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Abstract

A goodness-of-�t test statistic for nonlinear regression models based on local

polynomial estimation is proposed in this paper. The criterion used to construct

the test is the distance between the parametric �t and the nonparametric regression

estimation. The good performance of the test is shown via a simulation study. The

method is applied to check a logistic mixture regression model for real data coming

from a thermal analysis problem.
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1 Introduction

A relevant statistical problem in real data applications is to estimate the regression func-

tion of a response variable given some covariates. Although linear models are spreadly

used in many practical setups these models are often not �exible enough to capture the

complex information contained in the data. For this reason, plenty of other parametric

models can be used to explain nonlinear relations. A previous step before �tting such

nonlinear models to the data is to perform goodness-of-�t tests for the proposed model.

There are two di¤erent approaches in the literature for model checking in a regres-

sion context. The �rst one consists of using nonparametric smoothing techniques for

estimating the regression function and compare this estimation with that coming from

a parametric �t. Some discrepancy measure between both estimators has to be intro-

duced and, as a consequence, a test statistic is de�ned. Some relevant references in

this context are HÄRDLE and MAMMEN (1993), GONZÁLEZ-MANTEIGA and CAO

(1993), STUTE and GONZÁLEZ-MANTEIGA (1996), GONZÁLEZ-MANTEIGA and

VILAR (1995), ZHENG (1996), HÄRDLE, MAMMEN and MÜLLER (1998), LI and

WANG (1998), RODRÍGUEZ-CAMPOS, GONZÁLEZ-MANTEIGA and CAO (1998),

DETTE and MUNK (1998), ALCALÁ, CRISTÓBAL and GONZÁLEZ-MANTEIGA

(1999), HÄRDLE and KNEIP (1999), VILAR and GONZÁLEZ-MANTEIGA (2000)

and GONZÁLEZ-MANTEIGA and PÉREZ-GONZÁLEZ (2006).

The second approach is based on empirical regression process theory and uses well

known functionals (as the Kolmogorov-Smirnov or the Cramer-von Mises) of this process

to de�ne goodness-of-�t test statistics. One of the �rst references in this setup is the

paper by STUTE (1997). A sample of other relevant references is STUTE, GONZÁLEZ-

MANTEIGA and PRESEDO-QUINDIMIL (1998), STUTE, THIES and ZHU (1998),

KAUERMANN and TUTZ (2001), DIEBOLT and ZUBER (2001), STUTE and ZHU

(2002), LIN, WEI and YING (2002), NEUMEYER and DETTE (2003), ZHU (2003),

KHMALADZE and KOUL (2004), STUTE and ZHU (2005) and ESCANCIANO (2006).

The smoothing approach for nonlinear model checking is adopted in this paper. A

test statistic based on the L2 distance between a local linear estimator and a parametric

�t is introduced in Section 2. The limit distribution of the test is presented in Section

3. The performance of the test is examined in Section 4 by means of a simulation study.

Section 5 is devoted to a real data application in the context of thermal analysis. Finally,



the proofs of the asymptotic results are collected in Section 6.

2 Goodness-of-�t test

We concentrate ourselves in the �xed design regression context:

Yi = m(ti) + "i; i = 1; 2; :::; n, with E("i) = 0,

where m is the regression function of Y given T , "i are zero mean, independent and

identically distributed random variables and the design satis�es 0 � t1 < t2 < � � � < tn �

1.

We consider a (possibly nonlinear) parametric model form, namelyM = fm�(�)=� 2 �g,

where � is a subset of Rk. The hypothesis testing under study is H0 : m 2 M (i.e.

9�0 2 �=m = m�0) versus the alternative H1 : m =2M.

Starting from the sample f(tj; Yj)gnj=1, we consider, under H0, the least squares es-

timator of �0. This is the k�dimensional vector, b�, that minimizes, in �, the sum of

squared residuals: b� = argmin
�2�

 n(�); (1)

with

 n(�) =
nX
j=1

(Yj �m� (tj))
2 : (2)

The goodness-of-�t test is de�ned by some discrepancy measure between the paramet-

ric regression estimator, mb�, and some nonparametric estimator, bmh. A typical choice for

this discrepancy is D = d2(bmh;mb�), where d is a suitable functional distance. Along this
paper d will be the L2 distance and the nonparametric estimator, bmh, will be the local

polynomial estimator proposed by FAN and GIJBELS (1996):

bmh (t) =
nX
i=1

W n
0

�
t� ti
h

�
Yi (3)

where h is the smoothing parameter,

W n
0 (u) = eT1 S

�1
n (1; hu; : : : ; (hu)p)

