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Abstract

The objective in numerical integration is the approximation of a definite integral

using numerical techniques. There are a large number of numerical integration methods

in the literature and this article overviews some of the most common ones, namely, the

Newton-Cotes formulas, including the trapezoidal and Simpson’s rules, and the Gaus-

sian quadrature. Different procedures are compared and illustrated with examples.

Discussions about more advanced numerical integration procedures are also included.

1 Introduction

A numerical integration technique is an algorithm to calculate the numerical value of a

definite integral,
∫ b

a

f (x) dx (1)

Numerical integration problems go back at least to Greek antiquity when e.g. the area of a

circle was obtained by successively increasing the number of sides of an inscribed polygon.

In the seventeen century, the invention of calculus originates a new development of the

subject leading to the basic numerical integration rules. In the following centuries, the field

becomes more sophisticated and, with the introduction of computers in the recent past,

many classical and new algorithms have been implemented leading to very fast and accurate

results. Consequently, there is a vast amount of relevant literature on solving numerical

integration problems consisting of books, articles, software packages, etc. Some essential

references are [1, 2, 3, 4, 5, 6].
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Numerical integration is sometimes called quadrature. A quadrature rule is a numerical

approximation of an integral using a weighted sum of some values of the integrand,

∫ b

a

f (x) dx ≈
n∑

i=1

ωif (xi) ,

where x1, . . . , xn are the points or abscissas, usually chosen to be in the interval of integration,

and ω1, . . . , ωn are the weights associated to these points.

The simplest quadrature rules are the Riemann sums. Given a set of ordered abscissas,

a = x1 < x2 < . . . < xn = b, the left-handed Riemann sum is obtained with,

∫ b

a

f (x) dx ≈
n−1∑
i=1

hif (xi) ,

where hi = (xi+1 − xi), the length of the i-th interval between points. Observe that the

area under the curve in the i-th interval is approximated by a rectangle of width hi and

height f (xi). Analogously, one can define the right-handed and midpoint Riemann sums by

evaluating the function on the maximum or midpoint value, respectively, of each i-th interval.

The Riemann sums are also known as rectangular rules because of the use of rectangles to

approximate the integral.

The rest of this paper is organized as follows. Section 2 describes the Newton-Cotes

formulas which are based on evaluating the integrand at a number of equally spaced points.

Section 3 introduces the Gaussian quadrature rules where the abscissas are chosen optimally

to give the most accurate approximations possible. This section also includes a numerical

example comparing different approaches. Some comments on the extensions of the Gaussian

quadrature are also included. Section 4 concludes with some discussion and remarks.
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2 Newton-Cotes formulas

Assume that we divide the interval [a, b] into n equally spaced points such that,

xi = x1 + ih, for i = 0, 1, . . . , n− 1,

where x1 = a, xn = b and h = (b− a) /n. Let us denote fi = f (xi) , for i = 1, . . . , n. The

main idea in Newton-Cotes formulas is to approximate the function f (x) using polynomials

that pass through the points (xi, fi) and integrate them to approximate the integral from

x1 to xn. Newton-Cotes formulas are of closed type when the end-points, x1 and xn, are

included in the set of abscissas and they are called of open type when the end-points are not

used to approximate the integral.

The basic closed Newton-Cotes formula is the trapezoidal rule which uses two points, x1

and x2, and approximates the function f (x) on [x1, x2] using a straight line joining (x1, f1)

and (x2, f2) . Then, the function is approximated by the following first order polynomial,

f (x) ≈
(

f2 − f1

h

)
x +

x2f1 − x1f2

h
.

This polynomial can be integrated to give the following approximation,

∫ x2

x1

f (x) dx ≈
∫ x2

x2

f2 − f1

h
x +

x2f1 − x1f2

h
dx =

h

2
(f1 + f2) .

Observe that this is called the trapezoidal rule because the area under f (x) is approximated

by a trapezoid with bases f1 and f2 and height h = (x2 − x1), see Figure 1. The error of

this approximation can be shown to be given by, see e.g. [2],

ET = −h3

12
f ′′ (ξ) ,
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Figure 1: Trapezoidal rule

where ξ is some point in the interval [x1, x2]. Then, the amount of error will not be larger

than the maximum value of the second derivative of the function in the interval and it will

increase with the curvature of the function. The trapezoidal rule is exact for polynomials up

to and including degree 1.

