A general procedure to test conjunctive query containment

Miguel Rodríguez Penabad

Ph.D Thesis
Departamento de Computación
Universidade da Coruña
Directed by: Nieves Rodríguez Brisaboa

Ph.D. Thesis directed by Tese doutoral dirixida por

Nieves Rodríguez Brisaboa
Departamento de Computación
Facultade de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981167000 ext. 1243
Fax: +34 981167160
brisaboa@udc.es

Agradecementos

O primeiro agradecemento vai para a miña familia. A meus pais, José e Lola, a miña irmá Elba ("mamá número dous") e a meu irmán Juan. A meu cuñado Tino e meus sobriños Oscar, Nuria e Lucía. Polo seu cariño e apoio pero, sobre todo, por aguantarme.

A Nieves, a miña directora de tese e directora do Laboratorio de Bases de Datos da Universidade da Coruña, por toda a súa axuda tanto dentro coma fóra da tese. Ós demáis membros, actuais ou pasados, do laboratorio: Jose, Eva, mon (en minúsculas, como ti queres), Ángeles, Mariajo, Charo, Miguel, José Ramón, Antonio (Fari) e Tony. Gracias a todos, e espero non esquecer a ninguén. Gracias tamén ó Doutor Héctor Hernández e á xente do Departamento de Computer Science da New Mexico State University por toda a súa axuda durante a miña estancia nesa universidade, onde empecei o desenrolo desta Tese.

E finalmente, anque non menos importante, a tódolos amigos e amigas que tamén estiveron ahí cando os necesitaba: Carlos, Ana, Manuel, Miryam, David, Luli, Javi, e tantos outros. Gracias, amigos.

Acknowledgements

My first thanks go to my family. To my parents, José and Lola, my sister Elba ("mom number two"), and my brother Juan. To my brother in law Tino, and my nephew and nieces, Oscar, Nuria and Lucía. For their love and support, but especially for putting up with me.

To Nieves, my director or Thesis and director of the Database Lab at the University of Coruña, for all her help in and out this thesis. To all the members, former and current, of the Lab: Jose, Eva, mon (in lowercase as you like it), Ángeles, Mariajo, Charo, Miguel, José Ramón (Viqueira), Antonio (Fari) e Tony. Thanks, and I hope I am not missing anybody. Also, special thanks to Dr. Héctor Hernández and the people of the Computer Science Department at New Mexico State University, where I started this Thesis.

Last, but not least, to all friend who were there when I needed them: Carlos, Ana, Manuel, Miryam, David, Luli, Javi, and so many more. Thanks, folks.

Contents

1 Introduction 11
1.1 Overview of the Thesis 15
2 Definition of conjunctive queries 17
2.1 Introduction 17
2.2 Conjunctive queries 17
2.3 Set and Bag Semantics 23
2.3.1 Definitions under set semantics 23
2.3.2 Definitions under bag semantics 24
2.4 Summary 27
3 QCC: Query Containment Checker 29
3.1 Introduction 29
3.2 Preliminary definitions 30
3.3 Building the canonical database set for a query 32
3.4 Algorithm to build $C D B S(Q)$ 34
3.5 Interest of canonical databases 35
3.6 General procedure to test query containment 37
3.7 Summary 38
4 Previous work about set containment of conjunctive queries 39
4.1 Introduction 39
4.2 Set containment of equality queries 39
4.3 Set containment of inequality queries 41
4.4 Summary 43
5 Applying $Q C C$ to test set containment of equality queries 45
6 Applying $Q C C$ to test set containment of inequality queries 49
6.1 Step 1: Build $C D B S\left(Q_{1}\right)$ 49
6.2 Step 2: Apply Q_{1} and Q_{2} to all canonical databases 51
6.3 Step 3: Test the set containment 54
6.4 Validation of $Q C C$ for the set containment of inequality queries 55
6.5 Testing Satisfiability 56
6.5.1 Implications of the domain of the variables 62
6.6 Examples 63
6.7 Summary 69
7 Previous work about bag containment of conjunctive queries 71
7.1 Introduction 71
7.2 Bag containment of equality queries 72
7.3 Bag containment of inequality queries 73
7.4 Summary 73
8 Applying $Q C C$ to test bag containment of equality queries 75
8.1 Introduction 75
8.2 Label systems 76
8.2.1 Preliminary definitions 76
8.2.2 Definition of label systems 76
8.2.3 Definition of databases with respect to a label system 77
8.2.4 LS1 and LS2 databases 78
8.3 Step 1: Build $\operatorname{CDBS}\left(Q_{1}\right)$ 79
8.4 Step 2: Apply Q_{1} and Q_{2} to all canonical databases 79
8.5 Step 3: Test the bag containment 81
8.6 Validation of $Q C C$ for the bag containment of equality queries 82
8.7 Summary 84
9 Applying $Q C C$ to test bag containment of inequality queries 85
9.1 Introduction 85
9.2 Step 1: Build $C D B S\left(Q_{1}\right)$ 86
9.3 Step 2: Apply Q_{1} and Q_{2} to all canonical databases 91
9.3.1 Application of Q_{1} to a canonical database d_{i}^{s} 92
9.3.2 Application of Q_{2} to a canonical database d_{i}^{s} 92
9.4 Step 3: Test the bag containment 95
9.5 Validation of $Q C C$ for the bag containment of inequality queries 95
9.6 Example 97
9.7 Summary 110

10 Conclusions and future work
111

Chapter 1

Introduction

The main goal of database query optimization techniques is to transform a given query Q_{1} into another query Q_{2}, which is semantically equivalent to Q_{1} but can be more efficiently evaluated. Therefore, the problem of testing equivalence of queries is a fundamental issue for database query optimizers.

Two queries Q_{1} and Q_{2} are equivalent ($Q_{1} \equiv Q_{2}$) if they obtain the same result when they are applied to the same database. That is,

$$
Q_{1} \equiv Q_{2} \Longleftrightarrow \forall D, Q_{1}(D)=Q_{2}(D)
$$

where $Q_{1}(D)$ and $Q_{2}(D)$ represent, respectively, the result of applying Q_{1} and Q_{2} to the database D. Note that, for the equivalence to hold, this result must be true for any ground database D.

Unfortunately, query equivalence in the general framework of relational algebra or calculus is undecidable [Tra50, Sol79, Fag93, AHV95]. However, there is a subclass of queries, the conjunctive queries, whose equivalence was shown to be decidable [CM77].

Conjunctive queries use only Selection, Projection and Cartesian product operators [Ull89]. They are the typical SQL queries used in commercial relational DBMSs, and they have been therefore extensively studied.

It is also possible to study conjunctive queries under the logic programming perspective [Llo87], which is the underlying data model of deductive databases. The most used query language in deductive databases is Datalog [CGT89], which is an adaptation of Prolog to deal with databases. Using deductive databases notation, a conjunctive query is a safe, nonrecursive Datalog rule. We shall see that the SQL and Datalog notations used to represent a conjunctive query are equivalent.

The test of equivalence of queries is usually done by checking their mutual
containment:

$$
Q_{1} \equiv Q_{2} \Longleftrightarrow Q_{1} \leq Q_{2} \wedge Q_{2} \leq Q_{1}
$$

where the containment of queries is expressed by the \leq operator.
The containment of queries is defined as follows.

$$
Q_{1} \leq Q_{2} \Longleftrightarrow \forall D, Q_{1}(D) \subseteq Q_{2}(D)
$$

That is, a query Q_{1} is contained in a query Q_{2} if and only if the result of applying Q_{1} to any ground database D is contained in the result of applying Q_{2} to the same database D.

Most of the work that has been done to solve the conjunctive query containment problem (see, for example, [ASU79a, ASU79b, CM77]) assumes the set theoretic framework typical of the relational model [Cod70]. However, commercial database management systems use a bag theoretic semantics. Under bag semantics, duplicates of the tuples are allowed, and every table in a database is a "bag" or multiset of tuples. Any SQL query used in a commercial DBMS also produces as a result a bag of tuples, unless the Distinct clause is used in the query to remove duplicates.

The use of a different semantic framework has strong implications in the query containment/equivalence problem, because the results achieved in the set containment problem are not valid to test bag containment of queries. As we shall see, having two queries Q_{1} and Q_{2} such that Q_{1} is contained in Q_{2} under set semantics does not imply that Q_{1} is contained in Q_{2} under bag semantics, as Example 1.1 shows.

We use the symbols \leq and \equiv to denote, respectively, containment and equivalence of queries. However, in order to stress the differences among bag and set semantics, we shall use the s and b letters to denote containment and equivalence under set and bag semantics. Therefore, $Q_{1} \leq_{s} Q_{2}$ would mean that the query Q_{1} is contained in Q_{2} under set semantics, and $Q_{1} \equiv_{b} Q_{2}$ would mean that Q_{1} and Q_{2} are equivalent under bag semantics. These concepts and notations are formally defined in Chapter 2.

Example 1.1 Let D be a database with only one relation p with scheme $p(A, B)$. Let Q_{1} and Q_{2} be the following queries, represented using Datalog rules:

$$
\begin{aligned}
& Q_{1}: q(X, Y):-\quad p(X, Y), p(Y, X) . \\
& Q_{2}: q(X, Y):-p(X, Y) .
\end{aligned}
$$

It is obvious that Q_{1} is set contained in Q_{2}, because Q_{1} is more restrictive. Assume that Q_{1} obtains the fact $q(a, b)$, that is, $q(a, b) \in Q_{1}(D)$.

It means that the facts $p(a, b)$ and $p(b, a)$ are in D (they can be the same fact, if $a=b$). Since $p(a, b) \in D, Q_{2}$ also obtains the fact $q(a, b)$ (that is, $\left.q(a, b) \in Q_{2}(D)\right)$. This happens for any arbitrary fact $q(a, b)$ and any arbitrary database D, therefore $Q_{1} \leq_{s} Q_{2}$.

However, under bag semantics, Q_{1} is not bag contained in Q_{2}. We shall show it using a counterexample.

Let D be the following database:

$$
\begin{array}{|c|}
\hline p \\
\hline \text { a a } \\
\text { a a a } \\
\hline
\end{array}
$$

That is, D has two copies of the fact $p(a, a)$.
In this case, Q_{1} obtains 4 copies of the fact $q(a, a)$, because there are 4 different ways to obtain it, depending on which fact the predicates of Q_{1} are mapped to:

- Both predicates are mapped to the first $p(a, a)$ fact.
- $p(X, Y)$ is mapped to the first fact and $p(Y, X)$ to the second one.
- $p(X, Y)$ is mapped to the second fact and $p(Y, X)$ to the first one.
- Both predicates are mapped to the second fact.
Q_{2} obtains again a reproduction of the p relation into q, that is, 2 copies of the fact $q(a, a)$. Since Q_{1} obtains 4 duplicates of the fact $q(a, a)$ and Q_{2} obtains only 2 , we can conclude that $Q_{1} \not Z_{b} Q_{2}$.

On the other hand, the study of the query containment problem has been classically approached in a different way for queries with built-in predicates and queries without them. For example, Chandra and Merlin [CM77], Chaudhuri and Vardi [CV93] or Brisaboa and Hernández [BH97] dealt with conjunctive queries without built-in predicates, while Klug [Klu88] and Ullman [Ul189] explicitly dealt with conjunctive queries with built-in predicates. Built-in (also called interpreted) predicates are predicates of the form $X<Y, X \leq Y, X=Y$, or $X \neq Y$, where X and Y are either variables or constants in any ordered domain (not both constants). A conjunctive query can be an equality conjunctive query, if no built-in predicates are allowed, or an inequality conjunctive query if built-in predicates are allowed.

Note that we might consider equality queries having the equality comparison (=). However, we shall use a compressed form to write the queries.

This way, a built-in predicate $X=c$ where X is a variable and c is a constant, is reflected by replacing every of X by c in the query. If we have a built-in predicate $X=Y$, where both X and Y are variables, we will choose one of them as a representative and replace the other variable by the representative one. For example, a query like

$$
q(X, Y, Z):-\quad p(X, Y), p(T, Z), r(Z, W), Y=T, W=4
$$

would be represented by the following (equivalent) query, without any builtin predicate:

$$
q(X, Y, Z):-\quad p(X, Y), p(Y, Z), r(Z, 4)
$$

In this Thesis, we shall consider two factors that affect the problem of checking containment, and therefore equivalence, of conjunctive queries:

- The underlying semantics: The semantics can be set theoretic, where no duplicates of tuples are allowed, or bag (multiset) theoretic. Under bag semantics, tuples have an associated multiplicity, which indicates the number of copies of the tuple in the database.
- Presence or absence of built-in predicates in the queries: Inequality queries (that is, conjunctive queries with built-in predicates) will be treated differently than equality queries (without built-in predicates).

Considering these two factors, the containment problem can be studied under 4 different perspectives:

1. Set containment of equality queries,
2. Bag containment of equality queries,
3. Set containment of inequality queries, and
4. Bag containment of inequality queries.

The set containment of conjunctive queries was solved by Chandra and Merlin [CM77]; the bag containment of conjunctive queries was partially solved by Chaudhuri and Vardi [CV93] and then finally Brisaboa and Hernández [Bri97, BH97] offered a necessary and sufficient condition, along with a procedure, to test it. In these works, Brisaboa and Hernández transformed the problem of testing bag containment of equality queries into the problem of comparing two polynomials over \mathbb{Z}^{+}, the set of nonnegative integers.

There has also been work done in the set containment of inequality queries, but no definitive result has been achieved. The major contribution
was made by Klug [Klu88], but he left the problem open when domain was nondense, like the integers. There has been other works in this type of containment [vdM97, IS97], but they either worked only for dense domains or lacked of a procedure. Finally, to the best of our knowledge, there has been no work done in the field of bag containment of inequality queries.

We shall present in this Thesis a general procedure to test conjunctive query containment, with or without built-in predicates, which works under set and bag semantics. This procedure, denoted $Q C C$ (Query Containment Checker) is based on the idea of using a finite set of databases built from the body of the query Q_{1}, denoted Canonical Database Set $\left(\operatorname{CDBS}\left(Q_{1}\right)\right)$ [Bri97], to test the containment.

1.1 Overview of the Thesis

This work tries to offer a unified procedure, $Q C C$ (Query Containment Checker) to test, in three steps, whether a conjunctive query Q_{1} is contained into another conjunctive query Q_{2}. This procedure tests the containment using only a small and finite set of databases. This set, denoted $C D B S\left(Q_{1}\right)$ (Canonical Database Set for a query Q_{1}) is built algorithmically from the body of Q_{1}, using a procedure derived from the one described in [BH97]. This thesis proves that, for two conjunctive queries Q_{1} and Q_{2}, either equality or inequality queries, under set or bag semantics,

$$
Q_{1} \leq Q_{2} \Longleftrightarrow \forall d \in C D B S\left(Q_{1}\right), Q_{1}(d) \subseteq Q_{2}(d)
$$

That is, the containment can be checked using only a finite and usually small number of databases, instead of using the infinite number of ground databases from which Q_{1} and Q_{2} could derive new facts (which would be, of course, impossible to test).

The use of this procedure reduces the conjunctive query containment problem to different problems, depending on the underlying semantics and the presence or absence of built-in predicates:

- The application of $Q C C$ to test set containment of equality queries is reduced to the problem of finding an assignment mapping, in a similar way as Chandra and Merlin originally solved the problem in [CM77].
- The application of $Q C C$ to test the bag containment of equality queries reduces to a comparison of two polynomials. We will show that the procedure described in [BH97] perfectly fits into the 3 steps that $Q C C$ follows.
- The application of $Q C C$ to test the set containment of inequality queries (a preliminary version of the work presented in Chapter 6 in this Thesis was published in [BHPP98]) reduces the problem to the test of the unsatisfiability of a formula composed of equalities and inequalities.
- Finally, the application of $Q C C$ to test bag containment of inequality queries is reduced to the test of the unsatisfiability of a formula plus the comparison of pairs of polynomials.

The general layout of this Thesis is the following.
In Chapter 2, conjunctive queries are defined, as well as how to apply them to a database under set or bag semantics.

One of the main contribution of this Thesis is shown in chapter 3, where a general procedure to test the containment of conjunctive queries is described. This procedure, generally called $Q C C$, will be specifically described for the 4 types of containment considered in this Thesis, proving its correctness.

The next part of this Thesis deals with set semantics. Chapter 4 shows the previous work about set containment of equality as well as inequality queries. Chapter 5 describes how $Q C C$ is adapted to test set containment of equality queries, and Chapter 6 shows the use of $Q C C$ to test set containment of inequality queries. Both chapters constitue an original contribution of this Thesis to the problem of testing set containment of conjunctive queries.

The last chapters deal with bag semantics. Chapter 7 shows the previous work about the bag containment of conjunctive queries. Chapter 8 describes the adaptation of $Q C C$ to test bag containment of equality queries, using a method derived from the one described in [Bri97] which fits the three steps of $Q C C$. Chapter 9 shows the application of $Q C C$ to test bag containment of inequality queries, and this is again a new, original contribution of this Thesis to the problem of testing containment among conjunctive queries. The correctness of the procedure is also demonstrated in each of these chapters.

Finally, Chapter 10 shows our conclusions.

Chapter 2

Definition of conjunctive queries

2.1 Introduction

Conjunctive queries are the most common SQL queries used in the commercial database management systems, and have been, therefore, extensively studied [CM77, ASU79a, ASU79b, Ul182, Klu88, Ul189, IR92, CV93, BH97, BHPP98].

In this chapter, we will define the concept of conjunctive queries, distinguishing two types, equality and inequality queries, because the difference between these types has a strong impact in how our general procedure to test conjunctive query containment works.

A different concept, which also has implications on the query containment problem, is the underlying (set or bag theoretic) semantics. The application of a query to a database, as well as the concepts of containment and equivalence of queries, under both semantics, are also defined in this chapter.

2.2 Conjunctive queries

A conjunctive query, under relational algebra theory, is a query that uses only Selection, Projection and Cartesian product operations. Using deductive databases notation, a conjunctive query is a safe, nonrecursive rule with the predicates of the body defined over EDB (Extensional Databases) predicates [Ull89].

Conjunctive queries can be represented using different notations that are equivalent. Among these notations, the most common are Datalog rules (deductive databases notation), SQL queries, or Relational Algebra expressions. Due to its simplicity and easiness of use, we shall use Datalog rules to represent conjunctive queries. After formally defining conjunctive queries, we shall prove that the SQL and Datalog notations are equivalent.

Depending on the presence or absence of built-in predicates in the bodies of the rules, we distinguish two types of conjunctive queries:

Equality queries: They are conjunctive queries where built-in predicates are not allowed. The general form of an equality query is

$$
q(\vec{X}):-\quad p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{n}\left(\vec{Y}_{n}\right) .
$$

where

- $q(\vec{X})$ is the query predicate, being \vec{X} a vector or tuple of variables.
- Every $p_{i}\left(\overrightarrow{Y_{i}}\right)$ is an ordinary predicate defined over EDB predicates, having p_{i} as its predicate name, and being \vec{Y}_{i} a vector or tuple of constants or variables.

Inequality queries: They are conjunctive queries with built-in predicates. An inequality query, in its general form, is a Datalog rule of the form

$$
q(\vec{X}):-\quad p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{n}\left(\vec{Y}_{n}\right), F_{1}, \ldots, F_{k} .
$$

where q, \vec{X}, p_{i} 's, and $\overrightarrow{Y_{i}}$'s are defined as above, and every F_{j} is a builtin predicate of the form $X \theta Y$, being X and Y either variables that appear in an ordinary predicate, or constants of the domain (but not both constants), and $\theta \in\{=, \neq,<, \leq,>, \geq\}$.

As stated before, the representations of a conjunctive query in SQL and Datalog notations are equivalent. The following algorithm transforms a conjunctive query written in SQL into its equivalent Datalog notation [Ull89].

Algorithm 1 Transform an SQL conjunctive query into its equivalent Datalog rule.
Input: An SQL query of the form
SELECT DISTINCT A_{1}, \ldots, A_{n}
FROM table $_{1}, \ldots$, table $_{t}$
WHERE condition $_{1}>$ and \ldots and $<$ condition $_{c}>$

Output: The same query written as a Datalog rule.
Method:

1. There will be a different variable for each attribute in the relation scheme of all tables in the FROM clause.
2. For each of the relations in the FROM clause, add a predicate to the body of the rule, with the same number of attributes and in the same order as in the relation scheme.
3. For each of the equalities or inequalities in the WHERE clause, add a built-in predicate to the body of the rule that establishes the (in)equality between two variables or one variable and one constant.
4. The variables in the head of the rule are those variables that appear in the SELECT clause.

Note that this algorithm produces a Datalog rule with explicit equalities, that is, if $X=Y$, then this built-in is added to the rule. A "compressed" form of the rule can be built just considering all variables related by an $=$ operator as an equivalence class, replacing all the variables by the representative of the equivalence class and removing the equality from the body of the rule. In the same way, if there is an equality $X=c$, being X a variable and c a constant, every occurrence of X is replaced by c.

Example 2.1 Let D be a database with the following scheme:

```
emp(EmpNo,EmpName,DeptNo,Salary)
dept(DeptNo,DeptName)
```

The query "Obtain the names of the employees working in the 'Sales' department that earn more than 14000 " can be represented as the following SQL query:

SELECT DISTINCT EmpName

FROM emp, dept
WHERE emp.DeptNo = dept.Deptno
AND dept.Deptno $=$ "Sales"
AND emp.Salary > 14000
Following the previous algorithm, the equivalent Datalog rule is built:

- There are the following variables:
- The predicates in the body of the rule are:

$$
\begin{aligned}
& \text { emp }(E m p N o, E m p N a m e, E m p D e p t N o, \text { Salary }), \\
& \operatorname{dept}(\text { DeptNo, DeptName })
\end{aligned}
$$

- The following built-in predicates are added.

$$
\text { EmpDeptNo }=\text { Deptno, } \quad \text { Deptno }=" \text { Sales", Salary }>14000
$$

- The variables in the head of the rule are:

Empname

Therefore, the Datalog rule that represents this query is

```
result(EmpName) :- emp(EmpNo,EmpName,EmpDeptNo,Salary),
    dept(DeptNo,DeptName),
    EmpDeptNo = DeptNo,DeptName = "Sales",
    Salary > 14000
```

We have the equality DeptName $=$ "Sales", therefore DeptName can be replaced by "Sales" in the query. Additionally, the variables EmpDeptNo and DeptNo are in the same equivalence class. Considering DeptNo as the representative of this class, the query can be rewritten in a compressed form as

```
result(EmpName) :- emp(EmpNo,EmpName,DeptNo,Salary),
    dept(DeptNo,"Sales"),
    Salary > 14000
```

It is obvious, by how Algorithm 1 works, that the SQL query and the Datalog rule are equivalent.

The application of an SQL query to a database in order to obtain new facts or tuples works in a different (although equivalent) way than the same query written as a Datalog rule. The execution of an SQL query follows 3 steps:

- Compute the Cartesian Product of all the relations in the FROM clause.
- Select the tuples that satisfy the conditions expressed in the WHERE clause from the previous result.
- Project only those attributes that appear in the SELECT clause.

The application of a query written as a Datalog rule uses assignment mappings to derive new facts. An assignment mapping [Ull82] τ from a query Q to a database D is a function from the symbols of Q to those of $D ; \tau$ is the identity in the predicate names and constants, and it must map every ordinary predicate in the body of Q to a fact in D. If the query has built-in predicates, the application of the assignment mapping to them must produce a formula that evaluates to true. The derived fact corresponds to the application of the mapping to the head of the rule.

Let Q_{1} be a query of the form

$$
q(\vec{X}):-\quad p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{n}\left(\vec{Y}_{n}\right), F_{1}, \ldots, F_{k} .
$$

and D any arbitrary database. Assume there is an assignment mapping τ from Q_{1} to D. Then,

- every $\tau\left(p_{i}\left(\vec{Y}_{i}\right)\right)(1 \leq i \leq n)$ is a fact in D.
- every $\tau\left(F_{i}\right)(1 \leq i \leq k)$ is true.
- $\tau(q(\vec{X}))$ is the derived fact.

Example 2.2 Let us use the query from Example 2.1. Let us apply it to the following database D.

emp			
EmpNo	EmpName	DeptNo	Salary
10	John Smith	10	11000
20	Peter Sellers	10	29000
30	Joe Sand	20	13000
40	Mary Raines	30	25000

dept	
DeptNo	DeptName
10	Sales
20	Accounting
30	Marketing

Let us apply the SQL query

SELECT DISTINCT EmpName

FROM emp, dept
WHERE emp.DeptNo = dept.Deptno
AND dept.Deptno $=$ "Sales"
AND emp.Salary > 14000

- Compute the Cartesian Product of the tables in the FROM clause (emp and dept):

Cartesian Product						
emp.EmpNo	emp.EmpName	emp.DeptNo	emp.Salary	dept.DeptNo	dept.DeptName	
10	John Smith	10	11000	10	Sales	
10	John Smith	10	11000	20	Accounting	
10	John Smith	10	11000	30	Marketing	
20	Peter Sellers	10	29000	10	Sales	
20	Peter Sellers	10	29000	20	Accounting	
20	Peter Sellers	10	29000	30	Marketing	
30	Joe Sand	20	13000	10	Sales	
30	Joe Sand	20	13000	20	Accounting	
30	Joe Sand	20	13000	30	Marketing	
40	Mary Raines	30	25000	10	Sales	
40	Mary Raines	30	25000	20	Accounting	
40	Mary Raines	30	25000	30	Marketing	

- Select the tuples that satisfy the constraints in the WHERE clause:

Selection of tuples						
emp.EmpNo	emp.EmpName	emp.DeptNo	emp.Salary	dept.DeptNo	dept.DeptName	
20	Peter Sellers	10	29000	10	Sales	

- Project the attributes in the SELECT clause:

Projection of attributes
emp.EmpName
Peter Sellers

Let us apply now the Datalog rule that represents the same query:

$$
\begin{aligned}
& \text { result }(\text { EmpName }):-\quad \text { emp }(E m p N o, E m p N a m e, \text { DeptNo, Salary }), \\
& \quad \text { dept }(\text { DeptNo,"Sales"), } \\
& \text { Salary }>14000
\end{aligned}
$$

There is only one assignment mapping τ from this query to D :

$$
\begin{aligned}
& \tau(\text { EmpNo })=20 ; \\
& \tau(\text { EmpName })=" \text { Peter Seller } s " ; \\
& \tau(\text { DeptNo })=10 ; \\
& \tau(\text { Salary })=29000 ;
\end{aligned}
$$

$$
\tau(" \text { Sales" })=" \text { Sales" }
$$

That is,

$$
\begin{gathered}
\tau(\operatorname{emp}(E m p N o, E m p N a m e, \operatorname{DeptNo,} \text { Salary }))= \\
\quad \operatorname{emp}(20, " \text { Peter Sellers", 10, 29000 }) ; \\
\tau(\operatorname{dept}(\text { DeptNo,"Sales" }))=\operatorname{dept}(10, " \text { Sales" })
\end{gathered}
$$

Therefore, the result of applying this query is

$$
\tau(\operatorname{result}(E m p N a m e))=\operatorname{result}(" \text { Peter Sellers" })
$$

Obviously, the results obtained by the SQL query and the Datalog rule are the same ${ }^{1}$.

2.3 Set and Bag Semantics

As shown in Example 1.1, set containment of conjunctive queries does not imply bag containment (the opposite is true: bag containment does imply set containment). The fundamental concept, which makes this difference, is the multiplicity of the facts that appears under bag semantics.

We shall describe in this section how relations in databases are represented in both frameworks, as well as how to apply a query to a database. The formal definitions of set and bag containment are also given in this section.

2.3.1 Definitions under set semantics

Under the set theoretic framework, both relations (tables) in a database and the result of applying a query to a database are sets of facts or tuples. A tuple or ground fact in an EDB (Extensional Database) is represented, under set semantics, as a predicate of the form $p\left(A_{1}, \ldots, A_{l}\right)$.

A conjunctive query Q_{1} is set contained in a conjunctive query Q_{2} (represented $Q_{1} \leq_{s} Q_{2}$) if and only if, for all databases $D, Q_{1}(D) \subseteq_{s} Q_{2}(D)$, that is, the set of facts obtained by Q_{1} is a subset of the set of facts obtained by Q_{2} :

$$
Q_{1} \leq_{s} Q_{2} \Longleftrightarrow \forall D, Q_{1}(D) \subseteq_{s} Q_{2}(D)
$$

Note that we use the symbol \subseteq_{s} to represent the subset relationship, instead of the usual \subseteq, in order to distinguish it from the subbag $\left(\subseteq_{b}\right)$ relationship.

[^0]Two conjunctive queries Q_{1} and Q_{2} are set equivalent, $Q_{1} \equiv_{s} Q_{2}$, iff $Q_{1} \leq_{s} Q_{2}$ and $Q_{2} \leq_{s} Q_{1}$.

$$
Q_{1} \equiv_{s} Q_{2} \Longleftrightarrow Q_{1} \leq_{s} Q_{2} \wedge Q_{2} \leq_{s} Q_{1}
$$

2.3.2 Definitions under bag semantics

Under bag semantics, a relation in a database is a bag or multiset of facts, where every fact has a number of copies in the relation. It can be seen as if every fact has an associated integer that indicates its multiplicity. Under this point of view, any relation is a set of elements of the form $p\left(A_{1}, \ldots, A_{l} ;[m]\right)$. For each of these elements, p is a predicate name, A_{1}, \ldots, A_{l} are constants of the domain, and m is the multiplicity or number of copies of the fact $p\left(A_{1}, \ldots, A_{l}\right)$ in the database. If a fact is not in a database D, then its multiplicity in D is 0 .