T
K(u)=h; (4)



K is the kernel function and

Sn =
�
s
(n)
j;l

�
0�j;l�p

;

with

s
(n)
j;l = Sn;j+l;

Sn;j =

nX
i=1

Kh(t� ti)(ti � t)j: (5)

Thus, the �nal expression for the test statistic is

D = d2(bmh;mb�) =
nX
j=1

�bmh (tj)�mb� (tj)�2 : (6)

3 Asymptotic properties

The following conditions will be needed to obtain the asymptotic normality of the para-

metric estimator and the limit distribution of the test statistic under the null hypothesis

A1. nh2 !1 and nh7=2 ! 0

A2. K is a symmetric continuously di¤erentiable density function with support on

[�1; 1].

A3. E ("4) <1; where �2 = E ("2) :

A4. The design is asymptotically equispaced in [0; 1], i.e. max
2�j�n

��tj � tj�1 � 1
n

�� = o
�
1
n

�
.

A5. sup
t2[0;1]

jm�1 (t)�m�2 (t)j � C1 k�1 � �2k :

A6. The matrix Hn = Hn n

�
�0;

!
t ;

!
Y
�
=
�
h
(n)
lr

�
, with h(n)lr = @2 n

@�il@�r

���
�=�0

, is nonsin-

gular.

A7. The function m�(t) is three times continuously di¤erentiable in �, for every

t 2 [0; 1], with bounded third partial derivatives in �.

A.8 The function @
@�i
m�(t) is uniformly continuous in t, for every i = 1; 2; : : : ; k.

The asymptotic limit distribution of the least squares estimator is now stated.

Theorem 1 Let us consider the estimator b� de�ned in (1) and assume Conditions
A1-A8. Then, if H0 holds,

p
n
�b� � �0

�
d! Nk(0;S); (7)



where S = H�1� (H�1)
T
; H = (hlr) ;with

hlr =

8<: 2
R 1
0

�
@
@�l
m�(t)

�2
dt if l = r

2
R 1
0

@
@�l
m�(t)

@
@�r
m�(t)dt if l 6= r

(8)

and � = (�lr)1�l;r�k, with

�lr = �2
Z

@

@�l
m�(t)

����
�=�0

@

@�r
m�(t)

����
�=�0

dt.

Now, the limit distribution of the test statistic is also established.

Theorem 2 Let us consider the local polynomial estimator de�ned in (3) and the test

statistic given in (6) and assume Conditions A1-A8. Under H0,

p
n2h

�
D � �2

nh

Z 1

�1
K2

�
d! N

�
0; 2�4

Z 1

�1
(K �K)2

�
; (9)

where � denotes convolution.

4 Simulation study

The procedure presented above has been applied to test a logistic mixture model with a

known number, d, of components:

m� (t) =

dX
i=1

wig (ai + bit) ,

where

g(x) =
ex

1 + ex

and the parameter vector is � = (w1; a1; b1; : : : ; wd; ad; bd)
T 2 � = (R+ � R� R)d.

For the null hypothesis case we have set d = 2 and the value of the parameter vector

was �0 = (5; 12;�4; 4; 14;�2). The function m0 (t) = m�0 (t) has been plotted in Figure

1.

A total number of n (n = 400, 500, 600) equispaced data, ti (i = 1; 2; : : : ; n) have been

considered in the interval [0; 12]. The response variable has been generated according to

Yi = m(xi) + "i (with m = m0), where "i are iid N(0; �2) random variables with � = 0:1.

The number of trials in the simulation was 1000.
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Figure 1: Regression functions m0 (black curve); m1 (red curve); m2 (green curve) and

m3 (blue curve) for the null hypothesis case.

