
Facultade de Informática

Departamento de Computación

PhD Thesis

Automatic system for personal

authentication using the retinal vessel

tree as biometric pattern

Author: Marcos Ortega Hortas

Supervisor: Manuel Fco. González Penedo

A Coruña, June 2009









Facultade de Informática

Departamento de Computación

PhD Thesis

Automatic system for personal

authentication using the retinal vessel

tree as biometric pattern

Author: Marcos Ortega Hortas

Supervisor: Manuel Fco. González Penedo

A Coruña, June 2009





Dr. Manuel Francisco González Penedo

Profesor Titular de Universidad

Dpto. de Computación

Universidade da Coruña

CERTIFICA

Que la memoria titulada �Automatic system for personal authentication using

the retinal vessel tree as biometric pattern� ha sido realizada por D. Marcos

Ortega Hortas bajo mi dirección en el Departamento de Computación de la

Universidade da Coruña y concluye la Tesis Doctoral que presenta para optar

al grado de Doctor en Informática.

Y para que así conste �rmo la presente en

A Coruña, 16 de Junio de 2009

Fdo.: Manuel Fco. González Penedo

Director de la Tesis Doctoral





Acknowledgements

This work is the result of a lot of work, experiences and dedication not only

of my own. Therefore, I would like to express my gratitude and acknowledge-

ments to all the people who helped me during this process.

I would like to start with my Ph.D. advisor, Manuel González Penedo,

who made this possible with his strong advises, support and, specially, the

enormous patience and e�ort this work demanded all this time.

I would like to express my most sincere gratitude to the University of A

Coruña, and in particular to the Department of Computer Science for their

support in the development of this thesis. Also, thanks to the Xunta de Galicia

and Ministry of Science and Innovation for funding my research.

Also, enormous gratitude and appreciation to Prof. Massimo Tistarelli for

sharing with me his knowledge and the outstanding research performed in his

group during a research stay in Sardegna (Italy). I'd like to show my gratitude

to all the people I met there: Manuele, Linda, Massimo G., Elif, Andrea, Gavin,

Enrico, etc. I sincerely thank you all for a really unforgettable time.

Thanks to all the members of the VARPA team, past and present for taking

part in this sensational group, specially Cas, Noelia and Carmen for allowing

me to steal a lot of their time. Also, special thanks to José and Gabriel for

their unparalleled ability to share their brilliant minds for every problem. They

make the everyday life more enjoyable and, more important, bearing with me



vi

in every situation in a remarkable way. Also thanks to the "Lambda team",

Jose, Mene and Marta for their patience in the whining days.

Last but de�nitely not least, thanks to my parents and grandparents for be-

ing always there any time I need them. This also certainly applies to Verónica,

one of the most valuable human beings I have ever met and the one person I

could not �nish thanking all the good things she brings into my life. Of course,

all of my friends who supported me and shared the good and not-so-good mo-

ments along the road deserve a lot of credit: Yago, Xabi, Laura, Álex, María

José and all the people who supports me out there in real life.

THANKS!

Marcos Ortega



To my parents, Juan and María Luz

To Verónica





�If we knew what it was we were doing, it would not be

called research, would it?�

� Albert Einstein





Resumen de la tesis

Introducción

La autenticación �able de personas es un servicio cuya demanda aumen-

ta en muchos campos, no sólo en entornos policiales o militares sino también

en aplicaciones civiles tales como el control de acceso a zonas restringidas o

la gestión de transacciones �nancieras. Los sistemas de autenticación tradi-

cionales están basados en el conocimiento (una palabra clave o un PIN ) o en

la posesión (una tarjeta, o una llave). Dichos sistemas no son su�cientemente

�ables en numerosos entornos, debido a su incapacidad común para diferen-

ciar entre un usuario verdaderamente autorizado y otro que fraudulentamente

haya adquirido el privilegio. Una solución para estos problemas se encuentra en

las tecnologías de autenticación basadas en biometría. Un sistema biométrico

es un sistema de reconocimiento de patrones que establece la autenticidad de

los individuos caracterizándolos por medio de alguna característica física o de

comportamiento.

Existen muchas tecnologías de autenticación, algunas de ellas ya implemen-

tadas en paquetes comerciales. Las técnicas biométricas más comunes son la

huella digital, probablemente la característica más antigua usada en biometría,

iris, cara, geometría de la mano y, en cuanto a las características de compor-

tamiento, reconocimiento de voz y �rma. Hoy en día, la mayoría de los esfuer-

zos en los sistemas biométricos van encaminados al diseño de entornos más

xi



xii

seguros donde sea más difícil, o virtualmente imposible, crear una copia de

las propiedades utilizadas en el sistema para discriminar entre usuarios autor-

izados y no autorizados. En este contexto, el patrón de vasos sanguíneos en

la retina se presenta como una característica biométrica relativamente joven

pero muy interesante debido a sus propiedades inherentes. La más importante

es que se trata de un patrón único para cada individuo. Además, al ser una

característica interna es casi imposible crear una copia falsa. Por último, otra

propiedad interesante es que el patrón no cambia signi�cativamente a lo largo

del tiempo excepto en casos de algunas patologías serias y no muy comunes.

Por todo ello, el patrón de retina puede ser considerado un rasgo biométrico

válido para la autenticación personal ya que es único, invariante en el tiempo

y casi imposible de imitar.

Por otra parte, el mayor incoveniente en el uso del patrón de vasos de

la retina como característica biométrica radica en la etapa de adquisición to-

davía percibida por el usuario como invasiva e incómoda. Hoy en día, existen

mecanismos para obtener imágenes digitales de manera instantánea a través

de cámaras no invasivas pero estos avances requieren a su vez una mayor toler-

ancia a variaciones en la calidad de la imagen adquirida y, por tanto, métodos

computacionales más elaborados que sean capaces de procesar la información

en entornos más heterogéneos.

En esta tesis se presenta un nuevo sistema de autenticación automático us-

ando el árbol retiniano como característica biométrica. El objetivo es diseñar y

desarrollar un patrón biométrico robusto y compacto que sea fácilmente mane-

jable y almacenable en dispositivos móviles de hoy en día como tarjetas con

chip. La plantilla biométrica desarrollada a partir del árbol retiniano consiste

en sus puntos característicos (bifurcaciones y cruces entre vasos) de forma que

no sea necesario el almacenamiento y procesado de todo el árbol para realizar

la autenticación.
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Metodología de trabajo

El primer paso en el desarrollo de esta tesis ha sido la realización de un

estudio bibliográ�co en el campo de la biometría de forma que se han analiza-

do y revisado las técnicas más comunes de autenticación de individuos medi-

ante diversos paradigmas. Se ha hecho un mayor hincapié en el estudio de los

paradigmas biométricos correspondientes a características físicas sobre las de

comportamiento por ser las más implantadas y las más ajustadas al tema de

esta tesis.

Una vez hecho el análisis de técnicas presentes en el campo, se ha realizado

un estudio inicial que avale la adecuación del uso del patrón retiniano como

característica biométrica. Para ello y tras el repaso a las justi�caciones médicas

y �siológicas, se realiza un pequeño sistema de autenticación que utilice el

árbol retiniano en su conjunto como método de autenticación y también unos

primeros experimentos que justi�quen el uso de la retina para tal �n.

El siguiente paso consiste en el desarrollo de una metodología de extrac-

ción del patrón biométrico basado en el árbol retiniano. En este caso, el pa-

trón consistirá en los puntos característicos de dicho árbol. Se presentan dos

metodologías que serán analizadas y comparadas, una basada en el método de

extracción de crestas en imágenes y otra basada en la segmentación inicial del

árbol retiniano. Una vez extraído el patrón, se diseña un sistema de registro

y emparejamiento basado en puntos cracaterísticos. Para ello, se modelan las

transformaciones geométricas que puedan producirse en la fase de adquisición

y se diseña un método de búsqueda en el espacio de transformaciones para

encontrar aquélla que sea capaz de emparejar el mayor número de puntos.

Para completar la parte metodológica se realiza un extenso estudio sobre

métricas de similaridad que permita discriminar entre comparaciones de pa-

trones del mismo o diferentes individuos. Todas las metodologías propuestas
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en cada etapa del proceso, son revisadas y estudiadas mediante evaluación

experimental empleando para ellos una base de datos de imágenes digitales

de retina especí�camente diseñada para evaluar sistemas de autenticación en

entornos heterogéneos y de calidad variable.

Contribuciones y conclusiones

En esta tesis se presenta un sistema automático de autenticación basado

en el árbol retiniano. A modo de enumeración las principales contribuciones

de este trabajo se pueden resumir en:

Estudio de la viabilidad del patrón retiniano como sistema biométrico de

autenticación

Desarrollo de metodologías de obtención y clasi�cación de puntos carac-

terísticos en el árbol retiniano. Esta contribución es también relevante en

el ámbito médico a la hora de diagnosticar patologías mediante el análisis

del árbol retiniano.

Desarrollo de técnicas de registro y emparejamiento para puntos carac-

terísticos

Estudio y creación de métricas de similaridad en el ámbito biométrico

que permitan establecer márgenes de con�anza su�cientes a la hora de

reconocer individuos.

Los resultados experimentales realizados a lo largo del trabajo muestran que

el sistema resulta perfectamente válido para autenticación incluso en entornos

con altos requerimientos de seguridad, como era inicialmente la intención. Así

mismo, el uso de puntos característicos como patrón biométrico permite la

codi�cación de dicho patrón en pequeños dispositivos móviles en contrapartida
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a la alternativa de utilizar una imagen entera como patrón. En resumen, los

individuos pueden ser �elmente caracterizados por un conjunto de puntos de

interés en la retina.

Se desarrollaron dos metodologías para la obtención del patrón retiniano,

una basada en extracción de crestas usada en el sistema inicial de autenti-

cación. La otra aproximación parte de una segmentacón completa del árbol y,

por tanto, supone una aproximación más precisa a expensas de un coste com-

putacional mayor. En general, el método de crestas es su�cientemente bueno y

ofrece un conjunto de puntos caraterísticos �able (en torno a un 90% de tasa

de detección) en un tiempo de computación mucho más limitado.

Se ha diseñado también un algoritmo de emparejamiento de puntos car-

acterísticos que contemple las posibles alteraciones externas que las imágenes

pueden sufrir en la fase de adquisición (transformaciones geométricas, alteraciones

en iluminación, etc.). Para reducir el coste computacional en esta fase, se ha

desarrollado una metodología precisa de clasi�cación de puntos característi-

cos en cruce y bifurcación que, a su vez, supone una mejora considerable de

precisión respecto a las técnicas previas en el ámbito. La reducción total por

comparación es de un 20%, al limitar el emparejamiento entre puntos a aquél-

los clasi�cados de la misma manera. Este aporte es especialmente importante

en tareas como la identi�cación donde un patrón de un usuario es comparado

con todos los patrones almacenados en una base de datos de referencia para

encontrar la identidad de dicho individuo. En este caso, la tarea que se repite

es la de emparejamiento y por tanto es crucial su optimización en términos de

tiempo de computación.

Finalmente, en el estudio de métricas de similaridad se realizó un estudio

sobre normalizaciones de dichas métricas y, como principal aporte, se intro-

dujo un término de control sobre las métricas que sea capaz de ponderar la

in�uencia absoluta del número de puntos emparejados independientemente del

número total de puntos disponibles en los patrones. Este término se introduce
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como resultado de observar que a partir de un cierto número absoluto de pun-

tos emparejados entre dos patrones, la probabilidad de que ambos patrones

pertenezcan al mismo individuo crece exponencialmente.

Los tiempos de ejecución medios en un PC de sobremesa con una arqui-

tectura Pentium IV a 2.4Ghz fueron de 0.542s para la etapa de extracción del

patrón biométrico y de 0.112s para el emparejamiento de patrones.
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Preface

Reliable authentication of persons is a growing demanding service in many

�elds, not only in police or military environments, but also in civilian applica-

tions, such as access control or �nancial transactions. Traditional authentica-

tion systems are based on knowledge (a password, a pin) or possession (a card,

a key). But these systems are not reliable enough for many environments,

due to their common inability to di�erentiate between a true authorized user

and an user who fraudulently acquired the privilege of the authorized user. A

solution to these problems has been found in the biometric based authenti-

cation technologies. A biometric system is a pattern recognition system that

establishes the authenticity of a speci�c physiological or behavioral character-

istic. Authentication is usually used in the form of veri�cation (checking the

validity of a claimed identity) or identi�cation (determination of an identity

from a database of known people, this is, determining who a person is without

knowledge of his/her name).

There exist many authentication technologies, some of them already im-

plemented in commercial authentication packages. Most common biometrics

characteristics are the �ngerprint, perhaps the oldest of all the biometric tech-

niques, hand geometry, face, iris or speech recognition. Nowadays the most of

the e�orts in authentication systems tend to develop more secure environments,

where it is harder, or ideally impossible, to create a copy of the properties used

by the system to discriminate between authorized and unauthorized individu-

xix
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als. In this context, retina blood vessel pattern appears as a very interesting

biometric characteristic. This is an unique pattern in each individual and it is

almost impossible to forge it in a false individual. Of course, the pattern does

not change through the individual's life, unless a serious pathology appears in

the eye. Most common diseases like diabetes do not change the pattern in a

way that its topology is a�ected. Some lesions (points or small regions) can

appear but they are easily avoided in the vessels extraction method that will

be discussed later. Thus, retinal vessel tree pattern can be considered a valid

biometric trait for personal authentication as it is unique, time invariant and

very hard to forge.

On the other hand, the main drawback of the retinal vessel tree pattern

as biometric trait is the acquisition stage, still perceived as not user-friendly.

Nowadays, there are new mechanisms to obtain instant digital images of the

retina through non-invasive cameras but these advances also require higher

tolerance to image variations during the image processing stage.

In this thesis, a novel fully-automatic authentication system is proposed

using the retinal vessel tree pattern as biometric characteristic. The goal is

to develop a robust biometric template extraction and matching methodology

capable of dealing with a more heterogeneous scenario than before. Also, the

template should be as compact as possible to allow for fast computation and,

above all, easy storage in mobile devices (such as ID cards, chips, etc.). A

template is introduced where a set of landmarks (bifurcations and crossovers

of retinal vessel tree) are extracted and used as feature points. A registration

and matching algorithm for feature points is presented along with a study on

similarity metrics for that process.

The experimental results show that the authentication method is capable

of achieving a con�dence band between scores of authorized and unauthorized

individuals in a complex database while using a small but reliable template in

a very short computation time.
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This document is organized as follows. First, an introduction to di�erent

biometric concepts and techniques is presented along with an overview of the

retinal veri�cation background. Second chapter presents a study on the retinal

vessel tree as biometric pattern, �rst from a medical point of view and also in-

troducing the research and results obtained in an early authentication system.

Chapter 3 presents the methodology developed to build the authentication

system including biometric template construction and template matching al-

gorithms. Chapter 4 discusses the experiments aimed to test the proposed

methodologies and their results. Finally, chapter 5 o�ers some conclusions

and a �nal discussion.
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Chapter 1

Introduction

In current society, reliable authentication and authorization of individuals

are becoming more and more necessary tasks for everyday activities or appli-

cations. Just for instance, common situations such as accessing to a building

restricted to authorized people (members, workers,...), taking a �ight or per-

forming a money transfer require the veri�cation of the identity of the individ-

ual trying to perform these tasks. When considering automation of the identity

veri�cation, the most challenging aspect is the need of high accuracy, in terms

of avoiding incorrect authorizations or rejections. While the user should not

be denied to perform a task if authorized, he/she should be also ideally in-

convenienced to a minimum which further complicates the whole veri�cation

process [77].

With this scope in mind, the term biometrics refers to identifying an

individual based on his/her distinguished intrinsic characteristics. Particu-

larly, this characteristics usually consist of physiological or behavioral features.

Physiological features, such as �ngerprints, are physical characteristics usually

measured at a particular point of time. Behavioral characteristics, such as

speech or handwriting, make reference to the way some action is performed by

every individual. As they characterize a particular activity, behavioral biomet-

1
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rics are usually measured over time and are more dependant on the individual's

state of mind or deliberated alteration. To reinforce the active versus passive

idea of both paradigms, physiological biometrics are also usually referred to as

static biometrics while behavioral ones are referred to as dynamic biometrics.

The term a biometric is also used to refer to a speci�c way of recognizing

persons. Therefore, face and iris recognition are considered two di�erent bio-

metrics. The term also can refer to samples of the features to recognize such

as a �ngerprint image or handwritten text samples as shown in Figure 1.1.

Figure 1.1: Samples of distinct biometrics: physiological (�ngerprints) and behav-
ioral (handwriting)

Prior to the arousal of biometrics, personal authentication has been a prob-

lem in many �elds as described above and many solutions were adopted to over-

come it. Traditionally speaking, there are three modes of authentication [63]

(Figure 1.2):

1. Possessions: Physical objects owned by the individual such as ID cards

or keys. It represents something the user has.

2. Knowledge: Some information that only the individual is supposed to

know and, therefore, it must be kept secret. The most typical example
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are passwords. It represents something the user knows.

3. Biometrics: As discussed above, they are physical or behavioral charac-

teristics inherently related to any individual. These characteristics typi-

cally have to be unique for every person in order to di�erentiate between

them. It represents something the user is/does.

Figure 1.2: Illustration of the three typical modes of authentication.

These authentication modes can be used in combination, especially in au-

tomated authentication. For example, a credit card combines possession and

knowledge while a passport uses �ngerprint and face information.

The traditional authentication systems based on possessions or knowledge

are widely spread in the society but they have many drawbacks that biometrics

try to overcome. For instance, in the scope of the knowledge-based authenti-

cation, it is well known that password systems are vulnerable mainly due to

the wrong use of users and administrators. It is not rare to �nd some admin-

istrators sharing the same password, or users giving away their own to other

people. One of the most common problems is the use of easily discovered pass-

words (child names, birth dates, car plate,...). On the other hand, the use of
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sophisticated passwords consisting of numbers, upper and lower case letters

and even punctuation marks makes it harder to remember them for an user.

Nevertheless, the password systems are easily broken by the use of brute

force where powerful computers generate all the possible combinations and

test it against the authentication system.

In the scope of the possession-based authentication, it is obvious that the

main concerns are related to the loss of the identi�cation token. If the token

was stolen or found by another individual, the privacy and/or security would

be compromised.

