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Abstract

In this paper we consider the problem of designing a GI/M/c queueing system. Given arrival and

service data, our objective is to choose the optimal number of servers so as to minimize an expected cost

function which depends on quantities, such as the number of customers in the queue. A semiparametric

approach based on Erlang mixture distributions is used to model the general interarrival time distribution.

Given the sample data, Bayesian Markov chain Monte Carlo methods are used to estimate the system

parameters and the predictive distributions of the usual performance measures. We can then use these

estimates to minimize the steady-state expected total cost rate as a function of the control parameter c.

We provide a numerical example based on real data obtained from a bank in Madrid.
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1 Introduction

Optimal design and control of queues have been extensively investigated from an operational research point

of view, see e.g. Kitaev and Rykov (1995). However, in this framework, the system parameters are typi-

cally assumed known. In practice, the system manager is faced with the problem of estimating the system

parameters before solving the optimization problem. Furthermore, a common approach consist in selecting
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a queueing model and estimate the parameters without considering the uncertainty induced from this esti-

mation in the system design. The Bayesian methodology offers a natural way to introduce the uncertainty

resulting from the parameter estimation and model selection into a cost function depending on estimated

performance measures.

Bayesian analysis of queueing systems is a fairly recent research area. Some recent references are Armero

and Conesa (2000), Auśın et al. (2003, 2004). In these works, Bayesian inference and prediction is undertaken

for different queueing models ranging from the M/M/c system to more general queues. However, although

most Bayesian analyses have considered the estimation of quantities of interest such as queue size, few studies

have been devoted to the design and control problem. In one of the first works in Bayesian estimation for

queues, Bagchi and Cunningham (1972) develop an optimal design procedure to find the optimum service

rate and system capacity in a single server, Markovian queue. Also, Armero and Bayarri (1996) discusses

some criteria for deciding the number of servers in a M/M/c queue and Wiper (1998) also for the Er/M/1

model, but no systematic procedure for decision making is proposed. These works motivates the formulation

of a closed expression based on a cost structure to address the decision problem on the number of servers.

On the other hand, most Bayesian analyses have considered queueing systems where the customers arrive

according to a Poisson process. To the best of our knowledge, the only exception is Wiper (1998) where

inference for the Er/M/c model is considered. However, although the Erlang distribution may be used to

fit interarrival (or service) time data with coefficient of variation less than one, it is inappropriate if the data

have large coefficient of variation or are multimodal. Our objective in this paper is thus to consider Bayesian

control for the general, GI/M/c queueing system.

In
∮

2, we describe the GI/M/c queueing model where we consider a semiparametric approximation

to the general interarrival time distribution based on a mixture of Erlang distributions. Note that this

family includes the Erlang, hyperexponential and exponential distributions, which are commonly used in the

queueing literature, as special cases. It is also dense over the set of distributions on the positive reals.

The use of mixture distributions to model data is very common and the Bayesian approach provides an

important tool for semiparametric density estimation, see, for example, Diebolt and Robert (1994). Markov

Chain Monte Carlo methods (MCMC), see Robert (1996), have been developed for Bayesian analyses of

mixture models. Recently, MCMC methods for exploring mixture models of unknown dimension have

been proposed. Richardson and Green (1997) introduced the reversible jump technique to analyze normal

mixtures. This type of algorithm was used by Rı́os et al. (1998) for exponential mixtures and Wiper et

al. (2001) for mixtures of gamma distributions. More recently, an alternative approach to reversible jump

based on a birth-death process has been proposed by Stephens (2000). In
∮

3, we make use of the latter

methodology to make inference for the system parameters. We define prior distributions and propose a
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birth-and death MCMC algorithm to obtain a sample from the joint posterior distribution of the system

parameters and the predictive interarrival time distribution.

In
∮

4 and
∮

5, we describe the estimation of various quantities of interest in the system and address the

problem of optimizing the number of servers. Firstly, we estimate the traffic intensity and the probability that

the equilibrium condition holds. Then, assuming a stable system, we estimate the predictive distributions of

the system size and the waiting time in the queue, among other characteristics. Finally, we propose a steady

state, average cost function which depends on the number of servers and some performance measures. The

predictive cost and the performance measures are all estimated using the data generated from the MCMC

algorithm.

In
∮

6, we illustrate the methodology with real data obtained from a bank in Madrid. Conclusions and

a discussion of possible extensions are included in
∮

7.