The following alternative hypothesis have been considered:

m1 = 5f
�
(12� 4x)(0:5(x� 3)2 + 1)

�
+ 4f(14� 2x);

m2 = 5f
�
(12� 4x)((x� 3)2 + 1)

�
+ 4f(14� 2x);

m3 = 4:5f(12� 4x) + 4f(14� 2x) + 0:5f(10� 5x):

The function m1 is very close to m0. It slightly di¤ers in a small perturbation in the �rst

logistic component. The second alternative model, m2, incorporates a somewhat larger

perturbation in the same component. Finally, the functionm3 includes and additional lo-

gistic component, which re�ects common alternative models, in practice, as those studied

in Section 5.

The normal approximation for the test statistic null distribution has been used:

D
d' N

0@ �2

nh

Z 1

�1
K2;

s
2�4

R 1
�1 (K �K)2

n2h

1A ;



A local linear estimator (i. e., p = 1) was used for the nonparametric regression smoother

with several subjective bandwidths: h = 0:11, 0:13, 0:15. The corresponding bandwidths

were also used to compute the nonparametric residuals "̂i = Yi � m̂h (ti). The sample

variance of these residuals, �̂2, was used to estimate the unknown term �2 in the expression

for D. The Epanechnikov kernel K (u) = 3
4
(1� u2)

+ was used.

Tables 1 and 2 collect the acceptance proportions for the null hypothesis and the three

alternative models using the three bandwidths mentioned above, sample size n = 500 and

signi�cance levels � = 0:01, 0:05. It is clearly seen that the test is conservative but it has

a large power, especially for alternative models m2 and m3. It is also evident that the

smoothing parameter has an important role, especially when examining the power of the

test.

h = 0:11 h = 0:13 h = 0:15

m0 1 1 1

m1 0:988 0:983 0:854

m2 0:886 0:737 0:251

m3 0:729 0:640 0:401

Table 1. Acceptance proportions for the four models, using bandwidths h = 0:11, 0:13,

0:15, sample size n = 500 and signi�cance level � = 0:01.

h = 0:11 h = 0:13 h = 0:15

m0 0:995 0:999 0:959

m1 0:502 0:593 0:071

m2 0:275 0:077 0:017

m3 0:176 0:084 0:033

Table 2. Acceptance proportions for the four models, using bandwidths h = 0:11, 0:13,

0:15, sample size n = 500 and signi�cance level � = 0:05.

To evaluate the in�uence of the sample size a new batch of simulations have been

run for n = 400, 500, 600. The acceptance rates, corresponding to � = 0:01, for models

m0, m1, m2 and m3 are collected in Tables 3-6. The �gures in the tables show that the

test slightly reduces its conservativeness as the sample size grows. The power of the test



increases signi�cantly with the sample size. The choice of the smoothing parameter is

clearly an important issue.

n = 400 n = 500 n = 600

h = 0:11 1 1 1

h = 0:13 1 1 0:999

h = 0:15 1 1 0:969

Table 3. Acceptance proportions for m0, using bandwidths h = 0:11, 0:13, 0:15, sample

size n = 400, 500, 600 and signi�cance level � = 0:01.

n = 400 n = 500 n = 600

h = 0:11 1 0:988 0:866

h = 0:13 1 0:983 0:594

h = 0:15 1 0:854 0:039

Table 4. Acceptance proportions for m1, using bandwidths h = 0:11, 0:13, 0:15, sample

size n = 400, 500, 600 and signi�cance level � = 0:01.

n = 400 n = 500 n = 600

h = 0:11 1 0:886 0:222

h = 0:13 0:998 0:737 0:047

h = 0:15 0:993 0:251 0:002

Table 5. Acceptance proportions for m2, using bandwidths h = 0:11, 0:13, 0:15, sample

size n = 400, 500, 600 and signi�cance level � = 0:01.

n = 400 n = 500 n = 600

h = 0:11 0:998 0:729 0:142

h = 0:13 0:997 0:640 0:073

h = 0:15 0:982 0:401 0:006

Table 6. Acceptance proportions for m3, using bandwidths h = 0:11, 0:13, 0:15, sample

size n = 400, 500, 600 and signi�cance level � = 0:01.



5 Thermal analysis application

We now apply the logistic mixture model studied in the previous section to a data set from

a thermal analysis context. A TGA curve (thermogravimetric analysis) was obtained from

a polyurethane sample using a heating ramp of 10 oC/min and a purge of 50 mL/min

of argon. The TGA curve, shown in Figure 2, correspond to the polyurethane mass

along time in the thermogravimetric experiment. For more details about the logistic

mixture model in thermal analysis see NAYA (2003), NAYA, CAO and ARTIAGA (2003),

CAO, NAYA, ARTIAGA, GARCIA and VARELA (2004) and NAYA, CAO, LÓPEZ-DE-

ULLIBARRI, ARTIAGA, BARBADILLO and GARCIA (2007).

