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Abstract

Bayesian inference for the transient behavior and duration of a busy period in a single server queueing
system with general, unknown distributions for the interarrival and service times is investigated. Both
the interarrival and service time distributions are approximated using the dense family of Coxian dis-
tributions. A suitable reparameterization allows the definition of a non-informative prior and Bayesian
inference is then undertaken using reversible jump Markov chain Monte Carlo methods. An advantage of
the proposed procedure is that heavy tailed interarrival and service time distributions such as the Pareto
can be well approximated. The proposed procedure for estimating the system measures is based on
recent theoretical results for the Coxian/Coxian/1 system. A numerical technique is developed for every
MCMC iteration so that the transient queue length and waiting time distributions and the duration of
a busy period can be estimated. The approach is illustrated with both simulated and real data.
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1 Introduction

Bayesian estimation of stationary distributions in queueing systems is a well developed research area. Some
useful references are Armero and Bayarri (1994, 1997), Rios et al. (1998), Wiper (1998), Armero and Conesa
(2000) and Auśın et al. (2003, 2004). However, less progress has been made on the estimation of the transient
behaviour although in many practical situations, the analysis of a queueing system in the transient states is
of great interest, for example, when the system is regularly stopped and started again, or when convergence
to steady-state is very slow. Furthermore, the estimation of the duration of a busy period has also been
neglected in the Bayesian literature on queues although the study of the busy period distribution is very
important in optimal control problems. Exceptions are Armero and Bayarri (1994, 1997) who consider the
busy period for the M/M/1 system and the transient distribution for the M/M/∞ system, respectively, and
Auśın et al. (2004) who consider the busy period of the M/G/1 system. Although exact results for the
transient behaviour and busy period of Markovian systems are known, see e.g. Gross and Harris (1985), such
systems are rarely found in practice. One of the contributions of this article is the estimation of the transient
behaviour and busy period distribution of a much more general queueing system.

It is well known that many measures in communication systems such as packet interarrival times, file
lengths or intervals between connection requests in Internet traffic, have long-tailed distributions, see e.g.
Paxson and Floyd (1995) and Crovella et al. (1997). These measures are usually described with distributions
such as the Pareto or Weibull. Unfortunately, queueing systems with long-tailed interarrival or service time
distributions are very difficult to analyze due to the non-existence of their moments or the lack of Laplace
transforms with explicit expressions, see e.g. Abate et al. (1994). As an alternative, Feldmann and Whitt
(1998) and Riska et al. (2004) propose approximating long-tailed distributions using hyperexponential den-
sities and mixtures of Erlang distributions, respectively, and apply these approximations to the analysis of
queueing systems using classical statistical methodology. Bayesian inference for hyperexponential distribu-
tions and mixtures of Erlang distributions has been considered in Rios et al. (1998) and Auśın et al. (2004),
respectively. However, due to the influence of the proper prior distributions, these approaches cannot prop-
erly approximate long-tailed interarrival or service time distributions. In contrast, in this article, the model
and prior formulation used permits us to well approximate long-tailed distributions.

Throughout, we shall use the Coxian family of distributions as a semiparametric approximation to the
interarrival and service time distributions. This family includes the standard distributions usually studied
in queueing theory, such as the exponential, Erlang and hyperexponential distribution, as special cases. The
Coxian family is dense over the set of distributions on the positive reals, see e.g. Bertsimas (1990), and thus,
any continuous and positive distribution can be approximated arbitrarily closely. Furthermore, based on
the Cox’s method of stages, see Cox (1955), many results for systems with Coxian distributions have been
obtained in the queueing literature. In particular, in this paper we will consider results derived by Bertsimas
and Nakazato (1992) for the transient behaviour and busy period.

Bayesian inference for the Coxian distribution was considered in Auśın et al. (2003), in the context of
a hospital resource allocation problem equivalent to a M/G/c/K, finite capacity, Poisson arrivals, queueing
system. In that article, a different parameterization and approach to that used here was applied. There, a
proper prior was assumed and semi-conjugate inference was developed using latent variables. Unfortunately,
this setup leads to poor approximations of long-tailed distributions. Furthermore, the Coxian model consid-
ered in Auśın et al. (2003) is not identifiable which often affects the convergence of the MCMC algorithm
and the interpretation of the estimated parameters. Finally, transient and busy period problems were not
analyzed. Here, we propose a new parameterization which provides an identifiable Coxian model where an
improper prior distribution can be applied which leads to good performance of the MCMC algorithm and
which allows us to well approximate both short and long-tailed distributions.

The rest of this paper is organized as follows. In Section 2, we introduce the Coxian distribution model
and then describe how to carry out Bayesian inference for this model given an improper prior and using a
reversible jump MCMC algorithm, see Green (1995) and Richardson and Green (1997). In Section 3, we
describe some results derived by Bertsimas and Nakazato (1992) which allow us to estimate the transient
and busy period distributions of the Coxian/Coxian/1 system conditional on the system parameters. Then,
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Figure 1: Phase diagram of the Coxian distribution which, with probability Pr, is a sum of r exponential
random variables with rates λ1, . . . , λr, for r = 1, . . . , L.

we explain a numerical procedure which allows us to incorporate these results within the reversible jump
algorithm so that we can estimate the predictive transient and busy period distributions given a sample of
interarrival and service data. At the end of both Section 2 and Section 3, our approach is illustrated with
simulated and real interarrival and service time data. The paper finishes with some brief conclusions and
extensions.

2 Modelling and inference for the interarrival and service times

Firstly we will define the Coxian distribution that we shall use throughout to model the interarrival and
service time data. The Coxian or Mixed Generalized Erlang distribution (MGE), is defined as follows.
A positive random variable, X, has a Coxian distribution with parameters L, P = (P1, ..., PL) and λ =
(λ1, ..., λL), if,

X =





Y1, with probability = P1,
Y1 + Y2, with probability = P2,
...

...
Y1 + ... + YL, with probability = PL,

(1)

where Yr has an exponential distribution with parameter λr, Pr, λr > 0 and
∑L

r=1Pr = 1, see e.g. Bertsimas
and Nakazato (1992). This model has a nice visual representation, see Figure 1, where it can be seen that
the interarrival (or service) time of each customer can be represented by a sequence of a random number of
exponential stages.