Biometrics overcome most of these concerns while they also allow an easy

entry to computer systems to non expert users with no need to recall complex

passwords. Additionally, commercial webs on the Internet are favored not

only by the increasing trust being transmitted to the user but also by the

possibility of o�ering a customizable environment for every individual along

with the valuable information on personal preferences for each of them.

According to di�erent authors [17, 92] there are some properties that a

particular biometric needs to possess in order to be considered a valid biometric

for the authentication task:

Universality : All individuals should have the characteristic.

Uniqueness : Two di�erent individuals should not be the same in terms

of the characteristic.

Permanence: The characteristic should be invariant over time.

Collectability : The characteristic should be measurable with some device.

Acceptability : The public in general should not have strong objections

to the measurement of the characteristic.
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Performance: The characteristic should ideally be measured fast and

with a high degree of accuracy.

Circumvention: The biometric characteristic should be hard, or ideally

impossible, to forge or simulate.

These properties de�ne the value for a biometric characteristic with the

goal of developing useful tools to perform the authentication task. Of course,

these properties are not only dependant on the biometric characteristic but

also on the particular application of it for a given authentication system [40].

The authentication based on biometrics can be classi�ed into two main

categories according to the process of recognizing the individual biometric

pattern:

1. Identi�cation. The biometric system answers the question Who is this

person?. We have the biometric pattern for that person available and

we need to compare it to the patterns of all the known individuals to

determine who he/she is (if any).

2. Veri�cation. The biometric system answers the question Is this person

the one he/she claims to be?. The biometric data of the individual is

compared to the previously stored data from the individual whose iden-

tity is claimed.

1.1. Biometric system structure

One of the key aspects for a biometric system is its ability to perform the

authentication task in a fully automated way. While it is sometimes easy to

perform manually a recognition task based on an ID document by comparing

the photograph with the individual carrying it, it is a tedious and hard task in
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many other situations such as handwriting veri�cation or �ngerprint match-

ing. This is why biometric systems are expected to run automatically using

computational resources. Figure 1.3 illustrates a generic automated biometric

system.

The way to handle the automation in a biometric system can be brie�y

discussed for every stage in the authentication process:

The �nal users need to be initially enrolled in the system. The stored

data for any of them will be compared to the acquired data during ev-

ery access. It is obvious that there must be devices able to obtain the

required biometric data (�ngerprint scanner, voice recorder, etc.). The

acquisition of these data requires some tolerance in the device in order to

allow the reproducibility of the captured information at di�erent times.

It is also needed to consider the quality of the data during the enroll-

ment stage. This is, of course, related to the �rst stage. The quality will

depend, among any other factors, on the number of samples taken from

each user. The reason is that the conditions around the acquisition may

vary over time. Additionally, several samples enable to proceed using

average data. Due to all of these factors, the enrollment procedure usu-

ally takes longer than the subsequent authentication accesses. Therefore,

sometimes the procedure is optional or controlled by dynamic thresholds.

This allows to associate any threshold to a particular access level to the

system. In general, there exists a measure to evaluate quantitatively the

enrollment stage, the Failure To Enroll Rate (FTER). This parameter is

calculated as follows:

FTER =
Insatisfactory number of enrollments

Total number of enrollments
(1.1)

This parameter is conditioned by several factors such as the job of the

users. Consider for instance a person using his/her hands in hard tasks.
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Figure 1.3: Illustration of the typical fully automated biometric system schema.
The main stages of the authentication process are acquisition, biometric pattern
extraction, comparison and decision.
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He/she may have more di�culties to get his/her �ngerprint recognized.

The biometric data acquired are usually raw information without any

further processing: images, sound recordings, time between keystrokes,

etc. These biometric samples have to be processed in order to be used for

recognition. This is required mainly because of their size and complexity.

To reduce the size and complexity of the samples, the main characteristics

(or features) must be obtained. Some example of feature extraction may

be: noise removal from images, �ltering of particular voice frequencies,

extraction of maxima and minima values in a signal over time, etc. This

processed information is usually called biometric template or pattern and

it will consist of the data to be compared and analyzed in the recognition

process. This is the reason why they must be a compact and reliable

representation [8].

The extracted patterns in the enrollment and authentication stages could

be di�erent. In the latter, patterns may be less complex or smaller to

speed up the process. Nevertheless, in the matching stage both patterns

(the originally stored for an user and the newly acquired for the current

access try) are compared in order to establish a degree of correlation

between them.

The �nal stage in the biometric authentication process is the analysis of

the patterns correlation to perform the �nal identi�cation/veri�cation of

the user:

• Measurement of similarity (s) between patterns: unlike the tradi-

tional systems based on passwords or PINs, which are usually binary

(Yes/No, Correct/Incorrect), the biometric systems establish a sim-

ilarity score generally in a particular interval. The most typical are

normalized value ranges [41]: [-1,1], [0, 1], [0,100], etc. The advan-

tage of the score system is the generation of a measurement of the
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degree of similarity between patterns instead of using a categorical

value.

• Establishing a threshold (T ). Once the similarity measure has been

obtained, it is compared to a previously calculated threshold score

which can vary between users.

• Final decision. The threshold establishes the minimum similarity

(or maximum dissimilarity) to accept the hypothesis of both pat-

terns belonging to the same individual. It may be the case that both

thresholds are used and, if a particular similarity between both is

obtained, a �nal decision can not be taken.

1.2. Evaluation of performance in biometric sys-

tems

The evaluation of a biometric application performance is a crucial aspect

in the development of this kind of systems. The speci�cations or the domain

where a particular biometric authentication system is going to be installed

usually require maximum allowable error rates. There are several types of

error measures or speci�cations and any of them might be more or less valuable

in an speci�c case. Generally speaking, in a veri�cation environment, when

we are comparing two biometric patterns to conclude if they belong to the

same person or not, there are two possible associated errors to the matching

process [89]:

False Match (FM): This error occurs when the system concludes that

both patterns come from the same identity, when in reality they belong

to di�erent individuals. The frequency of occurrence associated to this

error is called False Match Rate (FMR).
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False Non-Match (FNM): This error occurs when the system concludes

that both patterns do not come from the same identity, when in reality

they belong to the same individual. The frequency associated to this

error is called False Non-Match Rate (FNMR).

As previously discussed, the match or non-match between two biometric

patterns is usually dependant on a similarity score s. A threshold T is es-

tablished such as two patterns are considered to match if s > T . The score

could be expressed in terms of distance rather than similarity. In this case the

condition to accept the match would be s < T . The challenge is to try to keep

the reliability of the score as high as possible. The score is a�ected by sev-

eral factors, such as external conditions in the acquisition or data processing.

Thus, the analysis of the score distributions between biometric samples (both

belonging and not belonging to the same individual) is a key factor to mini-

mize the possible error rates of the matcher by setting an appropriate value

of T . In Figure1.4 an example of score distribution is shown for Match and

Non-Match groups.

Figure 1.4: Score distribution for match and non-match comparisons. p indicates
the probability of obtaining any particular score for every distribution. On average,
the non-match scores are lower than the match ones. The value of the decision
threshold T determines the False Matching and Non-Matching Rates.
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In biometrics, the terms Accept and Reject are commonly used in contrast

to Match and Non-Match. The acceptance/rejection terminology refers to

the acceptance or rejection of a subject to access the system protected by

the biometric application. The di�erentiation is useful in environments where

several matching process take place to �nally accept or reject the individual.

Like in the match terminology, there are two errors associated to acceptance

and rejection: False Accept (when the user is granted the access when he should

have been denied) and False Reject (when the user is denied to access and he

should have been authorized). The frequencies of both errors are denominated

False Acceptance Rate (FAR) and False Rejection Rate (FRR).

As the error rates are tuned by the threshold T the typical error represen-

tations are computed varying the threshold. Two typical representations of

error rates are the FAR- FRR curves (Figure 1.5) and the ROC curve (Figure

1.6) which expresses the trade-o� between FAR and FRR.

From this representations, numerical values are usually extracted to sum-

marize the performance of the biometric application in a single value. The

most typical value is the Equal Error Rate (EER) which is the error value

where FAR = FRR.

1.3. Biometric recognition review

Although biometric technology seems to belong in the 21st century, the

history of biometrics goes back thousands of years. There are records of use

of biometric characteristics as a means of identi�cation since the 8th century,

the date of documents and clay sculptures found in China and containing

�ngerprints in them. Fingerprints have been also used and studied along the

centuries but not pro�ciently. Around 1890, �ngerprints started to be treated

as a systematic way of identi�cation by Sir Richard Edward Henry of Scotland
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Figure 1.5: Example of FAR curve and FRR curve versus decision threshold. As
the threshold is raised, the rate of false acceptances is lowered but the false rejections
are increased.

Figure 1.6: ROC curve expresses graphically the trade-o� between both error rates.



1.3 Biometric recognition review 13

Physiological Behavioral

Common

Face Signature
Fingerprint Voice

Hand geometry
Iris

Uncommon

DNA Gait
Ear shape Keystroke
Odor Lip motion
Retina

Skin re�ectance
Thermogram

Table 1.1: The most commonly used biometrics (Common) and those biometric
identi�ers either least used or in early stages of research (Uncommon) classi�ed into
physiological or behavioral characteristic.

Yard using studies from Sir Francis Galton. In 1941, Murray Hill from Bell

Laboratories began to work in the voice recognition �eld. The employment of

biometrics as a modern technology applied to commercial tasks was started

around the 70s when the �rst automatic �ngerprint recognition systems were

developed. In the last two decades, interest in biometrics has been unrelently

growing gathering attention and funds from public and private organizations

around the world.

This growing interest in biometrics has led to the arousal of many di�er-

ent biometric characteristics used as identity recognition patterns. There are

many characteristics widely studied and established while many others are in

the initial stages of development. Table 1.1 summarizes the most known bio-

metrics classifying them attending to two criteria: frequency of use (or degree

of development) and nature (physiological/behavioral) [7].

Common physiological biometrics have been extensively developed for many

years. The behavioral is a younger paradigm where only signature and voice
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can be considered to be in a mature state of development. In this work an au-

thentication system based on retinal fundus is proposed, developed and tested

using computer vision and pattern recognition techniques. Both �elds have

been closely related to biometric recognition. Usually, the recognition strate-

gies applied to well-established biometric characteristics are the starting point

to develop newer approaches for the modern or uncommon biometrics. Thus,

in this section we introduce a brief review on the techniques developed for some

of the most widely researched physiological biometrics and some of the emerg-

ing techniques. After the review, retinal biometrics will be brie�y introduced

to place it in relation to other physiological biometrics.

1.3.1. Fingerprint recognition

The �ngerprints are morphological biometric characteristics. Their main

features are a lines called ridges that are skin regions in the �nger above other

depressed zones of variable width called valleys. These lines appear in the

human being due to a random process rather than genetic so identical twins

can be distinguished by their �ngerprints [14]. They are also time invariant:

they grow as the human grows but the orientation and relative position between

ridges is not distorted at any time. Generally speaking, there are three broad

classes of �ngerprint recognition techniques:

Image Techniques : this class of techniques is mainly based on computing

image correlation or some transform [75,86].

Feature Techniques : this class extracts some features from the initial data

and builds a new representation of the �ngerprint based on them [9,57].

Hybrid Techniques : techniques in this class combine feature and image

processing. [1, 20,70]
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The vast majority of the �ngerprint recognition approaches is based on

feature extraction, in particular landmarks on the ridge lines called minutiae

(Figure 1.7) [2]. There are two main kinds of minutiae:

Ridge ending : feature de�ned as the point where the ridge abruptly ends.

Ridge bifurcation: feature de�ned as the point where a ridge forks into

two or more ridges.

Figure 1.7: Schema of the ending and bifurcation minutiae.

Both features are unequivocally de�ned by their location (spatial coordi-

nates in a reference coordinate system of the image) and orientation (forming

an angle with some reference axis). Roughly, every three minutiae found on

a �ngerprint, two of them will be ridge endings and one will belong to the

bifurcation category. The total number of minutiae in a normal �ngerprint is

approximately between 40 and 100. Figure 1.8 illustrates a �ngerprint with

some marked minutiae.
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Figure 1.8: Minutiae associated to a particular �ngerprint.

Once acquired the �ngerprint image using some of the multiple available

devices (optical sensors [33], thermal sensors [55], ultrasounds [4], etc.), the

authentication task comprises the typical processing stages:

Preprocessing of the �ngerprint image

Thinning

Minutiae extraction

Minutiae matching

The preprocessing of the �ngerprint image is a requirement after the ac-

quisition due to the inherent heterogeneity of this process. Illumination condi-

tions, �nger pressure on the sensor or humidity conditions are just a few of the

many aspects to consider during the acquisition. Due to the high variability,

the preprocessing stage is required to obtain a better and more homogeneous
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representation of the �ngerprint in order to enforce the repeatability on the

feature extraction stage. The �rst step is the image enhancing. In the litera-

ture several directional �lters were applied to enhance the ridges and remove

spurious points in the image [37]. The direction of the �lters is usually deter-

mined by the orientation �eld, which approximates the ridge line orientations

based on the property that, locally, there are not signi�cant variations in the

orientation. Another additional approach in the preprocessing stage is the

binarization of the image, labelling ridge pixels with 1 value and background

pixels with a 0. One of the most prominent algorithms to maximize separa-

bility between two classes is presented in [69]. The boundaries of the image

without ridges or with a very low density are removed, thus remaining the

region of interest (ROI) of the �ngerprint. Figure 1.9 illustrates the result

obtained for each of the discussed preprocessing techniques.

After these preprocessing stages, the intensity values on the ridges are ho-

mogeneous. By performing a thinning, the width of the ridges will be homo-

geneous too (one pixel) and will make easier the feature extraction task [26].

The thinning processing is performed as a morphological operation search-

ing matches of a structuring element (or pattern) in the image (Figure 1.10).

Prior to feature extraction, it is useful to cleanse the thinned �ngerprint by

removing spurious branches that appeared during the thinning process and

joining broken ridges, this is, ridges with close end points presenting similar

orientations.

The minutia extraction stage avoids the need to store all the image and

reduces the biometric pattern to small but signi�cant information. Once the

�ngerprint is thinned, the minutiae are extracted by analyzing the neighbor-

hood in every pixel P labelled as ridge. The number of neighbors around P ,

N(P ), also belonging to a ridge, will determine the nature of P . Therefore, if

N(P ) = 1, P is a ridge end point as it only has one neighbor. If N(P ) > 2

then P is a bifurcation. Figure 1.11 illustrates an example of each case.
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Figure 1.9: Result of applying consecutively di�erent techniques to the �ngerprint
image prior to the feature extraction.

To obtain a similarity score between two sets of minutiae and due to the

transformations a �ngerprint image from the same individual can su�er from

one acquisition session to another (�nger pressure, movement, orientation to

the sensor, etc.), both sets have to be aligned to match minutiae between them.

The classic approach is to force two minutiae to match, calculate the transfor-

mation parameters derived and apply it to the rest of the minutiae. The more

minutiae from both sets matched (being close and with similar orientation),

the better the transformation is. Once the best matching parameters are se-

lected, the �nal stage assigns a similarity score between �ngerprints. This score

will be based on the number of matched minutiae and the individual similarity

for each pair [82]. There are periodically competitions held to test di�erent

�ngerprint veri�cation techniques. The best reported error rates in the last
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Figure 1.10: Result of applying a thinning algorithm on the previously preprocessed
image.

Figure 1.11: Detection and classi�cation of minutiae. The number of neighbors of
the middle point determines its class of minutia: end point or bifurcation.

�ngerprint veri�cation contest (FVC 2006) [29] are in the range 2.2%− 2.5%.

1.3.2. Iris recognition

The iris is a membrane in the eye, responsible for controlling the amount of

light reaching the retina. It is important to note that, although both belong to

the eye, iris and retina are totally di�erent biometric characteristics and they

are even acquired in a di�erent way. The iris consists of pigmented �ber and

vessel tissue known as stroma. It is the most forward portion of the eye and

the only one seen on super�cial inspection. The stroma connects a sphincter

muscle (sphincter pupillae), which contracts the pupil, and a set of dilator
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muscles (dilator pupillae), which opens it (Figure 1.12).

(a) (b)

Figure 1.12: (a) Schema of human eye structure (b) Image of a real iris.

In the �eld of identity veri�cation, uniqueness aside, the use of iris as bio-

metric characteristic o�ers several advantages: it is a very stable characteristic

in case of accident; it shows slight variations in respect to the opening range

in varying illumination conditions and in �xed illumination conditions making

it easier the liveness detection task; Faking an iris is very hard and normally it

would take surgery; also, data can be acquired in a non-invasive way through

regular cameras.

Since the 80s decade, iris recognition has been widely researched. In 1994,

Professor John G. Daugman patented algorithms for iris recognition [22] that

served as reference for most of the research in this �eld [16,35,45,54,66].

Nevertheless, just like in the case of �ngerprint recognition, once acquired

the iris image a preprocessing step is needed. The main goal is the localiza-

tion and segmentation of the iris area. This is usually achieved in 4 stages

(Figure1.13):

1. Location of the iris within the image. The image areas to look for are

the brightest and darkest as they correspond to the zones surrounding
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(a) (b)

(c) (d)

Figure 1.13: (a) Original image (b) Image with sampled points to locate external
border (c) Sampled points for the location of internal border (zoom 4x) (d) Iris
segmentation result

the iris. Thus, a binarization of the image is performed.

2. De�nition of the external border. The border is located by selecting

points in a grid that maximize the intensity variation in its neighborhood

The grid is de�ned by a radius to the iris center. It is usually performed

iteratively to re�ne the location.

3. De�nition of the internal border. The process is similar to the location

of the external border but only considering the resulting area of the

previous stage.

4. Scale normalization. This is applied taking into account the distance be-

tween the subject and the camera and dilation/contraction of the pupil.
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Once the iris is extracted, the most common approaches to de�ne a bio-

metric template are based in Gabor �lters or Wavelet transforms. The �rst

step in the Gabor �lter approach is to obtain a compact representation of the

iris area. Figure 1.14 illustrates the transformation. By sampling radius and

angle, the iris is converted to square images where columns represent radio

values and rows represent angle intervals.

Figure 1.14: Transformation of the iris into a rectangular image.

(a)

(b)

Figure 1.15: (a) Pro�le and associated iris signature using a single circumference
(b) Pro�le of concentric circumferences and their average signature.
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The transformed image is divided into several blocks that might be over-

lapped and each block is applied a bank of Gabor �lters varying in scale and

orientation, obtaining a coe�cient value for every di�erent block and �lter.