A sample of n = 273 equispaced points in the time domain [0; 20000], in seconds,

was available. The bandwidth has been chosen using the plug-in method proposed by

RUPPERT, SHEATHER and WAND (1995). The value obtained was h = 127. The test

statistic has been computed, using the same prescriptions as in the previous section, for

testing the null hypothesis that the data come from a four-component logistic mixture

model. The normal approximation gives a p-value for the test of p = 0:6337, which lead

to acceptance of a four component logistic mixture model. A three-component logistic

mixture model has also been tested, �nding an approximate p-value of p = 0, which

implies rejection of the reduced model.
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Figure 2: TGA output (black curve), logistic mixture model (blue curve) and logistic

components (green, yellow, red and brown curves) for the polyurethane data.



The estimated values of the parameters for the four-component logistic model are

collected in Table 7, while the parametric �t and the four logistic components are also

plotted in Figure 2. The logistic mixture �t for this data has a nice interpretation in terms

of the thermal behaviour of the material. The steps depicted by the four components

correspond to di¤erent polymer degradation processes. The middle points of these steps

are located at the values - âi
b̂i
, i. e., 5559, 12907, 11152, 16511.

ŵi âi b̂i

i = 1 33:6487 13:1199 �0:00236

i = 2 21:6443 4:9047 �0:00038

i = 3 17:3087 15:1678 �0:00136

i = 4 27:3987 26:0876 �0:00158
Table 7. Estimated parameters of the four-component logistic mixture model for the

polyurethane data.

6 Proofs

The proofs of the two asymptotic results presented in the previous section are given now.

6.1 Proof of Theorem 1

Recall (2) and the de�nition of Hn in Condition A6. Since b� is the minimizer of  n,
Condition A7 implies that a second order Taylor expansion can be obtained:

�!
0 = r n

�b�� = r n (�0) +Hn(�0)
�b� � �0

�
+Rn, (10)

with

r n (�) =
�
@ n (�)

@�i

�t
1�i�k

and

Rn = (Rn;1; Rn;2; : : : ; Rn;k)
T ;

with

Rn;i =
1

2

kX
j;l=1

@3 n
@�i@�j@�l

�e���b�j � �0;j

��b�l � �0;l

�
, 1 � i � k,



for some e� between b� and �0.
Now using Condition A6 in (10) gives

p
n
�b� � �0

�
= A+B (11)

where

A = �
�
1

n
Hn

��1
1p
n
r n(�0); (12)

B = �
�
1

n
Hn

��1
1p
n
Rn(�): (13)

The proof will conclude by showing that A d! N(0;S) and B = oP

�p
n



b� � �0





2

�
.

First of all, Cramér-Wold device is a useful tool to prove convergence of distribution

of the term

1p
n
r n(�0) = �2

1p
n

nX
j=1

(Yj �m�0(tj))

0BBB@
@
@�1
m�(tj)
...

@
@�3k

m�(tj)

1CCCA
�=�0

:

For any �xed vector a 2 Rk, the conditions in Lyapunov Central Limit Theorem (see

PETROV (1995), p.126) are easily checked and thus, it can be easily proved that

aT �n
d! Nk

��!
0 ; at�a

�
:

As a consequence,
1p
n
r n (�0)

d! Nk

��!
0 ;�

�
: (14)

The elements h(n)lr of the Hessian matrix Hn are given by:

h
(n)
ll = 2

nX
j=1

"�
@

@�l
m�(tj)

�2
� (Yj �m�0(tj))

@2

@�2l
m�(tj)

#�����
�=�0

(15)

h
(n)
lr = 2

nX
j=1

�
@

@�l
m�(tj)

@

@�r
m�(tj)� (Yj �m�0(tj))

@2

@�l@�r
m�(tj)

�����
�=�0

(16)

Using Conditions A4 and A8, it is easy to prove

1

n

nX
j=1

�
@

@�l
m�(tj)

�2
!
n!1

Z 1

0

�
@

@�l
m�(t)

�2
dt (17)



and
1

n

nX
j=1

@

@�l
m�(tj)

