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Abstract

Bayesian inference and prediction for a GARCH model where the innovations are assumed

to follow a mixture of two Gaussian distributions is performed. The mixture GARCH model can

capture the patterns usually exhibited by many financial time series such as volatility clustering,

large kurtosis and extreme observations. A Griddy-Gibbs sampler implementation is proposed

for parameter estimation and volatility prediction. Bayesian prediction of the Value at Risk

is also addressed providing point estimates and predictive intervals. The method is illustrated

using the Swiss Market Index.
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1 Introduction

A large amount of theoretical and empirical research has been carried out on analysis of financial

time series in the last two decades. The main features exhibited by many of these series are

time-varying volatility, heavy-tailed distributions, large kurtosis and extreme events.

Many models have been proposed for modeling the time-varying volatility in financial time

series, including the autoregressive conditional heteroskedastic (ARCH) model of Engle (1982), its

generalization, the GARCH model of Bollerslev (1986), and the stochastic volatility model of Taylor

(1986), see, for example, Shephard (1996) for a review. These models assume that the conditional

variance of the series is a function of the current information and have been successful in modeling

large periods of tranquility followed by small periods of high volatility.

However, less attention has been paid to explaining heavy-tailed distributions, large kurtosis and

extreme events. The usual assumption in fitting models to financial data is that the returns, i.e.,

the first difference of the logarithm of the series, are conditionally normally distributed. However,

the normal GARCH model is known to be inconsistent with high kurtosis, heavy tails and extreme

events. The normal stochastic volatility model can capture some leptokurtosis but not large enough

to explain the high sample kurtosis found in real data series. To explain these facts, Bollerslev

(1987) proposed modeling the innovations of the GARCH model with a t-distribution, Nelson

(1991) considered the use of the generalized error distribution and Engle and González-Rivera

(1991) applied a non-parametric approach. Alternatively, other authors, including Bauwens, Bos

and van Dijk (1999) and Bai, Russell and Tiao (2001, 2003), proposed modeling the innovations

distribution with a mixture of two zero mean normal distributions with different variances. This is a

model distribution which postulates that a large number of innovations are generated by a normal

density with a small variance, while a small number of innovations are generated by a normal

density with a large variance. This specification can capture volatility clustering, high kurtosis,

heavy tails and the presence of extreme events. Other papers dealing with alternative mixture

GARCH models are Wong and Li (2001), Haas, Mittnik and Paolella (2004) and Alexander and

Lazar (2004).

Inference on ARCH and GARCH models has been traditionally carried out using maximum

likelihood, quasi-maximum likelihood or the generalized method of moments, see e.g. Bollerslev,
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Chou and Kroner (1992). There has been much less progress in the analysis of these models from

the Bayesian perspective. The Bayesian methodology offers a natural way to introduce parameter

uncertainty in the estimation of volatilities. Also, predictive distributions of the future volatilities

can be obtained which are more informative than simple point forecasts. Furthermore, predictive

distributions of Value at Risk (VaR) can also be obtained. This is one of the most important issues

in Risk Management, see Jorion (2000), and the Bayesian approach provides a measure of precision

for VaR estimates via predictive intervals. Finally, the recent development of modern Bayesian

computational methods based on Markov Chain Monte Carlo (MCMC) can be utilized to address

the complexity of these models, see Geweke (1994), Bauwens and Lubrano (1998), Müller and Pole

(1998), Bauwens et al. (1999), Nakatsuma (2000) and Vrontos, Dellaportas and Politis (2000).

In this paper, we present a procedure for Bayesian inference and prediction of the GARCH

model with Gaussian mixture innovations based on MCMC methods. Although mixture models are

intrinsically difficult to analyze, the Bayesian approach allows for data augmentation techniques

where indicator variables can be introduced to simplify the likelihood and the derivation of the

posterior distributions. Bayesian estimation of mixture models has been broadly studied in non-

dynamic settings, see e.g. Diebolt and Robert (1994). Our Bayesian approach combines these ideas

with the Griddy-Gibbs sampling algorithm proposed by Ritter and Tanner (1992). This method

is a modified Gibbs sampler where the conditional posterior distributions are approximated by

numerical integration methods. The Griddy-Gibbs sampler has also been used by Bauwens and

Lubrano (1998) for a GARCH model with t-distributed errors. This approach is easier to implement

than Metropolis-Hastings algorithms or importance sampling and, although it is more costly in

computer time, the problems in finding an appropriate proposal distribution or importance function

in these other methods are avoided.

The rest of this paper is organized as follows. Section 2 presents the Gaussian mixture GARCH

model and illustrates its flexibility in capturing the patterns exhibited by financial time series.

Section 3 describes a Bayesian analysis of this model given an uninformative joint prior distribution

for the model parameters and a Griddy-Gibbs algorithm for sampling the posterior distribution.

The problem of volatilities and VaR prediction is also addressed. Section 4 presents some Monte

Carlo simulations which illustrates the accuracy in the estimation of the parameters and prediction

of volatilities and VaR. Various comparisons with other Bayesian and non-Bayesian approaches is
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also included in this section. Section 5 illustrates our procedure for the log return series of the SMI

(Swiss Market Index) which is a clear example of a series with large kurtosis and extreme returns.

2 The GARCH Model with Gaussian mixture errors

The GARCH(p,q) model for a series yt is given by,

yt = µ +
√

htεt, (1)

ht = ω +
p∑

i=1

αi (yt−i − µ)2 +
q∑

j=1

βjht−j ,

where ht is the conditional variance of yt given the previous information It−1 = {yt−1, yt−2, . . .},
and εt are iid with zero mean and unit variance. We assume that the initial variance h0 is a known

constant and the parameters ω, α = (α1, . . . , αp) and β = (β1, . . . , βq) follow the restrictions,

ω > 0, α1 ≥ 0, . . . , αp ≥ 0, β1 ≥ 0, . . . , βq ≥ 0, to ensure positivity of ht, for all t, and
∑p

i=1 αi +
∑q

j=1 βj < 1, to ensure covariance stationarity.

