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ABSTRACT

In this paper, we study the nonparametric estimation of the regression

function and its derivatives using weighted local polynomial fitting. Consider

the fixed regression model and suppose that the random observation error is

coming from a strictly stationary stochastic process. Expressions for the bias

and the variance array of the estimators of the regression function and its

derivatives are obtained and joint asymptotic normality is established. The

influence of the dependence of the data is observed in the expression of the

variance. We also propose a variable bandwidth selection procedure. A sim-

ulation study and an analysis with real economic data illustrate the proposed

selection method.

1. INTRODUCTION

Recently, the weighted local polynomial regression estimator has received

increasing attention and it has gained acceptance as an attractive method

of nonparametric estimation of regression function and its derivatives. This
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smoothing method has become a powerful and useful diagnostic tool for data

analysis. The estimator is obtained by locally fitting a pth degree polynomial

to the data via weighted least squares and it presents advantages compared

with other kernel nonparametric regression estimators. These are its better

boundary behavior, its adaptation to estimate regression derivatives and its

good minimax properties. Some significant references are, for example, Leje-

une (1985), Müller (1988), Tsybakov (1986,1990), Fan (1992, 1993), Hastie

and Loader (1993), Fan and Gijbels (1992, 1995), Ruppert and Wand (1994)

and Fan et al. (1997). In these papers the independence of the observations

is assumed. The statistical properties of local polynomial regression for de-

pendent data have been studied in recent works of Masry and Fan (1997),

Masry (1996a,b), Härdle and Tsybakov (1997), Härdle et al. (1998), Opsomer

(1997) and Vilar-Fernández and Vilar-Fernández (1998, 2000). In these works

the regression model with random design was considered and the assumption

of the data satisfying some mixing condition was used. A wide study of this

smoothing method can also be found in the recent monograph of Fan and

Gijbels (1996).

In this paper, the fixed design and the short-range dependence nonpara-

metric regression model is considered. In what follows it is assumed that

univariate data Y1,n, Y2,n, ..., Yn,n are observed, and that

Yt,n = m(xt,n) + εt,n, 1 ≤ t ≤ n, (1)

where xt,n, 1 ≤ t ≤ n, are the design points, m(x) is a “smooth” regression
function defined on [0, 1] , without any loss of generality, and εt,n, 1 ≤ t ≤ n, is
a sequence of unobserved random variables with zero mean and finite variance

σ2.We assume, for each n, {ε1,n, ε2,n, ..., εn,n} have the same joint distribution
as ²1, ²2, ..., ²n, where {²t, t ∈ Z} is a strictly stationary stochastic process.
Also, it is assumed that design xt,n, 1 ≤ t ≤ n, is a regular design generated
by a design density f ; that is, for each n, the design points are defined by

Z xt,n

0

f(x)d(x) =
t− 1
n− 1 , 1 ≤ t ≤ n, (2)

f being a positive function, defined on [0, 1] and its first derivative is continu-

ous.
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These regression models frequently arise in economic studies, in the anal-

ysis of growth curves and usually in situations in which data are collected

sequentially over time, for example, in the study of time series with determin-

istic tendency. Now, the purpose of this paper is to study the properties of the

local polynomial kernel estimator of regression function m and its derivatives.

The organization of the work is as follows: In Section 2, an estimator

for a regression function and its derivatives is introduced and its asymptotic

properties are studied. Expressions for the bias and variance/covariance matrix

are obtained and asymptotic normality is shown. In Section 3, a method of

bandwidth selection is proposed and its empirical performance is tested via a

small simulation study presented in Section 4. In this section, we also include

the analysis of an example of real economic data. Finally, the last section is

devoted to the proofs of the obtained results.

2. THE ESTIMATOR AND ITS ASYMPTOTIC PROPERTIES

We consider the fixed design regression model given in (1). Our goal is to

estimate the unknown regression function m(x) = E (Y/x) and its derivatives

based on an observed sample {(xt, Yt)}nt=1 . The nonparametric estimator used
is based on a weighted local polynomial fitting.

2.1. The estimator.

If we assume that the (p+1)th derivatives of the regression function at point

x exist and are continuous, local polynomial fitting permits estimating the pa-

rameter vector ~β(x) = (β0(x), β1(x), · · · , βp(x))t, where βj(x) = m
(j)(x)/(j!),

with j = 0, 1, . . . , p, by minimizing the function

Ψ(~β(x)) =
nX
t=1

Ã
Yt −

pX
j=0

βj(x)(xt − x)j
!2

ωn,t, (3)

where ωn,t = n
−1Kn(xt−x) are the weights, Kn(u) = h

−1
n K (h

−1
n u), K being a

kernel function and hn the bandwidth or smoothing parameter that controls the
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size of the local neighborhood and so the degree of smoothing. The estimator

of ~β(x), obtained as a solution to the weighted least squares problem given

in (3), is called the local polynomial kernel estimator and it is interesting to

observe that this class of estimators includes the classical Nadaraya-Watson

estimator, which is the minimizer of (3) when p = 0. Of special interest is also

the local linear kernel estimator corresponding to p = 1.

The minimizing problem is introduced in matrix notation for concise pre-

sentation of results. Let us denote

~Y(n) =

 Y1
...

Yn

 , X(n) =

 1 (x1 − x) · · · (x1 − x)p
...