The coe�cients are usually binarized (0 if negative and 1 if positive or null)

to reduce the complexity of the �nal template.

The wavelet approach is just based in its zero-crossing representation along

a pro�le of the iris. The pro�le can be obtained by a circumference (Figure

1.15(a)) or the average of several circumferences (Figure 1.15(b)).

The error rates of the iris recognition are in the range 1.5%− 2.5% [7].

1.3.3. Face recognition

Face appearance is a particularly interesting biometric because of its exten-

sive use in the everyday life. First of all, it is the primary human recognition

characteristic that humans themselves use and this facilitates its acceptance.

Also, as it has been extensively used since the photography and conventional

optical imaging devices easily capture faces, there are large databases to re-

search with [96].

Face recognition systems are often required to deal with a wide variety

of image acquisition devices and domains. Generally speaking, the common

acquisition modes can be classi�ed as:

Single image. Obtained through an analog or digital camera. It is im-

portant to cope with this mode to process legacy documents.

Video sequence. Used in surveillance domains. Regular camera footage

has proved not to be very useful due to its very low resolution.

3D image. Least used but in growing demand, some recognition ap-

proaches are based on face geometry and require the face to be acquired
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using 3D data. The 3D acquisition techniques most commonly used are

stereo, structured light or phase-based ranging.

Near infrared. Useful poor lighting conditions to enhance the face detec-

tion process.

In general, face recognition systems proceed by initially detecting the face

in the scene, normalizing parameters in terms of scale and rotations. Many

models to �nd faces have been developed [88,93,95].

Once a face is located and extracted, the approaches to perform a charac-

terization and recognition are divided in two main groups [10]:

Face appearance. The main idea with this approach is to "compress" face in-

formation into some small but characteristic representation by removing noise,

lighting and other unintended external information. The face is transformed

into a space spanned by basis image functions. These functions, known as

eigenfaces, are the eigenvectors of the covariance matrix of a set of training

images (Figure 1.16(a)) [44,64,94].

Face geometry. The idea here is to model the face as a compound of face

features such as eyes, nose, mouth and geometric relationships between them.

Face recognition is then performed in terms of general matching feature graphs

(Figure 1.16(b)) [46,62,85].

Although considerable e�ort has been done in this �eld, face recognition

is yet not su�ciently accurate to accomplish large-population identi�cation.

In particular, determining the identity of two photographs of the same per-

son acquired at di�erent times (and, possibly, di�erent locations) is challenged

by a variety of issues. The four main categories would be: physical appear-

ance, including quick changes in facial expression such as blinking, emotions,

speech, etc. and slower changes due to aging e�ects or external factors like

make-up, glasses, or facial hair; acquisition geometry as the face location, in-
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(a) (b)

Figure 1.16: (a) Example of eigenfaces. Every face image is decomposed in a linear
combination of eigenfaces. (b) Example of the salient features located in a face and
their geometric relations.

plane rotation, scale, etc., are totally unknown and highly variable parameters;

imaging conditions specially the lighting conditions that can greatly vary the

intensity values of several face features depending on the light focus; compres-

sion artifacts derived from traditional compression algorithms (like JPEG) not

designed to preserve face appearance.

Several competitions are organized periodically to test the face recognition

task performance of current systems. The best error rates for fully automatic

systems are in the range 3− 5% [61].

1.3.4. Hand geometry

Hand geometry biometrics refer to geometric features or invariants of the

human hand. These features typically include width and length of �ngers,

width of the palm, aspect ratio of the palm and so on [76,80]. Hand geometry

does not usually involve the extraction of detailed features such as wrinkles on

the skin, leaving them to other domains as palm print or �ngerprint veri�ca-

tion. Table 1.2 shows an example of a feature set for characterization of the
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hand geometry. These features do not vary signi�cantly across the population,

but nevertheless they can be used to authenticate the identity of an individual.

Each of these features is not very descriptive by itself and therefore the hand

geometry recognition presents high error rates in terms of False Acceptances

and False Rejections. The combination of features to obtain higher-level data

in order to reduce error rates is a challenging task not very approached to. Tra-

ditional hand recognition systems rely on the hand features alone and are very

widespread despite their relatively high error rates due to the user-friendliness.

Feature Description

F1 Width of thumb at second phalanx
F2 Width of index �nger at third phalanx
F3 Width of index �nger at second phalanx
F4 Width of middle �nger at third phalanx
F5 Width of middle �nger at second phalanx
F6 Width of ring �nger at third phalanx
F7 Width of ring �nger at second phalanx
F8 Width of little �nger at third phalanx
F9 Length of index �nger
F10 Length of middle �nger
F11 Length of ring �nger
F12 Length of little �nger
F13 Width of palm at the base four �ngers
F14 Width of palm at base of thumb
F15 Thickness of �ngers at second phalanx
F16 Thickness of �ngers at third phalanx

Table 1.2: Example of a set of 16 features for hand geometry [42].

Although the acquisition of the hand geometry by means of di�erent sensors

(e.g., thermal) could be more reliable, most of the systems still rely on the

acquisition of a visual image of the hand [98].

Figure 1.17 shows a prototype of a hand geometry imaging system [42]

capturing top and side views of the hand placed in a acquisition platform and

a depiction of the features detailed in Table 1.2. The top view is necessary to
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measure lengths and widths of �ngers as well as palm base while the side view

is necessary to measure the thickness of hand/�ngers. In the �gure, it can be

observed as the side image is obtained via a 45-degree mirror.

(a) (b)

Figure 1.17: (a) Hand geometry acquisition devices capturing top and side of the
hand. (b) Features referred to in Table 1.2.

In the enrollment stage, two acquisitions of the hand are typically obtained

and their results "averaged" to store a reference template. The template con-

sists of a series of features coded in a vector. The matching process compares

the newly acquired feature vector (Q) and the stored reference one (R). In [42],

a series of similarity metrics are explored (absolute, weighted absolute, Eu-

clidean and weighted Euclidean), corresponding to the following expressions:

d∑
j=1

|qj − rj| < εa (1.2)

d∑
j=1

|qj − rj|
σj

< εwa (1.3)

√√√√ d∑
j=1

(qj − rj)2 < εe (1.4)
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√√√√ d∑
j=1

(qj − rj)2

σ2
j

< εwe (1.5)

where Q = (q1, q2, q3, ..., qd represents the query feature vector of the hand

whose identity is to be veri�ed and R = (r1, r2, r3, ..., rd) is the reference

feature vector stored for the claimed identity. σ2
j is the variance of the jth

feature component of the vectors computed over all enrolled templates. This

variance weights the importance of every feature. The higher the variability

of that feature among the population the more signi�cant is its information.

The veri�cation is accepted as positive if the distance between Q and R is

less than a threshold value: εa, εwa, εe, εwe for each respective metric. These

metrics are very commonly used in biometrics and for this particular case of

hand geometry veri�cation, the Euclidean weighted metric performed better

than the rest of them.

1.3.5. Emerging biometrics

Thermograms

A thermogram measures images in the bands of the infrared spectrum,

sometimes supplemented by visible spectrum imagery. Thermograms applied

to biometrics are images of the parts of the body in the short (0.9-1.7 µm), mid

(3-5 µm) and long (8-12 µm) infrared wavelengths. Thermograms, are highly

distinctive. Even identical twins have di�erent thermograms. Developed in

the mid-1990s, thermography works much like facial recognition, except that

an infrared camera is used to capture the images. The advantages of facial

thermography over other biometric technologies are that it is not intrusive, no

physical contact is required, every living person presents an usable image, and

the image can be collected on the �y. Also, unlike visible light systems, infrared

systems work accurately even in dim light or total darkness [72]. Figure1.18
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illustrates samples of thermogram images.

Figure 1.18: Example of facial thermograms.

Since the structures that are being imaged are beneath the skin, this bio-

metric is practically impossible to forge or alter. It is also robust to aging but

its main drawback is the high cost of the sensors.

Ear recognition

Ears were originally a part of the Bertillon system of human measurement.

They were classi�ed by trained observers into one of a few di�erent ear types

to be used as an index in a larger biometric system. In recent years, there has

been an increase of the attention dedicated to the ear shape as an automated

biometric. Some of the techniques include edge-�nding approaches [11, 12] to

extract the principal structures of the ear for sake of comparison. In these

works, it has also been explored the use of thermograms (i.e. infra-red) as

seen before to achieve invariance to illumination and robustness to occlusions,

mainly due to hair.

This biometric is specially interesting in the Human Identi�cation at a Dis-

tance (HID) project [21]. In [87], an analysis of principal components similar

to the eigenfaces approach is performed. The recognition rates are not as good

as those using face alone [7]. Figure 1.19 shows the �ve di�erent ear mask

images that were tried in that work.
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Figure 1.19: Five di�erent ear mask sizes considered in [87].

1.3.6. Retina biometrics

Identity veri�cation based on retina uses the blood vessels pattern present

in the retina (Figure1.20).

Figure 1.20: Schema of the retina in the human eye. Blood vessels are used as
biometric characteristic.

Retinal blood vessel pattern is unique for each human being even in the

case of identical twins. Moreover, it is a highly stable pattern over time and

totally independent of genetic factors. Also, it is one of the hardest biometric

to forge as the identi�cation relies on the blood circulation along the vessels.

These property make it one of the best biometric characteristic in high security

environments. Its main drawback is the acquisition process which requires

collaboration from the user and it is sometimes perceived as intrusive. As it

will be further discussed, some advances have been done in this �eld but, in

any case, this continues to be the weak point in retinal based authentication.
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Robert Hill introduced the �rst identi�cation system based on retina [36].

The general idea was that of taking advantage of the inherent properties of the

retinal vessel pattern to build a secure system. The system acquired the data

via a scanner that required the user to be still for a few seconds. The scanner

captured a band in the blood vessels area similar to the one employed in the

iris recognition as shown in Figure 1.21.

Figure 1.21: Illustration of the scan area in the retina used in the system of Robert
Hill.

The scanned area is a circular band around blood vessels. This contrast in-

formation of this area is processed via fast Fourier transform. The transformed

data forms the �nal biometric pattern considered in this system. This pattern

worked good enough as the acquisition environment was very controlled. Of

course, this is also the source of the major drawbacks present in the device: the

data acquisition process. This process was both slow and uncomfortable for the

user. Moreover, the hardware was very expensive and, therefore, it rendered

the system hardly appealing. Finally, the result was that the use of retinal

pattern as a biometric characteristic, despite all its convenient properties, was

discontinued.

Nowadays, retinal image cameras (Figure 1.22) are capable of taking a pho-

tograph of the retina area in a human eye without any intrusive or dangerous

scanning. Also, currently, the devices are cheaper and more accessible in gen-
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eral. This technology reduces the perception of danger by the user during the

retina acquisition process but also brings more freedom producing a more het-

erogeneous type of retinal images to work with. The lighting conditions and

the movement of the user's eye vary between acquisitions. This produces as

a result that previous systems based on contrast information of reduced areas

may lack the required precision in some cases, increasing the false rejection

rate.

Figure 1.22: Two retinal image cameras. The retinal image is acquired by taking
an instant photograph.

In Figure 1.23 it can be observed two images from the same person acquired

at di�erent times by the same retinograph. There are some zones in the retinal

vessels that can not be compared because of the lack of information in one of

the images. Thus, to allow the retinal biometrics to keep and increase the

acquisition comfortability, it is necessary to implement a more robust method-

ology that, maintaining the extremely low error rates, is capable to cope with

a more heterogeneous range of retinal images.

This thesis is focused on the proposal of a novel personal authentication

system based on the retinal vessel tree. This system deals with the new chal-

lenges in the retinal �eld where a more robust pattern has to be designed in
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Figure 1.23: Example of two digital retina images from the same individual acquired
by the same retinal camera at di�erent times.

order to increase the usability for the acquisition stage. In this sense, the

approach presented here to the retinal recognition is closer to the �ngerprint

developments than to the iris ones as the own structure of the retinal vessel

tree suggests. Brie�y, the objectives of this work are enumerated:

Empirical evaluation of the retinal vessel tree as biometric pattern

Design a robust, easy to store and process biometric pattern making use

of the whole retinal vessel tree information

Development of an e�cient and e�ective methodology to compare and

match such retinal patterns

Analysis on similarity metrics performance to establish reliable thresh-

olds in the authentication process

1.4. Outline

To deal with the suggested goals, the rest of this document is organized as

follows. Second chapter introduces a study on the retinal vessel tree as biomet-

ric pattern, �rst from a medical point of view and also presenting the research
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and results obtained in an early authentication system. Chapter 3 presents

the methodology developed to build the authentication system, including bio-

metric template construction and template matching algorithms. Chapter 4

discusses the experiments aimed to test the proposed methodologies, including

an analysis of similarity measures. Finally, chapter 5 o�ers some conclusions

and �nal discussion.



Chapter 2

Retinal vessel tree as biometric

characteristic

Awareness of the uniqueness of the retinal vascular pattern dates back to

1935 when two ophthalmologists, Drs. Carleton Simon and Isodore Goldstein,

while studying eye disease, realized that every eye has its own unique pattern

of blood vessels. They subsequently published a paper on the use of retinal

photographs for identifying people based on their blood vessel patterns [78].

Later in the 1950s, their conclusions were supported by Dr. Paul Tower in

the course of his study of identical twins. He noted that, of any two persons,

identical twins would be the most likely to have similar retinal vascular pat-

terns. However, Tower showed that, of all the factors compared between twins,

retinal vascular patterns showed the least similarities [83].

Blood vessels are among the �rst organs to develop and are entirely derived

from the mesoderm. Vascular development occurs via two processes termed

vasculogenesis and angiogenesis. Vasculogenesis, this is, the blood vessel as-

sembly during embryogenesis, begins with the clustering of primitive vascular

cells or hemangioblasts into tube-like endothelial structures, which de�ne the

35
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pattern of the vasculature. In angiogenesis, new vessels arise by sprouting of

budlike and �ne endothelial extensions from preexisting vessels [68].

The application of fractals and fractal growth processes to the branch-

ing blood vessels of the normal human retinal circulation was introduced by

Masters and Platt [60]. A series of papers led to an estimate of the fractal

dimension for the retinal vessels of D = 1.7, which is in good agreement with

the dimension of a di�usion-limited aggregation cluster grown in two dimen-

sions [27]. Other studies [47, 56] have shown that the fractal nature of the

retinal vasculature is independent of age and sex. Many growing, branch-

ing objects can be simulated by computer simulations in which the spatial

dependence of a �eld satis�es the Laplace equation with moving boundary

conditions. Di�usion-limited growth is a class of these models in which the

concentration of di�using particles satis�es the Laplace equation. One such

model is the di�usion-limited aggregation model (DLA) formulated in 1981

by Witten and Sander [91]. The simulation of a DLA yields branching pat-

terns similar to the branching patterns seen in the human retina. The fractal

dimension of di�usion-limited aggregates is usually D = 1.71 for a fractal em-

bedded in a two-dimensional space. In this way, factors controlling retinal

angiogenesis would be thought to obey Laplace equation, with �uctuations in

the distribution of embryonic cell-free, spaces providing the randomness needed

for fractal behavior and for the uniqueness of each individual retinal vascular

pattern [59]. The pattern is therefore consistent with the hypothesis that the

development of retinal blood vessels involves a di�usion process. In [30, 31]

DLA was developed from shear stress as a simple model of vasculogenesis. A

model is proposed in which the formation of the vascular network proceeds

via a progressive penetration of the vessel rami�cation into a capillary mesh.

The driving force is of hydrodynamic origin and results in a Laplacian growth

mechanism. In their model, the growth of both arteries and veins follows the

directions of high shear stress caused by the blood �ow on the endothelium

wall of the preexisting capillary mesh. Their growth is driven by a �eld that
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satis�es the Laplace equation.

In a more recent study [90], retinal vascular pattern images from livestock

were digitally acquired in order to evaluate their pattern uniqueness. To eval-

uate each retinal vessel pattern, the dominate trunk vessel of bovine retinal

images was positioned vertically and branches on the right and left of the trunk

and other branching points were evaluated. Branches from the left (mean 6.4

and variance 2.2) and the right (mean 6.4 and variance 1.5) of the vascular

trunk; total branches from the vascular trunk (mean 12.8 and variance 4.3),

and total branching points (mean 20.0 and variance 13.2) showed di�erences

across all animals (52). A paired comparison of the retinal vessel patterns from

both eyes of 30 other animals con�rmed that eyes from the same animal di�er.

Retinal images of 4 cloned sheep from the same parent line were evaluated to

con�rm the uniqueness of the retinal vessel patterns in genetically identical

animals. This would be con�rming the uniqueness of animal retinal vascular

pattern suggested earlier in the 1980s also by [23].

Taking these results into account, an initial authentication system based on

the retinal vessel tree structure is described in this chapter. This initial system

serves two purposes: �rst, it will be useful to test and validate digital retina

images for the authentication task and, second, it will stand as the starting

point for the �nal authentication system introduced in this thesis.

The authentication system will extract the whole retinal vessel tree struc-

ture from the digital retina images and it will use it as biometric template. As

commented in the introduction, retinal vessel trees will have to be aligned prior

to the matching task in order to avoid distortions between di�erent acquisi-

tion sessions due to the eye movement or the user position. Figure 2.1 shows a

schema of the main stages of the authentication process for this system. The

following sections will discuss such stages: retinal vessel tree extraction, reg-

istration and matching as well as the results of the experiments evaluating its

capabilities as a biometric characteristic.
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Figure 2.1: Schema of the main stages for the authentication system based in the
retinal vessel tree structure.
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2.1. Retinal vessel tree extraction

At �rst glance, the extraction of the retinal vessel tree could be performed

by a vessel segmentation technique applied to the retina digital image. In this

work, retinal images are optic disc centered but the methods would work in

the same way for macula centered images. The segmented tree would be the

biometric pattern. However, segmented retinal vessel trees from the same in-

dividual acquired from di�erent images would lead to di�erent width in the

vessels depending on illumination and other factors, making the registration

process very time consuming. Moreover, the level of detail in a full segmen-

tation process is intuitively higher than the needed precision to characterize

an individual by the vessel structure. Thus, initially the idea is to achieve a

homogeneous representation of the retinal tree structure by representing the

vessels as lines.

