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Geostatistical interpolation of
topographical field data in order to obtain a
DEM of a small forest catchment in
Northwest Spain

Interpolacion geoestadistica de datos
topograficos para obtener un MED de una
pequeia cuenca forestal en el noroeste de

Espana
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ABSTRACT

This article gives an example of the elaboration of a digital elevation model (DEM) with
the aid of geostatistics, using the case of a small experimental catchment near Arcos de
la Condesa in Galicia, Spain. A DEM is a necessary tool in present-day erosion and lands-
cape modelling. The geostatistical method of DEM construction involves six steps, star-
ting with the removal of the drift and ending with the final interpolation. The drift was
almost completely eliminated by a first order trend surface. After it had been confirmed
that no heteroscedacity is present in the data set, the resulting experimental variogram
was fitted by an anisotropic Gaussian variogram model, which is the variogram model
that is generally used for DEM interpolation. Cross validation was used to determine the
optimal number of data points to be used in interpolation. The interpolation results
were found to be satisfactory and the interpolation standard deviations are below the
data set standard deviation. It is yet noted that this uncertainty in the DEM — although
small — may influence its derivatives and subsequent model results. However, when
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compared to other methods of DEM elaboration, the method as used here is an easy, ade-
quate and relatively fast method, that has the major advantage of providing interpola-
tion errors, enabling an evaluation of the interpolation result.
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INTRODUCTION

A DEM is a necessary tool for the cal-
culation of slope, aspect, drainage direc-
tion and other landscape variables, which
are frequently used in erosion modelling.
Examples of other DEM elaborations with
the aid of so-called geostatistics or kriging
can be found in CACHEIRO POSE ¢t al.
(1999) and DAFONTE DAFONTE et al.
(1999). In this paper, the delineation of a
digital elevation model (DEM for short)
on basis of geodetic measured field data is
described. The catchment under conside-
ration is about 2.5 ha and is located in the
region of Galicia in the northwest of
Spain.

The following assumes a basic kno-
wledge of geostatistics. When this is not
present, it is referred to general textbooks
such as ISAAKS & SRIVASTAVA (1989),
BURROUGH & McDONNELL (1998)
or ARMSTRONG (1998) for this back-
ground.

MATERIAL AND METHODS

The data set that was used in the ela-
boration of the DEM consists of 307 data
entries with an (arbitrary, officious) x, y
and z co-ordinate. Point elevations were
measured using an Abney Level geodetic
instrument (Sokkia SET5A). The x and y
co-ordinates are used to fix the position of
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the points in space, the z co-ordinates
denote the height. In table 1, the descrip-
tive statistics of the data set are given.
Note that also the height has an arbitrary
origin at 1000 m. It is therefore unsound
to calculate the CV (coefficient of varia-
tion).

In figure 1, the histogram of the data
set is given. It can be seen that the distri-
bution appears to be about normal. This is
important, because kriging (the method
that is to be used for interpolation) works
best with normally/Gaussian distributed
data (ISAAKS & SRIVASTAVA 1989),
although, strictly spoken, it is not obliga-
tory neither a prerequisite. A normal dis-
tribution only aids in optimisation of the
interpolation.

There was made use of the computer
programs PCRaster (Van DEURSEN &
WESSELING 1992; KARSSENBERG
1996), version 2, and Gstat (PEBESMA &
WESSELING 1998; PEBESMA 1999),
versions 2.0b and 2.1.0. PCRaster is a ras-
ter based GIS program, while Gstat is a
geostatistical program for interpolation
and simulation.

Kriging is a geostatistical method to
interpolate spatially distributed point
data in a sound and unbiased manner, i.e.
it looks for the BLUE (best linear unbia-
sed estimate) (ARMSTRONG 1998)
using sophisticated matrix algebra and
mathematical rules. This means that
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Table 1. Basic statistics of the data set. *): skewness has an associated error of 0.14; **): kurtosis

has an associated error of 0.28.
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Figure 1. Distribution of the data set. Note that
the distribution follows more or less a normal
distribution but seems to exhibit a slight bimo-
dality as well (as demonstrated by the presence
of two peaks).

interpolation errors are minimised, becau-
se minimisation of these errors is part of
the solution of the kriging system.