...
...

...

1 (xn − x) · · · (xn − x)p

 ,
and let W(n) = diag (ωn,1, . . . ,ωn,n) be the diagonal array of weights. Then

by assuming the invertibility X t
(n)W(n)X(n), standard weighted least squares

theory leads to the solution

β̂(n)(x) =
¡
X t
(n)W(n)X(n)

¢−1
X t
(n)W(n)

~Y(n) = S
−1
(n)
~T(n), (4)

where S(n) is the array (p+ 1)× (p+ 1) whose (i, j)th element is s(n)i,j = s(n)i+j−2
with

s
(n)
j =

1

n

nX
t=1

(xt − x)jKn (xt − x) , 0 ≤ j ≤ 2p, (5)

and ~T(n) =
³
t
(n)
0 , t

(n)
1 , ..., t

(n)
p

´t
, being

t
(n)
i =

1

n

nX
t=1

(xt − x)iKn (xt − x)Yt, 0 ≤ i ≤ p. (6)

2.2. The Mean Squared Error.

In this subsection asymptotic expressions for the bias and variance/co-

variance array of the estimate defined in (4) are obtained. The following

assumptions will be needed in our analysis:

A.1. Kernel function K(·) is symmetric, with a bounded support, and Lips-
chitz continuous.
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A.2. The sequence of bandwidths or smoothing parameters, {hn}, satisfies
that hn > 0, hn ↓ 0, nhn ↑ ∞.

A.3. Denote Cov (²i, ²i+k) = σ2 c (k) , k = 0,±1, ... thenP∞
k=1 k |c(k)| <∞.

From assumption A3 we assume that the strength of correlation between

error terms is independent of sample size. This assumption, among others, is

satisfied by time series that are of the form tendency plus random component,

used in Hart (1991), Chu and Marron (1991), and Tran et al. (1996), among

others.

The following notations will be used. Let µj =

Z
ujK(u) du and νj =Z

ujK2(u) du, j = 0, 1, 2, .. and let us denote ~µ = (µp+1, . . . , µ2p+1)
t.

To obtain results on the asymptotic behavior of the proposed estimates,

we need to establish the convergence for each element array S(n) and the mean

squared convergence of ~T ?(n), that is, the variable vector
~T(n) centered with

respect to vector ~M(n)= (m(x1), · · · ,m(xn))t.

PROPOSITION 1. Under assumptions A1 and A2, for every x ∈ (hn, 1− hn),
we have

lim
n→∞

h−jn s
(n)
j = f(x)µj , 0 ≤ j ≤ 2p+ 1. (7)

This result can be expressed in matrix form as

lim
n→∞

H−1
(n)S(n)H

−1
(n) = fX(x)S, (8)

where H(n) = diag (1, hn, h
2
n, · · · , hpn) and S is the (p+1)× (p+1) array whose

(i, j)th element is si,j = µi+j−2.

In order to establish the mean squared convergence of β̂(n)(x), it is necessary

to study the asymptotic performance of vector ~T ?(n) =
¡
t?0,(n), · · · , t?p,(n)

¢ t
, whose

ith component is

t?i,(n) =
1

n

nX
t=1

(xt − x)iKn (xt − x) (Yt −m(xt)) , 0 ≤ i ≤ p. (9)
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PROPOSITION 2. Under assumptions A1, A2 and A3, for every x ∈
(hn, 1− hn), we have

lim
n→∞

nhnCov
¡
h−jn t

?
j,(n), h

−i
n t

?
i,(n)

¢
= νj+if(x)c(ε) for 0 ≤ j, i ≤ p, (10)

or, in matrix form

lim
n→∞

nhnE
³
H−1
(n)
~T ?(n)

~T ?t(n)H
−1
(n)

´
= S̃f(x)c(ε), (11)

where S̃ is the array whose (i, j)th element is s̃i,j = νi+j−2 and c (ε) =

σ2 (c(0) + 2
P∞

k=1 c (k)) .

The proofs of these two previous results may be found in Section 5. Now,

using these results we can establish the mean squared convergence of β̂(n)(x).

For it, let
~β?(n)(x) = E

³
β̂(n)(x)

´
= S−1(n)X

t
(n)W(n)

~M(n). (12)

Performing a (p+ 1)th-order Taylor series expansion in a neighborhood of

x, we obtain

~M(n) = X(n)~β(x) +
m(p+1)(x)

(p+ 1)!

 (x1 − x)p+1
...

(xn − x)p+1

+ o
 (x1 − x)p+1

...

(xn − x)p+1

 . (13)
Substituting this expression in (12) and using A1,

~β?(n)(x) =
~β(x) + S−1(n)

m(p+1)(x)

(p+ 1)!

 s
(n)
p+1
...

s
(n)
2p+1

+ o
 hp+1n

...

h2p+1n


 . (14)

On the other hand, definitions (9) and (12) yield

S−1(n) ~T
?
(n) = β̂(n)(x)− ~β?(n)(x).

From both equations, we obtain

β̂(n)(x)− ~β(n)(x) = S−1(n) ~T ?(n) + S−1(n)

m(p+1)(x)

(p+ 1)!

 s(n)p+1
...

s
(n)
2p+1

+ o
 hp+1n

...

h2p+1n


 .
(15)
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This equation is very important; the first term on the right side of (15)

corresponds to the variance of the estimator β̂(n)(x) and the second term cor-

responds to the bias.

