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Abstract. This work describes a novel algorithmic approach to find the linear model of any 
dynamic process. Dynamic behaviour as a knowledge concept is acquired by means of 
proposed learning algorithm, being supported by DAM (deterministic associative memory) 
system. Depending on the particular use of process model, (system simulation, control design, 
reproduction of  dynamic behaviour, parameter identification, plant diagnosis...)  information 
to and from DAM will be stored and retrieved as demanded from a particular application by 
applying the proposed algorithmic methodology. 
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1 INTRODUCTION 

The principal benefits of learning systems, given the present state of its technological 
development, derive from the ability of learning algorithms to automatically synthesize 
mapping that can be used advantageously within a control system architecture. Examples of 
such mapping include a controller mapping that relates measured and desired plant outputs to 
an appropriate set of control actions or a model parameter mapping that relates the plant 
operating condition to an accurate set of model parameters (identification) (Walter L et al. 
1992). In general, this mapping may represent dynamic functions. 

Although there is some differences between adaptive and learning systems, we see that 
both adaptive and learning can be based on parameter adjustment algorithms, and that both 
make use of experimental information gained through closed-loop interactions with the plant. 
Clear differences exist between both methods: a control system that treats every distinct 
operating state as a novel one is limited to adaptive operation, whereas a system that 
correlates past experiences with past situations, and that can recall and exploit those past 
experiences, is capable of learning. In this work we will treat parameter estimation on the 
basis of a learning algorithm for unknown processes. 

For a given model, linearization technique of substitution and binomial expansion can be 
quite tedious if the nonlinearities are numerous or involved. It may be easier to use a 
truncated Taylor’s series expansion about the equilibrium condition. To be explicit, let us 
consider the equation 
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where all terms but one are nonlinear. Express as a function of the remaining dependent 
variables and their derivatives 
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The truncated Taylor’s series expansion is 
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Expressions for the partial derivatives can be obtained and can be evaluated at the 
equilibrium condition in the following way as: 
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The linearized dynamic equation is 
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Notice that the magnitudes of the coefficients of the linearized terms vary with the 
equilibrium conditions. This is a manifestation of the nonlinearities of the equation. In 
physical situations the expressions for the coefficients can often be simplified by relationships 
developed from the steady-state equation(s). Implicit in and essential to the technique of 
linearization about an equilibrium condition is the existence of an equilibrium condition and 
of all of the partial derivatives at the equilibrium condition. The partials may be zero but may 
not infinite thus the restriction above that Zo cannot be zero. Furthermore, the equations 
should be in the form of ordinary differential equations before linearization; this means that 
partial differentiation with respect to any of the dependent variables must be carried out 
before linearization to preclude losing any essential terms. Finally, how large a "small" 
perturbation can be before it introduces unacceptable errors is difficult if not impossible to 
determine prior to linearization; the errors are dependent upon the equations themselves and 
upon the specific equilibrium conditions of interest. 

When equations or functional relationships are impossible or difficult to obtain, it may be 
possible to obtain linearized equations from operating data. The operating curves for an 
engine shown in figure 1 indicates that the output shaft speed N is a nonlinear function of both 
the fuel flow rate Q and the load torque T; i.e., N = N(Q,T). Expanding this generalized 
function in a truncated Taylor’s series expansion about the operating point 0 yields the 
linearized dynamic equation 
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where n, q ant t are the perturbations of N, Q and T with respect to the operating point. The 
partial derivatives can be evaluated by determining the incremental change in N for 
incremental changes in Q and T alone; i.e. 
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Thus, the dynamic behaviour of the engine may be approximated by the linear differential 
equation with constant coefficients 

n t C q t C t tQ T( ) ( ) $( )= +  (8)

C0 and CT should be re-evaluated if the operating point 0 changes significantly. There is not 
explicit steady-state equation; values of N0, Q0 and T0 must be obtained directly from the 
operating data 

0

N0 N(rpm)

T1 T2 T3

Q0

Q

Fig. 1  Engine operating curves 

The proposed linearization method achieves the same results under an automated 
experimental computation procedure. 

The main steps in developing the linear model of a dynamic process is summarized as: 
I. Finding the model order 
II. Clustering definition into an hyper-cube rule base 
III. Mapping the dynamic behaviour from experimental data 
IV. Linear model achieving. 

2 THE MODEL ORDER 

An interesting feature of functional approximation algorithms is that they provide two 
generic classes of functions: linear and nonlinear functions. This is used in the following ways 
when modelling nonlinear dynamical systems1,2. Consider, for example, the linear model 
defined by the phase state space variable method 
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dx
dt

Ax BuY Cx= + =  (9)

Expression (1) and (2) can be replaced with 

dx
dt
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where the functions f and g represents the system dynamics, x is the state vector and u is the 
excitation vector. 

The expression for a general description for last definition by means of ordinary 
differential equations for a SISO case is: 
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Persistent excitation of equation (11) by a unit step function such that 
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originates a sucessive series of derivatives in its output variable y, that can be described by its 
geometric interpretation as 
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where H is the numeric integration step size. For an initial sufficiently short instant, all its 
derivatives are positive. So that its higher order derivative can be expressed as 
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Consequently it results straightforward in that 
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As consequence of (14) it can be stated that the first successive derivative of higher order 
whose value  is negative, indicates the order of the model incremented in a unit. It can be 
applicable to systems defined by ordinary differential equations of type described in (11). 

Lemma 1 

In all stable systems that can be described under ordinary differential equations, excited by 
a step function, derivatives  exist if and only if Dny > 0 . 

As consequence, the order is n if Dn+1y <0 
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Proof: 

Given a system defined  by an ordinary differential equations as 
M v Bv F& + =  (16)

It can be described by means of a linear differential operator as 

F M D v Bv= +1  (17)

The first derivative is achieved straightforward as 
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the second successive derivative by recursive iteration is 
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Consecuently, the equation order is n = 2-1 = 1. 
The algorithmic procedure is shown at figure 2 
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read y 
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Fig. 2  Searching for the equation order 
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3 PRACTICAL APPLICATION 

One of the most important and useful application in determining the system order is 
encountered in system identification tasks. Let’s consider the case in which it is necessary to  
find the system model3, that is the model parameters. Then, the process described in (16) is 
studied. Following the procedure shown from (17) to (19) it is concluded that the system 
order is 2. Consequently, the task to be developed in approaching the system parameters is 
carried out as described in3. Consequently, the structure of the differential equation under 
which the unknowns system must be described is shown as (16) and repeated here. So that 

M v Bv F& + =  (20)

can be described by means of a linear differential operator as 

F M D v Bv= +1  (21)

and conveniently rearranged for operational purposes as 

aV bV V2 2 1
′ + =  (22)

The higher order derivative of the system output variable V2
′ in a first order system, that is 

( ) ( )V a V b V2 1
1 1

2
′ = +  (23)

or in a normalized form, 

( ) ( )V k V k V2 1 1 2 2
′ = +  (24)

it could be expressed in matrix form as 

[ ]V V K′ =  (25)

and the plant parameters are directly achieved as, 

[ ]K V V= ′−1  (26)

where K is the vector of plant parameters. 

4 CONCLUSIONS 

It has been shown that the approaching to a system order is a previous, basic and 
fundamental operation in system identification. So that, with a priori knowledge concerning 
the dynamic behaviour of an unknown system such as its evolution regarding its stability and 
external exciting forces, a good approach in determining its order is then achieved. The 
algorithmic simplicity and the clarity of methodology, makes this procedure a potential tool in 
system identification. Restrictions are encountered in determining when the unknown system 
is stable. So that this knowledge is essential for success 
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