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Preface

Currently, medical images have become an important field of research due to
the advances in their acquisition, storage and management in a wide range
of applications. Regarding the medical domain, a great effort has been de-
voted to develop tools and applications related with disease diagnosis, bone
reconstruction, identification of anatomical structures, etc. Particularly, the
extraction of the vessel pattern from retinal images plays an important role
not only in the medical tools; but also in biometric identification applica-
tions. A lot of research has been devoted to accurately extract the retinal
vessel tree in order to define automated applications for early ocular disease
diagnosis or vessel-pattern-based authentication applications.

From the image processing point of view, the special features of retinal
images, such as noise, low contrast vessel or high gray-level variability along
the vessel structures make complex and difficult the processing of this kind of
images. Although a lot of techniques and algorithms obtain promising results,
the computation effort required for doing those task, is still a problem for
most of them.

In this thesis, an algorithm for the automatic extraction of the retinal
vessel tree is developed, specially defined in terms of fine grain SIMD (Sin-
gle Instruction Multiple Data) processing with the purpose of improving the
computation time. This algorithm is based on a pixel-parallel active contour
based technique, the so-called Pixel Level Snakes (PLS). PLS will evolve to
fit the exterior of the vessels. A custom implementation has been made to
optimise the computation speed, and the calibration of the PLS parameters
has been estimated for the specific retinal vessel tree extraction. This pixel
parallel algorithm has been tested from the image processing point of view,
using the images available in the Digital Retinal Images for Vessel Extraction
database (DRIVE). The accuracy could be compared with other proposals
found in the bibliography. The time performance analysis has been made
using the SIMD chip. Both features, the reliability and the time perfor-



mance, show the capability of the proposed algorithm. In this sense, this
algorithm maintains a good accuracy level as well as the execution time is
its great advantage, since it is one or several orders of magnitude less than
conventional PC-based algorithms or techniques.

The retinal vessel tree extracted using the algorithm proposed in this
thesis has been also integrated into practical applications, an authentication
and a medical applications. The analysis of the performance of all those
applications, shows that the retinal vessel tree obtained by the algorithm is
suitable for them, obtaining similar final values.
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Chapter 1

Introduction

Currently, the advances on digital imaging systems and the storage of digital
images offer very high-resolution images that can be used in many appli-
cations from several areas like medicine or surveillance. Digital imaging is
easier to storage preserving its quality with the time. The transmission of
this kind of images makes them suitable to integrate their use into large scal-
able systems. Moreover, these images can be improved and even be subjected
to techniques to perform an objective quantitative and qualitative analysis.
As for the medical image processing is concerned, a lot of research has been
focused on the computation of accurate geometric models of anatomic struc-
tures from medical images in order to exploit the potential of automated
applications for early disease diagnosis, security tasks, model bone recon-
struction, and so on.

Retinal vessel features plays an important role in medical research for
early diagnosis [Patton et al., 2006], such as diabetes [Jelinek et al., 2007,
Pedersen et al., 2000], or cardiovascular risk [Brieva et al., 2004, Gao et al.,
2001b, Couper et al., 2002]; and effective monitoring of therapies in retinopa-
thy [Gomez-Ulla et al., 2002, Wong et al., 2001, Hubbard and Brothers, 1999,
Pose-Reino et al., 2005, Zhou et al., 1994, Wong et al., 2002]; as well as vessel
pattern-based authentication applications [Mariño et al., 2006, Ortega et al.,
2006b], since the unique structure of the blood vessels makes it suitable to be
used for biometric identification [Bolle et al., 1998, Uludag et al., 2004]. In
the medical domain, the analysis of quantitative retinal vessel features is the
basis of research tools [Mosquera et al., 2003, Li et al., 2005, Caderno et al.,
2004] intended to establish the relationships between the retinal microvascu-
lature and cardiovascular disease, diabetes diagnosis, etc. These diagnostic
systems can be used in large-scales screening programs, with the potential
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for significant resource savings. A lot of effort has been devoted to the devel-
opment of techniques and algorithms that compute efficiently and accurately
retinal vessel tree features from medical images, particularly using fundus
retinal images. Although promising techniques have been proposed, the im-
provement of the computation effort is still the main issue. In this sense,
hardware based approaches can speed up those time performance leading
towards the integration into real-time applications.

In this chapter an introduction to the main issues and problems of com-
puting the retinal vessel tree is presented. First, a brief introduction about
the different types of medical images and retinal cameras is made. Then, the
state of the art in the retinal vessel tree extraction is presented. Finally, the
retinal vessel tree extraction algorithm proposed in this thesis is discussed.

1.1 Medical Images

Fig. 1.1: Human eye cross-sectional view with an example of a retinal image

The retina is the light sensitive inner layer of the eye, which receives
images formed by the lens and transmits them through the optic nerve to
the brain. A retinal fundus image (see Fig. 1.1) can be defined as the interior
lining of the eyeball, including the retina, optic disk, the retinal vessel tree
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and the macula (the small spot in the retina where vision is keenest). The
fundus is the portion of the inner eye that can be seen during an eye exami-
nation by looking through the pupil. Fundus retinal images are used to study
the main vessel features and the vascular structure in many applications and
tools.

There are a wide range of retinal cameras dedicated to get retinal images,
according to the several necessities in the medical research. Particularly, for
obtaining the retinal fundus images, the cameras are classified into mydriatic
and non-mydriatic retinal image cameras. The mydriatic camera needs the
administration of dilatation drops to the patient in order to dilate the retina.
This camera is used specially in those cases where the pupil of the patient is ≤
4 mm. A non-mydriatic camera is the most common for obtaining the retinal
fundus images. Some examples of well-known non-mydriatic cameras are the
Non-Mydriatic Canon CR6-45NM (Canon USA, Lake Success, EEUU) and
Topcon TRC-NW6S (Topcon America Corp., Paramus, EEUU), see Fig. 1.2.
These cameras enable ophthalmologists and optometrists to instantly capture
ultra high-resolution digital images.

Fig. 1.2: Two types of non-mydriatic retinal image cameras: (Left) Canon
CR6-45NM and (Right) Topcon TRC-NW6S

Fundus retinal images can be roughly classified into the following types
(see Fig. 1.3):

• Digital fluorescein angiography

• Digital colour fundus photography
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• Digital red free photography

Fig. 1.3: Types of digital retinal images : (from left to right) digital fluoresc-
ing angiography, colour fundus photography and red free photography

The digital fluorescing angiography is an image obtained using the
dye tracing method. Sodium fluorescein is injected into the systemic circula-
tion, and then an angiography is obtained by photographing the fluorescence
emitted after illumination of the retina with blue light at a wavelength of 490
nanometers. The fluorescein dye also reappears 12-24 hours in the patient
urine, causing a yellow-green appearance. The ophthalmologist evaluates the
dye patterns to find pathologic changes, such as staining, abnormal vessels,
diabetic retinopathy or even tumors. However, the use of the dye has a high
risk of adverse effects, and in fact it is the most intrusive technique for the
patient.

The digital colour fundus photography is obtained using a cus-
tomised camera which is mounted to a microscope with intricate lenses and
mirrors. The high-powered lenses are designed in such a way that the oph-
thalmologist visualises the back of the eye by focusing light through the
cornea, pupil, and lens. Fundus photography is used to evaluate the health of
the optic nerve, vitreous, macula, retina, and its blood vessels (see Fig. 1.4).

The digital red free photography uses invisible infrared light to illu-
minate the retina during alignment and focus. So, the patient does not
experience blinding white light during this process. Images are captured
using a mild white zenon flash.

The adverse effects as well as the intrusiveness of the way of taking the
fundus image are issues that should be taken into account depending on the
application or tool. In this thesis, digital colour fundus and red free images
(also called retinal images) have been selected because the method to get
them is the least intrusive.



1.2 Retinal Vessel Tree Extraction: state of the art 7

Fig. 1.4: (Left) CCD retinal camera and (Right) example of a retinal image
taken from the eye

Since many processing and measurement tools are implemented to oper-
ate on gray scale, colour images must be transformed. Colour images use
three channels to define the pixel intensities: red, green and blue (RGB), to
produce an overall composite. RGB images require a three-dimensional array
to convey the extra colour information. The use of only the green channel
in fundus image analysis is quite common, since the contrast between the
background and the vessel features is larger than in the other channels.

1.2 Retinal Vessel Tree Extraction: state of

the art

Currently, due to the huge volume of patient information, particularly with
medical images, automated image analysis techniques play a central role in
order to avoid or alleviate manual analysis. The reliability [Couper et al.,
2002] of retinal vessel tree extraction is the key in many applications and
tools, specially regarding automated radiological diagnostic systems. A lot
of techniques and tools have been published in the research literature to
cover different aspects, features and applications related with retinal ves-
sels, specially in the medical domain, such as optic disk detection [Trucco
and Kamat, 2004, Huiqi and Chutatape, 2001, Xu et al., 2006, Foracchia
et al., 2004, Hoover and Goldbaum, 2003], image registration [N. Ryan and
de Chazal, 2004, Zana and Klein, 1999, Matsopoulos et al., 2004], change
detection [Goldbaum et al., 1996, Hubbard and Brothers, 1999, Wong et al.,
2002, Heneghan et al., 2002], pathology detection and quantification [Martinez-
Perez et al., 2002], tracking in video sequences [Miles and Nuttall, 1993,
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Koozekanani et al., 2003], and computer-aided screening systems [Patton
et al., 2006, Walter et al., 2002]. An exhaustive survey of the different
methodologies, techniques and proposals is shown in [Kirbas and Quek, 2004].

Fig. 1.5: Original retinal image and zoom of two areas of the image. Notice
the difference in the gray level contrast of the vessels with respect to the
background

The methods for the retinal vessel extraction can be categorised into the
following groups:

• Pattern recognition techniques, which include techniques so well-known
like matched filters [Al-Rawi and Karajeh, 2007, Al-Rawi et al., 2007,
Sofka and Stewart, 2006, Chaudhuri et al., 1989, Hoover et al., 2000],
adaptive threshold [Chanwimaluang and Fan, 2003, Jiang and Mojon,
2003], intensity edges [Koozekanani et al., 2001, Can et al., 2002] or
region-based approaches [Martinez-Perez et al., 1999, O’Brien and Ez-
querra, 1994, Schmitt et al., 2002]

• Model based approaches, which include classical deformable [McIn-
erney and Terzopoulos, 1995, 1996a], or geometric deformable mo-
dels [Osher and Sethian, 1988, Caselles et al., 1997]

• Tracking-based approaches [Tolias and Panas, 1998]

• Artificial intelligence-based approaches [Goldbaum et al., 1996]

• Neural networks approaches [Nekovei and Sun, 1995]
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• Tube-like object detection approaches [Kompatsiaris et al., 2000]

From the algorithmic point of view, special features of retinal images will
determine the performance, reliability and accuracy of the different methods
for vessel extraction that can be found in the literature. The features can be
roughly outlined as follows:

• There is a wide range of vessel widths, from less than a pixel up to 12
pixels wide (see Fig. 1.5)

• Vessels are usually low contrast, particularly narrow vessels (see Fig. 1.5)

• A variety of structures, such as the retina boundary, the optic disc,
and pathologies can produce stronger responses at their boundaries
(see Fig. 1.6)

• There is also a bright strip running down the centre of some vessels,
called the central reflex (see Fig. 1.7), causing a complicated intensity
cross-section, which makes it harder to distinguish from two side-by-
side vessels

Fig. 1.6: (Left) Retinal images with pathologies; (Right) Retinal images show-
ing the optic disk area and the retina boundary (marked with a red circle).
Notice the contrast between that area and the background

These features have a high influence on the results obtained applying the
previously commented techniques. In fact, among all the techniques pre-
sented in [Kirbas and Quek, 2004], active contours and neural networks have
been shown as the most flexible tools for vessel extraction. On one hand,
neural networks have been shown suitable to deal with medical images due
to their ability to learn with a suitable training set, which should include
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Fig. 1.7: Central reflex effect inside the vessel

all possible features or objects. However, every time a new feature is intro-
duced to the network, a new training is needed. Another drawback is the
fact that debugging the performance of the network is difficult. On the other
hand, active contours have been also shown as a suitable and flexible tool
for this task, mainly due to their ability to exploit the mixed-control; both
bottom-up (image data) and top-down (prior approximate knowledge about
the location, shape and dimension of the structures) of segmentation [McIner-
ney and Terzopoulos, 1996b]. Active contours can manage reasonably noisy,
indistinguishable or ambiguous object boundaries, quite common in medical
images, like ultrasound images, angiographies, MRI or CT scans. Although
this technique has been initially designed as an interactive tool [McInerney
and Terzopoulos, 1995], some research has developed strategies trying to pro-
pose an automatic process for specific applications [Ourselin and Rongxin,
2005, McInerney and Terzopoulos, 1999, Valverde et al., 2001].

The future direction of segmentation research will be towards developing
faster and more accurate and automated techniques, since the advances in
radiological imaging systems produces a increasingly volume of patient ima-
ges. A lot of research has been devoted to improve the computation speed by
reducing the algorithm complexity [Toledo et al., 2000, Eviatar and Somorjai,
1996, Goldenberg et al., 2001, Hui et al., 2004]. Another way of achieving a
faster computation is to use multi-scale processing technique which extracts
the structures using low-resolution images, whereas narrow structures are
extracted using high-resolution images [Li et al., 2006]. Alternatively, a pixel
parallel approach is another way for a fast computation, assuming that a
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hardware device will exploit that massively parallelism.

1.3 Retinal vessel tree extraction proposal

A high variety of techniques have been developed to deal with the special
features of retinal images. The current issue in the research is to improve the
computation effort required maintaining a reasonable level of accuracy in the
obtained results. As it has been previously commented, this improvement
can be reached by means of reducing the complexity but at the cost of less
accuracy.

Some retinal vessel processing techniques have been proposed in the li-
terature intended to improve the execution time relying on a hardware im-
plementation to exploit the massively parallelism. For example in [Perfetti
et al., 2007], all the operations have been developed under the Cellular Neu-
ral Network (CNN) paradigm [Chua and Roska, 1993]. It assumes efficient
processing in a pixel-parallel way. CNN constitute a class of recurrent lo-
cally coupled array of identical and simple processing elements. This fact
has allowed the hardware implementation of a considerable number of pro-
cessing elements into a chip. Further details of CNN paradigm can be seen
in Appendix A. Although reliable results have been obtained, some of the
proposed CNN-based operations utilise non linear templates which prevent
their implementation in the current generation of cellular processor VLSI
chips.