The Coxian distribution model (1) can also be expressed in mixture form,

f (x | L,P,λ) =
L∑

r=1
Prfr (x | λ1, ..., λr) , x ≥ 0, (2)

where fr (x | λ1, ..., λr) is the density of a generalized Erlang distribution, i.e. the density of a sum of r
exponential random variables with rates λ1, λ2, ..., λr respectively. If all rates are unequal, this density is
given by,

fr (x | λ1, ..., λr) =
r∑

j=1




r∏

i=1
i 6=j

λi

λi − λj


λj exp (−λjx) , x ≥ 0, (3)

see e.g. Johnson and Kotz (1970). In some cases where there are two or more equal rates, alternative
expressions can be derived, e.g. if all rates are equal, the Coxian density reduces to an Erlang, but a general
formula for all possible cases is not known. However, the Laplace transform of the Coxian distribution
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defined in (2) is available and is given by,

f∗r (s | λ1, ..., λr) =
r∏

i=1

(
λi

λi + s

)
. (4)

Thus, if we wish to approximate the Coxian density when there are two or more equal rates, or when the
difference between two rates is small, this can be done by numerical inversion of the Laplace transform using,
for example the algorithm by Hosono (1981). In the examples later in this article, we have used Laplace
transform inversion rather than direct evaluation of the Coxian density whenever we encountered at least a
pair of rates whose difference was less than 10−4.

Cumani (1982) shows that the Coxian distribution model (1) is identifiable up to permutation of the
rates and therefore, we can assume without loss of generality that,

λ1 ≥ λ2 ≥ ... ≥ λL. (5)

In the following subsection, we will reparameterize the Coxian distribution using this identifiability con-
straint so that given a sample of data, we can develop a Bayesian inference scheme using a non-informative
prior.

2.1 Bayesian inference

Assume now that we undertake the simple experiment of observing independent samples of interarrival times
and service times. This experiment has been considered in the majority of Bayesian articles on queueing;
see e.g. Armero and Bayarri (1996). We assume independence between the arrival and service processes and
will model both as Coxian distributions. Then, given that we use independent prior distributions for the
arrival and service parameters, the corresponding posterior distributions will also be independent. Therefore,
for the rest of this section, we assume that we have observed a sample of n interarrival (or service) times,
x = (x1, ..., xn), following a Coxian distribution and we want to make inference over the Coxian parameters.

Firstly, it is convenient to reparameterize the rates λ of the Coxian model as follows,

λr = λ1υ2...υr, where 0 < υj ≤ 1, for r, j = 2, ..., L. (6)

This reparameterization automatically incorporates the ordering restraint given in (5). This kind of repa-
rameterization has also been considered in Robert and Mengersen (1999) for normal mixtures, and in Gruet
et al. (1999) for exponential mixtures. There are two main reasons for using this reparameterization. Firstly,
the usual requirement of imposing a joint proper prior distribution for the mixture parameters is relaxed.
Note that using the standard parameterization (λ1, . . . , λL), as in Auśın et al. (2003), it is not possible to
use an improper prior for each rate, λr, as it leads to an improper posterior distribution, see e.g. Diebolt and
Robert (1994). In contrast, using the reparameterization (6), we will be able to assume a non-informative
improper distribution for (λ1, υ2, . . . , υL) which will allow us to approximate heavy-tailed distributions. Sec-
ondly, the performance of the MCMC algorithm can be improved avoiding trapping states with empty, or
almost empty, components since most of observations will contribute to the estimation of various mixture
rates. In particular, every observation will give information about the first rate λ1.

We now define prior distributions for the model parameters (L,P, λ1, υ) as follows. Supposing first that
L is known, we assume the following improper prior distribution,

P ∼ Dirichlet (φ1, ..., φL) , (7)

f(λ1) ∝ 1
λ1

(8)

υr ∼ Beta(a, b), for r = 1, ..., L. (9)

Although the joint prior distribution is improper, it can be shown that it leads to a proper posterior, see the
Appendix. Typically, we might set φr = 1, for r = 1, ..., L, to give a uniform prior over the weights. Also,
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we might set a = b = 1 to give a uniform prior over each υr, for r = 1, ..., L. However, it is necessary to
set a > 1 in order that the posterior predictive mean of the Coxian variable, X, exists, as is shown in the
Appendix. Then, we have set a = 1.1 and b = 1 in the examples.

This type of parameterization and prior choice allows us to approximate long-tailed distributions as will
be shown in the examples. This is because we do not make a strong assumption about the rate of the first
component, λ1, and consequently, the means of the various mixture components can be as small or as large
as required.

Our task is now to construct an MCMC algorithm to sample from the joint posterior distribution which
is obtained from the prior distributions, (7), (8) and (9), and the likelihood function,

l (θ | x) =
n∏

i=1

(
L∑

r=1

Prfr (xi | λ1, υ2, . . . , υr)

)
, (10)

where θ = (L,P, λ1, υ) and where from now on we use fr (x | λ1, υ2, ..., υr) to denote the reparameterized
Coxian density fr(x | λ1, λ2, .., λr) given in (2). As is usually done in mixture models, see e.g. Diebolt and
Robert (1994), we use a data augmentation algorithm, introducing for each datum, xi, component indicator
variables, Zi, such that,

P (Zi = r | L,P) = Pr, f (xi | Zi = r) = fr (xi | λ1, υ2, . . . , υr)

for i = 1, ..., n. Then, we obtain that,

P (Zi = r | xi,P, λ1, υ) ∝ Prfr (xi | λ1, υ2, ..., υr) , for r = 1, ..., L, (11)

for i = 1, ..., n, where fr is evaluated by using (3) or inverting (4) as commented above. With this approach,
every observed data set, x = {x1, . . . , xn} is associated to a missing data set, z = {z1, . . . , zn}, indicating
the specific components of the mixture from which the observations are assumed to arise. Given the missing
data, the likelihood (10) is simplified to,

l (θ | x, z) ∝
n∏

i=1

Pzifzi (xi | λ1, υ2, . . . , υzi) . (12)

From (7) and (12), the conditional posterior distribution of the weights is given by,

P | x, z ∼ Dirichlet(1 + n1, ..., 1 + nL), (13)

where nr is the number of data assigned to the r’th mixture component for r = 1, ..., L. From (8), (9) and
(12), we obtain the conditional posterior distributions of λ1 and υ, which do not have explicit expressions
but their density functions can be evaluated up to the integration constants as,

f (λ1 | x, z, υ) ∝
n∏

i=1

fzi (xi | λ1, υ2, . . . , υzi) f (λ1) , (14)

f (υr | x, z,λ1, υ−r) ∝
n∏

i=1
zi≥r

fzi (xi | λ1, υ2, . . . , υzi) f (υr) , for r = 2, . . . , L. (15)

Thus, we can now use Gibbs sampling scheme to generate a sample from the posterior parameter distribution.
The only slightly complicated steps are sampling the densities of λ1 and υ in (14) and (15). Firstly, in order
to sample from the distribution in (14) we use a Metropolis-Hastings step with a Gamma candidate. This
choice is motivated by the fact that λ1 follows a Gamma posterior distribution when a larger set of latent
variables is introduced, see Auśın et al. (2003). To sample υr, we use a Metropolis-Hastings step with a Beta
mixture candidate distribution,

g
(
υ̃r | υ(j−1)

r

)
=

1
2
Beta

(
1

1− υ
(j−1)
r

, 2
)

+
1
2
Beta

(
2,

1

υ
(j−1)
r

)
, for r = 2, ..., L.