2 Queueing model

Throughout, we will consider a multichannel queueing system with c servers, FIFO discipline and indepen-

dence between interarrival and service times. Furthermore, service times are independent and exponentially

distributed with unknown mean 1/µ. In order to model the general interarrival time distribution, we use a

semiparametric model based on a mixture of Erlang distributions. Thus, customers are assumed to arrive

individually with independent interarrival times distributed as a mixture of Erlang distributions. If T is a

typical interarrival time, we have,

f(t | k,w, λ, ν) =
k∑

r=1

wrEr(t | νr, λr), 0 < t < ∞, (1)

where k is the number of mixture components, w = (w1, ..., wk), are weights and Er(t | νr, λr) represents

the Erlang density function, which has been parameterized to have mean λr, for r = 1, . . . , k, that is,

Er(t | νr, λr) =
(νr/λr)

νr

Γ(νr)
tνr−1 exp(− νr

λr
t). (2)

For fixed k, this model includes the usual Erlang, hyperexponential and exponential distributions as special

cases and letting k → ∞, essentially any distribution on the positive real line can be modeled as a mixture

of Erlang distributions.

We wish to estimate the performance measures and a cost function for the system in equilibrium. The

equilibrium condition for a GI/G/c queue is that the traffic intensity, ρ, is less than the number of servers,
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c, see, for example, Gross and Harris (1985). In the GI/M/c model as outlined above, the traffic intensity

is given by,

ρ =

(
µ

k∑
r=1

wrλr

)−1

. (3)

3 Bayesian inference.

In this section, we develop Bayesian inference techniques for the unknown arrival parameters, k, w =

(w1, . . . , wk), λ = (λ1, . . . , λk), ν = (ν1, . . . , νk) and for the service parameter µ.

We consider throughout the simple experiment of observing ns service times, s = {s1, ..., sns}, and na

interarrival times, t = {t1, ..., tna}, which has been considered in a number of earlier articles; see e.g. Armero

and Bayarri (1996). Given this experiment, the likelihood function separates into two parts, one concerning

the arrival parameters, (k,w, λ, ν) and another concerning the service parameter, µ. Hence, assuming inde-

pendent prior distributions for the arrival and service parameters, the corresponding posterior distributions

will also be independent a posteriori.

3.1 Prior specification and updating

Here, we assign prior distributions for the system parameters. For the service rate, µ, we can assume a

gamma prior distribution, µ ∼ G (a, b), that is

f(µ | a, b) =
ba

Γ(a)
µa−1e−bµ for µ > 0.

It is straightforward to show that, conditional on the service data, the posterior distribution is also gamma

so that,

µ | s ∼ G

(
a + ns, b +

ns∑
i=1

si

)
. (4)

In order to make inference for the interarrival distribution parameters, following Diebolt and Robert

(1994), it is convenient to introduce a missing data formulation in which we define a set of independent and

identically distributed (i.i.d.) latent variables, Z1, ..., Zna , associated with the interarrival time variables,

T1, ..., Tna , so that,

Ti | Zi = r ∼ Er (νr, µr) , P (Zi = r | k,w) =wr,

for r = 1, ..., k. With this approach, every interarrival data set, t = {t1, ..., tna}, is associated to a missing data

set, z = {z1, ..., zna} , indicating the specific components of the mixture from which the observed interarrival

times are assumed to arise.
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Now, we can define a joint prior distribution on the mixture parameters, (k,w, λ, ν). Firstly, we assume

a truncated Poisson prior distribution for the mixture size, k, taking values from 1 to kmax,

P (k) ∝ γk

k!
, (5)

In practice we take γ = 2 and kmax = 10 in order to penalize against overfitting the data with mixtures with

a large number of components. We also define prior distributions for the remaining parameters conditional

on k,

w | k ∼ D(φ1, ..., φk), νr | k ∼ GE(ϑ), λr | k ∼ IG(α, β),

for r = 1, ..., k, where D(φ1, ..., φk) denotes a Dirichlet distribution,

f(w | k) =
Γ(φ1 + . . . + φk)
Γ(φ1) · · ·Γ(φk)

k∏
r=1

wφr−1
r ,

GE(ϑ) is a geometric distribution with mean 1/ϑ,

P (νr) = (1 − ϑ)νr−1ϑ, for νr = 1, 2, . . .,

and IG(α, β) denotes an inverted gamma distribution,

f (λr) =
βα

Γ (α)
λ−(α+1)

r exp
(
− β

λr

)
.

Typically, in practice we set, for all r = 1, ..., k; φr = 1, which implies a uniform prior for w and α = 1.1,

β = 1 and ϑ = 0.01 giving fairly diffuse priors for λr and νr with finite means.

Conditional on k, and given the interarrival time data, the required posterior conditional distributions

for the MCMC algorithm can be shown to be,

P (Zi = r | t, k,w, λ, ν) ∝ wr
(νr/λr)

νr

Γ(νr)
tνr−1
i exp(− νr

λr
ti), for r = 1, ..., k,

w | t, z, k ∼ D(φ1 + n1, ..., φk + nk),

λr | t, z, k ∼ IG(α + nrνr, β + Srνr),

and,

f(νr | t, z, k,w, λ) ∝ νnrνr
r

Γ(νr)nr
exp

{
−νr

(
− log(1 − ϑ) +

Sr

λr
+ nr log λr − log Pr

)}
, (6)
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where nr = #{Zi = r}, Sr =
∑

i:Zi=r

ti and Pr =
∏

i:Zi=r

ti, for r = 1, ..., k.