From equation (15) and Propositions 1 and 2, we can deduce the following

theorem:

THEOREM 1. Under assumptions A1, A2 and A3, for every x ∈ (hn, 1− hn),
we have the following asymptotic expression of bias of the estimator β̂(n)(x),

H(n)E
³
β̂(n)(x)− ~β (x)

´
=
m(p+1)(x)

(p+ 1)!
hp+1n S−1~µ+ o

¡
hp+1n (1, . . . , 1) t

¢
, (16)

and the following asymptotic expression of variance of β̂(n)(x),

V ar
³
H(n)β̂(n)(x)

´
=

1

nhn

c(ε)

f(x)
S−1S̃S−1 + o

µ
1

nhn

¶
. (17)

Asymptotic expressions for the bias and variance of the regression function

estimator and its derivatives are directly derived from Theorem 1.

COROLLARY 1. If the assumptions of Theorem 1 are satisfied, then for

every x ∈ (hn, 1− hn), we have

Bias
¡
m̂(j)(x)

¢
= hp+1−jn

m(p+1)(x)

(p+ 1)!
j!Bj (1 + o(1)) , (18)

V ar
¡
m̂(j)(x)

¢
=

1

nh2j+1n

c(ε)

f(x)
(j!)2Vj (1 + o(1)) , (19)

with j = 0, 1, ..., p. The terms Bj and Vj denote the jth element of S
−1~µ and

the jth diagonal element of S−1S̃S−1, respectively.

The first implication of Corollary 1 is that the dependence of the observa-

tions influences the variance of the estimator but not the bias, as expected.

However, the rate of convergence in Mean Squared Error of the proposed es-

timator is the same under independence of the observations as under depen-

dence, although slower in this case due to the larger variance. The results
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agree with those obtained by Hart (1991) in his Mean Squared Error study of

Gasser-Müller kernel regression function estimator when model (1) is consid-

ered.

2.3. Asymptotic normality

To establish the asymptotic normality of β̂(n)(x), it is first appropriate to

study the asymptotic performance of vector ~T ?(n). For it, the two following

additional assumptions are necessary:

A.4. E|εt|2+δ <∞ for some δ > 0

A.5. The stationary stochastic process {εt} is α−mixing with mixing coef-
ficients such that

∞P
t=1

α(t)δ/(2+δ) < ∞. And, there exists a sequence of

positive integers {sn} , sn →∞ as n→∞ with sn = ◦
³
(nh3n)

1/2
´
and

such that (nh−1n )
1/2

∞P
t=sn

α(t)1−γ <∞, with γ = 2/(2 + δ).

A.6. hn = O
¡
n−1/(2p+3)

¢
.

Note that the strong mixing condition (α−mixing), introduced by Rosen-
blatt (1956), is one of the least restrictive among the numerous dependence

conditions and it is satisfied by many processes, for example, the ARMA pro-

cesses generated by absolutely continuous noise. A thorough study of this

condition can be seen in Doukhan (1995).

PROPOSITION 3. If assumptions A1-A6 are fulfilled then for every x ∈
(hn, 1− hn), we havep

nhnH
−1
(n)
~T ∗(n)

L−→ N(p+1)

³
~0, f(x)c (ε) eS´ , (20)

where N(p+1) (~µ,Σ) denotes a multivariate normal distribution of dimension

p+ 1, with mean vector ~µ and variance-covariance matrix Σ.

Now, the asymptotic normality of β̂(n)(x) follows from (15) and the con-

vergence results established in Propositions 1 and 3.
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THEOREM 2. Under assumptions of Proposition 3, we have

p
nhn

·
H(n)

³
β̂(n)(x)− ~β(x)

´
− m

(p+1)(x)

(p+ 1)!
hp+1n S−1~µ

¸
L−→ N(p+1) (0,Σ) , (21)

where Σ =
c (ε)

f(x)
S−1eSS−1.

The asymptotic normality of the individual components β̂
(n)
j (x) =

m̂(j)(x)

j!
is directly derived from Theorem 2.

COROLLARY 2. Under the hypotheses of Theorem 2, we have, for j =

0, · · · , p,q
nh1+2jn

·¡
m̂(j)(x)−m(j)(x)

¢− hp+1−jn

m(p+1)(x)

(p+ 1)!
j!Bj

¸
L−→ N

¡
0, σ2j

¢
, (22)

where σ2j =
c (ε)

f(x)
(j!)2Vj and the terms Bj and Vj are given in Corollary 1.

Masry and Fan (1997) studied the local polynomial kernel estimator in re-

gression models with random design and ρ-mixing and α−mixing observations.
In their Theorem 5, they obtained a similar result to (22), but in their case the

asymptotic variance expression under dependence coincides with the result for

independent observations.

3. BANDWIDTH SELECTION METHODS

In any problem of nonparametric estimation of curves, the choice of the

bandwidth parameter is very important and hence this should be done with

extreme care. Several methods of selecting bandwidths have been proposed in

kernel estimation of the regression function with dependent errors when the

Nadaraya-Watson estimator or the Gasser-Müller estimator were employed.