@

@�r
m�(tj) !

n!1

Z 1

0

@

@�l
m�(t)

@

@�r
m�(t)dt (18)

On the other hand, standard variance calculations and Tchebychev inequality imply

1

n

nX
j=1

"j
@2

@�2l
m�(tj)

����
�=�0

P! 0; (19)

1

n

nX
j=1

"j
@2

@�l@�r
m�(tj)

����
�=�0

P! 0: (20)

Finally using (17), (18), (19) and (20) in (15) and (16), it follows that

1

n
Hn

P! H: (21)

Now, using (14) and (21) the limit distribution of (12) is easily derived:

A
d! Nk(0;S): (22)

To deal with the second term in (11), we �rst bound each component of the vector

Rn using Cauchy-Schwarz inequality:

jRn;ij �
1

2

"
kX

j;l=1

�
@3 n

@�i@�j@�l

�e���2#1=2 


b� � �0




2
2

(23)

As a consequence, using Condition A7, (21) and (23), the term in (13) is

B = OP

�
1p
n




b� � �0




2
2

�
= oP

�p
n



b� � �0





2

�
and the proof is �nished.

6.2 Proof of Theorem 2

We follow the steps of the proof of Theorem 2.1 in GONZÁLEZ-MANTEIGA and CAO

(1993). Starting from (6), standard algebra gives

D = d2
�bmh;mb�� = A+B + C;

where

A =
1

n

nX
j=1

(bmh (tj)�m�0 (tj))
2 ;

B =
1

n

nX
j=1

�
m�0 (tj)�mb� (tj)�2 ;

C =
2

n

nX
j=1

(bmh (tj)�m�0 (tj))
�
m�0 (tj)�mb� (tj)� .



Condition A5 and Theorem 1 imply that

B = Op

�
1

n

�
: (24)

On the other hand, Cauchy-Schwarz inequality imply

jCj � 2
p
AB: (25)

Consequently, the only dominant term for the asymptotic null distribution of the test

statistic is A and the only fact that remains to prove is

p
n2h

�
A� �2

nh

Z 1

�1
K2

�
d! N

�
0; 2�4

Z 1

�1
(K �K)2

�
: (26)

Recall expression (3). Under H0, the term A can be decomposed as follows:

A =
1

n

nX
j=1

(bmh (tj)�m�0 (tj))
2 =

=
1

n

nX
j=1

 
nX
i=1

W n
0

�
tj � ti
h

�
Yi �m�0 (tj)

!2
=

=
1

n

nX
j=1

"
nX
i=1

W n
0

�
tj � ti
h

�
(m�0 (ti) + "i)�m�0 (tj)

#2
=

= A1 + A2 + A3; (27)

where

A1 =
1

n

nX
j=1

"
nX
i=1

W n
0

�
tj � ti
h

�
"i

#2
;

A2 =
1

n

nX
j=1

"
nX
i=1

W n
0

�
tj � ti
h

�
m�0 (ti)�m�0 (tj)

#2
;

A3 =
2

n

nX
j=1

 
nX
i=1

W n
0

�
tj � ti
h

�
"i

! 
nX
l=1

W n
0

�
tj � tl
h

�
m�0 (tl)�m�0 (tj)

!
:

The term A1 can be expanded into two

A1 = A11 + A12 (28)

where

A11 =
1

n

nX
j=1

nX
i=1

W n
0

�
tj � ti
h

�2
"2i ;

A12 =
1

n

nX
j=1

nX
i6=l

W n
0

�
tj � ti
h

�
W n
0

�
tj � tl
h

�
"i"l:



It is straight forward to prove that E (A12) = 0. Using U-statistics calculations and

standard Riemann approximations it is easy to show that

V ar (A12) = 2�4
X
i6=l

"
1

n

nX
j=1

W n
0

�
tj � ti
h

�
W n
0

�
tj � tl
h

�#2
(29)

' 2�4n2
Z 1

0

Z 1

0

'n (v; w)
2 dvdw;

where

'n (v; w) =

Z 1

0

W n
0

�
u� v

h

�
W n
0

�
u� w

h

�
du: (30)