In this thesis, an algorithm for the automatically extraction of the retinal
vessel tree is proposed (see Fig. 1.8). The retinal vessel tree extraction task is
tackled with an active contour approach, based on the so-called topographic
cellular active contours (TCAC) [Hillier et al., 2006], specially regarding on
the computation effort. The TCAC originally appear intended to resolve the
high computational cost of classic active contour techniques. They are based
on a pixel-level discretisation of the contours and on a massively parallel com-
putation on every contour cell which lead to a high-speed processing without
penalising the contour location efficiency. In this case, the algorithm uses the
Pixel Level Snakes (PLS) [Vilariño and Rekeczky, 2005], which represent an
iterative TCAC technique where the contours evolve towards (local) minimal
distance curves, based on a metric defined as a function of the features of in-
terest. PLS are proposed in order to take advantage of the features of active
contours and to alleviate the computation effort by means of exploiting the
parallel nature of the hardware. PLS have been implemented on hardware
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architectures with capabilities of single instruction multiple data (SIMD)
processing, like the cellular neural network-based chips ACE4K (under the
ACE-BOX computing infrastructure) [Vilariño and Rekeczky, 2004b], as well
as the focal plane processor array SCAMP-3 [Dudek and Vilariño, 2006a]
and even on specific purpose integrated circuits [Brea et al., 2006]. PLS have
demonstrated a good performance in some practical applications where active
contours are frequently used, including segmentation and tracking of biolog-
ical structures [Vilariño et al., 2004], moving object segmentation [Dudek
and Vilariño, 2006a] and even for solving the shortest path problem in bi-
nary labyrinths [Vilariño and Rekeczky, 2004a].

Since the active contours have been initially designed as interactive mo-
dels, a non-interactive application implies designing a suitable methodology
in order to automatically initialise the contours close to the boundaries of
interest. Note that fitting the interior of the vessels has been the most com-
mon technique used with active contour approaches for vessel extraction and
segmentation [Caderno et al., 2004, McInerney and Terzopoulos, 1995]. How-
ever, that strategy has some disadvantages. In those cases where contours
flow inside tubular structures, like the vessels, the internal potential stops
the contour evolution due to its strength with respect to the external poten-
tial. So the evolution is controlled only by means of the external and balloon
potentials. Moreover, complex rules should be defined to avoid the contour
flowing outside the vessels [Caderno et al., 2004]. The initialisation process
is also more complex, since fewer pixels belong to the vessels, around 12.7 %
according to [Niemeijer et al., 2004].

In this thesis the strategy of fitting the exterior of the vessels is proposed
in order to give more robustness to the PLS evolution and to simplify the
definition of the initial conditions for PLS. Moreover, using the strategy of
fitting the exterior of the vessels, the central reflex has no influence in the
performance of the final solution. All the steps of the algorithm proposed in
this thesis consist of simple local dynamic convolutions and morphological hit
and miss operations together with simple arithmetic and logical operation,
regarding its implementation in a processor array which will lead to a very
fast computation speed.
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Fig. 1.8: Conceptual diagram of the proposed retinal vessel tree extraction
algorithm
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1.4 Outline

In Chapter 2 an introduction to the PLS performance is made. PLS features
are detailed specially regarding on the retinal vessel tree extraction problem.
In Chapter 3, the retinal vessel tree algorithm proposed in this thesis is
described. In Chapter 4 is an analysis of the time performance and reliability
of the obtained results of the algorithm. In Chapter 5, the results obtained
with the algorithm are applied to several practical applications. Finally,
Chapter 6 the main conclusions are stated.



Chapter 2

Pixel Level Snakes

As it has been commented in the introduction, active contours have been
shown as effective tool for the medical images processing due to its robust-
ness against noise. So, this technique has been considered to deal with the
extraction of the retinal vessel tree in retinal images. One of the main disad-
vantages of active contour-based approaches is the high computation effort
required. Pixel Level Snakes (PLS) [Vilariño and Rekeczky, 2005] have been
proposed to tackle with the retinal vessel tree extraction task in order to take
advantage of their massively parallelism feature improving the computation
speed.

In this chapter, firstly, a brief introduction of active contours is made
in order to conceptually define the basis of this technique. Then, PLS are
explained in detail, regarding on the several implementations proposed in the
literature as well as the specific performance related with the retinal vessel
tree extraction task.

2.1 Active contours: an introduction

The classical active contour technique was firstly introduced by [Kass et al.,
1988]. An active contour, also called snake, can be conceptually defined as
an elastic curve that evolves from its initial shape and position as a result of
the combined action of external and internal forces, see Fig. 2.1.

The parametric representation of the contour is described as a curve:

u(s) = (x(s), y(s)), s ∈ [0, 1] (2.1)

15
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Fig. 2.1: Internal and external forces involved in the active contour evolution

where x and y are the coordinate functions and s ∈ [0, 1] is the parametric
domain. The shape of the contour subject to an image I(x, y) is associated
with the function:

ε(u) = S(u) + P (u) (2.2)

This function can be viewed as a representation of the energy of the contour
in such a way that the final shape of the contour corresponds to the minimum
of this energy.

The first term of Eq. 2.2 (S(u)),which corresponds to the internal defor-
mation energy of the model, is defined as follows:

S(u) =
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This term characterises the deformation of a stretchy, flexible contour. The
parameters α and β control the tension and rigidity of the contour, respec-
tively.

The second term of Eq. 2.2 (P (x, y)) corresponds to the external energy,
which guides the contour evolution towards the boundaries of interest:

P (u) =

1
∫

0

Pext(u(s))ds (2.4)
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where P (x, y) denotes a scalar potential function defined on the image plane.
External potentials are designed in a way that a local minimum coincides with
edges or other features of interest, depending on the problem under study.

The evolution of this model is basically a problem of minimising the
energy function in Eq. 2.2. The contour u(s) which minimises the energy
function must satisfy the Euler-Lagrange equation:

− ∂

∂s

(

α
∂u

∂s

)

+
∂2

∂s2

(

β
∂2u

∂s2

)

+ ∇Pext(u(s, t)) = 0 (2.5)

This vector-valued partial differential equation expresses the balance of in-
ternal and external forces when the contour rests at equilibrium. The first
two terms represent the internal stretching and bending forces, respectively,
whereas the third term represents the external forces. The evolution is con-
trolled by all those forces in such a way that the internal forces are balanced
with the external ones.

In order to numerically compute a minimum energy solution, a discreti-
sation of the energy function ε(u) is needed. The usual approach is to re-
present the continuous geometric model u in terms of linear combinations of
local-support or global-support basis functions. Some of the proposals that
can be found in the literature are finite differences [Kass et al., 1988], fi-
nite elements [Cohen and Cohen, 1993] and B-splines [Blake and Isard, 1999]
methods.

Initially, this technique was designed as an interactive tool. In this sense,
strategies have to be defined in order to properly initialise the contours. The
management of topological changes, such as contour splitting or merging,
cannot be handled. So, the number of the interesting regions and their ap-
proximate locations should be known a priori. Furthermore, highly irregular
objects with deep and narrow cavities and/or protuberances cannot be ap-
proached. Moreover, the high computation effort required is the one of the
drawbacks of this technique, depending on the application under study.

Some approaches have been proposed in the literature to overcome those
limitations. Topology adaptive snakes [McInerney and Terzopoulos, 1995]
(T-snakes) have been proposed in order to handle topological changes. This
technique overcomes the topological inflexibility of classical active contours.
This parametric snake uses a grid to re-parametrise the model during the
deformation process. It is relatively independent of its initial position and is
able to flow into complex shapes. However, the computation effort increases
with the number of active contours. Moreover, topological changes are han-
dled by means of an iterative process of evaluation and re-parametrisation.
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Since the energy estimation is strongly dependent on the parametrisation,
it changes in each of the intermediate re-parametrisation steps, allowing to
reach tubular and/or irregular shapes but at the cost of a penalisation in the
internal energy performance.

Topological changes are managed in a simpler and more natural way
by the propagating technique proposed by Osher and Sethian [Osher and
Sethian, 1988], the Level Set Method (LSM). The main idea behind the LSM
is to represent propagating curves as the zero level set of a higher dimensional
function which is given in the Eulerian coordinate system. Hence, a moving
wave front is captured implicitly by the level set function (LSF). The main
advantages of this approach are:

• Complex shapes can be properly handled, since it develops sharper
corners and change their topology during the evolution

• Intrinsic properties of the propagating wave front such as the curvature
and the normal to the curve can be easily extracted from the LSF

• It is easily extendable to higher dimensions

• Since the LSF is given in the Eulerian coordinate system, discrete grids
can be used to obtain a numerical approximation to the solution

Similar approaches based on propagation waves under a curvature depen-
dent speed function are the geodesic and wave front propagation proposed
in [Caselles et al., 1997, Malladi et al., 1995], respectively. In all those strate-
gies, the main difficulties are the constrains imposed due to the higher di-
mensionality of the embedding hipersurface and the implicit definition of the
contour model. Moreover, a remarkable number of specific terms should be
defined to control the evolution, such as propagation speed and suitable stop
criteria.

The main drawbacks of all these proposals is still the required compu-
tation effort, since a compromise between the processing speed and flexi-
bility in the contour evolution is needed. As a difference with the com-
mented strategies the topographic cellular active contours (TCAC) are in-
tended to solve the high computational cost inherent to the classical active
contours techniques taking advantage of the massively parallelism. Up to
the present, two different cellular active contour approaches have been pro-
posed. In [Rekeczky and Chua, 1999] an active wave computing approach is
introduced. This consists of a topographic non-iterative region propagation
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technique where the contours are defined by the boundaries of trigger waves.
Therefore, as in the level-set approaches, the contour evolution is implicitly
represented as a wavefront propagation. This approach has demonstrated a
high flexibility in the contour evolution, and a simple solution is given to the
changes of topology, required when two different wavefronts collide. How-
ever, sophisticated stop criteria are usually required to control the wavefront
propagation, increasing significantly the computation complexity in real ap-
plications.

Pixel Level Snakes (PLS) represent a topographic iterative active contour
where the contours are explicitly represented and evolve towards local mini-
mal distance curves based on a metric defined as a function of the boundaries
of interest. PLS are situated in the middle way between parametric and im-
plicit models. Due to their high level of discretisation and the characteristics
of evolution (pixel to pixel) they can handle topologic transformations by
operations perfectly integrated and accessible in the evolution process. This
also allows to control the topologic transformations by preventing the colli-
sion between contours in a simple way. They can also delimit objects with
cavities and protuberances keeping a high control of the contour shape due
to the definition of deformation potential terms based on the curvature which
is locally estimated.

2.2 Pixel Level Snakes

Pixel Level Snakes (PLS) are based on a pixel-level discretisation of the
contours and on a massively parallel computation on every contour cell. PLS
contours are guided by local information and regularising terms dependent on
the contour curvature, similar to the geodesic active contours. An explicit
evolution is made, like in the parametric technique, allowing more control
over the topologic features of the contours.

PLS can be conceptually decomposed by three different modules which
interact dynamically: guiding information extraction, contour evolution and
topological transformations modules (see scheme in Fig. 2.2).

The PLS inputs consist of a binary image containing a suitable initiali-
sation, a multi bit image (external potential image) containing guiding in-
formation from the image under processing, and finally, some parameters to
control the contour evolution. The guiding information extraction module ex-
tracts the information to guide the contour evolution towards the boundaries



20 Pixel Level Snakes

Fig. 2.2: PLS schema. These three modules interacts dynamically along the
four cardinal directions (North, South, East, West)

of interest. The contour evolution module consists of an iterative operation
of pixel-to-pixel shift of the contours, controlled by the guiding information
image. The topological transformation module handles the changes in the
topology, such as contour splitting and merging, as well as the preservation
of the topology, when it is required.

In the PLS formulation, the active contours are represented as sets of
8-connected activated pixels in a binary image, called contour image, with
the same dimensions as the original image. The contour evolution consists
on an iterative process based on binary and local morphological operations
along the four cardinal directions. The goal after each cycle is to obtain
a new well-defined contour slightly shifted and/or deformed in order to be
closer to the boundaries of interest. These operations are guided by exter-
nal forces, extracted from the image under processing, and internal forces,
derived from the contours themselves. The guiding force, which control the
contour evolution, is defined based on a potential field (P (x, y)):

~F = −∇P (x, y) = −∂P

∂x
~i − ∂P

∂y
~j = Fx

~i + Fy
~j (2.6)

So, the guiding forces for the contour evolution are extracted from a global
potential, which will be a combination of the internal and external potentials:

P (x, y) = kintPint(x, y) + kextPext(x, y) (2.7)
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where kint and kext are real and positive coefficients which weight the in-
fluence of each kind of information. The combination of both external and
internal potentials would provide more robustness to the contour evolution
against noise. These values must be determined heuristically, like in classical
active contour techniques. According to this formulation, only the sign of
the component of the guiding forces along the direction under exploration
is actually needed. The external potential is defined in such a way that
the boundaries of interest coincide with the valleys of the potential field. In
Fig. 2.3, the evolution using only external potential is shown. Notice that the
active contour fits the circular shape of the external potential image flowing
towards the black pixel intensities.

Fig. 2.3: Contour evolution using only external forces. Notice that the po-
tential value coincides with the pixel intensity

The internal potential is derived directly from the active contours. In
classical approaches, this term depends on the tension and flexion of the
contour and it may be measured as a function of distances among adjacent
points according to the considered discretisation. This approach cannot be
directly included in the PLS formulation, because the contour is not defined
as a predetermined number of discretisation points but as a variable set of
black pixels of a binary image. However, the desired smoothing effect can be
obtained by assigning higher potential values for those pixels in the contour
image situated outside of the contour cavities, with respect to those situated
inside. One way to perform this is by means of a recursive low-pass filtering
or diffusion operation acting on the contour image. A directional gradient
operation acting on this array will originate positive internal forces which
push to reduce the local curvature, smoothing the contour shape. This idea
is shown in Fig. 2.4 where the contour is guided only by this kind of internal
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forces. A closed contour whose evolution relies only on the local curvature
will adopt a circular shape and finally collapse.

Fig. 2.4: Contour evolution using only internal forces

PLS also includes balloon forces, a kind of internal potential, which are
intended to improve the robustness and stability of the PLS evolution. The
balloon forces are originally defined as follows [Cohen and Cohen, 1993]:

~F = k1~n(s) (2.8)

where ~n(s) is the unit vector normal to the curve u(s) and k1 is a constraint
which controls the inflation or deflation tendency (depending on the sign of
k1) respect to the external forces. PLS can effectively inflate or deflate the
contours by the definition of the new potential field as follows:

Pinf = sinf ∗ ξ(x, y) (2.9)

where ξ(x, y) > 0 if (x, y) belongs to the set of locations enclosed by an active
contour, otherwise, ξ(x, y) < 0, and finally, sinf = +1 defines an inflating
potential and sinf = −1 a deflating potential. The global potential field is
redefined as follows (compare with Eq. 2.7):

P (x, y) = kintPint(x, y) + kextPext(x, y) + kinfPinf(x, y) (2.10)

The balloon potential is weighted by the real and positive coefficient kinf .
This potential will move the contours in those cases where the external poten-
tial is too weak. The balloon forces can help the contour to remove spurious
noise, and counteract their tendency to shrink (due to the internal forces).
In Fig. 2.5 is shown the evolution of the contour using only an expansion
potential.