3.2 BDMCMC algorithm

In this subsection, we propose a Birth-Death MCMC (BDMCMC) algorithm to obtain a sample from the

joint posterior distribution of the interarrival parameters, k,w, λ and ν. The BDMCMC approach was

introduced by Stephens(2000) for normal mixtures and is based on a birth-death process (BD) where the

mixture size, k, changes so that births and deaths of the mixture components occur in continuous time.

The stationary distribution of the BD process is the joint posterior of the mixture parameters. In order to

improve mixing, the BD process can be combined with a standard MCMC method where k is kept fixed, as

will be shown further on.

In the BD process, births of the mixture components occur at a constant rate which we might set equal

to the parameter, γ, from the prior distribution of k in (5). A birth increases the number of components by

one. The weight of the new component are generated from a beta distribution with parameters (1, k) and the

remaining parameters are sampled from the prior distribution. The death rate of every mixture component

is a likelihood ratio of the model with and without this component, given by,

δr0 =
na∏
i=1

⎛
⎜⎝

∑k
r=1
r �=r0

wr

1−wr0
Er(ti | νr, λr)∑k

r=1 wrEr(ti | νr, λr)

⎞
⎟⎠ , for r0 = 1, ..., k.

Thus, death rates are very low if the corresponding component explains a lot of data and high if it does

not. The total death rate, δ, of the process at any time is the sum of the individual death rates. A death

decreases the number of mixture components by one. The birth and death processes are independent Poisson

processes, thus, the time to next birth/death event is exponentially distributed with mean 1/ (δ + γ) and a

birth or death occur with probabilities proportional to γ and δ, respectively.

Then, we define an algorithm, based on Stephens(2000), as follows:

1. Set initial values k(0),w(0), λ(0), ν(0).

Birth Death process.

2. Run the birth-death process for a fixed time t0.

2.1. Start from k(j),w(j), λ(j), ν(j).

2.2. Compute the death rates.

2.3. Simulate the exponential time to next jump.

2.4. Simulate the type of jump (birth or death).

2.5. Modify the mixture components and
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2.6. if the run time is less than t0 go to 2.2.

MCMC algorithm conditional on k.

3. Update the allocation by sampling from z(j+1) ∼ z| t,k(j+1),w(j), λ(j), ν(j).

4. Update the weights by sampling from w(j+1) ∼ w| t, z(j+1), k(j).

5. For r = 1, ..., k(j+1),

5.1. Update the means by sampling from µ
(j+1)
r ∼ µr| t,z(r+1), k(j+1).

5.2. Update νr using a Metropolis step.

6. j = j + 1. Go to 2.

Step 2 of the algorithm is the BD process described above. The BD process is run for a fixed time, t0,

in each iteration of the algorithm. Following Stephens (2000), we have fixed in our examples t0 = 1 because

doubling t0 is equivalent to doubling γ. As should be expected, we have found in practice that larger values

of the birth rate, γ, produce better mixing but require more time in the computation of the algorithm.

Steps 3 to 5 are standard Gibbs sampling, see, for example, Gelfand and Smith (1990) whereby the model

parameters are updated conditional on the mixture size, k. The only slightly complicated step is 5.2. where

we introduce a Metropolis Hasting method, see Hastings(1970), to sample from the posterior distribution

of ν. To do this, we generate candidate values for ν from a negative binomial proposal distribution. We

have chosen this proposal distribution because, for large values of ν, the conditional distribution in (6) has

a similar form to a negative binomial distribution. This part of the algorithm where the mixture size, k, is

kept fixed is very similar to that used in Auśın et al. (2004).

This algorithm can be shown to produce a sample from the joint posterior parameter distribution; see

e.g. Stephens (2000). Thus, given the MCMC output of size J , we can estimate the predictive density of

the interarrival time distribution using,

f(t | s, t) =
1
J

J∑
j=1

k(j)∑
r=1

w(j)
r Er(t | ν(j)

r , λ(j)
r ). (7)

For further details of the BDMCMC methodology in the context of Bayesian inference for a normal

mixture model, see Stephens (2000) or Hurn et al. (2003). As commented before, this type of algorithms are

an alternative to the reversible jump techniques introduced by Richardson and Green (1997). A reversible

jump method was proposed in a previous work, to make inference on the general service time distribution

for a M/G/1 system, see Auśın et al. (2004). In practice, we have found that, in general, both schemes

perform similarly. However, the BDMCMC algorithm is somewhat easier to implement. Some illustrations

comparing both approaches are shown in Section 6.
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4 Estimation of performance measures in the system