Kriging (named after KRIGE (1966)),
i.e. the interpolation itself, is normally
carried out only after the implementation
of a few other basic steps:

1. checking for a trend or tendency in
the data set. If a trend can be spotted
(using exploratory data analysis, map
analysis etc.), removal of it will improve
and ease the next steps;

2. checking for heteroscedacity in the
data set. Heteroscedacity means that the
different sub areas of the area that is to be
interpolated exhibit different amounts of
variation. If this heteroscedacity is indeed
present, the area has to be divided in these
sub areas, because otherwise a sound inter-
polation cannot be guaranteed;

3. checking for anisotropy in the data
set. Anisotropy means that the variograms

CAD. LAB. XEOL. LAXE 26 (2001)

(i.e., graphs that denote the amount of
correlation between points) in the several
wind directions are different from each
other. Incorporating this anisotropy in the
fitting of the variogram model can impro-
ve the quality of the subsequent interpola-
tion. A check for the presence or absence
of anisotropy (when absent, the data set is
called to be isotropic) can be made by
making a variogram map, i.e. a 3D semi-
variogram or semivariogram surface of the
area.

4. fitting of a variogram model. When
the trend is subtracted from the data set, a
residual data set remains. The semivarian-
ce of these residuals is calculated and a
(semi)variogram model is fitted, usually
using fitting techniques as ‘weighted least
squares’ or ‘ordinary least squares’;

5. cross validation. In this exercise, the
models are checked on integrity and the
different models that may be used can be
compared to each other on basis of objec-
tive statistical measures;

6. Both, the semivariogram model and
the trend surface, are used for the final
interpolation of the data set. This type of
kriging is called Universal or KT kriging.
The trend surface is used to interpolate
the global trend in the data set, the resi-
dues are interpolated by the kriging
action with the variogram model.

Hereafter, the steps are explained and
the results of the steps are presented and
discussed.

RESULTS AND DISCUSSION

Step 1: delineation of a possible trend
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The most general used trend surface is
based on x and y co-ordinates. With these
spatial co-ordinates, the data set values are
to be predicted in the total area. This pro-
ceeds through the use of ‘least squares’ fit-
ting techniques in combination with the
following formula:

(X, y)=by x+Db,y+D, (Eq. 1)

with: z = value (in this case height)
that has to be interpolated [m]; b, = a
constant derived from the ‘least squares’
fitting of the trend surface through the
data set; x = x co-ordinate [m]; y =y co-
ordinate [m].

There also exist second, third and hig-
her order trend surfaces. Gstat can inter-
polate up to a third order trend surface.
The second and third one were also eva-
luated, but these were not used here since
the first order trend surface proved to be
the better one. The first order trend surfa-
ce did not prove to be the best one in the
sense that the surface fitted the data dis-
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tribution the best (this is impossible, for a
second and third order trend surface have
more degrees of freedom), but the vario-
gram that can be constructed afterwards is
more sound in geostatistical sense. This
will be explained later. Besides, the qua-
lity of the fit in terms of the size of the
residuals of the trend surface is rather
unimportant: the residuals are after all fit-
ted by the kriging. Kriging is not influen-
ced by the size of the residuals, only by
their distribution.

In figure 2a, the fitted first order trend
surface can be seen, while in figure 2b the
distribution of the residuals is depicted.

Step 2: checking for heteroscedacity

In figure 2b, it can be seen that the
distribution of the residuals is confined to
a narrow region around 10.4 to 10.8.
Because the residuals can be regarded as
the unexplained variance of the trend sur-
face, and therefore as a pseudo variance of
the data set, this is a first indication that

Figure 2a. The height according to the first
order trend surface.

Figure 2b. The distribution of the residuals.
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Figure 3. The standard deviation per cell as cal-
culated for a split moving window of 30 by 30
m. Note the small differences in values and the
general homogeneity of the area.

the data set probably is homoscedastic: the
variance is about equally distributed over
the whole area.

This is confirmed by a PCRaster model
that calculates the standard deviation per
split moving window: see figure 3. Note
that the differences in this case are larger
(the calculation method is different) but a
range in standard deviation of about 2 m
on a range in the data set of about 35 m is
still rather small. Therefore, the data set
can be considered homoscedastic.
However, there does not exist an objective
method to determine whether an area is
homoscedastic or not; ‘expert judgement’
on a visual basis is the only method.

Step 3: checking for anisotropy

The check for anisotropy basically
evolves in the same way as step 2: through
the creation of a variogram surface and
visual interpretation of this map surface.
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However, when it is decided that the area
exhibits anisotropy, the anisotropy ratio
may aid in the determination whether it is
necessary or not to interpolate with an
anisotropic variogram model: the closer it
is to 1, the less necessary. The anisotropy
ratio is calculated by dividing the range of
the minor axis by the range of the major
axis (see figure 4 for the explanation of
these terms) in the case of geometric ani-
sotropy. In the case of zonal anisotropy, the
anisotropy ratio is the lowest sill divided
by the highest sill, provided that the
directions in which these sills are measu-
red are perpendicular to each other, as in
figure 4.