Most of the proposed procedures of bandwidth selection use a cross-validation
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algorithm or a plug-in method. Among those using the former are the modi-

fied cross-validation (MCV), that is, simply the “leave(2l + 1)-out” version of

cross-validation (see Härdle and Vieu (1992)), the partitioned cross-validation

(PCV) (Chu and Marron (1991)) and the time series cross-validation (TSCV)

proposed by Hart (1994). Other procedures follow a plug-in method. This

method consists of obtaining an estimator of the bandwidth that minimizes

the Mean Squared Error (MSE) or Mean Integrated Squared Error (MISE),

replacing the unknown quantities by estimators. Along this line are the band-

width selectors proposed by Herrmann, Gasser and Kneip (1992) and Quin-

tela (1994).

In this section, we propose practical bandwidth selection procedures for

local polynomial estimator, given in (4), of the regression function and its

derivatives. The proposed procedures are of plug-in type and are based on

minimizing the Mean Squared Error, asymptotic or theoretical.

Using the asymptotic expressions of bias and variance, (18) and (19), we

can obtain an asymptotically optimal local bandwidth, hoptj,l,as (x), for estimator

m̂(j)(x), minimizing the asymptotic Mean Squared Error,

MSE
¡
m̂(j)(x)

¢
=

Ãµ
hp+1−jn

m(p+1)(x)

(p+ 1)!
j!Bj

¶2
+

1

nh2j+1n

c(ε)

f(x)
(j!)2Vj

!
(1 + o(1)) ,

(23)

therefore,

hoptj,l,as (x) = Cj,p (K)

µ
c(ε)

n(m(p+1)(x))2f(x)

¶1/(2p+3)
, (24)

where Cj,p (K) is a real number that depends on kernel K (Table 3.2 of Fan

and Gijbels (1996) lists some values of Cj,p (K)). Equation (24) shows the

influence of dependence. So, when we wrongly assume independence of the

errors, since σ2 6= c(ε), the asymptotically optimal bandwidth considered will
be diferent from (24). For example, if εt follows an AR(1) model with ρ = 0.8,

we have c(ε) = 9σ2 and therefore, h (x) ' hoptj,l,as (x) /1.55, when p = 1.
In the obtained expression for the local bandwidth, there are two unknown

quantities: c(ε), given by the dependence structure of the errors, andm(p+1)(x),

the (p+ 1) th derivative of the regression function. In practice, these un-

10



known quantities are replaced by estimators, and the computed bandwidth is

ĥoptj,l,as (x). To estimate the unknown quantities before cited, various possibilities

arise. In section 4.2 of Fan and Gijbels (1996), m(p+1)(x) is estimated fitting to

the regression function, globally, a polynomial of (p+ 3) order, m̆p+3(x), and

next calculating the (p+ 1) derivative of this fitted curve, m̆
(p+1)
p+3 (x).Moreover,

we can compute the residuals ε̆t = Yt − m̆p+3(xt), 1 ≤ t ≤ n. On the other
hand, this can also be achieved using a local regression polynomial, for which

a pilot bandwidth, hpilot, is necessary. Therefore, with this pilot bandwidth,

m(p+1)(x) is estimated (as explained in Section 2.1) and the nonparametric

residuals are calculated as ε̃t = Yt − m̃hpilot(xt), 1 ≤ t ≤ n. With respect
to the other parameter, c(ε) = σ2 (c(0) + 2

P∞
t=1 c (k)), let us consider two

situations. If we assume that the error follows an ARMA model or another

parametric model, we can obtain the covariances from a small number of pa-

rameters. Then, an estimator of c(ε) can be obtained by simply estimating

these parameters from nonparametric residuals. If, on the other hand, we do

not assume a parametric structure of covariances, then an estimator of c(ε)

is directly obtained from the data. In this way, for m-dependent residuals,

Müller and Stadtmüller (1988) proposed an estimator for c(ε) based on first

order differences of Yt. For residuals that are not necessarily m-dependent but

satisfy some mixing conditions, Herrmann, Gasser and Kneip (1992) suggested

an estimator of c(ε) based on second order differences of Yt.

To obtain a global bandwidth, we use as measure of global error of the

estimation, the Mean Integrated Squared Error, given by

MISE (h) =

Z
MSE

¡
m̂(j)(x)

¢
ω (x) dx, (25)

where ω (x) ≥ 0 is a weight function. An asymptotically optimal global band-
width, hoptj,g,as, can be obtained by minimizing the asymptotic MISE (h) , in

which case the bandwidth is

hoptj,g,as = Cj,p (K)

Ã
c(ε)

n
R
(m(p+1)(x))

2
ω (x) f(x)dx

!1/(2p+3)
. (26)

Again, the global bandwidth depends on two unknown quantities, c(ε) andR ¡
m(p+1)(x)

¢2
, that we can replace by estimators, obtaining the bandwidth
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ĥoptj,g,as (x) . Estimators of these two values can be calculated as we indicate

previously.

On the other hand and following the analogous ideas of Fan et al. (1996),

the bias and variance of the estimator β̂(n)(x) are derived immediately from

its definition in (4).