Neither the Gaussian GARCH model, i.e., assuming that εt is Gaussian distributed, nor the

GARCH-t model, i.e., assuming that εt is t-distributed, are able to match volatility dynamics and

large kurtosis, as will be shown below, see e.g. Bai et al. (2003). These authors, among others,

suggested the use of a mixture of two Gaussian distributions, that is, εt ∼ mixture Gaussian (λ, ρ),

i.e.,

εt ∼





N
(
0, σ2

)
, with probability ρ,

N
(
0, 1

λσ2
)
, with probability 1− ρ,

(2)

where 0 < λ < 1 and,

σ2 =
1

ρ + 1−ρ
λ

, (3)

so that var (εt) = 1. Thus, the innovations εt are generated from a Gaussian distribution with

variance σ2 with probability ρ, or from a Gaussian distribution with variance σ2/λ with probability

1 − ρ. Note that the variance of the first component is always less than one because of (3) and

the variance of the second component increases as λ goes to zero. Additionally, we also impose the

condition that the probability ρ is restricted to the interval (0.5,1) to ensure that the component
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with largest number of elements is the one with smallest variance.

Some of the reasons of using the mixture distribution to model the innovations are as follows.

First, this is the distribution used in the variance inflation model of Box and Tiao (1968), which

has been shown to be successful in modelling outliers and extreme events in linear models, see e.g.

Peña and Guttman (1993). Therefore, it is expected that the extreme returns, which can cause

the high sample kurtosis found in practice, are generated by the component with larger variance.

Second, this distribution is able to generate high kurtosis. The excess kurtosis, Ky, of a series yt

is defined as the difference between the kurtosis of the series, if it exists, and the kurtosis of the

normal distribution which is equal to 3,

Ky =
E

[
(yt − µ)4

]

E
[
(yt − µ)2

]2 − 3, (4)

and, if positive, measures how large is the kurtosis compared with the one of the normal distribution.

In the case of Gaussian innovations, (4) reduces to,

Kg =
6γ

1− 2γ
, (5)

where γ =
∑∞

i=1 ψi and ψi are the coefficients of the polynomial equation given by ψ(B)φ(B) =

β(B), with ψ(B) = 1 +
∑∞

i=1 ψiB
i, φ(B) = 1 − ∑r

i=1 (αi + βi) Bi, r = max(p, q) and β(B) =

1 − ∑q
i=1 βiB

i, which depends only on the parameters of the volatility equation, see Bai et al.

(2003). For non-normal innovations, Bai et al. (2003) showed that,

Ky =
Kε + Kg + 5

6KεKg

1− 1
6KεKg

, (6)

where Kε is the excess kurtosis of εt and Kg is given in (5), provided that Kε and Kg exist. Thus, the

overall excess kurtosis of yt depends symmetrically on the excess kurtosis induced by non-normal

innovations, Kε, and the one induced by volatility clustering, Kg.

If εt follows a Student’s t distribution with ν degrees of freedom, then Kε = 6/(ν − 4). Note

that the second and fourth moments of yt only exist if ν > 4, implying that the excess kurtosis Kε
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should be positive. In this case,

Ky =
6 + (ν + 1)Kg

ν − 4−Kg
,

which is positive, i.e., yt is leptokurtic, only if ν > 4 + Kg. In practice, the degrees of freedom

parameter, ν, is either fixed to be larger than or equal to 5, in which case the implied kurtosis

of the estimated model does not match the observed kurtosis, or it is estimated, in which case its

estimate is usually smaller than 5, and the estimated excess kurtosis does not exist, see Bai et al.

(2003).

However, if εt follows a mixture distribution (2), the excess kurtosis of the innovations is given

by,

Kε =
3ρ (1− ρ)

(
1
λ − 1

)2

(
ρ + 1

λ (1− ρ)
)2 ,

which exists for every value in the domain of ρ and λ and can take any positive value. To show this,

note that Kε tends to zero when λ tends to one, and tends to infinity when ρ and λ tend to one

and zero, respectively. Figure 1 shows some values of the kurtosis coefficient for values of ρ and λ

in the interval (0.5, 0.99) and (0.01, 0.99), respectively. Observe that the value of Kε is larger when

ρ and λ are close to one and zero simultaneously. Finally, Ky in (6) is positive if 1−KεKg/6 > 0,

and, for any possible value of Kg, this condition is verified for certain values of ρ and λ as shown

before. This illustrates that model (1) with innovations (2) can capture the large kurtosis typically

observed in financial time series. More reasons of using this mixture distribution can be found in

Bai et al. (2001, 2003).

3 Bayesian Inference for the Gaussian mixture GARCH model

In this section, we describe how to carry out Bayesian inference for the model (1) using a Gibbs

sampling method. Following Bauwens and Lubrano (1998), we make use of the Griddy-Gibbs

sampling approach which is based on a combination of a Gibbs sampler with a numerical integration

procedure. Several reasons for using this approach are given in Sections 3 and 4, where it is

compared with other Bayesian methods, such as Metropolis-Hastings, and classical methods, such

as Maximum Likelihood Estimation.

Let θ = (ρ, λ, µ, ω,α,β), be the parameter vector of model (1). Given a series, yt, t = 1, . . . , T ,
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Figure 1: Excess kurtosis of the innovations as a function of the parameters λ and ρ

the likelihood function takes a complicated form but can be simplified by introducing the usual

missing data formulation for mixture setups, see e.g. Diebolt and Robert (1994), where a set of

latent variables z1, . . . , zT are defined such that,

zt =





1, with probability ρ,

2, with probability 1− ρ,
(7)

for t = 1, ..., T . With this approach, the observed series, y = (y1, . . . , yT ), is completed with a

missing data set, z = (z1, . . . , zT ), indicating the specific component of the mixture from which

every observation is assumed to arise. Then, conditional on these indicators, we have that,

yt | ht, zt ∼





N
(
µ, σ2ht

)
, if zt = 1,

N
(
µ, σ2

λ ht

)
, if zt = 2.

