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Abstract: This paper describes a simple and reliable method to acquire information 
instantaneously on the basis of predictive computations of data acquired with significant time 
delay. The estimated value of any measured variable is the output of a virtual sensor 
implemented by means of a virtual engineering programming tool. Copyright © 2000 IFAC 
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1. INTRODUCTION 
 
Transducers are defined as smart or intelligent if they 
are capable for perform communication tasks between 
each other by means of digital protocols. The 
information acquired by several smart sensors can be 
used to compute any objective or useful variable with 
the help of some object oriented programming tool. 
Such computed variable can be regarded as a virtual 
sensor. The need for any virtual sensor is originally 
due to difficulty to measure physical magnitudes that 
can be estimated on the basis of math-models like heat 
flow, but also to the time lag generated by the primary 
elements of some sensors like some temperature 
sensors. 
 
Measurement systems that contain storage elements 
cannot respond instantaneously to changes in the 
input. Most primary elements of temperature sensors 
like thermocouples, resistance temperature detector 
(RTD), thermistors and solid state temperature sensors 
are a good example (Tarik Ozkul, 1996). 
 
In practical applications, thermowells separate the 
temperature measuring sensitive portion of a RTD, 
thermocouple or filled thermal system, from a 
potentially corrosive or damaging process media, 
generating a significant time lag between environment 

temperature and acquired measure. 
 
The protecting tube in thermocouples and RTD 
sensors exchange energy with its environment until 
the two are at same temperature, storing energy during 
the exchange. The rate at which temperature changes 
can be modelled as a first order derivative and 
thermometer behaviour modelled as a first-order 
equation. In general, systems with a storage or 
dissipative capability may be modelled using a first-
order differential equation 1. 
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Dividing through by a0 gives equation 2. 
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which in complex variable domain is equation 3 
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where τ = a1/a0 is called the time constant of the 
sensor. Regardless of the physical dimensions of a1 
and a0, their ratio will always have the dimensions of 
time. The time constant provides a measure of the 
speed of system response and as such is an important 
specification in measuring dynamic input signals 
 
 

2. MODELLING TEMPERATURE SENSORS 
WITH PROTECTING TUBE 

 
According first law of thermodynamics, the rate at 
which energy is exchanged between the sensor and its 
environment through convection, Q, must be balanced 
by the storage of energy within the protecting tube of 
the sensor, dE/dt. This conservation of energy is 
written as equation 4 
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Energy stored in the protecting tube metal is 
manifested by a change in metal temperature so that 
for a constant mass, is derived the equation 5 
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Energy exchange by convection between the 
protecting tube metal at T(t) and an environment at 
Tx(t) according figure 1, has the form of equation 6. 
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The first law can be written as equation 7. 
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and yields finally in equations 8 and 9. 
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where m is the mass of metal that conforms the 
protecting tube, Cv is the specific heat of tube metal, h 
is the convection heat transfer coefficient between 
protecting tube and environment and A is the 
equivalent concept of the protecting tube surface area. 
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Fig.1. The protecting tube of thermocouple and its 
environment 
 
In the general case of a forced convection flow, the 
math-model is similar with time-varying parameters 
according flow physical conditions. 
 
 
3.  MODEL BASED PREDICTION OF MEASURED 

VARIABLE 
 
Model based prediction depends strongly on 
modelling errors. In the above model the convection 
heat transfer coefficient is a relevant fuzzy time 
varying parameter which depends on physical and 
chemical properties of the product that conforms the 
environment temperature. The same product or fluid 
in liquid or vapour state or at a temperature near 
boiling point has a different convection heat transfer 
coefficient and consequently a different model time 
constant. In general, flow rate and specific heat exerts 
a strong influence on heat transfer coefficient and 
consequently on the time constant.  
 
For practical applications it is useful to get an 
experimental function to represent the time constant 
as function of fluid flow rate and the category o fluid 
(liquid or gas specified by its specific heat). Thus the 
time constant as function of Cv and V can be 
expressed as equation (10).  
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and the dynamic model as equation 11. 
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where Cv is the specific heat and V is its velocity 
around the sensor vicinity. As the time constant τ is 
expressed as function of Cv and V, the fluid velocity 
must be measured or estimated to update the time 
constant, which implies some computation effort. 
Instead of fluid velocity, sometimes it will be useful to 
compute the time constant as function of fluid flow 
for any particular plant. 



In order to update the time constant with no so much 
time consuming to predict the actual value of the 
variable to be measured, it is necessary to detect 
changes in variables related with the measured 
variable and then, identify the actual model 
parameters, if any significant change in its actual 
value has been detected. So that prediction of 
measured variable is carried out with the help of the 
actual math-model. This method is useful when the 
time necessary to detect changes in the measured 
variable and the time to calculate the time constant is 
short compared with the value of the time constant. 
For instance, if the value of time constant is three 
times larger than the time required to perform the 
predictive computations, then this operation is well 
justified. 
 