Bias
³
β̂(n)(x)

´
= ~β?(n)(x)− ~β(x) = S−1(n)X t

(n)W(n)
~R(n). (27)

V ar
³
β̂(n)(x)

´
= S−1(n)X

t
(n)W(n)Γ(n)W(n)X(n)S

−1
(n), (28)

where ~R(n) = ~M(n) − X(n)~β(x) and Γ(n) = E (~ε~εt) is the variance-covariance

matrix of the residuals. These two arrays are unknown. The exact Mean

Squared Error of β̂(n),j(x) is

MSE
³
β̂(n),j(x)

´
= b2(n),j(x) + V(n),j(x), j = 0, 1, ..., p, (29)

where b(n),j(x) and V(n),j(x) are the (j + 1)th-element of the bias vector (27)

and the (j + 1)th-diagonal element of the variance matrix (28), respectively.

Again, the MSE
³
β̂(n),j(x)

´
cannot be computed, but it can be estimated if

estimators of the Bias
³
β̂(n)(x)

´
and Γ(n) are obtained. Then, we define the

estimated optimal local bandwidth as

ĥoptj,l = arg min
h

ˆMSE
³
β̂(n),j(x)

´
. (30)

Using Taylor’s expansion of order p+a, an approximation of Bias
³
β̂(n)(x)

´
can be obtained; Fan and Gijbels (1996) recommend to choose a = 2 because,

without a high computational cost, a bandwidth selector with good asymptotic

properties is obtained. For simplicity, we use a = 1, then Bias
³
β̂(n)(x)

´
can

be approximated by

Bias
³
β̂(n)(x)

´
≈ S−1(n)βp+1~µ. (31)

On the right side of (31), quantity βp+1 is unknown but can be estimated by

using a local polynomial regression of order r (r > p) with a pilot bandwidth h∗.

12



This fitting is also used to obtain the estimated residuals ε∗i = Yi − Y ∗i , where
Y ∗i = m̂h∗(xi) is the predicted value in xi after the local rth-order polynomial

fit. From these residuals an estimator, Γ∗, of the variance-covariance matrix is
obtained.

Finally, the estimated optimal global bandwidth is defined as

ĥoptj,g = arg min
h

Z
ˆMSE

³
β̂(n),j(x)

´
dx. (32)

In both bandwidth selection procedures, the asymptotic plug-in and direct

plug-in, the influence of the dependence of the residuals is observed. So, if

high positive correlations are present and they are not considered, the bands

selected will be too small.

We now illustrate the behavior of the estimator defined in (4) and some

of the bandwidth selectors proposed in this section. We perform a small sim-

ulation study and analyze a numerical real data sample. On the one hand,

the objective of these studies is to compare the bandwidths obtained by the

asymptotic plug-in method and direct method and on the other hand, to ob-

serve the effect of obviating the dependence of the data. In our study, global

bands given in (26) and (32), of the local linear estimator of the regression

function, are considered.

4. SIMULATION STUDY AND EXAMPLE

In this section we present some simulation results of the proposed estimator

and of the methods of selecting bandwidths presented in Section 3. We also

apply this estimator to a set of real-data.

4.1. Simulation study.

A first study was carried out in order to compare bandwidths ĥoptj,g,as and

ĥoptj,g (given in (26) and (32), respectively, using the local linear estimator of the

regression function, that is, p = 1 and j = 0) computed under independence
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and under dependence and also to study the influence of the dependence of

data in these selectors. For this purpose, in a first step, we simulated 300

samples of size n = 100, following the regression model given in (1), where we

considered a design of equally spaced points on the unit interval, xt = t/n,

t = 1, . . . , n, with regression function m (x) = 5 (x− 0.5)3 and errors, εt,

following a dependence structure of AR(1) type,

εt = ρεt−1 + et,

where εt have distribution function N(0,σ
2), with σ = 0.3. In order to study

the influence of dependence of the observations, we considered the following

values of correlation coefficient, ρ = 0.9, 0.6, 0.3, 0, −0.3, −0.6, −0.9. Now, we
computed the measurements of discrepancy in the norms L2 (the mean inte-

grated square error, MISE), L1 (the mean integrated absolute error, MIAE)

and L∞ (the mean uniform absolute error, MUAE), between the underlying

regression function m (x) and the estimator m̂h (x) ,

MISE(h) = E

Z
(m̂h(t)−m(t))2 dt, (33)

MIAE(h) = E

Z
|m̂h(t)−m(t)| dt, (34)

MUAE(h) = E

µ
sup
t
|m̂h(t)−m(t)|

¶
. (35)

This is done for every bandwidth in a grid of equally spaced values of h.

The integrals appearing in the three norms are approximated by means of

Riemman sums. By minimizing functions (33), (34) and (35) numerically in h,

some numerical approximations to the values hMISE, hMIAE and hMUAE are

found.

The second step consists in drawing another 300 random samples of sample

size n = 100 and computing the four plug-in bandwidths for every sample.

Using Montecarlo approximations, once more, the expected value, the standard

deviation for every selector and the mean squared of the error committed,

M
³
ĥ
´
, with respect to its minimum, minh>0M(h), given by

∆M = E

µ
M
³
ĥ
´
−min

h>0
M(h)

¶2
14



where M =MISE, MIAE or MUAE can be approximated.

In the computation of the global bandwidths ĥoptj,g,as and ĥ
opt
j,g , we need to

estimate parameter c (ε) = σ2, if we suppose that the errors are independent,

and c (ε) =

µ
1 + ρ

1− ρ

¶
σ2, under the hypothesis that the errors follow an AR (1)

dependent model. For this purpose, we use the following consistent estimators

σ̂2 =
1

n

nX
i=1

ε̂2i and ρ̂ =

Pn
i=2 ε̂iε̂i−1Pn
i=1 ε̂

2
i

,

where

ε̂i = Yi − m̂hTSCV (xi), i = 1, 2, . . . , n.