(8)

Therefore, the likelihood separates into two parts, each one concerning the data assigned to each
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of the two mixture components,

l (θ | y, z) ∝
∏

t:zt=1

[
ρ

(
σ2ht

)−1/2 exp

{
−1

2
(yt − µ)2

σ2ht

}]
×

∏

t:zt=2

[
(1− ρ)

(
1
λ

σ2ht

)−1/2

exp

{
−1

2
λ (yt − µ)2

σ2ht

}]
.

In order to carry out Bayesian inference, we also need to define prior distributions for the

model parameters, θ. Let us assume that the prior distributions of the parameters are uniformly

distributed over their respective domains, i.e.,

f (ρ) ∼ U (0.5, 1) , f (λ) ∼ U (0, 1) , f (µ) ∼ U (−∞,∞) ,

f (ω) ∼ U (0,∞) f (α) ∼ U [0, 1]p , f (β) ∼ U [0, 1]q ,
(9)

and restricted to the stationary region. Note that using model (1), we can consider flat priors for

all the parameters. This is not possible for the GARCH model with t-distributed errors where a

flat prior for the degrees of freedom parameter leads to an improper posterior distribution as was

shown in Bauwens and Lubrano (1998). Moreover, there is high sensitivity to the choice of a proper

prior distribution for the degrees of freedom parameter in this model.

Given the data and the priors specified above, it is very complicated to obtain an analytical

expression of the posterior distribution of the parameter vector, p (θ | y). However, Bayesian

inference may be performed using the Gibbs sampling procedure, see e.g. Tierney (1994) for an

extensive analysis. Under mild conditions, given an initial value θ(0), the Gibbs sampler can produce

a Markov chain
{

θ(n) : n = 0, . . . , N
}

, where θ(n) =
(
ρ(n), λ(n), µ(n), ω(n), α(n), β(n)

)
, which has

equilibrium distribution p (θ | y). Gibbs sampling is carried out by cycling repeatedly through

draws of each parameter conditional on the remaining parameters.

Thus, we now obtain the conditional posterior distribution of each parameter. Firstly, from (7)

and (8), the conditional posterior probability that the observation yt has been generated by the

first mixture component is,

f (zt = 1 | yt,θ) =
ρ exp

{
−1

2
(yt−µ)2

σ2ht

}

ρ exp
{
−1

2
(yt−µ)2

σ2ht

}
+ (1− ρ)

(
1
λ

)−1/2 exp
{
−1

2
λ(yt−µ)2

σ2ht

} , (10)
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and clearly, the probability of having been generated by the second component is one minus ex-

pression (10).

The conditional posterior density f (ρ | θ−ρ,y, z), where θ−ρ denotes the remaining parameters

except ρ, has the following kernel,

κ (ρ | θ−ρ,y, z) =
ρT1 (1− ρ)T2

σT
exp

{
−S1 + λS2

2σ2

}
, (11)

where Ti = #{zt = i}, the number of observations assigned to the i-th component, and Si =
∑T

t=1

{
(yt − µ)2 /ht : zt = i

}
, for i = 1, 2. Recall that σ is a function of (ρ, λ) as given in (3), and

ht is a function of (µ, ω,α, β) as given in (1).

The conditional posterior density f (λ | θ−λ,y, z) has a kernel given by,

κ (λ | θ−λ,y, z) =
λT2/2

σT
exp

{
−S1 + λS2

2σ2

}
, (12)

while the kernel of the conditional posterior density f (µ | θ−µ,y, z) is given by,

κ (µ | θ−µ,y, z) =
∏

t:zt=1

[
h
−1/2
t exp

{
−1

2
(yt − µ)2

σ2ht

}]
×

∏

t:zt=2

[
h
−1/2
t exp

{
−1

2
λ (yt − µ)2

σ2ht

}]
. (13)

The kernels of the conditional posterior densities f (ω | θ−ω,y, z), f (αi | θ−αi ,y, z), i = 1, . . . , p,

and f
(
βj | θ−βj ,y, z

)
, j = 1, . . . , q, have the same expression (13), but restricted to the corre-

sponding stationary region on their domains.

The posterior densities (11), (12) and (13) are not of a simple form and thus, random samples

can not be easily generated. The Griddy-Gibbs sampler, introduced by Ritter and Tanner (1992),

solves this problem by evaluating each kernel function over a grid of points, approximating the

cumulative distribution function using a numerical integration method, and generating a draw

from each conditional posterior distribution by inversion of the cumulative distribution function

at a random value sampled uniformly in [0, 1]. Given these conditional posteriors, we propose the

following Griddy-Gibbs sampler:

1. Let n = 0. Set initial values θ(0).

2. Update the indicators, z, by sampling from z(n+1) ∼ z|y, θ(n).
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3. Update ρ by sampling from ρ(n+1) ∼ ρ | θ(n)
−ρ ,y, z(n+1). For that:

(a) Approximate the following integrals using a numerical integration method,

Φg '
∫ ρg

ρ1

κ
(
ρ | θ(n)

−ρ ,y, z(n+1)
)

dρ, g = 2, ..., G, (14)

where ρ1, . . . , ρG is a grid of ordered points on the domain of ρ.

(b) Generate u ∼ U (0, ΦG) and invert Φ
(
ρ | θ(n)

−ρ ,y, z(n+1)
)

by numerical interpolation to

get a draw ρ(n+1).