Suppose now that we have obtained a Monte Carlo sample of size J from the posterior distribution of the

arrival parameters, via the BDMCMC algorithm, and the service parameter µ via direct sampling of the

gamma density f(µ | s) as in (4). Then we can estimate the probability of having a stationary distribution

with,

P (ρ < c | s, t) ≈ 1
J

#
{
ρ(j) < c

}
, (8)

where,

ρ(j) =

⎛
⎝µ(j)

k(j)∑
r=1

w(j)
r λ(j)

r

⎞
⎠

−1

, (9)

and {(k(1),w(1), λ(1), ν(1)), ..., (k(J),w(J), λ(J), ν(J))} is the sample obtained from the BDMCMC algorithm

and {µ(1), ..., µ(J)} is the sample generated from the posterior distribution of µ given by (4). If this probability

is large, it may be reasonable to assume that the system is stable. Assuming equilibrium, we can estimate

the traffic intensity, given in (3), as follows,

E [ρ | t, s, ρ < c] ≈ 1
J1

∑
j:ρ(j)<c

ρ(j), (10)

where ρ(j) is given in (9) and,

J1 = #{ρ(j) < c}, (11)

is the size of the MCMC subsample where the equilibrium condition holds.

It is well known, see e.g. Gross and Harris (1985), that in queuing systems with non-Markovian interarrival

process, the stationary distribution of the number of customers, N∗, found in the system by an arriving

customer differs from the stationary distribution of the number of customers, N, found in the system at an

arbitrary time instant. For our GI/M/c model, given the system parameters, θ = {k,w, λ, ν, µ} , we have

that (see e.g. Allen, 1990),

P (N∗ = n | θ) =

⎧⎪⎨
⎪⎩

c−1∑
m=n

(−1)m−n (
m
n

)
Um for n = 0, 1, ..., c − 2,

Dσn−c n ≥ c − 1,

(12)

where σ is the unique root in the interval (0, 1) of the equation,

σ = f∗
A (cµ (1 − σ)) , (13)
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and f∗
A is the Laplace transform of the interarrival time distribution,

f∗
A (s) =

k∑
r=1

wr

(
νr/λr

s + νr/λr

)νr

,

and,

Um = DCm

c∑
p=m+1

(
c
p

)
Cp(1−gp)

c(1−gp)−p
c(1−σ)−p , for m = 0, 1, ..., c − 1.

D =

[
1

1 − σ
+

c∑
p=1

(
c
p

)
Cp(1−gp)

c(1−gp)−p
c(1−σ)−p

]−1

,

Cp =

⎧⎪⎨
⎪⎩

1 if p = 0,
p∏

m=1

(
gm

1−gm

)
if p = 1, 2, ..., c,

gp = f∗
A (pµ) , for p = 1, ..., c, (14)

The distribution of N depends on the distribution of N∗ and is given by,

P (N = n | θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − ρ
c − ρ

c−1∑
p=1

P (N∗ = p − 1 | θ)
(

1
p − 1

c

)
for n = 0,

ρ
nP (N∗ = n − 1 | θ) for n = 1, ..., c− 1,

ρ
c P (N∗ = n − 1 | θ) for n ≥ c.

(15)

Assuming equilibrium, Monte Carlo approximations of the predictive stationary distributions of N∗and

N, can be obtained. For example, we can approximate the predictive distribution of N by,

P (N = n | s, t, ρ < c) ≈ 1
J1

∑
j:ρ(j)<c

P
(
N = n | θ(j)

)
(16)

where θ(j) = (k(j),w(j), λ(j), ν(j), µ(j)) and J1 is given in (11). Note that equation (13) has to be solved for

every θ(j), but it is easy to approximate σ(j) by using the Newton-Raphson method or a similar procedure.

Other quantities such as the stationary distribution of the number of busy servers can also be estimated

although again, we must distinguish between the number of busy servers at arrival and arbitrary time

instants, N∗
b and Nb. Observe that the number of busy servers is equal to the number of customers in the

system if there are less customers than servers and equals c in the contrary case. Thus,

P (Nb = n | s, t, ρ < c) =

⎧⎪⎨
⎪⎩

P (N = n | s, t, ρ < c) if n < c,

P (N ≥ c | s, t, ρ < c) if n = c.
(17)
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Conditioning on the number of busy servers, we can also calculate the distribution of the number of customers

served per unit of time, Ns. Observe that in a GI/G/c system with m busy servers, the variable Ns follows

a Poisson distribution of rate µm. Then, given the system parameters, θ, we have that,

P (Ns | θ) =
c∑

m=1

(µm)n
e−µm

n!
P (Nb = m | θ) .

And given the data, the predictive distribution can be approximated as before with,

P (Ns = n | s, t, ρ < c) ≈ 1
J1

∑
j:ρ(j)<c

P
(
Ns = n | θ(j)

)
(18)

Other important quantities are the predictive distributions of the number of customers in the queue at

arrival and arbitrary time instants, N∗
q and Nq. In the first case, we have,

P (Nq = n | s, t) =

⎧⎪⎨
⎪⎩

P (N ≤ c | s, t) if n = 0,

P (N = c + n | s, t) if n ≥ 1.
(19)

Another measure which is of interest to arriving customers, is the waiting time in the queue, W . Given

the system parameters, θ, this is exponentially distributed with a jump of height P (W = 0) at the origin.