Following the idea that vessels can be thought of as creases (ridges or

valleys) when images are seen as landscapes (see Figure 2.2), curvature level

curves will be used to calculate the creases (ridge and valley lines). Several

methods for crease detection have been proposed in the literature (see [52]

for a comparison between methods), but �nally a di�erential geometry based

method [51] was selected because of its good performance in similar images

[49,50], producing very good results.

Among the many de�nitions of crease, the one based on Level Set Ex-

trinsic Curvature, LSEC [53], has useful invariance properties. Given a func-

tion L : IRd → IR, the level set for a constant l consists of the set of points

{x|L(x) = l}. For 2D images, L can be considered as a topographic relief or

landscape and the level sets are its level curves. Negative minima of the level

curve curvature κ, level by level, form valley curves, and positive maxima ridge

curves. The geometry based method named LSEC gives rise to several prob-

lems, solved through the improvement of this method by a multilocal solution,
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Figure 2.2: Picture of a region of the retinal image as landscape. Vessels can be
represented as creases.

the MLSEC [51]. But results obtained with MLSEC can still be improved by

pre-�ltering the image gradient vector �eld using structure tensor analysis and

by discarding creaseness at isotropic areas by means of the computation of a

con�dence measure. The methodology allows to tune several parameters to

apply such �lters as for creases with a concrete width range or crease length.

In [13] a methodology was presented for automatic parameter tuning by ana-

lyzing contrast variance in the retinal image. For a more detailed discussion

on MLSEC methodology see Appendix A.

One of the main advantages of this method is that it is invariant to changes

in contrast and illumination, allowing the extraction of creases from arteries

and veins independently of the characteristics of the images, avoiding a previ-

ous normalization of the input images. The �nal result is an image where the

retinal vessel tree is represented by its crease lines. Figure 2.3 shows several

examples of the creases obtained from di�erent retinal images.
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Figure 2.3: Three examples of digital retinal images, showing the variability of the
vessel tree among individuals. Left column: input images. Right column: creases of
images on the left column representing the main vessels.
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2.2. Registration and matching

Once the creases have been extracted from the image, a registration stage

is necessary to align with the previously stored reference template. This fact

is depicted in Figure 2.4, with two images of the same individual acquired in

di�erent moments.

Figure 2.4: Example of the di�erence between acquisitions. First column: retinal
images from the same individual acquired in di�erent moments. Second column:
extracted creases from images in �rst column.

This method resembles the human approach to image matching in the

sense that the guidelines are those features common to both images. In [71],

the alignment is obtained by matching su�ciently long portions of vessels,

although in this case vessels are modelled by tubular structures and their

extraction is carried out taking the gradient magnitude along those structures.

Moreover, the whole retinal vessel tree is used here.

Since the extraction process is identical for all the images and these are

unpredictably variable, the alignment must be robust to missing and non-

overlapping features. The straightest approach to the alignment is to perform
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an iterative optimization of some alignment function: one image is taken as

reference, while the other is iteratively transformed until the function attains

a hopefully global maximum. A suitable function to measure the quality of

the alignment is the correlation function:

CorrT =
∑
x∈f

f(x) · g(T (x)) (2.1)

where f and g are the creaseness images and T represents the transformation

we want to test. A key step is not to transform all the pixels in the image, but

only those with values higher than a small �xed threshold, usually discarding

around 5% of lower intensity levels. This step saves up to 95% of the total

computations and takes into account only the signi�cant creases.

The function CorrT together with the �ve parameters of the transformation

(x and y translation, rotation angle as well as x and y scale) de�ne a search

space which is di�cult to optimize because: (a) the function is non monotonic,

i.d., has many local maxima, (b) the similarity measure CorrT is expensive to

compute since it involves the transformation of a large 2D image, and (c)

translation and rotation parameters cannot be decoupled in order to reduce

the dimensionality of the search space.

An approach to overcome the two �rst problems is to search within the

parameter space at multiple resolutions. The multiple resolution is handled by

building two pyramids, as proposed by Elsen et col. [24], where the ridgeness

and valleyness images are at the bottom and each level is a sampled version of

the previous level at half resolution, until images have a �nal size of about 64

pixels in each dimension. As depicted in Figure 2.5, the search starts at the

top of the pyramid, where the small size of the images permits an exhaustive

search, computing the correlation in the Fourier domain. However, the best

transformation at any level often is not the one which later will lead to the �nal

solution, because the hierarchic approach introduces false maxima. Therefore,
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for the sake of robustness we might need to keep several values from each level

as seeds for the next. For each level we reduce the number of seeds to its half,

to end with a single value as the output of the optimization process of the

highest resolution level.

Figure 2.5: Schematic representation of the multi-resolution registration process.
The input to the system is the reference image, stored in the authorized personal
database, and the acquired image (dynamic image). Then creaseness based registra-
tion is used to obtain the T best last candidate transformation. The output is the
aligned dynamic image.

Downhill Simplex Iterative algorithm has been selected to maximize the

correlation function at all levels except the �rst, where a more exhaustive

search in the Fourier domain is accomplished. Each search starts with the

seeds from the previous level and �nishes when the algorithm achieves a state

where the di�erence between the maximum and the minimum values found in

its neighborhood is lower than a threshold. The tolerance value (minimum cor-

relation di�erence between iterations to consider that the solution is achieved)

and the number of seeds in the highest resolution level determine to a high

degree its robustness and �nal computation time.
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A test-bench was designed and run for 20 randomly chosen retinal images

for the evaluation of the crease based registration method. The set widely

covered the features present at the kind of images the algorithm has to deal

with. For each image, 50 random transformations were applied (with maximum

±100 pixels of translation and ±5◦ of rotation, which represent the maximum

rotation and translation values present in the images analyzed). Results are

depicted in Table 2.2.

|Ta − Tr| MSE ST(%)
Mean 0,033 0,097 99,100
Std.deviation 0,050 0,070 1,550

Table 2.1: Statistics of the test bench for the crease based registration. The mean
and standard deviation values for twenty di�erent retinal digital images are shown.
First column represents the absolute value of the di�erence between the applied
(Ta) and the recovered transformation (Tr), following equation 2.2. The second
column represents the mean square error (MSE) of the recovered transformations,
and the third column represents the percentage of successfully recovered transfor-
mations (ST), considering a successfully recovered transformation that which ful�ls
−1 ≤ RE ≤ 1 (equation 2.3).

The �rst column of Table 2.2 represents the mean and the standard devia-

tion of the absolute value of the di�erence between the applied transformation

and the recovered transformation, following equation 2.2.

|Ta − Tr| = |(tx − t′x) + (ty − t′y) + (α− α′) + (σ − σ′)| (2.2)

where tx, ty represent the applied translation, t′x, t
′
y represent the recovered

translation, α and α′ represent the applied and recovered rotation angles re-

spectively and, �nally, σ = (σx, σy) stands for the scale parameters of the

applied transformation and σ′ = (σ′x, σ
′
y) stands for the scale parameters of

the recovered transformation.

Second column of Table 2.2 shows the mean and standard deviation of the
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mean square error (MSE) of the recovered transformations. The small values

in this column denote the accuracy of the registration algorithm used in the

alignment process.

Finally, third column shows the percentage of recovered registrations where

the recovered transformation equals the applied transformation, with a di�er-

ence of ±1 pixel, i.e., transformations where −1 ≤ RE ≤ 1 (Equation 2.3).

To measure the misalignment of the images after registration, four points were

manually selected in the dynamic image, so that they could be used as reference

points. The registration error for each frame is de�ned as:

RE =
1

4

4∑
j=1

D(T (xj), xj) (2.3)

where D is the Euclidean distance and T (xj) is the point xj after the transfor-

mation T has been applied. As Table 2.2 shows, almost all the set of applied

transformations were successfully recovered.

Once the registration process has been performed and the images are

aligned, the creases of the registered images are used to obtain a similarity

measure between them. So, if two images belong to the same person, the

aligned crease images will be more similar than images from di�erent persons

where the registration process is successfully performed. The similarity mea-

sure must be robust against changes in image amplitude such as those caused

by variable lighting conditions, and also against the number of points obtained

in the creases extraction process. One possibility could be to use the correla-

tion computed in the registration process as a similarity measure, but it does

not ful�l those two conditions, since it is a�ected by the changes in the signal's

intensity and a increasing number of points in the extracted creases would

produce a higher level in the correlation value. Such conditions are ful�lled by

the Normalized Cross-Correlation coe�cient γ, de�ned as [43]:



2.3 Experimental validation 47

γ =

∑
x,y[f(x, y)− f ][g(x, y)− g]{∑

x,y[f(x, y)− f ]2
∑

x,y[g(x, y)− g]2
}0.5 (2.4)

where g is the mean of the registered image, and f is the mean of the image.

It must be noted that although the sums are over all of the image, only the

overlapping areas of them are not null. The pixels outside the overlapping area

are set to zero, avoiding its in�uence in the computation of γ.

Once the Normalized Cross-Correlation Coe�cient γ is computed, a con-

�dence value will determine if two images belong to the same person. Two

images will be considered from the same person if the γ value of the aligned

crease images is higher than this con�dence value.

2.3. Experimental validation

The images used in our experiments were acquired during a period of 15

months and in di�erent centers of the Complejo Hospitalario Universitario de

Santiago de Compostela (CHUS), all of them with the same camera, a Canon

CR6-45NM Non-Mydriatic Retinal Camera, with a 768×584 pixel resolution

and centered in optic disc. Although the camera originally capture color im-

ages, a conversion to gray-level images (with 256 gray levels) was performed

prior to the storage in the database, since color does not provide any useful

information.

Validation of the method has been performed by means of four experiments.

The goal of the �rst experiment was to determine the con�dence level which

sets the rejection or acceptance of an individual. To compute this level and

test the parameters of the registration technique, a set of images, some of them

from the same persons, and some of them from di�erent persons, was input to
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the system. In the second experiment, the reliability of the system was tested

through a bigger set of images and, by analyzing the results, the accuracy

of the tuned parameters has also been established. In the third experiment,

new images obtained from two centers of the CHUS, located in di�erent places,

were input to the system, which served to guarantee that results from previous

experiments were reliable and accurate. Finally, a set of images formed by the

union of the second and third sets served as input for the fourth experiment.

To avoid false acceptance cases caused by errors in the acquisition, where

only small creases could be extracted, an acquired image is considered valid for

the authentication algorithm if the number of points in the creases is above a

minimum. This threshold is obtained from the application of the Tchebyche�

theorem [25], and the acceptance of the image is de�ned by the next equation:

Accept(Nc) =

{
true if Nc > 3µ

false otherwise
(2.5)

where Nc is the number of points in the creases, and µ is the average number

of points in the creases of a set of well acquired images.

To set and tune the parameters and the con�dence value of the system,

a set of 20 images (5 di�erent persons, 4 images per person) were evaluated.

Images belonged to a wide spectrum of people (males and females, with ages

ranging from 15 to 45). These results showed that the value of γ, normalized

to the interval [0, 1], of the images belonging to the same individual, although

acquired in di�erent times, is always above the value 0.6, and the γ value of

images acquired from di�erent persons is always below value 0.36.

From these results, a bigger experiment was designed to test the reliability

of our system. A set of 119 retinal images was introduced to the system, with

a priori knowledge of the results that should be found by the system. In the

benchmark, two kind of images were analyzed: the most of the images (113)
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belonged to di�erent individuals, and 6 were images from the same persons

taken at di�erent times (3 individuals, 2 images each of them). From the set

of 113 images, three were removed by the system using equation 2.5, because

they presented very poor contrast, and creases were too small.

From the remaining 116 images, the Normalized Cross-Correlation γ of

the Cartesian product was calculated, and the result is depicted in Figure2.6.

It is clear that the values of the diagonal are all 1, since it corresponds to

the correlation of the images with themselves. The other values belong to the

other two categories: values bigger than 0.60 are obtained correlating images

pertaining to the same person but acquired in di�erent moments, and the rest

of the values, which are all under the peak value 0.36, correspond to the value

γ for images of di�erent individuals.

Figure 2.6: Graph representing the values of the correlation obtained in the ex-
periment with 116 images. Main diagonal is always 1, since it corresponds to the γ
value of each image with itself, and the other 6 peaks with value 0.6 correspond to
the correlation of images from the same person taken in di�erent moments (marked
with a dot).
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From these results, a third experiment was designed. 168 new images were

input to the system, to test if it was able to detect images belonging to the

same person. One point must be remarked: in this experiment there was no

a priori knowledge of the number of images from the same individuals in the

test set. Results are depicted in Figure 2.7.

Figure 2.7: Graph representing the values of the correlation obtained in the third
experiment with 168 images. Values corresponding to the correlation of images from
the same person are marked with a dot. Since the main diagonal corresponds to the
correlation of each image with itself, their correlation will always be 1, so it has been
removed for a better visualization.

The values of the diagonal were again 1, since they correspond to the

correlation of the images with themselves, so they have been removed from

the graph in Figure 2.7 for a better visualization. The other values correspond

to the other two categories: values bigger than 0.60 are images pertaining to

the same person but acquired in di�erent moments, and the rest of the values,

which are all of them below 0.41, correspond to the γ value for images of

di�erent individuals.
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In a new experiment, images from the second and third test sets were

joined to test the system with a bigger number of cases, so now the test set is

composed of 284 images (116 from the 2nd and 168 from the 3rd experiment).

With a higher number of cases, variability among images grows and a more

realistic environment is obtained. As expected, the results obtained con�rmed

the accuracy of the method, and the extreme values of γ were the same: values

bigger than 0.61 were obtained by correlating images pertaining to the same

individual but acquired in di�erent moments, and the rest of the values, which

are all of them below the peak value 0.41, correspond to the value of γ for

images from di�erent individuals. With these thresholds, no new false positive

cases were found although the variability of the images from the test set was

bigger than in the previous experiments.

The con�dence level represents a very important parameter in the system,

since a too low level could lead to the acceptance of false individuals, but

a too high level would reject legitimate individuals. Figure 2.8 shows the

percentages of false positive and true positive cases from the combination of

the second and third experiments, without counting the correlation values of

the main diagonals, corresponding to the correlation of each image with itself.

It can be clearly seen that till the threshold value 0.60, the rate of true positive

cases is 1, meaning that no true positive is rejected. From value 0.608 the curve

decay as it appears some false negative. From threshold 0.685 until 1 the true

positive cases are just the values of γ of each image with itself, which is always

1.0. As we have eliminated those cases, the graph shows a null true positive

percentage. On the contrary, when the threshold goes down, false negative

cases do not appear until it reaches 0.414, growing exponentially from that

value. From this analysis, we get to the conclusion that when the threshold is

in the interval (0.415, 0.686) the successful percentage of the system is 100%.

All the conclusions exposed in this approach were tested by expert clinicians

of the CHUS since they knew, before the experiments were performed, which
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Figure 2.8: False positive and true positive percentages with respect to the thresh-
old value.
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images belonged to the same individuals and which not, concluding that our

results were correct, and that matching images were e�ectively taken from

the same patients and that false rejections did not exist. These experiments

validate the use of the retinal vessel tree as biometric characteristic. However,

the template in this system is an image which leads to high demand in terms

of storage and memory usage for the authentication process. Currently, it

is not realistic to de�ne a whole image as a biometric template because of

some of the environments where the patterns are expected to be stored, for

instance, in small portable devices or card chips. In the next chapter a new

authentication system is discussed based on a more compact template from the

vessel tree while keeping the previously discussed advantages of this physical

characteristic. The main idea of the system will be to obtain feature landmarks

from the vessel tree signi�cant enough to be able to uniquely characterize any

individual. The landmarks considered will be the nodes in the graph depicted

by the vessel tree, in particular, bifurcations and crossovers between vessels.





Chapter 3

Retinal veri�cation based on

feature points

In this thesis it is proposed a biometric system for authentication that uses

the retinal blood vessel pattern as biometric characteristic. As discussed pre-

viously, this is a unique pattern in every individual and it is almost impossible

to forge it in a false individual. Of course, the pattern does not change through

the individual's life, unless a serious pathology appears in the eye. Most com-

mon diseases like diabetes do not change the pattern in a way that its topology

is a�ected. Some lesions (points or small regions) can appear but they are eas-

ily avoided in the vessel extraction methods discussed later. Thus, the retinal

vessel tree pattern has been proved a valid biometric trait for personal authen-

tication as discussed in previous chapter, which methodology was published

in [18, 58]. The results showed a high con�dence band in the authentication

process but only 110 out of 116 images were from individuals with only that

sample in the dataset. One of the weak points of the proposed system was

the necessity of storing and handling a whole image as the biometric pattern.

This greatly increases the di�culty in the storing of the pattern in databases

and even in di�erent devices with memory restrictions like cards or mobile

55
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devices. In [28] a pattern is de�ned using the optic disc as reference structure

and using multi scale analysis to compute a feature vector around it. Good

results were obtained using an arti�cial scenario created by randomly rotating

one image per user for di�erent users. The dataset size was 60 images, each of

them rotated 5 times. The performance of the system is about a 99% accuracy.

However, the experimental results do not o�er error measures in a real case

scenario where di�erent images from the same individual are compared.

Based on the idea of �ngerprint minutiae discussed in the Introduction

chapter, a robust pattern is introduced here where a set of landmarks are

extracted and used as feature points. In this scenario, the pattern match-

ing problem is reduced to a point pattern matching problem and the similarity

metric has to be de�ned in terms of matched points. The feature points consid-

ered in this work are the most typical characteristic points in the retinal vessel

tree, bifurcations and crossovers (Figure 3.1). More speci�cally, a bifurcation

is a point where a blood vessel splits into two smaller vessels. A crossover

can be de�ned as a point where, with di�erent depth level, two blood vessel

coincide.

(a) (b)

Figure 3.1: Types of feature points where (a) shows a bifurcation and (b) shows a
crossover.

Figure 3.2 illustrates the general schema for the new feature point based

authentication approach. The newly introduced stages are the feature point

extraction and the feature point matching. The following chapter sections will

discuss the methodology on these new stages of the system.
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Figure 3.2: Schema of the main stages for the authentication system based in the
retinal vessel tree structure.
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3.1. Feature Points Extraction

In this section, the methodologies for feature point detection and extraction

will be introduced. Detecting vascular tree feature points is a complex task

particularly due to the complexity of the vessel structure where illumination

and size is highly heterogeneous between images and also between regions from

the same image. A common problem in previous approaches is that the optic

disc is needed as a reference structure in the image. The detection of the

optic disc is a complex problem and it cannot be achieved correctly in some

individuals with eye diseases. In this work, the use of reference structures to

obtain the biometric pattern is avoided to allow the system to cope with a

wider range of images and users.