The multiplicity of a fact in a database D is represented as $\left|p\left(A_{1}, \ldots, A_{l}\right)\right|_{D}=m$.

Example 2.3 Let D be a database with only one relation named menu. The scheme for this relation is menu(Firstdish, Seconddish), and it represents the menus ordered for dinner in a given restaurant in an evening. An instance of this database could be:

menu
soup, beefsteak; [3] salad, burrito [9]

That means that there were 3 people that had for dinner soup and then a beefsteak, and 9 people who had a salad and a burrito. The multiplicity of the first fact is represented as

$$
\mid \text { menu }\left.(\text { soup }, \text { beef steak })\right|_{D}=3 .
$$

There were no people who had lasagna and octopus for dinner, therefore

$$
\mid \text { menu(lasagna, octopus) }\left.\right|_{D}=0 .
$$

Definition of subbag

The concept of subbag will be fundamental to test the query containment under bag semantics. A bag B is a subbag of another bag B^{\prime} if and only if every element t in B is also in B^{\prime}, with at least the same multiplicity as in B :

$$
B \subseteq_{b} B^{\prime} \Longleftrightarrow \forall t \in B,|t|_{B} \leq|t|_{B^{\prime}}
$$

The equality among subbags, represented by $=_{b}$, can be checked via their mutual containment.

$$
B={ }_{b} B^{\prime} \Longleftrightarrow B \subseteq_{b} B^{\prime} \wedge B^{\prime} \subseteq_{b} B
$$

Example 2.4 Let D, D^{\prime} and $D^{\prime \prime}$ be the following bags of tuples:

| soup, beefsteak; [3]
 salad, burrito; [9] |
| :---: |\quad| soup, beefsteak; [4]
 salad, burrito; [9] |
| :---: | :---: |
| soup, beefsteak; [2]
 salad, burrito; [10]
 salad, pizza; [4] |

It is obvious that $D \subseteq_{b} D^{\prime}$. But $D \not \coprod_{b} D^{\prime \prime}$, even when $D^{\prime \prime}$ has more tuples than D. This happens because there is a fact, menu(soup, beef steak), with more multiplicity in D than in $D^{\prime \prime}$.

Union of bags

The union of two bags B and B^{\prime}, represented $B \cup B^{\prime}$, is defined as

$$
B \cup B^{\prime}=\left\{(t ;[m]) \mid t \text { is in } B \text { or } t \text { is in } B^{\prime} \text {, and } m=|t|_{B}+|t|_{B^{\prime}}\right\}
$$

Definition of bag containment of conjunctive queries

The containment of conjunctive queries under bag semantics, also denoted bag containment or b-containment for short, is defined as follows. A query Q_{1} is b-contained in a query Q_{2}, represented $Q_{1} \leq_{b} Q_{2}$, if and only if, for all databases $D, Q_{1}(D) \subseteq_{b} Q_{2}(D)$. That is, the result obtained by applying Q_{1} to any database is a subbag of the result obtained by Q_{2} applied to the same database:

$$
\begin{gathered}
Q_{1} \leq_{b} Q_{2} \Longleftrightarrow \forall D, Q_{1}(D) \subseteq_{b} Q_{2}(D) \\
Q_{1} \leq_{b} Q_{2} \Longleftrightarrow \forall t, D t \in Q_{1}(D) \Longrightarrow|t|_{Q_{1}(D)} \leq|t|_{Q_{2}(D)} .
\end{gathered}
$$

Definition of bag equivalence of conjunctive queries

As for the case of set equivalence, query equivalence is defined by mutual inclusion. Two conjunctive queries Q_{1} and Q_{2} are bag equivalent (represented $\left.Q_{1} \equiv_{b} Q_{2}\right)$ iff $Q_{1} \leq_{b} Q_{2}$ and $Q_{2} \leq_{b} Q_{1}$.

$$
Q_{1} \equiv_{b} Q_{2} \Longleftrightarrow Q_{1} \leq_{b} Q_{2} \wedge Q_{2} \leq_{b} Q_{1}
$$

Computing the multiplicity of a derived fact

In order to test the bag containment of queries, we must know how to compute the multiplicity of a fact derived by a query when it is applied to a database.

Given a database D and a query $Q, Q(D)$ represents the derived facts obtained by applying Q to D, and it is also a bag of facts. The multiplicity of a fact t in $Q(D)$ will be represented as $|t|_{Q(D)}$, and it is computed as follows.

Let Q_{1} be a query of the form $q(\vec{X})$:- $p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{n}\left(\vec{Y}_{n}\right)$, and let D be a database. Assume there are l assignment mappings $\tau_{1}, \ldots, \tau_{l}$ from Q to D that obtain the new derived fact t. That is,

$$
t=\tau_{1}(q(\vec{X}))=\cdots=\tau_{l}(q(\vec{X}))
$$

Every $p_{i}\left(\vec{Y}_{i}\right)$ is mapped by any τ_{j} to a fact $p_{i}\left(\vec{A}_{i}\right)$ in the database D, which has a multiplicity. Let us represent this multiplicity as $m_{j i}$:

$$
m_{j i}=\left|\tau_{j}\left(p_{i}\left(\vec{Y}_{i}\right)\right)\right|_{D}=\left|p_{i}\left(\vec{A}_{i}\right)\right|_{D}
$$

The multiplicity of t using only the mapping τ_{j} is computed by multiplying the multiplicities $m_{j i}$'s of the facts reached by the atoms in Q_{1} using the mapping τ_{j} :

$$
m_{j}=\prod_{i=1}^{n}\left|\tau_{j}\left(p_{i}\left(\vec{Y}_{i}\right)\right)\right|_{D}
$$

The final multiplicity of t is computed by adding the multiplicities of t obtained by every individual mapping τ_{j} :

$$
|t|_{Q_{1}(D)}=\sum_{j=1}^{l} m_{j}=\sum_{j=1}^{l}\left(\prod_{i=1}^{n}\left|\tau_{j}\left(p_{i}\left(\vec{Y}_{i}\right)\right)\right|_{D}\right)
$$

Let us show it through an example.
Example 2.5 Let Q_{1} be $q(X)$:- $p(X, Y), p(Y, Z)$. Let D be the database

p
a b; [3]
b c; [5]
b d; [4]

There are two mappings τ_{1} and τ_{2} that obtain the fact $q(a)$:

$$
\begin{aligned}
& \tau_{1}(X)=a ; \tau_{1}(Y)=b ; \tau_{1}(Z)=c \\
& \tau_{2}(X)=a ; \tau_{2}(Y)=b ; \tau_{2}(Z)=d
\end{aligned}
$$

The multiplicities obtained by each mapping are

$$
\begin{aligned}
& m_{1}=|p(a, b)|_{D} \times|p(b, c)|_{D}=3 \times 5=15 \\
& m_{2}=|p(a, b)|_{D} \times|p(b, d)|_{D}=3 \times 4=12
\end{aligned}
$$

and the total multiplicity is

$$
|q(a)|_{Q_{1}(D)}=m_{1}+m_{2}=15+12=27 .
$$

2.4 Summary

We have defined in this chapter the necessary concepts to tackle the problem of containment of conjunctive queries under the 4 perspectives shown in the introduction. Therefore, the concepts of equality and inequality queries have been defined. Set and bag semantics have also been described, as well as how to apply a query to a database under either of them.

Chapter 3

$Q C C$: Query Containment Checker

3.1 Introduction

The Query Containment Checker $(Q C C)$ is a general procedure that can decide whether a query Q_{1} is contained in another query Q_{2}.

Basically, $Q C C$ consists of the following 3 steps:

1. Build $C D B S\left(Q_{1}\right)$, the canonical database set for the query Q_{1}.
2. Apply Q_{1} and Q_{2} to all canonical databases $d \in C D B S\left(Q_{1}\right)$.
3. Test if $\forall d \in C D B S\left(Q_{1}\right), Q_{1}(d) \subseteq Q_{2}(D)$.

These three steps are the same for the 4 cases of conjunctive query containment covered by this Thesis (under set or bag semantics, for equality or inequality queries), but there will be some particularization for each specific case.

Given that the first step is to build $C D B S\left(Q_{1}\right)$, we shall begin describing the canonical database set for a query Q_{1}.

The idea under canonical databases [BH97] is to capture all the assignment mappings that can be applied from a query Q to any database in order to obtain a new fact. The Canonical Database Set for a query Q $(C D B S(Q))$ is a finite set of databases with uninterpreted constants in its facts. It captures all the patterns of equalities and inequalities among the constants of a database D where the variables of Q are mapped when Q is applied to D.

The algorithm that builds $C D B S(Q)$ can be conceptually divided into two steps. The first step, which is common for the 4 classes of conjunctive query containment covered in this Thesis, is to build the canonical databases. These canonical databases are adapted in the second step, so they are suitable to test a specific type of conjunctive query containment. This particularization is made by adding some constraints to the canonical databases (for the containment of inequality queries) or assigning a symbolic multiplicity to the facts in the databases (if the underlying semantics is bag theoretic).

The common part of the algorithm is described in this chapter, and the particularization needed by each type of containment will be described in chapters $5,6,8$, and 9 , where the different types of the containment problem are described. The last part of this chapter describes the 3 steps of $Q C C$.

3.2 Preliminary definitions

Let Q be a conjunctive query of the form

$$
Q: q(\vec{X}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n} .
$$

Note that Q has built-in predicates, that is, Q is an inequality query. We shall use this form of conjunctive query to describe the following concepts because it is more general, since an equality query is just an inequality query without built-in predicates.

Using the predicates in the body of Q, the following concepts are defined:

- $d b(Q)$: is the set of ordinary predicates in the body of Q.

$$
d b(Q)=\left\{p_{i}(\vec{V}) \mid p_{i}(\vec{V}) \text { is an ordinary predicate in the body of } Q\right\}
$$

Recall that an ordinary predicate is defined over an EDB predicate. Built-in predicates are not included in $d b(Q)$.

- V_{Q} : is an ordering $\left\langle V_{1}, \cdots, V_{q}\right\rangle$ of the set of all the variables that appear in the predicates in $d b(Q)$.
- A_{Q} : is a set of q new, different uninterpreted constants, q being the cardinality of V_{Q}.

$$
A_{Q}=\left\{A_{1}, \ldots, A_{q} \mid \forall i, j,(1 \leq i \neq j \leq q) A_{i} \neq A_{j}\right\}
$$

- Q-mapping: A Q-mapping θ_{i} from V_{Q} to A_{Q} is a q-tuple $\theta_{i}=$ $\left(A_{i_{1}}, \ldots, A_{i_{q}}\right)$, where $A_{i j} \in A_{Q}$ and $1 \leq i_{1}, i_{2}, \ldots, i_{q} \leq q$. It represents the mapping $\theta_{i}\left(V_{1}\right)=A_{i_{1}}, \ldots, \theta_{i}\left(V_{q}\right)=A_{i_{q}}$.

A Q-mapping can be applied to a predicate in the body of Q : let θ be a Q-mapping, and let $p_{i}\left(Y_{1}, \ldots, Y_{r_{i}}\right)$ be a predicate in Q. We define the application of θ to $p_{i}\left(Y_{1}, \ldots, Y_{r_{i}}\right)$ as the fact $p_{i}\left(\theta\left(Y_{1}\right), \ldots, \theta\left(Y_{r_{i}}\right)\right)$.

- Isomorphic Q-mappings: Two Q-mappings $\theta_{i}=\left(A_{i_{1}}, \ldots, A_{i_{q}}\right)$ and $\theta_{j}=\left(A_{j_{1}}, \ldots, A_{j_{q}}\right)$ are isomorphic if there are two mappings γ_{1} and $\gamma_{2}\left(\right.$ from A_{Q} to $\left.A_{Q}\right)$ such that $\left(\gamma_{1}\left(A_{i_{1}}\right), \ldots, \gamma_{1}\left(A_{i_{q}}\right)\right)=\theta_{j}$, and $\left(\gamma_{2}\left(A_{j_{1}}\right), \ldots, \gamma_{2}\left(A_{j_{q}}\right)\right)=\theta_{i}$. In other words, two Q-mappings are isomorphic if the q-tuples that represent them are identical after a consistent renaming of their uninterpreted constants. Isomorphic Q mappings are used to define a minimal number of canonical databases.
- Canonical database $d_{i}=\theta_{i}(d b(Q))$: It is the application of the Q mapping θ_{i} to the set of ordinary predicates in the body of Q, that is,

$$
d_{i}=\theta_{i}(d b(Q))=\left\{p_{k}\left(\theta_{i}\left(Y_{1}\right), \ldots, \theta_{i}\left(Y_{r_{k}}\right)\right) \mid p_{k}\left(Y_{1}, \ldots, Y_{r_{k}}\right) \in d b(Q)\right\}
$$

d_{i} is a database with uninterpreted constants, which represents a pattern of equalities and inequalities among the variables of the query that are mapped to these uninterpreted constants. All the uninterpreted constants must be different $\left.\left(A_{j} \neq A_{k}, \forall j, k 1 \leq j \neq k \leq q\right)\right)$.
Each of these canonical databases will be adapted to test a specific type of conjunctive query containment.

- Canonical fact $t_{d_{i}}$:

Let Q be the query $q(\vec{X})$:- $p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n}$, and d_{i} be the canonical database obtained by applying the Q-mapping θ_{i} to $d b(Q)$. Then, the canonical fact $t_{d_{i}}$ is the fact $\theta_{i}(q(\vec{X}))$.

The following example illustrates these definitions.
Example 3.1 Let us consider the following query Q :

$$
Q: q(X, Y, Z):-r(X, U), r(U, Z), p(U, Y) .
$$

For this query,

- $d b(Q)=\{r(X, U), r(U, Z), p(U, Y)\}$.
- $V_{Q}=\langle X, Y, Z, U\rangle$ is an ordering of its variables.
- $A_{Q}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a set of 4 new, different uninterpreted constants.

Let θ_{1} be the Q-mapping $\left(A_{4}, A_{3}, A_{3}, A_{4}\right) ; \theta_{1}$ denotes the mapping $\theta_{1}(X)=\theta_{1}(U)=A_{4}$ and $\theta_{1}(Y)=\theta_{1}(Z)=A_{3}$. Applying the mapping θ_{1} to $d b(Q)$, we obtain the canonical database

$$
\theta_{1}(d b(Q))=\left\{r\left(A_{4}, A_{4}\right), r\left(A_{4}, A_{3}\right), p\left(A_{4}, A_{3}\right)\right\}
$$

Another Q-mapping, which is isomorphic to θ_{1}, is $\theta_{2}=\left(A_{1}, A_{2}, A_{2}, A_{1}\right)$.
The canonical fact that corresponds to the Q-mapping θ_{1} is $t_{d_{1}}=$ $q\left(A_{4}, A_{3}, A_{3}\right)$.

3.3 Building the canonical database set for a query

This section offers an algorithm to build all the non isomorphic canonical databases d_{i} for a conjunctive query Q_{1}. However, before formally describing the algorithm, let us show how it works through an example.

Example 3.2 Let the query Q_{1} be $q(X, Y, Z):-r(X, U), r(U, Z), p(U, Y)$. The letters A, B, C, D (which represent uninterpreted constants) will be used to identify the values to which the variables in Q_{1} could be mapped. That is, $A_{Q}=\langle A, B, C, D\rangle$.

There are 4 variables in the body of Q_{1}, which will be mapped to 4 uninterpreted constants. Therefore, there are $4^{4}=256$ possible mappings. For example, all the variables can be mapped to A, all of them mapped to B, three of them mapped to A and one to B, and so on.

However, using all the possible mappings is redundant. For example, all the variables mapped to A or mapped to B represent the same pattern of equalities, thus only one of them is needed.

The following cases list all the different patterns of equalities among the variables in the body of Q_{1} when they are mapped to 4 uninterpreted constants.

Case 1: Each variable in Q_{1} is mapped to a different value. Then the canonical database $\theta_{1}\left(d b\left(Q_{1}\right)\right)$ shown on Table 3.1 is generated.

Table 3.1: Canonical databases generated for case 1

NAME	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		MAPPING	$t_{d_{i}}$
	r	p		q
θ_{1}	(A, D)	(D, B)	$\theta_{1}(X)=A ; \quad \theta_{1}(Y)=B ;$	$A B C$
	(D, C)		$\theta_{1}(Z)=C ; \quad \theta_{1}(U)=D$	

Case 2: Three variables are mapped to the same value, the other one is mapped to a different value. Table 3.2 shows the 4 canonical databases for this case.

Table 3.2: Canonical databases generated for case 2

NAME	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		MAPPING	$t_{d_{i}}$
	r	p		q
θ_{2}	(A, B) (B, A)	(B, A)	$\theta_{2}(X)=\theta_{2}(Y)=\theta_{2}(Z)=A ; \quad \theta_{2}(U)=B$	$A A A$
θ_{3}	(A, A) (A, B)	(A, A)	$\theta_{3}(X)=\theta_{3}(Y)=\theta_{3}(U)=A ; \quad \theta_{3}(Z)=B$	$A A B$
θ_{4}	(A, A)	(A, B)	$\theta_{4}(X)=\theta_{4}(Z)=\theta_{4}(U)=A ; \quad \theta_{4}(Y)=B$	$A B A$
θ_{5}	(B, A) (A, A)	(A, A)	$\theta_{5}(Y)=\theta_{5}(Z)=\theta_{5}(U)=A ; \quad \theta_{5}(X)=B$	$B A A$

Case 3: Two variables are mapped to the same value and the other two are mapped to another value. For this case, 3 canonical databases are generated, as shown in Table 3.3.

Table 3.3: Canonical databases generated for case 3

NAME	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		MAPPING	t_{d}
	r	p		q
θ_{6}	(A, B) (B, B)	(B, A)	$\theta_{6}(X)=\theta_{6}(Y)=A ; \quad \theta_{6}(Z)=\theta_{6}(U)=B$	$A A B$
θ_{7}	(A, B) (B, A)	(B, B)	$\theta_{7}(X)=\theta_{7}(Z)=A ; \quad \theta_{7}(Y)=\theta_{7}(U)=B$	$A B A$
θ_{8}	(A, A) (A, B)	(A, B)	$\theta_{8}(X)=\theta_{8}(U)=A ; \quad \theta_{8}(Y)=\theta_{8}(Z)=B$	$A B B$

Case 4: Two variables are mapped to the same value and the other two are mapped to different values, producing the 6 canonical databases shown in Table 3.4.

Case 5: The four variables are mapped to the same value. Only one canonical database, shown in Table 3.5, is generated in this case.

We have generated 15 canonical databases for Q_{1}. Notice that not all the possible Q-mappings are required. For example, the Q-mapping of X and Y to B and U and Z to D would produce a database that has the same

Table 3.4: Canonical databases generated for case 4

NAME	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		MAPPING	$t_{d_{i}}$
	r	p		q
θ_{9}	$(\mathrm{~A}, \mathrm{C})$	(C, A)	$\theta_{9}(X)=\theta_{9}(Y)=A ;$	$A A B$
	(C, B)		$\theta_{9}(Z)=B ; \quad \theta_{9}(U)=C$	
θ_{10}	(A, C)	(C, B)	$\theta_{10}(X)=\theta_{10}(Z)=A ;$	$A B A$
	(C, A)		$\theta_{10}(Y)=B ; \quad \theta_{10}(U)=C$	
θ_{11}	(A, A)	(A, B)	$\theta_{11}(X)=\theta_{11}(U)=A ;$	$A B C$
	(A, C)		$\theta_{11}(Y)=B ; \quad \theta_{11}(Z)=C$	
θ_{12}	(B, C)	(C, A)	$\theta_{12}(Y)=\theta_{12}(Z)=A ;$	$B A A$
	(C, A)		$\theta_{12}(X)=B ; \theta_{12}(U)=C$	
θ_{13}	(B, A)	(A, A)	$\theta_{13}(Y)=\theta_{13}(U)=A ;$	$B A C$
	(A, C)		$\theta_{13}(X)=B ; \quad \theta_{13}(Z)=C$	
θ_{14}	(B, A)	(A, C)	$\theta_{14}(Z)=\theta_{14}(U)=A ;$	$B C A$
	(A, A)		$\theta_{14}(X)=B ; \quad \theta_{14}(Y)=C$	

Table 3.5: Canonical databases generated for case 5

NAME	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		MAPPING	t_{d}
	r	p		q
θ_{15}	$(\mathrm{~A}, \mathrm{~A})$	(A, A)	$\theta_{15}(X)=\theta_{15}(U)=\theta_{15}(Y)=\theta_{15}(Z)=A$	$A A A$

pattern of equalities as $\theta_{6}\left(d b\left(Q_{1}\right)\right)$ (it would be isomorphic to $\theta_{6}\left(d b\left(Q_{1}\right)\right)$). With four variables there are 256 different possible canonical databases, but there are only 15 different (non isomorphic) ones. In [Bri97], the reader can find a procedure to compute the number of databases (the number of non isomorphic Q-mappings) in terms of the number of variables in the conjunctive query.

3.4 Algorithm to build $C D B S(Q)$

The following algorithm builds the set of canonical databases for a conjunctive query Q. This algorithm generates all the non isomorphic Q-mappings, which will be used to build all the canonical databases d_{i} in $C D B S\left(Q_{1}\right)$. Since the canonical databases must be adapted to test each type of containment, the last part of the algorithm is a call to another algorithm, which will be described in the corresponding chapter.

The set of all non isomorphic canonical databases that can be built from a query Q is denoted $C D B S(Q)$ (canonical database set of Q):

$$
C D B S(Q)=\left\{\theta_{1}(d b(Q)), \ldots, \theta_{x}(d b(Q))\right\}
$$

where x is the number of nonisomorphic Q-mappings that can be generated from the body of Q.

Algorithm 2 Algorithm to build $C D B S(Q)$.
Input: $Q=q(\vec{X}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n}$.
Output: $\operatorname{CDBS}(Q)$
Method:

1. Initialization.

Let $d b(Q)=\left\{p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right)\right\} ;$
Let $V_{Q}=\left\langle V_{1}, \ldots, V_{q}\right\rangle$ be an ordering of all the variables that appear in $d b(Q)$;
Let $A_{Q}=\left\{A_{1}, \ldots, A_{q}\right\}$ be q new, distinct (uninterpreted) constants
$\left(A_{i} \neq A_{j}\right.$, if $\left.i \neq j, 1 \leq i, j \leq q\right)$;
Let $j=1$;
Let Mappings $=\emptyset$;
2. Definition of Q-mappings.
for $i_{1}=1$ to q
for $i_{2}=1$ to q
…

$$
\text { for } i_{q}=1 \text { to } q\{
$$

$\theta_{j}=\left(A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{q}}\right) ;$
if (there is no Q-mapping in Mappings that is isomorphic to θ_{j}) \{ Mappings $=$ Mappings $\cup\left\{\theta_{j}\right\} ;$
$j=j+1 ;$
\}
\}
3. Generation of $C D B S(Q)$
for $i=1$ to $j-1$
Generate $\theta_{i}(d b(Q))$
$/ / C D B S(Q)=\left\{\theta_{1}(d b(Q)), \ldots, \theta_{j-1}(d b(Q))\right\}$
4. Call the algorithm to adapt $C D B S(Q)$ for each type of containment.
(This step is shown individually for each type of containment)

3.5 Interest of canonical databases

The use of canonical databases in the query containment problem offers an important advantage: it reduces the problem of checking the containment over the infinite possible number of ground databases from which Q_{1} and Q_{2} can derive new facts to check it over a finite (usually small) set of databases, the canonical databases.
$Q C C$ is based on the use of canonical databases due to a fundamental property of $C D B S\left(Q_{1}\right)$: the set (or bag) of facts of a database D reached by an assignment mapping from Q_{1} to D (used to derive a new fact) is always isomorphic to some canonical database d_{i} in $C D B S\left(Q_{1}\right)$. This will be proven for each type of conjunctive query containment, because canonical databases will be different and the isomorphism must consider different properties of the canonical databases for each specific case (multiplicities in the facts and/or constraints in the databases). We shall prove it for each type of conjunctive query containment, but all the proofs take advantage of the way the canonical databases are built. Given that $C D B S\left(Q_{1}\right)$ covers all the possible patterns of equalities among uninterpreted constants, the subset of D where the atoms in Q_{1} are mapped by an assignment mapping from Q_{1} to D will be isomorphic to a canonical database. The following lemma offers a preliminary proof of this fact.

Lemma 3.1 Let Q_{1} be the conjunctive query

$$
q(\vec{W}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n} .
$$

Let τ be an assignment mapping from Q_{1} to a database D. Let sd = $\left\{\tau\left(p_{1}\left(\vec{Y}_{1}\right)\right), \cdots, \tau\left(p_{l}\left(\vec{Y}_{l}\right)\right)\right\}$; i.e., sd is the subset of D on which τ maps the ordinary predicates of Q_{1}. Then sd is isomorphic to a canonical database $d \in C D B S\left(Q_{1}\right)$.
Proof:
The set $s d$ is the subset of D obtained by applying τ to the body of Q_{1}. Note that every canonical database d is obtained by using a mapping from $d b\left(Q_{1}\right)$, which is isomorphic to the body of Q_{1}, to a set of uninterpreted constants A_{Q}.

Assume that τ maps every variable of Q_{1} to the same constant a in $s d$. By construction of $C D B S\left(Q_{1}\right)$, there exists a canonical database, say $d_{1}=\theta_{1}\left(d b\left(Q_{1}\right)\right)$, where the Q-mapping θ_{1} maps every variable of Q to the same uninterpreted constant, $A \in A_{Q}$. It is obvious that $s d$ and d_{1} are isomorphic, because if, in every fact $p_{i}(A, \ldots, A)$ of d_{1}, we replace A by a, $s d$ and d_{1} are identical.

Now, assume that τ maps all variables of Q_{1} to the constant a, except one, which is mapped to a different constant b. As in the previous case, there exists a canonical database built using a Q-mapping with the same pattern of equalities among the uninterpreted constants. Therefore, there will be a canonical database, say d_{2}, which is isomorphic to $s d$ for this case.

The same method of reasoning can be used to cover all possible patterns of equalities among the constants in $s d$ to which the variables of Q_{1} are
mapped. By construction of $C D B S\left(Q_{1}\right)$, the equalities among the uninterpreted constants in the facts of the canonical databases cover all the possible patterns of equalities among the variables of Q_{1} when they are mapped to any ground database D. Therefore, there exists always a canonical database d_{i} isomorphic to $s d$.

3.6 General procedure to test query containment

$Q C C$, the general procedure to test whether a conjunctive query Q_{1} is contained in a conjunctive query Q_{2} consists of the following three steps.

Step 1: Build $C D B S\left(Q_{1}\right)$, the set of canonical databases for the query Q_{1}.
$C D B S\left(Q_{1}\right)$ is built using Algorithm 2. The last step of this algorithm is the adaptation of the canonical databases to check each specific case of query containment. For example, $C D B S\left(Q_{1}\right)$ must include multiplicities in the facts to check bag containment of equality queries, or constraints to check set and bag containment of inequality queries.

Step 2: Apply Q_{1} and Q_{2} to all canonical databases $d \in C D B S\left(Q_{1}\right)$ in order to derive the canonical fact t_{d}.

The application of both queries intend to derive only the canonical fact t_{d}. Besides, all the mappings from either Q_{1} or Q_{2} that derive t_{d} will be considered. However, under set semantics we only need to apply Q_{2} to the databases since, as we will see, by construction of $\operatorname{CDBS}\left(Q_{1}\right), Q_{1}$ always obtains the canonical fact.

Step 3: Check the containment.
The query containment holds (i.e., $Q_{1} \leq Q_{2}$) if and only if Q_{2} obtains the canonical fact t_{d} from all d in $C D B S\left(Q_{1}\right)$. Under bag semantics, Q_{2} must obtain it with at least the same multiplicity as Q_{1}.

The main advantage that $Q C C$ is that these three steps are the same for different kinds of containment, such as equality and inequality queries under set or bag semantics. There will be, of course, some adaptations for each specific case, but conceptually every step of the procedure does the same in all cases.

Therefore, $Q C C$ is a general procedure to test the conjunctive query containment. This is the major contribution of this Thesis.

3.7 Summary

This chapter has shown one of the main contribution of this Thesis, the $Q C C$ procedure. $Q C C$ is a procedure that consits on three steps, and it can be used to test set or bag containment of equality as well as inequality queries.

The first step of this procedure, the construction of $C D B S\left(Q_{1}\right)$, has been shown in more detail, specifying an algorithm (adapted from [Bri97]) that builds the initial set of canonical databases that will be used in the next steps to test the containmet. The adaptation of the canonical databases in $C D B S\left(Q_{1}\right)$ to test each specific case of query containment will be described in the corresponding chapter.

Chapter 4

Previous work about set containment of conjunctive queries

4.1 Introduction

This chapter presents the work that has been done in the field of set containment of equality and inequality conjunctive queries.

The set containment of equality queries was fully solved by Chandra and Merlin [CM77], using the concept of containment mapping. However, the set containment of inequality queries was not fully solved. There has been extensive work on it (see [Klu88, Ull89, vdM97, IS97]), but the proofs given by these authors either lack a procedure or are applicable only when the underlying domain is dense.