The distribution function is given by,

FW (x | θ) = 1 − P (W > 0) exp {−cµ (1 − σ) x} , x ≥ 0, (20)

see Allen (1990), where,

P (W > 0 | θ) =
D

1 − σ
, (21)

and where σ and D are given in (13) and (14), respectively. As above, we can use the following Monte Carlo

approximation,

FW (x | s, t) ≈ 1
J1

∑
j:ρ(j)<1

FW

(
x | θ(j)

)
(22)

Wiper (1998) shows that, for any given GI/M/1 system, where independent, continuous priors on the

arrival and service rates with positive density in ρ = 1 are considered, the moments of the predictive

distributions of waiting time and queue size do not exist. It is straightforward to see that the moments

for N∗, N , Nq, N∗
q and W do not either exist for the multiserver system, GI/M/c, with the same prior

conditions. Thus, the distributions given in (16), (19) and in (22) do not have finite moments. It is possible

however to evaluate the expectations of these predictive distributions if we assume ρ < c−ε instead of ρ < c,

10



see Lehoczky (1990), but we have found in practical examples that this procedure is very sensible to the

election of ε.

Observe, on the other hand, that the predictive distributions of the number of busy servers, Nb, and

the number of served customers, Ns, given in (17) and (18), respectively, do have finite mean. This is

straightforward to see as for any GI/G/c system in equilibrium, the expected number of busy servers is,

E [Nb | θ] = ρ, (23)

see e.g. Gross and Harris (1985), which in our queuing model is given by (3), and on average, each busy

server attends µ clients per unit of time so that the number of served clients per unit of time is,

E [Ns | θ] = µE [Nb | θ] =

(
k∑

r=1

wrλr

)−1

. (24)

5 Cost functions and optimal control for the model.

In this section, we formulate cost functions in order to address the design problem for the GI/M/c queueing

model and determine the optimal number of servers in the system. We consider a classical, linear, cost

structure evaluated in the stationary state. Each cost function will depend linearly on the expected values

of the performance measures considered in the previous section, or equivalently, on their mean values per

unit of time (u.t.). Thus, we are dealing with an infinite horizon problem where the objective function is the

expected cost per u.t. evaluated in the stationary state.

Also, our aim is to construct cost functions which balance the designer’s and the customers’ interests.

For that reason, we consider two different classes of costs in the queue: on the one hand, costs incurred from

servers activities and, on the other hand, costs incurred from the wait of clients. The first group of costs

includes the expenses coming from the number of busy and empty servers and the benefits obtained from

the number of served clients which are all of them associated to the designers’ interests. The second group

of costs represents the customers’ interests and are related with the number of clients and the period of time

they spend waiting in the queue. We introduce the following notation to define the cost structure:

rb = cost per u.t. associated to the number of busy servers.

re = cost per u.t. associated to the number of empty servers.

rs = cost per u.t. associated to the number of served customers.

rq = cost per u.t. associated to the number of customer waiting in the queue.

rW = cost per u.t. associated to the waiting time in the queue.
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These costs can take positive or negatives values depending on whether they correspond to profits or losses.

As the problem of designing a queue is not generally a work for clients but for people supervising the system,

we consider performance measures at arbitrary time instants and not at arrival time instants, both described

in the previous section. Under this construction, the total cost per u.t. will be,

Cost = rbL(Nb) + re {c − L(Nb)} + rsL(Ns) + rqL (Nq) + rW L (W ) , (25)

where Nb, Ns, Nq and W are the number of busy servers, the number of served customers, the number

of customers and the waiting time in the queue, respectively, defined in the previous section. L is a loss

function which represents the loss due to each performance measure. For example, L(Nb) represents the loss

due to the number of busy servers and L (Nq) is the loss due to the number of people waiting for service.

Many different loss formulations can be defined. For example, consider the loss associated with Nq , we can

assume the following loss structure,

L1 (Nq) =

⎧⎪⎨
⎪⎩

0 if Nq ≤ nq,

1 if Nq > nq,
(26)

where a cost, rq, is incurred per u.t. if the queue length exceeds a previously specified threshold, nq. A more

realistic alternative would be to consider a linear cost proportional to the number of waiting customers,

L2 (Nq) =

⎧⎪⎨
⎪⎩

Nq if Nq ≤ nq,

n′
q if Nq > nq,

(27)

where a cost, rq, is incurred per u.t. per customer in the queue if the queue length does not exceed a

threshold, nq, and a constant cost, rqn
′
q, is incurred per u.t. when the threshold is exceeded, where n′

q is

another previously fixed finite constant.