We have used two di�erent approaches for the feature point extraction task.

The �rst methodology discussed will start from the vessel creases obtained in

the previous chapter. Starting from them, crease relationships will be analyzed

to detect feature points. The other methodology will be based in a vessel tree

segmentation (instead of the valley/ridge computation) and post processing to

get to the feature points. In the results chapter, a comparison between the

performance of both methods is presented.

3.1.1. Point extraction based on crease computation

The idea of utilizing the crease computation lies in the good representation

of the vessel tree that the crease lines already o�er.

The landmarks of interest are points where two di�erent vessels are con-

nected. Therefore, it is necessary to study the existing relationships between

vessels in the image. The �rst step is to track and label the vessels to be able

to establish their relationships between them.
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In Figure 3.3, it can be observed that the crease images show discontinuities

in the crossovers and bifurcations points. This occurs because of the two

di�erent vessels (valleys or ridges) coming together into a region where the

crease direction can not be set. Moreover, due to some illumination or intensity

loss issues, the crease images can also show some discontinuities along a vessel

(Figure 3.3). This issue requires a process of joining segments to build the

whole vessels prior to the bifurcation/crossover analysis.

Figure 3.3: Example of discontinuities in the creases of the retinal vessels. Disconti-
nuities in bifurcations and crossovers are due to two creases with di�erent directions
joining in the same region. But, also, some other discontinuities along a vessel can
happen due to illumination and contrast variations in the image.

Once the relationships between segments are established, a �nal stage will

take place to remove some possible spurious feature points. Thus, the four

main stages in the feature point extraction process are:

1. Labelling of the vessels segments

2. Establishing the joint or union relationships between vessels

3. Establishing crossover and bifurcation relationships between vessels

4. Filtering of the crossovers and bifurcations
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• Tracking and Labelling of Vessel Segments

To detect and label the vessel segments, an image tracking process is per-

formed. As the crease images eliminate background information, any non-null

pixel (intensity greater than zero) belongs to a vessel segment. Taking this

into account, each row in the image is tracked (from top to bottom) and when

a non-null pixel is found, the segment tracking process takes place. The aim

is to label the vessel segment found, as a line of 1 pixel width. This is, every

pixel will have only two neighbors (previous and next) avoiding ambiguity to

track the resulting segment in further processes.

To start the tracking process, the con�guration of the 4 pixels which have

not been analyzed by the initially detected pixel is calculated. This leads to

16 possible con�gurations depending on whether there is a segment pixel or

not in each one of the 4 positions. If the initial pixel has no neighbors, it

is discarded and the image tracking continues. In the other cases there are

two main possibilities: either the initial pixel is an endpoint for the segment,

so this is tracked in one way only or the initial pixel is a middle point and

the segment is tracked in two ways from it. Figure 3.4 shows the 16 possible

neighborhood con�gurations and how the tracking directions are established

in any case.

Once the segment tracking process has started, in every step a neighbor

of the last pixel �agged as segment is selected to be the next. This choice

is made using the following criterion: the best neighbor is the one with the

most non-�agged neighbors corresponding to segment pixels. This heuristic

contains the idea of keeping the 1-pixel width segment to track along the

middle of the crease, where pixels have more segment pixel neighbors. In case

of a tie, the heuristic tries to preserve the most repeated orientation in the

last steps. When the whole image tracking process �nishes, every segment is

a 1 pixel width line with its endpoints de�ned. The endpoints are very useful
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (ñ) (o)

Figure 3.4: Initial tracking process for a segment depending on the neighbor pixels
surrounding the �rst pixel found for the new segment in a 8-neighborhood. As there
are 4 neighbors not tracked yet (the bottom row and the one to the right), there are
a total of 16 possible con�gurations. Gray squares represent crease (vessel) pixels
and the white ones, background pixels. The upper row neighbors and the left one
are ignored as they have already been tracked due to the image tracking direction.
Arrows point to the next pixels to track while crosses �ag pixels to be ignored. In
3.4(d), 3.4(g), 3.4(j) and 3.4(n) the forked arrows mean that only the best of the
pointed pixels (i.e. the one with more new vessel pixel neighbors) is selected for
continuing the tracking. Arrows starting with a black circle �ag the central pixel as
an endpoint for the segment (3.4(b), 3.4(c), 3.4(d), 3.4(e), 3.4(g), 3.4(i), 3.4(j)).
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to establish relationships between segments because these relationships can

always be detected in the surroundings of a segment endpoint. This avoids

the analysis of every pixel belonging to a vessel, considerably reducing the

complexity of the algorithm and therefore the running time.

• Union Relationships

As stated before, the union detection is needed to build the vessels out

of their segments. Aside the segments from the crease image, no additional

information is required and therefore is the �rst kind of relationship to be

detected in the image. An union or joint between two segments exists when

one of the segments is the continuation of the other in the same retinal vessel.

Figure 3.5 shows some examples of union relationships between segments.

Figure 3.5: Examples of union relationships. Some of the vessels present disconti-
nuities leading to di�erent segments. These discontinuities are detected in the union
relationships detection process.

To �nd these relationships, the developed algorithm uses the segment end-

points calculated and labelled in the previous subsection. The main idea is

to analyze pairs of close endpoints from di�erent segments and quantify the

likelihood of one being the prolongation of the other. The proposed algorithm

connects both endpoints and measures the smoothness of the connection.

An e�cient approach to connect the segments is using an straight line
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between both endpoints. In Figure 3.6, a graphical description of the detection

process for an union is shown. The smoothness measurement is obtained from

the angles between the straight line and the segment direction. The segment

direction is calculated by the endpoint direction. The maximum smoothness

occurs when both angles are π rad., i.e. both segments are parallel and belong

to the straight line connecting it. The smoothness decreases as both angles

decrease. A criterion to accept the candidate relationship must be established.

A minimum angle θmin is set as the threshold for both angles. This way, the

criterion to accept an union relationship is de�ned as

Union(r, s) = (α > θmin) ∧ (β > θmin) (3.1)

where r, s are the segments involved in the union and α, β their respective

endpoint directions. It has been observed that for values of θmin close to 3
4
π

rad. the algorithm delivers good results in all cases.

Figure 3.6: Union of the crease segments r and s. The angles between the new
segment AB and the crease segments r (α) and s (β) are near π rad, so they are
above the required threshold (3

4π) and the union is �nally accepted.
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• Bifurcation/Crossover Relationships

Bifurcations and crossovers are the feature interest points in this work for

characterizing individuals by a biometric pattern. A crossover is an intersection

between two segments. A bifurcation is a point in a segment where another

one starts from. While unions allow to build the vessels, bifurcations allow to

build the vessel tree by establishing relationships between them. Using both

types, the retinal vessel tree can be reconstructed by joining all segments. An

example of this is shown in Figure 3.7.

Figure 3.7: Retinal Vessel Tree reconstruction by unions (t, u) and bifurcations
(r, s) and (r, t).

A crossover can be seen in the segment image, as two close bifurcations

forking from the same segment. Therefore, �nding bifurcation and crossover

relationships between segments can be initially reduced to �nd only bifurca-

tions. Crossovers can then be detected analyzing close bifurcations.

In order to �nd bifurcations in the image, an idea similar to the union

algorithm is followed based on the search of the bifurcations from the segments

endpoints. The criterion in this case is �nding a segment close to an endpoint

whose segment can be assumed to start in the found one. This way, the

algorithm does not require to track the whole segments, bounding complexity

to the number of segments and not to their length.

For every endpoint in the image, the process is as follows (Figure 3.8):
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1. Compute the endpoint direction.

2. Extend the segment in that direction a �xed length lmax.

3. Analyze the points in and nearby the prolongation segment to �nd can-

didate segments.

4. If a point of a di�erent segment is found, compute the angle (α) associ-

ated to that bifurcation, de�ned by the direction of this point and the

extreme direction from step 1.

The parameter lmax is inserted in the model to avoid inde�nite prolongation

of the segments. If it follows that l <= lmax, the segments will be joined and

a bifurcation will be detected, being l the distance from the endpoint of the

segment to the other segment.

Figure 3.8: Bifurcation between segment r and s. The endpoint of r is prolonged
a maximum distance lmax and eventually a point of segment s is found.

Figure 3.9 shows an example of results after this stage where feature points

are marked. Also, spurious detected points are identi�ed in the image. These

spurious points may occur for di�erent reasons such as wrongly detected seg-

ments. In the image test set used (over 100 images) the approximate mean
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number of feature points detected per image was 28. The mean of spurious

points corresponded to 5 points per image. To improve the performance of

the matching process is convenient to eliminate as spurious points as possible.

Thus, the last stage in the biometric pattern extraction process will be the

�ltering of spurious points in order to obtain an accurate biometric pattern for

an individual.

• Filtering of Feature Points

A segment �ltering process takes place in the tracking stage, �ltering de-

tected segments by their length using a threshold, Tmin. This leads to images

with minimum false segments and with only important segments in the vessel

tree.

Finally, since crossover points are detected as two bifurcation points, as

Figure 3.9(b) shows, these bifurcation points are merged into an unique feature

point by calculating the midpoint between them.

Figure 3.10 shows an example of the �ltering process result, i.e. the bio-

metric pattern obtained from an individual. Brie�y, in the initial test set of

images used to tune the parameters, the reduction of false detected points was

about from 5 to 2 in the average. In the Chapter 4, a deeper analysis will be

discussed to test the impact of the �ltering also in the removal of true feature

points.

3.1.2. Point extraction based on vessel segmentation

The goal in this �rst stage is to detect the feature points of the retinal

vessel tree. This detection implies an analysis of the vascular structure. The

�rst step is to perform a segmentation of the vascular tree. In this approach it

has been used a technique with a particularly high sensitivity and speci�city
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(a)

(b)

Figure 3.9: Example of feature points extracted from original image after the bi-
furcation/crossover stage. (a) Original Image. (b) Feature points marked over the
segment image. Spurious points corresponding to the same crossover (detected as
two bifurcations) are signalled in squares.
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(a)

(b)

Figure 3.10: Example of the result after the feature point �ltering. (a) Image
containing feature points before �ltering. (b) Image containing feature points after
�ltering. Spurious points from duplicate crossover points have been eliminated.
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at classifying points as vessel or non vessel points, described in [19]. As dis-

cussed before, properties are not constant along all the structure, like the vessel

width, that decreases as the branch level of the structure becomes deeper. To

unify this property, a method able to reduce vessel width to one pixel without

changing either vessel direction or connectivity is needed. The skeleton is the

structure that meets all these properties.

However, the results of the segmentation process force a previous prepro-

cessing step before the skeletonization. Figure 3.11 (a) shows gaps inside the

vessels in the segmented image that would give a wrong skeleton structure if

the next step is applied to images with this problem. A vessel with gaps in

the segmented image would produce two parallel vessels in the skeletonized

image (one for each border of the gap) creating false feature points, as shown

in Figure 3.11 (b).

(a) (b)

Figure 3.11: Segmentation problems, creating gaps inside the vessels. Sub�gure
(a) shows the segmentation problem with inside vessel gaps colored in red. Sub�gure
(b) shows the skeleton of a vessel with gaps, false feature points are marked in red.

To avoid these false positive feature points it is necessary to ��ll� the gaps

inside the vessels. To perform this task, a dilation process is applied making
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the lateral vessel borders grow towards the center �lling the mentioned gaps.

The dilation process is done using a modi�ed median �lter. As in this case

the �lter is applied to a binary image the result central pixel value will be

the most repeated value in the original window. In order to avoid an erosion

when the �lter is applied to the external border of vessels, the result value will

only be set if it is a vessel pixel. To ��ll� as much white gaps as possible, the

dilation process is applied in an iterative way, this is, dilation is applied to the

previous dilation result N times. The value of N must be big enough to �ll as

much gaps as possible and, at the same time, small enough to avoid merging

not connected vessels. The value of N depends on the spatial resolution of the

images used. For example, with the images used in this work (768x584) it was

determined empirically that optimal values for N were around 4. The iterative

process is shown in Figure 3.12.

Usually, the skeletonization goal is to represent global object properties

reducing the original image as much as possible. The skeleton, as stated before,

expresses the structural connectivity of the objects with a width of one pixel.

The basic method to obtain the skeleton is thinning, an iterative technique

that erases pixels of the borders with, at least, one background neighbor if

this erasing does not change the connectivity. The skeleton is de�ned by the

medial axis function (MAF) [6], de�ned as the set of points which are the

center of the maximum radius circles that �t inside the object. Calculating

directly the MAF is a very expensive task and thus template based methods

are used due to its versatility and e�ectiveness. In this work, the Stentiford

thinning method [79] is applied. This method uses four templates (one for

each of the four di�erent borders of the objects) to erase the pixels only when

the template matches and the connectivity is not a�ected. Figure 3.13 shows

the results obtained with this approach. A deeper analysis of the Stentiford

approach can be found in Appendix B.

As de�ned previously, feature points are landmarks in the vessel tree where
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(a) (b)

(c)

Figure 3.12: Original segmented image (a) and result of the dilation process with
N = 2 (b) and N = 4 (c).

several vessels appear together in the 2D representation. This allows to locate

the feature points in the vessel tree using local information along it. This infor-

mation is obtained with the analysis of the neighbors of each point. This way,

the intersection number, I(v), is calculated for each point, v, of the structure

as showed in Equation 3.2, where the Ni(v) are the neighbors of the analyzed

point, v, named clockwise consecutively.

I(v) =
1

2

(
8∑
i=1

|Ni(v)−Ni+1(v)|

)
(3.2)
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(a)

(b)

Figure 3.13: Thinning process example. (a) Dilated image. (b) Result of the
thinning process obtained from the dilated image.
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According to its intersection number each point will be marked as,

Vessel end point if I(v) = 1

Vessel internal point if I(v) = 2

Vessel bifurcation or crossover if I(v) > 2

In this approach, points are labelled as feature points when their intersec-

tion number I(v) is greater than two, therefore corresponding to bifurcations

or crossovers.

The problem in this detection is that not all the points are real points,

this is, not every point detected exists in the real image due to the small

branches that the skeletonization process creates in the border of the vessels

as Figure 3.14 shows.

The skeleton of the retinal vascular tree, as shown before, is obtained from

a segmented image through a thinning process that erases the pixels from the

borders towards the vessel center without a�ecting the connectivity. To adapt

this structure to a correct point detection, it is necessary to erase the branches

that do not actually belong to the retinal tree but its appearance is due to

small waves in the borders of the vessels. The process to remove the spurious

branches is performed following the next methodology:

1. The points previously detected are divided into two sets,

C1: Set of points labelled as vessel end points. (I(v) = 1)

C2: Set of points labelled as bifurcation or crossover. (I(v) > 2)

2. With these two sets, the extraction algorithm is as follows,

a) A point, c ∈ C1 is taken as initial point (seed).
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(a)

(b)

Figure 3.14: Example of branches appearing after the skeletonization process. (a)
A region is zoomed in the original image and (b) associated skeleton where circles
surround branches not corresponding to any real vessel.
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b) Starting in c, the vessel is tracked following the direction of neighbor

pixels. Note that every pixel has only one predecessor and one

successor.

c) When a previously labelled point, v, is found,

1) If v ∈ C1, the segment is labelled as an independent segment

and the process ends.

2) If v ∈ C2, the segment is labelled as a branch and the process

ends.

Once obtained all the segments labelled as branches, and de�ned each of

them by its �nal points (initial and end point), its internal points and its

length, the pruning task consists of an analysis of all the branches, deleting

the ones shorter than the established threshold (ζ). Erasing a branch implies

erasing the intersections associated to it, removing that particular intersection

point from the list of feature points.

The chosen value for ζ is given by the origin of the false branches, the ones

due to small undulations in vessel borders. So, ζ is the minimum vessel width

to be considered in the image. Figure 3.15 shows an example of �nal feature

points extracted with this approach.

In the results chapter, experiments to tune the parameters are performed

and both feature point extraction methodologies are compared.

3.2. Feature Point Matching

In the matching stage, the stored reference pattern, ν, for the claimed

identity is compared to the pattern extracted, ν ′, during the previous stage.

Due to the eye movement during the image acquisition stage, it is necessary

to align ν ′ with ν in order to be matched [48,65,97]. This fact is illustrated in
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(a)

(b)

Figure 3.15: Example of feature points extracted from original image with the ves-
sel segmentation approach. (a) Original Image. (b) Feature points marked over the
image after the pruning of branches. Again, spurious points are signalled. Squares
surround pairs of points corresponding to the same crossover (detected as two bifur-
cations). The same heuristics than in the crease approach may be followed to avoid
those problems.
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Figure 3.16 where two images from the same individual, 3.16(a) and 3.16(c),

and the obtained results in each case, 3.16(b) and 3.16(d), are shown using the

crease approach.

(a) (b)

(c) (d)

Figure 3.16: Examples of feature points obtained from images of the same individ-
ual acquired in di�erent times. (a) and (c) original images. (b) Feature point image
from (a). A set of 23 points is obtained. (d) Feature point image from (c). A set of
17 points are obtained.

Depending on several factors, such as the eye location in the objective, pat-

terns may su�er some deformations. A reliable and e�cient model is necessary

to deal with these deformations allowing to transform the candidate pattern

in order to get another similar to the reference one. The movement of the eye

in the image acquisition process basically consists of translations in both axis,
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rotations and sometimes a very small change in scale. It is also important to

note that both patterns, ν and ν ′, could have a di�erent number of points,

as seen in Figure3.16 where, from the same individual, two patterns are ex-

tracted with 23 and 17 points. Note that this issue is independent of the point

extraction algorithm taken since the transform parameters come determined

by di�erent conditions of illumination and orientation in the image acquisition

stage.

The transformation considered in this work is the Similarity Transformation

(ST), which is a special case of the Global A�ne Transformation (GAT) [32].

ST can model translation, rotation and isotropic scaling using 4 parameters.

The ST works �ne with this kind of images where the rotation angle is mod-

erate. It has also been observed that the scaling, due to eye proximity to the

camera, is nearly constant for all the images. Also, the rotations are very slight

as the eye orientation when facing the camera is very similar. Under these cir-

cumstances, the ST model appears to be very suitable, with the additional

bene�t that it is a very e�cient model compared to the higher-level ones.