The variogram map is depicted in
figure 5. It can be seen that the major axis
is trended Northwest—Southeast (the low
semivariances), directing about 140°
clockwise from North. By definition, the
minor axis is thus directed 50° clockwise
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Figure 4. Example of geometric anisotropy, i.e.
anisotropy in the range of the variograms. The
longest axis (trending approximately
Southwest—Northeast) is called the major axis.
The axis perpendicular to this axis is called the
minor axis. Source: PEBESMA (1999).
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Figure 5. 2D representation of the variogram
surface. The nugget is in the centre of the map,
the semivariance increases to the outer rims of
the map.

from North. This is an example of geome-
tric anisotropy, because the sill that the
minor axis reaches is later reached in the
direction of the major axis. When this fact
is incorporated in the interpolation action,
the kriging results are expected to be
more reliable than without this aniso-

tropy.

Step 4: fitting of a variogram model

In this step, a graph of the semivarian-
ce is drawn and a variogram model is fit-
ted by adjusting the fitting parameters by
hand or automatically through one of the
several methods of possible in Gstat. In
this case, the first fitting was done by
Gstat using ‘weighted least squares’
(WLS), the later ‘fine tuning’ was done
manually. This optimising of the fit had to
be done manually, because Gstat delivered
variogram models with negative nuggets.
These are known to be inadmissible
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(ISAAKS & SRIVASTAVA 1989; ARMS-
TRONG 1998). These nuggets were rai-
sed up to little above zero, in order to
assure the soundness of the variogram
model. To correct for the larger nugget,
the sill was lowered with the same
amount.

In almost all cases, variogram models
that fit topographical data (i.e., height)
are of the Gaussian type (BURROUGH,
pers. comm.; PAZ GONZALEZ, pers. comm.;
CACHEIRO POSE & VALCARCEL
ARMESTO 1999). Also in this case, only
Gaussian variogram models were fitted.
This is because topography a very smo-
othly changing surface and this characte-
ristic is reflected in the Gaussian model.

In figure 6, the three isotropic vario-
grams with their fitted models are shown.
It can be seen that the two variograms for
the second and third order trend surface
have a decrease in semivariance after the
sill is reached, i.e. at distances longer than
the range. This was the main reason for
the choice of the first order trend surface
to underlay the interpolation of the data
set: its semivariogram can also be fitted
adequately after the range with a single
model. When the variogram decreases
after the sill, this can be fitted by imple-
menting an additional periodic variogram
model (incorporating a sine function) but
this model is hard to fit and results in an
interpolation more prone to floating point
and other errors.

The variogram of the first order trend
surface however has an increase after the
sill, indicating that the trend is not com-
pletely removed yet. Still, the variogram
for the first order surface was chosen
because of its better fit and longer range
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Figure 6a. The isotropic semivariogram after
the application of the first order trend surface.
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Figure 6¢c. The isotropic semivariogram after
the application of the third order trend surface.

than the second order trend surface vario-
gram. The higher the sill and the longer
the range of a variogram, the more struc-
tured it is and the better the interpolation
results are (ARMSTRONG 1998).

Note that the above depicted vario-
grams are only for illustration purposes,
for they are all isotropic and an anisotropic
variogram was used during kriging. In the
subsequent variogram fitting, the aniso-
tropy that was detected in Step 3 was
implemented. This was done by adjusting
in Gstat the search radius to a confined
region, that has the same trend as either
the major or the minor axis (see figure 7).
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Figure 6b. The isotropic semivariogram after
the application of the second order trend sur-
face.

Figure 6. The three different isotropic vario-
grams after implementation of a trend surface.
Note the non-fit of the variograms after the
range and the increase and decreases, respecti-
vely. Note also that the decrease of residuals
with the increase in order is reflected in the
semivariance values on the y axis [m2].

The two variograms that emerge were eva-
luated to obtain the anisotropy ratio. In
this case, this ratio is 0.5, i.e. the range in
the direction of the major is half of that in
the direction of the minor axis (geometric
anisotropy).

The two anisotropic variograms for the
residuals that are left after the application
of the first order trend surface are shown
in figure 8, one for the major axis and one
for the minor axis. The fit for the vario-
gram in the direction of the minor axis is
not as good as that for the major axis, but
still acceptable. Note that the sills are
almost the same, about 12.3 mz.
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Figure 7. In the left figure, only the data that are located around the East-West trending major axis
are used and subsequently only the data in the North-South direction are used for the calculation
of the semivariogram in the direction of the minor axis (in the case of geometric anisotropy). In the
right figure, the search radius that is normally used for isotropic variogram calculation is shown.
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Figure 8a. The semivariogram in the direction
of the minor axis (50° clockwise from North).