Similar L1 and L2 loss functions can be formulated for the other performance measures, Nb, Ns and W ,

for which a set of thresholds, nb, ns and w, respectively, have to be fixed. Note that the values of nq and

w must be finite by assumption because, as pointed out, the predictive distributions of Nq and W have no

finite moments, and thus, an infinite value for a threshold will lead to an infinite value of the expected cost.

On the contrary, we can assume infinite values for nb and ns as the predictive mean of nb and ns are finite.

Given that the system parameters, θ, verify the equilibrium condition and considering L1 loss functions

12



as the given in (26), the expected cost per u.t. is a function of the number of server given by,

g (c | θ) = rec+(rb − re)P (Nb > nb | θ)+ rsP (Ns > ns | θ)+ rqP (Nq > nq | θ)+ rW P (W > w | θ) . (28)

Then, given the interarrival and service data, the predictive mean cost can be estimated using the tail

probabilities of the predictive distributions given in (17), (18), (19) and (22).

However, in practice, the most common assumption is to consider a linear cost function whose mean

value is the main interest, see e.g. (referecia clásica relevante). Then, in order to develop a parallel analysis

to the classical approach, we consider L2 loss functions for all performance measures, as the given in (27),

with infinite thresholds whenever it is possible. Thus, using (23) and (24), the expected cost per u.t. is now

given by,

g (c | θ) = rec + (rb − re + rsµ) ρ + rqE [L2 (Nq) | θ] + rW E [L2 (W ) | θ] , (29)

where the expected loss for Nq is given by,

E [L2 (Nq) | θ] =
nq∑

n=0

nP (N = n + c | θ) + n′
q [1 − P (N ≤ nq + c | θ)] ,

where the distribution of N can be derived from (15), and the expected loss for W can be shown to be,

E [L2 (W ) | θ] =
D

[
1 − e−cµ(1−σ)w

]
cµ (1 − σ)2

+
D

[
w′e−cµ(1−σ)w′ − we−cµ(1−σ)w

]
1 − σ

,

which is simplified to the first summand for the particular case where w and w′ are chosen to be equal.

If the system parameters are not known, but we have a sample of interarrival and service times, {t, s},
we can estimate the mean cost per u.t. given the MCMC output in the usual way,

g (c | t, s, ρ < c) ≈ 1
J1

∑
j:ρ(j)<c

g
(
c | θ(j)

)
, (30)

For discrete functions, it is possible to find out how many minima there are considering a monotone

optimal procedure, see Lillo and Mart́ın (2000). This consists in finding a point, c0, of the objective function,

g (c) , where g (c0 + 1) − g (c0) > 0, and such that, g (c + 1) − g (c) > 0 for every c > c0. It can be shown

that the expected cost functions (28) and (29) allow a monotone optimal procedure if re > 0. Observe in

(28) that when the number of servers, c, increases, the probabilities that Nb and Ns are larger than nb and

ns approaches to a constant value and the probabilities that Nq and W are larger than nq and w approaches

to zero. Then, g (c) will be approximately linearly increasing for large c. The same argument can be used

13
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Figure 1: Histogram of interarrival time data and estimated interarrival time density.

for the expected cost function given in (29).

6 Bank data problem.

In this section, we consider the design of a multiserver real bank in Madrid. Interarrival and service times

of 98 customers are recorded from 10:00 to 11:30 in the morning during three days. The mean service time

is approximately 4.58 minutes. Using the proposed BDMCMC method for the service data, the posterior

probability of having a single component is larger than 0.9. Thus, our Bayesian density estimation method

predicts an exponential distribution for service time distribution. Then, we assume this model for the

service time. We also use a non-informative prior in (4) by setting a and b equal to zero. Then, the posterior

distribution of the service rate parameter, µ, is G (98, 449.42) .

Figure 1 shows the histogram of the 98 interarrival times. The estimated density function (7) using the

Erlang mixture with the BDMCMCM algorithm has been superimposed. None of times is larger than two

minutes and the distribution seems to be bimodal. In fact, the posterior probability of having two Erlang

mixture components is very high, P (k = 2 | t) ≈ 0.9013.

For comparison purposes, we also run the reversible jump algorithm (RJMCMC) proposed in Auśın et

al. (2004) for these interarrival and service data. Note that this approach is a little harder to implement

mainly because of the Jacobian calculation. As expected, we observe that the predictive densities obtained

with both approaches are very close. However, the BDMCMC method seems to move faster through the
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Figure 2: Changes in k against the first 10000 iterations for the interarrival time data with the BDMCMC
method (top) and the RJMCMC method (bottom).

posterior distribution of k. This is illustrated in Figure 2, where the mixing of both chains for the interarrival

time data is compared. This effect do not really imply a better convergence for the BDMCMC, but it is due

to the continuous structure of the algorithm, see Cappé et al. (2003). In fact, we have observed a similar

convergence performance for the posterior distribution of k with both approaches. As commented in Cappé

(2003), we have also observed that the BDMCMC chain is more likely to visit the low probability regions as

e.g. large values of k. Also, note that the BDMCMC is somewhat more costly in computational time because

of the calculations of death rates for each mixture size. For further details in the choice of BDMCMC vs.