5



This mixture has been chosen to avoid getting stuck at indefinitely at values of υr near to zero or one and
to simultaneously preserve the mode of the value of υr in the previous iteration.

We can extend the previous Gibbs sampling algorithm to the case where L is unknown. Firstly, assume
a discrete uniform prior defined on [1, Lmax]. In the examples, we have set Lmax = 20. In order to let the
chain move through the posterior distribution of L, we use the reversible jump algorithm, see Green (1995)
and Richardson and Green (1997). Specific moves are designed to allow us to try to change the number
of components at each step from L to L ± 1. We consider the so called split and combine moves where
one mixture component, r, is split into two adjacent components (r1, r2) or two adjacent components are
combined into one, respectively. In the combine move the parameters are modified such that,

P̃r = Pr1 + Pr2 , υ̃r = υr1υr2 ,

which implies that λ̃r = λr2 . For the case that r = 1 we consider λ̃1 = λ1υ2 . For the split move,

P̃r1 = u1Pr, υ̃r1 = u2 + υr (1− u2) ,

P̃r2 = (1− u1)Pr, υ̃r2 = υr

u2+υr(1−u2)
,

where u1 and u2 are uniform U (0, 1). This implies that λ̃r1 = λr−1u2 + λr (1− u2) and λ̃r2 = λr. For the
case that r = 1, we generate λ̃1 = λ1/u2 and υ̃2 = u2 where u2 ∼ U (0, 1) . Also, every observation such that
zi = r is assigned to each of the two components, r1 or r2, with probability,

P
(
Z̃i = rj

)
∝ P̃r1fr1

(
xi | λ1, υ2, ..., υ̃rj

)
, for j = 1, 2.

Note that the defined split-combine moves are chosen such that the parameters in the remaining mixture
components are not modified, as in Gruet et al. (1999), and do not necessarily preserve the moments of the
distribution of X. The acceptance probability of a split move is min {1, A} where,

A =
P̃

ñr1
r1 P̃

ñr2
r2

Pnr
r

∏
i:z̃i≥r1

fz̃i (xi | λ1, υ2, ..., υ̃z̃i)
∏

i:zi≥r1

fzi (xi | λ1, υ2, ..., υzi)
× dL+1

bL

∏
i:zi=r

P
(
Z̃i = z̃i

) × Pr (1− υr)
u2 + υr (1− u2)

when r > 1 and where ñrj is the number of observations assigned to component rj , for j = 1, 2 and dL and
bL are respectively the probabilities of a combine or a split move. The last factor is the determinant of the
Jacobian of the transformation (Pr, υr, u1, u2) ⇀ (P̃r1 , P̃r2 , υ̃r1 , υ̃r2). When r = 1, the Jacobian determinant
of (P1, λ1, u1, u2) ⇀ (P̃1, P̃2, λ̃1, υ̃2) is given by P1/u2. The acceptance probability for the reverse, combine
move can be obtained analogously. Note that the acceptance probabilities do not need to incorporate factorial
terms due to the natural order of the rates derived from the new parameterization, see Gruet et al. (1999).
As usual, given a MCMC sample of size J, the predictive distribution of the interarrival (or service) time
can be approximated by,

f(x | x) ≈ 1
J

J∑

j=1

L(j)∑
r=1

P (j)
r fr

(
x | λ(j)

1 , υ
(j)
2 , ..., υ(j)

r

)
. (16)

2.2 Results for simulated and real data sets

In this subsection, we illustrate the performance of our proposed Bayesian density estimation method using
different simulated and real data samples.

Simulated data. Firstly, we consider 300 simulated data for each of the following distributions:

1. A single exponential distribution with λ = 1.
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Figure 2: Histograms, predictive densities (solid line) and theoretical densities (dotted line) for the four
simulated data sets. The fits are so close to the true densities that it is sometimes complicated to differentiate
both lines.

2. A Coxian distribution with P = (0.09, 0.7, 0.01, 0.2) and λ = (1.1, 1, 0.251, 0.25) .

3. A Weibull density , f (x) = cacxc−1 exp {− (ax)c}, with (c, a) = (0.3, 9.26053).

4. A Pareto distribution, f (x) = ab (1 + bx)−(a+1)
, with (a, b) = (2.2, 0.8333).

The exponential distribution is the simplest case of a Coxian distribution. In case 2, we have chosen a
Coxian distribution with two pairs of very similar rates to illustrate that this does not affect the stability of
the algorithm as commented earlier. These two examples are short-tailed distributions. Cases 3 and 4 are
two of the examples of long tailed distributions considered in Feldman and Whitt (1998). The distributions
in cases 1, 3 and 4 all have means equal to unity.

Figure 2 illustrates the empirical and predictive cumulative distribution function estimated after running
the MCMC algorithm for 10000 burn-in iterations followed by an additional 100000 iterations. We can
observe that the fits are quite satisfactory even for the heavy-tailed cases. The proportions of moves accepted
are 27.2%, 13.13%, 12.88% and 16.85% for the exponential, Coxian, Weibull and Pareto cases, respectively,
which are reasonable values in reversible jump setups, see Richardson and Green (1997). Figure 3 shows
the trace plots of the posterior samples of the mixture size, L, for the four simulated data sets, indicating
a good mixing performance. The MCMC algorithm was programmed in FORTRAN and the computational
cost depend mainly on the number of phases required to approximate the distribution, varying from a few
minutes for the exponential distribution to about one hour for the Weibull data.