From the point of view of either the image processing or the hardware
implementation, the PLS technique has undergone several modifications in
order to improve its performance [Vilariño and Dudek, 2007, Vilariño and
Rekeczky, 2005]. Conceptually, PLS can be classified into contour and re-
gion based approaches. In the following sections, the performance of those
approaches will be discussed.
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Fig. 2.5: Contour evolution using only balloon forces, in this case an inflation
force is shown

2.2.1 Contour based PLS

The first fully operative PLS implementation was proposed in [Vilariño et al.,
2000]. A new proposal was published in [Vilariño and Rekeczky, 2005] in
order to improve the computation effort and the active contour performance
of the first version. The flow diagram for the contour based PLS version can
be seen in Fig. 2.6.

Fig. 2.6: Flow diagram of the modules defined for the contour based PLS

The contour evolution is controlled by means of both the directional con-
tour dilation (DCD) and the directional contour thinning (DCT) modules,
which dilate and thin the contours, respectively, along the direction of pro-
cessing. The evolution is based on the activation and deactivation of pixels of
the binary contour image. The sign of the component of the guiding forces,
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which controls the evolution, is extracted in the so-called guiding force extrac-
tion module (GFE). The output of this GFE module will represent a binary
map with activated pixels in those locations where the potential is decreasing
along the direction under study. The internal potential is derived directly
from the active contours, in the internal potential estimation (IPE) module.
This operation is performed by means of a recursive low-pass filtering or
diffusion operation acting on the contour image.

Fig. 2.7: Flow diagram of the operations in the topologic transformations
module, for the contour-based PLS

Changes of topology can be classified as follows:

• avoiding uncontrolled collisions between contours to preserve the topo-
logy
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• splitting and merging contours

These operations are managed in the collision point detection (CPD) mo-
dule. Avoiding the collision between contours relies on a pre-estimation of
the locations where a collision could occur. The CPD is carried out by a
simple pattern recognition which takes as input the binary contour image
and returns a binary image with deactivated pixels in those locations where
a collision between contours can appear in the next iteration. Therefore,
by the projection of this binary map onto the output of the GFE module,
the pixel activation can be avoided on those conflictive locations and con-
sequently the contour collision will be prevented. Splitting and merging of
contours are based on real collision points. In this case, the contours are
defined as frontier pixels of regions into the image space. Initially, the as-
sociated regions were obtained from the contours by means of a hole filling
operation followed by a one-step morphological opening (erosion followed by
dilation), see Fig. 2.7. In the last step the region contours were obtained by
a binary edge detection which extracts the set of frontier pixels of the region.
This strategy handles properly the changes of topology whenever they are
required. However, the inclusion of the hole filling operation to get the area
surrounded by contours penalises the computational effort in architectures
based on iterative processing, since it is performed in each cycle of the evo-
lution process. Moreover, this operation introduces an important constrain
in the image processing, since it is not possible to manage active contours
evolving inside of other contours.

Some modifications were proposed to avoid the intensive use of the hole
filling operation [Vilariño and Rekeczky, 2005]. The hole filling operation
was replaced by local non-propagative operations to update the regions asso-
ciated with the contours after each iteration, instead of computing them only
from the contour images. In each iteration, the image contains the regions
surrounded by the active contours of the previous iteration, which simplifies
the execution of the topologic transformations as well as the estimation of
the balloon potential.

2.2.2 Region based PLS

Another approach is to define PLS implicitly as the boundaries of active
regions, see flow diagram in Fig. 2.8 [Dudek and Vilariño, 2006b].

This approach follows the general implementation of the PLS algorithm,
but is based on the evolution of an active region. The contour is defined
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Fig. 2.8: Flow diagram of the region-based PLS version

implicitly as the boundary of the region. This fact simplifies not only to-
pographic transformations (merging and splitting of contours); but the im-
plementation of inflating/deflating forces is also easier. The main advantage
of this approach if the elimination of the hole-filling step, which is time-
consuming when it is performed iteratively on a processor array.

The contour evolution is implemented using very simple local rules, which
results in a fast implementation. This contour evolution is implemented
through conditional expansion of active regions in four cardinal directions
(North, South, East, West). This is followed by an inversion of the active
regions and another conditional expansion of the new active regions. In this
way, the contours can move in every direction, and follow the guiding forces to
settle into the minimum potential location. A global cycle of eight movements
is actually needed to perform an iteration in the PLS evolution. The internal
potential is estimated by gray-level diffusion of the contour image which is
implicitly associated with the active regions. The balloon potential is simply
obtained by multiplying the binary active region images with the balloon
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potential weight. This will define an inside/outside area of the balloon. The
global potential field is obtained by adding of all the potentials, the external,
internal and balloon potentials. This sum provides a map with activated
and deactivated pixels controlling the contour evolution towards the selected
direction.

Fig. 2.9: Number of steps required for an iteration in a cycle of the PLS
evolution

The active region inversion allows the implementation of inflation and
deflation forces, allowing the movement of PLS in every direction. So, the
global number of steps required for an iteration of the PLS cycle is eight,
see Fig. 2.9. As the active region expands, it is possible that it merges with
another region. The topologic transformations (such as merging or splitting)
are achieved through implicit definition of the contour, and do not require any
additional computations (see Fig. 2.10). In some applications, it is important
to prevent the contours from colliding with each other. This is implemented
by means of detecting possibility of collision of each pixel from an active
region in every direction. So, if there is a collision the directional expansion
is modified to avoid it and to preserve the topology.

Since it is needed that the contours can move in every direction, the
active region is inverted before the next iteration of the algorithm loop. The
inversion of the active region results in a new contour, defined implicitly
as lying inside the active region. Then, the contour evolution is performed
again. So, the PLS cycles is defined through expansions and contractions of
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the active regions. In each inversion of the active region, the balloon potential
is also inverted to maintain the consistent direction of the inflating/deflating
forces.

Fig. 2.10: Merging and splitting for the region-based PLS

Initially, region based PLS seem to be simpler than previous versions.
However, the number of steps is not clearly lower because a global cycle,
along the four cardinal directions requires eight steps with the algorithm
against only four of the previous PLS algorithms [Dudek and Vilariño, 2006b,
Vilariño and Dudek, 2007]. Another possible disadvantage depending on the
task is the fact that nested contours (closed contours within other contours)
as well as propagation inside 1-pixel wide cavities are enabled. This feature
implies the necessity of a more accurate guiding information image in order
to properly stop the evolution.
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2.2.3 Discussion

Different PLS approaches have been discussed in this chapter. Although the
general implementation is maintained in all the versions, their performance is
slightly different providing advantages and disadvantages depending on the
task under study.

In this thesis, the aim is to develop an algorithm to fit the exterior of the
vessels using PLS, and calibrating them for this specific task.

Initially, the contour based PLS version has been proposed to tackle with
the retinal vessel tree extraction task. This allowed to robustly control the
PLS evolution, specially in those cases where small discontinuities appears in
the vessel topology quite common after the processing of the retinal images
due to vessel ambiguous boundaries. On the contrary, the region-based PLS
version can flow through 1-pixel-width cavities, which implies the necessity of
a more accurate external potential image to control the evolution. Initially,
contour based PLS could seem to be faster since in each evolution cycle only
four movements are needed, instead of the eight needed in the region based
PLS version. Nevertheless, unlike the contour based version, the region ver-
sion can be easily adapted for a custom application optimising the execution
time required. In this sense, since the algorithm strategy consists on fitting
the exterior of the vessels, PLS will experiment only expanding evolution.
So, the number of PLS iterations can be reduced to four, which implies a
faster computation.





Chapter 3

Pixel parallel retinal vessel tree
extraction algorithm

In this thesis, a retinal vessel tree extraction algorithm has been proposed
in order to automatically fit the exterior of the vessels in retinal images,
by means of the pixel parallel active contour technique, the so-called PLS
described in the previous chapter. The main goal is to automatically com-
pute the input images needed by PLS, relying only on the local statistics of
the original retinal image. Moreover, the calibration and tuning of the PLS
parameters is needed for a robust and optimised performance of the reti-
nal vessel tree extraction. Notice that the strategy presented in this thesis
consists on fitting the exterior of the vessels instead of the interior. As it
has been previously commented, fitting the interior of the vessels has some
disadvantages. Contour evolution is only controlled by external and balloon
forces, since the internal potential should be disabled. The management of
the contour evolution inside the vessel is more complex. In this sense, com-
plex strategies have to be defined to avoid flowing outside the vessel locations.
The central reflex can also affect the evolution. Moreover, the initialisation
when contours are fitting the interior of the vessels is quite more complex
due to the less proportion of foreground pixels than background ones.

Conceptually, several stages have been defined for the retinal vessel tree
extraction, see Fig. 3.1. Initially, a vessel pre-estimation stage has been
proposed to approximately determine the vessel edge locations with some
pre-filtering steps to improve the signal-to-noise ratio. Then, the initial con-
ditions and the external potential images are computed in the second and
third Stages, using the output images from the previous stage. Finally, PLS
will evolve to fit the exterior of the vessel edges using both of the previously
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computed images.

Fig. 3.1: Flow diagram showing the main stages defined for the retinal vessel
tree extraction algorithm proposed in this thesis

One of the main motivations of this proposal is the improvement of the
computation time required taking advantage of the massively parallel pro-
cessing of the pixel-parallel hardware devices. The first attempt to solve
the task consisted on implementing the conceptual stages using steps defined
in terms of local operations and convolutions together with arithmetic and
logical operations in order to be implemented in a cellular processor array.
Initially in the first version of the algorithm, all the operations and steps
of the methodology were defined under the CNNUM paradigm [Chua and
Roska, 1993]. The contour based PLS addressed in [Vilariño and Rekeczky,
2005] has been used in the original version. Nevertheless, the complexity of
some steps prevented their implementation in the current generation of cellu-
lar chips. In order to solve this problem, some modifications of the algorithm
were proposed to make easy the hardware implementation and they were
presented in the final approach of the algorithm. Moreover, this final version
was optimised and custom implemented for the retinal vessel tree extraction
task to make a faster computation.

Due to the high resolution of the retinal images, original retinal image
has been split into NxN sub windows in order to fit the size of processor
arrays without losing the image information.

In the following sections, the original and final approaches of the retinal
vessel tree extraction algorithm proposed in this thesis are presented. All the
steps of the stages are detailed and defined. Finally, the main conclusions
are discussed.
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3.1 Original approach: CNN-based retinal ve-

ssel tree extraction

Obviously, the first approach was to solve the retinal vessel tree extraction
task from an image processing point of view; but regarding the use of local
convolutions, arithmetic and logical operations for a future projection onto
a pixel parallel processor array. For this first attempt, all the steps used
to define the stages were defined using CNN-based operations, particularly
those defined in the CNN Software Library (CLS) [CLS, 2007], see Fig. 3.2.
This proposal was published in [Alonso-Montes et al., 2005a,b]

Fig. 3.2: Flow diagram of the original algorithm using CNN-based operations

Although all the steps can be implemented using conventional image pro-
cessing techniques, this CNN-based implementation was proposed to take
advantage of the computation time reduction provided by the massive para-
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llel processing.

3.1.1 Stage 1. Vessel Pre-estimation

The main goal of this stage is to pre-estimate the regions between the vessels
in order to be used in the following stages for the estimation of the initial
condition and the external potential images. Several steps were proposed to
get the pre-estimation of the vessel regions, see Fig. 3.3.

Fig. 3.3: Stage 1: The original image is equalised, and then an adaptive
segmentation followed by an opening step are applied to get the segmented
image

First, an histogram equalisation was proposed to improve low contrast
vessels. Due to the high gray level variability along the vessels, the CNN-
based adaptive segmentation addressed in [Rekeczky et al., 1997] was pro-
posed for this step. It consists on a local threshold estimation followed by
a locally adaptive segmentation. The local threshold estimation determines
the space-variant threshold level (Test) computed from local statistics:

Test = αEm + βEv + thres, α ∈ [0, 1], β ∈ [−1, 0] (3.1)

where Em and Ev are the mean and the variance estimations of the considered
image, respectively; thres is a constant threshold value which depends on
the gray-level of the considered image and α and β are scale factors, whose
values are heuristically estimated. The motivation behind the formulation
proposed in Eq. 3.1 is to establish an optimal threshold which better describe
the object boundaries. An estimation based only on the average in a local
neighbourhood is not enough for the optimal separation of the objects from
the background. In this sense, the variance is significantly higher at the
boundaries than in homogeneous regions. The combination of both, the
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mean and the variance values, makes more efficient the estimation of Test

and improves the segmentation result. The mean in the boundary should be
decreased (α > 0, β < 0) to improve the threshold estimation. Taking into
account the type of retinal images used in our algorithm, the thres value is
proposed to be computed as follows:

thres = max

[

∑N

i=1 Ii1

N
,

∑N

i=1 Ii2

N
, . . . ,

∑N

i=1 IiM

N

]

(3.2)

where Iij is the gray-level value in the i-row and j-column in the NxM in-

put image and (
∑N

i=1 Iij)/N is the mean value of the j-column. The idea
behind this formulation is to establish a value according to the mean values
of the image. Since the proportion of pixels from the background is bigger,
and the vessels always have a high gray level variability, the mean value of
each column gives a mean value, which is closer to the vessel. The maxi-
mum selection allows us to get a suitable compromise between the noise and
the segmented vessel edges, emphasising the difference between foreground
(vessel points) and background.

Finally, a morphological opening is applied to eliminate noisy points,
maintaining at the same time, the vessel topology. As result, an estimation
of the vessel locations is obtained.

3.1.2 Stage 2. Initial Contour Estimation

The aim of this stage is to get a suitable initialisation for the PLS in order
to fit the exterior of the vessels. Several steps were proposed to deal with
this task (see Fig. 3.4).