4. Update λ by sampling from λ(n+1) ∼ λ|ρ(n+1), µ(n), ω(n), α(n), β(n),y, z(n+1), as in 3.

5. Update µ by sampling from µ(n+1) ∼ λ|ρ(n+1), λ(n+1), ω(n),α(n),β(n),y, z(n+1), as in 3.

6. Update ω by sampling from ω(n+1) ∼ ω|ρ(n+1), λ(n+1), µ(n+1), α(n), β(n),y, z(n+1), as in 3.

7. Update αi, for i = 1, . . . , p, by sampling from,

α
(n+1)
i ∼ αi|ρ(n+1), λ(n+1), µ(n+1), ω(n+1), α

(n+1)
1 , . . . , α

(n+1)
i−1 , α

(n)
i+1, . . . , α

(n)
p , β(n),y, z(n+1),

as in 3.

8. Update βj , for j = 1, . . . , q, by sampling from,

β
(n+1)
j ∼ βj |ρ(n+1), λ(n+1), µ(n+1), ω(n+1),α(n+1), β

(n+1)
1 , . . . , β

(n+1)
j−1 , β

(n)
j+1, . . . , β

(n)
q ,y, z(n+1),

as in 3.

9. Let n = n + 1 and go to 2 unless n = N .

Some comments on the proposed Griddy-Gibbs sampler are in order. Firstly, following Bauwens

and Lubrano (1998), we use the trapezoidal rule of integration (see Davis and Rabinowitz, 1975)

for approximating the integrals in (14) with a fixed grid of equidistant points. Other alternatives

are also possible such as the adaptive Simpson and Lobatto quadratures. Adaptive methods have

the advantage of using a variable grid that is modified to have more points where the mass of the
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posterior distribution is concentrated. However, we have chosen a fixed grid of points because it

is possible to obtain a smooth estimation of the marginal posterior densities of each parameter, as

described below. In our examples, we have chosen 40 point grids which when compared with lower

and higher numbers of points seem to be accurate enough. Another important issue is the choice

of the bounds of integration. These come from the prior restrictions (9) for the parameters ρ, λ, α

and β, but we should also restrict the domain of the parameters ω and µ to some intervals where

the value of their posterior densities is big enough to contribute to the integrals. We have taken

the sample unconditional variance of the series, σ̂2
y , as the maximum possible value of ω, while we

have allowed µ to be in the interval (y − 4σ̂y/
√

T , y + 4σ̂y/
√

T ). We have found that these choices

seem to be large enough in practice. Note that the bounds of integration are inappropriate if the

tails of a marginal posterior density look truncated. Finally, we use linear interpolation between

adjacent points in point 3.b.

The Griddy-Gibbs sampler allows us to obtain a smooth estimation of the marginal posterior

density of each parameter. For instance, we estimate the posterior density of ρ for each point, ρg,

of the grid using Rao-Blackwellization, see Casella and Robert (1996), as follows,

f (ρg | y) ' 1
N − s

N∑

n=s+1

κ
(
ρg | θ(n)

−ρ ,y, z(n+1)
)

ΦG
, g = 2, ..., G, (15)

where s is the number of burn-in draws required to reach the equilibrium distribution and ΦG

is given in (14). Note that, as commented before, this approximation can be carried out be-

cause we have chosen a fixed grid instead of a variable one. In Bauwens and Lubrano (1998),

this approach is referred as “conditioning” and it is also used to reduce the variance in the

estimation of the moments of the marginal posterior distributions by estimating for example,

E [ρ | y] with
∑N

n=s+1 E
[
ρ | θ(n)

−ρ ,y, z(n+1)
]
/(N − s) instead of considering the usual sample mean,

∑N
n=s+1 ρ(n)/(N − s). In practice we have found no significant differences between using the con-

ditioning estimators for the posterior mean and variance or using the usual sample moments of

draws.

In GARCH models, the estimation of in-sample volatilities and prediction of future volatilities

is essential. Using the MCMC output, we can easily obtain a sample from the posterior distribution

of each conditional variance, ht, for t = 1, . . . , T , by calculating the value of the conditional variance
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for each draw θ(n), denoted by h
(n)
t . With these samples, we can estimate the posterior mean for

each conditional variance by,

E [ht | y] ' 1
N − s

N∑

n=s+1

h
(n)
t . (16)

Also the posterior median and 95% credible intervals can be obtained by just calculating the median

and the .025 and .975 quantiles of each posterior sample, respectively.

Of particular interest are the predictive distribution and intervals for the one-step ahead volatil-

ity, hT+1. Analogously, we can obtain a sample from the predictive distribution of hT+1 and 95%

predictive intervals. In a similar way, we can estimate the predictive density of yT+1,

f (yT+1|y) =
∫

θ
f (yT+1|y,θ) f (θ|y) dθ. (17)

The density f (yT+1|y,θ) is a Gaussian mixture with mean µ and variance hT+1. Thus, the predic-

tive density (17) can be estimated as the mean of the density functions obtained for all the draws

of the MCMC sample,

f (yT+1|y) ' 1
N − s

N∑

n=s+1

f
(
yT+1|y, θ(n)

)
.

Suppose now that we are interested in the prediction of hT+2, . . . , hT+s and yT+2, . . . , yT+s. We

cannot obtain samples from their predictive distributions using the same procedure as for hT+1

and yT+1 because the values of yt are unknown for t ≥ T + 1. However, given the observed series

and the MCMC sample, we can generate values of the predictive distributions of hT+i and yT+i,

for i = 2, . . . , s, using the following simulation procedure based on the one proposed in Bauwens

and Lubrano (1998, 2002). For each value of the parameters, θ(n), the value of h
(n)
T+1 is known

and y
(n)
T+1 can be generated from its mixture distribution. Sequentially, given y

(n)
T+i−1, the value

of h
(n)
T+i is known and y

(n)
T+i can be generated, for i = 2, . . . , s. Using this procedure, we obtain

samples from the predictive distributions, f(ht+i|y) and f(yt+i|y), for i = 2, . . . , s, which allow

us to estimate their quantiles. For example, the probability that a future volatility is larger than

a given threshold can be estimated with the proportion of observations in the sample which are

larger than this threshold. Moreover, by replicating M times the proposed simulation procedure, we

obtain samples y
(n,m)
T+1 , . . . , y

(n,m)
T+s and h

(n,m)
T+1 , . . . , h

(n,m)
T+s , for m = 1, . . . , M , which allow to construct

predictive intervals for this probability. Furthermore, these samples will provide VaR estimates and
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predictive intervals, as shown below.

