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Abstract

Queueing models can be useful in solving many complex reliability problems. Com-

ponent failures are usually interpreted as the arrival of customers and the repair or

replacement of failed components is typically associated with the service facility. A

distinctive characteristic of queues in reliability is that requests for service are usually

generated by a finite customer population because, in general, there are a limited num-

ber of units, e.g. machines which can fail, and when they are all in the system, being

repaired or waiting for repair, no more can arrive. Thus the arrivals do not form a

renewal process as they may depend on the number of units in the system. This is an

essential difference from typical queueing systems, where the population of potential

arrivals can be considered to be effectively limitless. This article overviews the main

queueing models used in reliability which are illustrated using the classical machine

repairmen model. Some statistical methods to estimate the main quantities of interest

in a queue are also discussed.

1 Introduction

A queueing system is a mathematical model to characterize situations where certain units,

called customers, arrive in continuous time in order to receive a service or facility provided

by other units, called servers. When customers arrive, they immediately start to be served

if there is an empty server. Otherwise, the customers must spend some time waiting in line

for service until a server becomes available. Queueing theory is the methodology devoted to

the stochastic description of queueing systems and the study of their performance measures,
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such as the queue length, waiting times, etc. Some essential references on queueing theory

are [1, 2, 3, 4, 5].

Queueing theory can be very useful in solving many complex reliability problems. Com-

ponent failures or machine breakdowns can be treated as arrivals of customers and the repair

or replacement of failed components may be seen as the service facility in a queueing system.

The number of repair facilities or maintenance crews is equivalent to the number of servers.

It is useful to be able to find the analogies between reliability and queueing theory because

it is frequently found in practice that a given reliability problem has been previously stud-

ied with an equivalent problem in queueing theory [6]. For example, the number of failed

components corresponds to the queue length and the time elapsed from a failure to repair is

equivalent to the waiting time in the system or sojourn time. Note that the notion of repair

may also refer to preventive maintenance activities performed before system failures. For

example, a deteriorated machine can be repaired to an upgraded status before it fails.

A queueing model is completely described by six characteristics that, following Kendall’s

notation [7] are given by A/B/c/K/m/R, where A and B describe the arrival and service

pattern, respectively, c the number of servers, K the system capacity or maximum number of

customers allowed in the system, m the size of the customer population and R the discipline

or the order in which customers are selected for service. Different symbols are traditionally

used for the type of distribution of A and B, for example, M denotes exponential (Marko-

vian) random variables, D degenerate (constant) variables and G general distributions. For

instance, the M/G/1 queue denotes a single-server system with exponential inter-arrival
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times and general service time distribution. Note that when nothing is said about K, m

and R, it is assumed that there is an infinite capacity, an infinite customer population and

a first-come-first-served discipline.

In the case of reliability, the main characteristic of queues is that requests for service

are usually generated by a finite customer population, that is, m < ∞. This is because, in

general, there is a limited number of units (machines, devices, etc.) which can fail, and when

they are all in the system (being repaired or waiting for repair), no more can arrive. Then, the

arrivals of requests do not form a renewal process as the arrivals may depend on the number

of units staying at the system. This is an essential difference from typical queueing systems,

where the population of potential arrivals can be considered to be effectively limitless. For

example, in telephone operations the number of customers is usually large enough that the

probability of having all of them wanting service at once is extremely small. However, in

repair of machinery, the whole set of machines may be simultaneously out of order. Queueing

systems with finite population are known as finite source queues, which have been extensively

studied in the queueing literature, see e.g. [8] and the detailed bibliography provided in [9].

Finite source queueing models are used to describe the classical machine repairmen problem

which is described in the following section.

2 The machine repairmen problem

Consider a repairable system (see eqr348) consisting of r machines which operate indepen-

dently of each other and may eventually fail. When a machine breaks down, it has to be
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Figure 1: Machine repairmen/interference problem

repaired by one of the c repairmen, if there are any available. Otherwise, it has to wait

for service until a server becomes available. Thus, the operating machines are outside the

queueing system and enter the system only when they break down and require repair, as

shown in Figure 1. Machine lifetimes and repair times are independent random variables

with rates λ and µ, respectively. Then, the so-called mean time between failures (MTBF)

and mean time to repair (MTTR) are given by 1/λ and 1/µ, respectively.