These nonparametric residuals were obtained using a pilot bandwidth,

hTSCV , computed by Time Series Cross-Validation method, proposed by Hart

(1994). On the other hand, an empirically chosen pilot bandwidth, hpilot =

0.95, was used to carry out a local polynomial fitting of third order from

which m00(x) (needed to calculate ĥopt0,g,as), and β2 (used to compute ĥ
opt
0,g) are

estimated.

Table I shows the approximated optimal bandwidths with respect to each

of the three criteria and the Montecarlo approximation of the mean of every

plug-in selector, ĥopt0,g,as and ĥ
opt
0,g , under independence and dependence.

TABLE I

bandwidth ×10−1 −0.9 −0.6 −0.3 ρ = 0 0.3 0.6 0.9

hMISE 1.666 2.090 2.454 2.878 3.424 4.333 5.787

hMIAE 1.363 1.969 2.272 2.636 3.121 4.030 6.333

hMUAE 2.151 2.575 2.878 3.424 3.848 4.463 4.333

ĥopt0,g,as (under dep.) 1.477 1.949 2.268 2.571 2.900 3.253 3.254

ĥopt0,g (under dep.) 1.487 1.915 2.264 2.619 2.985 3.292 3.107

ĥopt0,g,as (under indep.) 2.596 2.598 2.596 2.615 2.633 2.600 2.220

ĥopt0,g (under indep.) 2.654 2.659 2.654 2.673 2.668 2.578 2.127

Table 1: Optimal bandwidths, and ĥopt0,g,as and ĥ
opt
0,g under independence and

dependence.
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Table II includes the efficiency measures, ∆MISE, as a function of ρ and

Table III the results of the simulation study with ρ = 0.9.

TABLE II

∆MISE ρ = −0.9 ρ = −0.6 ρ = −0.3 ρ = 0

ĥopt0,g,as (dependence) 1.00E − 9 1.00E − 9 9.00E − 9 5.60E − 8
ĥopt0,g (dependence) 1.00E − 9 3.00E − 9 1.70E − 8 8.80E − 8
ĥopt0,g,as (independence) 1.49E − 7 3.80E − 8 1.12E − 8 4.80E − 8
ĥopt0,g (independence) 1.94E − 7 8.00E − 8 3.60E − 8 8.00E − 8
∆MISE ρ = 0.9 ρ = 0.6 ρ = 0.3

ĥopt0,g,as (dependence) 1.70E − 5 2.00E − 6 3.11E − 7
ĥopt0,g (dependence) 2.50E − 5 3.00E − 6 3.78E − 7
ĥopt0,g,as (independence) 8.00E − 5 1.00E − 5 7.35E − 7
ĥopt0,g (independence) 9.80E − 5 1.20E − 5 9.13E − 7

Table 2: ∆MISE as a function of ρ.

TABLE III

ρ = 0.9 Bandwidth MISE MIAE MUAE

hMISE 5.78E − 1 4.04E − 2 1.57E − 1 3.92E − 1
hMIAE 6.33E − 1 4.05E − 2 1.57E − 1 3.96E − 1
hMUAE 4.33E − 1 4.10E − 2 1.59E − 1 3.87E − 1
ρ = 0.9 Mean (St. dev.) ∆MISE ∆MIAE ∆MUAE

ĥopt0,g,as (dep.) 0.325 (0.0897) 1.70E − 5 9.20E − 5 3.01E − 4
ĥopt0,g (dep.) 0.310 (0.0926) 2.50E − 5 1.29E − 4 4.75E − 4
ĥopt0,g,as (indep.) 0.222 (0.0611) 8.00E − 5 3.72E − 4 1.70E − 3
ĥopt0,g (indep.) 0.212 (0.0645) 9.80E − 5 4.41E − 4 2.13E − 3

Table 3: Results of the simulation study with ρ = 0.9.
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For a better interpretation of these results, we also include two figures.

In Figure 1, the studied bandwidths as a function of ρ are represented. In

Figure 2, the values of log (∆MISE) for every selector, as a function of ρ, are

represented.

1.2.9.6.30.0-.3-.6-.9-1.2

.6

.5

.4

.3

.2

.1

h_g,dir_ind

h_g,dir_dep

h_g,as_ind

h_g,as_dep

h_MISE

Figure 1: Bandwidths as a function of ρ

In the simulation results, we can observe that the amount of positive depen-

dence makes that the optimal bandwidths, hMISE, hMIAE and hMUAE, increase

remarkably. The plug-in selectors, ĥopt0,g,as and ĥ
opt
0,g , under dependence have the

same behavior and so they take into account the influence of dependence. For

ρ = 0.9, the results are worse. This may be due to a need for, owing to

the strong dependence, using larger sample sizes to obtain good results. On

the other hand, the plug-in bandwidths, computed under the hypothesis of

independence, show a worse behavior, in the sense that they are insensitive

to the dependence of the observations (Figure 1) and do not follow the op-

timal bandwidths. In the simulation study here presented and in others we
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Figure 2: log (∆MISE) , for every selector, as a function of ρ.

have performed, we can observe that bandwidths ĥoptj,g,as and ĥ
opt
j,g , under de-

pendence, present a similar and good performance. So, it is important to take

into account the dependence of the observations when a bandwidth is chosen

and to use this information in the computation of the bandwidth, as with the

proposed selectors, ĥoptj,g,as and ĥ
opt
j,g .