As a result of the presence of extreme events in financial series, VaR has become an useful

and widely used measure of market risk. Broadly speaking, VaR is the maximum potential loss

associated with an unfavorable movement in market prices during a given time period with certain

probability. In other words, the VaR of an asset means that the losses over a time period s should

exceed VaR only the π percent of the time. Usually, the probability π takes a small value such

as 0.01 or 0.05 (see Jorion (2000) for a more detailed treatment). For a log return series, yt, the

s−period π% VaR for an amount of investment A is given by,

VaR = A× pπ,

where pπ is the π−quantile of the distribution of yT [s] = yT+1 + . . .+yT+s, i.e. π = Pr(yT [s] ≤ pπ).

Now, from the simulation procedure described above, we can construct predictive intervals for

the s−period π% VaR as follows. For each replication m = 1, . . . ,M , we have an estimate of the

VaR given by,

VaR(m) = A× p(m)
π ,

where p
(m)
π is the empirical π−quantile of the sample of sums y

(1,m)
T+1 + . . .+y

(1,m)
T+s , . . . , y

(N,m)
T+1 + . . .+

y
(N,m)
T+s for each value of m. Thus, we have a sample of size M from the predictive distribution of

the VaR, which allows us to estimate the predictive mean, median and confidence intervals.

4 Computational results

The computational results in this section and the analysis of the real data example in the next

one have been carried out by means of various routines written by the authors in MATLAB (The

MathWorks, Inc.). We use the Gaussian and uniform random number generators implemented in

MATLAB.
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4.1 Illustration of the Griddy-Gibbs sampler

We illustrate our MCMC procedure with three artificial series simulated from the following GARCH(1,1)

model,

yt = 0.01 +
√

htεt, (18)

ht = 0.001 + 0.15 (yt−1 − 0.01)2 + 0.7ht−1,

where εt follows a Gaussian mixture as in (2) with parameters ρ = 0.9 and λ = 0.15. Thus, the

excess kurtosis of εt and yt are given by Kε = 3.53 and Ky = 8.84, respectively. We generated three

series with 506, 1006 and 2006 observations, respectively, from the model (18) and used the first

T = 500, 1000 and 2000 observations for estimation. The sample mean, variance and kurtosis of

each series are 1.1269× 10−2, 4.2763× 10−3 and 5.1443, 9.3085× 10−3, 5.2748× 10−3 and 6.0114,

and 9.4826×10−3, 5.5029×10−3 and 7.1317, respectively. For each series, we generated N = 20000

runs of the Markov chain with initial values θ(0) = (0.5, 0.5, 0, 0.5, 0.5, 0.3), (although different

initial values give similar results) and discarded the initial 10000 runs. To assess the convergence of

the Markov chain, we used the convergence diagnostic proposed in Geweke (1992) based on testing

for the equality of the means of the first and last part of the chain. For instance, consider the

parameter ρ and let n1 = 0.1(N − s) and n2 = 0.5(N − s). Let ρ1 and ρ2 be the sample mean for

the first n1 runs and the last n2 runs, respectively, for one of the series. The convergence diagnostic

is given by,

CD =
(ρ1 − ρ2)[ bSρ

1 (0)
n1

+
bSρ
2 (0)
n2

] 1
2

, (19)

where Ŝρ
i (0) is the spectral density estimate for ni runs, i = 1, 2. If the chain has converged, the

statistic (19) has asymptotically the standard Gaussian distribution. The values of the statistic

(19) for each parameter in θ is shown in Table 1 for each of the three simulated series. These

indicate that the chains have converged in all cases.

Figure 2 shows the convergence diagrams of the posterior sample for each parameter for the

series with sample size T = 1000. Similar plots are obtained for the other simulated series which

are not shown here to save space. Figure 3 shows the histograms of the MCMC output for the same

14



Table 1: Values of the Geweke’s statistic for each parameter.

T = 500 T = 100 T = 2000
ρ 1.03 −0.90 −1.65
λ −0.98 1.04 0.89
µ 0.23 1.22 0.97
ω −0.62 0.07 −1.69
α −1.73 0.81 −1.85
β 0.77 −0.43 1.79

series. Also shown are the marginal densities for each parameter obtained using (15). Observe that

our Bayesian procedure captures the asymmetry of the posterior distributions of the parameters

ρ, ω and β. The asymmetry of these marginal posterior densities is larger for the series with

T = 500 (not reported) and, in general, the variances are also larger, as expected. On the contrary,

the densities are more symmetric and the variances are smaller for the series with T = 2000 (not

reported). In Table 2, it is shown the parameter estimation results for the three series. Columns

2, 4 and 6 in Table 2 show the mean and standard deviation of the posterior distribution of each

parameter and series, respectively. Columns 3, 5 and 7 show the posterior median and mean

absolute deviation for each series, respectively. Note that these estimates are close to the true

parameters in all cases. In particular, for T = 500, when the posterior distribution is asymmetric,

the posterior median seems to be a better estimate than the mean, as should be expected.