This model is known as the machine repairmen problem or the machine interference

problem since the machines interfere with each other when all the servers are busy and new

requests for service arrive. It can be used to describe a large variety of real situations such

as manufacturing systems (see e.g. [10]), telecommunication traffic (see e.g. [11]), computer

systems (see e.g. [12]), inventory models (see e.g. [13]), etc. This broad range of applications

has motivated a large amount of research on this problem in the literature. For two reviews,

see [14, 15].
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The simplest machine repairmen model supposes that both lifetimes and service times

are exponentially distributed, there is no limit in the waiting room, the repair is carried out

by a first-in-first-out discipline and after having been served, each machine restarts working

the same as new. The queueing model describing this system is denoted by M/M/c/r/r

or, equivalently, M/M/c//r. Note that there is an important difference from the notation

used for the arrival process in infinite source queues, such as the M/M/c queue, where the

symbol M indicates a Poisson arrival process. However, in the M/M/c/r/r queue, the time

between failures of each machine is exponential but the arrival of failures from the whole set

of machines does not follow a Poisson process because, as commented before, these arrivals

depend on the number of machines waiting for repair. In particular, when the number of

machines waiting for service increases, the arrival rate of further service demands decreases.

More specifically, when n machines are “down” for repair, then, there are (r − n) operating

machines and the time until the next break down is the minimum of (r − n) exponential

distributions with rate λ, which is also an exponential distribution of rate (r − n) λ. Then,

given that there are n machines being repaired or waiting for repair, the arrival rate or

average number of fails per unit time is given by,

λn =

⎧⎪⎪⎨
⎪⎪⎩

(r − n) λ, if 0 ≤ n ≤ r,

0, if n ≥ r,

(1)

and the average number of repaired machines per unit time is given by,

µn =

⎧⎪⎪⎨
⎪⎪⎩

nµ, if 0 ≤ n ≤ c,

cµ, if n ≥ c.

(2)
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Thus, it can be shown that the number of machines in the M/M/c/r/r system follows a

birth-death process where an arrival of a failure is interpreted as a birth and the completion

of a repair is interpreted as a death, see e.g. [3]. Then, the long-run probability of having n

machines in the system can be shown to be,

pn =

⎧⎪⎪⎨
⎪⎪⎩

(
r
n

) (
λ
µ

)n

p0, if 1 ≤ n ≤ c,

(
r
n

)
n!

cn−cc!

(
λ
µ

)n

p0, if c ≤ n ≤ r,

(3)

where p0 is obtained from p0 + ... + pr = 1. Using these probabilities, we can calculate for

example the mean number of machines in the system (being repaired or waiting for repair),

L, and the mean number of machines waiting in the queue for repair, Lq, using,

L =
r∑

n=1

npn and Lq =
r∑

n=c+1

(n − c) pn. (4)

As noted in (1), the arrival rate given that the system is in state n is (r − n) λ. Then, the

unconditional average rate at which machines arrive to the system (also called the effective

mean arrival rate) is given by,

λeff =
r−1∑
n=0

(r − n) λpn = λ (r − L) .

Thus, we can also obtain the mean waiting time, W, a machine spends in the system (from

failure to recovery) and the mean queueing time, Wq, a machine waits in the queue for repair

using the well known Little’s formulae,

L = λeffW and Lq = λeffWq. (5)

Moreover, it is also possible to derive the distribution functions of the waiting time and

queueing time in addition to their mean values, W and Wq, see e.g. [2, 3]. Some other
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performance measures such as the probability that a broken machine must wait for repair,

can also be obtained. Finally, it is worth observing that these results also hold even though

the lifetimes are not exponentially distributed. That is, equation (3) is also valid for the

G/M/c/r/r queueing system. Furthermore, equation (3) also holds for systems with expo-

nential lifetimes, general service times and the same number of repairmen as machines, i.e.

for the M/G/c/c/c queue, see [3].

These results have also been extended to more complicated situations where the lifetimes

and repair durations follow more general distributions than the exponential one, such as the

Erlang distribution, mixtures of exponentials, Coxian and phase-type distributions (see e.g.

[16] and [17]). Many other features have been introduced to extend the applicability of the

machine repairmen problem including, for example, vacation models where the servers can

take a vacation of random duration when the system is empty (see e.g. [18]), retrial models

where machines that find all the servers busy do not enter the queue but instead reapply for

service at random intervals (see e.g. [19]), unreliable servers which may themselves breakdown

(see e.g. [20]), priority models where a group of machines are served with priority over the

others (see e.g. [21]), k-out-of-r systems where at least k machines must be functioning

for the whole system to work properly (see e.g. [22]), heterogeneous failure modes (see e.g.

[23]), etc. Another important extension is the use of spares, also called stand-by or sparing

redundancy (see eqr349), which is introduced in the following section.
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2.1 The machine repairmen problem with spares

Assume now that in addition to the r working machines considered previously, there is

another set of s machines standing by as spares such that, when a working machine fails,

it is immediately substituted by a spare machine if any is available. When a machine is

repaired, it becomes a spare unless the number of working machines is less than r, in which

case the repaired machine is restarted immediately.

Consider a M/M/c/r/r with s spares where the lifetimes and repair times are exponen-

tially distributed with rates λ and µ, respectively. Then, given that there are n machines

being repaired or waiting for repair, the arrival rate is now given by,

λn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rλ, if 0 ≤ n ≤ s,

(r + s − n) λ, if s ≤ n ≤ s + r,

0, if n ≥ s + r,

(6)

and µn is the same as given in (2). Thus, this model can also be described by a birth-death

process [3]. And then, it can be shown that the probability of having n machines in the

system when c ≤ s is given by,

pn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rn

n!