The trapezoidal rule can be used repeatedly to approximate the integral over the whole

interval, [x1, xn]. This is called the extended or composite trapezoidal rule and is given by,

∫ xn

x1

f (x) dx =

∫ x2

x1

f (x) dx + ... +

∫ xn

xn−1

f (x) dx

≈ h

(
f1

2
+ f2 + ... + fn−1 +

fn

2

)
,

whose approximation error is equal to −(n − 1)h3f ′′ (ξ) /12. A powerful extension of the

trapezoidal rule is the Romberg integration, see e.g. [5], which uses a sequence of refinements

of the extended trapezoidal rule by increasing carefully the number of subintervals.

The three-point closed Newton-Cotes formula is called the Simpson’s rule and uses a
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quadratic polynomial joining the points (x1, f1) , (x2, f2) and (x3, f3) to approximate the

function f (x) on the interval [x1, x3] ,

f (x) ≈ αx2 + βx + γ,

where the coefficients α, β and γ are given by,

α =
f1 − 2f2 + f3

2h2
,

β =
−2x1 (f1 − 2f2 + f3)− h (3f1 − 4f2 + f3)

2h2

γ =
x2

1 (f1 − 2f2 + f3) + hx1 (3f1 − 4f2 + f3) + 2h2f1

2h2
.

Then, we can integrate this second order polynomial to obtain the Simpson’s approximation,

∫ x3

x1

f (x) dx ≈ h

3
(f1 + 4f2 + f3) . (2)

The error in this case can be shown to be given by,

ES = −h5

90
f (iv) (ξ) , (3)

where f (iv) (ξ) is the fourth derivative of f (x) evaluated at some point ξ such that x1 ≤ ξ ≤

x3. Simpson’s rule is exact for polynomials up to and including degree 3. This is surprising

because it is designed to be exact for quadratic polynomials but, due to the symmetry of

the formula, it is also exact for cubic polynomials.

As before, we can use the Simpson’s rule repeatedly to obtain the following extended or

composite Simpson’s rule, where the number of points, n, must be odd,

∫ xn

x1

f (x) dx =

∫ x3

x1

f (x) dx + ... +

∫ xn

xn−2

f (x) dx

≈ h

3
(f1 + 4f2 + 2f3 + 4f4 + 2f5... + 4fn−1 + fn) . (4)
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The approximation error is equal to −(n− 1)h5f (iv) (ξ) /180. Note that the Simpson’s rule

will in general imply better accuracy than the trapezoidal rule if the function f (x) is smooth

enough (with finite fourth derivative).

The four-point closed Newton-Cotes formula is called the Simpson’s 3/8 rule and is based

on a cubic polynomial approximation,

f (x) ≈ αx3 + βx2 + γx + δ,

where α, β, γ and δ are constants such that the polynomial passes through the points

(x1, f1) , . . . , (x4, f4) . These coefficients can be calculated using the Lagrange interpolation

formulas, see e.g. [2]. Then, the Simpson’s 3/8 rule can be obtained to be,

∫ x3

x1

f (x) dx ≈ 3h

8
(f1 + 3f2 + 3f3 + f4) ,

whose approximation error is given by,

ES̃ = −3h5

80
f (iv) (ξ) .

As expected, Simpson’s 3/8 rule is exact for polynomials up to and including degree 3. Note

that the approximation error for the Simpson’s 3/8 rule is larger than the ordinary Simpson’s

error given in (3). However, the Simpson’s 3/8 rule has the advantage that the number of

points, n, is not required to be odd when it is used repeatedly to approximate the integral

over the whole interval, [x1, xn]. Then, if n is even, one possibility is using 3/8 Simpson’s

rule for the first four points and the ordinary Simpson’s rule for the remaining points, whose

number (including the fourth point) is definitely odd.
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The five-point closed Newton-Cotes formula is called the Boole’s rule and is given by,

∫ x5

x1

f (x) dx =
2h

45
(7f1 + 32f2 + 12f3 + 32f4 + 7f5) ,

which can be obtained using the fourth order Lagrange polynomial that passes trough

(x1, f1) , . . . , (x5, f5) . The error is −8h7f (vi) (ξ) /945 and it is exact for polynomials of degree

5 or less. Boole’s rule is also known as Bode’s rule, as in e.g. [7], due to an early typo.

Further point closed Newton-Cotes formulas can be obtained by integrating the Lagrange

polynomials that passes through the considered points, see e.g. [8]. In general, observe

that higher point formulas will imply higher accuracy only when the function can be well

approximated by a polynomial.

Open Newton-Cotes formulas approximate the integral from a = x1 to b = xn without

using the interior points, x2, x2, ..., xn−1. Some of these formulas are shown in Table 1.