4.2 Set containment of equality queries

We shall use the following general form to represent two equality queries Q_{1} and Q_{2} :

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\overrightarrow{Y_{1}}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right) . \\
& Q_{2}: q(\vec{V}):-p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right) .
\end{aligned}
$$

The definitive contribution to the containment problem for equality queries under set semantics was made by Chandra and Merlin [CM77]. They used the concept of containment mapping to prove the query containment.

A containment mapping γ from a query Q_{2} to a query Q_{1}, as defined in [CM77], is a mapping from the symbols of Q_{2} to those of Q_{1} such that:

- The mapping γ is the identity for constants and predicate names.
- It must map the head of Q_{2} to the head of $Q_{1}: \gamma(q(\vec{V}))=q(\vec{W})$.
- Every atom in the body of Q_{2} must be mapped to an atom in the body of $Q_{1}: \forall i \exists j(1 \leq i \leq k, 1 \leq j \leq l) \gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)=p_{j}\left(\vec{Y}_{j}\right)$. Note that it is not necessary that every atom of Q_{1} is reached by an atom in Q_{2}.

The following theorem [CM77] states a necessary and sufficient condition for the containment of equality queries.

Theorem 4.1 Let Q_{1} and Q_{2} be two equality queries. Then, $Q_{1} \leq_{s} Q_{2}$ if and only if there exists a containment mapping γ from Q_{2} to Q_{1} :

$$
Q_{1} \leq_{s} Q_{2} \Longleftrightarrow \exists \gamma, \gamma \text { is a containment mapping } Q_{2} \rightarrow Q_{1}
$$

Proof: (adapted from [Bri97])
IF: Assume there is a containment mapping γ from Q_{2} to Q_{1}, and consider any arbitrary ground database $D . Q_{1}$ derives a fact t from D if and only if there exists an assignment mapping τ from Q_{1} to D that maps every predicate in the body of Q_{1} to a fact in D. That is, every $\tau\left(p_{i}\left(\vec{Y}_{i}\right)\right)$ is a fact in D, and $t=\tau(q(\vec{W}))$.
Now, consider the consecutive application of γ and τ to Q_{2}. Applying them to the head of Q_{2}, we obtain $\tau(\gamma(q(\vec{V})))=\tau(q(\vec{W}))=t$.

The application of $\tau \circ \gamma$ to every predicate in the body of Q_{2} is always possible, since $\gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)=p_{j}\left(\vec{Y}_{j}\right)$, for some $j(1 \leq j \leq l)$. Then, $\tau\left(\gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)\right)=\tau\left(p_{j}\left(\vec{Y}_{j}\right)\right)$, which is a fact in D. Therefore, every fact t derived by Q_{1} using the assignment mapping τ is also derived by Q_{2}, using the assignment mapping $\tau \circ \gamma$. Thus, $Q_{1} \leq_{s} Q_{2}$.

Only If: Assume $Q_{1} \leq_{s} Q_{2}$. We want to prove that there is a containment mapping γ from Q_{2} to Q_{1}.
Let us build a ground database D, defining an assignment mapping τ that maps every atom in the body of Q_{1} to a different fact in D. That is,

$$
\tau\left(p_{1}\left(\vec{Y}_{1}\right)\right), \ldots, \tau\left(p_{l}\left(\vec{Y}_{l}\right)\right) \in D
$$

Q_{1} obtains the fact $t=\tau(q(\vec{W}))$ from D. Since $Q_{1} \leq_{s} Q_{2}, Q_{2}$ also obtains the same fact. Let λ be the assignment mapping from Q_{2} to D that obtains it:

$$
\lambda(q(\vec{V}))=t=\tau(q(\vec{W}))
$$

Likewise, every predicate in the body of Q_{2} must be mapped to a fact in D by the assignment mapping λ :

$$
\forall i(1 \leq i \leq k) \exists j(1 \leq j \leq l), \lambda\left(p_{i}\left(\vec{Z}_{i}\right)\right)=\tau\left(p_{j}\left(\vec{Y}_{j}\right)\right)
$$

It is clear that applying λ to the atoms of Q_{2} followed by the application of the inverse function of the assignment mapping τ (denoted τ^{-1}), we obtain the atoms of Q_{1}. Therefore, the containment mapping γ from Q_{2} to Q_{1} we are looking for is

$$
\gamma=\tau^{-1} \circ \lambda
$$

With this result, the set containment of equality queries was fully solved. More information can be found in [CM77] and [Ul182].

4.3 Set containment of inequality queries

The following theorem [U1189] provides one of the first results in set containment of inequality queries, giving a sufficient condition for it.

Theorem 4.2 Let Q_{1} and Q_{2} be the following queries:

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\overrightarrow{Y_{1}}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right), K_{1}, \ldots, K_{n} . \\
& Q_{2}: q(\vec{V}):-p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right), F_{1}, \ldots, F_{m} .
\end{aligned}
$$

where K_{i} 's and F_{i} 's are built-in predicates, i.e., inequalities.
Then, $Q_{1} \leq_{s} Q_{2}$ if there is a containment mapping γ from Q_{2} to Q_{1} such that:

1. $\gamma(q(\vec{V}))=q(\vec{W})$, that is, the head of Q_{2} is mapped to the head of Q_{1}.
2. $\forall i, 1 \leq i \leq k, \exists b, 1 \leq b \leq l$ such that $\gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)=p_{b}\left(\vec{Y}_{b}\right)$, i.e., every ordinary subgoal of Q_{2} is mapped to an ordinary subgoal of Q_{1}.
3. Every built-in predicate of Q_{2}, once γ is applied (i.e., every $\gamma\left(F_{i}\right)$) is implied by the built-in predicates of Q_{1} (the K_{i} 's).

Proof:
The proof for this theorem is very similar to that of Theorem 4.1, but in this case the built-in predicates must be considered.

Assume there is such a containment mapping γ from Q_{2} to Q_{1}. Consider an arbitrary ground database D from which Q_{1} derives a fact t using an assignment mapping τ. That is, every $\tau\left(p_{i}\left(\vec{Y}_{i}\right)\right)$ is a fact in D, and $t=$ $\tau(q(\vec{W}))$.

Now, consider the consecutive application of γ and τ to Q_{2}. Applying them to the head of Q_{2}, we obtain $\tau(\gamma(q(\vec{V})))=\tau(q(\vec{W}))=t$.

The application of $\tau \circ \gamma$ to every predicate in the body of Q_{2} is always possible, since $\gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)=p_{j}\left(\vec{Y}_{j}\right)$, for some $j(1 \leq j \leq l)$. Then, $\tau\left(\gamma\left(p_{i}\left(\vec{Z}_{i}\right)\right)\right)=\tau\left(p_{j}\left(\vec{Y}_{j}\right)\right)$, which is a fact in D. The built-in predicates of Q_{2} will hold (every $\gamma\left(F_{i}\right)$), because they are implied by the built-in predicates of Q_{1}, which must be true in order to apply the assignment mapping that derives t. Therefore, every fact t derived by Q_{1} using the assignment mapping τ is also derived by Q_{2}, using the assignment mapping $\tau \circ \gamma$. Thus, $Q_{1} \leq_{s} Q_{2}$.

Klug [Klu88] also sketches a proof for this theorem and shows that the existence of this containment mapping provides a necessary and sufficient condition for the set containment of a subclass of queries: left semiinterval queries and right semiinterval queries. Left semiinterval queries only admit inequalities of the form $X \theta c$, where X is a variable, c is a constant, and θ is one of $\leq,<$ or $=$. Right semiinterval queries only admit inequalities of the form $c \theta X$, being X, c and θ defined as above.

Besides, Klug gives a theorem [Klu88] that provides a necessary and sufficient condition to check whether, given two inequality queries Q_{1} and Q_{2} whose variables range over any dense and totally ordered domain, $Q_{1} \leq_{s} Q_{2}$ holds. However, Klug stated in his paper that most of his results (including this theorem) do not hold for nondense domains like the integers.

Ron van der Meyden [vdM97] studied the problem of querying indefinite data over linear ordered domains. He demonstrated that one of the problems he dealt with was equivalent to the set containment of queries with inequalities, showing that it was decidable and Π_{2}^{p}-complete.

Using a different technique, based on counter machines, Ibarra and Su [IS97] show that the containment/equivalence problem is decidable for linear constraint queries (having an exponential time lower bound and an exponential space upper bound), but no effective procedure to test it is given.

In [BHPP98], we used canonical databases to sketch a necessary and sufficient condition and a procedure to test set containment of inequality queries. This was a preliminary work in the direction of the $Q C C$ procedure presented in this Thesis (Chapter 6).

4.4 Summary

This chapter showed the work that has been done about the set containment of equality and inequality conjunctive queries. Our contributions will be shown in chapters 5 , for the set containment of equality queries, and 6 , for the set containment of inequality queries.

Chapter 5

Applying $Q C C$ to test set containment of equality queries

Although this problem has already been solved by Chandra and Merlin [CM77], we show that $Q C C$ also works for this case. In fact, since an equality query is just an inequality query without any built-in predicate, the procedure shown later in Chapter 6 should also work for this particular case.

Let Q_{1} and Q_{2} be two equality queries under set semantics. The procedure to test if $Q_{1} \leq_{s} Q_{2}$ is the following.

Step 1: Build $C D B S\left(Q_{1}\right)$.
For this particular case, canonical databases are built as shown in Algorithm 2 and do not need any further transformation. There is no need to add constraints, because the queries do not have built-in predicates, and the facts do not have symbolic multiplicities because the underlying semantics is set theoretic. Therefore, step (4) of Algorithm 2 can be omitted.

Step 2: Apply Q_{1} and Q_{2} to every $d \in C D B S\left(Q_{1}\right)$ in order to obtain the canonical fact.

There is no real need to apply Q_{1} to each canonical database because, by the way they were built, we already know that Q_{1} obtains the canonical fact, using an assignment mapping isomorphic to the respective Q-mapping. Then, we only try to find an assignment mapping from Q_{2} to every canonical database to derive the canonical fact.

Step 3: Test the containment. If Q_{2} obtains the canonical fact from every canonical database $d \in C D B S\left(Q_{1}\right)$, then $Q_{1} \leq_{s} Q_{2}$, else the containment does not hold.

Example 5.1 Let Q_{1} and Q_{2} be the following equality queries:

$$
\begin{aligned}
& Q_{1}: q(X):-p(X, Y), p(Y, X) . \\
& Q_{2}: q(U):-p(U, V) .
\end{aligned}
$$

It is obvious that Q_{1} is set contained in Q_{2}, because Q_{2} is more restrictive than Q_{1}. Using the results from [CM77], we can see that there is a containment mapping γ from Q_{2} to $Q_{1}(\gamma(U)=X ; \gamma(V)=Y)$. The presence of a containment mapping is the unique condition needed to prove the set containment of equality queries, therefore $Q_{1} \leq_{s} Q_{2}$.

Set containment can also be proven by the use of QCC. The following table shows the two canonical databases in $\operatorname{CDBS}\left(Q_{1}\right)$ and the assignment mappings from Q_{2} that obtain the canonical facts from each canonical database. Q_{2} obtains the canonical fact from all the canonical databases,

Table 5.1: Applying Q_{2} to every canonical database

Name	Q-mapping	$C D B$	$t_{d_{i}}$	Assignment mapping from Q_{2} to obtain $t_{d_{i}}$
	X Y	p	q	
d_{1}	A A	$A A$	A	$\tau_{1}(U)=\tau_{1}(V)=A$
d_{2}	A B	$A B$	A	$\tau_{2}(U)=A ; \tau_{2}(V)=B$
		$B A$		

using the assignment mappings shown in Table 5.1. Therefore, $Q_{1} \leq_{s} Q_{2}$.

We leave the use of $Q C C$ to test set containment of equality queries without the proof of its correctness because it is a particular case of the set containment of inequality queries, shown in Chapter 6 . However, the use of $Q C C$ for this case is very similar to the theorem offered by Chandra and Merlin [CM77]. Observe that the canonical database d_{i} built using a Q mapping that maps every variable of Q_{1} to a different uninterpreted constant (d_{2} in the previous example) is isomorphic to the body of Q_{1}. Thus, finding an assignment mapping from Q_{2} to such d_{i} (that is, applying Q_{2} to d_{i}) is exactly the same problem as finding a containment mapping from Q_{2} to Q_{1}, which is the only needed condition to test the set containment of equality
queries shown in [CM77]. Therefore, for this case of containment, there is no need to apply Q_{2} to every $d_{i} \in C D B S\left(Q_{1}\right)$, but only to the canonical database built using the Q-mapping that maps every variable in the body of Q_{1} to a different uninterpreted constant.

Chapter 6

Applying $Q C C$ to test set containment of inequality queries

In this chapter, the inequality queries Q_{1} and Q_{2} will be represented as

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right), K_{1}, \ldots, K_{n} . \\
& Q_{2}: q(\vec{V}):-\quad p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right), F_{1}, \ldots, F_{m} .
\end{aligned}
$$

where the p_{i} 's are ordinary predicates, and K_{i} 's and F_{i} 's are built-in predicates.

The three steps of $Q C C$ to check set containment of inequality queries are the following.

6.1 Step 1: Build $C D B S\left(Q_{1}\right)$

Let Q_{1} be an inequality query, and D a ground database. In order for Q_{1} to obtain a fact from D, there must exist (at least) one assignment mapping τ from Q_{1} to D such that the constants in the tuples of D reached by the variables in the body of Q_{1} using τ satisfy the constraints expressed by the built-in predicates of Q_{1}.

Given that canonical databases are used to test the query containment, we are interested in those canonical databases from which Q_{1} derives the canonical fact (if Q_{1} does not obtain it, the fact that Q_{2} derives it or not is irrelevant for the containment). Therefore, the canonical databases used to test set containment of inequality queries will have associated some constraints that ensure that Q_{1} will obtain the canonical fact from them. This
constraints will be denoted constraints(d) for any canonical database set, and are composed of two sets of constraints:

1. All uninterpreted constants must represent different values for constants. Therefore, $\forall i, j(1 \leq i \neq j \leq q) \quad A_{i} \neq A_{j}$. $(q$ is the cardinality of V_{Q}, i.e., the number of variables in Q_{1}). This has already been defined in Algorithm 2, before adapting canonical databases for each type of containment.
2. The second set of constraints is built by applying the Q-mapping θ_{i} used to build the canonical database $d_{i}=\theta_{i}\left(d b\left(Q_{1}\right)\right)$ to the built-in predicates, $\left(\theta_{i}\left(K_{1}\right) \wedge \cdots \wedge \theta_{i}\left(K_{n}\right)\right)$. This set of constraints reflects the built-in predicates in the body of Q_{1}.
If a canonical database d_{i} does not satisfy constraints $\left(d_{i}\right)$, it will not be used to test the set containment, because it is not possible to build a ground database isomorphic to it from which Q_{1} obtains the canonical fact.

Therefore, the step (4) of Algorithm 2 is the following.

$$
/ / Q-D B S=\left\{\theta_{1}\left(d b\left(Q_{1}\right)\right), \ldots, \theta_{j-1}\left(d b\left(Q_{1}\right)\right)\right\}
$$

4. Generation of canonical databases

For $i=1$ to $j-1$

$$
\begin{aligned}
\text { constraints }\left(d_{i}\right)= & \left(\forall k, l(1 \leq k \neq l \leq q) \quad A_{k} \neq A_{l}\right) \wedge \\
& \left(\theta_{i}\left(K_{1}\right) \wedge \cdots \wedge \theta_{i}\left(K_{n}\right)\right)
\end{aligned}
$$

if constraints $\left(d_{i}\right)$ is satisfiable then \{ $\left.d_{i}=\theta_{i}\left(d b\left(Q_{1}\right)\right)\right\}$ \} else $d_{i}=\emptyset / /$ Discard d_{i}
Return $C D B S\left(Q_{1}\right)=\left\{d_{1}, \ldots, d_{j-1}\right\}$
Example 6.1 Let Q_{1} be the query

$$
Q_{1}: q(X, Y, Z):-r(X, U), r(U, Z), p(U, Y), X>Y .
$$

Table 6.1 shows the canonical database set for this query. The column $\theta_{i}\left(d b\left(Q_{1}\right)\right)$ shows the facts in the canonical database, and constraints $\left(d_{i}\right)$ represents the constraints associated to this database. If constraints $\left(d_{i}\right)$ is not satisfiable, the canonical database will not be considered.
Q_{1} has 4 variables, therefore there are 15 possible nonisomorphic canonical databases for Q_{1}. However, not all of them are consistent with their constraints. The canonical databases $d_{2}, d_{3}, d_{6}, d_{9}$, and d_{15} are not consistent and will no longer be used, because it is not possible to build a ground database isomorphic to any of them.

Table 6.1: (Example 6.1) $C D B S\left(Q_{1}\right)$

d_{i}	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$		Q-Mapping	t_{d}	constraints (d_{i})
	r	p	X Y Z U	q	
d_{1}	$\begin{aligned} & \hline(A, D) \\ & (D, C) \end{aligned}$	(D, B)	A B C D	(A, B, C)	$\begin{gathered} A>B \wedge \\ A \neq B \wedge A \neq C \wedge A \neq D \wedge \\ B \neq C \wedge B \neq D \wedge C \neq D \\ \hline \hline \end{gathered}$
d_{2}	$\begin{aligned} & \hline \hline(\mathrm{A}, \mathrm{~B}) \\ & (\mathrm{B}, \mathrm{~A}) \end{aligned}$	(B,A)	A A A B	(A, A, A)	$A>A \wedge A \neq B$ constraints $\left(d_{2}\right)$ is unsatisfiable
d_{3}	$\begin{aligned} & (\mathrm{A}, \mathrm{~A}) \\ & (\mathrm{A}, \mathrm{~B}) \end{aligned}$	(A, A)	A A B A	(A, A, B)	$A>A \wedge A \neq B$ constraints $\left(d_{3}\right)$ is unsatisfiable
d_{4}	(A, A)	(A, B)	A B A A	(A, B, A)	$A>B \wedge A \neq B$
d_{5}	$\begin{aligned} & (B, A) \\ & (A, A) \\ & \hline \end{aligned}$	(A, A)	B A A A	(B, A, A)	$B>A \wedge A \neq B$
d_{6}	$\begin{aligned} & \hline \hline(\mathrm{A}, \mathrm{~B}) \\ & (\mathrm{B}, \mathrm{~B}) \end{aligned}$	(B,A)	A A B B	(A, A, B)	$\begin{gathered} A>A \wedge A \neq B \\ \text { constraints }\left(d_{6}\right) \text { is unsatisfiable } \end{gathered}$
d_{7}	$\begin{aligned} & (A, B) \\ & (B, A) \end{aligned}$	(B, B)	A B A B	(A, B, A)	$A>B \wedge A \neq B$
d_{8}	$\begin{aligned} & (A, A) \\ & (A, B) \\ & \hline \end{aligned}$	(A, B)	A B B A	(A, B, B)	$A>B \wedge A \neq B$
d_{9}	$\begin{aligned} & \hline \hline(\mathrm{A}, \mathrm{C}) \\ & (\mathrm{C}, \mathrm{~B}) \end{aligned}$	(C,A)	A A B C	(A, A, B)	$\begin{gathered} A>A \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$ constraints $\left(d_{9}\right)$ is unsatisfiable
d_{10}	$\begin{aligned} & (A, C) \\ & (C, A) \end{aligned}$	(C, B)	A B A C	(A, B, A)	$\begin{gathered} A>B \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$
d_{11}	$\begin{aligned} & (A, A) \\ & (A, C) \end{aligned}$	(A, B)	A B C A	(A, B, C)	$\begin{gathered} A>B \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$
d_{12}	$\begin{aligned} & (B, C) \\ & (C, A) \end{aligned}$	(C, A)	B A A C	(B, A, A)	$\begin{gathered} B>A \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$
d_{13}	$\begin{aligned} & (B, A) \\ & (A, C) \end{aligned}$	(A, A)	B A C A	(B, A, C)	$\begin{gathered} B>A \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$
d_{14}	$\begin{aligned} & (B, A) \\ & (A, A) \\ & \hline \end{aligned}$	(A, C)	B C A A	(B, C, A)	$\begin{gathered} B>C \wedge \\ A \neq B \wedge A \neq C \wedge B \neq C \end{gathered}$
d_{15}	(A,A)	(A,A)	A A A A	(A, A, A)	$\overline{\prime A>A}$ constraints $\left(d_{15}\right)$ is unsatisfiable

6.2 Step 2: Apply Q_{1} and Q_{2} to all canonical databases

This step applies Q_{1} and Q_{2} to all canonical databases trying to derive the canonical fact t_{d}. By adding constraints((d) to every canonical database d, we ensure that Q_{1} always obtains t_{d}, therefore there is no need to apply Q_{1} to each $d \in C D B S\left(Q_{1}\right)$. However, it is necessary to define how to apply Q_{2}
to a canonical database and how to know if Q_{2} obtains the canonical fact. The following definition and lemma show how to do it.

Definition 6.1 $t_{d} \in Q_{2}(d)$:
Let d be a database in $\operatorname{CDBS}\left(Q_{1}\right)$, and let t_{d} be the corresponding canonical fact. We say that $t_{d} \in Q_{2}(d)$ if for all ground substitutions α, defined on the variables in $d, \alpha\left(t_{d}\right) \in Q_{2}(\alpha(d))$.

Lemma 6.1 Let Q_{1} and Q_{2} of the form

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right), K_{1}, \ldots, K_{n} . \\
& Q_{2}: q(\vec{V}):-p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right), F_{1}, \ldots, F_{m} .
\end{aligned}
$$

where K_{i} 's and F_{i} 's are the built-in predicates. Let $d \in C D B S\left(Q_{1}\right)$.
Then $t_{d} \in Q_{2}(d)$ if and only if the following two conditions hold:

1. There are assignment mappings $\tau_{1}, \ldots, \tau_{s}(s \geq 1)$ from the ordinary predicates of Q_{2} to d such that $\tau_{1}(q(\vec{V}))=\cdots=\tau_{s}(q(\vec{V}))=t_{d}$, and
2. The formula $F=$ constraints $(d) \wedge \neg\left(\tau_{1}\left(F_{1}\right) \wedge \cdots \wedge \tau_{1}\left(F_{m}\right)\right) \wedge \cdots \wedge$ $\neg\left(\tau_{s}\left(F_{1}\right) \wedge \cdots \wedge \tau_{s}\left(F_{m}\right)\right)$ is not satisfiable.

Proof:

Before giving the formal proof, let us sketch it in an intuitive manner. The formula associated to each canonical database d has two parts: (1) constraints (d), which is satisfiable (if it was unsatisfiable, the canonical database would not be considered); and (2) A conjunction of negated subformulas, each of which is the application of an assignment mapping (from Q_{2} to d) to the built-in predicates in Q_{2}. All assignment mappings from Q_{2} to d are included in this conjunction.

Given that constraints(d) must hold, the unsatisfiability of the formula F indicates that the second part of the formula cannot be true. This means that at least one of the elements of this part is false. Each of these elements is the negation of the application of an assignment mapping τ_{i} from Q_{2} to d, and without the negation it would be true. Therefore, there is always an assignment mapping from Q_{2} to d that can be applied, so Q_{2} obtains t_{d}.

Only IF: Condition 1 must be true, otherwise t_{d} cannot be in $Q_{2}(d)$. Now by contradiction we prove that condition 2 is also necessary to obtain $t_{d} \in Q_{2}(d)$.
Consider all the assignment mappings from Q_{2} to d. Suppose that F is satisfiable. Then there is a ground substitution α for the variables
of F that makes the formula F true. Since F is a conjunction of constraints, every individual constraint must be true in order for F to become true.
Focusing on the second part of the formula, for the mentioned ground substitution α, every element $\neg \alpha\left(\tau_{j}\left(F_{1}\right) \wedge \cdots \wedge \tau_{j}\left(F_{m}\right)\right)$ is true. Therefore, for all $j, 1 \leq j \leq s, \alpha\left(\tau_{j}\left(F_{1}\right) \wedge \cdots \wedge \tau_{j}\left(F_{m}\right)\right)$ is false.
Using the constants in the substitution, we can define a ground database $\alpha(d)$ such that none of the assignment mappings from Q_{2} can be applied, because the application of the assignment mapping to the built-in predicates of Q_{2} does not hold. Thus, $\alpha\left(t_{d}\right) \notin Q_{2}(\alpha(d))$. and, by Definition 6.1, $t_{d} \notin Q_{2}(d)$. Therefore, F must be unsatisfiable in order to get $t_{d} \in Q_{2}(d)$.

IF: Assume conditions 1 and 2 hold. By condition 2, F is not satisfiable. Since F is not satisfiable, and constraints (d) must hold, there must be some element $\neg\left(\tau_{i}\left(F_{1}\right) \wedge \cdots \wedge \tau_{i}\left(F_{m}\right)\right)(1 \leq i \leq s)$ that is false for any ground substitution α.
That is, for all α there exists an $i(1 \leq i \leq s)$ such that $\alpha\left(\neg\left(\tau_{i}\left(F_{1}\right) \wedge\right.\right.$ $\left.\cdots \wedge \tau_{i}\left(F_{m}\right)\right)$) is false. Therefore, $\alpha\left(\tau_{i}\left(F_{1}\right) \wedge \cdots \wedge \tau_{i}\left(F_{m}\right)\right)$ is true.
That means that, for any ground substitution α, there exists an assignment mapping τ_{i} from Q_{2} to d that satisfies the built-in predicates in Q_{2}, so Q_{2} obtains the canonical fact. Then, for any ground substitution $\alpha, \alpha\left(t_{d}\right) \in Q_{2}(\alpha(d))$, which (by Definition 6.1) means that $t_{d} \in Q_{2}(d)$.

The following example illustrates the test of membership of a tuple in $Q_{2}(D)$.

Example 6.2 Let Q_{1} and Q_{2} be the following queries:

$$
\begin{aligned}
& Q_{1}: q(X, Y):-r(X, Y), p(U, V), p(V, U), X>Y . \\
& Q_{2}: q(X, Y):-r(X, Y), p(U, V), U \leq V .
\end{aligned}
$$

One of the canonical databases d_{i} that we can build from Q_{1} is the following, where A, B, C, and D denote uninterpreted constants:

$C D B$		$t_{d_{i}}$	constraints $\left(d_{i}\right)$
r	p	q	
A B	C D	A B	$(A \neq B) \wedge(A \neq C) \wedge(A \neq D) \wedge(B \neq C) \wedge$
	D C		$(B \neq D) \wedge(C \neq D) \wedge(A>B)$

There are two ways to map the ordinary subgoals of Q_{2} to d in a way to obtain the canonical fact $q(A, B)$. These are

$$
\begin{array}{ccc}
\tau_{1}(X)=A ; & \tau_{1}(Y)=B ; & \tau_{1}(U)=C ; \\
\tau_{2}(X)=A ; & \tau_{2}(Y)=D ; & \tau_{2}(U)=D ;
\end{array} \tau_{2}(V)=C, ~ l
$$

Then we use both mappings to test whether $q(A, B)$ belongs to $Q_{2}(d)$, checking if the following formula is not satisfiable:

$$
\text { constraints }(d) \wedge \neg\left(\tau_{1}(U \leq V)\right) \wedge \neg\left(\tau_{2}(U \leq V)\right)
$$

There is a procedure in Section 6.5 to check the satisfiability of this kind of formulas. However, for this example, due to the simplicity of the formula, this check can be done directly. The above formula is not satisfiable, since

$$
\begin{aligned}
& \text { constraints }(d) \wedge \neg\left(\tau_{1}(U \leq V)\right) \wedge \neg\left(\tau_{2}(U \leq V)\right) \\
& \equiv \\
& \text { constraints }(d) \wedge \neg(C \leq D) \wedge \neg(D \leq C) \\
& \equiv \\
& \text { constraints }(d) \wedge(C>D) \wedge(D>C) \\
& \equiv \\
& \text { unsatisfiable }
\end{aligned}
$$

The unsatisfiability of the formula means that, for any ground substitution α, Q_{2} always obtains $\alpha\left(t_{d_{i}}\right)$ from $\alpha\left(d_{i}\right)$, because either $C \leq D$ or $D \leq C$ is true. That makes possible to apply at least one of the assignment mappings from Q_{2} to d, satisfying the built-in predicates in Q_{2}. Therefore, $q(A, B) \in$ $Q_{2}(d)$.

6.3 Step 3: Test the set containment

In the previous step we showed how to check if the canonical fact t_{d} belongs to $Q_{2}(d)$ for any canonical database $d \in C D B S\left(Q_{1}\right)$.

If for all canonical databases $d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{2}(d)$, then $Q_{1} \leq_{s}$ Q_{2}, otherwise the containment does not hold:

$$
Q_{1} \leq_{s} Q_{2} \Longleftrightarrow \forall d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{2}(d)
$$

Section 6.6 shows several examples that illustrate how to use $Q C C$ to test the set containment of inequality queries.

6.4 Validation of $Q C C$ for the set containment of inequality queries

The following lemma proves that the application of an assignment mapping from an inequality query Q_{1} to any ground database D is isomorphic to some canonical database $d_{i} \in \operatorname{CDBS}\left(Q_{1}\right)$. Then, the main theorem for this case demonstrates that $\forall d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{2}(d)$ constitutes a necessary and sufficient condition to prove set containment of inequality queries.