Finally, the last row of Table 2 shows the computational time required to finish the algorithm

for 20000 runs in each case. We note that with a smaller number of iterations, accurate enough

estimation results were also obtained. On the other hand, the relationship between the sample size

and the computational time is apparently linear. Also, we have observed that the complexity in

estimating mixture GARCH models of higher orders is approximately increased by one over six

the computational time for a mixture GARCH(1,1), for each new parameter. For example, 16.2

minutes were needed for a mixture GARCH(2,1) simulated series of size T = 500 with accurate

results.

Table 3 shows the correlations between parameters for the series with length T = 1000. Similar

correlations were obtained for the other simulated series. Note that although some of the parameters

are highly correlated, the benefit of using a grid is that every part of the space is explored, meaning

15
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Figure 2: Convergence diagrams of the posterior sample for each parameter for the series of sample
size T = 1000.

Table 2: Parameter estimation results.

T = 500 T = 1000 T = 2000
Parameter Mean

std
Median

mad
Mean

std
Median

mad
Mean

std
Median

mad

ρ = .9 .8724
.0854

.8932
.0655

.8955
.0446

.9016
.0353

.9163
.0347

.9187
.0275

λ = .15 .2024
.0796

.1991
.0638

.1526
.0496

.1520
.0398

.1286
.0422

.1293
.0342

µ = .01 .0093
.0026

.0093
.0020

.0083
.0019

.0084
.0015

.0092
.0014

.0092
.0011

ω = .001 .0011
.0006

.0010
.0005

.0007
.0004

.0006
.0003

.0009
.0004

.0009
.0003

α = .15 .1582
.0669

.1494
.0520

.1211
.0507

.1178
.0399

.1205
.0472

.1190
.0371

β = .7 .5879
.1815

.6202
.1459

.7539
.0954

.7647
.0746

.7199
.0987

.7256
.0791

Time 13.99 min. 23.20 min. 41.66 min.
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Figure 3: Histograms and marginal posterior densities of the MCMC output for each parameter
for the series of sample size T = 1000.

that the sampler does not get trapped in any particular region. Scatter plots of the draws after

different number of runs (not reported here) suggest that there is no trapping.

Figure 4 shows the true and posterior mean (16) for the last 100 in-sample volatilities of the

three series with their 95% credible intervals as described in Section 3. Note the accuracy of the

estimation of these unobserved volatilities and that the Bayesian credible intervals includes the true

generated volatilities for all time periods. Figure 4 also shows the predicted mean of the one-step

Table 3: Correlations between parameters for the series of size T = 1000.

ρ λ µ ω α β

ρ 1 −0.59 −0.01 −0.05 −0.00 0.04
λ 1 −0.00 −0.11 −0.15 −0.05
µ 1 0.01 −0.07 0.02
ω 1 0.37 −0.88
α 1 −0.59
β 1
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Figure 4: True (solid line) and predictive mean (dashed line) of the last 100 conditional volatilities
with 95% credible intervals (dotted lines) for the simulated series with T = 500 (top), T = 1000
(center) and T = 2000 (bottom).

ahead volatility, hT+1, for each series, where T + 1 = 501, 1001 and 2001, respectively, and their

predictive intervals. Their numeric values can be examined in Table 4, where predictive means

and 95% intervals for hT+1, . . . , hT+6, are also shown. These estimations have been computed with

the samples obtained using the simulation procedure described in Section 3. Histograms of these

samples for the series with T = 1000 are plotted in Figure 5. Note that the predictive distribution

of hT+1 is apparently symmetric, while the distribution of hT+i, for i = 2, ..., 6 are highly skewed to

the right. As a matter of fact, they are so right-skewed that only the data under the 99% percentile

are considered for the histograms to get a better illustration of the shape of these distributions.

The same features are observed in the histograms of the future volatilities for the other simulated

series.

Finally, Table 5 shows the predictive means and 95% predictive intervals of VaR at future

times T + 1, . . . , T + 6 with probability π = 0.01 and initial investment of A = 1 unit. Observe

that these intervals are quite symmetric and their amplitudes are not very wide, meaning that the
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Table 4: True, predictive mean and 95% predictive interval for future volatilities at times T +
1, . . . , T + 6 for the three simulated series.

T = 500 T = 1000 T = 2000
s True Mean Interval True Mean Interval True Mean Interval
1 .0042 .0037 (.0026, .0051) .0050 .0060 (.0042, .0086) .0040 .0050 (.0034, .0070)
2 .0040 .0039 (.0025, .0073) .0045 .0060 (.0040, .0108) .0040 .0052 (.0033, .0091)
3 .0038 .0041 (.0024, .0085) .0049 .0060 (.0038, .0126) .0039 .0053 (.0032, .0107)
4 .0036 .0042 (.0024, .0092) .0044 .0061 (.0036, .0139) .0038 .0055 (.0031, .0119)
5 .0037 .0043 (.0023, .0098) .0050 .0061 (.0034, .0148) .0036 .0056 (.0031, .0128)
6 .0039 .0044 (.0023, .0103) .0045 .0061 (.0033, .0155) .0042 .0057 (.0030, .0134)

0 0.005 0.01 0.015
0

1000

2000

3000

4000

5000

6000

h
T+1

0 0.01 0.02
0

0.5

1

1.5

2

2.5
x 10

6

h
T+2

0 0.01 0.02
0

0.5

1

1.5

2

2.5
x 10

6

h
T+3

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5
x 10

6

h
T+4

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5

3
x 10

6

h
T+5

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

h
T+6

Figure 5: Histograms of the predictive distribution of the future volatilities, hT+1, . . . , hT+6, for
the simulated series with T = 1000.
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Table 5: Predictive mean and 95% predictive interval of VaR for future times T +1, . . . , T +6 with
probability π = 0.01 and initial investment A = 1 unit.