Since our strategy consists on fitting the exterior of the vessels, the goal
was to assure that the initial conditions computed for the PLS are completely
outside from the vessel locations. The segmented image obtained in the first
stage is used as the starting point to compute the initialisation needed by
PLS since it provides a good pre-estimation of the actual vessel locations.
Due to the central reflex, the interior of the vessels is not properly segmented.
So, several dilations are made to avoid those problems. Thus, the obtained
image contains only regions situated completely outside of the the vessel
locations. Finally, a binary edge detection is made to get the contours used
as input for PLS.
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Fig. 3.4: Stage 2: Several dilations and a binary edge detection allows to get
the initial locations needed by PLS

3.1.3 Stage 3. External Potential Estimation

The goal in this stage is to compute the external potential image needed by
PLS to guide the evolution towards the vessel edges. The images obtained
during the 1st stage were combined and weighted to compute this external
potential image (see Fig. 3.5).

Fig. 3.5: Stage 3: The images from 1st stage are used to compute the external
potential image

The equalised and segmented images from the Stage 1 are combined as
follows:

Iext = ρIeq + δIop (3.3)

where Ieq and Iop corresponds to the equalised and the segmented images,
respectively, ρ and δ are scale factors. Ieq contains the segmented vessels,
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whereas Ieq gives additional information regarding the vessel topology, em-
phasising the edges. Noise is at the same time smoothed.

3.1.4 Stage 4. PLS evolution

In this first approach, the contour-based PLS [Dudek and Vilariño, 2006b]
was used as a general approximation to the problem. The main issue of this
stage consisted on tuning and calibrating the main parameters which control
the PLS evolution. The internal potential is used to prevent the evolution
through the vessel discontinuities maintaining the vessel topology. An in-
flation potential should be established to move the contours in those cases
where the external potential is too weak (see Fig. 3.6). Notice that in the
contour-based approach the hole filling operation removes noisy points asso-
ciated with residual contours, but at the cost of increasing the computation
effort.

Fig. 3.6: Stage 4: Both of the previously computed input images are used by
PLS to evolve and fit the exterior of the vessels

Appendix B shows the experimental results obtained using this first ver-
sion of the algorithm. Although good results were obtained, the main draw-
back of this proposal is the fact that the adaptive segmentation step cannot
be implemented in the current generation of processor arrays due its com-
plexity.
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3.2 Final approach using region-based PLS

A final approach was proposed in [Alonso-Montes et al., 2007, 2008c] in order
to overcome the limitations of the previous version. The main issue was to
define all the steps in such a way that they can be implemented in a current
SIMD processor array. The stages were modified (see Fig. 3.7) to fit the
specific requirements of PLS and to propose a full hardware implementable
algorithm.

Fig. 3.7: Flow diagram of the latest algorithm version using region-based
PLS. All the steps are implementable in a SIMD processor array
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3.2.1 Stage 1. Vessel Region Pre-estimation

Due to the non uniformity of the gray level values along the vessels, an adap-
tive segmentation is needed. Instead of the complex CNN-based approach
previously implemented, another strategy suitable for a hardware implemen-
tation has been employed (see Fig. 3.8).

Fig. 3.8: Stage 1. Vessel region pre-estimation

Firstly, the original image is blurred by means of a diffusion step. This
blurred image is used to estimate a local threshold value which properly
segments not only vessels with a high contrast, but also weak vessels. The
blurred image is subtracted from the original one, and finally, the result is
binarised based on a fixed threshold value. Notice that the equalisation step
is not needed as well as the opening step proposed in the original version.
This relies on the fact that the equalisation not only enhances the vessels
but also it emphasises the noise contrast. So, the segmentation output using
the equalisation resulted in a more noisy output. The opening step is not
actually needed in this new proposal due to good results obtained.

3.2.2 Stage 2. Initial region estimation

Since a region-based PLS implementation is used in this case, the initial
conditions for the PLS are regions instead of contours. The goal is still to
assure that the initial region is completely outside of the vessel locations. So,
the segmented image obtained in the Stage 1 is inverted and eroded several
times. The image obtained will be used as the initial conditions of the PLS,
see Fig. 3.9.
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Fig. 3.9: Stage 2: Initial region estimation

3.2.3 Stage 3. External Potential Estimation

The main issue of this stage is to obtain a external image with an appro-
priate potential field to guide the PLS evolution, and sharp and emphasised
locations in the edges of the vessels as the main criteria to stop the evolution,
since this PLS version flows through homogeneous areas independently of the
potential value. The processing steps performed in this stage are illustrated
in Fig. 3.10.

Fig. 3.10: Stage 3: External potential estimation

Firstly, Sobel operator is applied to the original image to get the actual
vessel edges. Although this operator does not introduce much noise, vessel
discontinuities appear, and low contrast vessels are not properly segmented.
On the other hand, the image obtained in Stage 1 contains clearly defined
vessel edges but at the cost of more segmented noise and inaccuracy in the
vessel locations. Therefore, a combination of both images is used in order to
properly guide the PLS evolution. A distance estimation to the vessel loca-
tions is performed by means of several applications of a dilation operation,
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see Fig. 3.11. This creates the potential field needed by PLS to flow through.
PLS will evolve guided by a stronger external potential in areas close to the
edge, and vice versa. A diffusion step is made to alleviate the complexity
of the directional gradient estimator in the GFE module. Finally, since the
diffusion also smoothes the edges, the image containing the edges is added
again in order to define a sharp potential valley to stop PLS evolution.

Fig. 3.11: Several dilations are made for the distance estimation function

3.2.4 Stage 4. PLS evolution

PLS evolve to fit the exterior of the vessels using both the initial region
and the external potential images, previously computed. The main goal in
this stage is to determine the parameters which control the evolution. The
external potential guides the PLS evolution towards the vessel edges, whereas
the internal potential avoids PLS evolving through vessel discontinuities.
Since the vessel edges are situated outside of the initial regions, an inflation
potential can help to move the contours in those cases where the external
potential is too weak. Taking into account all these considerations, this stage
has been split into several steps (see Fig. 3.12): a first PLS step, then a hole
filling operation and finally, a 2nd PLS step.

During the 1st PLS step, the external potential is too weak to move
the regions, because these are located far from the vessel edges. So, the
movement of the regions is mainly controlled by means of the strength of the
balloon potential. Region merging is allowed during this stage, since a large
region could be split into smaller ones after the erosion operation during the
initial region estimation. Moreover, due to the distance to the vessel edges, it
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Fig. 3.12: Stage 4: PLS evolution. Notice that these steps have been pro-
posed for a better control of the evolution towards the vessel edges

can be assured that the region merging will not affect to the vessel topology.
During this step, the internal potential will provide an uniform evolution of
the regions. Then, a hole filling operation is used to remove internal regions
that have appeared due to noise, segmented during the previous stages (see
Fig. 3.13). Notice that the hole filling operation is applied only once, in
contrast with the original approach where the hole filling operation is made
in each cycle of the PLS evolution. Finally, during the 2nd PLS step, PLS fit
the vessel edges relying mainly on the external potential due to the proximity
to the vessel edge locations. In this case, the influence of the balloon potential
should be weaker than the external potential, since PLS regions are supposed
to be closer to the vessels. In this case, external potential should guide the
evolution in order to provide a more accurate fitting of the exterior of the
vessels. In this step, region merging is prevented in order to maintain the
vessel topology. Furthermore, the internal potential has a higher influence to
prevent the evolution through small cavities or discontinuities in the vessel
topology.

Since only expansions are actually made, PLS performance can be opti-
mised. In this sense, the eight iterations needed for a cycle can be reduced
to four since compression forces are not needed.
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Fig. 3.13: Stage 4: Detailed step evolution. Notice that the hole filling
operation is proposed to remove noisy regions and points inside the vessel
structures

3.3 Summary

In this chapter, the automatic retinal vessel tree extraction algorithm has
been presented and detailed. The first attempt consisted on defining a stra-
tegy to deal with the task in an automatic way, trying to fit the vessels from
an image processing point of view. The main input images needed by PLS
are automatically estimated from the original retinal image. Then, PLS were
calibrated to tune the performance of the algorithm in order to achieve the
vessel locations. The original version of the algorithm was implemented using
CNN-based operations. Although the analysis of the results shows that the
algorithm fit the vessels, some of the proposed steps, particularly the adap-
tive segmentation, cannot be implemented in the current processor arrays.
So, a modification of some steps have been proposed in the final approach
regarding the implementation in a pixel parallel processor array. This last
approach is fully implementable in a SIMD chip. The region-based PLS ver-
sion has been introduced since they simplify the topological transformations
as well as alleviate the computation effort required respect with the previous
contour version. In contrast, in the final approach of the algorithm only one
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hole filling is actually made to remove noisy structures. The computation of
the external potential estimation has been also revised to get a better control
over the evolution.

A qualitative comparison between both retinal vessel tree extraction al-
gorithm approaches is presented in Table. 3.1.

Original approach Final approach
Computing platform CNN SIMD
HW implementation Partial Complete
Contour representation Contour Region
Design General purpose Specific purpose
Execution time of a PLS cycle1 518 µ s. 273 µ s.

Table 3.1: Comparison of the main features of both versions of the retinal
vessel tree extraction algorithm

Notice that the final approach can be implemented in a SIMD processor
array, and PLS can be customised for the particular task of retinal vessel tree
extraction. So, the execution time of a cycle can be significantly reduced.

1Data obtained from the execution in the SCAMP-3 vision system [Vilariño and
Dudek, 2007]. Notice that the execution time shown for the original approach is the
optimised PLS version without the hole filling operation



Chapter 4

Experimental results:
reliability and time
performance

The retinal vessel tree extraction algorithm proposed in this thesis has been
analysed from two points of view: the reliability and the time performance.
The publicly available retinal image database DRIVE [Drive, 2008] has been
used to test the reliability of the obtained results. The execution time has
been analysed based on the implementation made on the SCAMP-3 vision
system [Dudek, 2006]. Due to the fact that the maximum size allowed in this
chip implementation is 128x128 pixels, the high resolution retinal images
are split up into 128x128 sub-windows (see Fig. 4.1). Notice that the sub
windows from the limits of the retinal image are not considered for their
processing. Every step of the algorithm has been individually applied to
each of the sub windows. The final result is obtained by means of the union
of all the sub windows.

Finally, sub window overlapping has been also studied in order to analyse
the improvement of the accuracy and the influence on the execution time in
this algorithm.

In the following sections, the reliability analysis is firstly described. Then
the implementation in the SCAMP-3 is shown as well as a time analysis of all
the stages and the global time required for the processing of a whole retinal
image. Finally, the overlapping is presented and tested.

45
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Fig. 4.1: 128x128 windows obtained from a retinal image

4.1 Reliability analysis

4.1.1 The DRIVE database

At the best of our knowledge, two publicly available data sets with retinal
images (with and without diseases) can be found: STARE [STARE, 2008]
and DRIVE [Drive, 2008] databases. Due to the content and type of images
in these databases, their use is subject to the kind of application under study.

STARE (STructured Analysis of the REtina database) includes 20 images
with a wide range and large-scalable pathological structures. One of the
drawbacks of this database is the fact that there are a substantial inter-
observer variabilities on the manual segmentations. Compare the amount of
small segmented vessels between the two observers in Fig. 4.2.

The DRIVE database (Digital Retinal Images for Vessel Extraction data-
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Fig. 4.2: Image from the STARE database.1st row Original image and mask
delimiting the FOV. 2nd row Manual segmentation of the first and second
observer (notice the high inter-observer variability)

base) contains 40 available images with and without diseases, which allows a
more general analysis of the applications, algorithms or methodologies under
study. The inter-observer agreement is better than in the STARE database,
see Fig. 4.3. The main goal of the DRIVE database is to establish and facili-
tate comparative studies on segmentation of retinal blood vessels in medical
images. In this thesis, the DRIVE database has been selected for analysing
the reliability, since the domain of this database is the retinal vessel tree
extraction.

The images of the DRIVE database were obtained from a diabetic retinopa-
thy screening program in the Netherlands. The screening population con-
sisted of 400 diabetic subjects between 25-90 years old. Forty of them have
been randomly selected, 33 images do not show any sign of diabetic retinopa-
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thy and 7 show signs of mild early diabetic retinopathy. The images were
acquired using a Canon CR5 non-mydiatric 3CCD camera with a 45 degree
field of view (FOV). Each image was captured using 8 bits per colour plane
at 768 by 584 pixels, and they have been cropped around the circular FOV,
which has a diameter of approximately 540 pixels. A mask image delimiting
the FOV of each image has been provided (see example in Fig. 4.3).

Fig. 4.3: Image from the DRIVE database.1st row Original image and mask
delimiting the FOV. 2nd row Manual segmentation of the first and second
observer

The set of 40 images is divided into two sets, the training and the test
sets, both containing 20 images. Three specialists (also called observers),
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trained by an experienced ophthalmologist, segmented several images. They
were asked to mark all pixels for which they were for at least 70 % certain
that they were vessel. The first observer segmented 14 images of the training
set while the second observer segmented the other 6 images. The test set
was segmented twice resulting in a set X and Y. Set X was segmented by
both the first and second observer (13 and 7 images respectively) while set
Y was completely segmented by the third observer. In set X about 12.7% of
the pixels belongs to vessels. The difference between the first observer (gold
standard1) and the second observer shows that vessel segmentation is not an
easy task. Choosing a good criterion to measure the performance of vessel
segmentation algorithms is not trivial, since it is highly dependent on the
application in which the algorithm is used. The maximum average accuracy is
usually used as criterion to see which method could most accurately segment
the images in the database with respect to the gold standard. However, wider
vessels have a larger influence on the final result than the smaller ones.

The test set is used to compute the accuracy in order to be compared with
other proposals. The pixels are mainly classified into two classes, vessel and
background. Only the pixels inside the FOV area, given by the provided FOV
image mask, are taken into account to compute the accuracy. A comparison
between the two manual segmentations has been also made in [Niemeijer
et al., 2004] in order to show the difficulty of the segmentation task, even for
human specialists.

4.1.2 Analysis of the reliability

The images of the DRIVE database have been used to test the accuracy of
the results of the proposed retinal vessel tree extraction algorithm, in the
MATLAB environment. These images have been split up into 128x128 sub
windows. Each of the stages of the proposed algorithm have been individually
applied to every sub window.

Initially, vessel regions are pre-estimated. Since the diffusion step achieves
a good local threshold estimation, a threshold value of 5 has been established
to refine the final result. Then, the initial region needed 4 erosion steps to
assure that the initial regions are completely outside of the vessel locations.
The external potential image was computed following the schema explained
in the previous chapter. Finally, during the last stage the main parameters
which controls the PLS evolution were tuned, see Table. 4.1. PLS evolves

1It is the observer taken as reference to compare and to test the results



50 Experimental results: reliability and time performance

during 6 cycles in the 1st PLS Step. Notice that in this first step, the evolu-
tion is mainly controlled by the balloon potential since the initial regions are
situated far from the vessel edges. Then, the hole filling operation is applied
to remove noisy inner regions, and finally, in the 2nd PLS Step evolve until
the vessel edges are reached. In this case, the balloon potential influence is
weaker due to the proximity to the vessel locations. The external potential
will accurately guide the evolution, whereas the internal potential controls
the smoothness of the shape.