Lemma 6.2 Let Q_{1} be an inequality query of the form $q(\vec{W})$:- $p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n}$. Let τ be an assignment mapping from Q_{1} to a database D. Let $s d=\left\{\tau\left(p_{1}\left(\vec{Y}_{1}\right)\right), \cdots, \tau\left(p_{l}\left(\vec{Y}_{l}\right)\right)\right\}$; i.e., sd is the subset of D where τ maps the ordinary predicates of Q_{1}. Then sd is isomorphic to a canonical database $d \in C D B S\left(Q_{1}\right)$:

$$
\exists d_{i} \in C D B S\left(Q_{1}\right) \mid d_{i} \text { is isomorphic to sd }
$$

Proof:

The first part of the proof for this lemma is identical to that of Lemma 3.1. Given that the canonical databases represent all the patterns of equalities among uninterpreted constants (these patterns are built by construction of the canonical databases), $s d$ is isomorphic to a canonical database $d_{i} \in C D B S\left(Q_{1}\right)$.

However, in order for the isomorphism to hold, the constants in the facts of $s d$ must satisfy constraints $\left(d_{i}\right)$. But this is also true, because constraints $\left(d_{i}\right)$ always represents the application of an assignment mapping from Q_{1} to a ground database D (if constraints(d) were unsatisfiable, the canonical database would not be considered).

Theorem 6.1 Let Q_{1} and Q_{2} of the form

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right), K_{1}, \ldots, K_{n} . \\
& Q_{2}: q(\vec{V}):-p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right), F_{1}, \ldots, F_{m} .
\end{aligned}
$$

Then, $Q_{1} \leq_{s} Q_{2} \Longleftrightarrow \forall d \in C D B S\left(Q_{1}\right) \quad t_{d} \in Q_{2}(d)$.
Proof:
Only IF: By contradiction. Assume that there is $d, d \in C D B S\left(Q_{1}\right)$, such that $t_{d} \notin Q_{2}(d)$. Then, by Definition 6.1, there exists a ground substitution α such that $\alpha\left(t_{d}\right) \notin Q_{2}(\alpha(d))$. Since, by construction of each $d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{1}(d)$, then $\alpha\left(t_{d}\right) \in Q_{1}(\alpha(d))$. Therefore, $Q_{1} \not Z_{s} Q_{2}$.

IF: We assume that $\forall d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{2}(d)$, and we want to prove that $Q_{1} \leq_{s} Q_{2}$. Therefore, we need to prove that, if for any arbitrary database D and any arbitrary derived fact $t \in Q_{1}(D)$, then $t \in Q_{2}(D)$.
Assume that $t \in Q_{1}(D)$. Then, there exists an assignment mapping τ that maps the ordinary predicates of Q_{1} to some facts in D, such that $\tau(q(\vec{W}))=t$.
Let $s d=\left\{\tau\left(p_{1}\left(\vec{Y}_{1}\right)\right), \cdots, \tau\left(p_{l}\left(\vec{Y}_{l}\right)\right)\right\}$, that is, $s d$ is the subset of facts in D mapped by the ordinary predicates in the body of Q_{1} through the assignment mapping τ. By Lemma 6.2, sd is isomorphic to a database d in $C D B S\left(Q_{1}\right)$. Let α be the mapping that shows that isomorphism. Then $\alpha\left(t_{d}\right)=t$ and $\alpha(d)=s d$. From hypothesis, $t_{d} \in Q_{2}(d)$. Then $\alpha\left(t_{d}\right) \in Q_{2}(\alpha(d))$, so, by Definition 6.1, $t \in Q_{2}(s d)$. Hence $t \in Q_{2}(D)$. So for any database D and for any derived fact t in $Q_{1}(D), Q_{2}(D)$ contains t. Therefore, $Q_{1} \leq_{s} Q_{2}$.

Corollary 1 Given two inequality queries Q_{1} and Q_{2}, Q_{1} is set contained into $Q_{2}\left(Q_{1} \leq_{s} Q_{2}\right)$ if and only if $\forall d \in C D B S\left(Q_{1}\right), Q_{1}(d) \subseteq_{s} Q_{2}(d)$.
Proof:
Only IF: If there is a $d \in C D B S\left(Q_{1}\right)$ such that $Q_{1}(d) \not \mathbb{Z}_{s} Q_{2}(d)$, we can build a ground database D to show a counterexample that shows that $Q_{1} \leq_{s} Q_{2}$.

If: By construction, $t_{d} \in Q_{1}(d)$; by hypothesis, given that $\forall d \in C D B S\left(Q_{1}\right), \quad Q_{1}(d) \subseteq_{s} Q_{2}(d)$, we have that $t_{d} \in Q_{2}(d)$. Then, $\forall d \in C D B S\left(Q_{1}\right), t_{d} \in Q_{2}(d)$. Using the previous theorem, we conclude that $Q_{1} \leq_{s} Q_{2}$.

6.5 Testing Satisfiability

In section 6.2 we showed that, in order to know whether the canonical fact t_{d} is obtained when a query Q_{2} is applied to a canonical database d, that is, to test if $t_{d} \in Q_{2}(d)$, it is necessary to test the satisfiability of a formula F.

There has been a lot of work about testing the satisfiability of a formula that is a conjunction of inequalities. Guo et al. [GSW96] offer excellent results in this field. However, when a nondense domain (such as the integers) is assumed, they only consider the operators $<$ and \leq; the \neq operator is used only with dense domains such as the real numbers. There are also results about the satisfiability of a formula when the domain is dense in [ZO93, IO97].

We will offer here a procedure to test the satisfiability of a formula when the variables take their values from any ordered domain, either dense or nondense. However, our procedure is specific for the kind of formulas we are dealing with (the formula F shown in Lemma 6.1). These formulas will always have the form
$F=\operatorname{constraints}(d) \wedge \neg\left(\tau_{1}\left(F_{1}\right) \wedge \cdots \wedge \tau_{1}\left(F_{m}\right)\right) \wedge \cdots \wedge \neg\left(\tau_{l}\left(F_{1}\right) \wedge \cdots \wedge \tau_{l}\left(F_{m}\right)\right)$
where
constraints $(d)=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n} \wedge \theta_{d}\left(K_{1}\right) \wedge \theta_{d}\left(K_{2}\right) \wedge \cdots \wedge \theta_{d}\left(K_{r}\right)$.
C_{i} 's are the constraints that specify that all uninterpreted constants are different, θ_{d} is the Q-mapping used to build d, and K_{i} 's are the built-in predicates of $Q_{1} . \tau_{j}\left(F_{i}\right)$ represents the built-in predicate F_{i} of Q_{2} mapped to the uninterpreted constants in d by the assignment mapping τ_{j}.
C_{i} 's are of the form $A_{i} \neq A_{j}$ where A_{i} and A_{j} are uninterpreted constants in A_{Q}, and both $\theta_{d}\left(K_{i}\right)$'s and $\tau_{j}\left(F_{i}\right)$'s are of the form $X<Y, X \leq Y, X=Y$ or $X \neq Y$, where any of X or Y (but not both) can be a constant of the domain, or X and Y can be two uninterpreted constants coming from the facts in the canonical database.

The procedure to test the satisfiability of the formula F is the following.

1. Normalize the formula. It involves three steps: eliminate the negations of conjunctions of constraints; simplify the formula; and check for equalities among uninterpreted constants. The output of this step will be the normalized formula or the early decision that it is not satisfiable.

(a) Eliminate the negations of conjunctions of constraints.

First, we apply DeMorgan's Law to the negations of conjunctions of constraints, obtaining

$$
\begin{gathered}
F=C_{1} \wedge C_{2} \wedge \cdots C_{n} \wedge \theta_{d}\left(K_{1}\right) \wedge \theta_{d}\left(K_{2}\right) \wedge \cdots \wedge \theta_{d}\left(K_{r}\right) \wedge \\
\left(\neg \tau_{1}\left(F_{1}\right) \vee \cdots \vee \neg \tau_{1}\left(F_{m}\right)\right) \wedge \cdots \wedge\left(\neg \tau_{l}\left(F_{1}\right) \vee \cdots \vee \neg \tau_{l}\left(F_{m}\right)\right)
\end{gathered}
$$

Second, since $\tau_{j}\left(F_{i}\right)$'s are of the form $X<Y, X \leq Y, X=Y$ or $X \neq Y$, we remove the negations of atomic constraints by applying the following equivalences: $\neg(A<B) \equiv A \geq B, \neg(A \leq$ $B) \equiv A>B, \neg(A=B) \equiv A \neq B$, and $\neg(A \neq B) \equiv A=B$.

Denoting $L_{i j}$ the constraint equivalent to $\neg \tau_{i}\left(F_{j}\right)$, the formula F can be rewritten as

$$
\begin{gathered}
C_{1} \wedge C_{2} \wedge \cdots C_{n} \wedge \theta_{d}\left(K_{1}\right) \wedge \theta_{d}\left(K_{2}\right) \wedge \cdots \wedge \theta_{d}\left(K_{r}\right) \wedge \\
\left(L_{11} \vee L_{12} \vee \cdots \vee L_{1 m}\right) \wedge \cdots \wedge\left(L_{l 1} \vee L_{l 2} \vee \cdots \vee L_{l m}\right)
\end{gathered}
$$

Finally, we apply the distributive law of \wedge with respect to \vee, obtaining

$$
\begin{gathered}
{\left[C_{1} \wedge \cdots \wedge C_{n} \wedge \theta_{d}\left(K_{1}\right) \wedge \theta_{d}\left(K_{2}\right) \wedge \cdots \wedge \theta_{d}\left(K_{r}\right) \wedge L_{11} \wedge \cdots \wedge L_{l 1}\right]} \\
\vee \cdots \vee \\
{\left[C_{1} \wedge \cdots \wedge C_{n} \wedge \theta_{d}\left(K_{1}\right) \wedge \theta_{d}\left(K_{2}\right) \wedge \cdots \wedge \theta_{d}\left(K_{r}\right) \wedge L_{1 m} \wedge \cdots \wedge L_{l m}\right]}
\end{gathered}
$$

Let us denote each element of the disjunction (shown in the above formula enclosed in square brackets) by P_{i}. Then, $F=P_{1} \vee P_{2} \vee$ $\cdots \vee P_{w}$.
(b) Simplify the formula.

A special characteristic of the formula F is that all its uninterpreted constants are different (these constraints come from constraints (d)). Therefore, for each $A_{i} \leq A_{j}$ we have a constraint $A_{i} \neq A_{j}$, and we can replace $A_{i} \leq A_{j}$ by $A_{i}<A_{j}$.
The second simplification that can be applied to the formula is to remove duplicates of constraints. For example, if there is a conjunction such as $(\cdots \wedge(A>B) \wedge \cdots \wedge(A>B) \wedge \cdots)$, we can remove all the duplicates of the $(A>B)$ atomic constraints, leaving just one.
(c) Check for equalities among uninterpreted constants.

If there is a subformula P_{k} with a constraint $A_{i}=A_{j}$, this P_{k} will have also a constraint $A_{i} \neq A_{j}$ because each P_{k} has all the constraints C_{k}. Therefore, the part of the formula F expressed by this P_{k} is clearly not satisfiable and we remove this P_{k} from F. If all the P_{k} 's in F are removed and F becomes empty, then we can conclude that F is not satisfiable and this procedure stops here.
2. Build a directed graph $G\left(P_{i}\right)$ for each P_{i}. The nodes of the graph are the variables in P_{i}. The arcs of the graph are added as follows:

- If there is a constraint $X<Y$ in P_{i}, we will draw a solid arc from X to Y.
- If there is a constraint $X \leq Y$ in P_{i}, we will draw a dashed arc from X to Y. Note that, for such a constraint to exist, either X or Y is a constant, otherwise it would be converted into a $<$ constraint in step (1b).
- If there is a constraint $X=Y$, we will draw a dashed arc from X to Y and another one from Y to X (As if replacing $X=Y$ by $X \leq Y \wedge Y \leq X)$. As in the previous case, either X or Y must be a constant.
- Each pair of (different) constants a and b will be connected by a solid arc, from a to b if $a<b$, or from b to a if $b<a$.

3. Check the satisfiability of each graph $G\left(P_{i}\right)$.

It is necessary to consider two different situations: when variables ${ }^{1}$ range over a dense domain such as the real numbers, and when variables range over a nondense domain such as the integers. In the first case it is only necessary to check whether the first of the two following conditions is satisfied. But in the second case, when variables range over a nondense domain, the two next conditions must be satisfied.

Condition 1: If there is a cycle with at least one solid arc in the graph $G\left(P_{i}\right)$, the subformula P_{i} is unsatisfiable (that would mean that a variable is strictly less than itself).
Condition 2: The idea in this condition is to check whether there is "enough room" for all the variables that are placed between two constants. This is only a problem if there are two or more constants in the graph connected by one or more paths, and the variables range over integers (or other nondense domain).
Let a and b be two constants in the graph connected through one or more paths. Note that in these paths there can be a dashed arc only between a variable and a constant, but never between two variables.
Let s be the set of symbols that includes a, b and all constants and variables in all paths between a and b, that is
$s=\{S \mid S=a$ or $S=b$ or S is a symbol in any path from a to $b\}$.
Let us call I the ordering of the set of consecutive integers between a and b, both of them included, that is,

$$
I=\langle a, a+1, \ldots b-1, b\rangle
$$

[^1]We are looking for a mapping β from symbols in s to the ordering I. Such an assignment mapping must satisfy
(a) $\beta(a)=a$.
(b) $\beta(b)=b$.
(c) For all $c \in s$, if c is a constant, then $\beta(c)=c$, that is, β is the identity for constants ${ }^{2}$.
(d) For all variables $X, Y \in s, X \neq Y$ implies $\beta(X) \neq \beta(Y)$.
(e) The relationships expressed in the subformula P_{i} (from which the graph $G\left(P_{i}\right)$ was built) between two symbols S_{i} and $S_{j} \in$ s must be preserved by the mapping.

If a graph $G\left(P_{i}\right)$ satisfies Condition 1 and for every pair of constants a and b with at least one path between them in the graph $G\left(P_{i}\right)$, such an assignment mapping β is found, the formula P_{i} is satisfiable, otherwise it is not. Notice that if such assignment mapping exists, it will always be found.

Example 6.3 Let P_{i} be represented by the following graph (the solid arcs between some pairs of constants are omitted for clarity; they would not produce any cycle):

Let us consider the constants 3 and 8 . For this example, $s=$ $\{3,4, X, 5, Y, Z, W, 6, U, V, 8\}$ and $I=\langle 3,4,5,6,7,8\rangle$. The next table shows one of the possible assignment mappings β

$$
\begin{array}{lll}
\beta(3)=3 & \beta(4)=4 & \beta(X)=4 \\
\beta(5)=5 & \beta(Y)=3 & \beta(Z)=5 \\
\beta(W)=6 & \beta(6)=6 & \beta(U)=7 \\
\beta(V)=8 & \beta(8)=8 &
\end{array}
$$

Notice that each variable is mapped to a different constant and that all the relationships expressed by the formula are preserved. The graph has no cycles (condition 1) and the assignment mapping β was found, therefore P_{i} is satisfiable.

[^2]Example 6.4 Let P_{i} be represented by the following graph, and consider again the constants 3 and 8 .

In this case, $s=\{3,6, X, Y, 5, V, W, 8\}$ and $I=\langle 3,4,5,6,7,8\rangle . \quad P_{i}$ satisfies condition 1, because the graph has no cycles. But it is not possible to find an assignment mapping such that each variable is mapped to a different constant preserving the relationships between them. Therefore, P_{i} is not satisfiable.
4. Output the result. Recall that the formula F was transformed into a disjunction of subformulas:

$$
F=P_{1} \vee P_{2} \vee \cdots \vee P_{w} .
$$

If all P_{i} 's are unsatisfiable, then the formula F is unsatisfiable. If there exists a P_{i} that is satisfiable, the formula F is satisfiable.

Let us see an example:
Example 6.5 The formula F :
$F=A \neq B \wedge B \neq C \wedge A \neq C \wedge B \leq A \wedge B<C \wedge \neg(B<A)$
is not satisfiable. Let us use the algorithm to prove it:

1. The normalized formula (without negated conjunctions of constraints and with the \leq converted into $<$) is

$$
A \neq B \wedge B \neq C \wedge A \neq C \wedge B<A \wedge B<C \wedge A<B
$$

2. We have to build only one graph. It is shown in the following picture.

3. The formula is not satisfiable, because the (only) P_{i} is not satisfiable: there is a cycle with at least one solid line in the graph.

6.5.1 Implications of the domain of the variables

The underlying domain of the variables has important implications in the problem of containment of inequality queries. The results obtained by Klug [Klu88] apply only when the domain is dense, like the real numbers; they do not apply for nondense domain such as the integers.

The IC-RFT (Implication Constraint Refutation) problem, shown to be polynomially equivalent to the query containment problem by Klug [Klu88] was studied in [ZO93]. However, when the domain was nondense, only the $=$ and \neq operators were considered. Guo et al. [GSW96] solved the satisfiability of a conjunction of constraints when the domain was dense; when it was nondense, they did not allow the \neq operator in the formulas.

The difficulty added by nondense versus dense domains is that the test for satisfiability must check if there is "enough room" for all the variables that must fit between two constants. For example, the formula $(X \neq Y) \wedge(3<$ $X) \wedge(X<Y) \wedge(Y<5)$ is satisfiable if the domain is the real numbers (nondense) (with $X=3.5$ and $Y=3.6$, for example), while it is not satisfiable for the integers: there is not enough space to fit two integer values between 3 and 5.

With the second condition we gave in our procedure to test the satisfiability of a formula, this problem is also considered. Therefore, our procedure is valid for dense as well as nondense domains.

Given that the unsatisfiability of the formula F introduced in Lemma 6.1 is the only test (applied to all canonical databases) needed to test the set containment of inequality queries, the differences between the underlying domains lead us to some interesting conclusions. Let us use \mathbb{R}, the real numbers, as a representative of dense domains, and \mathbb{Z}, the integers, as a representative of nondense domains. We shall denote query containment under \mathbb{R} as $\leq_{s}^{\mathbb{R}}$, and query containment under \mathbb{Z} as $\leq_{s}^{\mathbb{Z}}$.

- If F is unsatisfiable in \mathbb{R}, then F is unsatisfiable in \mathbb{Z}. That means that if a query Q_{1} is set contained in another query Q_{2} under \mathbb{R}, it is also set contained under $\mathbb{Z}: Q_{1} \leq_{s}^{\mathbb{R}} Q_{2} \Longrightarrow Q_{1} \leq_{s}^{\mathbb{Z}} Q_{2}$.
- if F is unsatisfiable in \mathbb{Z}, F may be satisfiable or unsatisfiable in \mathbb{R}. Therefore, $Q_{1} \leq_{s}^{\mathbb{Z}} Q_{2} \nRightarrow Q_{1} \leq_{s}^{\mathbb{R}} Q_{2}$.
- if F is satisfiable in \mathbb{Z}, then F is satisfiable in \mathbb{R}. Therefore, $Q_{1} \mathbb{Z}_{s}^{\mathbb{Z}}$ $Q_{2} \Longrightarrow Q_{1} \mathbb{Z}_{s}^{\mathbb{R}} Q_{2}$.

6.6 Examples

In this section we will show three examples. The first one shows two inequality queries that satisfy the containment (i.e., $Q_{1} \leq_{s} Q_{2}$). For the second example, Q_{1} is not contained in Q_{2}, and we shall use a canonical database to show a counterexample. The last example shows two queries for which the containment depends upon the underlying domain.

Example 6.6 Let Q_{1} and Q_{2} be the following queries:

$$
\begin{aligned}
& Q_{1}: q(X, Y):-p(X, Y), p(Y, Z), s(X, T), s(T, X), X \geq Y, Y>Z . \\
& Q_{2}: q(X, Y):-p(X, Y), p(X, V), s(M, W), X \geq V, M \geq W .
\end{aligned}
$$

Using the results from Ullman [Ull89] for these two queries, it is not possible to check if $Q_{1} \leq_{s} Q_{2}$:

There are two containment mappings τ_{1} and τ_{2} from Q_{2} to Q_{1} :

$$
\begin{array}{r}
\gamma_{1}(X)=X ; \gamma_{1}(Y)=Y ; \gamma_{1}(V)=Y ; \gamma_{1}(M)=X ; \gamma_{1}(W)=T \\
\gamma_{2}(X)=X ; \gamma_{2}(Y)=Y ; \gamma_{2}(V)=Y ; \gamma_{2}(M)=T ; \gamma_{2}(W)=X
\end{array}
$$

But under none of these mappings can we imply the built-in predicates of Q_{2}. That is, we cannot imply either of $\gamma_{1}(X \geq V \wedge M \geq W)$ or $\gamma_{2}(X \geq V \wedge M \geq W)$ from the built-in predicates of $Q_{1}, X \geq Y \wedge Y>Z$ (more specifically, we cannot imply either $\gamma_{1}(M \geq W)=X \geq T$ or $\gamma_{2}(M \geq$ $W)=T \geq X)$.

Considering a nondense domain like the integers for the variables, the results of Klug [Klu88] are not useful either. However, applying our procedure, which is summarized in Table 6.2, we can conclude that $Q_{1} \leq_{s} Q_{2}$.

Let us follow the steps of $Q C C$ for this case:

Step 1: Build $C D B S\left(Q_{1}\right)$

Table 6.2 shows (in the column labeled $\operatorname{CDBS}\left(Q_{1}\right)$) the canonical databases built from the body of Q_{1}. From the 15 canonical databases that are possible, there are only 7 that are consistent with their constraints: $d_{3}, d_{6}, d_{9}, d_{11}, d_{13}, d_{14}$ and d_{15}. The procedure will need to deal with only these databases to check the containment.

Step 2: Apply Q_{1} and Q_{2} to the canonical databases

The third column in the table shows t_{d}, the canonical fact that Q_{2} should obtain, the mappings we can use to get it, and the formula F that is built as seen in Lemma 6.1.

Table 6.2: Example of containment

In order to verify that $t_{d} \in Q_{2}(d)$ we only need to check the unsatisfiability of the formula F for every canonical database, using the algorithm shown in Section 6.5. Let us follow the algorithm to check that the formula corresponding to d_{3} is unsatisfiable.

1. The original formula is

$$
\begin{gathered}
A \neq B \wedge A \geq A \wedge A>B \wedge \neg(A \geq A \wedge A \geq A) \\
\wedge \neg(A \geq B \wedge A \geq A)
\end{gathered}
$$

2. Normalize the formula:

$$
\begin{gathered}
A \neq B \wedge A \geq A \wedge A>B \wedge \neg(A \geq A) \wedge \neg(A \geq B \wedge A \geq A) \\
= \\
A \neq B \wedge A \geq A \wedge A>B \wedge(A<A) \wedge(A<B \vee A<A) \\
= \\
[A \neq B \wedge A \geq A \wedge A>B \wedge A<A \wedge A<B)] \vee \\
{[A \neq B \wedge A \geq A \wedge A>B \wedge A<A \wedge A<A]}
\end{gathered}
$$

3. Build a directed graph for each subformula.

We should build two directed graphs, but just looking at the formula we find the term $(A<A)$ in both subformulas. Thus, the formula is unsatisfiable, and we have that $t_{d_{2}} \in Q_{2}\left(d_{2}\right)$.

Step 3: Test the containment

It is easy to follow the same algorithm for the rest of the canonical databases, checking that all of their corresponding formulas are unsatisfiable. So, for all consistent canonical databases, we have $t_{d_{i}} \in Q_{2}\left(d_{i}\right)$, and we can conclude that $Q_{1} \leq{ }_{s} Q_{2}$.

Example 6.7 Let us slightly modify the queries from the previous example, and be Q_{1} and Q_{2} the following:

$$
\begin{aligned}
& Q_{1}: q(X, Y):-\quad p(X, Y), p(Y, Z), s(X, T), s(T, X), X \geq Y, Y>Z . \\
& Q_{2}: q(X, Y):-p(X, Y), p(X, V), s(X, W), X \geq V, X \leq W .
\end{aligned}
$$

Let us focus in just one canonical database, d_{6}. Since Q_{1} is the same as the previous example, all the canonical databases are identical as the ones shown in Table 6.2. The difference in the result comes from applying Q_{2} (which was the modified query) to the databases.

We can see that, applying Q_{2} to d_{6}, the resulting formula is satisfiable:

Table 6.3: Example of non containment

$$
\begin{gathered}
A \neq B \wedge A \geq A \wedge A>B \wedge \neg(A \geq A \wedge A \leq B) \wedge \neg(A \geq B \wedge A \leq B) \\
= \\
A \neq B \wedge A \geq A \wedge A>B \wedge(A<A \vee A>B) \wedge(A<B \vee A>B) \\
= \\
{[A \neq B \wedge A \geq A \wedge A>B \wedge \mathbf{A}<\mathbf{A} \wedge A<B] \text { (unsatisfiable) }} \\
{[A \neq B \wedge A \geq A \wedge A>B \wedge \mathbf{A}<\mathbf{A} \wedge A>B] \text { (unsatisfiable) }} \\
{[A \neq B \wedge A \geq A \wedge A>B \wedge \mathbf{A} A \mathbf{B} \wedge \mathbf{A}<\mathbf{B}] \text { (unsatisfiable) }} \\
{[A \neq B \wedge A \geq A \wedge A>B \wedge A>B \wedge A>B] \text { (satisfiable) }}
\end{gathered}
$$

As it can be seen, this formula is satisfiable, so $t_{d_{6}}=q(A, A) \notin Q_{2}\left(d_{6}\right)$
We can build a ground database isomorphic to d_{6}, using for example integers, and verify that the containment does not hold:

p		s	
3	3	3	2
3	2	2	2

Over this database, Q_{1} obtains the tuple $q(3,3)$, while Q_{2} does not. Therefore, $Q_{1} \not \leq_{s} Q_{2}$.

Example 6.8 Let Q_{1} and Q_{2} be the following inequality queries:

$$
\begin{array}{ll}
Q_{1}: & q(X, Y):-p(X, Y), r(X, W), r(W, X), X>Y, Y>3, W>4 \\
Q_{2}: & q(X, Y):-p(X, Y), r(M, N), M \geq N, N>4
\end{array}
$$

For these queries, constraints $\left(d_{1}\right)$ and constraints $\left(d_{2}\right)$ are not satisfiable, therefore d_{1} and d_{2} are not taken into account to test query containment. We must check whether the formulas generated for d_{3}, d_{4} and d_{5} are not satisfiable.

Table 6.4: Example domain-dependent containment

Q-mappings			$C D B S\left(Q_{1}\right)$			t_{d}	Mappings				Formula
	Y	W	d_{i}	p	r	q	X	Y	M	N	
	A	A	d_{1}	AA	AA	AA	d_{1} is not consistent				
			$A>A \wedge A>3 \wedge A>4$								
	A	B	d_{2}	AA	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{BA} \end{aligned}$	AA	d_{2} is not consistent				
			$\begin{gathered} A \neq B \wedge A>A \wedge \\ A>3 \wedge B>4 \end{gathered}$								
	B	A	d_{3}	AB	AA	AB					$\begin{aligned} & A \neq B \wedge A>B \wedge B>3 \wedge A>4 \wedge \\ & \neg(A \geq A \wedge A>4) \end{aligned}$
			$\begin{gathered} A \neq B \wedge A>B \wedge \\ B>3 \wedge A>4 \end{gathered}$					B	A	A	
	A	A		BA	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{AB} \\ & \hline \end{aligned}$	BA					$\begin{gathered} A \neq B \wedge B>A \wedge A>3 \wedge A>4 \wedge \\ \neg(B \geq A \wedge A>4 \wedge) \\ \neg(A \geq B \wedge B>4) \end{gathered}$
				$\begin{gathered} A \neq B \wedge B>A \wedge \\ A>3 \wedge A>4 \end{gathered}$							
	B	C	d_{5}	AB	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{CA} \end{aligned}$	AB					$\begin{aligned} & A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ & A>B \wedge B>3 \wedge C>4 \wedge \end{aligned}$
			$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ A>B \wedge B>3 \wedge C>4 \end{gathered}$					B	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	C	$\begin{array}{r} \neg(A \geq C \wedge C>4) \wedge \\ \neg(C \geq A \wedge A>4) \\ \hline \end{array}$

d_{3} : The formula F for d_{3} is

$$
\begin{gathered}
A \neq B \wedge A>B \wedge B>3 \wedge A>4 \wedge \neg(A \geq A \wedge A>4) \\
\equiv \\
A \neq B \wedge A>B \wedge B>3 \wedge A>4 \wedge(A<A \vee A \leq 4) \\
\equiv \\
{[A \neq B \wedge A>B \wedge B>3 \wedge A>4 \wedge \mathbf{A}<\mathbf{A}] \vee} \\
{[A \neq B \wedge A>B \wedge B>3 \wedge \mathbf{A}>4 \wedge \mathbf{A} \leq \mathbf{4}]}
\end{gathered}
$$

It can be easily checked, without using the graph, that the two subformulas are unsatisfiable (the inequalities that make them unsatisfiable are shown in boldface). Therefore, the formula F is unsatisfiable.
d_{4} : The formula F for this canonical database is also unsatisfiable, since all its subformulas are unsatisfiable.

$$
\begin{gathered}
A \neq B \wedge B>A \wedge A>3 \wedge A>4 \wedge \neg(B \geq A \wedge A>4) \wedge \neg(A \geq B \wedge B>4) \\
\equiv \\
A \neq B \wedge B>A \wedge A>3 \wedge A>4 \wedge(B<A \vee A \leq 4) \wedge(A<B \vee B \leq 4)
\end{gathered}
$$

$$
\begin{gathered}
\equiv \\
{[A \neq B \wedge B>A \wedge A>3 \wedge A>4 \wedge \mathbf{B}<\mathbf{A} \wedge \mathbf{A}<\mathbf{B}] \vee} \\
{[A \neq B \wedge \mathbf{B}>\mathbf{A} \wedge A>3 \wedge A>4 \wedge \mathbf{B}<\mathbf{A} \wedge B \leq 4] \vee} \\
{[A \neq B \wedge B>A \wedge A>3 \wedge \mathbf{A}>\mathbf{4} \wedge \mathbf{A} \leq \mathbf{4} \wedge A<B] \vee} \\
{[A \neq B \wedge B>A \wedge A>3 \wedge \mathbf{A}>\mathbf{4} \wedge \mathbf{A} \leq \mathbf{4} \wedge B \leq 4]}
\end{gathered}
$$

d_{5} : The formula F for this canonical database is:

$$
\begin{gathered}
A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge C>4 \wedge \\
\neg(A \geq C \wedge C>4) \wedge \neg(C \geq A \wedge A>4) \\
\equiv \\
A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge C>4 \wedge \\
(A<C \vee C \leq 4) \wedge(C<A \vee A \leq 4) \\
\equiv \\
{[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge C>4 \wedge \mathbf{A}<\mathbf{C} \wedge \mathbf{C}<\mathbf{A}] \vee} \\
{[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge C>4 \wedge A<C \wedge A \leq 4] \vee} \\
{[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge \mathbf{C}>\mathbf{4} \wedge \mathbf{C} \leq \mathbf{4} \wedge C<A] \vee} \\
{[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge B>3 \wedge \mathbf{C}>\mathbf{4} \wedge \mathbf{C} \leq \mathbf{4} \wedge A \leq 4]}
\end{gathered}
$$

For this formula, the first, third and fourth subformulas are clearly unsatisfiable. Let us build the graph for the second subformula, shown in Figure 6.1.