T = 500 T = 1000 T = 2000
s Mean Interval Mean Interval Mean Interval
1 −.1459 (−.1563,−.1375) −.1980 (−.2149,−.1832) −.1768 (−.1931,−.1623)
2 −.2066 (−.2191,−.1946) −.2734 (−.2908,−.2579) −.2499 (−.2678,−.2334)
3 −.2499 (−.2650,−.2352) −.3273 (−.3481,−.3094) −.3001 (−.3197,−.2806)
4 −.2856 (−.3026,−.2705) −.3719 (−.3957,−.3496) −.3417 (−.3624,−.3200)
5 −.3166 (−.3343,−.3014) −.4090 (−.4321,−.3870) −.3777 (−.4006,−.3565)
6 −.3436 (−.3634,−.3258) −.4430 (−.4678,−.4175) −.4090 (−.4346,−.3837)

VaR estimates are quite accurate. The proposed method for obtaining the replications needed for

volatilities and VaR prediction is not very time consuming. In fact, only two minutes were enough

for each series.

4.2 Sensitivity analysis and comparison with other approaches

In this subsection, we develop a sensitivity analysis to the choice of priors and compare the proposed

Griddy-Gibbs sampler procedure with other alternative approaches.

Firstly, we use the three simulated series to explore the sensitivity to our election to prior

distributions. We replace the uniform distributions of ρ and λ given in (9) for more informative

beta distributions. We consider a priori that ρ ∼ Beta(2, 1) restricted to the interval (0.5,1), to

increase the prior probability that an observation is generated by the smaller variance component,

and λ ∼ Beta(1, 2), to let the variance of the second component be large enough compared with

the variance of the first one. We also assume a non-informative prior on the unconditional variance,

f (ω, α, β) ∝ 1− α− β

ω
, (20)

restricted to the stationary region, as considered in Bauwens et al. (1999). Note that the uncon-

ditional variance of our GARCH-mixture model, which is given by the inverse of (20), does not

depend on (ρ, λ) as var (εt) = 1. Columns 2, 5 and 8 of Table 6 show the posterior means and stan-

dard deviations of the model parameters for the three series simulated in the previous subsection

using this prior specification. Observe that there is little sensitivity to this prior choice compared
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Table 6: Posterior mean and standard deviations with the Griddy-Gibbs sampler with informative
priors (GG2), Random Walk Metropolis-Hastings (RWMH) algorithm and Maximum Likelihood
(MLE) estimates with standard errors.

T = 500 T = 1000 T = 2000
Param. GG2 RWMH

std
MLE

std
GG2 RWMH

std
MLE

std
GG2 RWMH

std
MLE

std

ρ = .9 .8860
.0781

.8816
.0745

.9392
.0415

.8981
.0423

.8895
.0350

.9098
.0265

.9187
.0325

.9123
.0223

.9230
.0131

λ = .15 .1956
.0762

.2038
.0736

.1505
.0873

.1521
.0465

.1698
.0366

.1529
.0038

.1279
.0402

.1436
.0251

.1336
.0197

µ = .01 .0093
.0026

.0088
.0026

.0091
.0026

.0084
.0019

.0082
.0019

.0084
.0019

.0092
.0014

.0093
.0013

.0092
.0013

ω = .001 .0011
.0006

.0009
.0004

.0005
.0002

.0007
.0003

.0004
.0001

.0004
.0001

.0010
.0004

.0007
.0001

.0006
.0001

α = .15 .1479
.0612

.1432
.0494

.1127
.0467

.1176
.0482

.1057
.0279

.0985
.0298

.1170
.0452

.0992
.0202

.0961
.0221

β = .7 .6038
.1788

.6492
.1246

.7684
.0957

.7578
.0920

.8102
.0375

.8161
.0528

.7188
.1033

.7749
.0334

.7813
.0047

Time 11.7 m. 19.9 m. 0.4 s. 19.1 m. 27.5 m. 0.7 s. 35.8 m. 45.3 m. 2.3 s.

with the results obtained in Table 2. Also, we have observed that there is also little sensitivity in

the prediction of volatilities and VaR.

Secondly, we compare our Griddy-Gibbs sampling approach with uniform priors with a fre-

quently used MCMC method, the Random Walk Metropolis-Hastings (RWMH), see e.g. Robert

and Casella (2004). In this method, for each iteration and parameter, a candidate value is

generated from a symmetric distribution and accepted with an easily computable probability.

For instance, for the parameter ρ, a candidate value, ρ̃, is sampled from a normal distribution,

N(ρ(n−1), Vρ), where the variance, Vρ, is a previously chosen constant, and ρ̃ is accepted with prob-

ability min
{
1, κ(ρ̃)/κ

(
ρ(n−1)

)}
. Note that the main difficulty of this approach is the choice of Vρ,

which has to be tuned to obtain the best acceptance rate as possible.

Table 6 shows the posterior means and standard deviations of the model parameters for the

three simulated series obtained with the RWMH algorithm using a 100000 MCMC sample (after

discarding the first 100000 runs). We needed to run such a large number of iterations to achieve

convergence based on the values of the statistic (19) and to obtain reasonable convergence diagrams.

In fact, the best acceptance rates we could get was quite low (around 10% for each parameter).

Note that the posterior means are quite close to those obtained previously using the Griddy-Gibbs

sampling (see Table 2) and the computational cost is even larger with RWMH algorithm. Moreover,

we have observed in the histograms (not reported) that the RWMH approach did not explore
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completely the tails of the marginal distributions. Observe that the posterior standard deviations

are smaller than those obtained with the Griddy-Gibbs sampling. Although other alternative

Metropolis-Hastings algorithms could improve the efficiency of the method, considering the effort

required to calibrate the candidate distributions, we believe that the Griddy-Gibbs sampling is a

simple method to implement which seems to work well in this type of models.