Figure 4 shows the posterior probabilities of the number of components, L. Observe that in cases 1 and
2, the algorithm identifies the correct mixture size and the posterior mode of L is equal to its true value. The
estimated density in case 3 requires a large number of phases to fit the Weibull distribution. However, we
need fewer than the 20 mixture components used in Feldman and Whitt (1998) to fit a Weibull distribution
using a hyperexponential approximation. This benefit of using a Coxian rather than a hyperexponential
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Figure 3: Trace plots of the MCMC samples from the posterior distribution of the mixture size, L, for the
four simulated data sets. The plots indicate a good mixing performance visiting many different states.

model is further illustrated in case 4 where the posterior mode of L is 3 in contrast with the 14 exponential
components used in Feldman and Whitt (1998).

Figure 5 illustrates the running means for the posterior distribution of the mixture size, L, for the Coxian
data set using different starting values in the MCMC algorithm. We can observe that the choice of 10000
burn-in iterations seems adequate and that different initial values lead to similar posterior distributions for
L.

Table 1 shows the posterior means and posterior standard deviations of the parameters conditioning on
the most probable mixture size. For the exponential data set, the most probable model is a single mixture
component (see Figure 4) and, conditioning on L = 1, the posterior mean of λ1 is 1.0366, which is very close
to the true rate, 1. For the Coxian data set, the estimated parameters conditioning on the most probable
mixture size, L = 4, are in general close to the true values. However, note that although the Coxian
distribution (1) with the order restriction (5) is an identifiable model, very different values of the parameters
may lead to similar density functions. Then, the posterior distributions of various Coxian parameters are not
unimodal and the parameters are not significant. Nevertheless, the main interest in practice is the estimation
of the density function (see Figure 2) and not the estimation of the parameters. For the Weibull data set,
the most probable mixture size is L = 11. Observe that the estimated rates, λr, vary from extremely large
to very small values in order to approximate this heavy-tailed distribution. This is possible because we have
assumed an improper prior distribution for the rates, see (8) and (9). Note that using a proper prior for
each λr as considered in Auśın et al. (2003), the posterior mean of the rates cannot be as small or as large
as required. Finally, Table 1 also shows the estimated parameters for the Pareto data set conditioning on
L = 3.

Real data. We now illustrate the method with real interarrival and service times taken from from a face-
to-face bank data base available from http://iew3.technion.ac.il/serveng. We consider data of two
different kind of services: foreign currency exchange and business banking transactions. These types of
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Figure 4: Posterior probabilities of the mixture size, L. The algorithm identifies the correct mixture size for
the exponential and Coxian cases. Although the Weibull and Pareto distributions are not Coxian distribu-
tions, they can be well approximated using a moderate number of components.
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Figure 5: Running means for the posterior distribution of L for the Coxian data using two different initial
values: L(0) = 4 (top) and L(0) = 1 (bottom). Observe that runs from different starting values converge.
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Exponential Coxian Weibull Pareto
r Pr λr Pr λr Pr λr Pr λr

1 1.0
0.0

[1] 1.0367
0.0596

[1] 0.1173
0.0734

[0.09] 1.8007
3.3192

[1.1] 0.0477
0.0197

4701652.31
29233277.33

0.6737
0.0882

2.8611
0.6117

2 0.5489
0.1472

[0.70] 0.9981
0.3846

[1.0] 0.0427
0.0224

355710.93
2939331.32

0.2940
0.0895

0.7528
0.2751

3 0.1721
0.1337

[0.01] 0.4320
0.2643

[.251] 0.0567
0.0332

49539.99
307257.03

0.0322
0.0379

0.1723
0.1128

4 0.1615
0.0803

[0.20] 0.1790
0.0418

[0.25] 0.0872
0.0551

6201.52
17800.47

5 0.1164
0.0659

987.82
3910.61

6 0.1405
0.0854

174.22
401.97

7 0.1643
0.0922

41.032
91.229

8 0.1398
0.0802

9.7372
22.638

9 0.1164
0.0665

1.7024
2.3922

10 0.0696
0.0619

0.3095
0.2441

11 0.0180
0.0113

0.0181
0.0096

Table 1: Posterior means and posterior standard deviations of the Coxian parameters conditioning on the
most probable mixture size. True parameter values are shown in brackets for the Coxian distributions. The
estimated rates for the Weibull data vary from extremely large to very small values in order to approximate
this heavy-tailed distribution.

service require a single server who works three days a week from 8:30 to 12:00 and two days a week from
8:30 to 12:30 and from 16:00 to 18:00. The data are recorded during 14 days and consist of 249 interarrival
and 270 service times for foreign currency exchange and 822 interarrival and 843 service times of business
banking transactions.

Figure 6 shows histograms of the observed data and the predictive densities obtained after a run of
100000 iterations in equilibrium. Observe that the Coxian distribution can also fit densities with non zero
mode such as the business banking service time density. Interarrival times between customers asking for
currency exchange are larger on average than for business transactions. Their predictive means are 12.3 and
4.70 minutes, respectively. Also the required time for exchange currency services is greater on average than
for business transaction services. Their predictive means are 7.22 and 3.86 minutes, respectively. However,
in this case the business banking service distribution seems quite heterogeneous, with a maximum value of
42.283 minutes, while the currency exchange service seems fairly homogeneous.

Table 2 gives the posterior distribution of the number of components, L, for the four data sets. Observe
that our Bayesian density estimation method predicts, with some uncertainty, an exponential distribution
for the foreign currency service time and for the business banking interarrival time with estimated rates
approximately equal to 0.14 and 0.22, respectively. For the exchange currency interarrival distribution, the
algorithm suggests a two component mixture . The first component is an exponential and the second an
Erlang distribution both with rates close to 0.1. Finally, fitting the business banking service time distribution
needs a fairly large number of components.

3 Bayesian prediction for the GI/G/1 queueing model

In this section we are mainly interested in the prediction of the transient characteristics and the busy period of
the GI/G/1 queueing system where the interarrival and the service times are i.i.d. random variables, denoted
respectively by XA and XS . It is known that if we approximate a given short or long-tailed interarrival or
service time distribution by another distribution which is sufficiently close to the original, then performance
measures such as the transient waiting time will also be approximately what they would be with the original
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Figure 6: Histograms and predictive interarrival and service time densities for the four real data sets. The
fits are quite satisfactory and the Coxian distribution can also approximate densities with non zero mode
such as the business banking service time density.

interarrival or service time distribution, see e.g. Feldmann and Whitt (1998). Using these results, we will
assume that XA and XS are distributed as Coxian distributions with parameters {L,P, λ} and {M,Q,µ} ,
respectively. In the arrival process, each customer must go through up to L exponential stages with rates
λ1, ..., λL and exit probabilities P1, ..., PL respectively, before accessing the waiting line or, eventually, the
service. Also, each service time is the sum of up to M exponential stages with rates µ1, ..., µM and exit
probabilities Q1, ..., QM , respectively.