Figure 6.1: Domain-dependent satisfiability of a formula.
There are no cycles with a solid arc in the graph (in fact, there are no cycles at all). This is the only condition needed to test the satisfiability of the formula with a dense domain, thus the formula is satisfiable for dense domains such as the real numbers (for example, mapping A, B and C to
$3.1,3.2$ y 3.3 , the subformula becomes true, and so does the formula F). Therefore, using Theorem 6.1, we can conclude that $Q_{1} \not \leq_{s} Q_{2}$ when the domain is dense.

However, when the underlying domain is nondense, such as the integers, the results are different. There are two conditions that must be checked to test the satisfiability of the formula:

1. The corresponding graph has no cycles with at least a solid arc. As we have seen in the previous graph, the graph has no cycles.
2. It must be checked if there is "enough room" for all the variables and constants that can be found between two constants connected by at least one path in the graph. In this case, there is a path between the constants 3 and 4. Using our algorithm, we must find a mapping from s, the set of variables and constants in the graph, to I, the list of consecutive integers between 3 and 4 . For this graph, we have $s=\{3, B, A, C, 4\}$, and $I=\langle 3,4\rangle$. The constraints in the graph, $3<B \wedge B<A \wedge A \leq 4$, must hold, too. It is easy to check that such mapping does not exist, so the formula is not satisfiable.

This second condition does not hold, therefore this subformula is unsatisfiable. We had already shown that the remaining subformulas (independently from the domain) were always unsatisfiable, thus F is not satisfiable. Therefore, for nondense domains, $Q_{1} \leq_{s} Q_{2}$.

6.7 Summary

This chapter has presented another original contribution of this Thesis. We have shown how $Q C C$ can be applied to test the set containment of inequality queries, by adding some constraints to each canonical database. The problem is then reduced to the test of the unsatisfiability of a formula composed of equalities and inequalities, and we have presented a procedure to perform this test.

The application of $Q C C$ to test the set containment of inequality queries finally solves an open problem since [Klu88], where Klug left it open for the cases when variables took their values from nondense domains.

This chapter closes the part of the thesis dedicated to the problem of the set containment of conjunctive queries. The following chapters will show the previous work and our contributions for the problem of bag containment of conjunctive queries.

Chapter 7

Previous work about bag containment of conjunctive queries

7.1 Introduction

The study of the containment of conjunctive queries under bag semantics has not been as extensive as under set semantics. Besides, the results achieved for the set containment problem of conjunctive query containment do not apply to the bag containment problem, because set containment does not imply bag containment, as shown in Example 1.1.

However, Brisaboa and Hernández [BH97] gave a necessary and sufficient condition, along with a procedure, to test bag containment of equality queries.

There has been no results, to the best of our knowledge, that offer a condition to test bag containment of inequality queries.

The key concept under set containment is the restrictiveness of the queries. That is, a query Q_{1} is contained into a query Q_{2} if Q_{1} is more restrictive than Q_{2}. Under bag semantics, the key concept is the multiplicity with which both queries obtain any fact. It was clear that, in Example 1.1, Q_{1} would not obtain more facts than Q_{2}; however, it obtains some facts with higher multiplicity than Q_{2}.

7.2 Bag containment of equality queries

Conjunctive queries under bag semantics were early studied by Dayal, Goodman and Katz in [DGK82], where they sketched an extended relational algebra with control over duplicate elimination. Later, Klausner [Kla86] studied the problem of containment and equivalence of conjunctive queries under bag semantics.

Ioannidis and Ramakrishnan [IR92, IR94] used databases whose tuples had an associated label, which could have different meanings. For example, the label could be a real number between 0 and 1 , indicating the probability of a fact belonging to a database; this labelling systems leads to fuzzy sets. The label could also be a positive integer, where it represents the multiplicity of the fact in the database. Ioannidis and Ramakrishnan provide some results about containment for queries over databases that use bag semantics. The most important of them is a necessary and sufficient condition for the bag containment of queries that have no repeated predicate names in their bodies.

However, the first major contribution to the problem of bag containment of equality queries was introduced by Chaudhuri and Vardi [CV93], where they gave two necessary and one sufficient condition to check the containment.

The following three theorems show the two necessary and one sufficient conditions given by Chaudhuri and Vardi [CV93].

Theorem 7.1 Let Q_{1} and Q_{2} be two equality queries such that $Q_{1} \leq{ }_{b} Q_{2}$. Then, for each predicate name p, the number of predicates with name p in Q_{1} is less than or equal to the number of predicates with name p in Q_{2}.

Theorem 7.2 Let Q_{1} and Q_{2} be two equality queries such that $Q_{1} \leq_{b} Q_{2}$. Then, every predicate of Q_{1} is assigned to some predicate of Q_{2} by some of the possible containment mappings from Q_{2} to Q_{1}.

Theorem 7.3 Let Q_{1} and Q_{2} be two equality queries. If there exists an onto mapping from Q_{2} to Q_{1}, then Q_{1} is bag contained into $Q_{2}\left(Q_{1} \leq_{b} Q_{2}\right)$. An onto mapping τ from an equality query Q_{2} to another equality query Q_{1} is a containment mapping from Q_{2} to Q_{1} such that every predicate in Q_{1} is assigned to some predicate in Q_{2}.

Brisaboa and Hernández [BH97] proposed the use of a new procedure that solves the problem of testing the bag containment of equality queries, reducing it to the comparison of pairs of polynomials. This procedure is
a particularization of $Q C C$ to test this type of containment, and will be described in Chapter 8.

7.3 Bag containment of inequality queries

To the best of our knowledge, there is no work done in this kind of containment. We shall describe in Chapter 9 how $Q C C$ can be applied to test the bag containment of inequality queries, offering a proof of its correctness.

7.4 Summary

This chapter has briefly reviewed the previous work about the bag containment problem of conjunctive queries. The work done by Brisaboa and Hernández [BH97] will be adapted to fit the three steps of $Q C C$ in Chapter 8. To the best of our knowledge, there have been no achievements in the problem of bag containment of equality queries; our own contributions for this problem will be shown in Chapter 9.

Chapter 8

Applying $Q C C$ to test bag containment of equality queries

8.1 Introduction

Under bag semantics, every fact in a database has an associated multiplicity, which is the number of copies of the fact in the database (See Section 2.3.2). For example, a database $D=\{p(A, B ;[3])\}$ represents a database with 3 copies of the fact $p(A, B)$.

The bag containment of conjunctive queries is defined, as shown in Chapter 2 , as

$$
Q_{1} \leq_{b} Q_{2} \Longleftrightarrow \forall D, Q_{1}(D) \subseteq_{b} Q_{2}(D)
$$

That is, Q_{1} is bag contained in Q_{2} if and only if the result of applying Q_{1} to any database D is a subbag of the result of applying Q_{2} to the same database D. Using $Q C C$ to test bag containment of equality queries, we only need to test the containment over the set of canonical databases built from the body of Q_{1}. Therefore, for a suitable test bag containment test, every canonical database must have a symbolic multiplicity associated to each of its facts.

The complete description of the procedure to test bag containment of equality queries has been given in [Bri97]. We shall show here how this procedure perfectly fits into the 3 steps of $Q C C$.

The rest of this chapter first introduces the concept of Label System [IR92], and then the three steps of $Q C C$ are explained in detail. The last
section proves the correctness of $Q C C$ to test bag containment of equality queries.

8.2 Label systems

In order to test the bag containment of conjunctive queries, we need to define databases (seen as bags of facts) with respect to two label systems, depending on the labels of the facts that represent their multiplicities. The first type corresponds to those databases whose facts have multiplicities represented by nonnegative integer numbers $\left(\mathbb{Z}^{+}\right)$. The second type uses polynomials to represent the (symbolic) multiplicity of every fact. This second type of databases will be used to test the bag containment of conjunctive queries (equality as well as inequality queries).

The definition of label system given in this chapter are adapted from [IR92].

8.2.1 Preliminary definitions

A fact is a Horn clause with exactly one positive literal. Given a predicate p, a fact defined on p is a fact whose predicate name is p. For a fact $p\left(A_{1}, \ldots, A_{n}\right), p$ is its predicate name and A_{1}, \ldots, A_{n} are its arguments. If all the arguments are constants, the fact is called a ground fact.

A database scheme is a finite set of predicate names. In this work, we assume that all predicates are implicitly in \mathcal{U}, a fixed database scheme, and that there is a fixed set of constants, the Herbrand Universe. The Herbrand Base for \mathcal{U}, denoted $B_{\mathcal{U}}$, is the set of all ground facts that can be formed using predicate names in \mathcal{U} and the constants in $B_{\mathcal{U}}$ [Llo87].

8.2.2 Definition of label systems

A label system \mathcal{L} is a quintuple $\mathcal{L}=\langle L, *,+, 0, \leq\rangle$ such that:
L is a domain of labels with a partial order \leq.

* is a binary operation (called product) on L that is associative and commutative. In this work, we shall mainly use the implicit product notation ommiting the $*$ symbol, for example writing $m_{1} m_{2}$ instead of $m_{1} * m_{2}$.
+ is the addition, a binary operation on L that is associative and commutative.

0 is an element of L, which is the additive identity and the annihilator with respect to the product. 0 is also the least element with respect to the partial order \leq defined on L. That is, $\forall a \in L, a+0=a ; a * 0=$ 0 ; and $0 \leq a$.
$\forall a, b \in L-\{0\}, a \leq a * b$.
$\forall a, b, c, d \in L,(a \leq b \wedge c \leq d) \Rightarrow(a+c \leq b+d)$.
$\forall a \in L, \exists b \in L$ such that $a \leq b \wedge a \neq b$. The relationship between two elements a and b such that $a \leq b \wedge a \neq b$ is represented by the usual notation $a<b$.

For the scope of this Thesis, we shall define two label systems, denoted LS1 and LS2:

LS1: A label system \mathcal{L} of type $\operatorname{LS1}$ is a quintuple $\mathcal{L}=\left\langle\mathbb{Z}^{+}, *,+, 0, \leq\right\rangle$. That is, the label domain is \mathbb{Z}^{+}, the set of nonnegative integer numbers; the product and addition operations, as well as the \leq partial order, are the usual for integer numbers.

LS2: A label system \mathcal{L} of type LS2 uses the polynomial arithmetic, and it is defined as the quintuple $\mathcal{L}=\langle\mathbf{P}, *,+, 0, \leq\rangle$, where \mathbf{P} is a domain of polynomials whose coefficients and variables take their values from \mathbb{Z}^{+}.
The zero (0) element is the polynomial $\mathbf{0}$, that is, the polynomial that is evaluated to 0 for all values of its variables.
The \leq relationship between polynomials is defined as follows. Let $P_{1}(\vec{X})$ and $P_{2}(\vec{X})$ be two polynomials. Then, $P_{1}(\vec{X}) \leq P_{2}(\vec{X})$ if and only if $P_{1}(\vec{X}) \leq P_{2}(\vec{X})$ in \mathbb{Z}^{+}. That is, for any evaluation ρ of the polynomials, $\rho\left(P_{1}(\vec{X})\right) \leq \rho\left(P_{2}(\vec{X})\right)$. An evaluation of a polynomial $P(\vec{X})$ is a function from the variables in \vec{X} to \mathbb{Z}^{+}. The result of an evaluation is always a nonnegative integer.

8.2.3 Definition of databases with respect to a label system

Let $\mathcal{L}=\langle L, * .+, 0, \leq\rangle$ be a label system. A database D with respect to \mathcal{L} is defined as a function from the Herbrand base $B_{\mathcal{U}}$ to L.

A database D with respect to a label system \mathcal{L} is represented as a set of facts of the form

$$
p\left(A_{1}, \ldots, A_{n} ;[m]\right)
$$

where $p\left(A_{1}, \ldots, A_{n}\right)$ is a fact in $B_{\mathcal{U}}$, and $m \in L-\{0\}$. That means that those elements of the Herbrand base that are mapped to 0 are not shown in the database.

A fact $p\left(a_{1}, \ldots, a_{n}\right)$ is in D, represented $p\left(a_{1}, \ldots, a_{n}\right) \in D$, if there is a fact $p\left(b_{1}, \ldots, b_{n} ;[m]\right)$ such that $a_{i}=b_{i}$ for $i=1, \ldots, n$.

The multiplicity of the fact $t=p\left(b_{1}, \ldots, b_{n}\right)$ in D is m, denoted $|t|_{D}=m$, if there is a fact $p\left(b_{1}, \ldots, b_{n} ;[m]\right)$ in D. The multiplicity of a fact t not present in D is zero, that is, $|t|_{D}=0$.

8.2.4 LS1 and LS2 databases

A database defined with respect to an LS1 label system will be denoted LS1 database, and it will use the integer arithmetic. That is, the $*$ and + operators are the integer product and addition. The relationship \leq is the usual for integers.

An LS2 database is a database defined with respect to an LS2 label system. The binary operators $*$ and + , as well as the \leq relationship, are those defined for polynomials. The multiplicities in an LS2 database are said to be symbolic multiplicities.

Example 8.1 The following database D is an LS1 database. D^{\prime} is an LS2 database.

$$
\begin{aligned}
& D=\{r(a, b ;[2]), r(t, j ;[4])\} \\
& D^{\prime}=\left\{p\left(a, b ;\left[m_{1}\right]\right), p\left(t, t ;\left[m_{2} m_{3}+m_{2}\right]\right), s\left(a ;\left[2 m_{3}+m_{4} m_{6}^{2}\right]\right)\right\}
\end{aligned}
$$

Two databases are isomorphic is they are identical after a consistent renaming of their constants. If one (or both) databases are LS2 databases, it is necessary to assign values to the symbolic multiplicities in order to have two identical databases.

Example 8.2 Let $D=\left\{p\left(a, b ;\left[m_{1}\right], \quad p\left(b, c ;\left[m_{2}\right]\right), \quad r\left(a ;\left[m_{3}\right]\right)\right\}\right.$ be an LS2 database. An LS1 database isomorphic to D is $D^{\prime}=$ $\{p(6,7 ;[1], p(7,9 ;[6]), r(6 ;[8])\}$.

The application of a conjunctive query over a database, either LS1 or LS2, is defined in terms of assignment mappings [Ull82], as defined in Chapter 2.

8.3 Step 1: Build $C D B S\left(Q_{1}\right)$

In order to test bag containment of equality queries, canonical databases will be adapted to include symbolic multiplicities in their facts. Then, for each canonical database $d_{i}=\theta_{i}\left(d b\left(Q_{1}\right)\right)$, we add a symbolic multiplicity to each fact in it. Every fact will be of the form

$$
d_{i}=\left\{p\left(\theta_{i}\left(Y_{1}\right), \ldots, \theta_{i}\left(Y_{l}\right) ;[m]\right) \mid p\left(Y_{1}, \ldots, Y_{l}\right) \in d b\left(Q_{1}\right)\right\}
$$

where each m is a new, different identifier that represents the multiplicity of the fact $p\left(\theta_{i}\left(Y_{1}\right), \ldots, \theta_{i}\left(Y_{l}\right)\right)$ in d_{i}. Thus, canonical databases used to test bag containment are $L S 2$ databases; the multiplicities of their facts are symbolic and they use the polynomial arithmetics.

Therefore, the step (4) of Algorithm 2 is the following:

$$
/ / C D B S=\left\{\theta_{1}\left(d b\left(Q_{1}\right)\right), \ldots, \theta_{j-1}\left(d b\left(Q_{1}\right)\right)\right\}
$$

4. Adaptation of canonical databases

For $i=1$ to $j-1$
//Add a symbolic multiplicity to
//each fact of every canonical database
$d_{i}=\left\{p_{k}\left(Y_{k 1}, \ldots, Y_{k n} ;\left[m_{i k}\right]\right) \mid p_{k}\left(Y_{k 1}, \ldots, Y_{k n}\right) \in \theta_{i}\left(d b\left(Q_{1}\right)\right)\right\}$
Return $C D B S\left(Q_{1}\right)=\left\{d_{1}, \ldots, d_{j-1}\right\}$
Example 8.3 Let Q_{1} and Q_{2} be the following equality queries.

$$
\begin{aligned}
& Q_{1}: q(X):-p(X), r(Y, Z), r(Z, Y) . \\
& Q_{2}: q(X):-\quad p(X), r(U, V), r(U, V) .
\end{aligned}
$$

The set of canonical databases for Q_{1} are shown in Table 8.1.

8.4 Step 2: Apply Q_{1} and Q_{2} to all canonical databases

In this step, Q_{1} and Q_{2} will be applied to every $d_{i} \in C D B S\left(Q_{1}\right)$ in order to obtain the canonical fact $t_{d_{i}}$ with a certain multiplicity. Note that there can be more than one assignment mapping from either Q_{1} or Q_{2} that derive the canonical fact. If this is the case, all assignment mappings must be taken into account to compute the final multiplicity of the canonical fact, as shown in Section 2.3.2.

Table 8.1: Canonical Database set for Q_{1}

	Q-mappings			$C D B$		t_{d}
	X	Y	Z	p	r	q
d_{1}	A	A	A	$A\left[m_{p}\right]$	$A A\left[m_{r}\right]$	A
d_{2}	A	A	B	$A\left[m_{p}\right]$	$A B\left[m_{r 1}\right]$ $B A\left[m_{r 2}\right]$	A
d_{3}	A	B	A	$A\left[m_{p}\right]$	$B A\left[m_{r 1}\right]$ $A B\left[m_{r 2}\right]$	A
d_{4}	B	A	A	$B\left[m_{p}\right]$	$A A\left[m_{r}\right]$	B
d_{5}	A	B	C	$A\left[m_{p}\right]$	$B C\left[m_{r 1}\right]$ $C B\left[m_{r 2}\right]$	A

The canonical databases have symbolic multiplicities, that is, they are LS2 databases. Therefore, the binary operations + and $*$ (addition and product) used to compute the multiplicities are the addition and product of polynomials.

Example 8.4 (Continued from Example 8.3).
The column $C D B$ in Tables 8.2 and 8.3 shows the canonical databases, whose facts have a symbolic multiplicity. The column t_{d} shows the canonical fact for each database. The last column shows how Q_{1} (in Table 8.2) and Q_{2} (in Table 8.3) are applied to each canonical database to derive the canonical fact. The multiplicities of the canonical facts obtained by Q_{1} and Q_{2} are computed as shown in Section 2.3.2. Let us show how to compute the multiplicity of $t_{d_{2}}=q(A)$ obtained by Q_{1} :

There are two assignment mappings τ_{1} and τ_{2} from Q_{1} to d_{2} :

$$
\begin{array}{lll}
\tau_{1}(X)=A ; & \tau_{1}(Y)=A ; & \tau_{1}(Z)=B \\
\tau_{2}(X)=A ; & \tau_{2}(Y)=B ; & \tau_{2}(Z)=A
\end{array}
$$

Applying τ_{1} and τ_{2} to the body of Q_{1}, we get

$$
\begin{aligned}
& \tau_{1}(p(X))=p\left(A ;\left[m_{p}\right]\right) ; \tau_{1}(r(Y, Z))=r\left(A, B ;\left[m_{r 1}\right]\right) ; \tau_{1}(r(Z, Y))= \\
& \quad r\left(B, A ;\left[m_{r 2}\right]\right) \\
& \quad \tau_{2}(p(X))=p\left(A ;\left[m_{p}\right]\right) ; \tau_{2}(r(Y, Z))=r\left(B, A ;\left[m_{r 2}\right]\right) ; \tau_{2}(r(Z, Y))= \\
& \quad r\left(A, B ;\left[m_{r 1}\right]\right)
\end{aligned}
$$

Therefore, the multiplicity of $p(A)$ using τ_{1} is $m_{p} m_{r 1} m_{r 2}$; using τ_{2} is $m_{p} m_{r 2} m_{r 1}$. Then, the final multiplicity is

$$
\left|t_{d_{2}}\right|_{Q_{1}\left(d_{2}\right)}=|q(A)|_{Q_{1}\left(d_{2}\right)}=m_{p} m_{r 1} m_{r 2}+m_{p} m_{r 2} m_{r 1} .
$$

The rest of the multiplicities is calculated in the same way.

Table 8.2: Multiplicities of the canonical facts obtained by Q_{1}.

	$C D B$		t_{d}	Applying Q_{1}	
	p	r	q	Assignm. mapps.	$\left\|t_{d}\right\| Q_{1}$
				X Y Z	
d_{1}	$A\left[m_{p}\right]$	$A A\left[m_{r}\right]$	A	A A A	$m_{p} m_{r}^{2}$
d_{2}	$A\left[m_{p}\right]$	$A B\left[m_{r 1}\right]$	A	A A B	$m_{p} m_{r 1} m_{r 2}+$
		$B A\left[m_{r 2}\right]$		A B A	$m_{p} m_{r 2} m_{r 1}$
d_{3}	$A\left[m_{p}\right]$	$B A\left[m_{r 1}\right]$	A	A B A	$m_{p} m_{r 1} m_{r 2}+$
		$A B\left[m_{r 2}\right]$		A A B	$m_{p} m_{r 2} m_{r 1}$
d_{4}	$B\left[m_{p}\right]$	$A A\left[m_{r}\right]$	B	B A A	$m_{p} m_{r}^{2}$
d_{5}	$A\left[m_{p}\right]$	$B C\left[m_{r 1}\right]$	A	A B C	$m_{p} m_{r 1} m_{r 2}+$
		$C B\left[m_{r 2}\right]$		A C B	$m_{p} m_{r 2} m_{r 1}$

Table 8.3: Multiplicities of the canonical facts obtained by Q_{2}.

	$C D B$		t_{d}	Applying Q_{2}	
	p	r	q	Assignm. mapps.	$\left\|t_{d}\right\|_{Q_{2}}$
				X U V	
d_{1}	$A\left[m_{p}\right]$	$A A\left[m_{r}\right]$	A	A A A	$m_{p} m_{r}^{2}$
d_{2}	$A\left[m_{p}\right]$	$A B\left[m_{r 1}\right]$	A	A A B	$m_{p} m_{r 1}^{2}+$
		$B A\left[m_{r 2}\right]$		A B A	$m_{p} m_{r 2}^{2}$
d_{3}	$A\left[m_{p}\right]$	$B A\left[m_{r 1}\right]$	A	A B A	$m_{p} m_{r 1}^{2}+$
		$A B\left[m_{r 2}\right]$		A A B	$m_{p} m_{r 2}^{2}$
d_{4}	$B\left[m_{p}\right]$	$A A\left[m_{r}\right]$	B	A A A	$m_{p} m_{r}^{2}$
d_{5}	$A\left[m_{p}\right]$	$B C\left[m_{r 1}\right]$	A	A B C	$m_{p} m_{r 1}^{2}+$
		$C B\left[m_{r 2}\right]$		A C B	$m_{p} m_{r 2}^{2}$

8.5 Step 3: Test the bag containment

We have at this point created $C D B S\left(Q_{1}\right)$ and computed the multiplicity of every canonical fact when obtained by Q_{1} and Q_{2}.

This last step of $Q C C$ compares the polynomials that represent the multiplicities with which Q_{1} and Q_{2} obtain every canonical fact. If, as we shall prove in Theorem 8.1, Q_{2} obtains the canonical facts with at least the same
multiplicity as Q_{1} for all canonical databases, then the containment holds, else $Q_{1} \not Z_{b} Q_{2}$. Thus, the containment problem is reduced to a polynomial comparison. For this comparison, the method presented in [BH97] can be used.

Example 8.5 (Continued from Example 8.4) Notice that, for d_{1} and d_{4}, Q_{1} and Q_{2} obtain the canonical fact with the same multiplicity. For d_{2}, d_{3} and d_{5}, Q_{2} obtains it with a higher multiplicity. Then, for all canonical databases $d,\left|t_{d}\right|_{Q_{1}(d)} \leq\left|t_{d}\right|_{Q_{2}(d)}$. Thus, for this example, $Q_{1} \leq{ }_{b} Q_{2}$.

8.6 Validation of $Q C C$ for the bag containment of equality queries

The use of canonical databases to test the bag containment of equality queries is based on the fact that each canonical database $d \in C D B S\left(Q_{1}\right)$ represents (is isomorphic to) the application of an assignment mapping from Q_{1} to any ground database D, as shown in the following lemma.

Lemma 8.1 Let Q_{1} be the equality query $q(\vec{W})$:- $p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right)$. Let τ be an assignment mapping from Q_{1} to a database D. Let $s d=$ $\left\{\tau\left(p_{1}\left(\vec{Y}_{1} ;\left[c_{1}\right]\right)\right), \cdots, \tau\left(p_{l}\left(\vec{Y}_{l} ;\left[c_{l}\right]\right)\right)\right\}$; i.e., sd is the subbag of D where τ maps the ordinary predicates of Q_{1}. Then, there exists a canonical database $d_{i} \in C D B S\left(Q_{1}\right)$ that is isomorphic to sd:

$$
\exists d_{i} \in C D B S\left(Q_{1}\right) \mid d_{i} \text { is isomorphic to } s d
$$

Proof: The proof for this Lemma is practically the same as the proof of Lemma 3.1, but we have to take into account the multiplicity of the facts in $s d$ and the symbolic multiplicities of the facts in the canonical databases.

The bag $s d$ is the subbag of D obtained by applying τ to the body of Q_{1}. Note that every canonical database d is obtained by using a mapping from $d b\left(Q_{1}\right)$, which is isomorphic to the body of Q_{1}, to a set of uninterpreted constants A_{Q}.

Assume that τ maps every variable of Q_{1} to the same constant a in $s d$. By construction of $C D B S\left(Q_{1}\right)$, there exists a canonical database, say $d_{1}=\theta_{1}\left(d b\left(Q_{1}\right)\right)$, where the Q-mapping θ_{1} maps every variable of Q to the same uninterpreted constant, $A \in A_{Q}$. It is obvious that $s d$ and d_{1} are isomorphic, because if, in every fact $p_{i}\left(A, \ldots, A ;\left[m_{i}\right]\right)$ of d_{1}, we replace A by a and m_{i} by the multiplicity of the fact $p_{i}(a, \ldots, a)$ in $s d$, that is, $\left|p_{i}(a, \ldots, a)\right|_{s d}, s d$ and d_{1} become identical.

Now, assume that τ maps all variables of Q_{1} to the constant a, except one, which is mapped to a different constant b. As in the previous case, there exists a canonical database built using a Q-mapping with the same pattern of equalities among two uninterpreted constants and whose facts have symbolic multiplicities.Therefore, there will be a canonical database, say d_{2}, which is isomorphic to $s d$ for this case, because if, in every fact $p_{i}\left(A, \ldots, B, \ldots, A ;\left[m_{i}\right]\right)$ of d_{2}, we replace A by a, B by b and m_{i} by the multiplicity of the fact $p_{i}(a, \ldots, b, \ldots, a)$ in $s d$, that is, $\left|p_{i}(a, \ldots, b, \ldots, a)\right|_{s d}$, $s d$ and d_{2} become identical.

The same method of reasoning can be used to cover all possible patterns of equalities among the constants in $s d$ to which the variables of Q_{1} are mapped. By construction of $C D B S\left(Q_{1}\right)$, the equalities among the uninterpreted constants in the facts of the canonical databases cover all the possible patterns of equalities among the variables of Q_{1} when they are mapped to any ground database D. Therefore, there always exists a canonical database d_{i} isomorphic to $s d$.

The following theorem and corollary prove the validity of $Q C C$ to test query containment.

Theorem 8.1 Given two equality queries Q_{1} and Q_{2}, Q_{1} is bag contained into $Q_{2}\left(Q_{1} \leq_{b} Q_{2}\right)$ if and only if $\forall d \in \operatorname{CDBS}\left(Q_{1}\right),\left|t_{d}\right|_{Q_{1}(d)} \leq\left|t_{d}\right|_{Q_{2}(d)}$.