Finally, we consider Maximum Likelihood Estimation (MLE), which is the usual non-Bayesian

procedure for model parameter estimation. Table 6 also shows the maximum likelihood estimates

and standard errors of the parameters of model (18) for the three series. As expected, MLE

estimates differ clearly from the posterior means when the posterior distributions are asymmetric,

in particular for ρ, ω and β. Moreover, the MLE method for GARCH models only provides

point predictions of future observations and volatilities. Furthermore, it is difficult to obtain VaR

estimates and intervals for the mixture model. It can be shown that, given the parameters, the

distribution of yT+1+. . .+yT+s is a mixture of 2s components and the percentiles of this distribution

are not easily available, even if s is small.

5 A Gaussian mixture GARCH(1,1) model for the SMI index

For illustration, we apply our Bayesian procedure described in Section 3 to the daily closing prices of

the stock SMI index, for the period 1/Jul/1991-14/Aug/1998. The log return series, which contain

T = 1859 data points, is plotted in Figure 6. Note that the series includes several extreme returns.

For instance, the large negative return in August, 1991, corresponds to the fall of the communist

regime in the USSR. The sample mean, variance and kurtosis coefficient of the log return series

are 8.17 × 10−4, 8.55 × 10−5 and 8.73 respectively. Note the large sample kurtosis of the returns.

The autocorrelation function of the returns does not show any significant autocorrelation. The

Ljung-Box statistics for the log returns for lags 20 and 25 are 26.01 and 29.36 with p−values 0.16

and 0.24, respectively.

We estimate the model (1) with mixture innovations in (2) using the whole sample so the

model estimated uses 1858 observations. We generate N = 20000 runs of the Markov chain and

discard the initial 10000 runs. The values of statistic (19) for each parameter in θ for the chain are

0.2789, -0.5647, 0.9257, 0.1037, 0.4865 and -0.0231, respectively, indicating that the convergence
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Figure 6: Return series of the MSI stock index

has been achieved. Table 7 reports the estimation results. Our Bayesian procedure estimates that

the variance of the second component is approximately seven times larger than the variance of

the first component. The posterior probability that an observation belongs to the component with

larger variance is 0.077. Thus, the estimated model suggests that most of the innovations (92.3%)

are generated by the first component, while a small number (7.7%), presumably including the

extreme events, are generated by the second component. The estimation indicates the existence

of a significant positive mean so that the SMI stock index has an overall upward trend on the

observed period. The posterior probability that the extreme observation commented above has

been generated by the largest variance component of the mixture is 0.9999, i.e., 99.99% of the

MCMC draws assign this observation to the second component. Last column of Table 7 shows

the maximum likelihood estimates of the model parameters. Note the presence of small differences

between both kind of estimates mainly due to the asymmetry of the posterior distributions as in

the previous section.

Figure 7 shows the histograms of the predictive distribution of the first six-step ahead forecasts

for the conditional volatility. Note that the distribution for the one-step ahead forecast is quite
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Table 7: Estimation results for the stock SMI index.

Parameter Mean
std

Median
mad

MLE

ρ 0.923
0.047

0.932
0.038

0.973
0.004

λ 0.135
0.050

0.137
0.041

0.086
0.012

µ 1.113× 10−3

1.88×10−4
1.114× 10−3

1.51×10−4
1.066× 10−3

1.867×10−4

ω 1.130× 10−5

5.40×10−6
1.080× 10−5

4.30×10−6
5.610× 10−5

1.34×10−6

α 0.151
0.051

0.152
0.041

0.121
0.019

β 0.741
0.084

0.746
0.067

0.826
0.027

Time 36.33 min. 4.37 sec.

Table 8: First Part: Predictive means of future volatilities at times T +1, . . . , T +6 joint with 95%
predictive intervals. Second Part: Value at Risk (VaR) estimates and 95% predictive intervals.

Volatilities VaR
Time Horizon Mean Pred. Interval Mean Pred. Interval

1 2.77× 10−4
(
1.59× 10−4, 4.08× 10−4

) −0.040 (−0.043,−0.038)
2 2.62× 10−4

(
1.30× 10−4, 5.06× 10−4

) −0.058 (−0.061,−0.054)
3 2.49× 10−4

(
1.08× 10−4, 5.84× 10−4

) −0.069 (−0.073,−0.065)
4 2.38× 10−4

(
0.93× 10−4, 6.36× 10−4

) −0.078 (−0.083,−0.074)
5 2.28× 10−4

(
0.82× 10−4, 6.67× 10−4

) −0.086 (−0.092,−0.081)
6 2.20× 10−4

(
0.75× 10−4, 6.87× 10−4

) −0.093 (−0.098,−0.087)

symmetric, while the remaining distributions are right-skewed. Table 8 shows the estimated future

volatilities for times T + 1, . . . , T + 6 obtained with the proposed method, joint with predictive

intervals. Finally, second part of Table 8 shows point estimates and predictive intervals for the

s−period 1% VaR for an amount of investment A = $1, for s = 1, . . . , 6.

6 Conclusions

In this article we have described how to carry out Bayesian inference and prediction for a GARCH

model with Gaussian mixture innovations. We have illustrated that the aforementioned model

accounts for large kurtosis and extreme events better than the normal and t distributions. The

mixture model also avoids the use of informative priors for the degrees of freedom parameter of

the t−distribution. A Griddy-Gibbs sampler has been constructed which is straightforward to
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Figure 7: Histogram of the predictive distributions of the conditional volatility at times T +
1, . . . , T + 6 for the stock SMI index.

implement and has been shown to work well with simulated and real data. Moreover, Bayesian

prediction of volatilities and VaR has been also developed providing confidence intervals which give

information about the precision in the estimates.

This approach can be straightforwardly generalized to capture other effects frequently observed

in financial time series such as asymmetry. For instance, this can be done by increasing the number

of components of the mixture and allowing the mean of these components to be different from zero.

The theory and implementation of these issues are currently under research.
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