RJMCMC see Auśın (2004).

Given the observed arrival and service data, we now estimate the posterior probability of having a stable

system, see (8), for different values of c, which are shown in Table 1. Observe that at least, 3 servers are

needed to assume that the ergodic condition, ρ < c, holds. However, 3 servers may not satisfy the optimal

conditions resulting from the balance of costs in the system, as will be shown below.

Table 1 also shows the estimations for the traffic intensity for each c, see (10). Note that using (23), it

can be shown that,

E [Nb | s, t, ρ < c] = E [ρ | s, t, ρ < c] .
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Then, when there are only 1 or 2 servers, all of them are almost always busy on average as the system

is probably unstable. But, when there are 3 servers or more, the equilibrium condition holds with high

probability and there are approximately 2.66 busy servers on average.

c 1 2 3 4 5 6
P (ρ < c | s, t) .000228 .003328 .890256 .999916 1.00000 1.00000

E [ρ | s, t, ρ < c] 0.57401 1.75714 2.59582 2.65789 2.65801 2.65801

Table 1: Estimations of the posterior probabilities of having a stable system and the expected values for the
traffic intensity for some values of c.

Figure 3 illustrates the estimated probabilities describing the number of customers in the system, N, see

(16), at arbitrary time instants, for 3, 4 and 5 servers. Note that the probability of having 2 or 3 customers

in the system are very similar for each number of servers. We have observed that this feature does not

appear in the predictive distribution of N∗ where we have identified the mode in 2 customers for any number

of servers. This illustrates the fact that, although the mean number of busy servers at an arbitrary time

instant is approximately 2.66, the mean number of busy servers found by an arrival customer is less than

2.66. It can also be seen that the distribution of N in a system with 3 servers has a long tail compared to

other systems. Note that just by increasing the number of servers from 3 to 4 the probability of having an

empty queue, P (Nq = 0 | s, t) , grows from 0.44 to 0.87.

Figure 4 shows the distribution of the waiting time in the queue, W, see (22), for 3, 4 and 5 servers.

Observe that, in a system with 3 servers, the probability of having to wait less than 10 minutes is fairly

large, P (W < 10 | s, t) ≈ 0.8. However, again, if the value of c is increased from 3 to 4 the probability of

not having to wait, P (W = 0 | s, t) , obtained from (22), grows from 0.37 to 0.82.

Now, we can address the optimization problem with the bank data. We wish to analyze the influence of

the values of the different elements in the cost function. Thus, we formulate different cost functions defined

from the minimum number of servers from which we have assumed equilibrium, that is, 3 servers. First, we

examine the influence of the choice of costs. In practice, it is not easy to assign costs associated with the

wait of customers, but, in general, the costs incurred from servers activities are known. Thus, we consider

fixed costs for rb, re and rs, and different values for rq and rW . We assume a linear cost function defined

with L2 loss functions, see (27), and infinite thresholds for all variables with the exception of Nq and W

whose thresholds must be finite and are assumed to be e.g. nq = n′
q = 5 customers and w = w′ = 10 minutes,

respectively. The choice of thresholds and loss functions will be discussed later on.

Figure 5 shows the estimated cost functions obtained from (30) for different values of the costs per u.t.

The first case (solid line) considers all the costs equal to the unity (except for rs = −1 which is usually

a benefit). The optimum value is 4 servers. Note that for c ≥ 5, the waiting costs, rq and rW , have no
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Figure 3: Predictive probabilities for the variable N , the number of customers in the system at arbitrary
time instants for queues with 3, 4 and 5 servers.

effect and the cost function becomes linearly increasing as commented in Section 5. In the second case

(dashed line), the costs of customer’s interest, rq and rW , are increased in one unit. As expected, this affects

increasing the expected cost for small c and the optimum value is now 5 servers. However, the expected

cost is not affected for c ≥ 5, which is approximately linear and similar to the first case. Conversely, in the

third case (dotted line), when rq and rW are decreased, the cost function is decreased for small c and the

optimum value is 3 servers. The same pattern with these three cases is observed for different values of the

costs. For example, in case 4 (dash-dotted line), the cost function with two-unit costs is plotted. As in the

first case, the optimum value is 3 servers although now the total cost function is much larger, as expected.

If the waiting costs rq and rW were increased or decreased in this case, we would observe the same effects in

this cost function as those observed in cases 2 and 3.