Assume now that we observe samples of na interarrival and ns service times, xa= {xa
1 , ..., xa

na
} and

xs= {xs
1, ..., x

s
ns
}, respectively. Then, assuming that we have generated MCMC samples of size J from the

posterior distribution of both interarrival and service parameters, we can use this output to estimate various
measures of interest for the queueing system.

An important measure of the average occupancy is the traffic intensity, ρ, that for this queueing model,

P (L | data) 1 2 3 4 5 6 7 8
F. C. Arrival .2233 .6451 .1181 .0115 .0017 .0003 .0001 .0000

Service .5019 .3701 .1048 .0212 .0019 .0001 .0000 .0000
B. B. Arrival .6999 .2669 .0320 .0011 .0001 .0000 .0000 .0000

Service .0000 .0000 .0000 .3369 .4281 .1896 .0431 .0024

Table 2: Posterior probabilities for the mixture size, L, in foreign currency exchanges (F.C.) and business
banking transactions (B.B.). The algorithm predicts an exponential distribution for the F.C. service time
and for the B.B. interarrival time. A fairly large number of components is required for the B.B. service time.
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conditional on the system parameters is given by,

ρ =
E [XS | M,Q, µ]
E [XA | L,P,λ]

=

∑M
r=1Qr

∑r
k=1

1
µk∑L

r=1Pr

∑r
k=1

1
λk

. (17)

It is well known that the system is stable if ρ < 1, see e.g. Gross and Harris (1985). The posterior probability
of having a stable queue can be estimated with,

P (ρ < 1 | xa,xs) ≈ R

J
, (18)

where R is the number of times that the value of the traffic intensity calculated from (17) for each element of
the MCMC sample (L(j),P(j), λ(j),M (j),Q(j), µ(j)) for j = 1, ..., J is less than unity. Note that the posterior
mean of ρ is given by,

E [ρ | xa,xs] = E

[
M∑

r=1
Qr

r∑
k=1

1
µk

| xs

]
× E

[(
L∑

r=1
Pr

r∑
k=1

1
λk

)−1

| xa

]
. (19)

Given the prior structure used, this is finite as shown in the Appendix. Thus, the expectation can be
estimated by the sample mean of the traffic intensities for each element of the MCMC sample. Analogously,
we can estimate the posterior mean of ρ assuming stability, E [ρ | ρ < 1,xa,xs].

3.1 Estimation of the transient behaviour and busy period distributions

Bertsimas and Nakazato (1992) obtain closed expressions for the Laplace transform of the busy period, the
transient waiting time and the transient queue length when the system parameters, {L,P,λ} and {M,Q,µ},
are known. The estimation procedure described in this section is based on these results.

Bertsimas and Nakazato (1992) show that, conditional on ρ < 1, the Laplace transform of the cumulative
distribution function of the length of a busy period, B, is given by,

∫ ∞

0

e−st Pr (B ≤ t) dt =
1
s
−

1−∑M
r=1Qr

∏r
k=1

(
µk

µk+s

)

s

M∏
r=1

s + µr

s− yr (s)
(20)

where yr (s), for r = 1, ..., M , are the M roots of the following equation,
[

L∑
r=1

Pr

r∏

k=1

(
λk

λk + s− yr (s)

)]
×

[
M∑

t=1

Qt

r∏

k=1

(
µk

µk + yr (s)

)]
= 1, (21)

with negative real part, for any complex s with positive real part. Bertsimas and Nakazato (1992) demon-
strate that given s, equation (21) has M roots of interest, yr (s), for r = 1, ..., M, having negative real part
and a further L roots with non negative real part.

The roots of the equation (21) cannot be found analytically and Bertsimas and Nakazato (1992) suggest
using Mathematica to compute them. This approach is not feasible when using reversible jump methods as
the equation is distinct at every MCMC iteration and does not always even have the same number of roots.
Therefore, we propose to extract the roots numerically as follows. Note that, given s, the roots yr(s) of
equation (21) are also roots of the following polynomial,

P (yr (s)) =

[
L∑

r=1

M∑
t=1

PrQt

(
r∏

k=1

λk

t∏

k=1

µk

)
Qr,t (yr (s))

]
−Q0,0 (yr (s)) , (22)

where Qr,t (yr (s)) is another polynomial given by,

Qr,t (yr (s)) =
L∏

k=r+1

(λk + s− yr (s))
M∏

k=t+1

(µk + yr (s)) ,
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whose roots are given by {(λr+1 + s) , ..., (λL + s) ,−µt+1, ...,−µM} and the coefficient of order (L+M−r−t)
is (−1)L−r. Then, we can apply for example the Laguerre algorithm, see e.g. Ralston and Rabinowitz (1978),
which is designed specifically to find the roots of a complex polynomial.

This numerical procedure can be combined with the MCMC algorithm in order to estimate the busy
period distribution function as follows. Given a sample realization from the posterior distribution of the
parameters, (L(j),P(j), λ(j),M (j),Q(j), µ(j)) for j = 1, ..., J , the natural way of estimating the predictive
distributions is using a Monte Carlo approximation,

Pr (B ≤ t | xa,xs, ρ < 1) ≈ 1
R

∑

j:ρ(j)<1

Pr
(
B ≤ t | θ(j)

)
, (23)

where Pr(B ≤ t | θ(j)) is obtained by numerically inverting the Laplace transform given in (20) for each
element of the MCMC sample, θ(j). This can be done using a fast numerical, Laplace transform inversion
method such as that described in Hosono (1981) and extracting numerically the M (j) roots of equation (21)
as describe above. The error of numerical inversion of the Hosono algorithm is less than 10−p+1 |f(t)| for any
inverted function f(t), given a previously chosen value p, see also Bertsimas and Nakazato (1992). Then,
considering that Pr(B ≤ t | θ(j)) is bounded by one, the error of numerical inversion for this probability is
less than 10−p+1 for each t. In our examples, we have chosen p = 6.