Proof:

Only If: If there is a $d \in C D B S\left(Q_{1}\right)$ such that $\left|t_{d}\right|_{Q_{1}(d)} \notin\left|t_{d}\right|_{Q_{2}(d)}$, we can build a ground database D isomorphic to d that is a counterexample to the bag containment, showing that $Q_{1} \not \mathbb{Z}_{b} Q_{2}$.

IF: Assuming $\left|t_{d}\right|_{Q_{1}(d)} \leq\left|t_{d}\right|_{Q_{2}(d)}, \forall d \in C D B S\left(Q_{1}\right)$, we want to prove that $Q_{1} \leq_{b} Q_{2}$.

Let D be an arbitrary database from which Q_{1} obtains a fact u using several assignment mappings. By Lemma 8.1, the bag of facts reached from the atoms in Q_{1} by every assignment mapping that obtains u is isomorphic to a canonical database d. Since Q_{2} obtains the canonical fact t_{d} with at least the same multiplicity as Q_{1} from all canonical databases, the total multiplicity of u obtained by Q_{2} is at least the same as the multiplicity obtained by Q_{1} for this fact u. Therefore, $Q_{1} \leq_{b} Q_{2}$.

Corollary 2 Given two equality queries Q_{1} and Q_{2}, Q_{1} is bag contained into $Q_{2}\left(Q_{1} \leq_{b} Q_{2}\right)$ if and only if $\forall d \in C D B S\left(Q_{1}\right), Q_{1}(d) \subseteq_{b} Q_{2}(d)$.
Proof:

Only IF: If there is a $d \in C D B S\left(Q_{1}\right)$ such that $Q_{1}(d) \not \mathbb{Z}_{b} Q_{2}(d)$, we can build a ground database D to show a counterexample that shows that $Q_{1} \not Z_{b} Q_{2}$.

IF: By construction, $t_{d} \in Q_{1}(d)$; by hypothesis, $t_{d} \in Q_{2}(d)$ with at least the same multiplicity as the obtained by Q_{1}. Then, $\forall d \in$ $C D B S\left(Q_{1}\right),\left|t_{d}\right|_{Q_{1}(d)} \leq\left|t_{d}\right|_{Q_{2}(d)}$. Using the previous theorem, we conclude that $Q_{1} \leq_{b} Q_{2}$.

8.7 Summary

This chapter has shown how the procedure described in [Bri97, BH97] fits the three steps of $Q C C$. This procedure, which was the start point for this Thesis, adapts the set of canonical databases including multiplicities in their facts so they are suitable to test the containment under bag semantics. The procedure reduces the problem of testing bag containment of equality queries to the problem of comparing pairs of polynomials over \mathbb{Z}^{+}.

Chapter 9

Applying $Q C C$ to test bag containment of inequality queries

9.1 Introduction

The canonical database set for a query Q_{1} used to test bag containment of inequality queries must include multiplicities in the facts, and constraints that affect the uninterpreted constants in the database.

This particular type of containment requires a more complicated treatment of the canonical databases, because the application of the assignment mappings (from either Q_{1} or Q_{2}) to a canonical database that derive the canonical fact is not straightforward.

Under set semantics, we are interested in whether a query obtains the canonical fact or it does not obtain it, because there are no multiplicities in the facts. Therefore, we only need to know if there is (at least) one assignment mapping from a query to a canonical database that obtains the canonical fact. Under bag semantics, we need to apply all the assignment mappings from a query to a canonical database in order to compute the total multiplicity of the canonical fact derived by the query. All assignment mappings are needed because each one of them adds a monomial to the polynomial that represents the total multiplicity of the canonical fact, as seen in Chapter 8.

The process of finding all assignment mappings from an inequality query to a database is more complicated than for equality queries: All the assignment mappings from an equality query to a database can always be applied;
however, for inequality queries, the application of an assignment mapping τ from an inequality query Q to a database D must also satisfy the built-in predicates of Q, and it is not so clear when an assignment mapping can be applied, as we shall see in Example 9.1.

Taking into account these two factors (bag semantics and presence of built-in predicates), the first step of $Q C C$ for this case must adapt the canonical databases including multiplicities in their facts and constraints in the databases that specify which assignment mappings from Q_{1} to any $d_{i} \in C D B S\left(Q_{1}\right)$ can be applied. The second step applies Q_{1} and Q_{2} to all canonical databases, obtaining the canonical facts with some multiplicities, and the third step tests the bag containment by comparing the polynomials that represent those multiplicities.

The following sections describe the three steps of $Q C C$, as well as the proof of its correctness, to test bag containment of inequality queries.

9.2 Step 1: Build $C D B S\left(Q_{1}\right)$

In order to test bag containment, as in the previous chapter, canonical databases will include multiplicities in their facts. However, the most interesting aspect of the use of $Q C C$ to test bag containment of inequality queries is the management of the inequalities in the queries in conjunction with the multiplicities in the facts. In Chapter 6 we added some constraints (constraints (d)) to each canonical database, in order to ensure that Q_{1} always obtains the canonical fact from them. However, for this type of containment, constraints (d) are not restrictive enough to let us know which assignment mappings from Q_{1} to each canonical database can be applied, as Example 9.1 shows.

Example 9.1 Consider the following query Q_{1} and the canonical database d_{1} :

$$
Q_{1}: q(X, Y):-r(X, Y), p(X, Z), p(Y, V), X<V .
$$

Q-Mapping		$\theta_{1}\left(d b\left(Q_{1}\right)\right)$		p	t_{d}
	X Y Z V	r	p		q
d_{1}	A A B C	$\mathrm{AA}\left[m_{r 1}\right]$	$\mathrm{AB}\left[m_{p 1}\right]$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	AA
			$\mathrm{AC}\left[m_{p 2}\right]$		

Note that the facts of the canonical database already have multiplicities. Also note that constraints $\left(d_{1}\right)$ is generated using the method presented in Chapter 6. There are 4 possible ways of applying Q_{1} over d_{1}, using the assignment mappings τ_{1} through τ_{4}, shown in the following table:

	X	Y	Z	V	$r(X, Y)$	$p(X, Z)$	$p(Y, V)$	$X<V$
τ_{1}	A	A	B	C	$r(A, A)$	$p(A, B)$	$p(A, C)$	$A<C$
τ_{2}	A	A	B	B	$r(A, A)$	$p(A, B)$	$p(A, B)$	$A<B$
τ_{3}	A	A	C	B	$r(A, A)$	$p(A, C)$	$p(A, B)$	$A<B$
τ_{4}	A	A	C	C	$r(A, A)$	$p(A, C)$	$p(A, C)$	$A<C$

The mapping τ_{1} is isomorphic to θ_{1} and it can always be applied, because the application of τ_{1} to the built-in predicates of $Q_{1}, \tau_{1}(X<V)=A<C$, is already in constraints $\left(d_{1}\right)$. The assignment mapping τ_{4} applied to the built-in predicate of Q_{1} is also $A<C$, thus τ_{4} can always be applied.

However, the application of τ_{2} and τ_{3} to $X<V$ is $A<B$, which is not in constraints $\left(d_{1}\right)$, so it is not possible to decide if τ_{2} and τ_{3} can be applied to d_{1}. Therefore, the multiplicity of the canonical fact obtained by Q_{1} is either

$$
m_{r 1} m_{p 1} m_{p 2}+m_{r 1} m_{p 2}^{2}
$$

when only τ_{1} and τ_{4} can be applied, or

$$
m_{r 1} m_{p 1} m_{p 2}+m_{r 1} m_{p 1}^{2}+m_{r 1} m_{p 2} m_{p 1}+m_{r 1} m_{p 2}^{2}
$$

when the 4 mappings can be applied.
Therefore, the multiplicity of the canonical fact obtained by Q_{1} is not exactly known.

Since the multiplicity of the canonical fact obtained by Q_{1} will be compared with the multiplicity obtained by Q_{2} (as it was in Chapter 8 to test the bag containment of equality queries), it is clear that constraints(d), defined identically as for the test of the set containment of inequality queries, are not restrictive enough to specify when a given set of assignment mappings from Q_{1} to each d_{i} can be applied.

The idea to solve this problem is to adapt the canonical databases so that Q_{1} obtains the canonical fact with a predefined multiplicity (that is, using a fixed and predetermined set of assignment mappings). Let us continue with the example to show how this can be done.

Example 9.2 Let us "split" the canonical database d_{1} from Example 9.1 into two canonical databases that have the same bag of facts, but different constraints that specify which mappings can be applied. That is, we split d_{1} into two databases d_{1}^{1} and d_{1}^{2} that have the same bags of facts as d_{1}, but with the following constraints:

$$
\begin{aligned}
& \text { constraints }\left(d_{1}^{1}\right)=(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C \wedge \neg(A<B) \\
& \text { constraints }\left(d_{1}^{2}\right)=(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C \wedge A<B
\end{aligned}
$$

It is clear that, with these new canonical databases, the multiplicity of the canonical fact obtained by Q_{1} is unique, because τ_{1} and τ_{4}, but not τ_{2} and τ_{3}, can be applied to d_{1}^{1} (enforced by adding $\neg(A<B)$ to constraints $\left.\left(d_{1}^{1}\right)\right)$, and all 4 mappings can be applied to d_{1}^{2} (enforced by adding $A<B$ to constraints $\left.\left(d_{1}^{2}\right)\right)$. Therefore,

$$
\left|t_{d_{1}^{1}}\right|_{Q_{1}\left(d_{1}^{1}\right)}=m_{r 1} m_{p 1} m_{p 2}+m_{r 1} m_{p 2}^{2}
$$

and

$$
\left|t_{d_{1}^{2}}\right|_{Q_{1}\left(d_{1}^{2}\right)}=m_{r 1} m_{p 1} m_{p 2}+m_{r 1} m_{p 1}^{2}+m_{r 1} m_{p 2} m_{p 1}+m_{r 1} m_{p 2}^{2}
$$

The following definition is needed to use the assignment mappings from Q_{1} to each d_{i} to build the final set $C D B S\left(Q_{1}\right)$.

Definition 9.1 \mathcal{M} : Possible assignment mappings from Q_{1} to a canonical database d_{i}

Let $\tau_{1}, \ldots, \tau_{l}$ be the set of assignment mappings that can be applied from Q_{1} to a canonical database d_{i}, and let τ_{1} be the assignment mapping isomorphic to the Q-mapping θ_{i} used to build d_{i}. Note that there always exists such an assignment mapping, and it can always be applied to d_{i} to derive the canonical fact. It is possible to enforce that, as it was done in the test of set containment of inequality queries in Chapter 6, by adding $\tau_{1}(K)$ (for each built-in predicate K in Q_{1}) to constraints $\left(d_{i}\right)$.

The remaining assignment mappings, $\tau_{2}, \ldots, \tau_{l}$, are defined as possible mappings, because they may or may not be applied. It depends on whether the built-in predicates of Q_{1} are satisfied with these assignment mappings. Let us denote \mathcal{M} the set $\left\{\tau_{2}, \ldots, \tau_{l}\right\}$, the possible assignment mappings from Q_{1} to d :

$$
\mathcal{M}=\left\{\tau_{2}, \ldots, \tau_{l}\right\}
$$

Depending on the "less than" and equality relationships among the uninterpreted constants in d_{i}, it is possible that all assignment mappings in a given subset of \mathcal{M} can be applied to d_{i}. All such subsets are elements of $P(\mathcal{M})($ parts of $\mathcal{M})$

$$
P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{2}\right\}, \ldots,\left\{\tau_{l}\right\},\left\{\tau_{2}, \tau_{3}\right\}, \ldots, \mathcal{M}\right\}
$$

This set contains 2^{l-1} elements. Let us represent it as

$$
P(\mathcal{M})=\left\{M_{1}, \ldots, M_{2^{l-1}}\right\}
$$

As shown in the previous example, in order to use $Q C C$ to test bag containment of inequality queries, it is necessary to split each canonical
database d_{i} in the original $\operatorname{CDBS}\left(Q_{1}\right)$ into different databases that have the same bags of facts but with different sets of constraints. Each of these final databases will allow Q_{1} to derive the canonical fact using only a predefined set of assignment mappings in $P(\mathcal{M})$.

Using $P(\mathcal{M})$, we can describe completely the constraints associated to canonical databases to test bag containment of inequality queries. The formula constraints $\left(d_{i}\right)$ is composed of three sets of constraints (the first two defined identically as in Chapter 6 to test the set containment of inequality queries).

- Constraints that specify that all uninterpreted constants are different.
- Constraints that reflect the built-in predicates of Q_{1}.
- Constraints that specify which sets of mappings, from Q_{1} to d_{i}, can be applied and which ones cannot.

This set of constraints establishes which set of mappings $M_{j} \in P(\mathcal{M})$ can be applied, by adding either $\left[\tau_{i}\left(K_{1}\right) \wedge \cdots \wedge \tau_{i}\left(K_{n}\right)\right]$, if the assignment mapping τ_{i} can be applied $\left(\tau_{i} \in M_{j}\right)$, or $\neg\left[\tau_{i}\left(K_{1}\right) \wedge \cdots \wedge\right.$ $\left.\tau_{i}\left(K_{n}\right)\right]$ if it cannot $\left(\tau_{i} \notin M_{j}\right), \forall i, 2 \leq i \leq l$, where K 's are the built-in predicates of Q_{1}.

We shall refer to these constraints again as constraints(d) even when they are different from those defined for the use of $Q C C$ to test set containment of inequality queries. The reason is that constraints(d) represents, in both cases, a set of constraints that comes from Q_{1} and ensures that Q_{1} derives the canonical fact: in the case of bag containment, with a predefined set of assignment mappings; in the case of set containment, with at least the assignment mapping isomorphic to the Q-mapping used to build d.

It is easy to see that a canonical database d_{i} can be split into a maximum of 2^{l-1} canonical databases, l being the number of possible mappings from Q_{1} to d_{i}, because the two first sets of constraints in constraints $\left(d_{i}\right)$ are unique, and there are 2^{l-1} possibilities for the third set of constraints, because the cardinality of $P(\mathcal{M})$ is 2^{l-1}. Of course, all canonical databases that have an unsatisfiable constraints $\left(d_{i}\right)$ will not be considered, because it is not possible to build a ground database isomorphic to it, as will be shown in Example 9.3.

The formal specification of the step 4 of Algorithm 2 is the following:
4. Generation of canonical databases

For $i=1$ to $j-1$
//Initially, add the multiplicities to the facts
$d_{i}=\left\{p_{c}\left(Y_{c 1}, \ldots, Y_{c n} ;\left[m_{c k}\right]\right) \mid p_{c}\left(Y_{c 1}, \ldots, Y_{c n}\right) \in \theta_{i}\left(d b\left(Q_{1}\right)\right)\right\}$
constraints $\left(d_{i}\right)=\left(\theta_{i}\left(K_{1}\right) \wedge \cdots \wedge \theta_{i}\left(K_{n}\right) \wedge\left(A_{j} \neq A_{k}, \forall j, k 1 \leq j \neq k \leq q\right)\right)$
//Build the different canonical databases by adding the necessary
//constraints
$/ /$ Let $\tau_{1}, \ldots, \tau_{l}$ be assignment mappings from Q_{1} to d_{k},
//where τ_{1} is isomorphic to θ_{i}
$/ / \mathcal{M}=\left\{\tau_{2}, \ldots, \tau_{l}\right\}$
$/ / P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{2}\right\}, \ldots,\left\{\tau_{l}\right\},\left\{\tau_{2}, \tau_{3}\right\}, \ldots, \mathcal{M}\right\}$
$P(\mathcal{M})=\left\{M_{1}, \ldots, M_{2^{l-1}}\right\}$
for $s=1$ to $2^{l-1}\{$
constraints $\left(d_{i}^{s}\right)=\operatorname{constraints}\left(d_{i}\right)$
$F=$ true
for $t=2$ to $l\{$
if $\tau_{t} \in M_{s}$
then $F=F \wedge \tau_{t}\left(K_{1}\right) \wedge \cdots \wedge \tau_{t}\left(K_{n}\right)$
else $F=F \wedge \neg\left[\tau_{t}\left(K_{1}\right) \wedge \cdots \wedge \tau_{t}\left(K_{n}\right)\right]$
\}
constraints $\left(d_{i}^{s}\right)=$ constraints $\left(d_{i}^{s}\right) \wedge F$
if constraints $\left(d_{i}^{s}\right)$ is unsatisfiable
or $\left(\exists x, 1 \leq x<2^{l-1}: d_{i}^{x}\right.$ is isomorphic to d_{i} and constraints $\left(d_{i}^{x}\right)=$ constraints $\left(d_{i}^{s}\right)$)
then $d_{i}^{s}=\emptyset$
else // The canonical database d_{i}^{s} is generated $d_{i}^{s}=\theta_{i}\left(d b\left(Q_{1}\right)\right)$
Associate constraints $\left(d_{i}^{s}\right)$ to d_{i}^{s}
\}

This step performs the particularization of Algorithm 2 needed to test bag containment of inequality queries, adding multiplicities to the facts and the necessary constraints.

Note that now each canonical database d_{i}^{s} has a subindex i and a superindex s. The subindex indicates the original canonical database d_{i} where d_{i}^{s} comes from, and the superindex indicates the case (refering to the set of assignment mappings always applicable to the canonical database) used to build d_{i}^{s}.

Example 9.3 (Continued from Example 9.1) The mapping τ_{1} is isomorphic to θ_{1}, therefore it can always be applied. The rest of the mappings are the possible mappings $\mathcal{M}=\left\{\tau_{2}, \tau_{3}, \tau_{4}\right\}$, therefore $P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{2}\right\},\left\{\tau_{3}\right\},\left\{\tau_{4}\right\}\right.$, $\left.\left\{\tau_{2}, \tau_{3}\right\},\left\{\tau_{2}, \tau_{4}\right\},\left\{\tau_{3}, \tau_{4}\right\},\left\{\tau_{2}, \tau_{3}, \tau_{4}\right\}\right\}$. Table 9.1 shows the 8 possibilities for
the third set of constraints that will be associated to the original canonical database d_{1} that produce the 8 final canonical databases d_{1}^{0} to d_{1}^{7}.

Each case C_{i} in the table represents a set $M_{i} \in \mathcal{M}$, showing the assignment mappings that belong to M_{i} as a positive literal $\left(\tau_{j}\right)$ and those that do not belong to M_{i} as a negative literal $\left(\neg \tau_{j}\right)$. For instance, the case C_{2} represents the set $M_{2}=\left\{\tau_{3}\right\}$, also identified as $\neg \tau_{2} \tau_{3} \neg \tau_{4}$ (meaning that $\tau_{2} \notin M_{2}, \tau_{3} \in M_{2}$, and $\left.\tau_{4} \notin M_{2}\right)$.

Table 9.1: List of sets of possible mappings that can be applied

Case	Mappings	constraints $\left(d_{1}\right)$	Constraints to be added
C_{0}	$\neg \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$\neg(A<B) \wedge \neg(A<B) \wedge \neg(A<C)$
C_{1}	$\tau_{2} \neg \tau_{3} \neg \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$(A<B) \wedge \neg(A<B) \wedge \neg(A<C)$
C_{2}	$\neg \tau_{2} \tau_{3} \neg \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$\neg(A<B) \wedge(A<B) \wedge \neg(A<C)$
C_{3}	$\neg \tau_{2} \neg \tau_{3} \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$\neg(A<B) \wedge \neg(A<B) \wedge(A<C)$
C_{4}	$\tau_{2} \tau_{3} \neg \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$(A<B) \wedge(A<B) \wedge \neg(A<C)$
C_{5}	$\tau_{2} \neg \tau_{3} \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$(A<B) \wedge \neg(A<B) \wedge(A<C)$
C_{6}	$\neg \tau_{2} \tau_{3} \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$\neg(A<B) \wedge(A<B) \wedge(A<C)$
C_{7}	$\tau_{2} \tau_{3} \tau_{4}$	$(A \neq B \wedge B \neq C \wedge A \neq C) \wedge A<C$	$(A<B) \wedge(A<B) \wedge(A<C)$

Note that for the cases $C_{0}, C_{1}, C_{2}, C_{4}, C_{5}$, and C_{6}, the resulting formula constraints $\left(d_{1}^{s}\right)$ is unsatisfiable. Therefore, these cases can be discarded. Only 2 canonical databases (that correspond to the cases C_{3} and C_{7}, therefore labelled d_{1}^{3} and d_{1}^{7}), shown in Table 9.2 , produce satisfiable formulas and can be considered to test the bag containment.

Table 9.2: Splitting of a canonical database into 2

Name	Q-Mapping	$\theta_{1}\left(d b\left(Q_{1}\right)\right)$		constraints $\left(d_{1}\right)$	t_{d}
		r	p		q
d_{1}^{3}	θ_{1}	$\mathrm{AA}\left[m_{r 1}\right]$	$\mathrm{AB}\left[m_{p 1}\right]$		
		AC $\left[m_{p 2}\right]$			

\hline\end{array}\right.\)

9.3 Step 2: Apply Q_{1} and Q_{2} to all canonical databases

This section shows how to apply Q_{1} and Q_{2} to a canonical database in order to derive only the canonical fact. Both queries will derive it with a multiplicity that is represented by a polynomial (recall that canonical databases are LS2 databases).

9.3.1 Application of Q_{1} to a canonical database d_{i}^{s}

By construction of $C D B S\left(Q_{1}\right)$, the assignment mappings from Q_{1} that can be applied to a canonical database d_{i}^{s} are known. Therefore, the multiplicity of the canonical fact $t_{d_{i}^{s}}$ obtained by Q_{1} is computed by adding the multiplicities obtained by each single mapping, as shown in Chapter 2.

9.3.2 Application of Q_{2} to a canonical database d_{i}^{s}

Similiarly as for Q_{1}, there will be different sets of assignment mappings that can be applied from Q_{2} to d_{i}^{s} such that Q_{2} obtains the canonical fact. For each of these sets of mappings, a different multiplicity for the canonical fact is obtained, and all of them must be considered.

In order to compute such multiplicities, it is necessary to study which sets of assignment mappings from Q_{2} to d_{i}^{s} (to obtain the canonical fact) can be applied.

The procedure used to compute all the different multiplicities is the following:

Let $\mathcal{M}^{\prime}=\left\{\tau_{1}, \ldots, \tau_{m}\right\}$ be the set of assignment mappings from Q_{2} to d_{i}^{s} (possible mappings). The sets of possible assignment mappings that can be applied to d_{i}^{s} are parts of \mathcal{M}^{\prime} :

$$
\begin{aligned}
& P\left(\mathcal{M}^{\prime}\right)=\left\{\emptyset, \quad\left\{\tau_{1}\right\}, \ldots, \quad\left\{\tau_{m}\right\}, \quad\left\{\tau_{1}, \tau_{2}\right\}, \ldots, \quad\left\{\tau_{1}, \ldots, \tau_{m}\right\}\right\}= \\
& \left\{M_{0}^{\prime}, \ldots, M_{2^{m}-1}^{\prime}\right\} .
\end{aligned}
$$

It is necessary to build the list of cases that correspond to the different sets of mappings that can be applied from Q_{2} to d_{i}^{s}. For each case, we shall build a formula that is the conjunction of constraints $\left(d_{i}^{s}\right)$ and other constraints that specify that a concrete set of assignment mappings M_{j}^{\prime} in $P\left(\mathcal{M}^{\prime}\right)$ can be applied from Q_{2} to d_{i}^{s}. These constraints are added to the formula in the following way:

- Let M_{j}^{\prime} be a set of mappings in $P\left(\mathcal{M}^{\prime}\right)$.
- For each mapping $\tau_{k} \in \mathcal{M}^{\prime}$, if $\tau_{k} \in M_{j}^{\prime}$, then add $\tau_{k}\left(F_{1} \wedge \ldots \wedge F_{r}\right)$ to the formula, otherwise add $\neg\left(\tau_{k}\left(F_{1} \wedge \ldots \wedge F_{r}\right)\right)$, where the F 's are the built-in predicates of Q_{2}.
- The resulting formula must be satisfiable in order for the case to be considered. If the formula is unsatisfiable, it would mean that Q_{2} cannnot be applied to d_{i}^{s} to obtain the canonical fact using exaclty the assignment mappings in M_{j}^{\prime}, because the built-in predicates of Q_{2}
would not be satisfied. Therefore, if the formula is unsatisfiable, the case is discarded.

For each case with a satisfiable formula, the multiplicity of the canonical fact obtained by Q_{2} is the sum of the multiplicities obtained by Q_{2} using only the mappings in M_{j}^{\prime}. Let us denote this multiplicity as $\left(\left|t_{d_{i}^{s}}\right|_{Q_{2}\left(d_{i}^{s}\right)}\right)_{M_{j}^{\prime}}$.

Note that each of the previous cases is a possible case, that is, for some values of the uninterpreted constants, Q_{2} can obtain the canonical fact using the sets of assignment mappings specified for each case. However, there is no guarantee that a particular set of mappings can always be applied. We need to compute the multiplicity of the canonical fact for all the possible cases because, as we shall see in the next section, the multiplicity obtained by Q_{1} must be compared with all of them in order to prove the bag containment.

A specially important case is C_{0}, which corresponds to the empty set of mappings. If it produces a satisfiable formula, it means that there is a possibility that none of the assignment mappings from Q_{2} to d_{i}^{s} can be applied, so Q_{2} does not derive the canonical fact (the multiplicity would be $0)^{1}$. If this is the case, the general $Q C C$ procedure can stop at this point concluding that the bag containment does not hold.

The following example shows how to apply Q_{2} to a canonical database.
Example 9.4 Assume there is the following canonical database d_{1}^{0} for some query Q_{1} defined over two predicates r and p :

r	p	$t_{d_{1}^{0}}$	constraints $\left(d_{1}^{0}\right)$
A B $\left[m_{r 1}\right]$	$\mathrm{A} \mathrm{B}\left[m_{p 1}\right]$	A	$A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D$
	$\mathrm{D} \mathrm{C}\left[m_{p 2}\right]$		$\wedge A<C$

Let Q_{2} be the query

$$
Q_{2}: q(X):-r(X, Y), p(X, Y), p(Z, T), X<T
$$

There are two assignment mappings from Q_{2} to d_{1}^{0} that obtain the canonical fact. They are shown in the following table, along with the constraints they must satisfy and the multiplicity of the canonical fact obtained using only each individual mapping:

[^3]| Name | X Y Z T | $\mathrm{r}(\mathrm{X}, \mathrm{Y})$ | $\mathrm{p}(\mathrm{X}, \mathrm{Y})$ | $\mathrm{p}(\mathrm{Z}, \mathrm{T})$ | $X<T$ | $\left(\left\|t_{d_{1} 0}\right\| Q_{Q_{2}\left(d_{)}^{0}\right)}\right)_{\tau_{j}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| τ_{1} | A B A B | $r\left(A, B ;\left[m_{r 1}\right]\right)$ | $p\left(A, B ;\left[m_{p 1}\right]\right)$ | $p\left(A, B ;\left[m_{p 1}\right]\right)$ | $A<B$ | $m_{r 1} m_{p 1}^{2}$ |
| τ_{2} | A B D C | $r\left(A, B ;\left[m_{r 1}\right]\right)$ | $p\left(A, B ;\left[m_{p 1}\right]\right)$ | $p\left(D, C ;\left[m_{p 2}\right]\right)$ | $A<C$ | $m_{p 1} m_{p 1} m_{p 2}$ |

The set of possible mappings is $\mathcal{M}^{\prime}=\left\{\tau_{1}, \tau_{2}\right\}$, therefore

$$
P\left(\mathcal{M}^{\prime}\right)=\left\{\emptyset,\left\{\tau_{1}\right\},\left\{\tau_{2}\right\},\left\{\tau_{1}, \tau_{2}\right\}\right\} .
$$

The following table shows all the possible cases, the formula that must be satisfiable in order to apply the set of mappings, and the multiplicity of the canonical fact obtained by Q_{2} using only this set of mappings.

For example, the row for the case C_{1} corresponds to the set of mappings $M_{1}^{\prime}=\left\{\tau_{1}\right\}$, where τ_{1} can be applied and τ_{2} cannot (represented as $\tau_{1} \neg \tau_{2}$).

Case	Mappings	Formula	$\left(\left\|t_{d_{1}^{0}}\right\|_{Q_{2}\left(d_{1}^{0}\right)}\right)_{M_{j}^{\prime}}$
${ }^{0}$	$\neg \tau_{1} \neg \tau_{2}$	$\left.\left.\begin{array}{c} \overline{[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D]} \\ \wedge[A<C] \\ \wedge \end{array}\right](A<B) \wedge \neg(A<C)\right] .$	0
C_{1}	$\tau_{1} \neg \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D]} \\ \wedge[A<C] \\ \wedge((A<B) \wedge \neg(A<C)] \end{gathered}$	$m_{r 1} m_{p 1}^{2}$
C_{2}	$\neg \tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D]} \\ \wedge[\neg(A<B) \wedge(A<C)] \end{gathered}$	$m_{p 1} m_{p 1} m_{p 2}$
C_{3}	$\tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D]} \\ \wedge[A<C] \\ \wedge(A<B) \wedge(A<C)] \end{gathered}$	$\begin{gathered} m_{r 1} m_{p 1}^{2}+ \\ m_{p 1} m_{p 1} m_{p 2} \\ \hline \end{gathered}$

Case C_{0} produces an unsatisfiable formula, so it will be discarded. This implies that it is impossible that none of the two mappings from Q_{2} to d_{1}^{0} can be applied. Thus, Q_{2} will always obtain the canonical fact.