As a rule of thumb, all signals should be filtered 
before they are connected to the data acquisition 
hardware. Some sensors generate not only the primary 
signal but also high frequency harmonics of the 
primary signal, which debilitates the data acquisition 
process. 
 
The signal should be filtered using a filter, which has 
cut-off frequency twice as high as the highest 
frequency content of the primary signal. In figure 2 it 
is shown the general scheme used in this contribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Diagram of the prediction task 
 
 
4.  ACHIEVING AN OFF-LINE TIME CONSTANT 
 
Let’s assume the temperature sensor model defined 
under a linear first order differential equation of 
equation 12. 
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where T is the actual measured temperature and Tx is 
the actual known exciting temperature. The model 
parameter estimation task is performed by means of a 

rapid training/learning algorithm, which consists in 
mapping the sensor dynamics with the real time data 
shown in the above expression. 
Mapping the sensor dynamics requires a data structure 
of the form shown in figure 3 
 
  (a) 
 
 
 
  (b) 
 

Tx\T T1 T2 T3 
Tx1 dT/dt .. .. 
Tx2 .. .. .. 
Tx3 .. .. .. 

 
Fig. 3. Data structure in mapping procedure. 
(a) Input/output data. (b) Matrix data structure. 
 
Once data has been acquired in an off-line task, it will 
be immediately processed to achieve the model 
parameters (mainly the time constant) as equation 13. 
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Above task has been performed at a constant fixed 
fluid flow velocity, and specific heat coefficient. So 
that, the learning task will be repeated for different 
fluid velocities and specific heat coefficients (liquid 
and vapour for instance). The final result is a set of 
parameters (constant times) which correspond to 
specific fluid velocities and specific heat coefficients. 
Processing such data by a polynomial regression gives 
equation 14 
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Time constant will be computed on-line every time a 
change in flow velocity or specific heat coefficient 
had been detected. 
 
 
 
 
 
Fig. 4. Input/output data to compute the time constant 
 
 

5. VIRTUAL TEMPERATURE SENSOR 
IMPLEMENTATION 

 
Implementation of the proposed virtual temperature 
sensor requires to measure the fluid velocity, its 
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specific heat coefficient and its temperature by a smart 
or conventional sensor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Structure of a virtual temperature sensor 

 
Fig. 6.  The virtual sensor response 
 
Once such data is acquired and conditioned, then is 
processed according the scheme shown in figure 5. 
Figure 6 shows the graphical results achieved by 
computation carried out to predict a temperature 
sensor output by means of the object oriented 
programming tool HP-Vee developed by HP (Robert 
Helsel, 1997) 
 
 

6.  VIRTUAL HEAT SENSORS ON A HEAT 
CONTROL LOOP 

 
In this section it is described a typical application of a 
virtual heat sensor (William L. Luyben, 1989). Let us 
consider the problem of controlling the temperature of 
the fluid in a distillation column where significant 
pressure changes occur, and it is necessary to adopt a 

control strategy which consist in applying the 
computed heat flow as a manipulated variable of the 
control loop as shown in figure 5. The differential 
temperature in a heat exchanger is used to infer the 
heat supplied to the distillation column. Temperature 
takes some time referred as the time constant of the 
temperature sensor depending on its primary element 
characteristics (typically 0.5 sec. for thermocouples, 2 
sec. for RTD’s and 8 sec. for nitrogen filled bulbs into 
circulating water at 1 m/sec. velocity). 

V            Cv           T 

 
In gas, vapour or steam this time constants are much 
greater, sometimes four times greater. So that, in order 
to achieve precision in measuring values, a strong 
effort to update temperature values is well justified. 
 
Figure 7 shows the temperature control loop in a 
distillation column where the manipulated variable is 
the amount of heat computed as function of fluid flow, 
and the temperature difference between input and 
output heating fluid. If heating fluid is oil, the time 
constant of such sensors is short, but the distillation 
column temperature sensor might be inserted into a 
vapour environment, so that time constant is of 
significant value. The consequence is a time lag 
introduced by the sensor, which affect the plant 
control stability and the control performance. 
 
Smart sensors could be used to implement the 
proposed temperature control loop in which 
computations to predict the actual value of measured 
environment would be performed by the proposed  
virtual sensor. So that, temperature sensors are only 
used here to measure the temperature with the natural 
time delay inherent to its characteristics and 
prediction is performed by the virtual sensor, which is 
implemented by software under object, oriented 
programming tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Binary distillation column and temperature 
control loop 
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7.  CONCLUSIONS 

 
In this work, a general guide to predict the value of a 
measuring environment when significant time lag in 
measuring task exist, was described. When fluid states 
are well known computations of time constant might 
be simplified. The advances in virtual engineering 
programming tools bring the facilities to implement 
any virtual instrument at low cost or effort mainly due 
to the facility for implement multitask computations. 
In critical situations where fast changes in the 
environment exist and must be known without delay, 
the virtual measuring system improves in the general 
case of temperatures of liquids at low flow rates or 
gases. 
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