuickCheck
	Property-based testing
	State machine testing

	Testing ARMISTICE
	Data types verification
	Integration testing
	Business rules validation


	Functional software development methodology
	Purpose
	Phases
	Requirements analysis and system design
	Implementation
	Verification and validation

	SWOT analysis
	Case study evaluation

	Conclusions
	Contributions
	Lessons learnt
	Prospects: open research lines

	Index
	Bibliography

