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ABSTRACT 
The objective of this work is to describe a novel methodology for modelling MV and NL 
processes, useful among other applications, in fault detection tasks, possibly to be applied on 
plant supervision, including transient state fault detection and decision making according the well 
known method based on parity equations and rule based residuals evaluation. 
 
KEYWORDS: Neural networks, Residual generation, Fault detection, Neural predictor 
 

1. INTRODUCTION 
Model based control systems are effective for making local process changes within a specific 

range of operation [1]. However, the existence of highly non-linear (NL) relationships between 
process input/output variables represents a serious difficulty to achieve reliable mathematical 
models [2, 10]. On the other hand, the implementation of intelligent control technology based on 
soft computing methodologies such as neural networks (NN) and genetic algorithms (GA) can 
remarkably enhance the regulatory and advanced control capabilities of many industrial processes 
[3, 8, 11]. Nevertheless, modelling the dynamic response of a multivariable (MV) and NL process 
by means of NN based back propagation methodologies requires a priori deep knowledge with 
regard to NN architectures related to a particular process. The demand of such knowledge may be 
avoided by applying Hybrid Modelling (HM). The implementation of a NN model using back 
propagation algorithm [12, 13, 14] based on collection of real-time data for a steady state 
operation condition is presented. The main relevant topic of the contribution in this work is the 
utilisation of artificial neural networks (ANN) technology for the inferential analysis of 
performance in a wide range of industrial controlled plants. The proposed NN’s architectures can 
accurately predict various properties associated with plant performance behaviour. The back-
propagation network is the most popular feedforward predictive network deployed in process 
industries.  

 
2. NEURAL NETWORK BASED PREDICTION 

Given a plant where V1 is the output variable and V2, V3, …VN are input variables, the 
following relation may be defined for the steady state: 

),,( 321 NVVVfV =   (1) 
Given a steady state database achieved by processing expression (1), following output steady 
state predictions can be obtained: 
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Consequently, a steady state predictor may be defined as a universal functional approximation 
device according the definition (2), where for convenience all variables can operate as input or 
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output variables. This concept means that if a process is described by the function described by 
expression (1), a predictor can be defined as  

),,( 312 NVVVfV =   (3) 
where the process output is V1 and the predictor output is V2. Furthermore, V1 is acting as an input 
variable to the predictor. This concept may be implemented by a proper back propagation NN 
technique to achieve a neural network based model (NNBM). Neural networks will not be an 
accurate predictor [4, 5], if operating inputs/outputs data are outside their training data range. 
Therefore, the training data set should possess sufficient operational range including the 
maximum and minimum values for both inputs/output variables [13, 14, 17]. Data to be acquired 
must satisfy the steady state dynamic behaviour [9]. In order to ensure such condition a pre-
filtering stage is to be carried out. This means that a variable is enabled to enter the database if 
and only if all inputs/output variables are in steady state. Such condition may be expressed as  
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Once database is filled with enabled data, a predictor based NN can be achieved. Prediction time 
horizon is limited by the transient state response time. The admitted data set into the database 
may be used to train the NN based predictor . Each trained NN represent a predictor which 
consists in a neural NNBM. In order to define a steady state NN based predictor, the output and 
inputs must be defined according the relationship [9,11] required between variables with achieved 
data from the database. A transient state model can be obtained by means of the association of a 
transfer function in series with the proposed steady state process model represented by NNBM. 
The most direct way of obtaining an empirical linear dynamic model of a process is to find the 
parameters (deadtime, time constant, and damping coefficient) that fit the experimentally 
obtained response data. The process being identified by analysis of the time response is openloop. 
It can be modelled by a gain, a deadtime and one lag. In the SISO case, the output/input ratio or 
transfer function can be expressed as 
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The steady state non-linear gain K is obtained by the NNBM for SISO case. The deadtime D can 
be easily read from the time response curve analysis. The time constant, under the assumption of 
a first order lag, can be estimated from the time it takes the output to reach 62.3 percent of the 
final steady state change.  
An approach to the transient response model for a non-linear multi-input single output process, 
can be formulated from expression (5), by considering that  
 