Step 5: cross validation

In cross validation (also called x valida-
tion or jack-knifing), normally a compari-
son between different models (spherical,
Gaussian, exponential etc.) that could be
fitted through a data set is made. In this
comparison, the model with the best sta-
tistics is used in the final interpolation.
Here, the cross validation was used to cho-
ose between either anisotropic or isotropic
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Figure 8b. The semivariogram in the direction
of the major axis (140° clockwise from North).

variogram and between different radii for
interpolation.

Cross validation proceeds through the
interpolation on points were already a data
point is available. The data value that is
measured on the interpolated point is left
out of the interpolation routine. This is
done for all points and the measured and
predicted results are compared. This com-
parison results in a correlation coefficient,
which lies between 0 and 1; O denotes no
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correlation at all between measured and
predicted values, 1 denotes perfect correla-
tion. Gstat calculates the Z score and the
standard deviation as well. The Z score is
calculated as the observed minus predic-
ted value divided by the kriging standard
deviation and should be as close to zero as
possible. The standardised kriging stan-
dard deviation should be as close to one as
possible.

In table 2, the results of the cross vali-
dation exercises are summarised. It was
chosen to check for four different radii, i.e.
20, 30 and 40 m and a special radius opti-
mised for the anisotropic variogram. This
special radius is longer in the direction of
the major axis and shorter in the direction
of the minor axis (see also figure 7).

The r and Z statistics are satisfactory:
both are close to one and zero, respecti-
vely. The standardised standard deviation
s¢, however, is far higher than one. The
small kriging standard deviations are the
explanation for this phenomenon. The
(predicted minus observed) values are
divided by these standard deviations. This
causes the extremes of the Z distribution
to be far away from zero (although the
median and mean remain close to zero)
and its standard deviation s¢ to be high.
Because the lowest s¢ is reached by the
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special search radius of the anisotropic
case, the interpolation was carried out
using this special search radius. The s
value for this case is however still too
high, but because the other two parame-
ters indicate a well validated model and
the parameter s¢ is rather sensitive, the
model was still considered validated.

Step 6: final interpolation

The final interpolation was carried out
with the above mentioned ‘flexible’ search
radius and the prerequisite that at least 20
points were used in the interpolation.
When this amount of data point could not
be found within the search radius, Gstat
was commanded to look for points outside
the radius until the amount of 20 data
points was reached.

The results are depicted in figure 9a,
while the kriging standard deviations per
pixel are depicted in figure 9b. Note that
the borders exhibit high interpolation
errors. This is due to a somewhat larger
area of interpolation than the catchment
in reality covers and a low amount of data
points along the catchment borders. The
delineation of the catchment borders
follows later.

Of the 26,225 m: that is covered by

Shbelic|i20% 2,20+ 430 30 40 w40 m 12 4é
T 0950 0080 0599 0S0R OS08 0900 095D
A 0057 00016 0002 002E 0015 0004 005
a° 236 2 & 236 30 2T 247

Table 2. Cross validation results for isotropic and anisotropic variograms, for different interpola-
tion radii. *): i denotes isotropic variogram and a denotes anisotropic variogram; **) 12 is the ‘semi-

variance distance’ in mz2,
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Figure 9a. The results of the interpolation, the
digital elevation model (DEM) of the catch-
ment.

the interpolation, 21,500 m2 has an inter-
polation error between three quarter of a
meter and one meter. This sounds reasona-
ble, but in a low-relief landscape like this
catchment, this can have large influences
on notably the runoff direction.

Furthermore, kriging is an interpola-
tion method that generates a ‘smoothed’
interpolation surface, without the natural
discontinuities or abrupt changes that in
reality may be present in the landscape.
An alternative method such as Monte
Carlo simulation simulates a more natural
‘rough’ surface on basis of a given vario-
gram and the (estimated) population stan-
dard deviation.

However, if the results are compared
with another method of DEM creation,
like digitising and rasterisation of analo-
gue maps and remote sensing techniques,
then it emerges that this method is relati-
vely precise and determinate. Besides, the
errors are known and this is not the case in

Figure 9b. The kriging standard deviations
after the interpolation.

several other methods of DEM elabora-
tion. The knowledge of these errors helps
in the evaluation of the outcomes of
models that use the derivatives of DEM’s.

CONCLUSIONS

Of the above discussion and presenta-
tion of the results, the following may be
concluded:

- An interpolation with an anisotropic
Gaussian variogram with the search radius
adjusted to the anisotropy, applying
Universal kriging with a first order trend
surface, was the best kriging action possi-
ble in this case study.

- The quality of the interpolation is
rather satisfactory when compared to
other methods of DEM creation, but
interpolation errors still may influence the
derivatives of the DEM and so the subse-
guent outcome of the models that use
these derivatives.
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