We now explore the influence of the selection of thresholds. In particular, we analyze the sensitivity

to the choice of nq and w because of their finiteness restriction. We firstly assume that to n′
q = nq and

w′ = w. Table 2 shows the estimated average cost obtained with unit costs and L2 loss functions, as in the

previous case 1, using different values for nq and w. Note that the expected cost decreases as the values of

the thresholds are decreased. The reason is that the predictive mean of L2(Nq) and L2(W ) goes to infinity
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Figure 4: Predictive distribution functions of the variable W , the waiting time (in minutes) in the queue for
systems with 3, 4 and 5 servers.

as these thresholds increase. However, although this effect is evident for c = 3, it is not readily noticeable

for c ≥ 4. In fact, the optimum value is 4 servers in all cases. The same optimum is obtained even assuming

that n′
q and w′ are much larger than nq and w, respectively. As in this example, we have observed that, in

general, the choice of the thresholds is quite robust to the resulting optimum number of servers.

g (c | t, s, ρ < c)

c
nq = 40
w = 100

nq = 20
w = 30

nq = 5
w = 10

nq = 5
w = 5

nq = 1
w = 1

nq = 0
w = 0.25

3 15.0486 11.9154 7.9219 6.6116 3.5655 2.5806
4 4.2067 4.1817 4.1260 4.0656 3.7052 3.4700
5 4.5355 4.5236 4.5143 4.5122 4.4751 4.4349
6 5.4228 5.4293 5.4343 5.4342 5.4325 5.4276
7 6.4330 6.4301 6.4280 6.4280 6.4272 6.4265
8 7.4263 7.4264 7.4264 7.4264 7.4264 7.4264

Table 2: Estimated average cost per u.t. for different values of nq and w using L2 loss functions for Nq and
W . Optimal values are indicated in bold.

Finally, we design the same experiment but considering now loss functions of L1 type, see (26), for Nq

and W . Table 3 shows the estimated average cost for different values of nq and w. Observe that, conversely

to the previous case, the expected cost increases as the thresholds decrease. This should be expected as the
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Figure 5: Estimated cost functions with different costs per u.t.

predictive means of L1(Nq) and L1(W ) go to zero when nq and w increase, respectively. However, again the

optimum number of servers remains the same for all cases and is equal to 3 servers. Thus, we can conclude

that, in general, there is larger sensitivity to the choice of loss functions than to the choice of thresholds.

g (c | t, s, ρ < c)

c
nq = 40
w = 100

nq = 20
w = 30

nq = 5
w = 10

nq = 5
w = 5

nq = 1
w = 1

nq = 0
w = 0.25

3 2.4712 2.5518 2.8463 2.9726 3.4110 3.5861
4 3.4273 3.4276 3.4382 3.4579 3.6089 3.7211
5 4.4270 4.4270 4.4271 4.4284 4.4518 4.4797
6 5.4260 5.4260 5.4260 5.4261 5.4288 5.4333
7 6.4265 6.4265 6.4265 6.4265 6.4267 6.4273
8 7.4264 7.4264 7.4264 7.4264 7.4264 7.4264

Table 3: Estimated average cost per u.t. for different values of nq and w using L1 loss functions for Nq and
W . Optimal values are indicated in bold.

7 Conclusions

In this paper, we have proposed a Bayesian approach for control of the number of servers c in a GI/M/c

system. We have developed a BDMCMC method based on mixtures of Erlang distributions to approximate
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the general interarrival time distribution, performance measures have been predicted and incorporated into

average cost functions to determine the optimal number of servers. This methodology have been illustrated

with a real data set.

Our Bayesian approach can be extended to the GI/G/c queue considering Erlang mixtures both for

the interarrival and the service times. However, given the parameters in this case, there are not explicit

expressions in the queueing literature for the stationary distributions which are straightforward to calculate.

One possibility is to consider the phase type family of distributions (PH) introduced by Neuts (1981). Some

known results of the GI/PH/c model could be used as the Erlang mixture is a PH distribution. Similar

ideas are implemented in Auśın et al. (2004) for the M/PH/1 queue.

A more general extension consists in the design of the GI/G/c/K model, with K ≤ ∞, where K is the

system capacity. It is possible to extend the cost structure to queues with finite capacity by considering costs

based on lost demand. An example for the particular case where the system capacity equals the number of

servers can be found in Auśın et al. (2003).

Some modifications of our analysis could also be carried out. As commented before, the reversible jump

technique introduced by Richardson and Green (1997) could be used as an alternative to the BDMCMC

methodology. Also, we could have considered approximating the interarrival time with a mixture of gamma

distributions which is a more flexible model; see Wiper et al. (2001). However, a disadvantage of this model

is that the probability that a simpler model (exponential, Erlang or hyperexponential) cannot be easily

calculated; see e.g. Auśın et al. (2004). Another disadvantage is that the gamma mixture is not PH which

means that extension to more complex systems with this model is difficult.

Finally, there are also some alternatives to the cost structure defined. For example, costs per unit of time

in the stationary state could be replaced by costs per busy cycle using the cycle criterion, see Lillo (2000).

Furthermore, an interesting extension of our cost analysis could be considering the entire posterior dis-

tribution of the cost function instead of using the expected value of the cost. Then, we could compare the

different densities obtained for each number of servers by using e.g. the Kullback-Leibler distance. As a

consequence, correlations between different components of costs could be considered.
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