(
λ
µ

)n

p0, if 1 ≤ n ≤ c,

rn

cn−cc!

(
λ
µ

)n

p0, if c ≤ n ≤ s,

rsr!
(r+s−n)!cn−cc!

(
λ
µ

)n

p0, if s ≤ n ≤ s + r,

(7)

and when c > s,

pn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rn

n!

(
λ
µ

)n

p0, if 1 ≤ n ≤ s,

rsr!
(r+s−n)!n!

(
λ
µ

)n

p0, if s ≤ n ≤ c,

rsr!
(r+s−n)!cn−cc!

(
λ
µ

)n

p0, if c ≤ n ≤ s + r.
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Using these probabilities, we can obtain the mean number of machines in the system and in

the queue, L and Lq, respectively, as in (4). Also, we can obtain the effective mean arrival

rate to the system by,

λeff =
s−1∑
n=0

rλpn +
s+r∑
n=s

(r + s − n) λpn = λ

(
r −

s+r∑
n=s

(n − s) pn

)
,

which allows us to obtain the mean waiting time in the system and the mean queueing time,

W and Wq, respectively, using the Little’s formula given in (5).

An interesting particular case appears when the number of spares, s, is very large. Then,

the arrival rate λn given in (6) will be essentially constant and equal to λr, so that the arrival

process will be well approximated by a Poisson process of rate λr. Thus, the system will

converge to an infinite source M/M/c model whose stationary distribution can be obtained

as the limit of (7) when s goes to infinity [2, 3], that is,

pn =

⎧⎪⎪⎨
⎪⎪⎩

(λr)n

n!µn p0, if n ≤ c,

(λr)n

cn−cc!µn p0, if n ≥ c.

As shown in this case, infinite source queues are in general much simpler than finite source

queues and consequently, queueing theory on infinite systems is much more developed. Thus,

in practice, it may be convenient to assume an infinite source if the customer population

is finite but large. Note that this will be a good approximation when the arrival process

depends only in a negligible way on the number of customers already in the system.
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3 Inference for queues

Failure and repair times are random variables and the distributions and parameters describ-

ing their behavior are unknown in practice. Thus, the use of statistical methods (see eqr356)

becomes necessary in order to estimate the quantities of interest in the system. Firstly, an

experiment to collect data from the system must be designed. If we assume independence

between the lifetimes and repair durations, a simple experiment providing complete infor-

mation about the system consists in observing independently n lifetimes {x1, ..., xn} and m

repair times {y1, ..., ym}. Using these data, the traditional approach to queueing inference is

based on maximum likelihood estimation of the failure and service parameters. For example,

the likelihood function of the parameters in the M/M/c/r/r queue is given by,

l (λ, µ) ∝ λn exp

(
−

n∑
i=1

xi

)
µn exp

(
−

m∑
i=1

yi

)
, (8)

and then, the maximum likelihood estimators of λ and µ are given by λ̂ = x̄−1 and µ̂ = ȳ−1,

respectively, where x̄ and ȳ denote the means of the lifetimes and repair times, respectively.

These estimators can be plugged in to obtain estimations of the performance measures. For

example, the stationary probabilities, pn, can be estimated by replacing λ and µ by λ̂ and

µ̂, respectively, in (3). However, using this classical approach, it is often difficult to obtain

measures of the uncertainty in the estimated performance measures.

An alternative approach is the use of the Bayesian methodology (see eqr364) which is

specially well suited for queues [24]. Consider again the M/M/c/r/r model and assume

independent gamma prior distributions for λ and µ; say λ ∼ G(α0, β0) and µ ∼ G(a0, b0).

From (8), it is easy to see that the posterior distributions are also independent gamma
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distributions, λ|data ∼ G(α, β) and µ|data ∼ G(a, b), where α = α0 + n; β = β0 +
∑n

i=1xi;

a = a0 + m; b = b0 +
∑m

j=1yj. Using these posterior distributions, we can approximate the

posterior predictive distributions of any performance measure. For example, we can simulate

K values {λ(k), µ(k)}K
k=1 from the joint posterior distribution of (λ, µ), and approximate the

posterior mean of pn with,

E [pn | data] ≈ 1

K

K∑
k=1

p(k)
n ,

where p
(k)
n is the value of pn for λ = λ(k) and µ = µ(k). Analogously, we can easily approximate

the posterior variance, percentiles and credible intervals of pn. For further details of Bayesian

methods for the M/M/c/r/r model, see [25]. Also, Bayesian analysis of more general queues,

where the exponential assumption for arrivals and services is relaxed, can be found in e.g.

[26] and the references therein.
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