The formula for the case C_{1} is unsatisfiable, so it will not be considered. It means that it is not possible for Q_{2} to obtain the canonical fact using only the assignment mapping τ_{1}.

The formula for the case C_{2} is satisfiable. For this case, the set of mappings that can be applied is $\left\{\tau_{2}\right\}$, and the multiplicity of the canonical fact is $m_{r 1} m_{p 1} m_{p 2}$.

The formula for the case C_{3} is satisfiable. For this case, the set of mappings that can be applied is $\left\{\tau_{1}, \tau_{2}\right\}$, and the multiplicity of the canonical fact using this set of mappings is $m_{r 1} m_{p 1}^{2}+m_{r 1} m_{p 1} m_{p 2}$.

Therefore, for this example, Q_{2} can obtain the canonical fact with two different multiplicities, those that correspond to the cases C_{2} and C_{3}. In other words, applying Q_{2} to any ground database isomorphic to d_{1}^{0}, and depending on the "less than" relationships among the constants, Q_{2} can obtain the canonical fact either using only the assignment mapping τ_{2} (therefore
the multiplicity of the canonical fact is $m_{r 1} m_{p 1} m_{p 2}$) or using both τ_{1} and τ_{2}, with a multiplicity of $m_{r 1} m_{p 1}^{2}+m_{r 1} m_{p 1} m_{p 2}$.

9.4 Step 3: Test the bag containment

At this point, the multiplicity of the canonical fact obtained by Q_{1}, which is predefined for each canonical database, is known. For Q_{2}, there are several possible multiplicities, depending on the sets of assignment mappings that can be applied. We also know that Q_{2} always obtains the canonical fact with some multiplicity, by testing the unsatisfiability of the formula corresponding to case C_{0} (if it were satisfiable, that would mean that the containment does not hold, because there would be cases where none of the assignment mappings from Q_{2} could be applied).

In this third step, the multiplicity of the canonical fact obtained by Q_{1} is compared with all the multiplicities obtained by Q_{2}. If, for all the cases (and for all databases), the multiplicity obtained by Q_{2} is always at least as high as that obtained by Q_{1}, then the containment holds $\left(Q_{1} \leq_{b} Q_{2}\right)$, otherwise $Q_{1} \not Z_{b} Q_{2}$.

The test is done, as we shall prove in Theorem 9.1, by checking the following: $Q_{1} \leq{ }_{b} Q_{2} \Longleftrightarrow \forall d_{i} \in C D B S\left(Q_{1}\right)\left|t_{d_{i}}\right|_{Q_{1}\left(d_{i}\right)} \leq\left(\left|t_{d_{i}}\right|_{Q_{2}\left(d_{i}\right)}\right)_{M_{j}^{\prime}}, \forall M_{j}^{\prime}$ possible set of assignment mappings from Q_{2} to d_{i}.

Note that (as it was the case in Example 9.4) the different multiplicities of the canonical fact obtained by Q_{2} can be comparable (the multiplicity obtained in the case C_{2} is strictly lower than the multiplicity for the case C_{3}), so in this step we need to compare the multiplicity of the canonical fact obtained by Q_{1} with the lowest multiplicity obtained by Q_{2}. If the Q_{2} obtains the canonical fact with multiplicities that are not comparable, the multiplicity obtained by Q_{1} (which is unique) must be compared with all the multiplicities obtained by Q_{2}.

9.5 Validation of $Q C C$ for the bag containment of inequality queries

The following lemma proves, as in the previous cases, that the application of an assignment mapping from an inequality query Q_{1} to any ground database D is isomorphic to some canonical database $d_{i}^{s} \in C D B S\left(Q_{1}\right)$.

Lemma 9.1 Let Q_{1} be an inequality query of the form $q(\vec{W})$:- $p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\vec{Y}_{l}\right), K_{1}, \ldots, K_{n} . \quad$ Let τ be an assignment map-
ping from Q_{1} to a database D. Let $s d=\left\{\tau\left(p_{1}\left(\vec{Y}_{1} ;\left[c_{1}\right]\right)\right), \cdots, \tau\left(p_{l}\left(\vec{Y}_{l} ;\left[c_{l}\right]\right)\right)\right\}$; i.e., sd is the subbag of D where τ maps the ordinary predicates of Q_{1}. Then sd is isomorphic to a canonical database $d_{i}^{s} \in C D B S\left(Q_{1}\right)$:

$$
\exists d_{i}^{s} \in C D B S\left(Q_{1}\right) \mid d_{i}^{s} \text { is isomorphic to sd }
$$

Proof:

The first part of the proof for this lemma is similar to Lemma 8.1. Given that the canonical databases represent all the patterns of equalities among uninterpreted constants (these patterns are built by construction of the canonical databases), sd is isomorphic to a canonical database $d_{i}^{s} \in C D B S\left(Q_{1}\right)$.

Besides, in order for the isomorphism to hold, the constants in the facts of $s d$ must satisfy constraints $\left(d_{i}^{s}\right)$. But this is also true, because constraints $\left(d_{i}^{s}\right)$ always represent the application of an assignment mapping from Q_{1} to a ground database D (recall that, by construction of $C D B S\left(Q_{1}\right)$, every set of mappings that can be applied is specified by adding some specific constraints).

The following theorem demonstrates that the test shown in the previous section, that is, $\forall d_{i}^{s} \in C D B S\left(Q_{1}\right),\left|t_{d_{i}^{s}}\right|_{Q_{1}\left(d_{i}^{s}\right)} \leq\left(\left|t_{d_{i}^{s}}\right|_{Q_{2}\left(d_{i}^{s}\right)}\right)_{M_{j}^{\prime}}$, for all possible set of assignment mappings M_{j}^{\prime} from Q_{2} to d_{i}^{s}, is a necessary and sufficient condition to test the bag containment.

Theorem 9.1 Let Q_{1} and Q_{2} of the form

$$
\begin{aligned}
& Q_{1}: q(\vec{W}):-p_{1}\left(\vec{Y}_{1}\right), \ldots, p_{l}\left(\overrightarrow{Y_{l}}\right), K_{1}, \ldots, K_{n} . \\
& Q_{2}: q(\vec{V}):-p_{1}\left(\overrightarrow{Z_{1}}\right), \ldots, p_{k}\left(\overrightarrow{Z_{k}}\right), F_{1}, \ldots, F_{m} .
\end{aligned}
$$

Then, $Q_{1} \leq{ }_{b} Q_{2} \Longleftrightarrow \forall d_{i}^{s} \in C D B S\left(Q_{1}\right)\left|t_{d_{i}^{s}}\right|_{Q_{1}\left(d_{i}^{s}\right)} \leq\left(\left|t_{d_{i}^{s}}\right|_{Q_{2}\left(d_{i}^{s}\right)}\right)_{M_{j}^{\prime}}$, for all possible set of assignment mappings M_{j}^{\prime} from Q_{2} to d_{i}^{s}.

Proof:

Only IF: If there is a $d_{i} \in \operatorname{CDBS}\left(Q_{1}\right)$ such that $\left|t_{d_{i}^{s}}\right|_{Q_{1}\left(d_{i}^{s}\right)} \not \leq$ $\left(\left|t_{d_{i}^{s}}\right|_{Q_{2}\left(d_{i}^{s}\right)}\right)_{M_{j}^{\prime}}$, for some set of assignment mappings M_{j}^{\prime} from Q_{2} to d_{i}^{s}, we can build a ground database D to show a counterexample showing that Q_{2} cannot obtain a fact $\left(t_{d_{i}^{s}}\right)$ with at least the same multiplicity as Q_{1}, and therefore $Q_{1} \not Z_{b} Q_{2}$. Note that this includes the case when
Q_{2} does not obtain the canonical fact (when the case C_{0} produces a satisfiable formula), because the multiplicity of the canonical fact obtained by Q_{2} would be zero.

IF : Assuming $\left|t_{d_{i}^{s}}\right|_{Q_{1}\left(d_{i}^{s}\right)} \leq\left(\left|t_{d_{i}^{s}}\right|_{Q_{2}\left(d_{i}^{s}\right)}\right)_{M_{j}^{\prime}}$, for all possible set of assignment mappings M_{j}^{\prime} from Q_{2} to d_{i}^{s}, we want to prove that $Q_{1} \leq_{b} Q_{2}$.
Let D be an arbitrary database from which Q_{1} obtains a fact u using several assignment mappings. By Lemma 9.1, the bag of facts reached from the atoms in Q_{1} by every assignment mapping is isomorphic to a canonical database d_{i}^{s}. Since Q_{2} always obtains the canonical fact $t_{d_{i}^{s}}$ with at least the same multiplicity as Q_{1} from all canonical databases, the total multiplicity of u obtained by Q_{2} is at least the same as the multiplicity obtained by Q_{1}. Therefore, $Q_{1} \leq_{b} Q_{2}$.

Corollary 3 Given two inequality queries Q_{1} and Q_{2}, Q_{1} is bag contained into $Q_{2}\left(Q_{1} \leq_{b} Q_{2}\right)$ if and only if $\forall d \in C D B S\left(Q_{1}\right), Q_{1}(d) \subseteq_{b} Q_{2}(d)$.

Proof:

Only IF: If there is a $d \in C D B S\left(Q_{1}\right)$ such that $Q_{1}(d) \not \mathbb{Z}_{b} Q_{2}(d)$, we can build a ground database D to show a counterexample that shows that $Q_{1} \leq_{b} Q_{2}$.

IF: By construction, $t_{d} \in Q_{1}(d)$; by hypothesis, $t_{d} \in Q_{2}(d)$ with at least the same multiplicity as the obtained by Q_{1}. Then, $\forall d \in$ $C D B S\left(Q_{1}\right),\left|t_{d}\right|_{Q_{1}(d)} \leq\left|t_{d}\right|_{Q_{2}(d)}$. Using the previous theorem, we conclude that $Q_{1} \leq_{b} Q_{2}$.

9.6 Example

Example 9.5 Let Q_{1} and Q_{2} be the following inequality queries:

$$
\begin{aligned}
& Q_{1}: q(X, T):-p(X), r(Y, X), r(Z, T), s(T), X>Y . \\
& Q_{2}: q(X, T):-p(X), r(Y, Z), r(W, Z), s(T), Y<Z, Y \leq W .
\end{aligned}
$$

Let us test if Q_{1} is bag contained in Q_{2}, following the three steps of $Q C C$:

Build $C D B S\left(Q_{1}\right)$:

Table 9.3 shows the initial set of canonical databases.
This table includes, for each initial canonical database, the two first sets of constraints that will be included in constraints(d), since these sets will

Table 9.3: Initial $C D B S\left(Q_{1}\right)$

Q-Mapping		$\theta_{i}\left(d b\left(Q_{1}\right)\right)$			constraints	t_{d}
CDB	X Y Z T	p	r	s		q
d_{1}	A A A A	A	AA	A	$\begin{gathered} \hline A>A \\ \text { (Not satisfiable) } \\ \hline \end{gathered}$	AA
d_{2}	A A A B	A	$\begin{aligned} & \hline \hline \mathrm{AA} \\ & \mathrm{AB} \end{aligned}$	B	$\begin{aligned} & A \neq B \wedge A>A \\ & \text { (Not satisfiable) } \end{aligned}$	AB
d_{3}	A A B A	A	$\begin{aligned} & \hline \text { AA } \\ & \text { BA } \\ & \hline \end{aligned}$	A	$\begin{aligned} & A \neq B \wedge A>A \\ & \text { (Not satisfiable) } \end{aligned}$	AA
d_{4}	A B A A	A	$\begin{aligned} & \hline \text { BA } \\ & \text { AA } \end{aligned}$	A	$A \neq B \wedge A>B$	AA
d_{5}	B A A A	B	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{AA} \end{aligned}$	A	$A \neq B \wedge B>A$	BA
d_{6}	A A B B	A	$\begin{aligned} & \hline \hline \mathrm{AA} \\ & \mathrm{BB} \end{aligned}$	B	$\begin{aligned} & A \neq B \wedge A>A \\ & \text { (Not satisfiable) } \end{aligned}$	AB
d_{7}	A B A B	A	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{AB} \end{aligned}$	B	$A \neq B \wedge A>B$	AB
d_{8}	A B B A	A	BA	A	$A \neq B \wedge A>B$	AA
d_{9}	A A B C	A	$\begin{aligned} & \hline \hline \mathrm{AA} \\ & \mathrm{BC} \end{aligned}$	C	$\begin{gathered} \hline \hline A \neq B \wedge A \neq C \wedge B \neq C \wedge A>A \\ \text { (Not satisfiable) } \end{gathered}$	AC
d_{10}	A B A C	A	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{AC} \end{aligned}$	C	$A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B$	AC
d_{11}	A B C A	A	$\begin{aligned} & \hline \mathrm{BA} \\ & \mathrm{CA} \end{aligned}$	A	$A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B$	AA
d_{12}	B A A C	B	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{AC} \end{aligned}$	C	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A$	BC
d_{13}	B A C A	B	$\begin{aligned} & \hline \mathrm{AB} \\ & \mathrm{CA} \end{aligned}$	A	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A$	BA
d_{14}	B C A A	B	$\begin{aligned} & \text { CB } \\ & \text { AA } \end{aligned}$	A	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>C$	BA
d_{15}	A B C D	A	$\begin{aligned} & \hline \hline \mathrm{BA} \\ & \mathrm{CD} \end{aligned}$	D	$\begin{gathered} \hline \hline A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge \\ B \neq D \wedge C \neq D \wedge A>B \end{gathered}$	AD

be included in the final constraints. The constraints generated for the Q mappings $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{6}$, and τ_{9} already produce an unsatisfiable formula, therefore Q_{1} does not derive the canonical fact from them. Thus, the corresponding canonical databases will not be further considered to test the
bag containment. For the rest of the canonical databases, we must find the possible mappings from Q_{1} to them, build the list of cases corresponding to the sets of possible mappings, and generate the final canonical databases.
d_{4} : There are two assignment mappings from Q_{1} to d_{4}, shown in the following table.

	X Y Z T	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{X})$	$\mathrm{r}(\mathrm{Z}, \mathrm{T})$	$\mathrm{s}(\mathrm{T})$	$X>Y$
τ_{1}	A B A A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{r}(\mathrm{A}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>B$
τ_{2}	A B B A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>B$

The assignment mapping τ_{1} is isomorphic to the Q-mapping θ_{4}, therefore it can always be applied. The set of possible mappings for this case is $\mathcal{M}=\left\{\tau_{2}\right\}$, therefore $P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{2}\right\}\right\}$.

Let us build the list of cases that correspond to each set of possible mappings. For each case, the following table shows the constraints that would be associated to each canonical database, represented as constraints $\left(d_{i}^{j}\right)$, where i references the initial canonical database d_{i} and j references the case C_{j}.

Case	Mappings	constraints $\left(d_{4}^{j}\right)$
C_{0}	$\neg \tau_{2}$	$[A \neq B \wedge A>B] \wedge \neg(A>B)$
C_{1}	τ_{2}	$[A \neq B \wedge A>B] \wedge(A>B)$

It is easy to check that constraints $\left(d_{4}^{0}\right)$ is unsatisfiable. Therefore, only one canonical database, d_{4}^{1}, is generated,
d_{5} : There is only one assignment mapping from Q_{1} to d_{5}, and it is isomorphic to θ_{5}. Therefore, only one canonical database, d_{5}^{0} (which is identical to d_{5} is generated.
d_{7} : There is only one assignment from Q_{1} to d_{7}, isomorphic to θ_{7}. Therefore, only the canonical database d_{7}^{0}, identical to d_{7}, is generated.
d_{8} : Again, there is only one assignment mapping from Q_{1} to d_{8}, and only the canonical database d_{8}^{0} is generated.
d_{10} : As in the previous cases, the only assignment mapping from Q_{1} to d_{10} is isomorphic to the Q-mapping (θ_{10} in this case), and the canonical database d_{10}^{0}, identical to d_{10}, is generated.
d_{11} : There are 4 assignment mappings that can be applied from Q_{1} to d_{11}, shown in the following table.

	X Y Z T	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{X})$	$\mathrm{r}(\mathrm{Z}, \mathrm{T})$	$\mathrm{s}(\mathrm{T})$	$X>Y$
τ_{1}	A B C A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{r}(\mathrm{C}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>B$
τ_{2}	A B B A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>B$
τ_{3}	A C C A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{C}, \mathrm{A})$	$\mathrm{r}(\mathrm{C}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>C$
τ_{4}	A C B A	$\mathrm{p}(\mathrm{A})$	$\mathrm{r}(\mathrm{C}, \mathrm{A})$	$\mathrm{r}(\mathrm{B}, \mathrm{A})$	$\mathrm{s}(\mathrm{A})$	$A>C$

The assignment mapping τ_{1} is isomorphic to θ_{11} and can always be applied. Thus, the set of possible assignment mappings is $\mathcal{M}=\left\{\tau_{2}, \tau_{3}, \tau_{4}\right\}$.

The following table shows the list of cases that correspond to each of the 8 sets of assignment mappings in $P(\mathcal{M})$.

Case	Mappings	constraints $\left(d_{11}^{j}\right)$
C_{0}	$\neg \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $\neg(A>B) \wedge \neg(A>C) \wedge \neg(A>C)$
C_{1}	$\neg \tau_{2} \neg \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $\neg(A>B) \wedge \neg(A>C) \wedge(A>C)$
C_{2}	$\neg \tau_{2} \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $\neg(A>B) \wedge(A>C) \wedge \neg(A>C)$
C_{3}	$\tau_{2} \neg \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $(A>B) \wedge \neg(A>C) \wedge \neg(A>C)$
C_{4}	$\neg \tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $\neg(A>B) \wedge(A>C) \wedge(A>C)$
C_{5}	$\tau_{2} \neg \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $(A>B) \wedge \neg(A>C) \wedge(A>C)$
C_{6}	$\tau_{2} \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $(A>B) \wedge(A>C) \wedge \neg(A>C)$
C_{7}	$\tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge$ $(A>B) \wedge(A>C) \wedge(A>C)$

It is clear that the only satisfiable formulas are those for cases C_{3} and C_{7}. Therefore, two canonical databases, d_{11}^{3} and d_{11}^{7}, are generated. Both databases have the same facts as d_{11}, and their constraints are those shown in the previous table for cases C_{3} and C_{7}, respectively. For d_{11}^{3}, only assignment mappings τ_{1} and τ_{2} can be applied; for d_{11}^{7}, all 4 assignment mappings can.
d_{12}, d_{13}, d_{14}, and d_{15} : There is only one assignment mapping from Q_{1} to each of those canonical databases, and it is always isomorphic to the

Table 9.4: Final $C D B S\left(Q_{1}\right)$

Q-Mapping		$\theta_{i}\left(d b\left(Q_{1}\right)\right)$			constraints(d_{i}^{j})	t_{d}
CDB	X Y Z T	p	r	s		q
d_{4}^{1}	A B A A	$\mathrm{A}\left[m_{p}\right]$	$\begin{aligned} & \hline \hline \text { BA }\left[m_{r 1}\right] \\ & \text { AA }\left[m_{r 2}\right] \end{aligned}$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AA
d_{5}^{0}	B A A A	$\mathrm{B}\left[m_{p}\right]$	AB $\left[m_{r 1}\right]$ AA $\left[m_{r 2}\right]$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge B>A$	BA
d_{7}^{0}	A B A B	A $\left[m_{p}\right]$	$\begin{aligned} & \hline \hline \text { BA }\left[m_{r 1}\right] \\ & \text { AB }\left[m_{r 2}\right] \\ & \hline \end{aligned}$	$\mathrm{B}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AB
d_{8}^{0}	A B B A	$\mathrm{A}\left[m_{p}\right]$	BA [r]	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AA
d_{10}^{0}	A B A C	$\mathrm{A}\left[m_{p}\right]$	$\begin{aligned} & \hline \hline \text { BA }\left[m_{r 1}\right] \\ & \text { AC }\left[m_{r 2}\right] \\ & \hline \end{aligned}$	$\mathrm{C}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B$	AC
d_{11}^{3}	A B C A	$\mathrm{A}\left[m_{p}\right]$	BA $\left[m_{r 1}\right]$ CA $\left[m_{r 2}\right]$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \neg(A>C)$	AA
d_{11}^{7}	A B C A	A $\left[m_{p}\right]$	$\begin{aligned} & \text { BA }\left[m_{r 1}\right] \\ & \text { CA }\left[m_{r 2}\right] \end{aligned}$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge(A>C)$	AA
d_{12}^{0}	B A A C	$\mathrm{B}\left[m_{p}\right]$	$\begin{aligned} & \mathrm{AB}\left[m_{r 1}\right] \\ & \mathrm{AC}\left[m_{r 2}\right] \\ & \hline \end{aligned}$	$\mathrm{C}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A$	BC
d_{13}^{0}	B A C A	$\mathrm{B}\left[m_{p}\right]$	AB [$\left.m_{r 1}\right]$ CA $\left[m_{r 2}\right]$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A$	BA
d_{14}^{0}	B C A A	B $\left[m_{p}\right]$	$\begin{aligned} & \mathrm{CB}\left[m_{r 1}\right] \\ & \mathrm{AA}\left[m_{r 2}\right] \end{aligned}$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A \neq C \wedge B \neq C \wedge B>C$	BA
d_{15}^{0}	A B C D	A $\left[m_{p}\right]$	BA $\left[m_{r 1}\right]$ CD $\left[m_{r 2}\right]$	$\mathrm{D}\left[m_{s}\right]$	$\begin{gathered} \hline \hline A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge \\ B \neq D \wedge C \neq D \wedge A>B \\ \hline \end{gathered}$	AD

corresponding Q-mapping, so only the one canonical database is generated for each case ($d_{12}^{0}, d_{13}^{0}, d_{14}^{0}$, and d_{15}^{0}).

Therefore, the final set of canonical databases $\operatorname{CDBS}\left(Q_{1}\right)$ is the one shown in Table 9.4.

Apply Q_{1} and Q_{2} to each canonical database:

All the mappings from Q_{1} to each canonical database that obtain the canonical fact are known. Therefore, the multiplicity of the canonical fact is the sum of the multiplicities obtained by each individual assignment mappings. Table 9.5 shows the assignment mappings from Q_{1} to each canonical database and the multiplicity of the canonical fact.

In order to apply Q_{2} to all canonical databases, we must find all the possible mappings from Q_{2} to each one of them, and then build the list of cases that will show the different multiplicities of the canonical fact obtained by Q_{2}.
d_{4}^{1} : \quad There are 2 possible assignment mappings that can be applied from Q_{2} to d_{4}^{1}, shown in the following table.

Table 9.5: Application of Q_{1} to all canonical databases

	$\theta_{i}\left(d b\left(Q_{1}\right)\right)$			constraints(d_{i}^{j})	t_{d}	Application of Q_{1}	
CDB	p	r	s		q	Ass. mappings	$t_{d} \mid Q_{1}(d)$
						X Y Z T	
${ }_{4}^{1}$	$\mathrm{A}\left[m_{p}\right]$	$\begin{array}{\|l\|} \hline \hline \text { BA }\left[m_{r 1}\right] \\ \text { AA }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AA	$\begin{aligned} & \hline \hline \text { A A B A } \\ & \text { A B B A } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline m_{p} m_{r 2} m_{r 1} m_{s}+ \\ m_{p} m_{r 1}^{2} m_{s} \\ \hline \end{gathered}$
${ }^{0}$	$\left.\overline{\mathrm{B}} m_{p}\right]$	$\begin{array}{\|l} \hline \text { AB }\left[m_{r 1}\right] \\ \text { AA }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge B>A$	BA	B A A A	$m_{p} m_{r 1} m_{r 2} m_{s}$
${ }_{7}^{0}$	A $\left[m_{p}\right]$	$\begin{array}{\|l} \hline \text { BA }\left[m_{r 1}\right] \\ \text { AB }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{B}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AB	A B A B	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{8}^{0}	$\mathrm{A}\left[m_{p}\right]$	$\mathrm{BA}\left[m_{r}\right]$	$\mathrm{A}\left[m_{s}\right]$	$A \neq B \wedge A>B$	AA	A B B A	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{10}^{0}	A $\left[m_{p}\right]$	$\begin{aligned} & \hline \text { BA }\left[m_{r 1}\right] \\ & \text { AC }\left[m_{r 2}\right] \\ & \hline \end{aligned}$	$\mathrm{C}\left[m_{s}\right]$	$\begin{gathered} \hline \hline A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ A>B \end{gathered}$	AC	A B A C	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{11}^{3}	A $\left[m_{p}\right]$	$\begin{array}{\|l} \hline \text { BA }\left[m_{r 1}\right] \\ \text { CA }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ A>B \wedge \neg(A>C) \\ \hline \end{gathered}$	AA	$\begin{aligned} & \hline \text { A B C A } \\ & \text { A B B A } \end{aligned}$	$\begin{gathered} \hline m_{p} m_{r 1} m_{r 2} m_{s}+ \\ m_{p} m_{r 1}^{2} m_{s} \\ \hline \end{gathered}$
d_{11}^{7}	$\mathrm{A}\left[m_{p}\right]$	$\begin{array}{\|l} \hline \text { BA }\left[m_{r 1}\right] \\ \text { CA }\left[m_{r 2}\right] \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ A>B \wedge(A>C) \end{gathered}$	AA	$\begin{aligned} & \hline \text { A B C A } \\ & \text { A B B A } \\ & \text { A C C A } \\ & \text { A C B A } \\ & \hline \end{aligned}$	$\begin{gathered} \hline m_{p} m_{r 1} m_{r 2} m_{s}+ \\ m_{p} m_{r 1}^{2} m_{s}+ \\ m_{p} m_{r 2}^{2} m_{s}+ \\ m_{p} m_{r 2} m_{r 1} m_{s} \\ \hline \end{gathered}$
d_{12}^{0}	B [m_{p}]	$\begin{array}{\|l} \hline \mathrm{AB}\left[m_{r 1}\right] \\ \mathrm{AC}\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{C}\left[m_{s}\right]$	$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ B>A \end{gathered}$	BC	B A A C	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{13}^{0}	B [m_{p}]	$\begin{array}{\|l} \hline \text { AB }\left[m_{r 1}\right] \\ \text { CA }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ B>A \end{gathered}$	BA	B A C A	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{14}^{0}	B $\left[m_{p}\right]$	$\begin{array}{\|l} \hline \mathrm{CB}\left[m_{r 1}\right] \\ \mathrm{AA}\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{A}\left[m_{s}\right]$	$\begin{gathered} A \neq B \wedge A \neq C \wedge B \neq C \wedge \\ B>C \end{gathered}$	BA	B C A A	$m_{p} m_{r 1} m_{r 2} m_{s}$
d_{15}^{0}	A $\left[m_{p}\right]$	$\begin{array}{\|l\|} \hline \text { BA }\left[m_{r 1}\right] \\ \text { CD }\left[m_{r 2}\right] \\ \hline \end{array}$	$\mathrm{D}\left[m_{s}\right]$	$\begin{gathered} \hline A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge \\ B \neq D \wedge C \neq D \wedge A>B \\ \hline \end{gathered}$	AD	A B C D	$m_{p} m_{r 1} m_{r 2} m_{s}$

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{4}^{1}}\right\| Q_{2}\left(d_{4}^{1}\right)\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A A B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	A A A A A	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq A$	$m_{p} m_{r 1} m_{r 2} m_{s}$

The set of possible mappings from Q_{2} do d_{4}^{1} is $\mathcal{M}^{\prime}=\left\{\tau_{1}, \tau_{2}\right\}$, thus $P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{1}\right\},\left\{\tau_{2}\right\},\left\{\tau_{1}, \tau_{2}\right\}\right\}=\left\{M_{0}^{\prime}, M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right\}$. The following table shows whether each of these sets of assignment mappings can be applied to d_{4}^{1}.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A>B] \wedge \neg[(B<A) \wedge(B \leq B)] \wedge \neg[(B<A) \wedge(B \leq A)]$
C_{1}	$\neg \tau_{1} \tau_{2}$	$[A \neq B \wedge A>B] \wedge \neg[(B<A) \wedge(B \leq B)] \wedge[(B<A) \wedge(B \leq A)]$
C_{2}	$\tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A>B] \wedge[(B<A) \wedge(B \leq B)] \wedge \neg[(B<A) \wedge(B \leq A)]$
C_{3}	$\tau_{1} \tau_{2}$	$[A \neq B \wedge A>B] \wedge[(B<A) \wedge(B \leq B)] \wedge[(B<A) \wedge(B \leq A)]$

The formula for the case C_{0} is not satisfiable. This case corresponds to the empty set of assignment mappings, that is, the case when neither τ_{1} nor τ_{2} can be applied (it would be the case when Q_{2} does not derive the canonical fact). Since the formula is not satisfiable, it means that Q_{2} always obtains the canonical fact. Cases C_{2} and C_{3} also produce unsatisfiable formulas, therefore it is not possible to apply exclusively either τ_{1} or $\tau_{2} . C_{3}$ produces a satisfiable formula, therefore it is always possible to apply both mappings to d_{4}^{1}. The resulting multiplicitiy would be $\left|t_{d_{4}^{1}}\right|_{Q_{1}\left(d_{4}^{1}\right)}=m_{p} m_{r 1}^{2} m_{s}$ $+m_{p} m_{r 1} m_{r 2} m_{s}$.
d_{5}^{0} : There is only one assignment mapping from Q_{2} to d_{5}^{0}, shown in the following table.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{5}^{0}}\right\| Q_{2}\left(d_{s}^{0}\right)\right.$
$)_{\left\{\tau_{i}\right\}}$								
τ_{1}	B A B A A	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$A<B$	$A \leq A$	$m_{p} m_{r 1}^{2} m_{s}$

The set of possible mappings for this case is $\mathcal{M}^{\prime}=\left\{\tau_{1}\right\}$, therefore $P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{1}\right\}\right\}$. The list of cases is shown in the following table.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1}$	$[A \neq B \wedge B>A] \wedge \neg[A<B \wedge(A \leq A)]$
C_{1}	$\neg \tau_{1}$	$[A \neq B \wedge B>A] \wedge[A<B \wedge(A \leq A)]$

The unsatisfiability of the formula for case C_{0} indicates that Q_{2} always obtains the canonical fact. Case C_{1} produces a satisfiable formula, therefore τ_{1} can always be applied. The multiplicity of the canonical fact obtained by Q_{2} for this database is $\left|t_{d_{5}^{0}}\right|_{Q_{1}\left(d_{5}^{0}\right)}=m_{p} m_{r 1}^{2} m_{s}$.
d_{7}^{0} : There is only one assignment mapping from Q_{2} to d_{7}^{0}, shown in the following table.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{7}^{0}}\right\|_{Q_{2}\left(d_{r}^{0}\right)}\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A B B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{B} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$

The set of possible mappings for this case is $\mathcal{M}^{\prime}=\left\{\tau_{1}\right\}$, therefore $P(\mathcal{M})=\left\{\emptyset,\left\{\tau_{1}\right\}\right\}$. The list of cases is shown in the following table.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1}$	$[A \neq B \wedge A>B] \wedge \neg[(B<A) \wedge B \leq B]$
C_{1}	$\neg \tau_{1}$	$[A \neq B \wedge A>B] \wedge[(B<A) \wedge B \leq B]$

As for the previous database, the unsatisfiability of the formula for case C_{0} indicates that Q_{2} always obtains the canonical fact, and C_{1} produces a satisfiable formula. Thus, τ_{1} can always be applied, and the multiplicity of the canonical fact obtained by Q_{2} for d_{7}^{0} is $\left|t_{d_{7}^{0}}\right|_{Q_{1}\left(d_{7}^{0}\right)}=m_{p} m_{r 1}^{2} m_{s}$.
d_{8}^{0} : The only assignment mapping from Q_{2} to this database is shown in the following table.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{8}^{0}}\right\|_{Q_{2}\left(d_{8}^{0}\right)}\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A A B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r}^{2} m_{s}$

The following list of cases shows that Q_{2} always obtains the canonical fact applying the assignment mapping τ_{1} (the formula for the case C_{0} is again unsatisfiable).