The ST uses four parameters (∆x,∆y,S,θ) to model the translation in x-

axis, the translation in y-axis, the scaling and the rotation respectively. The

transformation is de�ned as follows:

(
xr

yr

)
=

(
∆x S cos θ −S sin θ

∆y S sin θ S cos θ

)
1

xc

yc

 (3.3)

where (xr, yr)
T and (xc, yc)

T are the coordinates of a point in the reference and

candidate image, respectively.

The ultimate goal is to achieve a �nal value indicating the similarity be-

tween the two feature point sets, in order to decide about the acceptance or

the rejection of the hypothesis that both images correspond to the same indi-
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vidual. To develop this task, the matching pairings between both images must

be determined. A transformation has to be applied to the candidate image

in order to register its feature points with respect to the corresponding points

in the reference image. The set of possible transformations is built based on

some restrictions and a matching process is performed for each one of them.

The transformation with the highest matching score will be accepted as the

best transformation.

To obtain the four parameters of a concrete ST, three pairs of feature

points between the reference and candidate images are considered. The set of

possible transformations is obtained by building an initial set similar to that

described in [73]. Using Equation 3.3, the parameters of the transformation

are computed. De�ning both patterns as a set of feature points of di�erent

sizes: ν = {v1, v2, ..., vM}, ν ′ = {v′1, v′2, ..., v′N}, being M the total number of

feature points in the reference image and N the total number of points in the

candidate one, the size of the set T of possible transformations is computed

using the following equation:

T =
(M2 −M)(N2 −N)

2
(3.4)

Since T represents a high number of transformations, some restrictions must

be applied in order to reduce it. As the scale factor between patterns is always

very small in this acquisition process, a constraint can be set to the pairs of

points to be associated. In this scenario, the distance between both points in

each pattern has to be very similar. As it cannot be assumed that it will be

the same, two thresholds are de�ned, Smin and Smax, to bound the scale factor.

This way, elements from T are removed where the scale factor is greater or

lower than the respective thresholds Smin and Smax. Equation 3.5 formalizes

this restriction:
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Smin <
distance(v1, v2)

distance(v′1, v
′
2)
< Smax (3.5)

where v1, v2 are points from ν pattern, and v′1, v
′
2 are the matched points from

the ν ′ pattern. Using this technique, the number of possible matches greatly

decreases and, in consequence, the set of possible transformations decreases

accordingly. The mean percentage of not considered transformations by these

restrictions is around 70%.

In order to check feature points, a similarity measure between points (SIM)

is de�ned. The distance between these two points will be used to compute that

value. For two points v and v′, their similarity value is de�ned by:

SIM(v, v′) = 1− distance(v, v′)

Dmax

(3.6)

where Dmax is a threshold that stands for the maximum distance allowed for

those points to be considered a possible match. This threshold controls the

quality loss and discontinuities during the crease extraction process leading to

mislocation of feature points by some pixels. Therefore, if distance(v, v′) >

Dmax then SIM(v, v′) = 0.

In some cases, two points v′1, v
′
2 ∈ ν ′ could have both a good value of

similarity with one point v ∈ ν in the reference pattern. This happens because

v′1 and v
′
2 are close to each other in the candidate pattern. To identify the most

suitable matching pair, the possibility of correspondence is de�ned comparing

the similarity value between those points to the rest of similarity values of each

one of them:

P (v, v′) =
SIM(v, v′)2(∑M

i=1 SIM(vi, v′) +
∑N

j=1 SIM(v, v′j)− SIM(v, v′)
) (3.7)
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A matrix Q of size M × N , is constructed such that position (i, j) holds

P (vi, v
′
j). Note that if the similarity value is 0, the possibility value is also 0.

This means that only valid matchings will have a non-zero value in Q. The

desired set C of matching feature points is obtained from P using a greedy

algorithm. The element (i, j) inserted in C is the position in Q where the

maximum value is stored. Then, to prevent the selection of the same point in

one of the images again, the row (i) and the column (j) associated to that pair

are set to 0. The algorithm �nishes when no more non-zero elements can be

selected from Q. The �nal set of matched points between patterns is C.

Consider the next example to illustrate the process: Q0 (4×5) is the initial

similarity matrix for two patterns of sizes 4 and 5:

Q0 =


0 0 0 0 0

0.1 0 0.2 0 0

0.5 0 0 0 0

0 0 0 0.4 0.7

 (3.8)

The highest similarity is 0.7 pertaining to row 4 and column 5, thus the

set of matched points, C, is initialized and the similarity matrix in the next

iteration, Q1 , is updated with zeros in row 4 and column 5:

Q1 =


0 0 0 0 0

0.1 0 0.2 0 0

0.5 0 0 0 0

0 0 0 0 0

 , C = [(4, 5)] (3.9)

The now highest value (0.5) is detected and its row and column are updated

along with C:
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Q2 =


0 0 0 0 0

0 0 0.2 0 0

0 0 0 0 0

0 0 0 0 0

 , C = [(4, 5), (3, 1)] (3.10)

Finally, the last available value is picked (0.2 in the position (2, 3)), Q3 only

contains zeros so the process stops with the �nal matched points set being:

C = [(4, 5), (3, 1), (2, 3)] (3.11)

Using the information of matched points, a similarity metric must be estab-

lished to obtain a �nal criterion of comparison between patterns. Performance

of several metrics using these data is analyzed in the next chapter.

3.2.1. Matching optimization: Feature point classi�ca-

tion

The matching process weakness is the high amount of transformations to be

computed in order to �nd the optimal one. To reduce the amount of computa-

tion time, more information about the domain is introduced. By characterizing

the feature points into crossovers and bifurcations, an e�cient constraint can

be added only allowing points of the same class (or unclassi�ed) to match.

A similar approach to the one introduced in this work for the detection

based on the Intersection Number (Equation 3.2) is taken in [3] for the classi�-

cation between bifurcations and crossovers in such a way that every point with

I(v) = 3 is classi�ed as a bifurcation and points with I(v) = 4 are classi�ed as

crossovers. However, this criterion used to classify the points makes unlikely

to classify a point as crossover. In crossovers, on the contrary to bifurcations,

the vessels that create the feature point do not coincide in the same pixel in
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the skeleton. This is due to the angle and width of the vessels involved in the

feature point. They cause, in most cases, that the central axis of the vessels do

not intersect in the same pixel. This problem, shown in Figure 3.17, produces

a misclassi�cation of crossovers as two close bifurcations.

(a) (b)

Figure 3.17: Problem of the representation, in the skeleton, of a crossover as two
bifurcations. (a) Crossover in the original image. (b) Skeleton over the original
image.

To solve this problem and produce a more robust and valid classi�cation it

is needed to perform a further analysis on the feature points. This classi�ca-

tion is done according to local features of the points and a topological analysis

necessary to spot the cases of the close bifurcations. Feature point classi�-

cation is done in two parts. In a �rst step the points are labelled according

only to environment features, this is, using only local information. In a second

step, this classi�cation is re�ned using information of the relationship between

points, understood this information as the distance between points.

• Local analysis for classi�cation

The �rst classi�cation step is done according to local features of the points

without considering the e�ect of the other points. So, to de�ne a classi�cation
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for a point, the number of vessel segments that create the intersection is stud-

ied. Each detected feature point, v, is used as center of a circumference with

radius Rc used for the analysis. n(v) gives the number of vessel segments that

intersect the circumference being the point, v, classi�ed as follows,

v classi�ed as bifurcation candidate ⇔ n(v) = 3

v classi�ed as crossover candidate ⇔ n(v) = 4

Figure 3.18 shows these two possible classi�cations. The images shows the

blood vessels, the circumference used to do the analysis, and, colored darker,

the pixels where the vessels intersect the circumference.

(a) (b)

Figure 3.18: Preliminary feature point classi�cation according to the number of
vessel intersections where (a) represents a bifurcation and (b), a crossover.

This classi�cation has some problems when classifying crossovers due to

its representation as two close bifurcations, previously explained and shown

in Figure 3.17. Due to this, the radius Rc of the circumference used to the

presented classi�cation has to be big enough to be intersected by the two

bifurcations of each crossover and, in this way, be intersected by the four

vessel segments to be classi�ed as a crossover. The problem of increasing the
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size of the radius is that, due to the complexity of the vascular structure and

the classi�cation method used, the circumference can be intersected by vessels

that do not belong to the feature point analyzed and, because of this, the point

is wrongly classi�ed. To avoid this problem, a vote system with three radius

sizes is used (Figure 3.19).

Figure 3.19: Voting system for classi�cation. Small radius information is more
signi�cant for crossovers while big radius is for bifurcations.

In the vote system, three di�erent classi�cations according to three di�erent

radius sizes (R1, R2, R3) for the analysis of the point are set. The selected

radius are de�ned as: R1 = Rc − ρ, R2 = Rc and R3 = Rc + ρ where ρ is

a �xed amount. With these de�nitions, two values are calculated, C(v) and

B(v), meaning the number of votes for a point v to be classi�ed, respectively,

as a crossover and a bifurcation:
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C(v) = 2 ∗ C(v,R1) + C(v,R2) + C(v,R3) (3.12)

B(v) = B(v,R1) +B(v,R2) + 2 ∗B(v,R3) (3.13)

where C(v,Ri) and B(v,Ri) are binary values indicating if v is classi�ed, re-

spectively, as a crossover or a bifurcation using a radius Ri. Note that the

contribution of the smallest radius is more valuable, and therefore weighted, in

the crossover classi�cation while for bifurcations the biggest radius adds more

information. Feature point v will be classi�ed as a crossover when C(v) > B(v)

and as a bifurcation otherwise.

As shown before, the contribution is not the same for all classi�cations of

all radius because, the smaller the radius is that classi�es the feature point

as a crossover, the more probability to be properly classi�ed. This is due to

the fact that, the bigger the radius of the circumference is, the more likely

is to be intersected by a vessel segment that does not belong to the feature

point. If a point is classi�ed as a crossover using the small radius (R1), as

this is less probable, it adds more information to the �nal result. Analogously,

and because all the crossovers are represented as two bifurcations, the classi-

�cation of a feature point as a bifurcation is more signi�cant in the �nal result.

As a result of this step, a preliminary classi�cation of the feature point

detected in the vascular structure is given. This classi�cation will guide the

last analysis in the next step.

• Topological analysis for classi�cation

The previously presented classi�cation method, as stated before, is only

based on the local features of the point to classify it. However, due to the rep-
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resentation of crossovers in the skeleton (see Figure 3.17), this information is

not enough to properly classify a crossover while being a necessary condition.

According to this, a topological classi�cation is needed to analyze the feature

points in pairs.

In order to group the feature points in pairs, a criterium based on Euclidean

distance, d, is set. In particular, two feature points (vi, vj) are paired when

they minimize d(vi, vj) among the available feature points, this is, the feature

points not paired in a former iteration.

Each of these pairs of points must satisfy two conditions to be classi�ed as

a crossover:

Both points must be connected. This is, it must exist a vessel segment

between the two points.

d(vi, vj) 6 2 ∗Rc, this is, they must be close enough to fall inside a circle

of radius Rc

Figure 3.20 shows di�erent cases of the process representing the blood

vessels. The position of the feature points are shown in light grey and the

circumference with the maximum radius considered for crossover classi�cation

is shown in darker grey.

Up to this stage, the feature point classi�cation step was centered in whether

or not a pair of points must be classi�ed as a crossover in the real image. The

goal of this step is to �nd the real position of these crossovers that, obviously,

does not match any of the two bifurcations of the pair. Empirically, it was

determined that a good approach was to set the real point for the crossover in

the middle point of the segment that joins the two bifurcations. Figure 3.21
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(a)

(b)

(c)

Figure 3.20: Schema of the di�erent cases in the crossover classi�cation. (a) shows
a feature point that ful�ls the condition of distance but not connectivity, so it is
not classi�ed as a crossover. (b) shows a feature point that ful�ls the condition of
connectivity but not distance, so it is not classi�ed as a crossover. Finally, (c) shows
a feature point classi�ed as a crossover since it ful�lls the conditions of distance and
connectivity.
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shows the �nal position of the crossover, marked over the real retina image.

Figure 3.21: Position of the real crossover point computed as the middle point of
the segment between the bifurcations. The real point, lighter, is shown over the real
image and the skeleton, in black.

At this point of the process, it could be assured that every point not clas-

si�ed as a crossover is a bifurcation. Having classi�ed the crossovers in the

previous step, the classi�cation of every point could be considered complete.

However, assuming that every point not marked as crossover is a bifurca-

tion makes the classi�cation of the last ones too dependant of the success of

the crossover classi�cation. So, if this idea is accepted, for each misclassi�ed

crossover in the previous step two bifurcations would be misclassi�ed. For this

reason, it is necessary to use another threshold (Rb) to take a decision of which

points are accepted as bifurcations.

This process is analogous to the previously presented for crossover classi�-

cation. In this way, for each pair of feature points, a circumference with radius

Rb centered in the middle point of the segment between the points is used.

This circumference must not contain both points in order to be considered as

bifurcations. Every pair of points not ful�lling the conditions is marked as not

classi�ed in the �nal result. This is due to the fact that points are not close

enough to be considered as one crossover but not far enough to be considered
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as two independent bifurcations.

Once �nished the feature point classi�cation, three categories can be dis-

tinguished (shown in Figure 3.22),

The feature points classi�ed as crossovers, those ful�lling the conditions

of morphology and proximity (Figure 3.22(a)).

The feature points classi�ed as bifurcations, those that ful�lling the con-

ditions of morphology are further than the established threshold (Fig-

ure 3.22(b)).

The feature points not classi�ed, those that not being close enough to

be classi�ed as crossovers and not either far enough to be classi�ed as

bifurcations (Figure 3.22(c)).

Figure 3.23 shows the result of the detection and classi�cation of the feature

points of the vascular structure in an eye fundus image. The points classi�ed

as crossovers are marked with an asterisk. The points classi�ed as bifurcations

are marked with a circle. Finally, the points not classi�ed are marked with

a square. Note that the Rc and Rb parameters allow to tune the system

in terms of speci�city and sensitivity. In the authentication domain a high

speci�city is preferred over sensitivity to avoid a worse decision performance

in the authentication task. In the next chapter, performance of the classi�er

is studied as a function of both radius to determine the optimal setup.
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(a)

(b)

(c)

Figure 3.22: Final categories of the feature points where (a) shows a point classi�ed
as crossover, (b) two independent bifurcations and (c) two feature points not classi�ed
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Figure 3.23: Classi�cation of the feature points. Circles mark bifurcations, crosses
mark crossovers and squares mark unclassi�ed points.



Chapter 4

Experimental Results

In this chapter, a series of experiments are presented in order to test the

di�erent techniques discussed in the work. The �nal objective is to evaluate the

global performance of the methodology for personal authentication based on

retinal tree feature points. With that goal in mind, each approach introduced

in the di�erent stages of the system will be evaluated to verify the suitability

of such proposals.

The �rst stage of the evaluation is the biometric pattern processing, in

our case the feature point extraction and characterization. For the extrac-

tion part, two di�erent techniques were introduced, the �rst one based on

crease extraction and the second one based on vessel tree segmentation. Both

approaches will be compared in terms of e�ectiveness and e�ciency. In the

characterization part, the goal will be to evaluate the performance of the fea-

ture point classi�cation. This performance analysis covers two di�erent issues:

�rst, the classi�cation error in terms of sensitivity and speci�city depending

on the control parameters discussed in section 3.2.1. Second, the analysis of

the computational improvement during the registration stage associated to the

constraint of the feature point type. The possible error in the authentication

task introduced due to the characterization stage is analyzed at the end of the

93
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chapter.

Once the feature points is addressed, the second part of the experiments

will be focused on testing the matching capabilities of the authentication sys-

tem. The similarity metrics determine the system ability to successfully classify

authentications as authorized or unauthorized. Thus, an analysis of the perfor-

mance of similarity metrics is done in order to maximize the con�dence band

between match (authorized) and non-match (unauthorized) distributions.

In the �nal experiment, a global test will be performed with the �nal pa-

rameters on the whole test set in order to analyze the capabilities of the system.

In this part, we include the analysis associated to the characterization of fea-

ture points to assess the impact on the authentication error variation of the

biometric system related to the error in the characterization stage.

The images used for the experiments were extracted from the VARIA

database [84]. This database was created during the development of this thesis

and consists of 233 retinal images from 139 di�erent individuals, 59 of which

possess at least two samples. The images have been acquired over a span

of several years with a TopCon NW-100 model non-mydriatic retinal cam-

era. They are optic disc centered with a resolution of 768x584. These images

have a high variability in contrast and illumination, allowing the system to be

tested in quite hard conditions, and simulating a more realistic environment.

The di�erent conditions are also due to the fact that di�erent experts with

di�erent illumination con�gurations on the camera have acquired the images.

Figure 4.1 illustrates several examples of retinal images from the database

where the heterogeneity between samples can be observed.

All the tests were run using a Pentium IV 2.4Ghz Desktop PC with 2Gb

of RAM memory. The following sections of this chapter will further discuss

the experiments and results obtained for the di�erent approaches introduced

in this work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Retinal images extracted from VARIA database [84], created and used
in this work for the validation experiments. The database contains 233 images from
several users and the heterogeneity between samples is very high, simulating a real-
case scenario where there is not an exhaustive control of the acquisition environment.
In the examples, this heterogeneity can be observed even in cases of images from the
same individual as 4.1(e),4.1(f) or 4.1(g),4.1(h),4.1(i).



96 Chapter 4. Experimental Results

4.1. Feature point validation

4.1.1. Feature point extraction

To evaluate both proposals for the feature point extraction (based in creases

and based in vessel tree segmentation), we de�ne some quality metrics the

methods must maximize. The metrics attend to three main quality criteria in

the point detection process:

1. E�cacy. The goal is to detect as many feature points contained within

the image as possible while avoiding to detect false points.

The two proposed metrics to control the e�cacy are precision and recall.

Precision measures the rate of correctly detected points versus all de-

tected points. The higher precision the lower the percentage of spurious

points. Recall, in the other hand, measures the rate of existing feature

points that are correctly detected. In probabilistic terms, precision mea-

sures the probability that a detected point is a valid one while recall

indicates probability that a valid point is detected:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

where TP (True Positives) refers to correctly detected points, FP (False

Positives) refers to spurious points and FN (False Negatives) refers to

undetected existing points.