Analogously, we can estimate the distribution function of the transient waiting time and the transient
queue length distributions functions using the two following results. Assuming that the system is initially
empty and some other mild initial conditions, Bertsimas and Nakazato (1992) show that if ρ < 1, the Laplace
transform of the waiting time, W (τ) , of a customer arriving at time τ is given by,

∫ ∞

0

e−sτ Pr (W (τ) ≤ w) dτ =
1
s

+
M∑

r=1

(−1)M
eyr(s)w

s

M∏
k=1

µk + yr(s)
µk

M∏
k=1
k 6=r

yk(s)
yr(s)− yk(s)

, (24)

where yr (s), for r = 1, ..., M , are the M roots of equation (21) with negative real part.
And finally, assuming the same initial conditions, Bertsimas and Nakazato (1992) give a expression for

the Laplace transform of the number of customers, N (τ) , in the system at time τ,

∫ ∞

0

e−sτ Pr (N (τ) = n) dτ =

{ ∑L
i=1 π∗0,i (s) , if n = 0,∑L

i=1

∑M
j=1 π∗n,i,j (s) , if n ≥ 1,

(25)

where π∗0,i (s) is the Laplace transform of the probability that at time τ the number of customers in the
system is 0 and the arrival stage currently occupied by the arriving customer is i, and π∗n,i,j (s) is the Laplace
transform of the probability that at time τ the number of customers in the system is n, the arrival stage
currently occupied by the arriving customer is i, and the service who is being served is j. The expressions
for π∗0,i (s) and π∗n,i,j (s) are more complicated and are not reported here to save space, although they can
be numerically evaluated without difficulties. These depend again on the roots of equation (21).

It can be shown that the predictive moments of the system size and waiting time in equilibrium, i.e.
when τ →∞, and the moments of the busy period distribution do not exist given any prior formulation that
places positive mass on ρ = 1, see e.g. Wiper (1998). Thus, the moments of the transient distributions will
go to infinity as τ goes to infinity. However, as alternatives, we can calculate the median and quantiles of
these distributions.

3.2 Results for simulated and real queues

In this section, we illustrate the behaviour of the proposed method with several simulated and real queues
based on the data sets analysed in Section 2. Firstly we consider two simulated queueing systems and then
real systems in the Israeli bank.
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Simulated data. We use interarrival and service data simulated from the following two queueing systems
with approximately the same traffic intensity ρ = 0.289.

• An M/M/1 system where the service times are the exponential data simulated in Section 2 and 300
arrival times were simulated from an exponential distribution with mean 3.456.

• A Coxian/Pareto/1 system where both interarrival and service time data are as in Section 2.

Table 3 shows the probabilities of equilibrium in the system and the posterior means of ρ for both systems.
Also shown are the MLE estimates of ρ. As we might expect, the estimates are very close to the true value.

P (ρ < 1 | data) E [ρ | data] E [ρ | ρ < 1, data] ρ̂MLE

M/M/1 .99998 .29009 .29008 .28935
Coxian/Pareto/1 .99993 .30740 .30736 .28116

Table 3: Posterior probabilities that the system is stable and posterior mean values and MLE estimates for
the traffic intensity for the two simulated systems. The equilibrium probability is extremely large in both
cases and the estimations of ρ are very close to the true value.

Figure 7 illustrates in dotted lines the estimated transient distributions of queue length and waiting time
as a function of time, τ , for both systems. Note that the predictive transient distributions clearly converge as
τ goes to infinity. Observe that in the case of the Coxian/Pareto/1 system, the convergence of the transient
waiting time distributions to the stationary distribution is much slower than for the M/M/1 case. On the
contrary the speed of convergence of the transient queue length distribution is similar in both examples.
These differences are mostly caused by the long-tailed behaviour of the Pareto service time distribution. It
is well known that waiting time distributions are very influenced by the shape of the service time densities,
while queue length distributions are mainly dependent only on their first moment, see e.g. Lillo (2000).
Note that as τ goes to infinity, the estimated probability that the queue is empty approaches one minus
the posterior mean traffic intensity which is coherent with the known result, P (N = 0) = 1 − ρ, where N
denotes the equilibrium queue length in a GI/G/1 model, see e.g. Gross and Harris (1985). Also, the waiting
time probability, P (W (τ) 0), approaches the estimated traffic intensity in the M/M/1 system but not in
the Coxian/Pareto/1 system. Note that the result P (W = 0) = 1− ρ is known to be true for systems with
Poisson arrivals.

Figure 8 shows the estimated distribution functions of the busy period. For the M/M/1 system, the true
system distribution is also given. This coincides very closely with the predictive distribution. Note that the
tail of the busy period distribution is shorter for the Markovian queue.

In order to compare our analysis with a simpler approach, we also implemented a naive, classical analysis
assuming an M/M/1 system for the data generated from the Coxian/Pareto/1 system. Thus, we estimated
both the transient queue length and waiting time distributions and the busy period distribution using the
MLE estimates of the interarrival and service time distributions. The results are quite different from those
derived previously using our approach. This is illustrated in Figure 9 where the estimated waiting time
distributions using the two procedures are compared. These differences are more marked for the waiting
time and busy period distributions than for the queue length distribution. This should be expected because,
as commented earlier, the latter is strongly dependent only on the first moments of the interarrival and
service time distributions.

Real data. We now analyze the foreign currency exchange and business banking data discussed in Section
2. As the bank has a single teller for each kind of service, we have two single server, FIFO, queueing systems.
For both systems, the estimated posterior probability that the system is stable is extremely high and the
posterior mean values for ρ are close to the MLE estimators, as given in Table 4. The traffic intensity is
higher for the business banking system implying that the server in this system has more busy time than the
server in the currency exchange system.
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Figure 7: Transient distributions for queue length (top) and waiting time (bottom) for the M/M/1 and
Coxian/Pareto/1 systems. These approximate the stationary distribution as τ increases. The speed of
convergence of the transient waiting time is slower for the Coxian/Pareto/1 than for the M/M/1 system.

P (ρ < 1 | data) E [ρ | data] E [ρ | ρ < 1, data] ρ̂MLE

Foreign Currency .99957 .59328 .59132 .58691
Business Banking .99954 .82011 .81968 .82149

Table 4: Posterior probabilitities that the system is stable and posterior mean values for ρ in the two real
bank systems. The equilibrium probability is extremely large in both cases. The foreign currency server is
busy about 60% of the time while the business banking server is busy about 82% of the time.
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Figure 8: Estimated busy period distribution functions for the M/M/1 and Coxian/Pareto/1 systems. The
true distribution for the M/M/1 system is also plotted and is very close to the estimated distribution. The
tail of the busy period distribution is shorter for the M/M/1 queue.
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Figure 9: Estimated transient waiting time distribution using the proposed Bayesian GI/G/1 model (solid
lines) and a simple MLE estimation based on a M/M/1 system (dotted lines) for the data generated from
the Coxian/Pareto/1 system. The results are rather different using both approaches.