External Internal Balloon Number of
Potential Potential Potential Cycles

1st PLS step 100 % 1% 60% 6
2nd PLS step 100 % 30% 5% *1

Table 4.1: Parameters established in the 4th Stage of the algorithm

The final result is formed by the union of all the sub windows. Fig-
ures from 4.4 to Fig. 4.12 shows the final result obtained by means of the
algorithm proposed in this thesis.

1Notice that a convergence method has been implemented to fit the vessels, so PLS
will employ the cycles needed for the processing of each image. It has been preestimated
that a maximum number of 40 cycles is actually needed for an image.
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Fig. 4.4: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.5: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.6: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.7: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.8: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.9: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.10: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.11: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image
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Fig. 4.12: First row: Original image and manual segmentation from the
DRIVE. Second row: Final result obtained by the algorithm superimposed
over the original image



60 Experimental results: reliability and time performance

A quantitative analysis is made to evaluate the quality of the obtained re-
sults. This analysis has been published in [Alonso-Montes et al., 2008c]. The
accuracy (part of pixels correctly classified) has been presented in [Niemei-
jer et al., 2004] as a way to evaluate the reliability of the results in order
to compare with other algorithms. The average value of the accuracy for
all the images (the so-called maximum average accuracy, MAA) have been
computed as follows:

Accuracy =
Tpos + Tneg

NP
(4.1)

where Tpos and Tneg are the vessel (true positive) and non-vessel (true nega-
tive) pixels which are correctly classified, respectively, and NP is the number
of pixels considered into the FOV region. The test set (a total number of 20
images) has been used to evaluate the accuracy of the algorithm. The man-
ual segmentation of the second observer has been used as the gold standard,
whereas the FOV image mask was used to compute only the pixels inside in
those regions. The MAA value obtained (see Table 4.2) is 0.9180, which is a
high enough value for most of the practical applications. Although this value
is not the highest one compared with other PC-based algorithms found in
the literature, the improvement in the computation time will be significantly
more remarkable than with any other proposals (see the following section for
further details).

Method MAA

Manual Method 0.9473
[Soares et al., 2006] 0.9466
[Al-Rawi et al., 2007] 0.9458
[Kirsch, 1971] 0.9151
[Staal et al., 2004] 0.9611
[Chaudhuri et al., 1989] 0.8773
Proposed algorithm 0.9180

Table 4.2: Maximum average accuracy (MAA)

4.2 Time performance analysis: SCAMP im-

plementation

The retinal vessel tree extraction algorithm proposed in this thesis meets
the requirements to be computed by means of a SIMD processor array. In
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this case, the proposed algorithm has been implemented in the SCAMP-3
vision system, see [Alonso-Montes et al., 2007]. The execution time of its
performance using this chip is analysed in this section.

4.2.1 SCAMP-3 vision system

The SCAMP-3 vision chip provides a high-performance low-power solution
for computer vision applications, such as robotics, surveillance, industrial
inspection, etc. The processor array operates in SIMD (Single Instruction
Multiple Data) mode, since the processing elements simultaneously execute
identical instructions on their local data. The processors can also exchange
information with their nearest neighbours. The combination of analogue
circuitry and digital architecture results in efficiency in terms of performance,
cost and power dissipation.

The SCAMP-3 vision system executes a sequence of simple array instruc-
tions, like addition, inversion, one-neighbour access, operating in a pixel-
parallel fashion on 128x128 arrays, at a rate of 1.25 MOPS per pixel. A
development software has been provided in order to enable the development
and evaluation of image processing algorithms in custom applications. The
software includes Simulator Environment for custom applications.

4.2.2 Implementation on the SCAMP

The proposed algorithm has been implemented in the SCAMP-3 vision sys-
tem adapting the steps to the specific performance and requirements of this
chip, see scheme in Fig. 4.13. Since the SCAMP-3 captures the input images
through an optical sensor and there is no possibility of loading the registers
from PC, the main issue is the analysis of the execution time required for the
performance of the algorithm. Initially, the algorithm has been implemented
in the simulator provided with the SCAMP-3 vision system, establishing the
error model of the actual hardware which allowed an accurate simulation.
The algorithm has been also tested in the actual chip.

Initially, vessel regions are pre-estimated (see Fig.. 4.13) by means of the
blurring of the original image, using a fast diffusion step, implemented in the
SCAMP-3 via a resistive grid structure. This image contains a local threshold
which properly segments weak vessels from the background. The blurred
image is subtracted to the original image. A fixed threshold value (in this
case 0) is defined to refine the segmentation result. A boundary segmentation
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Fig. 4.13: Flow diagram of the implementation of the algorithm in the
SCAMP-3 vision system

effect can be observed; this is due to a zero-padded boundaries in the diffusion
operation. A post-processing technique, such as an overlapping, could solve
this problem.

The initial regions, needed by PLS, are computed by means of eroding 4
times the inverted segmented image from the Stage 1.

The external potential estimation has been adapted to the specific require-
ments of the region-based PLS version implemented in the SCAMP-3 [Dudek
and Vilariño, 2006b], see Fig. 4.15. Combining the Sobel result and the seg-
mented image from the first stage, the vessel topology is maintained in those
vessels with low contrast. The diffusion operation will create the potential

Fig. 4.14: Stage 1: SCAMP Adaptive segmentation
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Fig. 4.15: Stage 3: SCAMP external potential estimation

field.

Using both the initial regions and the external potential images, PLS
evolve to fit the actual vessel edges. In this stage, the main weighting values
of the different potentials are tuned, see Table 4.3. During the 1st PLS
step, a high balloon potential value is used during six cycles. This number
of cycles has been selected based on the number of erosion steps applied
on the Stage 2, which gives an approximation of the distance to the vessel
edges. Since the adaptive segmentation gives only a pre-estimation of the
vessel edges, this number of cycles could be increased to improve the PLS
adaptation in the first PLS step. Then, the hole filling is applied to remove
internal regions. Finally, the second PLS step is performed to fit completely
the actual vessel edges. The number of cycles used in this step, has been
empirically established at 40 cycles, since this number of cycles is sufficient
in the evolution of PLS for all the sub-windows considered in this study.
Notice that the number of cycles should be defined a priori. See the output

External Internal Balloon Number of
Potential Potential Potential Cycles

1st PLS step 100 % 2% 32% 6
2nd PLS step 100 % 2% 4% 40

Table 4.3: SCAMP parameters used in the PLS evolution. Notice that the
percentages are referred to the importance among the three potentials
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of each stage in Fig. 4.16 and notice the adjustment of PLS to the vessel
edges.

Fig. 4.16: Output images for each stage obtained with the SCAMP-3 (from
Left to Right) Original image, vessel pre-estimation output, initial contours,
external potential image, and final PLS output super imposed over the orig-
inal image

4.2.3 Analysis of the execution time

The test of the computation speed on the current parallel processor, the
SCAMP-3 vision system, has been analysed. The execution time required
to perform the whole algorithm for a 128x128 sub-window in the SCAMP-3
vision system is about 6.5 ms (see the execution time required for each stage
in Table 4.4). The total I/O time required for a 128x128 binary image is 1.25
ms [Barr et al., 2006]. Notice that the operation with a higher computation
cost is the hole filling operation, since the 2nd PLS step consists on 40 cycles.
The standard retinal image size of the DRIVE database is 768x584. So, a
total number of 30 sub-windows is required. So, the global execution time re-
quired to process the whole retinal vessel tree is about 0.1925 s, excluding I/O
operations. The execution time can be compared with the PC-based software
implementations shown in Table 4.5. Comparing the execution time and the
MAA previously obtained, this algorithm is fast maintaining a reasonable
MAA value, compared with other proposals found in the literature, since
conventional PC-based applications should get a compromise between speed
and accuracy.
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No. Stage Stage Exec. Time (µs)
1 Vessel Region Pre-estimation 12.8
2 Initial Region Estimation 55.2
3 External Potential Estimation 134.4

4
1st PLS Step (6 cycles) 518
Hole Filling 1954.5
2nd PLS Step (40 cycles) 3870.8

Table 4.4: SCAMP execution time for each stage, in a 128x128 sub-window

Method MAA Exec. Time

Manual Method 0.9473 2 h.
[Soares et al., 2006] 0.9466 3 min.
[Al-Rawi et al., 2007] 0.9458 5 s.
[Kirsch, 1971] 0.9151 2 s.
[Staal et al., 2004] 0.9611 15 min.
[Chaudhuri et al., 1989] 0.8773 5 s
Proposed algorithm 0.9180 0.1925 s.

Table 4.5: MAA and Execution Time

4.3 Remark: Overlapping

An analysis of the overlapping has been made to study the improvement
in MAA value, since vessel continuity can be lost in the limits of the sub
windows. This technique consists on overlapping rows and columns in the
sub windows, in order to obtain redundant information in the limits areas
(see Fig. 4.17).

The importance of the pixel information in the overlapping area depends
on the position in that area and the distance to the limits of the image. In
this sense, the pixel A in Fig. 4.17 has a higher value than A’ in the image
B. The main idea behind this process is the fact that the computation of
a pixel on the limits of the image is less accurate than in the centre of the
image. For example, in the overlapping area shown in Fig. 4.17, A and A’
correspond to the same pixel, but its value is different since in image A is in
next to the centre whereas in image B is next to the limit.



66 Experimental results: reliability and time performance

Fig. 4.17: Region of column overlapping and pixel value depending on their
position and the sub window they belong to

Fig. 4.18: Region of row overlapping and pixel value depending on their
position and the sub window they belong to
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The algorithm including the overlapping has been defined following the
scheme showed in Fig. 4.19. The original image is split with redundant
information on columns and rows. Each sub window is processed using the
algorithm. Then, all the images with redundant information in the rows and
columns are separately joined, in order to get the final result. The value in the
redundant area is obtained by adding all of the values previously computed.
Both images are added again and the result image is finally thresholded to
get the final result.

Fig. 4.19: Flow diagram of the algorithm using the overlapping technique

Four main criteria have been studied in order to see the influence and to
measure the improvement of the use of the overlapping technique: accuracy,
specificity, sensitivity and execution time. Specificity and sensitivity are the
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true negative and the true positive ratios, respectively, expressed as percent-
ages. Specificity are the true negative ratio, those background pixels which
have been correctly classified, and sensitivity are the true positive ratio, those
vessel pixels which have been correctly classified. Accuracy have been com-
puted following the previously proposed equation (Eq. 4.1). According to
this analysis, although the sensitivity value is improved with the overlapping
size, specificity and accuracy have a slight improvement (see Fig. 4.20), and
on the other hand, the required execution time increases significantly due
to the increment of the sub window number which should be processed (see
Table. 4.6 and Fig. 4.20).

Overlapping Number of MAA Global Exec.
Size Sub windows Time (s.)

0 30 0.9180 0.195

4 35 0.9181 0.227

8 35 0.9183 0.227

16 42 0.9178 0.273

32 56 0.9177 0.364

64 120 0.9182 0.780

Table 4.6: Execution time and MAA depending on the execution time

In summary, it can be said that the overlapping technique is not actually
needed due to the remarkable increment on the required execution time.
Moreover, the specificity, sensitivity and accuracy values slightly improve
using the overlapping.
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4.4 Discussion

The time performance as well as the accuracy of the results of retinal ve-
ssel tree extraction algorithm has been studied in this chapter. Initially, the
accuracy has been tested using the publicly available database DRIVE in
order to establish the quality of the results of the algorithm proposed in this
thesis. This is a starting point to determine which kind of applications can
use the results of our algorithm depending on the required MAA. The algo-
rithm has been implemented in the SCAMP-3 vision system. The execution
time obtained with this chip was analysed. Looking to the time performance
needed for each stage, the hole filling is the operation with the highest com-
putation effort. A total of 6.5 ms. is needed for the processing of a 128x128
sub window, whereas the whole angiography requires about 0.19 s. Although
there are proposals in the literature that have a better MAA value, the exe-
cution time obtained for the algorithm proposed in this thesis is significantly
lower (one or several orders of magnitude). Moreover, although computers
are becoming faster, the window size of the current cellular processor arrays,
like the Eye-RIS v.1.2 (QCIF) [Anafocus, 2008] is also increasing (176x144),
which means that the number of needed sub windows will decrease as well
as the execution time required for the task.

An overlapping technique has been also studied in order to analyse the
improvement in the main criteria (MAA, specificity, sensitivity and execu-
tion time). Although there is a slightly improvement in the accuracy criteria,
the execution time significantly increases so this overlapping was finally dis-
carded.



Chapter 5

Applications

Retinal vessel tree is a key feature in a wide range of applications, from
the medical domain up to the authentication applications tasks. The study
and analysis of the vessel geometry features have become the basis of medi-
cal applications intended to be used in early diagnosis [Brieva et al., 2004],
specially related with stenosis, malformations and cardiovascular risk, and
effective monitoring of therapies in retinopathy [Miles and Nuttall, 1993].
Regarding retinal based authentication systems, the skeleton of the retinal
vessel tree is considered one of the strongest biometric features due to the
impossibility to forge it [Uludag et al., 2004].

In this chapter, the retinal vessel tree extraction algorithm has been inte-
grated into several applications, particularly a personal authentication sys-
tem and a medical application used to compute the arteriolar-to-venular ra-
tio. This integration opens the future applicability of this proposal in a wide
range of applications, specially regarding real-time requirement applications.

5.1 Retinal vessel authentication application1

Biometric features are inherently more reliable than passwords [Uludag et al.,
2004], since they cannot be lost or forgotten, and they are extremely difficult
to copy, share, distribute or forge. Among others, the retinal vessel tree is
considered as a reliable feature. In the system addressed in [Mariño et al.,

1The authentication system proposed in this section is the basis of the thesis of Marcos
Ortega Hortas from the Department of Computer Science, University of A Coruña.This
was a collaborative work and it has been published in [Alonso-Montes et al., 2008a]

71
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2006], this feature is used to authenticate individuals. The geometry of the
retinal vessel tree, (the skeleton or crease), is extracted from a retinal image
and registered. This skeleton is aligned with the one stored in the database,
computing the cross-correlation index which determines the acceptance or
rejection of the individual. The system proposed in [Ortega et al., 2006b]
uses the feature points or landmarks of the retinal vessel tree to authenti-
cate the individuals. Since the retinal vessel tree extraction implies a high
computation effort, the use of the pixel parallel retinal vessel tree extraction
algorithm is proposed, regarding the high computation speed. An analysis of
the results is shown in order to see if the retinal vessel tree extracted using
the algorithm proposed in this thesis is suitable for those systems. Since both
applications use the skeleton of the retinal vessel tree, an skeletonisation step
is introduced [Lam et al., 1992], see Fig. 5.1.