2. E�ciency. The computation should be light and, therefore, the running

time low.
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The most interesting metric is the averaged running time of the process,

taking also into account the minimum and maximum times along with

the variance. The tests must be run several times to reduce the e�ect of

external factors in the total time.

3. Accuracy. The points should be detected in their correct position on

the image. This criterium is measured in terms of the deviation of the

detected point from the original existing point location. This deviation

is expressed as a Euclidean distance (in pixels):

Deviation =
√

(Dx −Ox)2 + (Dy −Oy)2 (4.3)

where (Dx, Dy) are the coordinates where the point was detected and

(Ox, Oy) is the original position of the feature point.

Initially, 50 images were randomly selected from VARIA database to tune

the parameters in both methods. Feature points were labelled by medical

experts to allow to compute the precision and recall rates. In order to make

execution times more reliable, the tests were repeated 100 times for each image

and method in a random order.

Table 4.1 shows the best results obtained with and without running the

spurious point �ltering algorithm using the crease extraction approach. The

�ltering of points improves the precision signi�cantly enough without a�ecting

the recall, i.e. practically no real points are lost during the �ltering. Table 4.2

shows the best values for the parameters using the 50 images.

Analogously, Table 4.3 shows the best results obtained with and without

running the spurious point �ltering algorithm (branch pruning) for the seg-

mentation approach. The �ltering of points improves the speci�city even more

signi�cantly than the crease case due to the nature itself of the skeletoniza-

tion. In fact, the �ltering stage with this approach is unavoidable because the
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E�cacy E�ciency Accuracy
Recall Precision Tavg Tmin Tmax Deviation

No �ltering 84.8% 84.7% 0.512s 0.348s 0.652s 6.44px
Filtering 82.2% 93.9% 0.564s 0.411s 0.712s 5.97px

Table 4.1: Performance of crease-based approach for feature point extraction using
metrics of e�cacy, e�ciency and accuracy. First row represents the results obtained
without applying �ltering of points and the second row applying the �ltering.

Parameter Description Value
θmin Minimum angle to accept an union 3

4
πrad

lmax Maximum extension to search for bifurcations 25 pixels
Tmin Minimum segment length be kept 18 pixels

Table 4.2: Parameter con�guration for the feature point extraction using the crease
extraction approach.

precision would be too low otherwise. Table 4.4 shows the best values for the

parameters using the same set of images.

Once the parameters have been tuned, both methods were tested using

the whole VARIA database. Table 4.5 shows how both methods of feature

point extraction performed using the previously exposed quality metrics for

the database.

The extraction method based in segmentation o�ers slightly better results

in terms of detected points and accuracy. However, the crease based method

is very e�cient because the analysis of the vessel lines is made only in terms

E�cacy E�ciency Accuracy
Recall Precision Tavg Tmin Tmax Deviation

No �ltering 93.2% 71.7% 4.14s 1.84s 5.93s 4.77px
Filtering 91.5% 99.2% 4.56s 2.41s 6.11s 3.69px

Table 4.3: Performance of segmentation-based approach for feature points extrac-
tion using metrics of e�cacy, e�ciency and accuracy. First row represents the results
obtained without applying �ltering of branches and the second row applying the �l-
tering.
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Parameter Description Value
N # of dilations to �ll holes in the segmented tree 4
ζ Threshold to prune tree branches 15 pixels

Table 4.4: Parameter con�guration for the feature point extraction using the vessel
segmentation approach.

E�cacy E�ciency Accuracy
Recall Precision Tavg Tmin Tmax Deviation

Creases 83.5% 93.7% 0.542s 0.386s 0.725s 6.23px
Segment. 89.7% 98.9% 4.68s 2.21s 6.36s 3.72px

Table 4.5: Performance of creases- and segmentation-based approaches for feature
point extraction using metrics of e�cacy, e�ciency and accuracy.

of segment endpoints. This greatly reduces the processing as features are

only searched for every endpoint instead of tracking the whole vessels. In

conclusion, the crease method is more appropriate due to its applicability in a

wider range of devices and needs. The segmentation based method could be

useful in situations where the pattern extracted from the creases is incomplete

due to quality image issues.

4.1.2. Feature point characterization

In this section the classi�cation of feature points into bifurcations and

crossovers is analyzed, in terms of classi�cation performance and impact on

the authentication system. For the analysis of the methodology, the same set

of 50 images from experiment 4.1.1 was used.

For the quanti�cation of the results obtained in these steps, we use the

sensitivity and speci�city measures. Both concepts are used in terms of preci-

sion related to total detected feature points, excluding end points. Sensitivity

measures the capacity to detect the feature when it exists while speci�city

measures the capacity not to detect the feature when it does not exists. Im-
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age preprocessing parameters are necessary to the correct performance of later

steps.

Radius parameters, Rc and Rb, tune the permissiveness in the classi�ca-

tion task and, thus, a deeper analysis of the in�uence of both parameters is

presented. The previously used images in the detection process are used now

for obtaining these results. The parameter Rc is the radius of the circum-

ference centered in the feature point analyzed. This value a�ects directly to

the point classi�cation increasing the crossover detection probability propor-

tional to the radius size. For the bifurcation, the parameter to consider is Rb,

that represents the minimum distance two bifurcation must be separated to

be considered as two independent bifurcations. This is, the smaller the Rb is,

the more bifurcations are classi�ed.

For a right choice of the mentioned parameters, Rc and Rb, a quantitative

study is presented. The results allow to select the adequate parameters for a

speci�c domain where the desired sensibility or speci�city levels can change.

Table 4.6 shows the results for crossover classi�cation for 1116 feature points

(846 bifurcations and 270 crossovers), according to the chosen Rc radius and

Figure 4.2(a) shows how can the parameter be adjusted to �t di�erent domains.

Radius(Rc) T.P. F.N. F.P. Sensitivity Speci�city
5 54 216 0 20,00% 100%
10 108 162 0 40,00% 100%
15 162 108 0 60,00% 100%
20 204 66 18 75,56% 96,20%
25 204 66 54 75,56% 94,94%

Table 4.6: Results for crossover classi�cation according to Rc showing True Positives
(T.P.), False Negatives (F.N.) and False Positives (F.P.)

The table shows how the number of correct classi�ed crossovers increases

with the radius size. This tendency could throw the idea of increasing the
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radius size until obtaining a big number of classi�ed crossovers, however, in-

creasing the radius also increases the number of misclassi�ed crossovers. For

the remaining 978 feature points with 846 bifurcations and 66 crossovers (that

means 132 points due to crossover representation) and with Rc = 20 as the se-

lected value, table 4.7 shows the results for bifurcation classi�cation according

to the chosen Rb radius. This table shows a new category, the non classi�ed

points, that includes the points that ful�lling the morphology conditions are

not close enough to be classi�ed as crossover and not far enough not to be

classi�ed as independent bifurcations.

Radius(Rb) T.P. F.N. F.P. N.C. Sensitivity Speci�city
25 726 120 132 84 85,82% 0,00%
30 690 156 48 216 80,85% 63,63%
35 630 216 12 324 74,47% 90,90%
40 534 312 12 396 63,12% 90,90%

Table 4.7: Results for bifurcation classi�cation according to Rb showing True Posi-
tives (T.P.), False Negatives (F.N.), False Positives (F.P.) and Not Classi�ed (N.C.)

The results, represented in Figure 4.2(b), show how the parameter Rb al-

lows to adjust the results according to the domain. The bigger Rb is, the more

number of points not classi�ed although the number of false positives will be

below 1%. Opposite to this, if a big level of true positives is needed with a

small radius, the sensitivity is over 80%.

The technique proposed in [3] showed a problem with the crossover mis-

classi�cation due to the skeleton representation, where a crossover turns into

two close bifurcations. This work does not o�er quantitative results. However,

our implementation of this technique shows that nearly every point is classi�ed

as a bifurcation, being capable to classify correctly only 3% of the crossovers.

The work proposed in [34] extracts the structure using a vessel tracking based

with the results shown in Table 4.8. Other previous techniques do not o�er
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(a)

(b)

Figure 4.2: (a) In�uence of the parameter Rc in crossover classi�cation. (b) In�u-
ence of the parameter Rb in bifurcation classi�cation after the crossover stage.
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quantitative results in the characterization task to compare with so Table 4.8

compares the obtained results for the VARIA database to the results given

in [34]. The main improvement comes in the crossover rate, due to the radius

proposed. In general, the system exhibits a very high speci�city rate for both

classes making it specially suitable for the registration task as, otherwise, the

classi�cation would introduce errors in this stage leading occasionally to an

inaccurate registration.

Bifurcations Crossovers
Sensitivity Speci�city Sensitivity Speci�city

E. Grisan et al. 76% 87% 62% 74%
Our work 74% 92% 77% 97%

Table 4.8: Obtained results for characterization of feature points compared to the
results presented in [34]

Nevertheless, the impact of the characterization in the computation load of

the matching process is the main objective to evaluate. By avoiding matchings

between di�erently classi�ed points, a lot of irrelevant transformations are

automatically removed from the computation thus reducing the computation

process. Table 4.9 shows the impact in the VARIA database. The average

reduction of computed transformations was 21.36%.

Total Removed Mean Std
240593 51389 21.36% 7.58%

Table 4.9: Statistics on the transformations removed in the matching process. The
columns refer to total possible transformations without considering the point classi�-
cation restriction, the number of transformations avoided by including the restriction
and the mean and standard deviation (std) percentages of transformation removed
per image.
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4.2. Similarity metric analysis

In this section, the goal is to analyze the identity veri�cation capabilities

of the system. For that purpose, we de�ne a series of similarity metrics and

evaluate them using retinal images from the VARIA database. These similarity

metrics are de�ned incrementally as one is usually the result of re�ning the

previous one in order to extract a better performance out of the available

information from the matching process. In our case, the data obtained via the

matching process are the matched points (C) and sizes of both patterns to

compare (M and N).

For the metric analysis, a set of 150 images (100 images, 2 images per

individual and 50 di�erent images more) from VARIA database were used.

The remaining images will be used for testing global performance at the end

of this chapter. In order to build the training set of matchings, all images are

matched versus all the images (a total of 150x150 matchings) for each metric.

The matchings are classi�ed into attacks or clients accesses depending if the

images belong to the same individual or not. Distributions of similarity values

for both classes are compared in order to analyze the classi�cation capabilities

of the metrics.

Based on the matched points (C) and pattern sizes (M ,N) the following

similarity metrics are presented to test the system:

C, number of matched points

S = C
f(M,N)

, where C is normalized using some function depending on

pattern sizes. Three functions f(M,N) are de�ned:

• f(M,N) = min(M,N)

• f(M,N) = M+N
2

• f(M,N) =
√
MN
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Sγ = S ·Cγ−1 = Cγ

f(M,N)
: a parameter γ is introduced to tune the absolute

in�uence of number of matched points independently of the pattern size.

This metric is normalized in two ways:

• SγR = min
{
Sγ
R
, 1
}
, dividing by a safe reference value and setting

to 1 all metrics with values above it.

• SγT = T (Sγ) where T (x) = 1
1+es·(x−0.5) is a sigmoidal transference

function.

4.2.1. Matched points

The main information to measure similarity between two patterns is the

number of feature points successfully matched between them. Figure 4.3(a)

shows the histogram of matched points for both classes of authentications in

the training set. As it can be observed, matched point information is by itself

quite signi�cant but insu�cient to completely separate both populations since

there is an overlapping between them in the interval [10, 13].

This overlapping is caused by the variability of the patterns size in the

training set due to the di�erent illumination and contrast conditions in the

acquisition stage. Figure 4.3(b) shows the histogram for the biometric pattern

size, i.e. the number of feature points detected. A high variability can be

observed, as some patterns have more than twice the number of feature points

of other patterns. As a result, some patterns have a small size, capping the

possible number of matched points (Figure 4.4). Also, using the matched

points information alone lacks a well bounded and normalized metric space.

To combine information of patterns size and normalize the metric, a func-

tion f will be used. Normalized metrics [15] are very common as they make

easier to compare class separability or establishing valid thresholds as the fol-

lowing section shows.
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(a)

(b)

Figure 4.3: (a) Matched points histogram in the attack (unauthorized) and client
(authorized) authentication cases. Both distributions overlap in the interval [10, 13]
. (b) histogram of detected points for the patterns extracted from the training set.
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(a)

(b)

Figure 4.4: Example of matching between two samples from the same individual in
the VARIA database. White circles mark the matched points between both images
while crosses mark the unmatched points. In (b) the illumination conditions of the
image lead to miss some features from the left region of the image. Therefore, a small
amount of detected feature points is obtained capping the total amount of matched
points.
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4.2.2. Normalized metrics

The normalized similarity measure (S) between two patterns is de�ned by:

S =
C

f(M,N)
(4.4)

where C is the number of matched points between patterns, andM and N are

the matching patterns sizes. The �rst f function de�ned and tested is:

f(M,N) = min(M,N) (4.5)

The min function is the less conservative as it allows to obtain a maximum

similarity even in cases of di�erent sized patterns. Figure 4.5(a) shows the

distributions of similarity scores for clients and attacks classes in the training

set using the normalization function de�ned in Equation 4.5, and Figure 4.5(b)

shows the FAR and FRR curves versus the decision threshold.

Although the results are good when using the normalization function de-

�ned in Equation 4.5, a few cases of attacks show high similarity values, over-

lapping with the client class. This is caused by matchings involving patterns

with a low number of feature points. As min(M,N) is usally very small, only

a few points are needed to match in order to get a high similarity value. This

suggests, as it will be later revised in this chapter, that some minimum qual-

ity constraint in terms of detected points would improve performance for this

metric.

A new normalization function is de�ned to cope with the issue of low sized

patterns:

f(M,N) =
M +N

2
(4.6)
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(a)

(b)

Figure 4.5: (a) Similarity value distribution for authorized and unauthorized ac-
cesses using f = min(M,N) as the normalization function for the metric. (b) False
Accept Rate (FAR) and False Rejection Rate (FRR) for the same metric.
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Using the arithmetic mean, pattern sizes are combined to reduce the impact

of patterns with a small number of points. Figure 4.6(a) shows the distributions

of similarity scores for client and attack classes in the training set using the

normalization function de�ned in Equation 4.6 and Figure 4.6(b) shows the

FAR and FRR curves versus the decision threshold.

To further improve the class separability, a new normalization function f

is de�ned:

f(M,N) =
√
MN (4.7)

Figure4.7(a) shows the distributions of similarity scores for clients and at-

tacks classes in the training set using the normalization function de�ned in

Equation 4.7 and Figure 4.7(b) shows the FAR and FRR curves versus the

decision threshold.

Function de�ned in Equation(4.7) combines both patterns size in a more

conservative way, preventing the system to obtain a high similarity value if one

pattern in the matching process contains a low number of points. This reduces

the attack class variability and, moreover, separates its values away from the

client class as this class remains in a similar value range. As a result of the new

attack class boundaries, a decision threshold can be safely established where

FAR = FRR = 0 in the interval [0.38, 0.5], as Figure 4.7(b) clearly exposes.

Although this metric shows good results, it also has some issues due to the

normalization process, which can be corrected by tuning the impact of the

normalization.

4.2.3. Gamma weighted metrics

Normalizing the metric has the side e�ect of reducing the similarity between

patterns of the same individual where one of them had a much greater number
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(a)

(b)

Figure 4.6: (a) Distribution of similarity values for authorized and unauthorized
accesses using f = M+N

2 as normalization function for the metric. (b) False Accept
Rate (FAR) and False Rejection Rate (FRR) for the same metric.
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(a)

(b)

Figure 4.7: (a) Distribution of similarity values for authorized and unauthorized
accesses using f =

√
MN as normalization function for the metric. (b) False Accept

Rate (FAR) and False Rejection Rate (FRR) for the same metric.
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of points than the other, even in cases with a high number of matched points.

This means that some cases easily distinguishable based on the number of

matched points are now near the con�dence band borders. To take a closer

look at this region surrounding the con�dence band, the cases of unauthorized

accesses with the highest similarity values (S) and authorized accesses with

the lowest values are evaluated. Figure 4.8 shows the histogram of matched

points for cases in the marked region of Figure 4.7(b). It can be observed that

there is an overlapping but both histograms are highly distinguishable.

Figure 4.8: Histogram of matched points in the populations of attacks where the
similarity value is higher than 0.3 and client accesses where the similarity value is
lower than 0.6.

To correct this situation, the in�uence of the number of matched points and

the pattern size have to be balanced. A correction parameter (γ) is introduced

in the similarity measure to control this in�uence. The new metric is de�ned

as:
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Sγ = S · Cγ−1 =
Cγ

√
MN

(4.8)

where S, C, M and N are the same parameters from Equation 4.7. The

γ correction parameter allows to improve the similarity values when a high

number of matched points is obtained, specially in cases of patterns with a

high number of points.

Using the gamma parameter, values can be higher than 1. In order to

normalize the metric back into a [0, 1] range, two proposals are presented.

First, in order to normalize the metric to the [0, 1] space again, Sγ is divided

by a reference value, R, representing a similarity value in the Sγ space which

is certain to be an authorized access case. The new normalized metric will be

de�ned as:

SγR = min

{
Sγ
R
, 1

}
(4.9)

R can be de�ned in the same space as Sγ in Equation 4.8 as R = SRC
γ−1
R , where

SR and CR are values in the similarity and matched point space, respectively.

These values must have a very high probability to belong to a match between

patterns from the same individual. Moreover, these parameters should not be

very high in order to allow a good number of positive cases to get closer to

a similarity value of 1. Ideally, mean values for the similarity and matched

points distributions should be used.

In Figure 4.3(a) and 4.7(a), the distribution of the unauthorized and autho-

rized cases was shown for the matched points and normalized metric, respec-

tively. Mean values for the client accesses are, respectively, 18 points and 0.65.

Distributions for the unauthorized accesses have a mean and standard devia-

tion values of µm = 5.58, σm = 1.74 for matched points and µs = 0.1508, σs =

0.0537 for similarity values.
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Given that 18 > µm + 7σm and 0.65 > µs + 9σs, SR = 0.65 and CR = 18

(i.e. the mean values of matched points and normalized metric distributions

for clients accesses) are safe values to be used as they are far enough from their

respective attack distribution means.

To select a good γ parameter, the con�dence band improvement has been

evaluated for di�erent values of γ (Fig 4.9). The maximum improvement is

achieved at γ = 1.12 with a con�dence band of 0.2304, twice the original from

previous section. The distribution of the whole training set (with γ = 1.12,

SR = 0.65 and CR = 18) is shown in Figure4.10(a) where the wide separation

between classes can be observed. Figure 4.10(b) shows the associated FAR vs

FRR curves.