16



0 1 2 3
0

0.2

0.4

0.6

0.8

1

n

P
(N

(ta
u)

=n
|d

at
a)

Foreign currency transient system size

tau=0
tau=1
tau=2.5
tau=10
tau=30
tau=100
tau=500
tau=1000

0 1 2 3
0

0.2

0.4

0.6

0.8

1

n

P
(N

(ta
u)

=n
|d

at
a)

Business banking transient system size

tau=0
tau=1
tau=2.5
tau=10
tau=30
tau=100
tau=500
tau=1000

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

w

P
(W

(ta
u)

<=
w

|d
at

a)

Foreign currency transient waiting time

tau=0
tau=1
tau=2.5
tau=10
tau=30
tau=100
tau=500
tau=1000

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

w

P
(W

(ta
u)

<=
w

|d
at

a)

Business banking transient waiting time

tau=0
tau=1
tau=2.5
tau=10
tau=30
tau=100
tau=500
tau=1000

Figure 10: Predictive transient queue length (top) and waiting time (down) distributions for the bank
systems. These approximate the stationary distributions as τ increases but the speed of convergence is slow.
For the business banking system, there are still differences between the waiting time distributions after 500
and 1000 minutes.

Figure 10 illustrates the estimated distributions of the transient queue length and waiting time for both
systems as a function of the time, τ . The assumption that the systems are empty at time τ = 0 is true in this
case. We observe that the speed of convergence is slow in both cases. After τ = 100 minutes, the transient
distributions have still not converged to the steady-state. In particular, for the business banking system, we
can still appreciate differences between the waiting time distributions after 500 and 1000 minutes. Observe
that using our approach it is possible to estimate the desired waiting time distribution for a client arriving
at any given instant of time, τ . For example, the estimated probability that a customer who arrives at 9am
asking for business banking services has to wait more than 8 minutes is approximately 0.3.

Table 5 shows some quantiles of the estimated distributions of the length of the busy period. Observe
that the tail of the distribution is heavier for the business bank transactions case.

0.25 0.50 0.65 0.80 0.90 0.95 0.97
Foreign Currency 2.342 6.323 10.902 21.271 41.108 69.610 96.298
Business Banking 2.113 4.596 8.411 19.452 46.671 95.431 148.290

Table 5: Quantiles of the busy period distribution for the two bank systems. The tail of the distribution is
heavier for the business bank transactions case.

The algorithm used to estimate the transient and busy period distributions was programmed in FOR-
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Figure 11: Trajectories of the observed waiting times, W (τ), during two test mornings and the 50% and
80% quantiles of the predictive, transient waiting time distributions obtained using training data from the
first 10 days.

TRAN and the computational cost depends mainly on the number of time instants, τ , for which the transient
distributions are estimated, on the number of points where the distributions are evaluated and on the num-
ber of phases of the interarrival and service time distributions in the MCMC sample. For the examples, the
computational time required to estimate all the quantities associated with each queueing system was less
than one and a half hours.

Finally, in order to analyze the performance of the procedure, we develop the following cross-validation
mechanism. We consider the interarrival and service data corresponding to the first 10 days as a training
data set and estimate the transient waiting time distributions using the training data. Then, the trajectories
of the true waiting times of the customers arriving during the last four days can be compared with these
predictive distributions. Figure 11 shows two trajectories of the waiting times, W (τ), observed during the
mornings of two of the last four days as a function of the arrival instants, τ . These are compared with
the 50% and 80% quantiles of the predictive transient waiting time distributions obtained using the training
data. The observed waiting time trajectories are consistent with the quantiles of the predictive distributions.
The trajectories for the other periods during the last four days show a similar pattern, which suggests that
the predictions from this model are consistent with the data.

4 Conclusions and Extensions

In this article, we have demonstrated that we can carry out Bayesian inference for a GI/G/1 queueing
system. Firstly, we have shown that the Coxian distribution can be used as a semiparametric model for
density approximation. One particular advantage of our approach is that, due to the use of an improper
prior, we are able to approximate both long and short tailed interarrival and service time distributions.

We have also shown that it is possible to carry out Bayesian prediction for the transient and busy period
behaviour of a general queueing system. In particular, we have illustrated how a root finding algorithm and
Laplace transform inversion can be combined within a MCMC algorithm in order to make inference about
these characteristics. This is important in real life situations such as banking where the bank is only open
for a finite time and thus, equilibrium may not be reached in practice.
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A number of extensions are possible. Firstly, we should note that to capture multimodal distributions, a
Coxian distribution with a large number of phases and hence a large number of parameters is needed. This
can make the semiparametric approximation somewhat inefficient. In such cases alternative approximations
which better capture multimodality could be considered. A difficulty is that in the queueing context, results
concerning the transient and busy period behaviour are hard to obtain with such systems.

As pointed out by a referee, in order to attempt to simplify the inferential procedure, we might use
model selection criteria, such as the Akaike Information Criterion, Bayesian Information Criterion or Bayes
factors, for choosing a single queueing model from the Coxian class. An advantage of this approach is that
once we have chosen the most probable model for the interarrival and service times, the computation of the
performance measures of the queueing system is simplified.

In this article we have only considered a single server queueing system. From the point of view of
inference for the interarrival and service processes, considering a multi server system presents no extra
problems. However there are more difficulties in estimating the characteristics of the queueing system such
as waiting time as the queueing theory for the Coxian/Coxian/c system is less well developed. Some results
are available however, see e.g. Bertsimas (1990). Also, we should note that the Coxian distribution is phase
type, see e.g. Neuts (1981) and, for example results for the waiting time in steady state of a system with
phase type arrivals and services are known, see e.g. Asmussen et al. (2001).

Another important objective in the queueing context is optimal control of the system, e.g. when to open
and close the system or optimizing the number of servers. The methods of Bayesian decision theory can be
combined with Bayesian inference to do this. For one example of the use of Bayesian methods to control the
capacity of a queueing system, see e.g. Auśın et al. (2003).