Newton-Cotes formulas of open type can be useful for example when the function takes

infinite values at the endpoints or when one or both endpoints are infinity. However, these

are not very common in practice as it is not reasonable to use them repeatedly to obtain

extended open rules. Also, the Gaussian quadrature rules, which will be described in the next

section, lead always to more accurate approximations than open Newton-Cotes formulas.

3 Gaussian quadrature

Suppose now that we have the freedom to choose the abscissas at which to evaluate the func-

tion f (x) rather than being equally spaced points. The Gaussian quadrature rules provide
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Table 1: Newton-Cotes formulas of open type.

Approximation formula Error

∫ x3

x1
f (x) dx ≈ 2hf2

h3

24
f ′′ (ξ)

∫ x4

x1
f (x) dx ≈ 3h

2
(f2 + f3)

h3

4
f
′′
(ξ)

∫ x5

x1
f (x) dx ≈ 4h

3
(2f2 − f3 + 2f4)

28h5

90
f (iv) (ξ)

∫ x6

x1
f (x) dx ≈ 5h

24
(11f2 + f3 + f4 + 11f5)

95h5

144
f (iv) (ξ)

∫ x7

x1
f (x) dx ≈ 6h

20
(11f2 − 14f3 + 26f4 − 14f5 + 11f6)

−41h7

140
f (vi) (ξ)

careful choices of these points in order to obtain much more accuracy in approximating the

required integral. These are open formulas in the sense that it is not required to evaluate

the function at the end-points. Furthermore, it is possible to define a weighting function,

W (x) , such that the approximation of the integral will be exact for polynomials times this

weight function instead of only for polynomials. Then, the numerical approximation will be

as follows,
∫ b

a

W (x) f (x) dx ≈
n∑

i=1

ωif (xi) .

The advantage of incorporating a weighting function, W (x) , is that singularities or difficult

terms can be removed from the function to be integrated.

An n-point Gaussian quadrature rule is constructed to be exact for polynomials of degree

(2n− 1), by a suitable choice of the points, xi, and weights, ωi. In fact, it can be shown (see

e.g. [5]) that the abscissas used for the n-point Gaussian quadrature formulas are optimal

and given precisely by the roots of the n-th orthogonal polynomial, pn (x) , for the same
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interval, [a, b] , and weighting function, W (x). A set of polynomials {pn (x)} is orthogonal

if they satisfy the condition,

∫ b

a

W (x) pn (x) pm (x) dx = 0, for n 6= m.

The simplest form of Gaussian quadrature uses uniform weighting, W (x) = 1, and the

reference interval is [a, b] = [−1, 1]. The orthogonal polynomials for this weighting function

and interval are the Legendre polynomials, see e.g. [5], which are used to approximate the

integrand f(x) over the interval [−1, +1] as follows,

∫ 1

−1

f (x) dx ≈
n∑

i=1

ωif (xi) ,

where xi are the roots of the Legendre polynomials and ωi are the corresponding weights,

which are well-known for this case and are given in Table 2. If we are interested in approx-

imating the integral defined on an arbitrary interval, [a, b] , we can use a simple change of

variable as follows,

∫ b

a

f (x) dx = k

∫ 1

−1

f (c + kx) dx ≈ k

n∑
i=1

ωif (c + kxi) , (5)

where c = (b + a) /2 and k = (b− a) /2. This is called the Gauss-Legendre quadrature rule.

The following example illustrates and compares it with the Simpson’s approximation.

Example Assume that we are interested in the approximation of the following integral,

∫ π
2

0

cos (x) dx,

10



Table 2: Gauss-Legendre abscissas and weights

no points 2 3 4 5

xi ±
√

1
3

0.0 ±0.7746 ±0.3399 ±0.8611 0.0 ±0.5385 ±0.9062

ωi 1.0 0.88889 0.55556 0.65215 0.34785 0.56889 0.47863 0.23693

which is known analytically to be one. Firstly, we use the two-point Gauss-Legendre quadra-

ture, given in (5), to obtain the following approximation,

∫ π
2

0

cos (x) dx ≈ π

4

[
1.0× cos

(
π

4
+

π

4
√

3

)
+ 1.0× cos

(
π

4
− π

4
√

3

)]
= 0.99847,

which is very close to the true value of one and gives an approximation error of 0.00153.

Now, we approximate the same integral using the three-point Simpson’s quadrature, given

in (2),
∫ π

2

0

cos (x) dx ≈ π

12

[
cos (0) + 4 cos

(π

4

)
+ cos

(π

2

)]
= 1.0023.