Fig. 5.1: General scheme for obtaining the skeletons in order to be used in
the authentication systems
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5.1.1 Authentication system using creases

An authentication system based on the skeletons of the retinal vessel tree,
also called creases, is proposed in [Mariño et al., 2006]. The flow diagram of
the performance of this algorithm is shown in Fig. 5.2.

Fig. 5.2: Flow diagram of the authentication system addressed in [Mariño
et al., 2006]

Initially, the extraction of a set of crease and valley lines is made to use
as anatomical landmarks. This pattern is stored in a database of authorised
people. When an individual needs to be authenticated, the acquired image
is processed to extract the retinal vessel tree (crest and valley lines) and a
registration process is required in order to align it with the pattern stored
in the database. The registration process avoids miss-registrations between
images due to inevitable eye movement. Once the images are aligned, a simi-
larity measure is computed. A given threshold will determine the acceptance
or rejection of the individual.

The retinal vessel extraction algorithm has been integrated into this ap-
plication. The extracted retinal vessel tree is processed to get the skeleton.
This skeleton, which belongs to the centre of the vessel is used as the crest
and valley lines to authenticate the individuals.
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Image registration

Once the creases have been extracted from the images, the registration pro-
cess is performed. Then, an alignment of the images is obtained by matching
sufficiently long portions of vessels. Notice that although the whole retinal is
used, this methodology does not have a strong dependence on the quality of
the segmentation. In this sense, the alignment must be robust to missing and
non-overlapping features. The alignment function takes one of the images as
the reference, while the other is iteratively transformed until the function
reaches a global maximum. A suitable function to measure the quality of the
alignment is the correlation function:

Corrτ =
∑

x∈f

f(x)g(τ(x)) (5.1)

where f and g are the creaseness images and τ represents the transforma-
tion whose parameters need to be tested. These parameters as well as the
function Corrτ are not easy to optimise. The approach to overcome this fact
is to search within the parameter space at multiple resolutions following the
proposal in [den Elsen et al., 1995]. The ridgeness and valleyness images are
at the bottom of the processing pyramid and each level is a sampled version
of the previous at half resolution, until images have a final size of 64 pixels
in each dimension. An exhaustive search starts at the top of the pyramid
computing the correlation in the Fourier domain. Several values from each
level are kept as seeds for the next level. This is made for both robustness
of the methodology and improvement of the computation time. Then, the
creases of the registered images are used to obtain a similarity measure be-
tween them. The normalised cross-correlation coefficient γ has been used as
the similarity value, and it is computed as follows:

γ =

∑

x,y[f(x, y) − f ][g(x, y)− g]
√

[f(x, y) − f ]
2
[g(x, y)− g]2

(5.2)

where g is the mean of the registered image, and f is the mean of the image.
Only the pixels belonging to the overlapping area are not null. Finally, a
confidence value should be determined in order to distinguish if two images
belongs to the same individual. Two images will be considered that they
belong to the same person if the γ value is higher than this confidence value.
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5.1.2 Authentication system using point feature ex-
traction

The system addressed in [Ortega et al., 2006b] is based on the approach of the
minutiae (ridge endings, bifurcations and endpoints) used in the fingerprint
recognition. In this system, the landmarks (bifurcations) of the retinal vessel
tree are extracted to characterise the individual. The use of this biometric
feature points, instead of the whole retinal vessel tree, gives more robustness
to the pattern, as well as an easier encoding and more efficient matching
process. The proposed stages for this system are shown in Fig. 5.3. This
work was presented in [Alonso-Montes et al., 2008a].

Fig. 5.3: Flow diagram of the authentication system addressed in [Ortega
et al., 2006b]

Initially, all the authorised user vessel patterns are stored in a database.
When an individual needs to be authenticated, a new retinal image is ac-
quired. The feature points are extracted and a registration process is made
to align those points with the pattern of the individual, which is stored in the
database. Once the images are aligned, a similarity measure is computed,
and if it is higher than a given threshold the individual is accepted, otherwise
he is rejected.

Point feature extraction

Four steps have been proposed to implement the point feature extraction:
firstly, a segment detection is made, then union and bifurcations are com-
puted, and finally the feature points are determined. Initially, the whole
vessel tree is tracked in order to label the segments and their ending points.
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When a non-zero pixel is detected, its non-zero neighbours are tracked re-
cursively following the line directions. Once all the segments are labelled,
the relationships between them, such as the unions and bifurcations, should
be detected. Two close segments have an union relationship between them
if one is continuation of the other in the same vessel. The bifurcation re-
lationship detection is made by extending every segment from its endpoints
along a fixed length. If another segment is found in the surroundings, those
segments are marked as a bifurcation. Finally, some redundant points are
removed.

Registration and matching

The proposed matching algorithm is based on the proposal described in [Tico
and Kuosmanen, 2003]. The algorithm receives both of the sets of feature
points, one with the points previously computed in the candidate image,
and another one from the image stored in the authorised user database (the
reference image). A matching value is computed to obtain the similarity
between both images, which will determine the acceptance or rejection of
the individual.

Retinal images of the same individual obtained at different moments will
probably have some deformations, due to the eye movements. In this sense,
the Similarity Transformation (ST) has been proposed, since it deals properly
with images where the rotation angle is moderate. The scaling is nearly
constant for all the images, due to the proximity of the eye to the camera.
An initial set of possible transformations is made following the approach
described in [N. Ryan and de Chazal, 2004], selecting pairs of points in both
images. The similarity value, S, for a pair of points is computed based on
the distance between them:

S(A, B) = 1 − distance(A, B)

D
(5.3)

where A and B are the points, D is the maximum distance for those points
to be considered as a possible match. If this distance is greater than D then
S = 0. In some cases, two close points (C1, C2) in the candidate image,
could have a good value of similarity respect to a point R of the reference
image. So, the most suitable matching pair is identified by means of the
probability of correspondence, which is defined by comparing the similarity
value between those points and the rest of similarity values of each one of
them:
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P (Ai, Bj) =
S(Ai, Bj)

2

(

M
∑

i′=1

S(Ai′ , Bj) +

N
∑

j′=1

S(Ai, Bj′) − S(Ai, Bj)

) (5.4)

A MxN matrix, Q, is computed, such that the position (i, j) holds the
value P (A, B) for all the combinations. The best non-zero values in each
row and column are selected. Finally, the matching value that measures the
similarity between both points sets is computed as follows:

1√
MN

∑

(i,j)∈Q

S(Ai, Bj) (5.5)

where M and N are the number of points of both feature point sets. This
value is compared with a given threshold, which will be establish the accep-
tance or the rejection of the individual.

5.1.3 Experimental Results

The images used in the experiment for both authentication systems have been
acquired during a period of 15 months in the University Hospital of Santiago
de Compostela (CHUS), using a Cannon CR6-45NM Non-Mydriatic Retinal
Camera, with a resolution of 768x584 pixels.

Initially, the retinal vessel tree has been extracted following the algorithm
proposed in this thesis. The last step consists on a skeletonisation step which
will be the input to both authentication systems. The original retinal image
has been split into 128x128 sub windows. The whole retinal vessel tree
extracted by means of the algorithm consists on the union of all the processed
sub windows. Since the image resolution is 768x584, a total number of 30
sub-windows is required. So, the global execution time required to process
the whole retinal vessel tree (excluding I/O operations) is 0.1925 s.

In the first proposal addressed in [Mariño et al., 2006] the whole retinal
vessel tree is used as the biometric pattern to compute the similarity value.
In [Ortega et al., 2006a], the biometric feature over the retinal vessel tree
are computed (see Fig. 5.4), and then the registration and matching pro-
cesses were made to authenticate the individual. This work was published
in [Alonso-Montes et al., 2008a].
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Fig. 5.4: Left: Retinal vessel tree (previous to the skeletonisation) over the
original image, Right: skeleton with feature points used to authenticate
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To check the reliability of both authentication systems, a blind test was
designed. A set of 100 images were introduced to the system (12 of them
belonging to 4 different individuals, acquired in different times). In this test,
the matching score for the Cartesian product of the whole set was computed.
The diagonal of the Cartesian product contains 1.0 value which corresponds
with the comparison of the image with itself.
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Fig. 5.5: The confidence band of the crease based authentication sys-
tem [Mariño et al., 2006] can be established around [0.17, 0.48], showing the
threshold limits where EER= 0 (neither false positives nor false negatives

For the crease based authentication system, the rest of the evaluations
proved that values under 0.17 were always obtained from images of different
individuals, and over 0.48 from images of the same person (see Fig. 5.5).
In the point feature approach, values under 0.3 were always obtained from
images of different individuals, and over 0.4 from images of the same person
(see Fig. 5.6). The false acceptance rate (FAR) as well as the false rejection
(FRR) measure the rate of incorrectly accepted and rejected people, respec-
tively. In both applications, the confidence band shows that the number of
false positives and negatives can be reduced to 0 (FAR = FRR). In the
first application, setting the threshold in values between 0.17 and 0.48, the
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effectiveness of the system using this database is 100% . In the second appli-
cation, the confidence band is smaller, but even in that situation, selecting
a value between 0.3 and 0.4, the effectiveness of the system is still 100% .
Notice that using all the information provided for the whole retinal vessel
tree implies a higher confidence band.
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Fig. 5.6: The confidence band of the point feature authentication system [Or-
tega et al., 2006a] can be established around [0.3, 0.4], showing the threshold
limits where EER= 0 (neither false positives nor false negatives)

The mean execution time for the authentication stages (excluding the
retinal vessel tree extraction) can be established in about 250ms for the
point based authentication system. Whereas the extraction of the retinal
vessel tree in the original proposal needed several seconds, depending on
the image resolution, with the proposed pixel parallel algorithm, the whole
authentication process is about 0.44 s. As it has been shown, the retinal
vessel tree obtained with the proposed algorithm is suitable to be used in
these systems, since the effectiveness is maintained in a 100%.
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5.2 Arteriolar-to-Venular Diameter Ratio Es-

timation

The study and analysis of the vessel geometry features have become the basis
of medical applications related with early diagnosis [Brieva et al., 2004] and
effective monitoring of therapies in retinopathy [Miles and Nuttall, 1993]. A
lot of research has been devoted to the development of strategies for accu-
rate measurement of vessel diameters [Gao et al., 2001a,b], regarding more
precise and repeatable diagnostic methods. Among other markers used in
early diagnosis, the arteriolar-to-venular (AVR) ratio is used to establish the
cardiovascular risk [Hubbard and Brothers, 1999], since it shows the narrow-
ing of the retinal blood vessels. The AVR is determined by measuring the
diameters of individual retinal arteriolar and venular calibers. A lower AVR
value is associated with a high blood pressure increasing the risk of stroke,
diabetes and hypertension. Currently, most of the the medical applications
developed to compute the AVR ratio from retinal images are semi-automatic
approaches [Caderno et al., 2004, Li et al., 2005], since a manual classification
of both types of vessels (vein and artery) should be made in order to compute
the AVR ratio. Apart from that, most of the techniques have to deal with the
central reflection observed in blood vessels, which corresponds with artery,
see Fig. 5.7. This problem is usually corrected by means of a Gaussian model
to fit the computed points with the actual ones, like is presented in [Li et al.,
2005, Caderno et al., 2004]

Fig. 5.7: Veins and arteries. Notice the central reflection observed in the
artery
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The proposed retinal vessel tree extraction algorithm is integrated into a
medical application in order to compute the AVR ratio. A specialist classify
the vessels (vein or artery) and the AVR ratio is automatically computed from
the extracted retinal vessel tree. This work has been presented in [Alonso-
Montes et al., 2008b].

5.2.1 AVR ratio computation system

The SIRIUS web application (System for the Integration of Retinal Images
Understanding Services) [SIRIUS, 2008], has been developed to be used by
specialists from 5 hospitals in Galicia to compute the AVR ratio in angiogra-
phies for patient monitoring. Several processes have been defined for the
AVR ratio computation, as it is shown in Fig. 5.8.

Fig. 5.8: Flow Diagram of the AVR ratio computation system

Firstly, the specialist selects the retinal image of the patient. Then, this
specialist selects the optic disk and three circles, concentric to the optic
disk, are drawn. The retinal vessel tree is automatically extracted from the
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previously selected retinal image. The vessels are measured in the points
where the three concentric circles intersect the extracted retinal vessel tree.
Finally, the specialist classifies each of those selected points into vein or artery
in order to estimate the AVR ratio.

AVR ratio estimation

Once the retinal image of the patient has been selected, the specialist selects
the centre of the optic disk over the original image. The system uses this
information to draw three concentric circles, d pixels far away from that optic
disk (see Fig. 5.9). These concentric circles will mark out a section of a vessel
in order to measure its mean width.

Fig. 5.9: Left: Optic disk selected by the specialist, and the three concentric
circles. Right: Example of the segments that are taken into account to
compute the vessel width. A, B, C, D, E’ and F’ are the crossing points
between the circles and the extracted retinal vessel tree. Notice that the
original E and F points are discarded, since the segment is not perpendicular
to the centre of the vessel (segment joining E’ and F’)

The points, which will be taken into account to estimate the vessel width,
are obtained from the intersection of concentric circles, the extracted retinal
vessel tree and the centre of the vessel. The segment which join the points
must be perpendicular to the centreline of the vessel in order to correctly
estimate the vessel diameter. If it is not perpendicular, a perpendicular
segment is drawn between the closest points to those ones (see Fig. 5.9).
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The estimation of the vessel width is computed as follows:

W =

3
∑

i=1

li/3 (5.6)

where li is the length (Euclidean distance) of each of the segments which join
the detected intersected points (see Fig. 5.9), and the final width is the mean
of these lengths. In Fig 5.9, for example, the li distance between points A
and B is computed as follows:

l1 =
√

(xA − xB)2 + (yA − yB)2 (5.7)

where (xA, yA) and (xB, yB) are the coordinates of points A and B, respec-
tively.

Once, the vessel diameters are computed, the specialist classify each of
those points into venular or arteriolar points. The AVR ratio is computed
using the previous classification and according to the following equation:

AV R =

∑

Wa
∑

Wv

(5.8)

where Wa and Wv are the widths of arteriolar and venular vessels, respec-
tively, previously computed using Eq. 5.6.