4.2. A numerical example.

We now illustrate the behavior of weighted local polynomial regression

with the data of accumulative (last twelve months) retail price index of Spain.

The studied series is of 224 months, from January 1979 to August 1997. Each

observation indicates the accumulated R.P.I. in the last twelve months and they

were obtained from the database TEMPUS of Instituto Nacional de Estad́ıstica

de España (National Institute of Statistics of Spain).

The regression model can be fitted to these data with xt = t/n and smooth-

ing parameters are obtained using the same methods as in the above simulation

study.
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TABLE IV

ĥopt0,g,as (under dependence) 0.3236

ĥopt0,g (under dependence) 0.3745

ĥopt0,g,as (under independence) 0.1669

ĥopt0,g (under independence) 0.2148

Table 4: Plug-in bandwidths obtained with data of monthly accumulated

R.P.I. from January 1979 to August 1997 in Spain.

Figure 3 shows the scatterplots of the R.P.I. and two estimators of the

regression function, the first obtained under dependence with bandwidth ĥopt0,g =

0.3745 (bold line) and the second, under independence, with bandwidth ĥopt0,g =

0.2148 (thin line).
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Figure 3: Graphs of R.P.I. and m̂h(x) with h = 0.3745 and h = 0.2148.
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5. PROOFS

In this section, we sketch proofs of the results presented in Section 2.

Proof of Proposition 1.

Let kn be the number of elements of Jx = {i / xi ∈ (x− h, x+ h)}. From
the design (2) of the regression model it follows that kn = O(nhn). Using

assumption A1, we obtain that

s(n)j =

Z 1

0

(u− x)jKn (u− x) f(u) du+O
µ
hj−1n

n

¶
, 0 ≤ j ≤ 2p. (36)

Now, changing variable y =
u− x
h

and using Taylor´s expansion of f(x+

yhn), we have

s
(n)
j = hjnµjf(x) + o(h

j
n) +O

µ
hj−1n

n

¶
, 0 ≤ j ≤ 2p,

from which, using assumption A2, it follows (7) and (8).

Proof of Proposition 2.

If the Mean Value Theorem with integral remainder is considered, then we

find

K

µ
xt − x
hn

¶
= K

µ
xi − x
hn

¶
+
xt − xi
hn

µZ 1

0

K 0
µ
xi − x+ z(xt − xi)

hn

¶
dz

¶
,

and

(xt − x)r = (xi − x)r + (xt − xi)
µZ 1

0

r(xi − x+ z(xt − xi))r−1 dz
¶
.

Using these two equations, we can deduce for j, r = 0, 1, . . . , p,

Cov
¡
h−jn t

∗
j,(n), h

−r
n t

∗
r,(n)

¢ ≤
20



1

hj+rn

σ2

n2h2n

nX
i=1

(xi − x)j+rK2

µ
xi − x
hn

¶ nX
t=1

c (|i− t|) + o
µ
1

nhn

¶
= ∆1 + o

µ
1

nhn

¶
. (37)

Using arguments similar to those used in the proof of Proposition 1, it

follows that,

∆1 =
f(x)c(ε)

nhn

Z 1

−1
yj+rK2(y) dy + o

µ
1

nhn

¶
. (38)

So, from (37) and (38), we deduce (10) and (11).

Proof of Proposition 3.

A similar approach to that employed in Masry and Fan (1997) or Vilar-

Fernández and Vilar-Fernández (1998) is used to prove asymptotic normality.

Let Qn be an arbitrary linear combination of h
−j
n t

?
j,(n),

Qn =

pX
j=0

ajh
−j
n t

∗
j,(n)i with aj ∈ R. (39)

If the asymptotic normality of
p
nhnQn is established, then (20) is obtained

from the Cramer-Wold theorem. To achieve this, we have used the well known

“small-blocks and large-blocks” method.

From (9), it follows that E (Qn) = 0 and using Proposition 2 we obtain

that

lim
n→∞

nhnV ar (Qn) = f(x)c(ε)

Z
C2(u) du = σ2Q(x). (40)

We will show that
√
nhnQn → N (0,σQ(x)) .

Denote

p
nhnQn =

1√
n

nX
i=1

Zi =
1√
n
Sn, (41)

where
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Zi = Ch(xi − x) (Yi −m(xi))
p
hn,

with

C(u) =

pX
j=0

aju
jK(u) and Ch(u) =

1

hn
C (u/hn) .

The sum, Sn, is written in terms of small and large blocks as follows: for

each n, let kn =

·
n

bn + sn

¸
, where bn and sn depend on n such that bn ↑

∞, sn ↑ ∞, bn /n ↓ 0, sn /bn ↓ 0, bn is the size of the big block and sn is
the size of the small block. Then, let us split Sn into 2kn+1 summands in the

following way:

Sn =
kn−1X
j=0

Φj +
kn−1X
j=0

Ψj + Sr,n = Sb,n + Ss,n + Sr,n, (42)

being

Φj =
bnX
i=1

Zej+i, Ψj =
bn+snX
i=bn+1

Zej+i, Sr,n =
nX

i=ekn+1

Zi, (43)

with ej = j(bn + sn), for j = 0, . . . , kn − 1. Thus, each Φj represents a large

block summing bn variables, each Ψj is a small block summing sn variables

and, finally, Sr,n is a residual block.