Case	Mappings	Formula
C_{0}	$\neg \tau_{1}$	$[A \neq B \wedge A>B] \wedge \neg[(B<A) \wedge B \leq B]$
C_{1}	$\neg \tau_{1}$	$[A \neq B \wedge A>B] \wedge[(B<A) \wedge B \leq B]$

The multiplicity of the canonical fact obtained by Q_{2} for this database is $\left|t_{d_{8}^{0}}\right|_{Q_{1}\left(d_{8}^{0}\right)}=m_{p} m_{r}^{2} m_{s}$.
d_{10}^{0} : There are two assignment mappigns from Q_{2} to d_{10}^{0} :

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{t_{1} 0}\right\|_{Q_{2}\left(d_{0}^{0}\right)}\right)$
$\left\{_{\left\{\tau_{i}\right\}}\right\}$								
τ_{1}	A B A C B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{C} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	A A C C A	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{C} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{C} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{C} ;\left[m_{s}\right]\right)$	$A<C$	$A \leq A$	$m_{p} m_{r}^{2} m_{s}$

The list of cases for this database is shown in the following table.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge \neg[B<A \wedge B \leq B] \wedge \neg[A<C \wedge A \leq A]$
C_{1}	$\neg \tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge \neg[B<A \wedge B \leq B] \wedge[A<C \wedge A \leq A]$
C_{2}	$\tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge[B<A \wedge B \leq B] \wedge \neg[A<C \wedge A \leq A]$
C_{3}	$\tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B] \wedge[B<A \wedge B \leq B] \wedge[A<C \wedge A \leq A]$

Cases C_{0} and C_{1} produce unsatisfiable formulas, so they are discarded. The formulas generated for the case C_{2} (corresponding to the set of mappings $\left.M_{2}^{\prime}=\left\{\tau_{1}\right\}\right)$ and C_{3} (corresponding to the set of mappings $M_{3}^{\prime}=\left\{\tau_{1}, \tau_{2}\right\}$) are satisfiable, therefore Q_{2} obtains the canonical fact from d_{10}^{0} with the following two multiplicities:

$$
\begin{aligned}
& \left(\left|t_{d_{10}^{0}}\right|_{Q_{2}\left(d_{10}^{0}\right)}\right)_{M_{2}^{\prime}}=m_{p} m_{r 1}^{2} m_{s} \\
& \left(\left|t_{d_{10}^{0}}\right|_{Q_{2}\left(d_{10}^{0}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

d_{11}^{3} : There are two assignment mappings from Q_{2} to this database.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{11}^{3}}\right\|_{Q_{2}\left(d_{1}^{3}\right)}\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A A B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	A B A A C	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq C$	$m_{p} m_{r 1} m_{r 2} m_{s}$

The following table shows the list of cases:

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \neg(A>C)] \wedge} \\ \neg[B<A \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \end{gathered}$
C_{1}	$\neg \tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \neg(A>C)] \wedge} \\ \neg[B<A \wedge B \leq B] \wedge[B<A \wedge B \leq C] \end{gathered}$
C_{2}	$\tau_{1} \neg \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \neg(A>C)] \wedge} \\ {[B<A \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C]} \end{gathered}$
C_{3}	$\tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \neg(A>C)] \wedge} \\ {[B<A \wedge B \leq B] \wedge[B<A \wedge B \leq C]} \end{gathered}$

For this database, only case C_{3} produces a satisfiable formula. Therefore, Q_{2} obtains the canonical fact from d_{11}^{3} with the multiplicity:

$$
\left(\left|t_{d_{11}^{3}}\right|_{Q_{2}\left(d_{11}^{3}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 1} m_{r 2} m_{s}
$$

d_{11}^{7} : There are 4 possible assignment mappings from Q_{2} to d_{11}^{7} :

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{11}^{7}}\right\| Q_{Q_{2}\left(d_{1}^{7}\right)}\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A A B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	A B A A C	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq C$	$m_{p} m_{r 1} m_{r 2} m_{s}$
τ_{3}	A C A A B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$C<A$	$C \leq B$	$m_{p} m_{r 2} m_{r 1} m_{s}$
τ_{4}	A C A A C	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$C<A$	$C \leq C$	$m_{p} m_{r 2}^{2} m_{s}$

For this database, the list of cases consists of $2^{4}=16$ elements, which is the cardinality of $P\left(\mathcal{M}^{\prime}\right)$, as the next tables show.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$\begin{gathered} \hline[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge \\ \neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge \\ \neg[C<A \wedge C \leq B] \wedge \neg[C<A \wedge C \leq C] \end{gathered}$
C_{1}	$\neg \tau_{1} \neg \tau_{2} \neg \tau_{3} \tau_{4}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge} \\ \neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge \\ \neg[C<A \wedge C \leq B] \wedge[C<A \wedge C \leq C] \\ \hline \end{gathered}$
C_{2}	$\neg \tau_{1} \neg \tau_{2} \tau_{3} \neg \tau_{4}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge} \\ \neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge \\ {[C<A \wedge C \leq B] \wedge \neg[C<A \wedge C \leq C]} \end{gathered}$
C_{3}	$\neg \tau_{1} \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$\begin{aligned} & {[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge} \\ & \neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge[B<A \wedge B \leq C] \wedge \\ & \neg[C<A \wedge C \leq B] \wedge \neg[C<A \wedge C \leq C] \end{aligned}$
C_{4}	$\tau_{1} \neg \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \mathbf{A}>\mathbf{C}] \wedge} \\ {[B<A \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge} \\ \neg[C<A \wedge C \leq B] \wedge \neg[\mathbf{C}<\mathbf{A} \wedge C \leq C] \end{gathered}$

Case	Mappings	Formula
C_{5}	$\neg \tau_{1} \neg \tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge$
		$\neg \mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge$
C_{6}	$\neg \tau_{1} \tau_{2} \neg \tau_{3} \tau_{4}$	$[A \neq B \wedge A \wedge C \leq B] \wedge[C<A \wedge C \leq C]$
		$\neg[\mathbf{B}<\mathbf{A} \wedge C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge$
		$\neg[C<A \wedge C \leq B] \wedge[B<A \wedge B \leq C] \wedge$
C_{7}	$\tau_{1} \neg \tau_{2} \neg \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge \mathbf{A}>\mathbf{C}] \wedge$
		$[B<A \wedge B \leq B] \wedge \neg[\mathbf{B}<\mathbf{A} \wedge \mathbf{B} \leq \mathbf{C}] \wedge$
		$\neg[\mathbf{C}<\mathbf{A} \wedge \mathbf{C} \leq \mathbf{B}] \wedge[C<A \wedge C \leq C]$
C_{8}	$\neg \tau_{1} \tau_{2} \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge$
		$\neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge[B<A \wedge B \leq C] \wedge$
		$[C<A \wedge C \leq B] \wedge \neg[C<A \wedge C \leq C]$
C_{9}	$\tau_{1} \neg \tau_{2} \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \mathbf{A}>\mathbf{C}] \wedge$
		$[B<A \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge$
		$[C<A \wedge C \leq B] \wedge \neg[\mathbf{C}<\mathbf{A} \wedge C \leq C]$
C_{10}	$\tau_{1} \tau_{2} \neg \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge \mathbf{A}>\mathbf{C}] \wedge$
		$[B<A \wedge B \leq B] \wedge[B<A \wedge B \leq C] \wedge$
		$\neg[C<A \wedge C \leq B] \wedge \neg[\mathbf{C}<\mathbf{A} \wedge C \leq C]$
C_{11}	$\neg \tau_{1} \tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge \mathbf{A}>\mathbf{B} \wedge A>C] \wedge$
		$\neg[\mathbf{B}<\mathbf{A} \wedge B \leq B] \wedge[B<A \wedge B \leq C] \wedge$
		$[C<A \wedge C \leq B] \wedge[C<A \wedge C \leq C]$
C_{12}	$\tau_{1} \neg \tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge A>C] \wedge$
		$[B<A \wedge B \leq B] \wedge \neg[B<A \wedge B \leq C] \wedge$
		$[C<A \wedge C \leq B] \wedge[C<A \wedge C \leq C]$
C_{13}	$\tau_{1} \tau_{2} \neg \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge A>C] \wedge$
		$[B<A \wedge B \leq B] \wedge[B<A \wedge B \leq C] \wedge$
		$\neg[C<A \wedge C \leq B] \wedge[C<A \wedge C \leq C]$
C_{14}	$\tau_{1} \tau_{2} \tau_{3} \neg \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge A>C] \wedge$
		$[B<A \wedge B \leq B] \wedge[B<A \wedge \mathbf{B} \leq \mathbf{C}] \wedge$
	$[C<A \wedge \mathbf{C} \leq \mathbf{B}] \wedge \neg[C<A \wedge C \leq C]$	
C_{15}	$\tau_{1} \tau_{2} \tau_{3} \tau_{4}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge A>B \wedge A>C] \wedge$
		$[B<A \wedge B \leq B] \wedge[B<A \wedge \mathbf{B} \leq \mathbf{C}] \wedge$
	$[C<A \wedge \mathbf{C} \leq \mathbf{B}] \wedge[C<A \wedge C \leq C]$	

Testing the satisfiability of these 15 formulas (the method presented in Section 6.5 can be used to test it, but the inequalities that will produce the unsatisfiability of the formulas are shown in boldface in the table), only two of them are satisfiable: those corresponding to cases C_{12} and C_{13}. Therefore, the multiplicities of the canonical fact obtained by Q_{2} are the following:

$$
\begin{aligned}
& \left(\left|t_{d_{11}^{7}}\right|_{Q_{2}\left(d_{11}^{7}\right)}\right)_{M_{12}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2} m_{r 1} m_{s}+m_{p} m_{r 2}^{2} m_{s} \\
& \left(\left|t_{d_{11}^{7}}\right|_{Q_{2}\left(d_{11}^{7}\right)}\right)_{M_{13}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 1} m_{r 2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

d_{12}^{0} : The two possible assignment mappings from Q_{2} to this database are shown in the following table.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{12}^{0}}\right\| Q_{2}\left(d_{12}^{0}\right)\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	B A B C A	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{C} ;\left[m_{s}\right]\right)$	$A<B$	$A \leq A$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	B A C C A	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{C} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{C} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{C} ;\left[m_{s}\right]\right)$	$A<C$	$A \leq A$	$m_{p} m_{r 2}^{2} m_{s}$

The following table shows the list of 4 cases that correspond to all possible sets of assignment mappings from Q_{2} to d_{12}^{0}.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$\neg[A<B \wedge A \leq A] \wedge \neg[A<C \wedge A \leq A]$
C_{1}	$\neg \tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$\neg[A<B \wedge A \leq A] \wedge[A<C \wedge A \leq A]$
C_{2}	$\tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$[A<B \wedge A \leq A] \wedge \neg[A<C \wedge A \leq A]$
C_{3}	$\tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$[A<B \wedge A \leq A] \wedge[A<C \wedge A \leq A]$

Only C_{2} and C_{3} produce satisfiable formulas, so Q_{2} can derive the canonical fact from d_{12}^{0} with the following two multiplicities:

$$
\begin{aligned}
& \left(\left|t_{d_{12}^{0}}\right| Q_{2}\left(d_{12}^{0}\right)\right)_{M_{2}^{\prime}}=m_{p} m_{r 1}^{2} m_{s} \\
& \left(\left|t_{d_{12}^{0}}\right|_{Q_{2}\left(d_{12}^{0}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

d_{13}^{0} : There are the following two assignment mappings from Q_{2} to this database.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{13}^{0}}\right\| Q_{2}\left(d_{13}^{0}\right)\right.$
$)_{\left\{\tau_{i}\right\}}$								
τ_{1}	B A B A A	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{A}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$A<B$	$A \leq A$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{2}	B C A A C	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{A} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$C<A$	$C \leq C$	$m_{p} m_{r 2}^{2} m_{s}$

The list of cases is shown in the following table, where only cases C_{2} and C_{3} produce satisfiable formulas.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$\neg[A<B \wedge A \leq A] \wedge \neg[C<A \wedge C \leq C]$
C_{1}	$\neg \tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$\neg[A<B \wedge A \leq A] \wedge[C<A \wedge C \leq C]$
C_{2}	$\tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$[A<B \wedge A \leq A] \wedge \neg[C<A \wedge C \leq C]$
C_{3}	$\tau_{1} \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>A] \wedge$
		$[A<B \wedge A \leq A] \wedge[C<A \wedge C \leq C]$

The multiplicities of the canonical fact obtained by Q_{2} from this database are:

$$
\begin{aligned}
& \left(\left|t_{d_{13}^{0}}\right|_{Q_{2}\left(d_{13}^{0}\right)}\right)_{M_{2}^{\prime}}=m_{p} m_{r 1}^{2} m_{s} \\
& \left(\left|t_{d_{13}^{0}}\right|_{Q_{2}\left(d_{13}^{0}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

d_{14}^{0} : The following table shows the unique assignment mapping from Q_{2} to this database.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\mid t_{d_{14}^{0}} Q_{2}\left(d_{14}^{0}\right)\right)_{\left\{r_{i}\right\}}$
τ_{1}	B C B A C	$\mathrm{p}\left(\mathrm{B} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{B} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{A} ;\left[m_{s}\right]\right)$	$C<B$	$C \leq C$	$m_{p} m_{r 1}^{2} m_{s}$

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>C] \wedge \neg[C<B \wedge C \leq C]]$
C_{1}	$\neg \tau_{1} \neg \tau_{2}$	$[A \neq B \wedge A \neq C \wedge B \neq C \wedge B>C] \wedge[C<B \wedge C \leq C]$

Since the formula for the case C_{0} is unsatisfiable, Q_{2} always derives the canonical fact from this database, with the following multiplicity:

$$
\left(\left|t_{d_{14}^{0}}\right|_{Q_{2}\left(d_{14}^{0}\right)}\right)_{M_{1}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}
$$

d_{15}^{0} : There are 2 assignment mappings from Q_{2} to this database.

	X Y Z T W	$\mathrm{p}(\mathrm{X})$	$\mathrm{r}(\mathrm{Y}, \mathrm{Z})$	$\mathrm{r}(\mathrm{W}, \mathrm{Z})$	$\mathrm{s}(\mathrm{T})$	$Y<Z$	$Y \leq W$	$\left(\left\|t_{d_{15}^{0}}\right\| Q_{2}\left(d_{15}^{0}\right)\right)_{\left\{\tau_{i}\right\}}$
τ_{1}	A B A D B	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{r}\left(\mathrm{B}, \mathrm{A} ;\left[m_{r 1}\right]\right)$	$\mathrm{s}\left(\mathrm{D} ;\left[m_{s}\right]\right)$	$B<A$	$B \leq B$	$m_{p} m_{r 1}^{2} m_{s}$
τ_{1}	A C D D D	$\mathrm{p}\left(\mathrm{A} ;\left[m_{p}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{D} ;\left[m_{r 2}\right]\right)$	$\mathrm{r}\left(\mathrm{C}, \mathrm{D} ;\left[m_{r 2}\right]\right)$	$\mathrm{s}\left(\mathrm{D} ;\left[m_{s}\right]\right)$	$C<D$	$C \leq C$	$m_{p} m_{r 2}^{2} m_{s}$

The list of the 4 possible sets of assignment mappings from Q_{2} to d_{15}^{0} are shown in the following table.

Case	Mappings	Formula
C_{0}	$\neg \tau_{1} \neg \tau_{2}$	$\begin{gathered} \hline[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D \wedge A>B] \wedge \\ \neg[B<A \wedge B \leq B] \wedge \neg[C<D \wedge C \leq C] \end{gathered}$
C_{1}	$\neg \tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D \wedge A>B] \wedge} \\ \neg[B<A \wedge B \leq B] \wedge[C<D \wedge C \leq C] \end{gathered}$
C_{2}	$\tau_{1} \neg \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D \wedge A>B] \wedge} \\ {[B<A \wedge B \leq B] \wedge \neg[C<D \wedge C \leq C]} \end{gathered}$
C_{3}	$\tau_{1} \tau_{2}$	$\begin{gathered} {[A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D \wedge A>B] \wedge} \\ {[B<A \wedge B \leq B] \wedge[C<D \wedge C \leq C]} \end{gathered}$

Again, only cases C_{2} and C_{3} produce satisfiable formulas. Thus, the multiplicities of the canonical fact obtained by Q_{2} from d_{15}^{0} are:

$$
\begin{aligned}
& \left(\left|t_{d_{15}^{0}}\right|_{Q_{2}\left(d_{15}^{0}\right)}\right)_{M_{2}^{\prime}}=m_{p} m_{r 1}^{2} m_{s} \\
& \left(\left|t_{d_{15}^{0}}\right|_{Q_{2}\left(d_{15}^{0}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

Test the bag containment:

At this point, the multiplicities of the canonical fact obtained from all canonical databases by either Q_{1} or Q_{2} are known, and must be compared in order to test the bag containment. The following table summarizes all these multiplicities. Note that the column that shows the multiplicity of the canonical fact obtained by the application of Q_{2} to any canonical database can have several rows for the same database, when Q_{2} derives the canonical fact with different multiplicities (for example, for database d_{11}^{7}).

CDB	$\left\|t_{d}\right\|_{Q_{1}(d)}$	$\left\|t_{d}\right\|_{Q_{2}(d)}$
d_{4}^{1}	$m_{p} m_{r 2} m_{r 1} m_{s}+m_{p} m_{r 1}^{2} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 1} m_{r 2} m_{s}$
d_{5}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}$
d_{7}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}$
d_{8}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$	$m_{p} m_{r}^{2} m_{s}$
d_{10}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}$
	d_{11}^{3}	$m_{p} m_{r 1} m_{r 2} m_{s}+m_{p} m_{r 1}^{2} m_{s}$
d_{11}^{7}	$m_{p} m_{r 1} m_{r 2} m_{s}+m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}+m_{p} m_{r 2} m_{r 1} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2} m_{r 1} m_{s}+m_{p} m_{r 2}^{2} m_{s}$
		$m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 1} m_{r 2} m_{s}+m_{p} m_{r 2}^{2} m_{s}$
d_{12}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$	$m_{p} m_{r 1}^{2} m_{s}$
	d_{13}^{0}	$m_{p} m_{r 1} m_{r 2} m_{s}$

The procedure must now compare the multiplicities of the canonical fact obtained by Q_{1} and Q_{2}, represented by polynomials. It is easy to test that the multiplicity of $t_{d_{5}^{0}}$ obtained by Q_{2} is not greater than (or equal to)
the multiplcity obtained by Q_{1} (for example, if $m_{p}=m_{r 1}=m_{s}=1$ and $m_{r 2}=2$, the multiplicity obtained by Q_{1} would be greater). Therefore, the procedure concludes that $Q_{1} \not Z_{b} Q_{2}$.

Another canonical database that shows that the containment does not hold is d_{13}^{0} : The multiplicity obtained by Q_{1} is:

$$
\left|t_{d_{13}^{0}}\right|_{Q_{1}\left(d_{13}^{0}\right)}=m_{p} m_{r 1} m_{r 2} m_{s}
$$

And the multiplicities obtained by Q_{2} are:

$$
\begin{aligned}
& \left(\left|t_{d_{3}^{0}}\right| Q_{2}\left(d_{13}^{0}\right)\right)_{M_{2}^{\prime}}=m_{p} m_{r 1}^{2} m_{s} \\
& \left(\left|t_{d_{13}^{0}}\right|_{Q_{2}\left(d_{13}^{0}\right)}\right)_{M_{3}^{\prime}}=m_{p} m_{r 1}^{2} m_{s}+m_{p} m_{r 2}^{2} m_{s}
\end{aligned}
$$

Since $\left(\left|t_{d_{13}^{0}}\right|_{Q_{2}\left(d_{13}^{0}\right)}\right)_{M_{2}^{\prime}}$ is not at least as high as $\left|t_{d_{13}^{0}}\right|_{Q_{1}\left(d_{13}^{0}\right)}$ (even when $\left(\left|t_{d_{13}^{0}}\right|_{Q_{2}\left(d_{13}^{0}\right)}\right)_{M_{3}^{\prime}}$ is $)$, that means that the containment does not hold.

9.7 Summary

This chapter has described another important contribution of this Thesis, the application of $Q C C$ to test bag containment of inequality queries, because it solves a problem for which there were no results so far. It combines the multiplicities in the facts of the canonical databases (as used to test bag containment of equality queries) and constraints associated to each canonical database (as used to test set containment of inequality queries) to offer a procedure to test bag containment of inequality queries. This problem is reduced, therefore, to the problems of checking the unsatisfiability of several formulas, and the comparison of pairs of polynomials over \mathbb{Z}^{+}.

Chapter 10

Conclusions and future work

In this Thesis, we have studied the problem of containment of conjunctive queries under four perspectives, taking into account the presence or absence of built-in predicates in the conjunctive queries, and the underlying (set or bag) semantics. The four perspectives generated using these two factors lead to four types of conjunctive query containment:

- Set containment of equality queries;
- Bag containment of equality queries;
- Set containment of inequality queries; and
- Bag containment of inequality queries.

We first define the set and bag semantics and how to apply a query to a database under both of them. Next, we review the state of the art in these four types of containment, showing that the results achieved so far are not applicable for the problem of testing the set and bag containment of inequality queries.

The main contribution of this Thesis is $Q C C$ (Query Containment Checker), a general procedure that can be used to check the previous four types of conjunctive query containment. The key concept of $Q C C$ is the use of the canonical database set built from the predicates in the body of a query $Q_{1}\left(C D B S\left(Q_{1}\right)\right)$, because it allows us to test the containment of conjunctive queries using only a finite (usually small) set of databases, those in $C D B S\left(Q_{1}\right)$, instead of using an infinite number of databases (as described in the formal definition of query containment).
$Q C C$ is a procedure that is capable of testing conjunctive query containment for those cases already solved, such as set containment of equality
queries [CM77] or bag containment of equality queries [CV93, BH97], but it is also capable of succeessfully performing these tests for other types of query containment problems (set and bag containment of inequality queries) for which there were no results so far. It is our belief that $Q C C$ can also be used to test other types of query containment, such us containment of queries with negated subgoals, or containment of nonrecursive Datalog programs. Our current research is directed at finding a way to apply $Q C C$ to test these containments.

Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Adison-Wesley, 1995.
[ASU79a] A. V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Efficient optimization of a class of relational queries. ACM Transactions on Database Systems, 4(4):435-454, 1979.
[ASU79b] A. V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence of relational expressions. SIAM J. of Computing, 8(2):218-246, 1979.
[BH97] Nieves R. Brisaboa and Héctor J. Hernández. Testing bagcontainment of conjunctive queries. Acta Informatica, 34:557578, 1997.
[BHPP98] Nieves R. Brisaboa, Héctor J. Hernández, José R. Paramá, and Miguel R. Penabad. Containment of conjunctive queries with built-in predicates with variables and constants over any ordered domain. In Advances in Databases and Information Systems. Second East Sympsium (ADBIS'98), number 1475 in Lecture Notes in Computer Science, pages 46-57, Poznan, Poland, September 1998. Springer-Verlag.
[Bri97] Nieves R. Brisaboa. Inclusión de Consultas Conjuntivas en la semántica de bolsas. PhD thesis, Departamento de Computación, Facultade de Informática, Universidade da Coruña, A Coruña, Spain, May 1997.
[CGT89] S. Ceri, G. Gottlob, and L. Tanka. What you Always Wanted to Know about Datalog (and Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146-166, March 1989.
[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational databases. In Proc. 9th ACM SIGACT Symp. on the Theory of Computing, pages 77-90, New York, 1977.
[Cod70] E. F. Codd. A relational model for large shared data banks. Communications of the ACM, 13(6):377-387, 1970.
[CV93] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In Proc. Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 59-70, Washington, DC, May 1993.
[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An extended relational algebra with control over duplicate elimination. In Proc. First ACM Symposium on Principles of Database Systems, pages 117123, 1982.
[Fag93] R. Fagin. Finite model theory - a personal perspective. Theoretical Computer Science, 116(1):3-31, August 1993.
[GSW96] Sha Guo, Wei Sun, and Mark A. Weiss. Solving satisfiability and implication problems in database systems. ACM Transactions on Database Systems, 21(2):270-293, 1996.
[IO97] Naci S. Ishakbeyoglu and Z. Meral Ozsoyoglu. Testing satisfiability of a conjunction of inequalities. In International Symposium on Computer and Information Systems (ISCIS XII), pages 148154, Anlatya, Turkey, October 1997.
[IR92] Yannis E. Ioannidis and Raghu Ramakrishnan. Generalized containment of conjunctive queries. Technical report, Computer Science Department. University of Wisconsin, Madison, WI 53706, January 1992.
[IR94] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of conjunctive queries beyond relations as sets. Technical report, Computer Science Department. University of Wisconsin, Madison, WI, 1994.
[IS97] Oscar H. Ibarra and Jianwen Su. On the containment and equivalence of database queries with linear constraints. In $P O D S^{\prime} 97$, pages 32-43, Tucson, Arizona, 1997.
[Kla86] A. Klausner. Multirelations in Relational Databases. PhD thesis, Harvard University, 1986.
[Klu88] Anthony Klug. On conjunctive queries containing inequalities. Journal of the ACM, 35(1):146-160, 1988.
[Llo87] J. W. Lloyd. Foundations of Logic Programming. SpringerVerlag, second, extended edition, 1987.
[Sol79] M. K. Solomon. Some properties of relational expressions. In Proceedings of the ACM Southeast Regional Conference, pages 111-116, ACM, New Yotk, 1979.
[Tra50] B. A. Trakhtenbrot. The imposibility of an algorithm for the decision problem for finite models. Doklady Akademii Naurk SSR, 70:569-572, 1950.
[Ul182] Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press, second edition, 1982.
[Ul189] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, volume 1 and 2. Computer Science Press, 1988-1989.
[vdM97] Ron van der Meyden. The complexity of querying indefinite data about linearly ordered domains. Journal of Computer and System Sciences, 54(1):113-135, 1997.
[ZO93] X. Zhang and Z. Meral Ozsoyoglu. On efficient reasoning with implication constraints. In Proc. of 3rd International Conference on Deductive and Object-Oriented Databases (DOOD'93), pages 236-252, Phoenix, Arizona, December 1993.

[^0]: ${ }^{1}$ Note that they are equivalent under set semantics, because Datalog always removes duplicates of the facts, but under SQL it must be done explicitly by using the Distinct clause.

[^1]: ${ }^{1}$ It is possible to consider our uninterpreted constants as variables in this context

[^2]: ${ }^{2}$ Evidently, this condition implies the two previous ones.

[^3]: ${ }^{1}$ Note that the formula for the case C_{0} is identical to the formula F used in Chapter 6 to test set containment of inequality queries, where the satisfiability of F also meant that Q_{2} would not obtain the canonical fact.