� steady state response is given bay the NNBM predictor output (YSS) and  
� transient response is defined as the association of inputs transient responses (YTR) with 

NNBM predictor 
 

Consequently input transient responses are defined as  

1
)()(

+
⋅=

−

sT
esVsY
i

sD

iTRi

i

 (6) 

where YTR(t) is the time response or virtual output due to the input Vi(t).  
In the general case there are several input variables and consequently, the response is due to the 
contribution of all process inputs. Superposition principle can not be applied due to non linear 
characteristics. Then, the set of input values to the NNBM is given as: 
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and the vector of partial transient inputs is given by 
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Dynamic modelling approach from definitions of expressions (2-3), can be summarised with the 
scheme shown in figure 1. 
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Figure 1. Neural Network based predictor using a dynamic modelling approach. 
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Figure 2. Parameter updating technique for the case of parameters variation 
 
In many cases process parameters are time variant. Under such circumstance an adaptive 
procedure is to be carried out according to a conventional technique shown at figure 2, known as 
gain scheduling. Time constants of transfer functions responsible for modelling partial transient 
responses are updated by a gain scheduling strategy. 



3. HM VALIDATION 
Detection of some deviation between process response and hybrid model response into the 

time horizon of transient responses is possible by applying parity equation procedures. This is due 
to some modelling errors. Detection logic by applying the technique of parity equations is shown 
at figure 3, where a rule based logic procedure is added to implement some decision making 
strategy. Then, proposed method on failure analysis for error detection in transient and steady 
states is carried out by applying the following steps: 
Step 1: At the first stage of supervision task, correct operation pattern must be transferred to the 
ANNs by means of a training phase with representative data contained into the database. If the 
transient and steady state operation pattern change, updating the ANNs as well as transient state 
models is strongly recommended as priority action, beginning by training and identification 
phases [6, 7, 17]. After training phase, new NN based model is applied. 
Step 2: Deviation detection.- This step is cyclically realised during each sample time period in 
order to carry out an error model detection task: Consists in evaluate residuals (Ri) achieved by 
comparing the actual value of a variable (Y) with the output of proposed HM predictor (Yv) which 
consists of a back propagation trained neural network associated to dynamic models as shown in 
figure 4. 
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Figure 3. Modelling error detection by parity equations based on neural network prediction. 
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Figure 4. Fault detection scheme based on dynamic NNBM. 
 

4. APPLICATION PROCEDURE 
Let us consider a heat exchanger where its output T is a function of several input variables 

qe, Te, qf as illustrated by expression (10) under the structure shown at figure 5 
),,( fee qTqfT =  (10) 
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Figure 5. Heat exchanger: (a) block diagram. (b) physical layout 
 
Predictor based on NNBM is achieved from tank system database by a back propagation training 
phase. From the analysis of transient response , D1=0, D2=0, D3=0, T1=T2=T3 =5/qf. With such 
parameters predictor is configured with the structure shown in figure 3. Consequetly, dynamic 
response is identified on line with the scheme of figure 6 using a predictor shown in same figure. 
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Figure 6. Fault detection scheme based on dynamic NNBM. 
 
Achieved HM performance is validated by simulation whose results are shown at figure 7.   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Heater exchanger HM performance 

 
The model and the process are excited simultaneosly with supply energy. At same time both 
processess are disturbed with input fluid temperatute and input fluid flow.Predictor behaviour is 



satisfactory under  mentioined disturbances such as input fluid temperature, input flow rate and 
manipulated variable. This means that processess for which a math-model is difficult to achieve, 
it may be modelised by proposed method in order to be supervised for failures or parameters 
variatuions. Implementation of proposed methodology is carried out with the facilities 
provided by a FOUNDATION Fieldbus compliant tool [17]. The DeltaV Neural 
application, a toolbox of DeltaV[17], has been selected for this purpose 
 

5. CONCLUSIONS 
A simple and coherent methodology to implement a transient response predictor  is 

presented. Such predictor could be applied on all cases where a model is to be applied, such as 
failure analysis to detect plant potential faults due to measuring instrumentation failures and/or 
changes in process dynamic conditions. The availability of advanced FOUNDATION Fieldbus 
based tools bridge the gap between the proposed methodology and its implementation.  
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