This gives an approximation error of 0.0023 which is larger than the error obtained previously

with the Gauss-Legendre quadrature that was based only on two points.

The Gaussian quadrature is also superior when it is compared with the composite Simp-

son’s rule. For example, the four-point Gauss-Legendre quadrature gives the following ap-

proximation for the same integral,

∫ π
2

0

cos (x) dx ≈ 0.65215π

4
× cos

(
π

4
+

0.3399π

4

)
+

0.65215π

4
× cos

(
π

4
− 0.3399π

4

)

+
0.34785π

4
× cos

(
π

4
+

0.8611π

4

)
+

0.34785π

4
× cos

(
π

4
− 0.8611π

4

)
= 0.999999977
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which is a much better approximation than the obtained with the following composite Simp-

son’s quadrature based on five points, as given in (4),

∫ π
2

0

cos (x) dx ≈ π

24
cos (0) + 4 cos

(π

8

)
+ 2 cos

(π

4

)
+ 4 cos

(
3π

8

)
+ cos

(π

2

)
= 1.000134585

Alternatively to the Gauss-Laguerre quadrature, other Gaussian rules can be developed

using different classical orthogonal polynomials. Table 3 shows some of these polynomials

together with their associated intervals and weighting functions. A large amount of infor-

mation about these polynomials and their properties can be found in [7] and [9]. See also [5]

and [10] for numerical procedures on the calculation of the abscissas and weights.

Table 3: Classical orthogonal polynomials with their intervals and weighting functions.

Interval W (x) Symbol Polynomial

[−1, 1] 1 Pn (x) Legendre

[0,∞) e−x Ln (x) Laguerre

(−∞,∞) e−x2
Hn (x) Hermite

[−1, 1] (1− x2)
−1/2

Tn (x) 1st kind Chebyshev

[−1, 1] (1− x2)
1/2

Un (x) 2nd kind Chebyshev

When we have an unusual choice for W (x) , we can develop our own Gaussian quadra-

ture although this task usually becomes more difficult. Firstly, we need to obtain the set

of orthogonal polynomials for the considered interval and weighting function. This can be

done for example using a recurrence relation as described in [5]. Then, we need to calculate
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the zeros of these polynomials which will be the points, xi, at which to evaluate the func-

tion. These can be obtained using a root-finding algorithm like Newton’s method or faster

procedures as the described in [5]. Finally, we need to calculate the weights ωi which can be

obtained analytically by integrating the orthogonal polynomials for which the approximation

is exact. There are also alternative formulas which are more efficient for the calculation of

these weights, see e.g. [5] and [10].

The Gaussian quadrature can be modified in order to incorporate one or both end-points

in the set of abscissas, leading to the Radau and Lobatto quadrature formulas respectively, see

e.g. [10]. These formulas use a uniform weighting function W (x) = 1 and the free abscissas

are the roots of some polynomials related with the Legendre orthogonal polynomials. Radau

and Lobatto quadratures are slightly less optimal than the Gaussian quadrature.

Another important extension of the Gaussian quadrature is the Gauss-Kronrod algorithm,

see e.g. [5] and [10]. This is an adaptive Gaussian method where the abscissas are suitably

selected such that they can be reused in the next iterations reducing the number of function

evaluations. This approach is implemented in various software packages such as Mathematica

(Wolfram Research Inc.).

4 Discussion and remarks

The generalization of the described quadrature rules to the multidimensional case is not

straightforward. The main reason is that the number of function evaluations for an n-

dimensional integral increases to the power of n and then, it becomes very expensive even for
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low dimensional integrals. An alternative approach for these cases is the use of Monte Carlo

integration (see eqr188, eqr456) which gives reasonable approximations for multidimensional

integral defined over complicated regions.

It is frequent in practice to have a tabulated function at given points, xi, obtained from

experimental data. In these cases, the abscissas are predetermined and cannot be chosen at

will. One possibility is to obtain the Lagrange polynomial which interpolates the observed

points and integrate it to approximate the integral, see e.g. [10]. One alternative is the use

of splines which are piecewise polynomial functions with some finite derivatives that can be

arranged to interpolate the data points, see e.g. [2].

Finally, note that the problem of evaluating an integral such as the given in (1) is equiv-

alent to solving the differential equation y′(x) = f(x) with y(a) = 0. There are many

numerical procedures in the literature for solving differential equations that could be applied

for this problem, see e.g. [5]. These would be specially well suited when the function to

integrate is concentrated around one or various peaks.
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