We now choose the block sizes. By assumption A6, there exists a sequence,

rn ↑ ∞, such as

rnsn = o
³¡
nh3n

¢1/2´
and rn

µ
n

hn

¶1/2 ∞X
i=sn

[α(i)]1−γ → 0.

Define the large block size by bn =
h
(nhn)

1/2 /rn

i
, where [a] denotes the

integer part of a. Then, it can easily be deduced that, as n ↑ ∞,

sn
bn
→ 0,

bn
n
→ 0,

bn

(nhn)
1/2
→ 0, (44)

1

hn

∞X
i=sn

[α(i)]1−γ → 0, and
n

bn
α (sn)→ 0. (45)
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We will show that as n ↑ ∞

1

n
E
¡
S2s,n

¢→ 0 and
1

n
E
¡
S2r,n

¢→ 0, (46)¯̄̄̄
¯E ¡eiuSb,n¢−

kn−1Y
j=0

E
¡
eiuΦj

¢¯̄̄̄¯ −→ 0, (47)

1

n

kn−1X
j=0

E (Φj)
2 −→ σ2Q(x), (48)

1

n

kn−1X
j=0

E
¡
Φ2jI

©|Φj| ≥ εσQ(x)
√
n
ª¢→ 0, ∀ε > 0, ε ∈ R. (49)

(46) implies that the sum of the small blocks, Ss,n, and the residual block,

Sr,n, are asymptotically negligible. (47) implies that the summands Φj in the

large blocks, Sb,n, are asymptotically independent, and (48) and (49) are the

standard Lindeberg-Feller condition for asymptotic normality of Sb,n under

independence.

So, from (46)—(49) the asymptotic normality of (41) is deduced.

The proofs of (46)—(49) are similar to those in Masry and Fan (1997).

Using (44), (45), Davydov inequality and assumptions A1, A4 and A5, (46) is

established. Using Volkonskii and Rozanov (1959) lemma and (45) again, we

obtain (47).

From (42) and (46), we can deduce

1

n
E (Sb,n)

2 =
1

n

kn−1X
j=0

E (Φj)
2 +

2

n

kn−1X
i=0

kn−1X
j=0
i>j

E (ΦiΦj) −→ σ2Q(x), as n ↑ ∞.

(50)

We have that using the arguments employed before for showing (46), we

obtain
2

n

kn−1X
i=0

kn−1X
j=0
i>j

E (ΦiΦj) −→ 0, as n ↑ ∞. (51)

Now, (48) follows from (50) and (51).
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Finally, to show (49), like Masry and Fan (1997), we employ a truncation

argument. Let M be a positive real number and denote εt,M = εtI {|εt| ≤M}
and ε̃t,M = εtI {|εt| > M} . Then, εt = εt,M + ε̃t,M . Let Qn,M (and Q̃n,M) be

the same linear combination as Qn but replacing εt by εt,M (or ε̃t,M). Similar

notation is used in other terms. Now, the errors, εt,M , are bounded, and

condition (49) is satisfied.

By assumption A1 and using (44), we have

1√
n
|Φj,M | ≤ 1√

n

bnX
i=1

¯̄
Zej+i,M

¯̄ ≤ C bn√
nhn
−→ 0, as n ↑ ∞.

Therefore,
©|Φj,b,M | ≥ εσQ,M(x)

√
n
ª
is an empty set when n is large enough,

and therefore (49) holds and we conclude that
√
nhnQn,M converges in distri-

bution to N
¡
0,σ2Q,M(x)

¢
.

In order to complete the proof, it suffices to show that

ϕQn(t) −→ ϕ
σ2Q
Z (t), as n ↑ ∞, (52)

where ϕQn(t) and ϕ
σ2Q
Z (t) denote the characteristic functions of

√
nhnQn and

of a random variable N(0, σ2Q(x)), respectively.

We have¯̄̄
ϕQn(t)− ϕ

σ2Q
Z (t)

¯̄̄
≤ ¯̄ϕQn,M (t)¯̄ ¯̄̄ϕQ̃n,M (t)− 1¯̄̄+ ¯̄̄ϕσ2Q,M

Z (t)− ϕ
σ2Q
Z (t)

¯̄̄
+¯̄̄

ϕQn,M (t)− ϕ
σ2Q,M
Z (t)

¯̄̄
≡ ∆1 +∆2 +∆3.

As n ↑ ∞, σ2
Q̃n,M

tends to zero by the dominated convergence theorem when

M ↑ ∞. Therefore, ∆1 goes to zero. Again, using the dominated convergence

theorem, we obtain the convergence to zero of the second term. Finally, the

convergence to zero of ∆3 follows from (52) and the Levy theorem, for every

M > 0. Now, the proof of Proposition 3 is complete.
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FIGURE CAPTIONS

FIG. 1. Bandwidths as a function of ρ

FIG. 2. log (∆MISE) , for every selector, as a function of ρ.

FIG. 3. Graphs of R.P.I. and m̂h(x) with h = 0.3745 and h = 0.2148.
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