Finally, a further extension is to apply the Coxian model and prior structure in areas such as insurance
risk where long tailed samples are common. In particular, in the context of estimating ruin probabilities,
many results from queueing theory can be applied, see e.g. Prabhu (1998). Work is currently underway in
this area.
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Appendix: Proof that the posterior of ρ is proper with finite mean

Here, we show that the posterior is indeed proper. Assume that we observe a sample x1, ..., xn from a
Coxian random variable X with parameters θ = (L,P, λ1,υ) and that we use the prior distribution defined
in Section 2. Then, we need to prove that the following integral is finite,

∫
f (θ)

n∏

i=1

(
L∑

r=1
Prfr (xi | λ1,υ)

)
dθ. (26)

Let us denote, for r = 1, ..., L,

Cj,r =
r∏

i6=j

λi

λi − λj
=

r∏

i 6=j

∏i
k=2υk∏i

k=2υk −
∏j

k=2υk

, for j = 1, ..., r.
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Observe that
∑r

j=1Cj,r = 1, see e.g. McGill et al. (1965). Then, for n = 1, the integral (26) is given by,

∫
f (L) f (P|L) f (υ|L)

λ1

L∑
r=1

Pr

r∑
j=1

Cj,rλ1

j∏
k=2

υk exp
(
−λ1x1

j∏
k=2

υk

)
dθ

=
1
x

∫
f (L) f (P|L) f (υ|L)

L∑
r=1

Pr

r∑
j=1

Cj,rdθ−λ1 =
1
x

< ∞,

where we have denoted θ−λ1 = (L,P,υ) . Finally, note that it is sufficient to have proved that the integral
(26) is finite for n = 1, because now, we can define f (θ | x1) as a new proper prior and consider the likelihood
based on {x2, ..., xn}, which is regular and proper, in which case the posterior is known to be proper. Then,
the integral (26) is finite for n ≥ 1.

Now, we will prove that the posterior mean of ρ given in (19) is finite. Firstly, observe that the generalized
Erlang distribution, whose density is given in (27), is bounded by the first rate,

fr (x | λ1, υ) ≤ λ1, (27)

This can be proved by induction. For r = 1, we have that f1 (x | λ1) = λ1e
−λ1x ≤ λ1. Now, for i = 2, ..., r−1

assume that,
fi (x | λ1, υ) = fi (x | λ1, ..., λi) ≤ λ1,

where λi = λ1υ2..., υr. Then, as fr is the density of the sum of r exponentials, it can be expressed as the
convolution of the r’th exponential density and fr−1, that is,

fr (x | λ1, ..., λr) =
∫ x

0

λr exp (−λrx) fr−1 (x− u | λ1, ..., λr−1) du

≤ λ1 [1− exp {−λrx}] ≤ λ1.

Using this property, we now prove that the first factor of (19), which is the predictive mean of the Coxian
distribution, is finite. It is clear that if we do not observe at least two data the predictive mean does not
exit. Then, assuming that xs = {xs

1, x
s
2} and using (27),

E

[
M∑

r=1
Qr

r∑
j=1

1
µj
|xs

]
∝

∫
M∑

r=1
Qr

r∑
j=1

f (θ)

µ1

∏j
k=2υk

2∏

i=1

(
M∑

r=1
Qrfr (xi | µ1,υ)

)
dθ

≤
∫ (

M∑
r=1

Qr

r∑
j=1

f (θ)∏j
k=2υk

)(
M∑

r=1
Qrfr (x1 | µ1,υ)

)
dθ

=
∫ (

M∑
r=1

Qr

r∑
j=1

f (M) f (Q|M) f (υ|M)∏j
k=2υk

)(
M∑

r=1
Qr

r∑
j=1

Cj,r

j∏
k=2

υk exp
(
−µ1x1

j∏
k=2

υk

))
dθ

=
1
x1

∫
M∑

r=1
Qr

r∑
j=1

f (M) f (Q|M) f (υ|M)∏j
k=2υk

dθ−µ1

=
1
x1

∫
M∑

r=1
Qr

r∑
j=1

f (M) f (Q|M) dQ
∫

f (υ|M)∏j
k=2υk

dυ

≤ ∞ if a > 1.

Finally, as this integral is finite for n = 2, we can define a new proper prior for θ,

g (θ) ∝
M∑

r=1
Qr

r∑
j=1

f (θ)
µ1

∏r
k=2υk

2∏

i=1

(
M∑

r=1
Qrfr (xi | µ1, υ)

)
,

which is a proper density. With this prior and the likelihood based on {x3, ..., xn} , the posterior is proper
and then, the predictive mean is finite for n ≥ 2.
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Finally, let us prove that the second factor of the posterior mean of ρ given in (19) is finite. Firstly, we
show that ,

r∑
k=1

1∏r
k=2υk

=
r∑

j=1

Cj,r∏r
k=2υk

.

This can be proved observing that the expectation of a generalized Erlang, fr, which is a sum of r exponential
random variables with rates λ1, ..., λr, is given by the sum of the inverse of these rates,

r∑

j=1

1
λj

=
r∑

k=1

1
λ1

∏r
k=2υk

=
∫ ∞

0

x
r∑

j=1

Cj,rλ1

r∏
k=2

υk exp
(
−λ1x1

r∏
k=2

υk

)
dx =

r∑
j=1

Cj,r

λ1

∏r
k=2υk

.

We now assume that na = 1,

E




(
L∑

r=1
Pr

r∑
j=1

1
λj

)−1

|xa


 ∝

∫
f (θ)

L∑
r=1

Pr

r∑
j=1

(
λ1

∏j
k=2υk

)−1

(
L∑

r=1
Prfr (x1 | λ1, υ)

)
dθ

=
∫

f (L) f (P|L) f (υ|L)
L∑

r=1
Pr

r∑
j=1

(∏j
k=2υk

)−1

(
L∑

r=1
Prfr (x1 | λ1, υ)

)
dθ

=
∫

f (L) f (P|L) f (υ|L)
L∑

r=1
Pr

r∑
j=1

(∏j
k=2υk

)−1

L∑
r=1

Pr

r∑
j=1

Cj,rλ1

j∏
k=2

υk exp
(
−λ1x1

j∏
k=2

υk

)
dθ

=
1
x2

1

∫
f (L) f (P|L) f (υ|L)
L∑

r=1
Pr

r∑
j=1

(∏j
k=2υk

)−1

L∑
r=1

Pr

r∑
j=1

Cj,r∏j
k=2υk

dθ

=
1
x2

1

∫
f (L) f (P|L) f (υ|L)
L∑

r=1
Pr

r∑
j=1

(∏j
k=2υk

)−1

L∑
r=1

Pr

r∑
j=1

(∏j
k=2υk

)−1

dθ−λ1

=
1
x2

1

∫
f (L) f (P|L) f (υ|L) dθ−λ1 =

1
x2

1

Now, using the same arguments as above, this integral is also finite for na ≥ 1 .
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