Figure 4.9: Con�dence band size vs gamma (γ) parameter value using reference
value to normalize. Maximum band is obtained at γ = 1.12.

The second normalization proposal is the use of a sigmoid transference

function, T (x):

T (x) =
1

1 + es·(x−0.5)
(4.10)



116 Chapter 4. Experimental Results

(a)

(b)

Figure 4.10: (a) Distributions of similarity values using SγR with γ=1.12. (b) FAR
and FRR curves obtained with the same metric.
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where s is a scale factor to adjust the function to the correct domain as Sγ does

not return negatives or much higher than 1 values when a typical γ ∈ [1, 2]

is used. In this work, s = 6 was chosen empirically. The normalized gamma-

corrected metric, SγT (x), is de�ned by:

SγT = T (Sγ) (4.11)

The maximum con�dence band is obtained at γ = 1.12 as it was the case

for the previous metric (Figure 4.11). However, the improvement is higher

in this case as the con�dence band reaches 0.3288. Figure 4.12(a) shows the

wide separation between classes can be observed. Figure 4.12(b) shows the

associated FAR vs FRR curves.

Figure 4.11: Con�dence band size vs gamma (γ) parameter value using a normal-
ization transfer function. Maximum band is obtained at γ = 1.12.

In conclusion, the normalized metric using a sigmoidal transference function

with a matched points weighting parameter (γ) o�ers the best classi�cation

performance for this system.
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(a)

(b)

Figure 4.12: (a) Distributions of similarity values using SγT with γ=1.12. (b) FAR
and FRR curves obtained with the same metric.
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4.3. Retinal veri�cation test

In this section, the metrics were tested using all the VARIA images to eval-

uate the global performance of the system once the parameters have been �xed.

The test was performed without using the matching optimization derived from

the characterization of points as this process is later evaluated by itself to check

that it does not a�ect to the authentication capabilities. The False Acceptance

Rate and False Rejection Rate were calculated for several metrics to test the

metrics performance (the metrics normalized by Equation 4.5, Equation 4.7

and the gamma-corrected normalized metric de�ned in Equation 4.9. The

results are shown in Fig 4.13.

The establishment of a wide con�dence band is specially important in this

scenario of di�erent images from users acquired on di�erent times and with

di�erent con�gurations of the capture hardware.

The characterization of feature points is included in the system to evaluate

its impact and the new FAR and FRR curves are calculated (Figure 4.14). The

impact is almost null due to the fact that this con�dence band is limited to

real life similarities between di�erent retinas. The negative impact is avoided

as the speci�city is over 96%, minimizing the misclassi�cation.

Finally, a test is run to evaluate the in�uence of the image quality. The

images with a pattern size below a threshold are removed from the set and the

con�dence band is computed. Figure 4.15 shows the con�dence band versus

the minimum detected points constraint. The con�dence band does not grow

signi�cantly until a fairly high threshold is set. Considering as threshold the

mean value of detected points for all the test set, i.e. 25.2, the con�dence band

begins to grow by a margin greater than 0.1. So, it is necessary to remove

almost half of the images to increase the band by more than 0.1, suggesting

that the gamma-corrected metric is very robust to low quality images.
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Figure 4.13: FAR and FRR curves for the normalized similarity metrics (min:
normalized by minimum points, mean: normalized by geometrical mean and gamma:
gamma corrected metric using a sigmoid function). The best con�dence band belongs
to the gamma corrected metric, i.e. a band of 0.2317.
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Figure 4.14: FAR and FRR curves for the authentication system using SγT as
decision metric, with and without classi�cation of feature points.
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Figure 4.15: Evolution of the con�dence band using a threshold of minimum de-
tected points per pattern.



Chapter 5

Conclusions and future research

In this thesis an automatic authentication system based on retinal vessel

tree is introduced. A biometric template is designed and extracted and a

matching algorithm is developed to compare templates. Experimental results

performed in this work show that the system is valid for authentication use

even in high security environments, as it was the initial intention given the

nature of human retina.

The suitability of the retinal vessel tree as biometric characteristic has been

evaluated and tested based on earlier medical studies and making use of an

initial authentication methodology that uses the whole vessel tree structure

as biometric template. Once the suitability was proved, a more compact tem-

plate was designed which reduces storage requirements and, at the same time,

reduces the computation to perform a matching. Instead of using an image of

the vessel tree structure (creases), feature points from it were extracted, i.e.

bifurcations and crossovers, and used as new template. Thus, individuals can

be reliably characterized by a reduced set of feature points from their retinas.

Two methodologies were introduced in order to extract feature points from

the retinal vessel tree, one based on the previous crease extraction method-

123
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ology employed for the initial authentication system and another based on a

vessel segmentation approach. Segmentation approach proved to be a bit more

precise in terms of point extraction (approximately. 5% more of precision and

recall) but required far more computation time. Thus, the crease-based point

extraction method is the preferred as it showed enough detection capabilities

to o�er a reliable set of points to characterize individuals in a very limited

time.

A feature point matching algorithm was introduced taking into account the

external alterations that acquired retinal images might su�er (geometric trans-

formations, illumination conditions changes, etc.). To reduce the computation

of the optimal transformation parameters, a methodology of characterization

of feature points was introduced. This methodology used local (neighbors) and

topological information (close feature points) of the feature points to determine

their nature. The method got better performance results than previous ap-

proaches, and it can be tuned in terms of two radius of control. This is specially

important in the biometrics domain, as a highest as possible speci�city is de-

sired to avoid provoking misclassi�cation of points, leading to miss matchings

between legitimate points or to match incorrect pairs of points. Overall, the

improvement of this approach was nearly a 20% computation reduction for the

matching stage while keeping the same con�dence band range for authentica-

tion. This improvement is specially important in domains such as identi�cation

where templates are matched through several stored templates and, thus, the

matching stage requires lowest possible computation.

Also, a similarity metric study was carried out in order to test the authen-

tication capabilities of the system in a retinal image database. Several ideas

over traditional metrics were proposed, specially the introduction of a param-

eter to tune the relevance of absolute number of matched points versus the

normalization function.

Overall, the authentication system o�ered excellent results with a mean
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time of 0.542s for the whole biometric template extraction stage since acqui-

sition and 0.112s for pattern matching. These times were taken on a Pentium

IV 2.4Ghz Desktop PC.

As future research goes, some improvements can be designed and tested

for the system. One of the most interesting points, would be to advance in

the extraction of higher-level data from the images. Information obtained

via relevant structures such as optical disk or vessel higher-level data such

as bifurcations/crossovers accurate angles, would ideally help to improve the

performance of the system specially in terms of computation. At the time of

this thesis, methods for such tasks were not reliable enough to be included

on it as the errors in this stage cause matchings to be less accurate and,

subsequently, similarity metrics less precise in terms of class separability.

Another interesting future line of work is the extension of the system pro-

posed here to cope with identi�cation tasks, de�ning an optimal indexing al-

gorithm for templates in order to enhance the search through database of the

most similar template.





Appendix A

Multilocal Level-set Extrinsic

Curvature

Vessels are reliable landmarks in retinal images as they are almost rigid

structures visible in every modality of acquisition. Moreover, they can be seen

as ridges or valleys taking images as topographic surfaces as shown in Figure

A.1.

Among the many de�nitions of crease, that based on level set extrinsic

curvature (LSEC ) has very useful invariance properties. Given a function L :

IRd → IR, the set of levels for a constant l consists of the set of points {x|L(x) =

l} (Figure A.2). For 2D images L can be seen as a topographic surface, and

the level sets as its level curvatures. The negative minimum of the curvature

κ, level by level, conforms the so called valley curves, while positive maxima

conform ridge curves. LSEC in 2D can be expressed in terms of L derivatives

following methods of tensor calculus [81] as indicated in Equation A.1:

κ = (2LxLyLxy − L2
yLxx − L2

xLyy)(L
2
x + L2

y)
− 3

2 (A.1)
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: (a) and (b) show di�erent images. (c) and (d) show the interest region
of images (a) and (b) represented as a topographic surface. It can be observed
that, regardless of the intensity and contrast variation, ridges and valleys are clearly
visible. Finally, (e) and (f) show the original images with the extracted creases (in
yellow) over them.
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where

Lα =
∂L

∂α
, Lαβ =

∂2L

∂α∂β
, α, β ∈ {x, y}

Figure A.2: Graphical interpretation of terms related to level curves: negative
minima of curvature κ form valley curves while positive maxima form ridge curves.
Vectors v and w represent tangent and gradient direction, respectively, in each point
of level curves, being additionally orthogonal one respect to the other.

However, the usual discretization of the LSEC is ill-de�ned in some cases,

introducing some unexpected discontinuities in the center of long objects.

These problems are due to the too local de�nition of the LSEC, which is

not very appropriate in the discrete domain.

To avoid discontinuity problems around critical points, a new operator is

used; theMultilocal Level Set Extrinsic Curvature - Structure Tensor, κ̃d, based

on the LSEC.

In 2D κ can be de�ned by means of its relation to slope lines, this is, the

lines that form the vector �eld of the gradient w and, therefore, orthogonal

to level curves. Due to this property, when level curves are parallel, slope

lines are straight and parallel too, and when level curves bend, slope lines

converge/diverge. In vector calculus there is a divergence operator which mea-

sures this parallelism degree. The divergence of a d−dimensional vector �eld

u : IRd → IRd,u(x) = (u1(x), . . . ,ud(x))t is de�ned as [74]:
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div(u) =
d∑
i=1

∂u i

∂x i
(A.2)

If we name 0d as the d−dimensional zero vector, the normalized vector �eld

of the gradient of L : IRd → IR, w̄ is de�ned as:

w̄ =

{
w/||w|| if ||w|| > 0

0d if ||w|| = 0
(A.3)

and then it can be proved:

κd = −div(w̄) (A.4)

In 2D, let x be the point when we want to compute divergence of a 2D

vector �eld. Let C be a closed curve simple in IR2 with parameter l , surround-

ing point x. Let n be its unitary normal vector and ω the region inside C
(FigureA.3).

Then, the divergence of u in x can also be expressed as [74]:

div(u) = lim
ω→0

1

ω

∫
C
ut · n∂l (A.5)

The local de�nition of κd is replaced by a multilocal de�nition based on

the discretized version of EquationA.5, where multilocal property is obtained

assuming that the neighborhoodW around a point x, or analogously, its closed

limit C, is a selectable parameter. This means that gradient vectors are taken

into account along the path C in order to compute div(w̄) in x.

Following this reasoning, for a given dimension d, we denote by κd the

MLSEC operator (Multilocal Level-Set Extrinsic Curvature) based in equations

A.3, A.4 y A.5, given a particular C. Operator MLSEC for a discrete domain
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Figure A.3: Implicated geometry in the de�nition of the divergence for a vector
�eld u in a point x. C is a simple closed curve IR2 parameterized by l surrounding
point x, with unitary normal vector n. ω represents the area inside C.

is de�ned as:

κd = −div(w̄) = −d
r

r∑
k=1

w̄t
k · nk (A.6)

where r is the selected adjacency given by the speci�c C (for instance, in

2D we can choose between 4 adjacency or 8 adjacency), and d is the space

dimensionality.

Once κd has been established as a good measure for ridges and valleys, it

can be still improved by pre�ltering the gradient vector �eld of the image to

increase the attraction/repulsion in the ridge curves and valley curves, mea-

sured by κ. This can be performed using an structural tensor, which is a good

known technique for analysis of oriented textures [5, 38, 39].

In the d−dimensional space, given a symmetric neighborhood of size σI

centered in a given point x, denoted by N (x;σI), the structural tensor is

de�ned as a semi de�ned positive symmetric matrix of size d× d:
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M(x;σI) = N (x;σI) ∗ (w(x) ·wt(x)) (A.7)

where �∗� denotes convolution operator.

The eigenvector corresponding to the minimum eigenvalue of M(x;σI),

w′(x;σI), expresses the predominant orientation in x, and is perpendicular to

the gradient predominant orientation. Note that the gradient of a function

points to the maximum variation direction, and the predominant orientation

is perpendicular to this direction because the anisotropy appears as similar

grey values along an orientation and great variations perpendicular to it.

This analysis assumes that in every neighborhood there is only one orienta-

tion. To verify this supposition, a normalized con�dence measure is introduced.

Each orientation is associated to a real value C ∈ [0, 1] that can be obtained

from the eigenvalues of the structural tensor. The eigenvalue similarity of

the structural tensor implies isotropy and, as a result, C should be close to

0. Therefore, denoting λ1, . . . , λd the eigenvalues of M, a logical option is to

check if the sum of their quadratic di�erences (Equation A.8) is greater than

a established characteristic threshold c for λ4 in the structure we intend to

enhance. An adequate function is [67]:

λ4(x;σI) =
d∑
i=1

d∑
j=i+1

(λi(x;σI)− λj(x;σI))
2 (A.8)

C(x;σI; c) = 1− e−λ4(x;σI))
2/2c2 (A.9)

As a conclusion, to compute ridge and valley lines from an image the fol-

lowing steps are performed:

1. Computation of the gradient vector �eld w and the structural tensor

�eld M. A neighborhood following a Gaussian distribution is used to
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compute M:

M(x;σI) =

(
s11(x;σI;σD) s12(x σI;σD)

s12(x;σI;σD) s22(x;σI;σD)

)
(A.10)

s11(x;σI;σD) = G(x;σI) ∗ (Lx(x;σD)Lx(x;σD))

s12(x;σI;σD) = G(x;σI) ∗ (Lx(x;σD)Ly(x;σD))

s22(x;σI;σD) = G(x;σI) ∗ (Ly(x;σD)Ly(x;σD))

The new parameter σD denotes the standard deviation of the Gaus-

sian kernel for the di�erentiation process, needed to compute w. The

parameter σD is called di�erentiation scale, opposite to σI , called in-

tegration scale. The di�erentiation scale adjusts to the structure size

whose orientations are looked for, while the integration scale is set to the

neighborhood size in which the orientation is dominant.

2. Analysis of the eigenvalues of M. The normalized eigenvector w′ corre-

sponding to the greater eigenvalue gives the predominant orientation in

the gradient. In the analysis with structural tensor, opposite directions

are equally dealt with. Therefore, to recover direction, w′ is set in the

same quadrant 2D as w. In this way, we obtain a new vector �eld w̃:

w̃ = sign(w′t ·w)w′ (A.11)

where

sign(x) =


+1 if x > 0

−1 if x < 0

0 if x = 0

(A.12)

Therefore, attraction/repulsion vectors are enforced.

3. Computation of the new measure of ridges or valleys using the MLSEC-
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ST operator de�ned as:

κ̃d = −div(w̃) (A.13)

4. Computation of the con�dence measure C allowing to discard ridges and

valleys appearing in isotropic zones. Thus, κ̃dC has a lesser response than

κ̃d in isotropic regions and it will be the �nal measure of creaseness.

Figure A.4 illustrates the process to obtain creases and valleys in two dif-

ferent images, belonging to two di�erent individuals.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.4: Creases extraction process to two di�erent images. (a) and (b) show
original images. In (c) and (d) it is showed the obtained result using LSEC operator.
Then, obtained ridges ((e), (f)) and valleys ((g) y (h)) for MLSEC-St operator are
shown.
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Stentiford thinning method

Thinning algorithms based on templates, like the Stentiford method, are

widely used due to its adaptability and e�ectiveness. These algorithms use

templates to delete pixels in the original image if a coincidence with the tem-

plate takes place. They run iteratively, eroding the most external layers of ob-

jects in the processed image until no more pixels can be removed. To properly

de�ne Stentiford algorithm, it is necessary to introduce two prior de�nitions:

Final Pixel. A pixel will be �nal if it is only connected to another pixel,

i.e. in binary mode, a black pixel only has another black pixel in its

8-neighborhood.

Connectivity. It is a measure of how many objects are connected to a

particular pixel. Connectivity number (Cn) is de�ned as:

Cn =
∑
k∈S

Nk − (Nk ∗Nk+1 ∗Nk+2) (B.1)

where Nk is the pixel value of the k neighbor of a given pixel, S =

{1, 3, 5, 7}.
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Neighbors are taken in a counterclockwise fashion.

Figure B.1 illustrates the connectivity number. Figure B.1 (a) represents a

connectivity value of 0 as the central pixel is not connected to any object. Case

(b) represents a connectivity value of 1 as the central pixel can be removed

without altering connectivity between left and right part. In case (c), the

connectivity is 2 because as we remove the central pixel, both side parts will

be separated. Analogously, cases (c) and (d) represent connectivity values of 3

and 4 respectively indicating the di�erent parts in the neighborhood that will

remain unconnected by removing central pixel.

Figure B.1: Examples of di�erent connectivities. a) Cn = 0 b) Cn = 1 c) Cn = 2
d) Cn = 3 e) Cn = 4.

The algorithm uses a set of four templates of 3 × 3 to track the image.

Figure B.2 shows these arrays where black points represent object pixels, white

points represent background pixels and empty squares are locations where it

is not needed to check the image value to perform the operation.

Figure B.2: The four templates used to perform the thinning on the segmented
image.

Each template is aimed to test a particular subset of pixels in the image:
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T1 template removes pixels from the upper edge of objects.

T2 template removes pixels from the left side of objects.

T3 template removes pixels from the lower edge of objects.

T4 template removes pixels from the right side of objects.

The thinning of the segmented structure is performed by tracking the re-

sulting image of the previous step with each of the four templates in FigureB.2.

1. For each pixel in the image, its connectivity number, Cn, is computed

following Equation B.1. Only pixels with a connectivity value equal to

one will be processed. Therefore, only pixels that their removal will not

alter connections between objects connected to it will be processed.

2. Each pixel with Cn = 1 is evaluated to check if it is an endpoint, this

is, if only a black pixel is present in its neighborhood. This constraint is

important to avoid erosion of objects in their direction.

3. For the pixels obtained from previous stages (Cn = 1 and not being end

points), each of the four templates is compared centered in it. If the

template matches with the analyzed window, the pixel is removed from

the image. Otherwise, there will not be any modi�cation.

All of these steps are repeated for each template, alternating their appli-

cation and ending the iterative algorithm when none of the templates could

match any pixel, i.e. no pixels were removed in the previous iteration.
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