5.2.2 Experimental results

The images used in this experiment have been acquired using a Cannon
CR6-45NM Non-Mydriatic Retinal Camera, with a resolution of 768x584
pixels. A total set of 10 images have been used to compute the AVR ratio
(2 of them with pathologies). Firstly, the retinal vessel tree is extracted
with the proposed algorithm. The main parameters of the algorithm are
tuned only once for the whole set of images. The global execution time
required to process the whole retinal vessel tree (excluding I/O operations)
is 0.1925 s, which is significantly lower compared with the conventional PC-
based algorithms. In [Caderno et al., 2004] the active contour is applied
only in the area determined by the concentric circles. The whole retinal
tree is extracted in [Espona et al., 2007] using the same approach addressed
in [Caderno et al., 2004], and it takes about 32.1 s, which is significant higher
compared with our technique.

Initially, the optic disk should be established by the specialist in order to
draw the concentric circles which will mark out the area to get the points to
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No. Image [Caderno et al., 2004] Proposed algorithm

1 0.79 0.78
2 0.82 0.84
3 0.81 0.82
4 0.80 0.76
5 0.82 0.80
6 0.89 0.91
7 0.77 0.77
8 0.90 0.93
9 0.83 0.80
10 0.83 0.81

Table 5.1: AVR ratio comparison

estimate the vessel width. These points, which belongs to the intersection of
those concentric circles and the extracted retinal vessel tree, will be detected
and used to compute the vessel width, according to Eq. 5.6 (see Fig. 5.10,
where the selected points are shown with a circle). Finally, a manual classi-
fication of venular and arteriolar vessels has been made by an specialist from
the CHUS. The AVR ratio is computed following Eq. 5.8, using the widths
previously estimated. In this case, those vessel diameters whose length is less
than 2 or bigger than 9 have been discarded since they correspond to very
small vessels or junctions between vessels, respectively. Other algorithms
proposed to estimate the AVR ratio have been also implemented in SIRIUS,
particularly the active contour-based proposal addressed in [Caderno et al.,
2004]. A comparison between the AVR ratio results computed by means of
both proposals are shown in Table 5.1. As it is shown the obtained AVR ra-
tios have an acceptable range of deviation [Couper et al., 2002] (mean average
error of 0.002).
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Fig. 5.10: Points selected to compute the AVR ratio



Chapter 6

Discussion and future research

A novel approach for the retinal vessel tree extraction has been presented in
this thesis. This algorithm deals with the special features of retinal images
at a high computation speed.

From an image processing point of view, the proposed algorithm has
been tested with the publicly available Digital Retinal Images for Vessel
Extraction database (DRIVE). The maximum average accuracy (MAA) has
been computed using the test set provided in the database. The level MAA =
0.9180 is good enough for its possible application or integration into different
tasks. From the time performance point of view, the algorithm has been
successfully implemented in the SCAMP-3 vision system, a chip with SIMD
capabilities. The execution time for a standard retinal image of 768x584
pixels from the DRIVE is about 0.1925 s. Although there are proposals in
the literature with a better MAA value, the execution time obtained for the
proposed retinal vessel tree extraction algorithm is significantly lower (one or
several orders of magnitude) than PC-based algorithms. On one hand, the
PC industry offers more powerful microprocessors giving to the PC-solutions
a more competitive time processing. But, on the other hand, the evolution
on processor arrays shows a tendency to increase their size, which balances
the distance between PC-based and hardware-based solutions.

Due to the MAA value and the execution time obtained in the previous
analysis, the next goal in the thesis was the integration of the algorithm
into practical applications. In this case, three applications have been con-
sidered, two of them belongs to an authentication system, and another one,
related with the medical domain, particularly the AVR ratio estimation sys-
tem. All those applications have been working using conventional PC-based
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algorithms for the retinal vessel tree extraction.

In the case of the authentication applications, there two systems to the
authentication based on the vessel pattern. Both of them use the skeleton
of the retinal vessel tree, so a skeletonisation step has been applied to the
final result obtained with the proposed retinal vessel tree algorithm. In the
first system, the whole skeleton is used to authenticate the individual. In the
second system, only point features (similar to the minutiae) are considered
to do the authentication process. The pixel parallel algorithm proposed in
this thesis has been integrated in both systems. An analysis of the obtained
results showed that the effectiveness of the system is not affected for using
the pixel parallel instead of the PC-based approaches.

In the medical domain, usually the accuracy of the results is crucial for the
disease diagnosis. In the AVR ratio estimation, the pixel parallel algorithm
has been integrated and compared with a contour based approach already
implemented in SIRIUS. The results of the measurement of the vessel widths
and the AVR computation shows that similar results are obtained.

This algorithm has a good level of accuracy (MAA = 0.9180) and a very
low execution time, one or several orders of magnitude less than conventional
PC-based applications. In this sense, PC-based systems usually have to get
a compromise between accuracy and time performance, which means, more
accuracy implies a higher complexity on the operations and more required
computation effort.

On the whole, it can be said that the results of the pixel parallel retinal
vessel tree extraction algorithm addressed in this thesis can be applied to a
wide range of application, tasks and tools, specially those regarding real-time
computing (hard or soft real-time requirements) or video-based applications,
specially related with tracking. Furthermore, the possibility of projecting
of this algorithm onto a focal plane processing systems gives the option to
integrate with another devices, such as cameras.



Appendix A

Cellular Neural Networks

Cellular Neural Networks (CNN) [Chua and Yang, 1988] is a computation
model which is based on some aspects of neurobiology and adapted to in-
tegrated circuits. CNN are a large-scale nonlinear analog circuit which pro-
cesses signals in real time. It is made of a massive aggregate of regularly
spaced circuit clones, called cells which communicate with each other di-
rectly only through its nearest neighbours. Its continuous time feature al-
lows to manage real-time signal processing in the digital domain and its local
interconnection feature make it suitable for VLSI implementations.

A CNN can be outlined as a 2−,3− or n−dimensional array of mainly
identical dynamical systems (cells) which satisfies two properties:

• most interactions are local within a finite radius r

• all state variables are continuous valued signals

A.1 CNN cell: the basic unit

The basic unit of CNN is a cell, see Fig. A.1, which contains linear and
nonlinear circuit elements. The structure of cellular neural networks is similar
to that found in cellular automata: any cell in a CNN is connected only to its
neighbours. The adjacent cells can interact directly with each other. Cells not
directly connected may affect each other indirectly because of the propagation
effects of the continuous-time dynamics of the CNN. Theoretically, a CNN
of any dimension can be defined. Considering a two dimensional cell, MxN

89



90 Cellular Neural Networks

Fig. A.1: Two-dimensional cellular neural network. The circuit size is 4x4.
Each circuit unit, called cells, are represented by the squares. The links
between the cells indicate the interactions between the cells

CNN, having MxN cells arranged in M rows and N columns, the cell(i,j), i-th
row and j-th column, is denoted by C(i, j). The neighbourhood of C(i, j)
(see example in Fig. A.2) is defined by:

Nr(i, j) = {C(k, l)|max{|k − i|, |l − j| ≤ r, l ≤ k ≤ M ; 1 ≤ l ≤ N}} (A.1)

where r is a positive integer number. The value r = 1 is considered as a
3x3 neighbourhood. This neighbourhood system defined above exhibits a
symmetry property in the senses that if C(i, j) ∈ Nr(k, l) then C(k, l) ∈
Nr(i, j) for all C(i, j) and C(k, l) in a cellular neural network.

A template specifies the interaction between each cell and all its neighbour
in terms of their input, state and output variables, see Fig. A.3.

U represents the set of external inputs from the neighbour cells (U =
{ukl/c(k, l) ∈ Nr(i, j)}). Y represents the set of external outputs from the
neighbour cells (Y = {ykl/c(k, l) ∈ Nr(i, j)}). B is the control operator
which weights each of the inputs from the neighbour cells of ukl in order to
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Fig. A.2: Classical scheme of a standard CNN. Each number of the label
of each cell is related with the neighbour relationship with respect with the
central one (label 0)

weight the importance of their contribution to the new internal state xij of
the cell. A is the feedback operator which weights the contributions of the
outputs of the neighbour cells ykl to the internal state xij . I is a bias term. It
can be a fixed value for each cell or a general for all the network. G controls
the dynamic of the system. F is the activation function which transforms
the real value of the internal state xij into the output yij.

The dynamic of the model is defined by partial differential equation first
order, defining the new state as follows:

d

dt
xij(t)0 − xij(t) +

∑

k,l∈Nr(i,j)

Aijklykl(t) +
∑

k,l∈Nr(i,j)

Bijklykl(t) + Iij (A.2)
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Fig. A.3: Functional scheme of a cell

where ij refers to a grid point associated with a cell on the 2D grid, and
kl ∈ Nr(i, j) is a grid point in the neighbourhood within a radius r of the
cell ij.

Since the CNN can calculate practically all types of (planar or spatial
convolutions/correlations using a programmable kernel function with a finite
spatial window, many existing algorithms and physical phenomena can be
translated into analogic CNN algorithms and implemented as complex cells.
So, the CNN universal machine was first introduced by [Roska and Chua,
1993]. It is a programmable analog array computer with its own language
and operating system. The single chip has the computation power of a su-
percomputer.

Possible applications of the CNN can be found in [Chua and Yang, 1988],
where they were used for noise removal, for feature extraction such as edge
or corner detection, even for complex tasks Chinese character recognition. In
all those proposals, the CNN works as a two-dimensional filter. Unlike the
conventional two-dimensional digital filters, the CNN uses parallel processing
of the input image space and delivers its output in continuous time.



Appendix B

CNN-based original approach:
experimental results

The CNN-based original algorithm has been tested using 100 retinal images
obtained from patients of the central hospital of Santiago de compostela
(Complexo Hospitalario Universitario de Santiago, C.H.U.S). The gray level
values considered for the computation have been scaled to the range [−1, 1],
like in the CNN specifications, where −1 corresponds to white and 1 to black.

All the stages of the proposed algorithm has been applied to each of the
sub windows. The parameters used in the processing of all sub windows for
each of the stages are shown in Table B.1.

1st Stage α β
0.12 −0.9

3rd Stage ρ σ
0.5 0.5

4th Stage kext kint

0.4 0.005

Table B.1: Parameters heuristically computed for each of the stages

B.1 Stage 1. Vessel pre-estimation

During this stage, low contrast images are enhanced in order to properly
segment vessels. Initially, the histogram equalisation operation improves low
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contrast images. Then, the adaptive segmentation step, the α and β values
are empirically estimated. These values are tuned only once and used for
all the images, see values in Table B.1. The optimal threshold value (thres)
has been computed following the Eq. 3.2. The opening operation removed
noise appeared during the adaptive segmentation step. Although noisy points
are easily removed, big areas with a similar gray level value, segmented as
vessels in the previous step, cannot be removed, compare 3rd and 4th rows
in Fig. B.1.

Fig. B.1: Stage 1: 1st row Original image, 2nd row Histogram equalisation,
3rd row Adaptive segmentation and 4th row Opening
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B.2 Stage 2. Initial contour estimation

The initial contours have been computed dilating 5 times the regions between
the vessels. This number of dilations assure that the contours are completely
outside of the vessel locations, removing vessel discontinuities, see Fig. B.2.
Then, the binary edge detection step obtains the initial contours needed by
PLS.

Fig. B.2: Initial contour images

B.3 Stage 3. External potential estimation

The external potential is computed combining the equalised and segmented
image obtained during the first stage. The weighting values have been em-
pirically estimated (ρ = σ = 0.5), see Table. B.1. Notice how the information
of vessel continuity is maintained with the combination of both images, see
Fig. B.3. The combination of both images smooths the influence of noise
and at the same time, in those areas with small discontinuities additional
information is added to stop the PLS evolution.

Fig. B.3: External potential images

B.4 Stage 4. PLS evolution

Once the main input images needed by PLS are computed, PLS evolve to
fit the exterior of the vessels of the retinal vascular tree. Since the initial
contours are situated completely outside of the vessel locations, an inflation
balloon potential is needed. The external and internal potential weighting
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variables (kext = 0.4, kint = 0.005) emphasise the importance of the external
potential. Due to the management of the topological changes, merging and
splitting regions, noisy regions are removed as well as the vessel topology can
be maintained, see Fig. B.4.

Fig. B.4: PLS superimposed over the inverted external potential image

All the sub windows are joined to get the final retinal vessel tree.



Appendix C

Implementation of the
algorithm in the SCAMP

In this chapter the implementation code in the SCAMP is presented. It
has been split up into sections corresponding to the main modules of the
algorithm. The initialisation of the algorithm includes reading the image
from the input device.

C.1 Stage 1. Vessel Pre-estimation

//-----------------------------------------

// Fast diffusion

//-----------------------------------------

NEWS <- A

D <- DIFFUSE

//-----------------------------------------

// Adaptive Threshold

//-----------------------------------------

// Substract D from Image Orig

Z <- PIX

K <- D + Z /+ IN(0)

NOP
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Q <- IN(0)

NOP

H <- Q + IN(100)

IF K

Q <- IN(0)

NOP

H <- Q + IN(-100)

ENDIF

// The result is stored in H

C.2 Stage 2. Initial Contour Estimation

//--------------

// Erosion

//--------------

Q <- H + IN(-20)

D <-

Z <- Q + IN(0)

NEWS <- Z

Q <- IN(0)

C <-

_load erosion_var, 4

: erosion_loop

// Erosion ==> -50

IF NEWS

C <- Q + IN(-50)

IF EAST

C <- Q + IN(-50)

IF WEST

C <- Q + IN(-50)

IF NORTH

C <- Q + IN(-50)

IF SOUTH

C <- Q + IN(-50)

ENDIF
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D <- C

NEWS <- D

_sub erosion_var, 1

_jump nz, erosion_loop

// C contains the initial contour

C.3 Stage 3. External Potential Estimation

//-----------------------------------------

// SOBEL

//-----------------------------------------

B <- PIX

Q <-

A <- B + Q /image to A

//A = A/2 (with mismatch REDUCTION)

DIV Z+B <- A

Q <- B + A

D <- Q + Z

DIV Z+B <- D

A <- B

//K = A/2 (with mismatch REDUCTION)

DIV Z+B <- A

Q <- B + A

D <- Q + Z

DIV Z+B <- D

K <- B

NEWS <- K

Q<- K

A<-Q+NORTH

B<-Q+SOUTH

Q<-A+B

NEWS<-Q

Z<-WEST
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Q<-Z+EAST

D<-Z+EAST

IF Q

B <-

D<-Q+B

ENDIF

NEWS<-K

Q<-K

A<-Q+EAST

B<-Q+WEST

Q<-A+B

NEWS<-Q

Z<-NORTH

Q<-Z+SOUTH

A<-Z+SOUTH

IF A

B <-

A<-Q+B

SF

B<-D+A;

NEWS <- B

//==============================

// Range change of Sobel result

//==============================

Q <-

A <- B + Q

D <- B + Q

_load sumVar, 5

: change_range

K <- A + D

A <- K

_sub sumVar, 1

_jump nz change_range

// Result stored in A

//------------------------------------------------

// 3/4*Sobel + 1/4*Iseg

//------------------------------------------------
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DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