In order to use (4) to �nd an asymptotic expression for (30) we need to �nd an

asymptotic expression for the elements in the matrix Sn. Using (5),

Sn;j ' n

Z 1

0

Kh (t� ti) (ti � t)j du = n

Z 1�t
h

� t
h

K (v)hjvjdv

= nhj
Z 1�t

h

� t
h

vjK(v)dv ' nhj
Z 1

�1
vjK(v)dv = nhj�j (K) :

For instance, an asymptotic expression for Sn for p = 3 is

Sn '

0BBBBBB@
n 0 nh2�2 0

0 nh2�2 0 nh4�4

nh2�2 0 nh4�4 0

0 nh4�4 0 nh6�6

1CCCCCCA = nS;

where S = (sjl)1�j;l�k with sjl = hj+l�j+l(K) and �r(K) =
R 1
�1 u

rK (u) du. In the local

linear case (p = 1) parallel calculations show that Sn ' nS, with

S =

0@ 1 0

0 h2�2

1A ;

which, in view of (4), implies

W n
0

�
u� v

h

�
' K

�
u� v

h

�
1

nh
;

which can be easily proved for a general p. Plugging this equation in (30) and using a

change of variable results in

'n(v; w) '
1

n2h

Z 1�v
h

� v
h

K (z)K

�
z +

v � w

h

�
dz:



Now the right hand side of (29) can be written asZ 1

0

Z 1

0

'n(v; w)
2dvdw ' 1

n4h2

Z 1

0

Z 1

0

 Z 1�v
h

� v
h

K (z)K

�
z +

v � w

h

�
dz

!2
dvdw;

which, after standard algebra, leads toZ 1

0

Z 1

0

'n(v; w)
2dvdw ' 1

n4h

Z 1

�1
(K �K(s))2 ds:

Consequently, an asymptotic formula for the variance of A12 is

V ar (A12) ' 2�4n2
1

n4h

Z 1

�1
(K �K(s))2 ds = 2�4

n2h

Z 1

�1
(K �K(s))2 ds (31)

The expectation and variance of the term A11 can be easily computed

E (A11) = �2
1

n

nX
j;i=1

W n
0

�
tj � ti
h

�2
= �2n

Z 1

0

Z 1

0

W n
0

�
u� v

h

�2
dudv +O

�
1

n

�
=

�2

nh

Z 1

0

Z 1�v
h

� v
h

K(w)2dwdv +O

�
1

n

�
=

�2

nh

Z 1

�1
K(w)2dw +O

�
1

n

�
;

V ar (A11) =
1

n2
V ar

�
"21
� nX
i=1

"
nX
j=1

W n
0

�
tj � ti
h

�2#2

' V ar
�
"21
�
n

Z 1

0

 Z 1

0

W n
0

�
t� s

h

�2
dt

!2
ds

' V ar
�
"21
� n

n4h4

Z 1

0

 Z 1

0

K

�
t� s

h

�2
dt

!2
ds

= V ar
�
"21
� 1

n3h4

�Z
K(u)2du

�2
:

Thus,

A11 =
�2

nh

Z 1

�1
K(w)2dw +O

�
1

n

�
+Op

�
1

n3=2h

�
: (32)

The term A2 in (27) is nonrandom. It can be easily manipulated via Riemman ap-

proximations, changes of variable and Taylor expansions to conclude

A2 '
h4

4

�Z
w2K(w)dw

�2 Z 1

0

m
00

�0
(u)2du: (33)



On the other hand, using (31) and (32) in (28) and Condition A1, it is straight forward

to prove that

A1 = Op

�
1

n
p
h

�
:

which, using Cauchy-Schwarz inequality, A3 � (A1)1=2 (A2)1=2, and expression (33) yields

A3 = Op

�
n�

1
2h

5
4

�
: (34)

As a consequence, using Condition A1 and expressions (33 and (34) it is easy to

prove that the last two terms in (27) are negligible for the purpose of the asymptotic

distribution in (33):
p
n2hA2 = oP (1) ,

p
n2hA3 = oP (1) : (35)

Now, in view of Condition A1, (27), (35), (28) and (32), a su¢ cient condition for (26) is

p
n2hA12

d! N

�
0; 2�4

Z 1

�1
(K �K)2

�
: (36)

The proof of (36) is omitted here since it follows the lines in GONZÁLEZ-MANTEIGA

and CAO (1993), using DE JONG (1987) Central Limit Theorem for generalized quadratic

forms.
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