D <- Z

DIV K+Z <- D

Q <- Z + D

Z <- Q + K

DIV K+Q <- Z

K <- Q

A <- D + K

// Result stored in A

//------------------------------------------------

DIV K+Z <- H

D <- Z + H

Q <- D + K

DIV K+Z <- Q

H <- Z

DIV K+Z <- H

D <- Z + H

Q <- D + K

DIV K+Z <- Q

K <- Z

D <- A

A <- D + K

B <- NEWS // Sobel value

Z <- A + B

A <- Z

//-----------------------------------------

// diffusion of A

//-----------------------------------------

_load ldiff2, 2 //diffusion time
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: diff_sob_loop2

// diffuse EAST

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + EAST

A <- Z

// diffuse SOUTH

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + SOUTH

A <- Z

// diffuse WEST

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + WEST

A <- Z

// diffuse NORTH

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z
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K <- Z

Z <- K + NORTH

A <- Z

_sub ldiff2, 1

_jump nz, diff_sob_loop2

//end of diffusion

//-----------------------------------------

// Result stored in Z

Z <- A + B

A <- Z

Z <- A + B

A <- Z

Z <- A + B

A <- Z

C.4 Stage 4. PLS evolution

_load cpd, 1

_load sobel,0

_load tdiff,1

: main

_load cloop, 8 // evolutions per frame

_load ball, 68 //balloon offset (zero)

_load balloon,100 // balloon strength

_load pls_cond, 2

/=====================================

/ initialisation of images

/Load and Threshold Initial CONTOUR Image

/B = EXTERNAL POTENTIAL

B <- Z
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/C = CONTOUR (REGION)

D <- C

H <- D

K <- D

Q <-

C <- H + K + Q

/=====================================

: pls_start

//contour evolution loop

: main_loop

H <- IN (0)

// find contour from region

NOP

K <- H + IN (-90)

//K = 3x3 dilation of not C

NEWS <- C; SF

IF EAST

K <- H + IN(90)

SF

IF WEST

K <- H + IN(90)

SF

IF NORTH

K <- H + IN(90)

SF

IF SOUTH

K <- H + IN(90)

SF

IF NEWS

K <- H + IN(-90)

ENDIF

/invert region

A <- H + IN (30)

IF C
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A <- H + IN (-30)

ENDIF

C <- A

/------------------------------------------------------------------

/ IPE module

//Q - Result of Contour Diffusion

A <- H + IN (-50)

IF K

A <- H + IN (50)

ENDIF

// diffusion of A

_load ldiff, tdiff

: diff_loop

// diffuse EAST

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + EAST

A <- Z

// diffuse SOUTH

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + SOUTH

A <- Z
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// diffuse WEST

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + WEST

A <- Z

// diffuse NORTH

DIV K+Z <- A

D <- Z + A

Q <- D + K

DIV K+Z <- Q

NEWS <- Z

K <- Z

Z <- K + NORTH

A <- Z

_sub ldiff, 1

_jump nz, diff_loop

Q <- Z + H + IN (-50)

/------------------------------------------------------------------

/ BPE module - calculate balloon potential to A

_load test, balloon

_sub balloon, ball

_sub test, balloon

_sub test, balloon

_load balloon, test

_output, balloon, IN

NOP

D <- H + IN
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_output, ball, IN

NOP

IF C

D <- H + IN

ENDIF

A <- D

/------------------------------------------------------------------

/Total Potential to D:

D <- B + A + Q

: skip

/------------------------------------------------------------------

// Contour Evolution NORTH

Q <- C

/can expand

K <- IN (-100)

/only if neighbour

NEWS <- C

IF SOUTH

K <- IN (100)

ENDIF

/only if decr. potential

NEWS <- D

A <- D + SOUTH

NEWS <-

Z <- A + NEWS

IF Z

K <- IN (100)

ENDIF

_add cpd,1
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_sub cpd,1

_jump nz skip1

/only if no collision

Z <- Q

NEWS <- Z

A <- IN (-100) /danger

IF Z

A <- IN (100) /NO danger

SF

IF NORTH

A <- IN (100) /NO danger

//if danger around - cancel move

SF

IF A

K <- IN (100)

ENDIF

Z <- A

NEWS <- Z

IF EAST

K <- IN (100)

SF

IF WEST

K <- IN (100)

ENDIF

SF

: skip1

/expand

IF K

Q <- IN (35)

ENDIF

/------------------------------------------------------------------

// Contour Evolution SOUTH

/can expand

K <- IN (-100)
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/only if neighbour

NEWS <- C

IF NORTH

K <- IN (100)

ENDIF

/only if decr. potential

NEWS <- D

A <- D + NORTH

NEWS <-

Z <- A + NEWS

IF Z

K <- IN (100)

ENDIF

_add cpd,1

_sub cpd,1

_jump nz skip2

/only if no collision

Z <- Q

NEWS <- Z

A <- IN (-100) /danger

IF Z

A <- IN (100) /NO danger

SF

IF SOUTH

A <- IN (100) /NO danger

//if danger around - cancel move

SF

IF A

K <- IN (100)

ENDIF

Z <- A

NEWS <- Z

IF EAST

K <- IN (100)

SF
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IF WEST

K <- IN (100)

SF

ENDIF

: skip2

/expand

IF K

Q <- IN (35)

ENDIF

/------------------------------------------------------------------

// Contour Evolution EAST

/can expand

K <- IN (-100)

/only if neighbour

NEWS <- C

IF WEST

K <- IN (100)

ENDIF

/only if decr. potential

NEWS <- D

A <- D + WEST

NEWS <-

Z <- A + NEWS

IF Z

K <- IN (100)

ENDIF

_add cpd,1

_sub cpd,1

_jump nz skip3

/only if no collision

Z <- Q

NEWS <- Z

A <- IN (-100) /danger

IF Z
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A <- IN (100) /NO danger

SF

IF EAST

A <- IN (100) /NO danger

//if danger around - cancel move

SF

IF A

K <- IN (100)

ENDIF

Z <- A

NEWS <- Z

IF NORTH

K <- IN (100)

SF

IF SOUTH

K <- IN (100)

SF

ENDIF

: skip3

/expand

IF K

Q <- IN (35)

ENDIF

/------------------------------------------------------------------

// Contour Evolution WEST

/can expand

K <- IN (-100)

/only if neighbour

NEWS <- C

IF EAST

K <- IN (100)

ENDIF
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/only if decr. potential

NEWS <- D

A <- D + EAST

NEWS <-

Z <- A + NEWS

IF Z

K <- IN (100)

ENDIF

_add cpd,1

_sub cpd,1

_jump nz skip4

/only if no collision

Z <- Q

NEWS <- Z

A <- IN (-100) /danger

IF Z

A <- IN (100) /NO danger

SF

IF WEST

A <- IN (100) /NO danger

//if danger around - cancel move

SF

IF A

K <- IN (100)

ENDIF

Z <- A

NEWS <- Z

IF NORTH

K <- IN (100)

SF

IF SOUTH

K <- IN (100)

ENDIF

: skip4
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/expand

IF K

Q <- IN (35)

ENDIF

/------------------------------------------------------------------

/ update contour

C <- H + IN (-30)

IF Q

C <- H + IN (30)

ENDIF

_sub cloop, 1

_jump nz main_loop

// Done. Final region is in C

NOP

K <- H + IN (-90)

//K = 3x3 dilation of not C

NEWS <- C; SF

IF EAST

K <- H + IN(90)

SF

IF WEST

K <- H + IN(90)

SF

IF NORTH

K <- H + IN(90)

SF

IF SOUTH

K <- H + IN(90)

SF

_sub pls_cond, 1

_jump nz hole_fill

_jump finished

//----------------------------------------------------------------
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// STAGE 5. Hole Filling

//----------------------------------------------------------------

: hole_fill

/A = Image

Z <- K + IN (0)

_input slider, #80

_load slider, 40

A <- IN (50)

NOP

_output slider, IN

NOP

Q <- Z + IN

IF Q

A <- IN (-50)

ENDIF

Z <- IN (-50)

NOP

D <- IN(-100)

NOP

NEWS <- IN (100)

IF Z + EAST

D <- IN (100)

ENDIF

NOP

IF Z + WEST

D <- IN (100)

ENDIF

NOP

IF Z + NORTH

D <- IN (100)

ENDIF

NOP

IF Z + SOUTH

D <- IN (100)

ENDIF

NOP
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//Reconstruction

_load a, 120

: fill_loop

//3x3 dilation

SF

NEWS <- D; SF

IF EAST

D <- IN(100)

SF

IF WEST

D <- IN(100)

SF

NEWS <- D; SF

IF NORTH

D <- IN(100)

SF

IF SOUTH

D <- IN(100)

SF

//C and A

D <- IN (-100)

ENDIF

_sub a, 1

_jump nz, fill_loop

Q <-

Z <- D + Q

C <- Z

_load cpd, 0

_load sobel,0

_load tdiff,1

_load cloop, 40

_load ball, 68

_load balloon, 72

@
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_load pls_cond, 1

_jump pls_start

//----------------------------------------------------------------

// Contour edge detection

//----------------------------------------------------------------

: finished

// Final region is in C

// to display - find contour from region

NOP

K <- H + IN (-90)

//K = 3x3 dilation of not C

NEWS <- C; SF

IF EAST

K <- H + IN(90)

SF

IF WEST

K <- H + IN(90)

SF

IF NORTH

K <- H + IN(90)

SF

IF SOUTH

K <- H + IN(90)

SF

IF NEWS

K <- H + IN(-90)

ENDIF

OUT K
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and F. González. Automatic Extraction of the Retina AV Index. In LNCS
Int. Conf. Image Analysis and Recog. (ICIAR’04), volume 3212, pages
132–140, 2004.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum. A feature-based,
robust, hierarchical algorithm for registering pairs of images of the curved
human retina. IEEE Trans. Pattern Anal. Machine Intell., 24(3):347–364,
2002.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. Interna-
tional Journal of Computer Vision, 22:61–79, 1997.

T. Chanwimaluang and G. Fan. An efficient blood vessel detection algorithm
for retinal images using local entropy thresholding. In Proc. Int. Symp.
Circuits Syst. (ISCAS ’03), volume 5, pages 21–24, May 2003.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detec-
tion of Blood Vessels in Retinal Images using Two-Dimensional Matched
Filters. IEEE Trans. Med. Imag., 8:263–269, 1989.

L. O. Chua and T. Roska. The CNN paradigm. IEEE Trans. Circuits Syst.,
40:147–156, 1993.



BIBLIOGRAPHY 119

L. O. Chua and Lin Yang. Cellular Neural Networks: Theory. IEEE Trans.
Circuits Syst., 35(10):1257–1272, Oct 1988.

CLS. Cnn software library. version 1.1. analogic and neural comput. lab. com-
puter and automation research inst. of the hungarian academy of sciences.
http://lab.analogic.sztaki.hu/Candy/csl.html, 2007.

L. D. Cohen and I. Cohen. Finite Element Methods for Active Contour
Models and Balloons for 2D and 3D Images. IEEE Trans. Pattern Anal.
Machine Intell., 15:1131–1147, 1993.

D. J. Couper, R. Klein, L. D. Hubbard, and T. Y. Wong. Reliability of reti-
nal photography in the assessment of retinal microvascular characteristics:
the atherosclerosis risk in the communities study. American Journal of
Ophtalmology, 133:78–88, 2002.

P. A. Van den Elsen, J. B. A. Maintz, E. J. D. Pol, and M. A. Viergever.
Automatic registration of CT and MR brain images using correlation of
geometrical features. IEEE Trans. Med. Imag., 14(2):384–396, 1995.

Drive. Digital retinal images for vessel extraction. http://www.isi.uu.nl/
Research/Databases/DRIVE/, 2008.

P. Dudek. Adaptive sensing and image processing with a general-purpose
pixel-parallel sensor/processor array integrated circuit. In Int. Workshop
Computer Architectures for Machine Perception and Sensing (CAMPS),
pages 18–23, September 2006.

P. Dudek and D. L. Vilariño. A Cellular Active Contours Algorithm Based
on Region Evolution. In IEEE Int. Workshop on Cellular Neural Networks
and Their Applications, pages 269–274, 2006a.

P. Dudek and D. L. Vilariño. A Cellular Active Contours Algorithm Based
on Region Evolution. In IEEE Int. Workshop on Cellular Neural Networks
and their Applications, pages 269–274, 2006b.

L. Espona, M. J. Carreira, M. Ortega, and M. G. Penedo. A Snake for
Retinal Vessel Segmentation. In LNCS Pattern Recognition and Image
Analysis, volume 4478, pages 178–185, 2007.

H. Eviatar and R. L. Somorjai. A fast, simple active contour algorithm for
biomedical images. Pattern Recogn. Lett., 17(9):969–974, 1996.



120 BIBLIOGRAPHY

M. Foracchia, E. Grisan, and A. Ruggeri. Detection of optic disc in retinal
images by means of a geometrical model of vessel structure. IEEE Trans.
Med. Imag., 23(10):1189–1195, 2004.

X.W. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom.
A Method of Vessel Tracking for Vessel Diameter Measurement on Retinal
Images. In IEEE Int. Conf. Image Processing, volume 2, pages 881–884,
2001a.

X.W. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom.
Measurement of Vessel Diameters on Retinal for Cardiovascular Studies.
In Medical Image Understanding and Analysis, 2001b.

M. Goldbaum, S. Moezzi, A. Taylor, S. Chatterjee, J. Boyd, E. Hunter,
and R. Jain. Automated diagnosis and image understanding with object
extraction, object classification, and inferencing in retinal images. Proc.
Int. Conf. Image Processing, 3:695–698, 1996.

R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzdky. Fast geodesic active
contours. IEEE Trans. Image Processing, 10:1467–1475, 2001.

F. Gomez-Ulla, M. I. Fernandez, F. Gonzalez, P. Rey, M. Rodriguez, M. J.
Rodriguez-Cid, F. F. Casanueva, M. A. Tome, J. Garcia-Tobio, and
F. Gude. Digital Retinal Images and Teleophthalmology for Detecting and
Grading Diabetic Retinopathy . Diabetes Care, 25(8):1384–1389, 2002.

C. Heneghan, J. Flynn, M. O’keefe, and M. Cahill. Characterization of
changes in blood vessel width and tortuosity in retinopathy of prematurity
using image analysis. Medical Image Analysis, 6(23):407–429, 2002.

D. Hillier, V. Binzberger, D. L. Vilariñño, and Cs. Rekeczky. Topographic
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